Sample records for properties retention mechanisms

  1. Influence of the mechanical properties of resilient denture liners on the retention of overdenture attachments.

    PubMed

    Kubo, Keitaro; Koike, Takashi; Ueda, Takayuki; Sakurai, Kaoru

    2018-03-15

    Information is lacking about the selection criteria for silicone resilient denture liners applied as a matrix material for attachments on overdentures. The purpose of this in vitro study was to investigate the mechanical properties of silicone resilient denture liners and their influence on the initial retention force of overdenture attachments and the reduction in retention force over time. Nine types of silicone resilient denture liner were injected and fixed to the matrix section of an experimental denture base. They were then fitted to an epoxy resin model that simulated the residual ridge with a patrix ball attachment (n=10). The retention force of the denture was measured with a digital force gauge, and the maximum force of traction (N) was regarded as the initial retention force. The retention force reduction (N) after repeated insertion and removal (n=5) was calculated by subtracting the retention force after 3348 cycles (3-year simulated insertion and removal) from the initial retention force. The intaglio of the matrix was observed with a scanning electron microscope (SEM) before and after the 3348 cycles. Four mechanical properties (hardness, strain-in-compression, tensile strength, and arithmetic mean roughness) of the resilient denture liners were measured. One-way ANOVA of the initial retention force of each lining material was performed, followed by the Scheffe test (α=.05). Pearson correlation analysis was used (α=.05) to analyze correlations of the initial retention force with the retention force reduction after insertion and removal and the mechanical properties of each material. Multiple regression analysis with the stepwise method extracted the initial retention force and the retention force reduction as dependent variables, and the resilient denture liner mechanical properties as explanatory variables (α=.05). The initial retention force of the resilient denture liners was 1.3 to 5.4 N. Multiple comparisons showed significant differences in

  2. Assessment of the physical, mechanical, and moisture-retention properties of pullulan-based ternary co-blended films.

    PubMed

    Pan, Hongyang; Jiang, Bo; Chen, Jie; Jin, Zhengyu

    2014-11-04

    Multi-component substances made through direct blending or blending with co-drying can form films on the surfaces of intermediate moisture foods (IMFs), which help retain moisture and protect food texture and flavor. An IMF film system based on pullulan, with glycerol serving as the plasticizer, was studied using alginate and four different types of polysaccharides (propyleneglycol alginate, pectin, carrageenan, and aloe polysaccharide) as the blend-modified substances. The physical, mechanical, color, transparency, and moisture-retention properties of the co-blended films with the polysaccharides were assessed. A new formula was established for the average moisture retention property, water barrier, tensile strength, elongation at break, and oxygen barrier property of the ternary co-blended films using the Design Expert software. The new model established for moisture content measurement used an indirect method of film formation on food surfaces by humectants, which should expedite model validation and allow a better comprehension of moisture transfer through edible films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in themore » temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.« less

  4. Water retention curves and thermal insulating properties of Thermosand

    NASA Astrophysics Data System (ADS)

    Leibniz, Otto; Winkler, Gerfried; Birk, Steffen

    2010-05-01

    The heat loss and the efficiency of isolating material surrounding heat supply pipes are essential issues for the energy budget of heat supply pipe lines. Until now heat loss from the pipe is minimized by enlarging the polyurethane (PU) - insulation thickness around the pipe. As a new approach to minimize the heat loss a thermally insulating bedding material was developed and investigated. Conventional bedding sands cover all necessary soil mechanical properties, but have a high thermal conductivity from λ =1,5 to 1,7 W/(m K). A newly developed embedding material 'Thermosand' shows thermal properties from λ=0,18 W/(m K) (dry) up to 0,88 W/(m K) (wet). The raw material originates from the waste rock stockpiles of a coal mine near Fohnsdorf, Austria. With high temperatures up to nearly 1000 ° C and a special mineral mixture, a natural burned reddish material resembling clinker arises. The soilmechanical properties of Thermosand has been thoroughly investigated with laboratory testing and in situ investigations to determine compaction-, permeability- and shear-behaviour, stiffness and corresponding physical parameters. Test trenches along operational heat pipes with temperature-measurement along several cross-sections were constructed to compare conventional embedding materials with 'Thermosand'. To investigate the influence of varying moisture content on thermal conductivity a 1:1 large scale model test in the laboratory to simulate real insitu-conditions was established. Based on this model it is planned to develop numerical simulations concerning varying moisture contents and unsaturated soil mechanics with heat propagation, including the drying out of the soil during heat input. These simulations require the knowledge about the water retention properties of the material. Thus, water retention curves were measured using both steady-state tension and pressure techniques and the simplified evaporation method. The steady-state method employs a tension table (sand

  5. Mechanics of Stimulated Neutrophils: Cell Stiffening Induces Retention in Capillaries

    NASA Astrophysics Data System (ADS)

    Worthen, G. Scott; Schwab, Bill; Elson, Elliot L.; Downey, Gregory P.

    1989-07-01

    The effect of peptide chemoattractants on neutrophil mechanical properties was studied to test the hypothesis that stimulated neutrophils (diameter, 8 micrometers) are retained in pulmonary capillaries (5.5 micrometers) as a result of a decreased ability of the cell to deform within the capillary in response to the hydrodynamic forces of the bloodstream. Increased neutrophil stiffness, actin assembly, and retention in both 5-micrometer pores and the pulmonary vasculature were seen in response to N-formylmethionyl-leucyl-phenylalanine. These changes were abolished in cells that had been incubated with 2 micromolar cytochalasin D, an agent that disrupts cellular actin organization. A monoclonal antibody directed at the CD11-CD18 adhesive glycoprotein complex did not inhibit the increase in stiffness or retention in pores. These data suggest that neutrophil stiffening may be both necessary and sufficient for the retention that is observed. Hence, neutrophil sequestration in lung and other capillaries in the acute inflammatory process may be the result of increased stiffness stimulated by chemoattractants.

  6. Mechanisms of deterioration of nutrients. [retention of flavor during freeze drying

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1975-01-01

    The retention of flavor during freeze drying was studied with model systems. Mechanisms by which flavor retention phenomena is explained were developed and process conditions specified so that flavor retention is optimized. The literature is reviewed and results of studies of the flavor retention behavior of a number of real food products, including both liquid and solid foods are evaluated. Process parameters predicted by the mechanisms to be of greatest significance are freezing rate, initial solids content, and conditions which result in maintenance of sample structure. Flavor quality for the real food showed the same behavior relative to process conditions as predicted by the mechanisms based on model system studies.

  7. Molecular Mechanisms Controlling GLUT4 Intracellular Retention

    PubMed Central

    Blot, Vincent

    2008-01-01

    In basal adipocytes, glucose transporter 4 (GLUT4) is sequestered intracellularly by an insulin-reversible retention mechanism. Here, we analyze the roles of three GLUT4 trafficking motifs (FQQI, TELEY, and LL), providing molecular links between insulin signaling, cellular trafficking machinery, and the motifs in the specialized trafficking of GLUT4. Our results support a GLUT4 retention model that involves two linked intracellular cycles: one between endosomes and a retention compartment, and the other between endosomes and specialized GLUT4 transport vesicles. Targeting of GLUT4 to the former is dependent on the FQQI motif and its targeting to the latter is dependent on the TELEY motif. These two motifs act independently in retention, with the TELEY-dependent step being under the control of signaling downstream of the AS160 rab GTPase activating protein. Segregation of GLUT4 from endosomes, although positively correlated with the degree of basal retention, does not completely account for GLUT4 retention or insulin-responsiveness. Mutation of the LL motif slows return to basal intracellular retention after insulin withdrawal. Knockdown of clathrin adaptin protein complex-1 (AP-1) causes a delay in the return to intracellular retention after insulin withdrawal. The effects of mutating the LL motif and knockdown of AP-1 were not additive, establishing that AP-1 regulation of GLUT4 trafficking requires the LL motif. PMID:18550797

  8. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    PubMed

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Effect of Surface Properties on Colloid Retention on Natural and Surrogate Produce Surfaces.

    PubMed

    Lazouskaya, Volha; Sun, Taozhu; Liu, Li; Wang, Gang; Jin, Yan

    2016-12-01

    Bacterial contamination of fresh produce is a growing concern in food industry. Pathogenic bacteria can attach to and colonize the surfaces of fresh produce and cause disease outbreaks among consumers. Surface properties of both bacteria and produce affect bacterial contamination; however, the effects of produce roughness, topography, and hydrophobicity on bacterial retention are still poorly understood. In this work, we used spherical polystyrene colloids as bacterial surrogates to investigate colloid retention on and removal (by rinsing) from fresh produce surfaces including tomato, orange, apple, lettuce, spinach, and cantaloupe, and from surrogate produce surface Sharklet (a micro-patterned polymer). All investigated surfaces were characterized in terms of surface roughness and hydrophobicity (including contact angle and water retention area measurements). The results showed that there was no single parameter that dominated colloid retention on fresh produce, yet strong connection was found between colloid retention and water retention and distribution on all the surfaces investigated except apple. Rinsing was generally not efficient in removing colloids from produce surfaces, which suggests the need to modify current cleaning procedures and to develop novel contamination prevention strategies. This work offers a physicochemical approach to a food safety problem and improves understanding of mechanisms leading to produce contamination. © 2016 Institute of Food Technologists®.

  10. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer.

    PubMed

    Liang, Rui; Liu, Mingzhu

    2006-02-22

    A double-coated, slow-release, and water-retention urea fertilizer (DSWU) was prepared by cross-linked poly(acrylic acid)-containing urea (PAAU) (the outer coating), polystyrene (PS) (the inner coating), and urea granule (the core). Elemental analysis results showed that the nitrogen content of the product was 33.6 wt %. The outer coating (PAAU) regulated the nitrogen release rate and protected the inner coating from damage. The slow-release property of the product was investigated in water and in soil. The possible mechanism of nitrogen release was proposed. The influences of PS coating percentage, temperature, water absorbency, and pH on the release of nitrogen were also investigated. It was found that PS coating percentage, temperature, and water absorbency had a significant influence on the release of nitrogen. However, the pH had no effect. The water-retention property of the product was also investigated. The results showed that the product not only had a good slow-release property but also excellent water-retention capacity, which could effectively improve the utilization of fertilizer and water resources. The results of the present work indicated that the DSWU would find good application in agriculture and horticulture, especially in drought-prone areas where the availability of water is insufficient.

  11. 32 CFR 637.13 - Retention of property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Retention of property. 637.13 Section 637.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND.... Reports of investigation, photographs, exhibits, handwritten notes, sketches, and other materials...

  12. 32 CFR 637.13 - Retention of property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Retention of property. 637.13 Section 637.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND.... Reports of investigation, photographs, exhibits, handwritten notes, sketches, and other materials...

  13. Mixed retention mechanism of proteins in weak anion-exchange chromatography.

    PubMed

    Liu, Peng; Yang, Haiya; Geng, Xindu

    2009-10-30

    Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.

  14. Critical contribution of nonlinear chromatography to the understanding of retention mechanism in reversed-phase liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2005-11-01

    The retention of most compounds in RPLC proceeds through a combination of several independent mechanisms. We review a series of recent studies made on the behavior of several commercial C{sub 18}-bonded stationary phases and of the complex, mixed retention mechanisms that were observed in RPLC. These studies are essentially based on the acquisition of adsorption isotherm data, on the modeling, and on the interpretation of these data. Because linear chromatography deals only with the initial slope of the global, overall, or apparent isotherm, it is unable fully to describe the complete adsorption mechanism. It cannot even afford clues as tomore » the existence of several overlaid retention mechanisms. More specifically, it cannot account for the consequences of the surface heterogeneity of the packing material. The acquisition of equilibrium data in a wide concentration range is required for this purpose. Frontal analysis (FA) of selected probes gives data that can be modeled into equilibrium isotherms of these probes and that can also be used to calculate their adsorption or affinity energy distribution (AED). The combination of these data, the detailed study of the best constants of the isotherm model, the determination of the influence of experimental parameters (e.g., buffer pH and pI, temperature) on the isotherm constants provide important clues regarding the heterogeneity of the adsorbent surface and the main properties of the adsorption mechanisms. The comparison of similar data obtained for the adsorption of neutral and ionizable compounds, treated with the same approach, and the investigation of the influence on the thermodynamics of phase equilibrium of the experimental conditions (temperature, average pressure, mobile phase composition, nature of the organic modifier, and, for ionizable compounds, of the ionic strength, the nature, the concentration of the buffer, and its pH) brings further information. This review provides original conclusions

  15. A float mechanism of retention in reversed-phase chromatography

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Deineka, L. A.; Saenko, I. I.; Chulkov, A. N.

    2015-07-01

    A float mechanism of retention in reversed-phase HPLC is proposed as an alternative to the known mechanisms of the distribution and hydrophobic expulsion of sorbate to the surface of a sorbent. Experimental data that the sorption of a flavylium structure is poorly sensitive to the position of OH groups, and that the retention of anthocyanins depends on the length of bonded alkyl radicals of reversed phase, form the basis of the proposed hypothesis. It is noted that the retention of anthocyanins depends on the orientation of hydroxyl groups in carbohydrate radicals, due to which the chromatographic behavior of anthocyanins is different for glucosides and galactosides, for arabinosides and xylosides, and so on. In other words, retention is a reliable indicator of the composition of a carbohydrate fragment. It is concluded that carbohydrate radicals serve as unique floats, while flat flavilic ions penetrate into the bonded phase. The existence of floats is the main reason for the lower efficiency (of the number of theoretical plates) of the peaks of anthocyanins. It is shown that if two carbohydrate radicals are present at different sites of aglycone (a two-float sorbate), the peaks of the substance are characterized by substantial additional broadening.

  16. Mechanical properties and area retention of leather dried with biaxial stretching under vacuum

    USDA-ARS?s Scientific Manuscript database

    The conversion of animal hides to leather involves many complicated chemical and mechanical operations. Drying is one of the mechanical operations, and plays a key role in determining the physical properties of leather. It is where leather acquires its final texture, consistency and flexibility. ...

  17. Retention mechanisms for ER and Golgi membrane proteins.

    PubMed

    Gao, Caiji; Cai, Yi; Wang, Yejun; Kang, Byung-Ho; Aniento, Fernando; Robinson, David G; Jiang, Liwen

    2014-08-01

    Unless there are mechanisms to selectively retain membrane proteins in the endoplasmic reticulum (ER) or in the Golgi apparatus, they automatically proceed downstream to the plasma or vacuole membranes. Two types of coat protein complex I (COPI)-interacting motifs in the cytosolic tails of membrane proteins seem to facilitate membrane retention in the early secretory pathway of plants: a dilysine (KKXX) motif (which is typical of p24 proteins) for the ER and a KXE/D motif (which occurs in the Arabidopsis endomembrane protein EMP12) for the Golgi apparatus. The KXE/D motif is highly conserved in all eukaryotic EMPs and is additionally present in hundreds of other proteins of unknown subcellular localization and function. This novel signal may represent a new general mechanism for Golgi targeting and the retention of polytopic integral membrane proteins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Preparation and retention mechanism study of graphene and graphene oxide bonded silica microspheres as stationary phases for high performance liquid chromatography.

    PubMed

    Zhang, Xiaoqiong; Chen, Sha; Han, Qiang; Ding, Mingyu

    2013-09-13

    Graphene oxide (GO) bonded stationary phase for high performance liquid chromatography (HPLC) was fabricated by coating GO sheets onto aminosilica microspheres via covalent coupling. Graphene (G) functionalized HPLC stationary phase was then prepared through hydrazine reduction of GO bonded silica (GO@SiO2) composite, which was the first example of using graphene as stationary-phase component for HPLC. Effective separations of the tested neutral and polar compounds on both GO@SiO2 and graphene bonded silica (G@SiO2) columns were achieved under the optimal experimental conditions. Compared with commercial C18 column, the different chromatographic performances of GO and graphene bonded columns were ascribed to their unique retention mechanisms. The polyaromatic scaffold of GO and graphene gives π-π stacking property and hydrophobic effect, and other retention mechanisms, such as π-π electron-donor-acceptor (EDA) interaction for the separation of nitroaromatic compounds and hydrogen bonding for hydroxyl and amino compounds, may also be taken into consideration. Experimental results indicated that the mixed-mode retention mechanism can facilitate the separation of analytes with similar hydrophobicity, which is a unique property compared with C18 column. Additionally, G@SiO2 showed higher affinity to aromatic analytes in contrast with GO@SiO2 and its retention mechanism was not consistent with the typical reversed phase behavior. The separation of aromatic compounds on G@SiO2 column relies primarily on the π-π stacking interaction and then the hydrophobicity, while the two interactions have equal shares on GO@SiO2 column. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Retention of 14C-labeled multiwall carbon nanotubes by humic acid and polymers: Roles of macromolecule properties

    PubMed Central

    Zhao, Qing; Petersen, Elijah J.; Cornelis, Geert; Wang, Xilong; Guo, Xiaoying; Tao, Shu; Xing, Baoshan

    2016-01-01

    Developing methods to measure interactions of carbon nanotubes (CNTs) with soils and sediments and understanding the impact of soil and sediment properties on CNT deposition are essential for assessing CNT environmental risks. In this study, we utilized functionalized carbon-14 labeled nanotubes to systematically investigate retention of multiwall CNTs (MWCNTs) by 3 humic acids, 3 natural biopolymers, and 10 model solid-phase polymers, collectively termed macromolecules. Surface properties, rather than bulk properties of macromolecules, greatly influenced MWCNT retention. As shown via multiple linear regression analysis and path analysis, aromaticity and surface polarity were the two most positive factors for retention, suggesting retention was regulated by π-π stacking and hydrogen bonding interactions. Moreover, MWCNT deposition was irreversible. These observations may explain the high retention of MWCNT in natural soils. Moreover, our findings on the relative contribution of each macromolecule property on CNT retention provide information on macromolecule selection for removal of MWCNTs from wastewater and provide a method for measuring CNT interactions with organic macromolecules. PMID:27458320

  20. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.

    PubMed

    Rahmatpour, Samaneh; Shirvani, Mehran; Mosaddeghi, Mohammad R; Bazarganipour, Mehdi

    2017-05-15

    The rapid production and application of silver nanoparticles (AgNPs) have led to significant release of AgNPs into the terrestrial environments. Once released into the soil, AgNPs could enter into different interactions with soil particles which play key roles in controlling the fate and transport of these nanoparticles. In spite of that, experimental studies on the retention of AgNPs in soils are very scarce. Hence, the key objective of this research was to find out the retention behavior of AgNPs and Ag(I) ions in a range of calcareous soils. A second objective was to determine the extent to which the physico-chemical properties of the soils influence the Ag retention parameters. To this end, isothermal batch experiments were used to determine the retention of Poly(vinylpyrrolidinone)-capped AgNPs (PVP-AgNPs) and Ag(I) ions by nine calcareous soils with a diversity of physico-chemical properties. The results revealed that the retention data for both PVP-AgNPs and Ag(I) ions were well described by the classical Freundlich and Langmuir isothermal equations. The retention of PVP-AgNPs and Ag(I) ions was positively correlated to clay and organic carbon (OC) contents as well as electrical conductivity (EC), pH, and cation exchange capacity (CEC) of the soils. Due to multicolinearity among the soil properties, principal component analysis (PCA) was used to group the soil properties which affect the retention of PVP-AgNPs and Ag(I) ions. Accordingly, we identified two groups of soil properties controlling retention of PVP-AgNPs and Ag(I) ions in the calcareous soils. The first group comprised soil solid phase parameters like clay, OC, and CEC, which generally control hetero-aggregation and adsorption reactions and the second group included soil solution variables such as EC and pH as well as Cl - and Ca 2+ concentrations, which are supposed to mainly affect homo-aggregation and precipitation reactions. Copyright © 2017. Published by Elsevier Ltd.

  1. Scoring Dawg Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Backes, Paul G.

    2011-01-01

    This novel core break-off and retention mechanism consists of a scoring dawg controlled by a set of two tubes (a drill tube and an inner tube). The drill tube and the inner tube have longitudinal concentric holes. The solution can be implemented in an eccentric tube configuration as well where the tubes have eccentric longitudinal holes. The inner tube presents at the bottom two control surfaces for controlling the orientation of the scoring dawg. The drill tube presents a sunk-in profile on the inside of the wall for housing the scoring dawg. The inner tube rotation relative to the drill tube actively controls the orientation of the scoring dawg and hence its penetration and retrieval from the core. The scoring dawg presents a shaft, two axially spaced arms, and a tooth. The two arms slide on the control surfaces of the inner tube. The tooth, when rotated, can penetrate or be extracted from the core. During drilling, the two tubes move together maintaining the scoring dawg completely outside the core. After the desired drilling depth has been reached the inner tube is rotated relative to the drill tube such that the tooth of the scoring dawg moves toward the central axis. By rotating the drill tube, the scoring dawg can score the core and so reduce its cross sectional area. The scoring dawg can also act as a stress concentrator for breaking the core in torsion or tension. After breaking the core, the scoring dawg can act as a core retention mechanism. For scoring, it requires the core to be attached to the rock. If the core is broken, the dawg can be used as a retention mechanism. The scoring dawg requires a hard-tip insert like tungsten carbide for scoring hard rocks. The relative rotation of the two tubes can be controlled manually or by an additional actuator. In the implemented design solution the bit rotation for scoring was in the same direction as the drilling. The device was tested for limestone cores and basalt cores. The torque required for breaking the

  2. Correlation between structure, retention, property, and activity of biologically relevant 1,7-bis(aminoalkyl)diazachrysene derivatives.

    PubMed

    Šegan, Sandra; Trifković, Jelena; Verbić, Tatjana; Opsenica, Dejan; Zlatović, Mario; Burnett, James; Šolaja, Bogdan; Milojković-Opsenica, Dušanka

    2013-01-01

    The physicochemical properties, retention parameters (R(M)(0)), partition coefficients (logP(OW)), and pK(a) values for a series of thirteen 1,7-bis(aminoalkyl) diazachrysene (1,7-DAAC) derivatives were determined in order to reveal the characteristics responsible for their biological behavior. The investigated compounds inhibit three unrelated pathogens (the Botulinum neurotoxin serotype A light chain (BoNT/A LC), Plasmodium falciparum malaria, and Ebola filovirus) via three different mechanisms of action. To determine the most influential factors governing the retention and activities of the investigated diazachrysenes, R(M)(0), logP(OW), and biological activity values were correlated with 2D and 3D molecular descriptors, using a partial least squares regression. The resulting quantitative structure-retention (property) relationships indicate the importance of descriptors related to the hydrophobicity of the molecules (e.g., predicted partition coefficients and hydrophobic surface area). Quantitative structure-activity relationship models for describing biological activity against the BoNT/A LC and malarial strains also include overall compound polarity, electron density distribution, and proton donor/acceptor potential. Furthermore, models for Ebola filovirus inhibition are presented qualitatively to provide insights into parameters that may contribute to the compounds' antiviral activities. Overall, the models form the basis for selecting structural features that significantly affect the compound's absorption, distribution, metabolism, excretion, and toxicity profiles. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Praying Mantis Bending Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Lindermann, Randel A.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale, yet is robust and versatile enough to be used for a variety of core samples. The new design consists of a set of tubes (a drill tube, an outer tube, and an inner tube) and means of sliding the inner and outer tubes axially relative to each other. Additionally, a sample tube can be housed inside the inner tube for storing the sample. The inner tube fits inside the outer tube, which fits inside the drill tube. The inner and outer tubes can move axially relative to each other. The inner tube presents two lamellae with two opposing grabbing teeth and one pushing tooth. The pushing tooth is offset axially from the grabbing teeth. The teeth can move radially and their motion is controlled by the outer tube. The outer tube presents two lamellae with radial extrusions to control the inner tube lamellae motion. In breaking the core, the mechanism creates two support points (the grabbing teeth and the bit tip) and one push point. The core is broken in bending. The grabbing teeth can also act as a core retention mechanism. The praying mantis that is disclosed herein is an active core breaking/retention mechanism that requires only one additional actuator other than the drilling actuator. It can break cores that are attached to the borehole bottom as

  4. Mechanisms of nutrient retention and its relation to flow connectivity in river-floodplain corridors

    USGS Publications Warehouse

    Larsen, Laurel; Harvey, Judson; Maglio, Morgan M.

    2015-01-01

    Understanding heterogeneity or patchiness in the distribution of vegetation and retention of C and nutrients in river corridors is critical for setting priorities for river management and restoration. Several mechanisms of spatial differentiation in nutrient retention in river and floodplain corridors have been recognized, but few studies have distinguished their relative importance or established their role in long-term geomorphic change, nutrient retention, and connectivity with downstream systems. We evaluated the ability of 3 mechanisms (evapotranspiration focusing [EF], differential hydrologic exchange [DHE], and particulate nutrient redistribution [PNR]) to explain spatial patterns of P retention and function in the Everglades (Florida, USA). We used field measurements in sloughs and on slightly higher, more densely vegetated ridges to quantify P fluxes attributable to the 3 mechanisms. EF does not explain Everglades nutrient retention or P concentrations on ridges and in sloughs. However, DHE resulting from different periods of groundwater–surface-water connectivity across topographic elements is the primary cause of elevated P concentrations on ridges and completely explains interpatch differences in long-term P accumulation rates. With historical flow velocities, which were an order of magnitude higher than at present, PNR would have further increased the interpatch difference in long-term P retention rates nearly 2-fold. In conclusion, DHE and PNR are the dominant drivers of nutrient patchiness in the Everglades and are hypothesized to be important in P-limited river and floodplain corridors globally.

  5. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria

    USGS Publications Warehouse

    Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.

    2018-01-01

    Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.

  6. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen.

    PubMed

    Picot, Julien; Ndour, Papa Alioune; Lefevre, Sophie D; El Nemer, Wassim; Tawfik, Harvey; Galimand, Julie; Da Costa, Lydie; Ribeil, Jean-Antoine; de Montalembert, Mariane; Brousse, Valentine; Le Pioufle, Bruno; Buffet, Pierre; Le Van Kim, Caroline; Français, Olivier

    2015-04-01

    Red blood cells (RBCs) are deformable and flow through vessels narrower than their own size. Their deformability is most stringently challenged when they cross micrometer-wide slits in the spleen. In several inherited or acquired RBC disorders, blockade of small vessels by stiff RBCs can trigger organ damage, but a functional spleen is expected to clear these abnormal RBCs from the circulation before they induce such complications. We analyzed flow behavior of RBCs in a microfluidic chip that replicates the mechanical constraints imposed on RBCs as they cross the human spleen. Polymer microchannels obtained by soft lithography with a hydraulic diameter of 25 μm drove flow into mechanical filtering units where RBCs flew either slowly through 5- to 2-μm-wide slits or rapidly along 10-μm-wide channels, these parallel paths mimicking the splenic microcirculation. Stiff heated RBCs accumulated in narrow slits seven times more frequently than normal RBCs infused simultaneously. Stage-dependent retention of Plasmodium falciparum-infected RBCs was also observed in these slits. We also analyzed RBCs from patients with hereditary spherocytosis and observed retention for those having the most altered mechanical properties as determined by ektacytometry. Thus, in keeping with previous observations in vivo and ex vivo, the chip successfully discriminated poorly deformable RBCs based on their distinct mechanical properties and on the intensity of the cell alteration. Applications to the exploration of the pathogenesis of malaria, hereditary spherocytosis, sickle cell disease and other RBC disorders are envisioned. © 2015 Wiley Periodicals, Inc.

  7. Influence of biochar on the physical, chemical and retention properties of an amended sandy soil

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio; De Pasquale, Claudio; Parrino, Francesco; Crescimanno, Giuseppina

    2017-04-01

    Soil porosity plays an important role in soil-water retention and water availability to crops, potentially affecting both agricultural practices and environmental sustainability. The pore structure controls fluid flow and transport through the soil, as well as the relationship between the properties of individual minerals and plants. Moreover, the anthropogenic pressure on soil properties has produced numerous sites with extensive desertification process close to residential areas. Biochar (biologically derived charcoal) is produced by pyrolysis of biomasses under low oxygen conditions, and it can be applied for recycling organic waste in soils and increase soil fertility, improving soil structure and enhancing soil water storage and soil water movement. Soil application of biochar might have agricultural, environmental and sustainability advantages over the use of organic manures or compost, as it is a porous material with a high inner surface area. The main objectives of the present study were to investigate the possible application of biochar from forest residues, derived from mechanically chipped trunks and large branches of Abies alba M., Larix decidua Mill., Picea excelsa L., Pinus nigra A. and Pinus sylvestris L. pyrolysed at 450 °C for 48h, to improve soil structural and hydraulic properties (achieving a stabilization of soil). Different amount of biochar were added to a desertic sandy soil, and the effect on soil porosity water retention and water available to crops were investigated. The High Energy Moisture Characteristic (HEMC) technique was applied to investigate soil-water retention at high-pressure head levels. The adsorption and desorption isotherms of N2 on external surfaces were also determined in order to investigate micro and macro porosity ratio. Both the described model of studies on adsorption-desorption experiments with the applied isotherms model explain the increasing substrate porosity with a particular attention to the macro and micro

  8. A Discussion of SY-101 Crust Gas Retention and Release Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Rassat; PA Gauglitz; SM Caley

    1999-02-23

    The flammable gas hazard in Hanford waste tanks was made an issue by the behavior of double-shell Tank (DST) 241-SY-101 (SY-101). Shortly after SY-101 was filled in 1980, the waste level began rising periodically, due to the generation and retention of gases within the slurry, and then suddenly dropping as the gases were released. An intensive study of the tank's behavior revealed that these episodic releases posed a safety hazard because the released gas was flammable, and, in some cases, the volume of gas released was sufficient to exceed the lower flammability limit (LFL) in the tank headspace (Allemann etmore » al. 1993). A mixer pump was installed in SY-101 in late 1993 to prevent gases from building up in the settled solids layer, and the large episodic gas releases have since ceased (Allemann et al. 1994; Stewart et al. 1994; Brewster et al. 1995). However, the surface level of SY-101 has been increasing since at least 1995, and in recent months the level growth has shown significant and unexpected acceleration. Based on a number of observations and measurements, including data from the void fraction instrument (VFI), we have concluded that the level growth is caused largely by increased gas retention in the floating crust. In September 1998, the crust contained between about 21 and 43% void based on VFI measurements (Stewart et al. 1998). Accordingly, it is important to understand the dominant mechanisms of gas retention, why the gas retention is increasing, and whether the accelerating level increase will continue, diminish or even reverse. It is expected that the retained gas in the crust is flammable, with hydrogen as a major constituent. This gas inventory would pose a flammable gas hazard if it were to release suddenly. In May 1997, the mechanisms of bubble retention and release from crust material were the subject of a workshop. The evaluation of the crust and potential hazards assumed a more typical void of roughly 15% gas. It could be similar to

  9. Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.

    PubMed

    Tasaki, Yuiko; Okada, Tetsuo

    2011-12-15

    A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase.

  10. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less

  11. Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models

    NASA Astrophysics Data System (ADS)

    Krupp, Armin; Griffiths, Ian; Please, Colin

    2016-11-01

    Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.

  12. Characterizing scale- and location-dependent correlation of water retention parameters with soil physical properties using wavelet techniques.

    PubMed

    Shu, Qiaosheng; Liu, Zuoxin; Si, Bingcheng

    2008-01-01

    Understanding the correlation between soil hydraulic parameters and soil physical properties is a prerequisite for the prediction of soil hydraulic properties from soil physical properties. The objective of this study was to examine the scale- and location-dependent correlation between two water retention parameters (alpha and n) in the van Genuchten (1980) function and soil physical properties (sand content, bulk density [Bd], and organic carbon content) using wavelet techniques. Soil samples were collected from a transect from Fuxin, China. Soil water retention curves were measured, and the van Genuchten parameters were obtained through curve fitting. Wavelet coherency analysis was used to elucidate the location- and scale-dependent relationships between these parameters and soil physical properties. Results showed that the wavelet coherence between alpha and sand content was significantly different from red noise at small scales (8-20 m) and from a distance of 30 to 470 m. Their wavelet phase spectrum was predominantly out of phase, indicating negative correlation between these two variables. The strong negative correlation between alpha and Bd existed mainly at medium scales (30-80 m). However, parameter n had a strong positive correlation only with Bd at scales between 20 and 80 m. Neither of the two retention parameters had significant wavelet coherency with organic carbon content. These results suggested that location-dependent scale analyses are necessary to improve the performance for soil water retention characteristic predictions.

  13. Thorough investigation of the retention mechanisms and retention behavior of amides and sulfonamides on amino column in hydrophilic interaction liquid chromatography.

    PubMed

    Jovanović, Marko; Stojanović, Biljana Jančić

    2013-08-02

    In this paper detailed analysis of a mixture of four amides (tropicamide, nicotinamide, tiracetam, and piracetam) and six sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, sulfafurazole, furosemide, and bumetanide) on aminopropyl column in hydrophilic interaction chromatography (HILIC) was carried out. Since, there are no papers on the topic of the assessment of the contribution of ion-exchange retention mechanism involved in the separation of the acidic compounds on aminopropyl column in HILIC mode, the authors utilized the retention data of the acidic sulfonamides for this purpose. Next, broad range of the aqueous buffer concentrations in the mobile phase was examined providing the separation under either HILIC or RP conditions. Turning points between these two mechanisms were determined and then the fitting of the experimental data in the localized and non-localized adsorption models in both RP and HILIC regions was assessed. Since not many papers in the literature were dealing with the estimation of factor influence on the retention behavior of neutral and acidic compounds on aminopropyl column in HILIC, Box-Behnken design and Response Surface Methodology were applied. On the basis of the obtained data, ten quadratic models were proposed and their adequacy was confirmed using ANOVA test. Furthermore, retention data was graphically evaluated by the construction of 3D response surface plots. Finally, good predictive ability of the suggested models was proved with five additional verification experiments. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Determining parameters and mechanisms of colloid retention and release in porous media

    USDA-ARS?s Scientific Manuscript database

    A framework is presented to determine fundamental parameters and mechanisms controlling colloid (including microbes and nanoparticles) retention and release on hypothetical porous medium surfaces that exhibit distributions of nanoscale chemical heterogeneity, nano- to microscale roughness, and spati...

  15. Bovine versus Porcine Acellular Dermal Matrix: A Comparison of Mechanical Properties.

    PubMed

    Adelman, David M; Selber, Jesse C; Butler, Charles E

    2014-05-01

    Porcine and bovine acellular dermal matrices (PADM and BADM, respectively) are the most commonly used biologic meshes for ventral hernia repair. A previous study suggests a higher rate of intraoperative device failures using PADM than BADM. We hypothesize that this difference is, in part, related to intrinsic mechanical properties of the matrix substrate and source material. The following study directly compares these 2 matrices to identify any potential differences in mechanical properties that may relate to clinical outcomes. Sections of PADM (Strattice; Lifecell, Branchburg, N.J.) and BADM (SurgiMend; TEI Biosciences, Boston, Mass.) were subjected to a series of biomechanical tests, including suture retention, tear strength, and uniaxial tensile strength. Results were collected and compared statistically. In all parameters, BADM exhibited a superior mechanical strength profile compared with PADM of similar thickness. Increased BADM thickness correlated with increased mechanical strength. In suture tear-through testing with steel wire, failure of the steel wire occurred in the 4-mm-thick BADM, whereas the matrix material failed in all other thicknesses of BADM and PADM. Before implantation, BADM is inherently stronger than PADM at equivalent thicknesses and considerably stronger at increased thicknesses. These results corroborate clinical data from a previous study in which PADM was associated with a higher intraoperative device failure rate. Although numerous properties of acellular dermal matrix contribute to clinical outcomes, surgeons should consider initial mechanical strength properties when choosing acellular dermal matrices for load-bearing applications such as hernia repair.

  16. Removal of anionic pollutants by pine bark is influenced by the mechanism of retention.

    PubMed

    Paradelo, R; Conde-Cid, M; Arias-Estévez, M; Nóvoa-Muñoz, J C; Álvarez-Rodríguez, E; Fernández-Sanjurjo, M J; Núñez-Delgado, A

    2017-01-01

    The use of organic biosorbents for anion removal from water has been less studied than for cationic compounds. In this work, the removal capacity of pine bark for potential anionic pollutants (fluoride, phosphate, arsenate and dichromate) was assessed in column experiments, designed to study the process of transport. The results showed that pine bark has a very low retention capacity for phosphate, arsenate or fluoride, and in turn, very high for dichromate, with retention values close to 100% and less than 2% desorption of the adsorbed dichromate. The large differences observed between anions suggest that differences in the retention mechanism of each anion exist. In the case of phosphate and arsenate, electrostatic interactions with the mostly negatively charged functional groups of the pine bark determine the low retention capacity. Dichromate retention might proceed through reduction of chromium (VI) to chromium (III), what improves the efficiency of the removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Characterisation of retention properties of charge-trapping memory cells at low temperatures

    NASA Astrophysics Data System (ADS)

    Yurchuk, E.; Bollmann, J.; Mikolajick, T.

    2009-09-01

    The density of states of deep level centers in silicon oxynitride layer of SONOS memory cells are calculated from temperature dependent retention measurement. The dominating charge loss mechanisms are direct trap-to-band tunneling (TB) and thermally stimulated emission (TE). Retention measurements at low temperatures (80 - 300K) will be dominated by TE from more "shallow" traps with energies below 1eV and by TB. Taking into account both independent and rival processes the density of states could be calculated self consisting. The results are in excellent agreement with elsewhere published data.

  18. Mechanical Retention and Waterproof Properties of Bacterial Cellulose-Reinforced Thermoplastic Starch Biocomposites Modified with Sodium Hexametaphosphate

    PubMed Central

    Wang, Da-wei; Xu, Ying-juan; Li, Xin; Huang, Chao-ming; Huang, Kuo-shien; Wang, Chuen-kai; Yeh, Jen-taut

    2015-01-01

    The waterproof and strength retention properties of bacterial cellulose (BC)-reinforced thermoplastic starch (TPS) resins were successfully improved by reacting with sodium hexametaphosphate (SHMP). After modification with SHMP, the tensile strength (σf) and impact strength (Is) values of initial and conditioned BC-reinforced TPS, modified with varying amounts of SHMP(TPS100BC0.02SHMPx), and their blends with poly(lactic acid)((TPS100BC0.02SHMPx)75PLA25) specimens improved significantly and reached a maximal value as SHMP content approached 10 parts per hundred parts of TPS resin (phr), while their moisture content and elongation at break (ɛf) was reduced to a minimal value as SHMP contents approached 10 phr. The σf, Is and ɛf retention values of a (TPS100BC0.02SHMP10)75PLA25 specimen conditioned for 56 days are 52%, 50% and 3 times its initial σf, Is and ɛf values, respectively, which are 32.5 times, 8.9 times and 40% of those of a corresponding conditioned TPS100BC0.02 specimen, respectively. As evidenced by FTIR analyses of TPS100BC0.02SHMPx specimens, hydroxyl groups of TPS100BC0.02 resins were successfully reacted with the phosphate groups of SHMP molecules. New melting endotherms and diffraction peaks of VH-type crystals were found on DSC thermograms and WAXD patterns of TPS or TPS100BC0.02 specimens conditioned for 7 days, while no new melting endotherm or diffraction peak was found for TPS100BC0.02SHMPx and/or (TPS100BC0.02SHMPx)75PLA25 specimens conditioned for less than 14 and 28 days, respectively.

  19. Resolving structural influences on water-retention properties of alluvial deposits

    USGS Publications Warehouse

    Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.

    2006-01-01

    With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.

  20. Atomic-Scale Mechanisms of Defect-Induced Retention Failure in Ferroelectrics.

    PubMed

    Li, Linze; Zhang, Yi; Xie, Lin; Jokisaari, Jacob R; Beekman, Christianne; Yang, Jan-Chi; Chu, Ying-Hao; Christen, Hans M; Pan, Xiaoqing

    2017-06-14

    The ability to switch the ferroelectric polarization using an electric field makes ferroelectrics attractive for application in nanodevices such as high-density memories. One of the major challenges impeding this application, however, has been known as "retention failure", which is a spontaneous process of polarization back-switching that can lead to data loss. This process is generally thought to be caused by the domain instability arising from interface boundary conditions and countered by defects, which can pin the domain wall and impede the back-switching. Here, using in situ transmission electron microscopy and atomic-scale scanning transmission electron microscopy, we show that the polarization retention failure can be induced by commonly observed nanoscale impurity defects in BiFeO 3 thin films. The interaction between polarization and the defects can also lead to the stabilization of novel functional nanodomains with mixed-phase structures and head-to-head polarization configurations. Thus, defect engineering provides a new route for tuning properties of ferroelectric nanosystems.

  1. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  2. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    PubMed

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms.

  3. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    PubMed

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering. © 2014 Wiley Periodicals, Inc.

  4. Refractance Window™ drying of haskap berry--preliminary results on anthocyanin retention and physicochemical properties.

    PubMed

    Celli, Giovana Bonat; Khattab, Rabie; Ghanem, Amyl; Brooks, Marianne Su-Ling

    2016-03-01

    The goal of this work was to determine the anthocyanin retention and physicochemical properties of haskap powder prepared by Refractance Window™ (RW) drying. In general, the RW-dried powder particles had a smooth surface with similar thickness, consistent with the preparation method, and had a solubility of 75.63% in water. The RW-dried powder (consisting of 98% haskap berries) retained approximately 93.8% of anthocyanins from the original frozen fruits, as assessed by the pH-differential method. This result is in good agreement with HPLC analysis that indicated 92.9% retention. Three anthocyanins were identified in frozen berries and RW-dried powder: cyanidin 3-glucoside, cyanidin 3-rutinoside, and peonidin 3-glucoside. Surprisingly, cyanidin 3-rutinoside exhibited the lowest retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quantitative structure-retention relationships of polycyclic aromatic hydrocarbons gas-chromatographic retention indices.

    PubMed

    Drosos, Juan Carlos; Viola-Rhenals, Maricela; Vivas-Reyes, Ricardo

    2010-06-25

    Polycyclic aromatic compounds (PAHs) are of concern in environmental chemistry and toxicology. In the present work, a QSRR study was performed for 209 previously reported PAHs using quantum mechanics and other sources descriptors estimated by different approaches. The B3LYP/6-31G* level of theory was used for geometrical optimization and quantum mechanics related variables. A good linear relationship between gas-chromatographic retention index and electronic or topologic descriptors was found by stepwise linear regression analysis. The molecular polarizability (alpha) and the second order molecular connectivity Kier and Hall index ((2)chi) showed evidence of significant correlation with retention index by means of important squared coefficient of determination, (R(2)), values (R(2)=0.950 and 0.962, respectively). A one variable QSRR model is presented for each descriptor and both models demonstrates a significant predictive capacity established using the leave-many-out LMO (excluding 25% of rows) cross validation method's q(2) cross-validation coefficients q(2)(CV-LMO25%), (obtained q(2)(CV-LMO25%) 0.947 and 0.960, respectively). Furthermore, the physicochemical interpretation of selected descriptors allowed detailed explanation of the source of the observed statistical correlation. The model analysis suggests that only one descriptor is sufficient to establish a consistent retention index-structure relationship. Moderate or non-significant improve was observed for quantitative results or statistical validation parameters when introducing more terms in predictive equation. The one parameter QSRR proposed model offers a consistent scheme to predict chromatographic properties of PAHs compounds. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Experimental results on mechanisms of action of electrical neuromodulation in chronic urinary retention.

    PubMed

    Schultz-Lampel, D; Jiang, C; Lindström, S; Thüroff, J W

    1998-01-01

    Sacral foramen neuromodulation--initially applied for the treatment of urinary incontinence--has proved to be effective in patients with chronic urinary retention. Thus far, the underlying neurophysiological mechanisms have not been elucidated. In an experimental study on the neurophysiological basis of sacral neurostimulation, one objective was to investigate the mechanisms responsible for initiation of micturition in chronic urinary retention. In ten female cats anesthetized with alpha-chloralose the clinical situation of sacral foramen stimulation was experimentally reproduced by isolated S2 nerve stimulation after L6-S3 laminectomy. Stimulation responses were recorded from the bladder, peripheral nerves, and striated muscles of the foot and pelvic floor. The effect of sudden cessation of prolonged S2 stimulation, during which the bladder was completely inhibited, was evaluated in 70 stimulation sequences in 5 cats. Sacral nerve stimulation induced excitatory and inhibitory effects on the bladder, depending on the frequency and intensity of stimulation. With unilateral S2 stimulation, bladder excitation was best at frequencies of 2-5 Hz and at intensities ranging between 0.8 and 1.4 times the threshold for the M-response of the foot muscle. Inhibition was the dominating effect at frequencies of 7-10 Hz and at intensities exceeding 1.4 times the threshold. Prolonged S2 stimulation above the threshold produced complete bladder inhibition during stimulation but induced strong bladder contractions after sudden interruption of stimulation, with amplitudes being significantly higher than that of spontaneous contractions preceding the stimulation. These results confirm the hypothesis of a "rebound" phenomenon as the mechanism of action for induction of spontaneous voiding in patients with chronic urinary retention.

  8. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils

    NASA Astrophysics Data System (ADS)

    Huygens, Dries; Boeckx, Pascal; Templer, Pamela; Paulino, Leandro; van Cleemput, Oswald; Oyarzún, Carlos; Müller, Christoph; Godoy, Roberto

    2008-08-01

    Nitrogen cycling is an important aspect of forest ecosystem functioning. Pristine temperate rainforests have been shown to produce large amounts of bioavailable nitrogen, but despite high nitrogen turnover rates, loss of bioavailable nitrogen is minimal in these ecosystems. This tight nitrogen coupling is achieved through fierce competition for bioavailable nitrogen by abiotic processes, soil microbes and plant roots, all of which transfer bioavailable nitrogen to stable nitrogen sinks, such as soil organic matter and above-ground forest vegetation. Here, we use a combination of in situ 15N isotope dilution and 15N tracer techniques in volcanic soils of a temperate evergreen rainforest in southern Chile to further unravel retention mechanisms for bioavailable nitrogen. We find three processes that contribute significantly to nitrogen bioavailability in rainforest soils: heterotrophic nitrate production, nitrate turnover into ammonium and into a pool of dissolved organic nitrogen that is not prone to leaching loss, and finally, the decoupling of dissolved inorganic nitrogen turnover and leaching losses of dissolved organic nitrogen. Identification of these biogeochemical processes helps explain the retention of bioavailable nitrogen in pristine temperate rainforests.

  9. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    PubMed

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needsmore » to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.« less

  11. The mechanical properties of polyimide films after exposure to high pH

    NASA Technical Reports Server (NTRS)

    Croall, Catharine I.; St.clair, Terry L.

    1992-01-01

    Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.

  12. [Effects of combined application of water retention agent and organic fertilizer on physico-chemical properties of iron tailings.

    PubMed

    Li, Xiang; Zhang, Bao Juan; Li, Ji Quan; Li, Yu Ling; Li, Chen Guang

    2017-02-01

    In order to analyze the effects of combined application of water retention agent and orga-nic fertilizer on physico-chemical properties of iron tailings and to find the optimal proportion of water retention agent and organic fertilizer for the improvement of iron tailings, the experimental plots of the combination trials with 2 factors in 4 levels were designed in the iron tailings of Qian'an Shougang through investigating some indexes of physico-chemical properties such as bulk density, moisture capacity, porosity, pH and the contents of organic matter, nitrogen, phosphorus and potas-sium. The biomasses of Medicago sativa and Amorpha fruticosa planted in the experimental plots were measured to verify the improvement effects. 4 levels of super absorbent polymers (L·m -3 ) used in treatments were 0 (B 0 ), 10 (B 1 ), 50 (B 2 ), 100 (B 3 ), and 4 levels of organic fertilizer (kg·m -2 ) were 0(N 0 ), 2.25 (N 1 ), 11.24 (N 2 ), 22.49 (N 3 ). The improving effects of different treatments on physico-chemical properties of iron tailings were mainly reflected in the surface layer of 0-20 cm. All the tested indexes were significantly different from control (CK) in the layer of 0-20 cm. The improvement effects of organic fertilizer on physical and chemical properties of iron tai-lings were better than that of water retention agent. In the 0-20 cm layer, the bulk density, non-capillary porosity, organic matter, rapidly available phosphorus, and available potassium under all treatments of adding water retention agent individually were not significantly different from the CK, while significant difference was observed when the organic fertilizer was solely applied in B 0 N 2 and B 0 N 3 treatments. The improvement synergy effect of organic fertilizer and water retention agent was better than that of organic fertilizer or water retention agent, respectively. In 0-20 cm layer, all the indexes obtained from treatment B 3 N 3 performed best and were significantly different from

  13. Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability.

    PubMed

    Hategekimana, Joseph; Masamba, Kingsley George; Ma, Jianguo; Zhong, Fang

    2015-06-25

    Spray drying technique was used to fabricate Vitamin E loaded nanocapsules using Octenyl Succinic Anhydride (OSA) modified starches as emulsifiers and wall materials. Several physicochemical properties of modified starches that are expected to influence emulsification capacity, retention and storage stability of Vitamin E in nanocapsules were investigated. High Degree of Substitution (DS), low Molecular Weight (Mw) and low interfacial tension improved emulsification properties while Oxygen Permeability (OP) and Water Vapor Permeability (WVP) affected the film forming properties. The degradation profile of Vitamin E fitted well with the Weibull model. Nanocapsules from OSA modified starches MS-A and MS-B retained around 50% of Vitamin E after a period of 60 days at 4-35°C. Reduced retention and short half-life (35 days) in nanocapsules fabricated using MS-C at 35°C were attributed to autoxidation reaction occurred due to poor film forming capacity. These results indicated that low molecular weights OSA modified starches were effective at forming stable Vitamin E nanocapsules that could be used in drug and beverage applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Why biochar application did not improve the soil water retention of a sandy soil: An investigation into the underlying mechanisms.

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Meinders, Marcel B. J.; Stoof, Cathelijne; Bezemer, T. Martijn; vande Voorde, Tess F. J.; Mommer, Liesje; Willem van Groenigen, Jan

    2015-04-01

    Biochar application to soil is currently being widely touted as a means to improve soil quality and to enhance the provision of numerous ecosystem services, including water storage, in soils. However, evidence for hydrological effects in the primary literature remain inconclusive with contradictory effects reported. The mechanisms behind such contradictory results are not yet elucidated. As such we aimed to investigate the effects of biochar on soil water retention and infiltration, as well as the underlying mechanisms. To do so we set up two field experiments with biochar produced from herbaceous feedstock through slow pyrolysis at two temperatures (400°C and 600°C). In the first experiment both biochars were applied at a rate of 10 t ha-1 to separate plots in a sandy soil in a North European grassland. In a separate experiment, the biochar produced at 400°C was applied to a different set of plots in the same grassland at rates equivalent to 1, 5, 20 and 50 t ha-1. Soils from these experiments were analysed for soil water retention and infiltration rate as well as aggregate stability and other soil physical parameters. The pore structure of the biochar was fully characterised using X-ray computed micro-tomography (XRT) and hydrophobicity determined using contact angle measurements. There were no significant effects of biochar application on soil water retention, field saturated conductivity or aggregate stability in either experiment. XRT analysis of the biochars confirmed that the biochars were highly porous, with 48% and 57% porosity for the 400°C and 600°C biochars, respectively. More than 99% of internal pores of the biochar particles were connected to the surface, suggesting a potential role for biochars in improving soil water retention. However, the biochars were highly hydrophobic as demonstrated by the high contact angles when water was applied. We suggest that this hydrophobicity greatly diminished water infiltration into the biochar particles

  15. The physical mechanisms of complete denture retention.

    PubMed

    Darvell, B W; Clark, R K

    2000-09-09

    The purpose of this article is to assist the practitioner to understand which factors are relevant to complete denture retention in the light of the current understanding of physics and materials science and thus to guide design. Atmospheric pressure, vacuum, adhesion, cohesion, surface tension, viscosity, base adaption, border seal, seating force and muscular control have all been cited at one time or another as major or contributory factors, but usually as an opinion without proper reference to fundamental principles. Although there has been a detailed analysis published, it seems appropriate that a restatement of the points in a collated form be made. In fact, denture retention is a dynamic issue dependent on the control of the flow of interposed fluid and thus its viscosity and film thickness, while the timescale of displacement loading affects the assessment. Surface tension forces at the periphery contribute to retention, but the most important concerns are good base adaptation and border seal. These must be achieved if full advantage is to be taken of the saliva flow-related effects.

  16. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less

  18. Both mechanism and age of duplications contribute to biased gene retention patterns in plants.

    PubMed

    Rody, Hugo V S; Baute, Gregory J; Rieseberg, Loren H; Oliveira, Luiz O

    2017-01-06

    All extant seed plants are successful paleopolyploids, whose genomes carry duplicate genes that have survived repeated episodes of diploidization. However, the survival of gene duplicates is biased with respect to gene function and mechanism of duplication. Transcription factors, in particular, are reported to be preferentially retained following whole-genome duplications (WGDs), but disproportionately lost when duplicated by tandem events. An explanation for this pattern is provided by the Gene Balance Hypothesis (GBH), which posits that duplicates of highly connected genes are retained following WGDs to maintain optimal stoichiometry among gene products; but such connected gene duplicates are disfavored following tandem duplications. We used genomic data from 25 taxonomically diverse plant species to investigate the roles of duplication mechanism, gene function, and age of duplication in the retention of duplicate genes. Enrichment analyses were conducted to identify Gene Ontology (GO) functional categories that were overrepresented in either WGD or tandem duplications, or across ranges of divergence times. Tandem paralogs were much younger, on average, than WGD paralogs and the most frequently overrepresented GO categories were not shared between tandem and WGD paralogs. Transcription factors were overrepresented among ancient paralogs regardless of mechanism of origin or presence of a WGD. Also, in many cases, there was no bias toward transcription factor retention following recent WGDs. Both the fixation and the retention of duplicated genes in plant genomes are context-dependent events. The strong bias toward ancient transcription factor duplicates can be reconciled with the GBH if selection for optimal stoichiometry among gene products is strongest following the earliest polyploidization events and becomes increasingly relaxed as gene families expand.

  19. Retention characteristics of a new butylimidazolium-based stationary phase. Part II: anion exchange and partitioning.

    PubMed

    Van Meter, David S; Sun, Yaqin; Parker, Kevin M; Stalcup, Apryll M

    2008-02-01

    A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk (IL/water) values by chromatographic methods is also discussed.

  20. Integrating Monetary and Non-monetary Reenlistment Incentives Utilizing the Combinatorial Retention Auction Mechanism (CRAM)

    DTIC Science & Technology

    2008-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS INTEGRATING MONETARY AND NON-MONETARY REENLISTMENT INCENTIVES UTILIZING THE...Monetary and Non- monetary Reenlistment Incentives Utilizing the Combinatorial Retention Auction Mechanism (CRAM) 6. AUTHOR(S) Brooke Zimmerman 5...iii Approved for public release; distribution is unlimited INTEGRATING MONETARY AND NON-MONETARY REENLISTMENT INCENTIVES UTILIZING THE

  1. Observations on the relationship of structure to the mechanical properties of thin TD-NiCr sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1976-01-01

    A study of the relationship between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties are dependent on grain aspect ratio and sheet thickness. In general, the strength properties increase with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures (not less than 1144 K). Significant creep damage as determined by subsequent tensile testing at room temperature occurs after very small amounts (less than 0.1%) of prior creep deformation over the temperature range 1144-1477 K. A threshold stress for creep appears to exist. Creep exposure below the threshold stress at T not less than 1366 K results in almost full retention of room temperature tensile properties.

  2. The pathophysiological mechanism of fluid retention in advanced cancer patients treated with docetaxel, but not receiving corticosteroid comedication.

    PubMed

    Béhar, A; Pujade-Lauraine, E; Maurel, A; Brun, M D; Chauvin, F F; Feuilhade de Chauvin, F; Oulid-Aissa, D; Hille, D

    1997-06-01

    Fluid retention is a phenomenon associated with taxoids. The principal objective of this study was to investigate the pathophysiological mechanism of docetaxel-induced fluid retention in advanced cancer patients. Docetaxel was administered as a 1 h intravenous infusion every 3 weeks, for at least 4-6 consecutive cycles, to patients with advanced breast (n = 21) or ovarian (n = 3) carcinoma, who had received previous chemotherapy, 21 for advanced disease. Phase II clinical trials have shown that 5 day corticosteroid comedication, starting 1 day before docetaxel infusion, significantly reduces the incidence and severity of fluid retention. This prophylactic corticosteroid regimen is currently recommended for patients receiving docetaxel but was not permitted in this study because of its possible interference with the underlying pathophysiology of the fluid retention. Fluid retention occurred in 21 of the 24 patients but was mainly mild to moderate, with only five patients experiencing severe fluid retention. Eighteen patients received symptomatic flavonoid treatment, commonly prescribed after the last cycle. Specific investigations for fluid retention confirmed a relationship between cumulative docetaxel dose and development of fluid retention. Capillary filtration test analysis showed a two-step process for fluid retention generation, with progressive congestion of the interstitial space by proteins and water starting between the second and the fourth cycle, followed by insufficient lymphatic drainage. A vascular protector such as micronized diosmine hesperidine with recommended corticosteroid premedication and benzopyrones may be useful in preventing and treating docetaxel-induced fluid retention.

  3. Mechanical properties of transription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart; Levine, Herbert

    Over the last several decades it has been increasingly recognized that both stochastic and mechanical processes play a central role in transcription. Though many aspects have been explained a number of fundamental properties are undeveloped. Recent results have pointed to mechanical feedback as the source of transcriptional bursting and DNA supercoiling but a reconciliation of this perspective with preexisting views of transcriptional is lacking. In this work we present a simple model of transcription where RNA elongation, RNA polymerase rotation and DNA supercoiling are coupled. The mechanical properties of each object form a foundational framework for understanding the physical nature of transcription. The resulting model can explain several important aspects of chromatin structure and generates a number of predictions for the mechanical properties of transcription.

  4. Mineralocorticoid-induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms

    PubMed Central

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite is the body's response to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum-and-glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  5. Prediction and mechanism elucidation of analyte retention on phospholipid stationary phases (IAM-HPLC) by in silico calculated physico-chemical descriptors.

    PubMed

    Russo, Giacomo; Grumetto, Lucia; Barbato, Francesco; Vistoli, Giulio; Pedretti, Alessandro

    2017-03-01

    The present study proposes a method for an in silico calculation of phospholipophilicity. Phospholipophilicity is intended as the measure of analyte affinity for phospholipids; it is currently assessed by HPLC measures of analyte retention on phosphatidylcholine-like stationary phases (IAM - Immobilized Artificial Membrane) resulting in log k W IAM values. Due to the amphipathic and electrically charged nature of phospholipids, retention on these stationary phases results from complex mechanisms, being affected not only by lipophilicity (as measured by n-octanol/aqueous phase partition coefficients, log P) but also by the occurrence of polar and/or electrostatic intermolecular interaction forces. Differently from log P, to date no method has been proposed for in silico calculation of log k W IAM . The study is aimed both at shedding new light into the retention mechanism on IAM stationary phases and at offering a high-throughput method to achieve such values. A wide set of physico-chemical and topological properties were taken into account, yielding a robust final model including four in silico calculated parameters (lipophilicity, hydrophilic/lipophilic balance, molecular size, and molecule flexibility). The here presented model was based on the analysis of 205 experimentally determined values, taken from the literature and measured by a single research group to minimize the interlaboratory variability; such model is able to predict phospholipophilicity values on both the two IAM stationary phases to date marketed, i.e. IAM.PC.MG and IAM.PC.DD2, with a fairly good degree (r 2 =0.85) of accuracy. The present work allowed the development of a free on-line service aimed at calculating log k W IAM values of any molecule included in the PubChem database, which is freely available at http://nova.disfarm.unimi.it/logkwiam.htm. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent.

    PubMed

    Jin, Shuping; Yue, Guoren; Feng, Lei; Han, Yuqi; Yu, Xinghai; Zhang, Zenghu

    2011-01-12

    In this investigation, a novel water-insoluble slow-release fertilizer, biuret polyphosphoramide (BPAM), was formulated and synthesized from urea, phosphoric acid (H(3)PO(4)), and ferric oxide (Fe(2)O(3)). The structure of BPAM was characterized by Fourier transform infrared (FTIR) spectroscopy. Subsequently, a coated slow-release BPAM fertilizer with superabsorbent was prepared by ionic cross-linked carboxymethylchitosan (the core), acrylic acid, acrylamide, and active carbon (the coating). The variable influences on the water absorbency were investigated and optimized. Component analysis results showed that the coated slow-release BPAM contained 5.66% nitrogen and 11.7% phosphorus. The property of water retention, the behavior of slow release of phosphorus, and the capacity of adsorption of cations were evaluated, and the results revealed that the product not only had good slow-release property and excellent water retention capacity but also higher adsorption capacities of cations in saline soil.

  7. The pathophysiological mechanism of fluid retention in advanced cancer patients treated with docetaxel, but not receiving corticosteroid comedication

    PubMed Central

    Béhar, A.; Pujade-Lauraine, E.; Maurel, A.; Brun, M. D.; Lagrue, G.; Feuilhade De Chauvin, F.; Oulid-Aissa, D.; Hille, D.

    1997-01-01

    Aims Fluid retention is a phenomenon associated with taxoids. The principal objective of this study was to investigate the pathophysiological mechanism of docetaxel-induced fluid retention in advanced cancer patients. Methods Docetaxel was administered as a 1 h intravenous infusion every 3 weeks, for at least 4–6 consecutive cycles, to patients with advanced breast (n=21) or ovarian (n=3) carcinoma, who had received previous chemotherapy, 21 for advanced disease. Phase II clinical trials have shown that 5 day corticosteroid comedication, starting 1 day before docetaxel infusion, significantly reduces the incidence and severity of fluid retention. This prophylactic corticosteroid regimen is currently recommended for patients receiving docetaxel but was not permitted in this study because of its possible interference with the underlying pathophysiology of the fluid retention. Results Fluid retention occurred in 21 of the 24 patients but was mainly mild to moderate, with only five patients experiencing severe fluid retention. Eighteen patients received symptomatic flavonoid treatment, commonly prescribed after the last cycle. Specific investigations for fluid retention confirmed a relationship between cumulative docetaxel dose and development of fluid retention. Capillary filtration test analysis showed a two-step process for fluid retention generation, with progressive congestion of the interstitial space by proteins and water starting between the second and the fourth cycle, followed by insufficient lymphatic drainage. Conclusions A vascular protector such as micronized diosmine hesperidine with recommended corticosteroid premedication and benzopyrones may be useful in preventing and treating docetaxel-induced fluid retention. PMID:9205828

  8. Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis.

    PubMed

    Zhang, Jia; Chen, Linpeng; Yin, Huilin; Jin, Song; Liu, Fei; Chen, Honghan

    2017-06-01

    Undissolved humic acid (HA) is known to substantially effect the migration and transformation of hexavalent chromium [Cr(VI)] in soils. The mechanisms of Cr(VI) retention in soils by undissolved HA have been reported; however, past studies are inconclusive about the types of HA functional groups that are involved in Cr(VI) retention and the retention mechanisms. Utilizing a two-dimensional correlation spectroscopy (2DCOS) analysis for FTIR and 13 C CP/MAS NMR, this study investigated the variations of HA function groups and molecular structures after reactions with aqueous Cr(VI) under different pH conditions. Based on the changing sequence of functional groups interpreted from the 2DCOS results, a four-step mechanism for Cr(VI) retention was determined as follows: (1) electrostatic adsorption of Cr(VI) to HA surface, (2) complexation of adsorbed Cr(VI) by carboxyl and ester, (3) reduction of complexed Cr(VI) to Cr(III) by phenol and polysaccharide, and (4) complexation of reduced Cr(III) by carboxylic groups. These functional groups that are involved in Cr(VI) retention were determined to occur in aromatic domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins.

    PubMed

    Blaustein, Mordecai P; Hamlyn, John M

    2010-12-01

    Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Sustainable Hydrogels Based on Lignin-Methacrylate Copolymers with Enhanced Water Retention and Tunable Material Properties.

    PubMed

    Rajan, Kalavathy; Mann, Jeffrey K; English, Eldon; Harper, David P; Carrier, Danielle Julie; Rials, Timothy G; Labbé, Nicole; Chmely, Stephen C

    2018-04-12

    Synthesizing lignin-based copolymers would valorize a major coproduct stream from pulp and paper mills and biorefineries as well as reduce the dependence on petrochemical-based consumer goods. In this study, we used organosolv lignin isolated from hybrid poplar ( Populus trichocarpa × P. deltoides) to generate lignin-containing methacrylate hydrogels. The copolymer hydrogels were synthesized by first grafting 2-hydroxyethyl methacrylate (HEMA) onto lignin (OSLH) via esterification and then by free radical polymerization of OSLH with excess HEMA. The copolymer hydrogels were prepared with different stoichiometric ratios of OSLH (e.g., 0, 10, 20, and 40 wt %) with respect to HEMA. Copolymerization with OSLH led to an increase in cross-linking density, which in turn enhanced the hydrogel's material properties; we report up to 39% improvement in water retention, 20% increase in thermostability, and up to a 3 order increase in magnitude of the storage modulus ( G'). The copolymer's properties, such as water retention and glass transition temperature, could be tuned by altering the percent functionalization of lignin OH groups and the ratio of OSLH to HEMA.

  11. The Mechanical Properties of Nanowires

    PubMed Central

    Wang, Shiliang; Shan, Zhiwei

    2017-01-01

    Applications of nanowires into future generation nanodevices require a complete understanding of the mechanical properties of the nanowires. A great research effort has been made in the past two decades to understand the deformation physics and mechanical behaviors of nanowires, and to interpret the discrepancies between experimental measurements and theoretical predictions. This review focused on the characterization and understanding of the mechanical properties of nanowires, including elasticity, plasticity, anelasticity and strength. As the results from the previous literature in this area appear inconsistent, a critical evaluation of the characterization techniques and methodologies were presented. In particular, the size effects of nanowires on the mechanical properties and their deformation mechanisms were discussed. PMID:28435775

  12. Grindability and mechanical property of ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Changsheng; Chand, R.H.

    1996-12-31

    For cost-effective ceramic machining, material-specific machining methodology is needed. This requires characterizing ceramics from machining view point. In this paper, a preliminary study of the correlation between grindability and mechanical properties is reported. Results indicate that there exists complex correlations between grindability and mechanical properties such as hardness, fracture toughness and elasticity. Some ceramics of similar mechanical properties have different grindabilities, which implies that it is possible to develop ceramics of both superior mechanical properties and good grindability.

  13. Modeling the mechanical and aging properties of silicone rubber and foam - stockpile-historical & additively manufactured materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Weisgraber, T. H.; Gee, R. H.

    M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned aboutmore » are: compression set, load retention, and stress-strain response (modulus).« less

  14. Cooking utensil with improved heat retention

    DOEpatents

    Potter, Thomas F.; Benson, David K.; Burch, Steven D.

    1997-01-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food.

  15. Cooking utensil with improved heat retention

    DOEpatents

    Potter, T.F.; Benson, D.K.; Burch, S.D.

    1997-07-01

    A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber there between. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber. These mechanisms may include: a hydrogen gas producing and reabsorbing device such as a metal hydride, a plurality of metal contacts which can be adjusted to bridge the gap between the inner and outer pot, and a plurality of bimetallic switches which can selectively bridge the gap between the inner and outer pot. In addition, phase change materials with superior heat retention characteristics may be provided within the cooking utensil. Further, automatic and programmable control of the cooking utensil can be provided through a microprocessor and associated hardware for controlling the vacuum disable/enable mechanisms to automatically cook and save food. 26 figs.

  16. Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.

    PubMed

    Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui

    2009-05-15

    With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.

  17. "OnTrack" to University: Understanding Mechanisms of Student Retention in an Australian Pre-University Enabling Program

    ERIC Educational Resources Information Center

    Lisciandro, Joanne G.; Gibbs, Gael

    2016-01-01

    University-based enabling programs have become an important pathway to university for non-traditional students. There is increasing interest in understanding the mechanisms that facilitate retention and success of enabling pathway students, with the aim of developing effective strategies for maximising opportunities for university access and…

  18. Phosphorus retention mechanisms of a water treatment residual.

    PubMed

    Ippolito, J A; Barbarick, K A; Heil, D M; Chandler, J P; Redente, E F

    2003-01-01

    Water treatment residuals (WTRs) are a by-product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P adsorbing mechanism(s) of an aluminum-based [Al2(SO4)3 x 14H2O] WTR from Englewood, CO. In a laboratory study, we shook mixtures of P-loaded WTR for 1 to 211 d followed by solution pH analysis, and solution Ca, Al, and P analysis via inductively coupled plasma atomic emission spectroscopy. After shaking periods, we also examined the solids fraction by X-ray diffraction (XRD) and electron microprobe analysis using wavelength dispersive spectroscopy (EMPA-WDS). The shaking results indicated an increase in pH from 7.2 to 8.2, an increase in desorbed Ca and Al concentrations, and a decrease in desorbed P concentration. The pH and desorbed Ca concentration increases suggested that CaCO3 controlled Ca solubility. Increased desorbed Al concentration may have been due to Al(OH)4 formation. Decreased P content, in conjunction with the pH increase, was consistent with calcium phosphate formation or precipitation. The system appeared to be undersaturated with respect to dicalcium phosphate (DCP; CaHPO4) and supersaturated with respect to octacalcium phosphate [OCP; Ca4H(PO4)3 x 2.5H2O]. The Ca and Al increases, as well as OCP formation, were supported by MINTEQA2 modeling. The XRD and EMPA-WDS results for all shaking times, however, suggested surface P chemisorption as an amorphous Al-P mineral phase.

  19. The Space Shuttle orbiter payload retention systems

    NASA Technical Reports Server (NTRS)

    Hardee, J. H.

    1982-01-01

    Payloads are secured in the orbiter payload bay by the payload retention system or are equipped with their own unique retention systems. The orbiter payload retention mechanisms provide structural attachments for each payload by using four or five attachment points to secure the payload within the orbiter payload bay during all phases of the orbiter mission. The payload retention system (PRS) is an electromechanical system that provides standarized payload carrier attachment fittings to accommodate up to five payloads for each orbiter flight. The mechanisms are able to function under either l-g or zero-g conditions. Payload berthing or deberthing on orbit is accomplished by utilizing the remote manipulator system (RMS). The retention mechanisms provide the capability for either vertical or horizontal payload installation or removal. The payload support points are selected to minimize point torsional, bending, and radial loads imparted to the payloads. In addition to the remotely controlled latching system, the passive system used for nondeployable payloads performs the same function as the RMS except it provides fixed attachments to the orbiter.

  20. Mechanical property loss and the occurrence of wood decay during experimental outdoor aging of wood based panels

    Treesearch

    Charles G. Carll; Alex C. Wiedenhoeft

    2007-01-01

    Small specimens of sheathing-grade oriented strandboard (OSB) and sheathing-grade plywood were evaluated for retention of mechanical properties in exterior exposure over a series of exposure times. In contrast to previous studies of this nature, specimens at prolonged exposure times were also evaluated (in something more than a cursory manner) for presence of decay....

  1. Mechanical properties of low-nickel stainless steel

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  2. Mechanistic failure mode investigation and resolution of parvovirus retentive filters.

    PubMed

    LaCasse, Daniel; Lute, Scott; Fiadeiro, Marcus; Basha, Jonida; Stork, Matthew; Brorson, Kurt; Godavarti, Ranga; Gallo, Chris

    2016-07-08

    Virus retentive filters are a key product safety measure for biopharmaceuticals. A simplistic perception is that they function solely based on a size-based particle removal mechanism of mechanical sieving and retention of particles based on their hydrodynamic size. Recent observations have revealed a more nuanced picture, indicating that changes in viral particle retention can result from process pressure and/or flow interruptions. In this study, a mechanistic investigation was performed to help identify a potential mechanism leading to the reported reduced particle retention in small virus filters. Permeate flow rate or permeate driving force were varied and analyzed for their impact on particle retention in three commercially available small virus retentive filters. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:959-970, 2016. © 2016 American Institute of Chemical Engineers.

  3. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  4. Hydrogen retention in lithium and lithium oxide films

    NASA Astrophysics Data System (ADS)

    Buzi, L.; Yang, Y.; Domínguez-Gutiérrez, F. J.; Nelson, A. O.; Hofman, M.; Krstić, P. S.; Kaita, R.; Koel, B. E.

    2018-04-01

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li2O films, measurements were made as a function of surface temperature (90-520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li2O films retained H in similar amounts as pure Li. Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.

  5. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    PubMed

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Variability of Valuation of Non-Monetary Incentives: Motivating and Implementing the Combinatorial Retention Auction Mechanism

    DTIC Science & Technology

    2009-03-01

    homeport, geographic stability for two tours and compressed work week; homeport, lump sum SRB, and telecommuting ). The Monte Carlo simulation...Geographic stability 2 tours, and compressed work week). The Add 2 combination includes home port choice, lump sum SRB, and telecommuting ...VALUATION OF NON-MONETARY INCENTIVES: MOTIVATING AND IMPLEMENTING THE COMBINATORIAL RETENTION AUCTION MECHANISM by Jason Blake Ellis March 2009

  7. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon; Glidden, Joel; Lamoreaux, Christopher

    2013-01-01

    The Orion Crew-Service Module umbilical retention and release mechanism supports, protects and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. Subsequent analysis and testing verified that the design changes corrected the binding. This umbilical separation design will be used on Exploration Flight Test 1 (EFT-1) as well as all future Orion flights. The design is highly modular and can easily be adapted to other vehicles/modules and alternate commodity sets.

  8. Mechanical Properties of Be-Al Alloys

    DTIC Science & Technology

    2000-02-22

    technology (sand and mold casting) producing a coarse dendritic structure that did not produce mechanical properties appropriate for structural ... Mechanical Properties of Be-AI Alloys 2. REPORT TYPE Technical Report 6. AUTHOR(S) E. U. Lee K. George V. V. Agarwala H. Sanders 3. DATES...SUPPLEMENTARY NOTES 14. ABSTRACT ~ — — This study was conducted to define the mechanical properties of a wrought 62Be-38A1 alloy and a cast 65Be-32A1

  9. 39 CFR 946.10 - Record retention.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MAIL MATTER AND PROPERTY ACQUIRED BY THE POSTAL INSPECTION SERVICE FOR USE AS EVIDENCE § 946.10 Record retention. Records regarding property subject to this part will be retained for a period of 3 years following return of the property to its owner or a determination that the property is abandoned. ...

  10. 39 CFR 946.10 - Record retention.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MAIL MATTER AND PROPERTY ACQUIRED BY THE POSTAL INSPECTION SERVICE FOR USE AS EVIDENCE § 946.10 Record retention. Records regarding property subject to this part will be retained for a period of 3 years following return of the property to its owner or a determination that the property is abandoned. ...

  11. Hydrogen retention in lithium and lithium oxide films

    DOE PAGES

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.; ...

    2018-02-09

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  12. Hydrogen retention in lithium and lithium oxide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzi, L.; Yang, Y.; Dominguez-Gutierrez, F. J.

    Pure lithium (Li) surfaces are difficult to maintain in fusion devices due to rapid oxide formation, therefore, parameterizing and understanding the mechanisms of hydrogen (H, D) retention in lithium oxide (Li 2O) in addition to pure Li is crucial for Li plasma-facing material applications. To compare H retention in Li and Li 2O films, measurements were made as a function of surface temperature (90–520 K) under ultrahigh vacuum (UHV) conditions using temperature programmed desorption (TPD). In both cases, the total retention dropped with surface temperature, from 95% at 90 K to 35% at 520 K Li 2O films retained Hmore » in similar amounts as pure Li. Finally, Molecular Dynamics (MD) modeling was used to elucidate the mechanisms of H retention, and results were consistent with experiments in terms of both retention fraction and the drop of retention with temperature.« less

  13. Effect of fiber content on tensile retention properties of Cellulose Microfiber Reinforced Polymer Composites for Automobile Application

    NASA Astrophysics Data System (ADS)

    Aseer, J. R.; Sankaranarayanasamy, K.

    2017-12-01

    Today, the utilization of biodegradable materials has been hogging much attention throughout the world. Due to the disposal issues of petroleum based products, there is a focus towards developing biocomposites with superior mechanical properties and degradation rate. In this research work, Hibiscus Sabdariffa (HS) fibers were used as the reinforcement for making biocomposites. The HS fibers were reinforced in the polyester resin by compression moulding method. Water absorption studies of the composite at room temperature are carried out as per ASTM D 570. Also, degradation behavior of HS/Polyester was done by soil burial method. The HS/polyester biocomposites containing 7.5 wt% of HS fiber has shown higher value of tensile strength. The tensile strength retention of the HS/Polyester composites are higher than the neat polyester composites. This value increases with increase of HS fiber loading in the composites. The results indicated that HS/polyester biocomposites can be used for making automobile components such as bumper guards etc.

  14. Short-term retention of visual information: Evidence in support of feature-based attention as an underlying mechanism.

    PubMed

    Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein

    2015-01-01

    Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Evaluations of Mechanisms for Pu Uptake and Retention within Spherical Resorcinol-Formaldehyde Resin Columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.; Levitskaia, Tatiana G.; Fiskum, Sandra K.

    The unexpected uptake and retention of plutonium (Pu) onto columns containing spherical resorcinol-formaldehyde (sRF) resin during ion exchange testing of Cs (Cs) removal from alkaline tank waste was observed in experiments at both the Pacific Northwest National Laboratory (PNNL) and the Savannah River National Laboratory (SRNL). These observations have raised concern regarding the criticality safety of the Cs removal unit operation within the low-activity waste pretreatment system (LAWPS). Accordingly, studies have been initiated at Washington River Protection Solutions (WRPS), who manages the operations of the Hanford Site tank farms, including the LAWPS, PNNL, and elsewhere to investigate these findings. Asmore » part of these efforts, PNNL has prepared the present report to summarize the laboratory testing observations, evaluate these phenomena in light of published and unpublished technical information, and outline future laboratory testing, as deemed appropriate based on the literature studies, with the goal to elucidate the mechanisms for the observed Pu uptake and retention.« less

  16. Temperature dependence of deuterium retention mechanisms in tungsten

    NASA Astrophysics Data System (ADS)

    Roszell, J. P.; Davis, J. W.; Haasz, A. A.

    2012-10-01

    The retention of 500 eV D+ was measured as a function of implantation temperature in single- (SCW) and poly-crystalline (PCW) tungsten. The results show a decrease in retention of ˜2 orders of magnitude over the temperature range of 350-550 K in SCW and a decrease of an order of magnitude over the temperature range of 600-700 K in PCW. Inspection of the TDS spectra showed a shift in peak location from 600 to 800 K as temperature was increased above 350 K in SCW and above 450 K in PCW specimens. TMAP modeling showed that the change in peak location corresponds to a change in trapping energy from 1.3 eV for the 600 K peak to 2.1 eV for the 800 K peak. It is proposed that for implantations performed above 350 K in SCW and 450 K in PCW, deuterium-containing vacancies are able to diffuse and combine to create stable nano-bubbles within the crystal lattice. The formation of nano-bubbles due to the annihilation of deuterium-vacancy complexes results in a change in the trapping energy from 1.3 to 2.1 eV as well as a decrease in retention as some of the deuterium-vacancy complexes will be destroyed at surfaces or grain boundaries, decreasing the number of trapping sites available.

  17. Erosion and Retention Properties of Beyllium

    NASA Astrophysics Data System (ADS)

    Doerner, R.; Grossman, A.; Luckhardt, S.; Serayderian, R.; Sze, F. C.; Whyte, D. G.

    1997-11-01

    Experiments in PISCES-B have investigated the erosion and hydrogen retention characteristics of beryllium. The sputtering yield is strongly influenced by trace amounts (≈1 percent) of intrinsic plasma impurities. At low sample exposure temperatures (below 250^oC), the beryllium surface remains free of contaminants and a sputtering yield similar to that of beryllium-oxide is measured. At higher exposure temperatures, impurities deposited on the surface can diffuse into the bulk and reduce their chance of subsequent erosion. These impurities form a surface layer mixed with beryllium which exhibits a reduced sputtering yield. Depth profile analysis has determined the composition and chemical bonding of the impurity layer. The hydrogen isotope retention of beryllium under ITER first wall (temperature = 200^oC, ion flux = 1 x 10^21 m-2 s-1) and baffle (temperature = 500^oC, ion flux = 1 x 10^22 m-2 s-1) conditions has been investigated. The retained deuterium saturates above a fluence of 10^23 m-2 at about 4 x 10^20 m-2 for the 200^oC exposure and at 2 x 10^20 m-2 for the 500^oC case. The TMAP code is used to model the deuterium release characteristics.

  18. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  19. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering.

    PubMed

    Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara

    2013-01-01

    Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.

  20. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention.

    PubMed

    Wu, Lan; Liu, Mingzhu; Rui Liang

    2008-02-01

    A double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention was prepared by crosslinked poly(acrylic acid)/diatomite - containing urea (the outer coating), chitosan (the inner coating), and water-soluble granular fertilizer NPK (the core). The effects of the amount of crosslinker, initiator, degree of neutralization of acrylic acid, initial monomer and diatomite concentration on water absorbency were investigated and optimized. The water absorbency of the product was 75 times its own weight if it was allowed to swell in tap water at room temperature for 2 h. Atomic absorption spectrophotometer and element analysis results showed that the product contained 8.47% potassium (shown by K(2)O), 8.51% phosphorus (shown by P(2)O(5)), and 15.77% nitrogen. We also investigated the water-retention property of the product and the slow release behavior of N, P and K in the product. This product with excellent slow release and water-retention capacity, being nontoxic in soil and environment-friendly, could be especially useful in agricultural and horticultural applications.

  2. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    PubMed

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Lubricant retention in liquid-infused microgrooves exposed to turbulent flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Chen, Ting-Hsuan; Arnold, Craig; Hultmark, Marcus

    2017-11-01

    Liquid infused surfaces are a promising method of passive drag reduction for turbulent flows. These surfaces rely on functionalized roughness elements to trap a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates a collection of fluid-fluid interfaces which can support a finite slip velocity at the effective surface. Generating a streamwise slip at the surface has been demonstrated as an effective mechanism for drag reduction; however, sustained drag reduction is predicated on the retention of the lubricating layer. Here, a turbulent channel-flow facility is used to characterize the robustness of liquid-infused surfaces and evaluate criteria for ensuring retention of the lubricant. Microscale grooved surfaces infused with alkane lubricants are mounted flush in the channel and exposed to turbulent flows. The retention of lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. To improve the retention of lubricant within grooved structures, a novel laser patterning technique is used to scribe chemical barriers onto grooved surfaces and evaluated. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  4. On bistable states retention in ferroelectric Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Geivandov, A. R.; Palto, S. P.; Yudin, S. G.; Fridkin, V. M.; Blinov, L. M.; Ducharme, S.

    2003-08-01

    A new insight into the nature of ferroelectricity is emerging from the study of ultra-thin ferroelectric films prepared of poly(vinylidene fluoride with trifluoroethylene) copolymer using Langmuir-Blodgett (LB) technique. Unique properties of these films indicate the existence of two-dimensional ferroelectricity. The retention of two polarized states in ferroelectric polymer LB films is studied using nonlinear dielectric spectroscopy. The technique is based on phase sensitive measurements of nonlinear dielectric spectroscopy. The amplitude of the current response at the 2nd harmonic of the applied voltage is proportional to the magnitude of the remnant polarization, while its phase gives the sign. We have found that 10 - 20 mm thick LB films can show fast switching time and long retention of the two polarized states. Nevertheless, LB films show a pronounced asymmetry in switching to the opposite states. Possible mechanisms of such behavior are discussed.

  5. [Research progress on the mechanisms and influence factors of nitrogen retention and transformation in riparian ecosystems.

    PubMed

    Yang, Dan; Fan, Da Yong; Xie, Zong Qiang; Zhang, Ai Ying; Xiong, Gao Ming; Zhao, Chang Ming; Xu, Wen Ting

    2016-03-01

    Riparian zone, the ecological transition buffer between terrestrial and aquatic ecosystems (rivers, lakes, reservoirs, wetlands, and other specific water bodies) with unique eco-hydrological and biogeochemical processes, is the last ecological barrier to prevent ammonium, nitrate and other non-point nitrogen pollutants from adjacent water bodies. Based on a summary of current progress of related studies, we found there were two major mechanisms underpinning the nitrogen retention/removal by the riparian ecosystems: 1) the relative locations of nitrogen in the soil-plant-atmosphere continuum system could be altered by riparian vegetation; 2) nitrogen could also be denitrified and then removed permanently by microorganisms in riparian soil. However, which process is more critical for the nitrogen removal remains elusive. Due to large variances of hydro-dynamic, vegetation, microbial, and soil substrate properties in nitrogen retention and transformation with various watersheds, it's difficult to identify which factor is the most important one driving nitrogen cycle in the riparian ecosystems. It is also found that the limitation of study methods, paucity of data at large spatial and temporal scale, and no consensus on the riparian width, are the three major reasons leading to large variances of the results among studies. In conclusion, it is suggested that further efforts should be focused on: 1) the detailed analysis on the successive environmental factors with long-term; 2) the application of a comprehensive method combining mathematical models, geographic information system, remote sensing and quantified technique (such as the coupled technique of the isotopic tracer and gas exchange measurement); 3) the implementation of studies at large temporal and spatial scales. It is sure that, these efforts can help to optimize the nitrogen removal pathways in the riparian ecosystems and provide scientific basis for ecosystem management.

  6. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface.

    PubMed

    Brusseau, Mark L

    2018-02-01

    A comprehensive understanding of the transport and fate of per- and poly-fluoroalkyl substances (PFAS) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. A multi-process retention model is proposed to account for potential additional sources of retardation for PFAS transport in source zones. These include partitioning to the soil atmosphere, adsorption at air-water interfaces, partitioning to trapped organic liquids (NAPL), and adsorption at NAPL-water interfaces. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for two PFAS of primary concern, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), and an example precursor (fluorotelomer alcohol, FTOH). The illustrative evaluation was conducted using measured porous-medium properties representative of a sandy vadose-zone soil. Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for the model system. The results showed that adsorption at the air-water interface was a primary source of retention for both PFOA and PFOS, contributing approximately 50% of total retention for the conditions employed. Adsorption to NAPL-water interfaces and partitioning to bulk NAPL were also shown to be significant sources of retention. NAPL partitioning was the predominant source of retention for FTOH, contributing ~98% of total retention. These results indicate that these additional processes may be, in some cases, significant sources of retention for subsurface transport of PFAS. The specific magnitudes and significance of the individual retention processes will depend upon the properties and conditions of the specific system of interest (e.g., PFAS constituent and concentration, porous medium, aqueous chemistry, fluid saturations, co-contaminants). In cases wherein these

  7. 36 CFR 1226.20 - How do agencies temporarily extend retention periods?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false How do agencies temporarily extend retention periods? 1226.20 Section 1226.20 Parks, Forests, and Public Property NATIONAL ARCHIVES... temporarily extend retention periods? (a) Agencies must secure NARA written approval to retain records series...

  8. 36 CFR 1226.20 - How do agencies temporarily extend retention periods?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false How do agencies temporarily extend retention periods? 1226.20 Section 1226.20 Parks, Forests, and Public Property NATIONAL ARCHIVES... temporarily extend retention periods? (a) Agencies must secure NARA written approval to retain records series...

  9. Liposome retention in size exclusion chromatography

    PubMed Central

    Ruysschaert, Tristan; Marque, Audrey; Duteyrat, Jean-Luc; Lesieur, Sylviane; Winterhalter, Mathias; Fournier, Didier

    2005-01-01

    Background Size exclusion chromatography is the method of choice for separating free from liposome-encapsulated molecules. However, if the column is not presaturated with lipids this type of chromatography causes a significant loss of lipid material. To date, the mechanism of lipid retention is poorly understood. It has been speculated that lipid binds to the column material or the entire liposome is entrapped inside the void. Results Here we show that intact liposomes and their contents are retained in the exclusion gel. Retention depends on the pore size, the smaller the pores, the higher the retention. Retained liposomes are not tightly fixed to the beads and are slowly released from the gels upon direct or inverted eluent flow, long washing steps or column repacking. Further addition of free liposomes leads to the elution of part of the gel-trapped liposomes, showing that the retention is transitory. Trapping reversibility should be related to a mechanism of partitioning of the liposomes between the stationary phase, water-swelled polymeric gel, and the mobile aqueous phase. Conclusion Retention of liposomes by size exclusion gels is a dynamic and reversible process, which should be accounted for to control lipid loss and sample contamination during chromatography. PMID:15885140

  10. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  11. Principles of recruitment and retention in clinical trials.

    PubMed

    Aitken, Leanne; Gallagher, Robyn; Madronio, Christine

    2003-12-01

    Efficient and effective recruitment and retention of participants is the largest single component of the study workload and forms an essential component in the conduct of clinical trials. In this paper, we present five principles to guide the processes of both recruitment and retention. These principles include the selection of an appropriate population to adequately answer the research question, followed by the establishment of a sampling process that accurately represents that population. Creation of systematic and effective recruitment mechanisms should be supported by implementation of follow-up mechanisms that promote participant retention. Finally, all activities related to recruitment and retention must be conducted within the framework of ethics and privacy regulations. Adherence to these principles will assist the researcher in achieving the goals of the study within the available resources.

  12. Gastric retention pellets of edaravone with enhanced oral bioavailability: Absorption mechanism, development, and in vitro/in vivo evaluation.

    PubMed

    Li, Qingguo; Huang, Wenhai; Yang, Juan; Wang, Jianfeng; Hu, Min; Mo, Jianmei; Cheng, Yuzhu; Ou, Zhanlun; Zhang, Zhenyu Jason; Guan, Shixia

    2018-07-01

    Absorption mechanism of edaravone (EDR) was studied to inform the preparation of gastric retention pellets with the aim to enhance its oral bioavailability. Three different models, namely, Caco-2 cells model, in situ single-pass intestinal perfusion model, and everted gut sac model in rats, were employed to characterize the gastrointestinal absorption kinetics of EDR. And it was found that passive transfer plays a vital role for the transport of EDR, and acidic condition is preferable for EDR absorption. Further, it is likely that EDR acts as a substrate for P-glycoprotein and multidrug-resistance protein. And hence, an orally available gastric retention pellets were developed accordingly. Pharmacokinetic experiments performed with rats and beagles showed that the absolute bioavailability of EDR solution and enteric-coated pellets following oral administration were 33.85% ± 2.45% and 7.64% ± 1.03%, indicating that stomach absorption is better than intestinal adsorption for EDR. However, the gastric retention pellets resulted in 68.96% absolute bioavailability and about 200% relative bioavailability in comparison to EDR solution, which was 9 times that of enteric-coated pellets. The present work demonstrates that gastric retention pellets has excellent potential as oral administration route for EDR. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  14. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jianjun; Wang, Jian; Pan, Weinan

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  15. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L 3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; ...

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  16. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H2O].

    PubMed

    Wang, Fei; Yang, Fan; Tian, Yang; Liu, Jiawei; Shen, Jiwei; Bai, Quan

    2018-01-01

    A stoichiometric displacement model for retention (SDM-R) of small solutes and proteins based on hydrophilic interaction chromatography (HILIC) was presented. A linear equation that related the logarithm of the capacity factor of the solute to the logarithm of the concentration of water in the mobile phase was derived. The stoichiometric displacement parameters, Z (the number of water molecules required to displace a solute from ligands) and lgI (containing a number of constants that relate to the affinity of solute to the ligands) could be obtained from the slope and the intercept of the linear plots of lgk' vs. lg[H 2 O]. The retention behaviors and retention mechanism of 15 kinds of small solutes and 6 kinds of proteins on 5 kinds HILIC columns with different ligands were investigated with SDM-R in typical range of water concentration in mobile phase. A good linear relationship between lgk' and lg[H 2 O] demonstrated that the most rational retention mechanism of solute in HILIC was a stoichiometric displacement process between solute and solvent molecules with water as displacing agents, which was not only valid for small solutes, but also could be used to explain the retention mechanism of biopolymers in HILIC. Comparing with the partition and adsorption models in HILIC, SDM-R was superior to them. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. 41 CFR 101-27.304-2 - Factors affecting the economic retention limit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... economic retention limit. 101-27.304-2 Section 101-27.304-2 Public Contracts and Property Management... economic retention limit. (a) The economic retention limit may be increased where: (1) The item is of... economic retention time limit; or (2) Costs incident to holding an additional quantity are insignificant...

  18. 41 CFR 101-27.304-2 - Factors affecting the economic retention limit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... economic retention limit. 101-27.304-2 Section 101-27.304-2 Public Contracts and Property Management... economic retention limit. (a) The economic retention limit may be increased where: (1) The item is of... economic retention time limit; or (2) Costs incident to holding an additional quantity are insignificant...

  19. 41 CFR 101-27.304-2 - Factors affecting the economic retention limit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... economic retention limit. 101-27.304-2 Section 101-27.304-2 Public Contracts and Property Management... economic retention limit. (a) The economic retention limit may be increased where: (1) The item is of... economic retention time limit; or (2) Costs incident to holding an additional quantity are insignificant...

  20. 41 CFR 101-27.304-2 - Factors affecting the economic retention limit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... economic retention limit. 101-27.304-2 Section 101-27.304-2 Public Contracts and Property Management... economic retention limit. (a) The economic retention limit may be increased where: (1) The item is of... economic retention time limit; or (2) Costs incident to holding an additional quantity are insignificant...

  1. 41 CFR 101-27.304-2 - Factors affecting the economic retention limit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... economic retention limit. 101-27.304-2 Section 101-27.304-2 Public Contracts and Property Management... economic retention limit. (a) The economic retention limit may be increased where: (1) The item is of... economic retention time limit; or (2) Costs incident to holding an additional quantity are insignificant...

  2. Effect of substituted phenylnadimides on processing and properties of PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Alston, W. B.; Lauver, R. W.

    1985-01-01

    Three nitrophenylnadimide cure initiators and two phenylnadimides (without nitros) were evaluated as additives to PMR-15 resins and Celion 6000 graphite fiber composites. The results of a resin screening study eliminated all of the additives except 3-nitrophenylnadimide (NO2PN) for use as a low temperature curing additive for PMR-15. Thus, NO2PN and the two control additives were investigated in PMR-15 formulations from which Celion 6000 graphite fiber/PMR-15 composites were processed both with low temperature (274 C) and normal (316 C) cure cycles. Comparisons of the two processing cycles, the resultant glass transition temperatures (Tg), the ambient, 274 and 316 C composite mechanical properties determined before and after 316 C postcure, the 316 C thermo-oxidative weight losses and the retention of 316 C composite mechanical properties are presented. Empirical correlations of the type and amount of nadimide additives with processing parameters, Tg, composite mechanical properties, composite thermo-oxidative stability and long term retention of 316 C composite mechanical properties are also presented.

  3. 36 CFR 1226.18 - When may agencies temporarily extend retention periods?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extend retention periods? 1226.18 Section 1226.18 Parks, Forests, and Public Property NATIONAL ARCHIVES... temporarily extend retention periods? (a) Agencies may temporarily retain records approved for destruction... or not to temporarily extend the retention period of records, agencies must ensure that the extension...

  4. 36 CFR 1226.18 - When may agencies temporarily extend retention periods?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... extend retention periods? 1226.18 Section 1226.18 Parks, Forests, and Public Property NATIONAL ARCHIVES... temporarily extend retention periods? (a) Agencies may temporarily retain records approved for destruction... or not to temporarily extend the retention period of records, agencies must ensure that the extension...

  5. 36 CFR 1226.18 - When may agencies temporarily extend retention periods?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extend retention periods? 1226.18 Section 1226.18 Parks, Forests, and Public Property NATIONAL ARCHIVES... temporarily extend retention periods? (a) Agencies may temporarily retain records approved for destruction... or not to temporarily extend the retention period of records, agencies must ensure that the extension...

  6. 36 CFR 1226.18 - When may agencies temporarily extend retention periods?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extend retention periods? 1226.18 Section 1226.18 Parks, Forests, and Public Property NATIONAL ARCHIVES... temporarily extend retention periods? (a) Agencies may temporarily retain records approved for destruction... or not to temporarily extend the retention period of records, agencies must ensure that the extension...

  7. Tritium well depth, tritium well time and sponge mechanism for reducing tritium retention

    NASA Astrophysics Data System (ADS)

    Deng, B. Q.; Li, Z. X.; Li, C. Y.; Feng, K. M.

    2011-07-01

    and theoretical studies, some new mechanisms are proposed for reducing the tritium retention in PFC and structure materials of tritium-breeding blanket. In this paper, a qualitative analysis of the 'sponge effect' is carried out. The 'sponge effect' may help us to reduce tritium retention by ~20% in the PFC.

  8. Preparation and Properties of a Novel Semi-IPN Slow-Release Fertilizer with the Function of Water Retention.

    PubMed

    Xiang, Yang; Ru, Xudong; Shi, Jinguo; Song, Jiang; Zhao, Haidong; Liu, Yaqing; Guo, Dongdong; Lu, Xin

    2017-12-20

    A new semi-interpenetrating polymer network (semi-IPN) slow-release fertilizer (SISRF) with water absorbency, based on the kaolin-g-poly(acrylic acid-co-acrylic amide) (kaolin-g-P(AA-co-AM)) network and linear urea-formaldehyde oligomers (UF), was prepared by solution polymerization. Nutrients phosphorus and potassium were supplied by adding dipotassium hydrogen phosphate during the preparation process. The structure and properties of SISRF were characterized by various characterization methods. SISRF showed excellent water absorbency of 68 g g -1 in tap water. The slow-release behavior of nutrients and water-retention capacity of SISRF were also measured. Meanwhile, the swelling kinetics was well described by a pseudo-second-order kinetics model. Results suggested the formation of SISRF with simultaneously good slow-release and water-retention capacity, which was expected to apply in modern agriculture and horticulture.

  9. Calculation of Retention Time Tolerance Windows with Absolute Confidence from Shared Liquid Chromatographic Retention Data

    PubMed Central

    Boswell, Paul G.; Abate-Pella, Daniel; Hewitt, Joshua T.

    2015-01-01

    Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user’s system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called “retention projection” was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. PMID:26292624

  10. Calculation of retention time tolerance windows with absolute confidence from shared liquid chromatographic retention data.

    PubMed

    Boswell, Paul G; Abate-Pella, Daniel; Hewitt, Joshua T

    2015-09-18

    Compound identification by liquid chromatography-mass spectrometry (LC-MS) is a tedious process, mainly because authentic standards must be run on a user's system to be able to confidently reject a potential identity from its retention time and mass spectral properties. Instead, it would be preferable to use shared retention time/index data to narrow down the identity, but shared data cannot be used to reject candidates with an absolute level of confidence because the data are strongly affected by differences between HPLC systems and experimental conditions. However, a technique called "retention projection" was recently shown to account for many of the differences. In this manuscript, we discuss an approach to calculate appropriate retention time tolerance windows for projected retention times, potentially making it possible to exclude candidates with an absolute level of confidence, without needing to have authentic standards of each candidate on hand. In a range of multi-segment gradients and flow rates run among seven different labs, the new approach calculated tolerance windows that were significantly more appropriate for each retention projection than global tolerance windows calculated for retention projections or linear retention indices. Though there were still some small differences between the labs that evidently were not taken into account, the calculated tolerance windows only needed to be relaxed by 50% to make them appropriate for all labs. Even then, 42% of the tolerance windows calculated in this study without standards were narrower than those required by WADA for positive identification, where standards must be run contemporaneously. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  12. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    PubMed

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  13. 41 CFR 101-27.304-1 - Establishment of economic retention limit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... economic retention limit. 101-27.304-1 Section 101-27.304-1 Public Contracts and Property Management... economic retention limit. An economic retention limit must be established for inventories so that the... it is required. Generally, it would be more economical to dispose of stock in excess of the limit and...

  14. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile. I. Effect of γ-irradiation on grafting parameters

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, S.; Chvajarernpun, J.; Nakason, C.

    1993-07-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85°C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminum foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis.

  15. Study of nano mechanical properties polydimethylsiloxane (PDMS)/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Murudkar, Vrishali; Gaonkar, Amita; Deshpande, V. D.; Mhaske, S. T.

    2018-05-01

    Polydimethylsiloxane (PDMS), a clear elastomer, is a common material used in many applications; but has poor mechanical properties. Carbon nano tubes (CNT) exhibit excellent mechanical properties & hence are used as filler in PDMS. It was found that the elastic modulus and strength of the PDMS/MWCNT nano composites were enhanced by adding MWCNT [1]. Through the nano indentation experiment, the hardness (H), the elastic modulus (E), and other mechanical properties can be determined from very small volumes of materials [2]; hence nano indentation is widely used to study mechanical properties. PDMS/MWCNT composites have enhanced mechanical properties over neat PDMS. FTIR analysis shows bonding between MWCNT and PDMS; which affects the mechanical properties. From AFM study it shows decreasing roughness for increasing MWCNT concentration. Surface morphology (SEM) study shows well dispersion of MWCNT into PDMS matrix.

  16. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 36 CFR § 1226.20 - How do agencies temporarily extend retention periods?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true How do agencies temporarily extend retention periods? § 1226.20 Section § 1226.20 Parks, Forests, and Public Property NATIONAL... temporarily extend retention periods? (a) Agencies must secure NARA written approval to retain records series...

  18. Skin mechanical properties and modeling: A review.

    PubMed

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  19. Light stabilizers added to the shell of co-extruded wood/high-density polyethylene composites to improve mechanical and anti-UV ageing properties

    PubMed Central

    Mei, Changtong; Xu, Bing; Chen, Weimin; Yong, Cheng; Wang, Ke; Wu, Qinglin

    2018-01-01

    Weathering of wood--plastic composites (WPCs) leads to discoloration and cracks, which greatly limits their outdoor application. In this study, light stabilizers (including UV-327, HS-944 and nano-SiO2) were added to the shell of a co-extruded high-density polyethylene-based WPC to improve its anti-ultraviolet (UV) ageing properties and simultaneously to maintain its good mechanical properties. The results showed that UV-327 was the most effective light stabilizer for improving the mechanical and anti-UV ageing properties of the composites among the three stabilizers used. WPC samples combined with 2% UV-327 had the highest retention rates in flexural strength and also had the smoothest surface after 2500 h of UV ageing. The samples with 2% UV-327 added had the best protection for discoloration, showing the lowest values of ΔE* (colour difference) and ΔL* (luminescence) in all samples after 2500 h of UV ageing. WPC samples with 2% UV-327 were also oxidized the least after 2500 h of UV ageing. The results reported herein serve to enhance our understanding of the efficiency of light stabilizers in preventing UV degradation of WPCs, with a view to developing co-extruded WPCs with low cost, high anti-UV ageing properties and good mechanical properties for outdoor applications. PMID:29892445

  20. 36 CFR § 1226.18 - When may agencies temporarily extend retention periods?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... extend retention periods? § 1226.18 Section § 1226.18 Parks, Forests, and Public Property NATIONAL... temporarily extend retention periods? (a) Agencies may temporarily retain records approved for destruction... or not to temporarily extend the retention period of records, agencies must ensure that the extension...

  1. Food mechanical properties and dietary ecology.

    PubMed

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. © 2016 Wiley Periodicals, Inc.

  2. 41 CFR 101-1.111 - Retention of FPMR amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Retention of FPMR amendments. 101-1.111 Section 101-1.111 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS GENERAL 1-INTRODUCTION 1.1-Regulation System § 101...

  3. Review of research on the mechanical properties of the human tooth

    PubMed Central

    Zhang, Ya-Rong; Du, Wen; Zhou, Xue-Dong; Yu, Hai-Yang

    2014-01-01

    ‘Bronze teeth' reflect the mechanical properties of natural teeth to a certain extent. Their mechanical properties resemble those of a tough metal, and the gradient of these properties lies in the direction from outside to inside. These attributes confer human teeth with effective mastication ability. Understanding the various mechanical properties of human teeth and dental materials is the basis for the development of restorative materials. In this study, the elastic properties, dynamic mechanical properties (visco-elasticity) and fracture mechanical properties of enamel and dentin were reviewed to provide a more thorough understanding of the mechanical properties of human teeth. PMID:24743065

  4. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  5. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  6. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Zargarian, A; Schmauder, S

    2017-06-01

    Modulating deformation mechanism through manipulating morphological parameters of scaffold internal pore architecture provides potential to tailor the overall mechanical properties under physiological loadings. Whereas cells sense local strains, cell differentiation is also impressed by the elastic deformations. In this paper, structure-property relations were developed for Ti6-Al-4V scaffolds designed based on triply periodic minimal surfaces. 10mm cubic scaffolds composed of 5×5×5 unit cells formed of F-RD (bending dominated) and I-WP (stretching dominated) architectures were additively manufactured at different volume fractions and subjected to compressive tests. The first stages of deformation for stretching dominated structure, was accompanied by bilateral layer-by-layer failure of unit cells owing to the buckling of micro-struts, while for bending dominated structure, namely F-RD, global shearing bands appeared since the shearing failure of struts in the internal architecture. Promoted mechanical properties were found for stretching dominated structure since the global orientation of struts were parallel to loading direction while inclination of struts diminished specific properties for bending dominated structure. Moreover, elastic-plastic deformation was computationally studied by applying Johnson-Cook damage model to the voxel-based models in FE analysis. Scaling analysis was performed for mechanical properties with respect to the relative density thereby failure mechanism was correlated to the constants of power law describing mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A parametric study of helium retention in beryllium and its effect on deuterium retention

    NASA Astrophysics Data System (ADS)

    Alegre, D.; Baldwin, M. J.; Simmonds, M.; Nishijima, D.; Hollmann, E. M.; Brezinsek, S.; Doerner, R. P.

    2017-12-01

    Beryllium samples have been exposed in the PISCES-B linear plasma device to conditions relevant to the International Thermonuclear Experimental Reactor (ITER) in pure He, D, and D/He mixed plasmas. Except at intermediate sample exposure temperatures (573-673 K) He addition to a D plasma is found to have a beneficial effect as it reduces the D retention in Be (up to ˜55%), although the mechanism is unclear. Retention of He is typically around 1020-1021 He m-2, and is affected primarily by the Be surface temperature during exposition, by the ion fluence at <500 K exposure, but not by the ion impact energy at 573 K. Contamination of the Be surface with high-Z elements from the mask of the sample holder in pure He plasmas is also observed under certain conditions, and leads to unexpectedly large He retention values, as well as changes in the surface morphology. An estimation of the tritium retention in the Be first wall of ITER is provided, being sufficiently low to allow a safe operation of ITER.

  8. Mechanical Deformation Mechanisms and Properties of Prion Fibrils Probed by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Choi, Bumjoon; Kim, Taehee; Ahn, Eue Soo; Lee, Sang Woo; Eom, Kilho

    2017-03-01

    Prion fibrils, which are a hallmark for neurodegenerative diseases, have recently been found to exhibit the structural diversity that governs disease pathology. Despite our recent finding concerning the role of the disease-specific structure of prion fibrils in determining their elastic properties, the mechanical deformation mechanisms and fracture properties of prion fibrils depending on their structures have not been fully characterized. In this work, we have studied the tensile deformation mechanisms of prion and non-prion amyloid fibrils by using steered molecular dynamics simulations. Our simulation results show that the elastic modulus of prion fibril, which is formed based on left-handed β-helical structure, is larger than that of non-prion fibril constructed based on right-handed β-helix. However, the mechanical toughness of prion fibril is found to be less than that of non-prion fibril, which indicates that infectious prion fibril is more fragile than non-infectious (non-prion) fibril. Our study sheds light on the role of the helical structure of amyloid fibrils, which is related to prion infectivity, in determining their mechanical deformation mechanisms and properties.

  9. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  10. Influence of dioctyl phthalate (DOP) on the mechanical, optical and thermal properties of formulations for the industrial manufacture of radiation sterilizable medical disposables

    NASA Astrophysics Data System (ADS)

    Ahmed, Shamshad; Mehmood, Mazhar; Iqbal, Rashid

    2010-03-01

    Shelf life of the formulations designed for the industrial manufacture of radiation sterilizable syringes and other medical disposables is a very important issue world over. Radiation compatible formulations were developed earlier in the laboratory by the incorporation of primary and secondary antioxidants along with processing stabilizers in a random polypropylene copolymer. It has been reported in literature that the mobilizing agents namely hydrocarbons, greases, wax and the plasticizer, dioctyl phthalate (DOP) impart radiation resistance to the polypropylene by providing free volume. It was envisaged that the addition of DOP to the afore-mentioned formulation might favorably influence the mechanical, optical and thermal properties of our formulation. To study the influence of addition of DOP on the afore-mentioned properties, the addition of 1%, 2% and 3% of the mobilizer was made, followed by the irradiation of resulting heat pressed sheets to the industrial standard dose of 25 kGy. Two important characteristic mechanical properties to determine the suitability of the radiation sterilized materials comprise angle of breakage and the haze percent. After irradiation and even on accelerated ageing of the irradiated material, the angle of breakage of heat press sheets of formulations containing 1%, 2% and 3% of DOP was found to be 180°, demonstrating the role of DOP, in imparting additional radiation stability. In case of the irradiated control sample, the angle of breakage was much lower. In the heat pressed sheets containing the DOP, a remarkable retention in the tensile strength, percentage elongation at break, along with improved thermal stability was observed. The formulation devoid of DOP demonstrated poor retention of the afore-mentioned characteristic properties .The observed improvement in thermal stability of the formulations containing DOP hints at the likely possibility of reuse of these materials by autoclaving which is considered an additional

  11. Effects of mineral additives on biochar formation: carbon retention, stability, and properties.

    PubMed

    Li, Feiyue; Cao, Xinde; Zhao, Ling; Wang, Jianfei; Ding, Zhenliang

    2014-10-07

    Biochar is being recognized as a promising tool for long-term carbon sequestration, and biochar with high carbon retention and strong stability is supposed to be explored for that purpose. In this study, three minerals, including kaolin, calcite (CaCO3), and calcium dihydrogen phosphate [Ca(H2PO4)2], were added to rice straw feedstock at the ratio of 20% (w/w) for biochar formation through pyrolysis treatment, aiming to improve carbon retention and stabilization in biochar. Kaolin and CaCO3 had little effect on the carbon retention, whereas Ca(H2PO4)2 increased the carbon retention by up to 29% compared to untreated biochar. Although the carbon loss from the kaolin-modified biochar with hydrogen peroxide oxidation was enhanced, CaCO3 and Ca(H2PO4)2 modification reduced the carbon loss by 18.6 and 58.5%, respectively. Moreover, all three minerals reduced carbon loss of biochar with potassium dichromate oxidation from 0.3 to 38.8%. The microbial mineralization as CO2 emission in all three modified biochars was reduced by 22.2-88.7% under aerobic incubation and 5-61% under anaerobic incubation. Enhanced carbon retention and stability of biochar with mineral treatment might be caused by the enhanced formation of aromatic C, which was evidenced by cross-polarization magic angle spinning (13)C nuclear magnetic resonance spectra and Fourier transform infrared spectroscopy analysis. Our results indicated that the three minerals, especially Ca(H2PO4)2, were effective in increasing carbon retention and strengthening biochar stabilization, which provided a novel idea that people could explore and produce the designated biochar with high carbon sequestration capacity and stability.

  12. Fibrin mechanical properties and their structural origins.

    PubMed

    Litvinov, Rustem I; Weisel, John W

    2017-07-01

    Fibrin is a protein polymer that is essential for hemostasis and thrombosis, wound healing, and several other biological functions and pathological conditions that involve extracellular matrix. In addition to molecular and cellular interactions, fibrin mechanics has been recently shown to underlie clot behavior in the highly dynamic intra- and extravascular environments. Fibrin has both elastic and viscous properties. Perhaps the most remarkable rheological feature of the fibrin network is an extremely high elasticity and stability despite very low protein content. Another important mechanical property that is common to many filamentous protein polymers but not other polymers is stiffening occurring in response to shear, tension, or compression. New data has begun to provide a structural basis for the unique mechanical behavior of fibrin that originates from its complex multi-scale hierarchical structure. The mechanical behavior of the whole fibrin gel is governed largely by the properties of single fibers and their ensembles, including changes in fiber orientation, stretching, bending, and buckling. The properties of individual fibrin fibers are determined by the number and packing arrangements of double-stranded half-staggered protofibrils, which still remain poorly understood. It has also been proposed that forced unfolding of sub-molecular structures, including elongation of flexible and relatively unstructured portions of fibrin molecules, can contribute to fibrin deformations. In spite of a great increase in our knowledge of the structural mechanics of fibrin, much about the mechanisms of fibrin's biological functions remains unknown. Fibrin deformability is not only an essential part of the biomechanics of hemostasis and thrombosis, but also a rapidly developing field of bioengineering that uses fibrin as a versatile biomaterial with exceptional and tunable biochemical and mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment.

    PubMed

    Bao, Mianmian; Liu, Ying; Wang, Xiaoyan; Yang, Lei; Li, Shengyi; Ren, Jing; Qin, Gaowu; Zhang, Erlin

    2018-03-01

    Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate), but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti 2 Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800-850 MPa and antibacterial rate (>91.32%). It was demonstrated that homogeneous distribution and fine Ti 2 Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  14. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media at Low-Ionic-Strength Conditions: Measurements and Mechanisms

    EPA Science Inventory

    The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...

  15. Rolling-Tooth Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bickler, Donald B.; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Hudson, Nicolas H.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale that is robust and versatile enough to be used for a variety of core samples. This design consists of a set of tubes (a drill tube and an inner tube) and a rolling element (rolling tooth). An additional tube can be used as a sample tube. The drill tube and the inner tube have longitudinal holes with the axes offset from the axis of each tube. The two eccentricities are equal. The inner tube fits inside the drill tube, and the sample tube fits inside the inner tube. While drilling, the two tubes are positioned relative to each other such that the sample tube is aligned with the drill tube axis and core. The drill tube includes teeth and flutes for cuttings removal. The inner tube includes, at the base, the rolling element implemented as a wheel on a shaft in an eccentric slot. An additional slot in the inner tube and a pin in the drill tube limit the relative motion of the two tubes. While drilling, the drill assembly rotates relative to the core and forces the rolling tooth to stay hidden in the slot along the inner tube wall. When the drilling depth has been reached, the drill bit assembly is rotated in the opposite direction, and the rolling tooth is engaged and penetrates into the core. Depending on the strength of the created core, the rolling tooth can score, lock the inner tube relative to the core, start the eccentric motion of the inner tube, and break the core. The tooth and the relative position of the two tubes can act as a core catcher or core-retention mechanism as well. The design was made to fit the core and hole parameters produced by an existing bit; the parts were fabricated and a series of demonstration tests were performed. This invention is potentially applicable to sample return and in situ missions to planets such as Mars and Venus, to moons such

  16. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  17. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    NASA Astrophysics Data System (ADS)

    T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama

    2005-04-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was

  18. REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS

    EPA Science Inventory

    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  19. Mechanical properties of human atherosclerotic intima tissue.

    PubMed

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Acute urinary retention due to benign inflammatory nervous diseases.

    PubMed

    Sakakibara, Ryuji; Yamanishi, Tomonori; Uchiyama, Tomoyuki; Hattori, Takamichi

    2006-08-01

    Both neurologists and urologists might encounter patients with acute urinary retention due to benign inflammatory nervous diseases. Based on the mechanism of urinary retention, these disorders can be divided into two subgroups: disorders of the peripheral nervous system (e.g., sacral herpes) or the central nervous system (e.g., meningitis-retention syndrome [MRS]). Laboratory abnormalities include increased herpes virus titers in sacral herpes, and increased myelin basic protein in the cerebrospinal fluid (CSF) in some cases with MRS. Urodynamic abnormality in both conditions is detrusor areflexia; the putative mechanism of it is direct involvement of the pelvic nerves in sacral herpes; and acute spinal shock in MRS. There are few cases with CSF abnormality alone. Although these cases have a benign course, management of the acute urinary retention is necessary to avoid bladder injury due to overdistension. Clinical features of sacral herpes or MRS differ markedly from those of the original "Elsberg syndrome" cases.

  1. Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.

    2017-03-01

    The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.

  2. Properties of autoclaved Gr/PI composites made from improved tack PMR-15 prepreg

    NASA Technical Reports Server (NTRS)

    Vannucci, R. D.

    1985-01-01

    Autoclave processing studies were conducted, using improved tack PMR-15 prepreg, to determine the effect of tack enhancing PMR resin modifications on composite processability and mechanical properties. Improved tack graphite fiber reinforced PMR-15 prepregs were prepared and exposed to ambient conditions for various times and then autoclave molded into composites. Composite specimens were prepared and tested for flexural and interlaminar shear strengths at room temperature and 316 C. The retention of flexural and interlaminar shear strength as a function of exposure in air at 316 C was also determined. The results show that the modified PMR resin solutions provide prepreg with improved tack and drape retention characteristics without adversely affecting processability or mechanical properties of autoclave molded graphite fiber reinforced PMR-15 composites.

  3. In vitro CPC retention and VSC adsorption by IPM oil droplets: possible mechanisms of action of a two phase mouthwash.

    PubMed

    Sterer, N; Slutzky, H; Kohavi, D; Matalon, S

    2013-09-01

    Two phase oil-water mouthwash has been previously shown to efficiently bind oral microorganisms, relying on their cell surface hydrophobicity. The aim of the present in vitro study was to test the cetylpyridinium chloride (CPC) retention and volatile sulfide compounds (VSCs) adsorption abilities of the oil droplets created by mixing of a two phase oil-water solution. VSC adsorption was assayed using a salivary incubation assay and garlic powder solutions, and demonstrated using microscopic sulfide assay. CPC retention was assayed by kinetic and endpoint measurement of Streptococcus salivarius outgrowth using microplate (ELISA) reader. Results showed that the isopropyl myristate (IPM) oil droplets in the two phase solutions were able to adsorb 68-80% of VSCs. CPC at a concentration of 0.05% was most affectively retained by the oil droplets showing a significantly increase in residual antibacterial activity against Streptococcus salivarius. These results taken together, suggests that VSC adsorption and CPC retention by IPM oil droplets may be two additional mechanisms in the activity of the two phase mouthwash formulation.

  4. Rapid quantification of imidazolium-based ionic liquids by hydrophilic interaction liquid chromatography: Methodology and an investigation of the retention mechanisms.

    PubMed

    Hawkins, Cory A; Rud, Anna; Guthrie, Margaret L; Dietz, Mark L

    2015-06-26

    The separation of nine N,N'-dialkylimidazolium-based ionic liquids (ILs) by an isocratic hydrophilic interaction high-performance liquid chromatographic method using an unmodified silica column was investigated. The chosen analytical conditions using a 90:10 acetonitrile-ammonium formate buffer mobile phase on a high-purity, unmodified silica column were found to be efficient, robust, and sensitive for the determination of ILs in a variety of solutions. The retention window (k' = 2-11) was narrower than that of previous methods, resulting in a 7-min runtime for the nine IL homologues. The lower limit of quantification of the method, 2-3 μmol L(-1), was significantly lower than those reported previously for HPLC-UV methods. The effects of systematically modifying the IL cation alkyl chain length, column temperature, and mobile-phase water and buffer content on solute retention were examined. Cation exchange was identified as the dominant retention mechanism for most of the solutes, with a distinct (single methylene group) transition to a dominant partitioning mode at the highest solute polarity. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mechanical Properties of Transcription

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart A.; Levine, Herbert

    2017-06-01

    The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.

  6. Mechanical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  7. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model whichmore » can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.« less

  8. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response

  9. Motor Learning in Childhood Reveals Distinct Mechanisms for Memory Retention and Re-Learning

    ERIC Educational Resources Information Center

    Musselman, Kristin E.; Roemmich, Ryan T.; Garrett, Ben; Bastian, Amy J.

    2016-01-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted…

  10. EVALUATION OF THE MECHANICAL PROPERTIES OF 9NI-4CO FORGINGS.

    DTIC Science & Technology

    FORGING, MECHANICAL PROPERTIES, STEEL , QUENCHING, SPECIFICATIONS, TENSILE PROPERTIES, COMPRESSIVE PROPERTIES, FATIGUE(MECHANICS), TOUGHNESS, STRESS...CORROSION, THERMAL STABILITY, STRAIN(MECHANICS), BAINITE , TEST METHODS, HEAT TREATMENT, CRACK PROPAGATION.

  11. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. Copyright © 2016 Elsevier B.V. All rights

  12. The Influence of Microstructure on Deuterium Retention in Polycrystalline Tungsten

    DOE PAGES

    Garrison, Lauren M.; Meyer, Fred W.; Bannister, Mark E.

    2017-09-18

    The retention of hydrogen isotopes in the plasma-facing materials of a fusion reactor is dependent on the density of trapping sites in the material. One factor that can influence the trapping defects is the surface state of the material before exposure. Mechanically polished, electropolished, and recrystallized tungsten samples were compared by exposing them to 350 eV D + beams with peak fluences of ~1 × 10 24 D +/m 2 at 500 and 740 K at the Multicharged Ion Research Facility (MIRF). At the exposure temperature of 740 K, no significant retention was detected. For material exposed at 500 K,more » significant differences in retention were observed, and the order of increasing retention was recrystallized, electropolished, and mechanically polished. Lastly, the other variable besides surface treatment was the time delay between ion exposure and thermal desorption spectroscopy which also may have impacted the retention measurements if there was out-gassing of the D while samples were in storage before thermal desorption spectroscopy (TDS).« less

  13. The Influence of Microstructure on Deuterium Retention in Polycrystalline Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrison, Lauren M.; Meyer, Fred W.; Bannister, Mark E.

    The retention of hydrogen isotopes in the plasma-facing materials of a fusion reactor is dependent on the density of trapping sites in the material. One factor that can influence the trapping defects is the surface state of the material before exposure. Mechanically polished, electropolished, and recrystallized tungsten samples were compared by exposing them to 350 eV D + beams with peak fluences of ~1 × 10 24 D +/m 2 at 500 and 740 K at the Multicharged Ion Research Facility (MIRF). At the exposure temperature of 740 K, no significant retention was detected. For material exposed at 500 K,more » significant differences in retention were observed, and the order of increasing retention was recrystallized, electropolished, and mechanically polished. Lastly, the other variable besides surface treatment was the time delay between ion exposure and thermal desorption spectroscopy which also may have impacted the retention measurements if there was out-gassing of the D while samples were in storage before thermal desorption spectroscopy (TDS).« less

  14. Enhancing Aluminum Reactivity by Exploiting Surface Chemistry and Mechanical Properties

    DTIC Science & Technology

    2015-06-01

    alter its mechanical properties . In bulk material processing , annealing and quenching metals such as Al can relieve residual stress and improve...increasing  Al  reactivity is to alter its mechanical  properties .  In bulk material  processing , annealing and quenching metals such as  Al  can relieve...mechanical properties . On a single particle level, affecting mechanical properties may also affect Al particle reactivity. Aluminum particles underwent

  15. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.

    PubMed

    Palencia, Manuel; Rivas, Bernabé L

    2011-11-15

    Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Mechanical properties of nanocrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Karimpoor, Amir A.; Erb, Uwe

    2006-05-01

    Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.

  17. Hierarchical structure and mechanical properties of remineralized dentin.

    PubMed

    Chen, Yi; Wang, Jianming; Sun, Jian; Mao, Caiyun; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua

    2014-12-01

    It is widely accepted that the mechanical properties of dentin are significantly determined by its hierarchical structure. The current correlation between the mechanical properties and the hierarchical structure was mainly established by studying altered forms of dentin, which limits the potential outcome of the research. In this study, dentins with three different hierarchical structures were obtained via two different remineralization procedures and at different remineralization stages: (1) a dentin structure with amorphous minerals incorporated into the collagen fibrils, (2) a dentin with crystallized nanominerals incorporated into the collagen fibrils, and (3) a dentin with an out-of-order mineral layer filling the collagen fibrils matrix. Nanoindentation tests were performed to investigate the mechanical behavior of the remineralized dentin slides. The results showed that the incorporation of the crystallized nanominerals into the acid-etched demineralized organic fibrils resulted in a remarkable improvement of the mechanical properties of the dentin. In contrast, for the other two structures, i.e. the amorphous minerals inside the collagen fibrils and the out-of-order mineral layer within the collagen fibrils matrix, the excellent mechanical properties of dentin could not be restored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 41 CFR 101-27.304 - Criteria for economic retention limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Criteria for economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304 Criteria for economic retention limits. If a long... long supply as provided in § 101-27.303-2, the inventory manager shall establish an economic retention...

  19. 41 CFR 101-27.304 - Criteria for economic retention limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Criteria for economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304 Criteria for economic retention limits. If a long... long supply as provided in § 101-27.303-2, the inventory manager shall establish an economic retention...

  20. 41 CFR 101-27.304 - Criteria for economic retention limits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Criteria for economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304 Criteria for economic retention limits. If a long... long supply as provided in § 101-27.303-2, the inventory manager shall establish an economic retention...

  1. 41 CFR 101-27.304 - Criteria for economic retention limits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Criteria for economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304 Criteria for economic retention limits. If a long... long supply as provided in § 101-27.303-2, the inventory manager shall establish an economic retention...

  2. 41 CFR 101-27.304 - Criteria for economic retention limits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Criteria for economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304 Criteria for economic retention limits. If a long... long supply as provided in § 101-27.303-2, the inventory manager shall establish an economic retention...

  3. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    PubMed

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  4. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    PubMed

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  5. Implication of surface modified NZVI particle retention in the porous media: Assessment with the help of 1-D transport model

    NASA Astrophysics Data System (ADS)

    Raychoudhury, Trishikhi; Surasani, Vikranth Kumar

    2017-06-01

    Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle retention on the porous media properties and its implication on further NZVI particle transport under different flow conditions. To achieve the objectives, a one-dimensional transport model is developed by considering particle deposition, detachment, and straining mechanisms along with the effect of changes in porosity resulting from retention of NZVI particles. Two different flow conditions are considered for simulations. The first is a constant Darcy's flow rate condition, which assumes a change in porosity, causes a change in pore water velocity and the second, is a constant head condition, which assumes the change in porosity, influence the permeability and hydraulic conductivity (thus Darcy's flow rate). Overall a rapid decrease in porosity was observed as a result of high particle retention near the injection points resulting in a spatial distribution of deposition rate coefficient. In the case of constant head condition, the spatial distribution of Darcy's velocities is predicted due to variation in porosity and hydraulic conductivity. The simulation results are compared with the data reported from the field studies; which suggests straining is likely to happen in the real field condition.

  6. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  7. Mechanisms for dose retention in conformal arsenic doping using a radial line slot antenna microwave plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro

    2015-06-01

    Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.

  8. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  9. Simulated Hail Ice Mechanical Properties and Failure Mechanism at Quasi-Static Strain Rates

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan M.

    Hail is a significant threat to aircraft both on the ground and in the air. Aeronautical engineers are interested in better understanding the properties of hail to improve the safety of new aircraft. However, the failure mechanism and mechanical properties of hail, as opposed to clear ice, are not well understood. A literature review identifies basic mechanical properties of ice and a failure mechanism based upon the state of stress within an ice sphere is proposed. To better understand the properties of Simulated Hail Ice (SHI), several tests were conducted using both clear and cotton fiber reinforced ice. Pictures were taken to show the internal crystal structure of SHI. SHI crush tests were conducted to identify the overall force-displacement trends at various quasi-static strain rates. High speed photography was also used to visually track the failure mechanism of spherical SHI. Compression tests were done to measure the compression strength of SHI and results were compared to literature data. Fracture toughness tests were conducted to identify the crack resistance of SHI. Results from testing clear ice samples were successfully compared to previously published literature data to instill confidence in the testing methods. The methods were subsequently used to test and characterize the cotton fiber reinforced ice.

  10. Deuterium retention in tungsten in dependence of the surface conditions

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Roth, J.; Mayer, M.

    2003-03-01

    The paper reviews hydrogen isotope retention and migration in tungsten (W). Due to a large scatter of the deuterium (D) retention database, new measurements of ion-driven D retention in polycrystalline W foil have been performed to clarify the mechanism of hydrogen isotope inventory in W. Deuterium retention has been investigated as a function of ion fluence, implantation temperature, incident energy and surface conditions. Special attention has been given on the investigation of D retention in thin films of tungsten carbide and tungsten oxide which can be formed on W surface in a fusion device. Such kinds of films increase the D retention in W. Several points are reviewed: (i) inventory in pure W, (ii) inventory in W pre-implanted by carbon ions and (iii) inventory in tungsten oxide.

  11. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  12. Surface runoff and retention of transported pollutants in strips of riparian vegetation with and without trees

    NASA Astrophysics Data System (ADS)

    Giaccio, Gustavo; Laterra, Pedro; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    In this study, some aspects related to the effect of the crack willow (Salix fragilis L.) invasion on the reduction of runoff and sediment retention, glyphosate, nitrogen and phosphorus in riparian environments with herbaceous vegetation of the Austral Pampa of Argentina were analysed. In order to evaluate the influence of the willows on the filtering mechanisms, surface runoff simulation experiments were carried out in plots of 1.5 m x 2.5 m in environments characterized by the presence vs. the absence of willows. In spite of the small length of the experimental plots, glyphosate retention in the tree-less plots reached 73.6%, a higher value than that recorded in tree stands (43.8%). However, sediment, nitrogen and phosphorus retention did not vary significantly between treatments. On the other hand, the reduction of the volume of runoff in the sites with trees reached 63%, a superior value to the one registered in strips without trees (31%). The presence of trees only significantly modified the biophysical properties of hydraulic conductivity, surface roughness, aerial biomass and soil moisture, compared to areas with no trees. Partial correlation analysis for both tree and no-tree environments showed that the reduction in runoff volume increased significantly with hydraulic conductivity, soil sand content and depth at the water table, and decreased with apparent density, soil moisture and the slope of the riverbank. However, sediment retention increased significantly with aerial, mulch and root biomass and decreased with the slope of the riparian strip. Glyphosate retention increased significantly with sediment retention and decreased with the slope of the riparian strip and the mulch biomass. Nitrogen retention increased with the reduction of runoff flow, soil hydraulic conductivity and depth to the water table and decreased with slope and sediment retention. While, phosphorus retention increased with sediment retention and decreased with slope and soil content

  13. Mechanical Properties of Fe-Ni Meteorites

    NASA Astrophysics Data System (ADS)

    Roberta, Mulford; El Dasher, B.

    2010-10-01

    Iron-nickel meteorites exhibit a unique lamellar microstructure, Widmanstatten patterns, consisting of small regions with steep-iron-nickel composition gradients.1,2 The microstructure arises as a result of extremely slow cooling in a planetary core or other large mass. Mechanical properties of these structures have been investigated using microindentation, x-ray fluorescence, and EBSD. Observation of local mechanical properties in these highly structured materials supplements bulk measurements, which can exhibit large variation in dynamic properties, even within a single sample. 3 Accurate mechanical properties for meteorites may enable better modeling of planetary cores, the likely origin of these objects. Appropriate values for strength are important in impact and crater modeling and in understanding the consequences of observed impacts on planetary crusts. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens.4 This was ascribed to the extreme work-hardening evident in the EBSD measurements. This particular specimen exhibited only residual Widmanstatten structures, and may have been heated and deformed during its traverse of the atmosphere. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and examples from the Muonionalusta meteorite and Gibeon fall ( both IVA, fine octahedrite), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure. 1. A. Christiansen, et.al., Physica Scripta, 29 94-96 (1984.) 2. Goldstein and Ogilvie, Geochim Cosmochim Acta, 29 893-925 (1965.) 3. M. D. Furnish, M.B. Boslough, G.T. Gray II, and J.L. Remo, Int. J. Impact Eng

  14. Relationship between chemistry, microstructure and mechanical properties of alpha-silicon aluminum oxynitride

    NASA Astrophysics Data System (ADS)

    Shuba, Roman

    The aim of this thesis was to improve the mechanical properties of Y-alpha-SiAlON ceramics by controlling microstructure and tailoring grain boundary composition. Three properties of importance for engineering applications were targeted: strength retention and oxidation resistance at high temperature, fracture toughness at room temperature, and machinability. As a result of this work, several ceramics with one or more of the above properties optimized have been developed. The performance of Si3N4/SiAlON-based ceramics at high (>1000 degree C) temperature is generally limited by the softening of grain-boundary glass. Refractory alpha-SiAlONs was obtained by three methods: reducing residual liquid by minimizing nitride powder oxidation during processing, promoting liquid/SiAlON conversion by adding excess AlN, and improving refractoriness by incorporating La2O3 into glass. Ceramics thus, obtained featured excellent room-temperature strength (1050 MPa) and high-temperature strength (650 MPa at 1300 degree C), as well as good oxidation resistance. In all cases grain growth was inhibited, which resulted in a relatively low toughness (5--7 MPa x m1/2). In-situ toughened Y-alpha-SiAlON (9 MPa x m1/2) was obtained through growth of large elongated grains with low debonding strength. This was achieved by introducing seed crystals to the starting powder mixtures, in addition to using sintering aids and dopants. Additives modified the properties of grain boundary glass, while dopants lowered the strength of glass/grain interface. Through the use of nanosized turbostratic BN precursor obtained via pyrolysis of melamine borate salt, which yielded finely dispersed hexagonal BN particles in alpha-SiAlON, high-strength (800 MPa) Y-alpha-SiAlON/BN composites, machinable using WC/Co tools, were also fabricated.

  15. Microstructure and Mechanical Properties of Porous Mullite

    NASA Astrophysics Data System (ADS)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  16. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  17. Bacteria facilitate prey retention by the pitcher plant Darlingtonia californica

    PubMed Central

    2016-01-01

    Bacteria are hypothesized to provide a variety of beneficial functions to plants. Many carnivorous pitcher plants, for example, rely on bacteria for digestion of captured prey. This bacterial community may also be responsible for the low surface tensions commonly observed in pitcher plant digestive fluids, which might facilitate prey capture. I tested this hypothesis by comparing the physical properties of natural pitcher fluid from the pitcher plant Darlingtonia californica and cultured ‘artificial’ pitcher fluids and tested these fluids' prey retention capabilities. I found that cultures of pitcher leaves' bacterial communities had similar physical properties to raw pitcher fluids. These properties facilitated the retention of insects by both fluids and hint at a previously undescribed class of plant–microbe interaction. PMID:27881762

  18. Bacteria facilitate prey retention by the pitcher plant Darlingtonia californica.

    PubMed

    Armitage, David W

    2016-11-01

    Bacteria are hypothesized to provide a variety of beneficial functions to plants. Many carnivorous pitcher plants, for example, rely on bacteria for digestion of captured prey. This bacterial community may also be responsible for the low surface tensions commonly observed in pitcher plant digestive fluids, which might facilitate prey capture. I tested this hypothesis by comparing the physical properties of natural pitcher fluid from the pitcher plant Darlingtonia californica and cultured 'artificial' pitcher fluids and tested these fluids' prey retention capabilities. I found that cultures of pitcher leaves' bacterial communities had similar physical properties to raw pitcher fluids. These properties facilitated the retention of insects by both fluids and hint at a previously undescribed class of plant-microbe interaction. © 2016 The Author(s).

  19. 41 CFR 101-27.304-1 - Establishment of economic retention limit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Establishment of economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304-1 Establishment of economic retention limit. An economic retention limit must be established for inventories so that the Government will not incur any more...

  20. 41 CFR 101-27.304-1 - Establishment of economic retention limit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Establishment of economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304-1 Establishment of economic retention limit. An economic retention limit must be established for inventories so that the Government will not incur any more...

  1. 41 CFR 101-27.304-1 - Establishment of economic retention limit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Establishment of economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304-1 Establishment of economic retention limit. An economic retention limit must be established for inventories so that the Government will not incur any more...

  2. 41 CFR 101-27.304-1 - Establishment of economic retention limit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Establishment of economic... MANAGEMENT 27.3-Maximizing Use of Inventories § 101-27.304-1 Establishment of economic retention limit. An economic retention limit must be established for inventories so that the Government will not incur any more...

  3. Retention and effective diffusion of model metabolites on porous graphitic carbon.

    PubMed

    Lunn, Daniel B; Yun, Young J; Jorgenson, James W

    2017-12-29

    The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mechanical properties of wood

    Treesearch

    David W. Green; Jerrold E. Winandy; David E. Kretschmann

    1999-01-01

    The mechanical properties presented in this chapter were obtained from tests of small pieces of wood termed “clear” and “straight grained” because they did not contain characteristics such as knots, cross grain, checks, and splits. These test pieces did have anatomical characteristics such as growth rings that occurred in consistent patterns within each piece. Clear...

  5. Mechanical properties of wood

    Treesearch

    David Kretschmann

    2010-01-01

    The mechanical properties presented in this chapter were obtained from tests of pieces of wood termed “clear” and “straight grained” because they did not contain characteristics such as knots, cross grain, checks, and splits. These test pieces did have anatomical characteristics such as growth rings that occurred in consistent patterns within each piece. Clear wood...

  6. Investigation of mechanical properties of cryogenically treated music wire

    NASA Astrophysics Data System (ADS)

    Heptonstall, A.; Waller, M.; Robertson, N. A.

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors.

  7. Microstructure and mechanical properties of horns derived from three domestic bovines.

    PubMed

    Zhang, Quan-bin; Li, Chun; Pan, Yan-ting; Shan, Guang-hua; Cao, Ping; He, Jia; Lin, Zhong-shi; Ao, Ning-jian; Huang, Yao-xiong

    2013-12-01

    The microstructure and mechanical properties of horns derived from three domestic bovines (buffalo, cattle and sheep) were examined. The effects of water content, sampling position and orientation of three bovid horns on mechanical properties were systematically investigated by uniaxial tension and micron indentation tests. Meanwhile, the material composition and metal element contents were determined by Raman spectroscopy and elemental analysis respectively, and the microstructures of the horns were measured by scanning electron microscopy (SEM). Results show that the mechanical properties of horns have negative correlation with water contents and depend on sampling position and orientation. The spatial variations of the mechanical properties in horns are attributed to the different keratinization degrees in the proximal, middle and distal parts. And the mechanical properties of horns in the longitudinal direction are better than those in transverse. Among the three kinds of horns, the mechanical properties of buffalo horn are the best, followed by cattle horn, and those in sheep horn are the worst. This is due to the differences in material composition, metal element, and the microstructures of the horns. But the mechanical properties of buffalo horns are not dependent on the source of the buffalo. Therefore, regular engineered buffalo keratinous materials with standard mechanical properties can be obtained from different buffalo horns by using proper preparation methods. © 2013.

  8. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  9. Measurements and Characterizations of Mechanical Properties of Human Skins

    NASA Astrophysics Data System (ADS)

    Song, Han Wook; Park, Yon Kyu

    A skin is an indispensible organ for humans because it contributes to metabolism using its own biochemical functions and protects the human body from external stimuli. Recently, mechanical properties such as a thickness, a friction and an elastic coefficient have been used as a decision index in the skin physiology and in the skin care market due to the increased awareness of wellbeing issues. In addition, the use of mechanical properties is known to have good discrimination ability in the classification of human constitutions, which are used in the field of an alternative medicine. In this study, a system that measures mechanical properties such as a friction and an elastic coefficient is designed. The equipment consists of a load cell type (manufactured by the authors) for the measurements of a friction coefficient, a decompression tube for the measurement of an elastic coefficient. Using the proposed system, the mechanical properties of human skins from different constitutions were compared, and the relative repeatability error for measurements of mechanical properties was determined to be less than 2%. Combining the inspection results of medical doctors in the field of an alternative medicine, we could conclude that the proposed system might be applicable to a quantitative constitutional diagnosis between human constitutions within an acceptable level of uncertainty.

  10. Thermal Stabilization and Mechanical Properties of Nanocrystalline Iron-Nickel-Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Kotan, Hasan

    Ultrafine grained and nanostructured materials are promising for structural applications because of the high strength compared to coarse grained counterparts. However, their widespread application is limited by an inherently high driving force for thermally induced grain growth, even at low temperatures. Accordingly, the understanding of and control over grain growth in nanoscale materials is of great technological and scientific importance as many physical properties (i.e. mechanical properties) are functions of the average grain size and the grain size distribution within the microstructure. Here, we investigate the microstructural evolution and grain growth in Fe-Ni alloys with Zr addition and differentiate the stabilization mechanisms acting on grain boundaries. Fe-Ni alloys are chosen for stability investigations since they are important for understanding the behavior of many steels and other ferrous alloys. Zirconium is proven to be an effective grain size stabilizer in pure Fe and Fe-base systems. In this study, nanocrystalline alloys were prepared by high energy ball milling. In situ and ex situ experiments were utilized to directly follow grain growth and microstructural evolution as a function of temperature and composition. The information obtained from these experiments enables the real time observation of microstructural evolution and phase transformation and provides a unique view of dynamic reactions as they occur. The knowledge of the thermal stability will exploit the potential high temperature applications and the consolidation conditions (i.e. temperature and pressure) to obtain high dense materials for advanced mechanical tests. Our investigations reveal that the grain growth of Fe-Ni alloys is not affected by Ni content but strongly inhibited by the addition of 1 at% Zr up to about 700 °C. The microstructural stability is lost due to the bcc-to-fcc transformation (occurring at 700°C) by the sudden appearance of abnormally grown fcc grains

  11. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  12. Mechanical Properties of Stable Glasses Using Nanoindentation

    NASA Astrophysics Data System (ADS)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  13. Mechanical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Thornton, H. Richard; Cornwell, L. R.

    1993-01-01

    A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

  14. The Baptist Health Nurse Retention Questionnaire: A Methodological Study, Part 1.

    PubMed

    Lengerich, Alexander; Bugajski, Andrew; Marchese, Matthew; Hall, Brittany; Yackzan, Susan; Davies, Claire; Brockopp, Dorothy

    2017-05-01

    The purposes of this study were to develop and test the Baptist Health Nurse Retention Questionnaire (BHNRQ) and examine the importance of nurse retention factors. Multiple factors, including increasing patient acuity levels, have led to concerns regarding nurse retention. An understanding of current factors related to retention is limited. To establish the psychometric properties of the BHNRQ, data were collected from 279 bedside nurses at a 391-bed, Magnet® redesignated community hospital. A principal component analysis was conducted to determine the subscale structure of the BHNRQ. Additional analyses were conducted related to content validity and test-retest reliability. The results of the principal components analysis revealed 3 subscales: nursing practice, management, and staffing. Analyses demonstrate that the BHNRQ is a reliable and valid instrument for measuring nurse retention factors. The BHNRQ was found to be a clinically useful instrument for measuring important factors related to nurse retention.

  15. Database of Mechanical Properties of Textile Composites

    NASA Technical Reports Server (NTRS)

    Delbrey, Jerry

    1996-01-01

    This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.

  16. Determinants of the mechanical properties of bones

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1991-01-01

    The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.

  17. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  18. Mechanical Properties of the TiAl IRIS Alloy

    NASA Astrophysics Data System (ADS)

    Voisin, Thomas; Monchoux, Jean-Philippe; Thomas, Marc; Deshayes, Christophe; Couret, Alain

    2016-12-01

    This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.

  19. Obtaining and Mechanical Properties of Ti-Mo-Zr-Ta Alloys

    NASA Astrophysics Data System (ADS)

    Bălţatu, M. S.; Vizureanu, P.; Geantă, V.; Nejneru, C.; Țugui, C. A.; Focşăneanu, S. C.

    2017-06-01

    Ti-based alloys are successfully used in the area of orthopedic biomaterials for their enhanced biocompatibility, good corrosion and mechanical properties. The most suitable metals as an alloying element for orthopedic biomaterials are zirconium, molybdenum and tantalum because are non toxic and have good properties. The paper purpose development of two alloys of Ti-Mo-Zr-Ta (TMZT) prepared by arc-melting with several mechanical properties determined by microindentation. The mechanical properties analyzed was Vickers hardness and dynamic elasticity modulus. The investigated alloys presents a low Young’s modulus, an important condition of biomaterials for preventing stress shielding phenomenon.

  20. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  1. Mechanical properties of atomic layer deposition-reinforced nanoparticle thin films.

    PubMed

    Zhang, Lei; Prosser, Jacob H; Feng, Gang; Lee, Daeyeon

    2012-10-21

    Nanoparticle thin films (NTFs) exhibit multifunctionality, making them useful for numerous advanced applications including energy storage and conversion, biosensing and photonics. Poor mechanical reliability and durability of NTFs, however, limit their industrial and commercial applications. Atomic layer deposition (ALD) represents a unique opportunity to enhance the mechanical properties of NTFs at a relatively low temperature without drastically changing their original structure and functionality. In this work, we study how ALD of different materials, Al(2)O(3), TiO(2), and SiO(2), affects the mechanical properties of TiO(2) and SiO(2) NTFs. Our results demonstrate that the mechanical properties of ALD-reinforced NTFs are dominantly influenced by the mechanical properties of the ALD materials rather than by the compositional matching between ALD and nanoparticle materials. Among the three ALD materials, Al(2)O(3) ALD provides the best enhancement in the modulus and hardness of the NTFs. Interestingly, Al(2)O(3) ALD is able to enhance not only the modulus and hardness but also the toughness of NTFs. Our study presents an additional benefit of depositing nanometer scale ALD layers in NTFs; that is, we find that the hardness and modulus of ultrathin ALD layers (<5 nm) can be estimated from the mechanical properties of ALD-reinforced NTFs using a simple mixing rule. This investigation also provides insight into the use of nanoindentation for testing the mechanical properties of ultrathin ALD-reinforced NTFs.

  2. Mechanical Properties and Failure of Biopolymers: Atomistic Reactions to Macroscale Response

    PubMed Central

    Jung, GangSeob; Qin, Zhao

    2017-01-01

    The behavior of chemical bonding under various mechanical loadings is an intriguing mechanochemical property of biological materials, and the property plays a critical role in determining their deformation and failure mechanisms. Because of their astonishing mechanical properties and roles in constituting the basis of a variety of physiologically relevant materials, biological protein materials have been intensively studied. Understanding the relation between chemical bond networks (structures) and their mechanical properties offers great possibilities to enable new materials design in nanotechnology and new medical treatments for human diseases. Here we focus on how the chemical bonds in biological systems affect mechanical properties and how they change during mechanical deformation and failure. Three representative cases of biomaterials related to the human diseases are discussed in case studies, including: amyloids, intermediate filaments, and collagen, each describing mechanochemical features and how they relate to the pathological conditions at multiple scales. PMID:26108895

  3. Mechanical properties of water desalination and wastewater treatment membranes

    DOE PAGES

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.; ...

    2017-07-13

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  4. Mechanical properties of water desalination and wastewater treatment membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  5. Mechanical and microwave absorbing properties of carbon-filled polyurethane.

    PubMed

    Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J

    2009-01-01

    Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.

  6. Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.

    PubMed

    Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D

    2018-01-18

    Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.

  7. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study.

    PubMed

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C-55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal-Wallis test was used for retentive strength comparison at the level of significance of P < 0.05. The results of the study showed that the specimens cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate ( P < 0.001 and P = 0.023, respectively). Zinc phosphate cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns.

  8. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.

    PubMed

    De Munari, Annalisa; Semiao, Andrea Joana Correia; Antizar-Ladislao, Blanca

    2013-06-15

    Nanofiltration (NF) is a well-established process used in drinking water production to effectively remove Natural Organic Matter (NOM) and organic micropollutants. The presence of NOM has been shown to have contrasting results on micropollutant retention by NF membranes and removal mechanisms are to date poorly understood. The permeate water quality can therefore vary during operation and its decrease would be an undesired outcome for potable water treatment. It is hence important to establish the mechanisms involved in the removal of organic micropollutants by NF membranes in the presence of NOM. In this study, the retention mechanisms of pesticide Endosulfan (ES) in the presence of humic acids (HA) by two NF membranes, TFC-SR2 and TFC-SR3, a "loose" and a "tight" membrane, respectively, were elucidated. The results showed that two mechanisms were involved: (1) the formation of ES-HA complexes (solute-solute interactions), determined from solid-phase micro-extraction (SPME), increased ES retention, and (2) the interactions between HA and the membrane (solute-membrane interactions) increased membrane molecular weight cut-off (MWCO) and decreased ES retention. HA concentration, pH, and the ratio between micropollutant molecular weight (MW) and membrane MWCO were shown to influence ES retention mechanisms. In the absence of HA-membrane interactions at pH 4, an increase of HA concentration increased ES retention from 60% to 80% for the TFC-SR2 and from 80% to 95% for the TFC-SR3 due to ES-HA complex formation. At pH 8, interactions between HA and the loose TFC-SR2 increased the membrane MWCO from 460 to 496 g/mol and ES retention decreased from 55% to 30%, as HA-membrane interactions were the dominant mechanism for ES retention. In contrast, for the "tight" TFC-SR3 membrane the increase in the MWCO (from 165 to 179 g/mol), was not sufficient to decrease ES retention which was dominated by ES-HA interactions. Quantification of the contribution of both solute

  9. Investigation of the influence of the composition on mechanical properties of polylactide

    NASA Astrophysics Data System (ADS)

    Baikin, A. S.; Sevostyanov, M. A.; Nasakina, E. O.; Sergienko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Kolmakova, A. A.; Yakubov, A. D.; Kolmakov, A. G.

    2018-04-01

    In this paper we describe the creation of films from polylactide. Studied the mechanical properties of developed polymer films of polylactide. The effect of the molecular weight of polylactide on the mechanical properties of the resulting polymer films is shown. The dependence of the mechanical properties of polylactide films on the polymer concentration in chloroform was studied. The possibility of creating biodegradable films with specified mechanical properties is shown.

  10. Floating nut retention system

    NASA Technical Reports Server (NTRS)

    Charles, J. F.; Theakston, H. A. (Inventor)

    1980-01-01

    A floating nut retention system includes a nut with a central aperture. An inner retainer plate has an opening which is fixedly aligned with the nut aperture. An outer retainer member is formed of a base plate having an opening and a surface adjacent to a surface of the inner retainer plate. The outer retainer member includes a securing mechanism for retaining the inner retainer plate adjacent to the outer retainer member. The securing mechanism enables the inner retainer plate to float with respect to the outer retainer number, while simultaneously forming a bearing surface for inner retainer plate.

  11. Mechanical properties of intra-ocular lenses

    NASA Astrophysics Data System (ADS)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  12. The influence of salt chaotropicity, column hydrophobicity and analytes' molecular properties on the retention of pramipexole and its impurities.

    PubMed

    Vemić, Ana; Kalinić, Marko; Erić, Slavica; Malenović, Anđelija; Medenica, Mirjana

    2015-03-20

    The aim of this study was to examine the interaction of the chaotropic salts of different position in Hofmeister series (CF3COONa, NaClO4, NaPF6) added to the mobile phase with the stationary phases of different hydrophobicity (C8 and C18 XTerra(®) columns), as well as their common influence on the retention behavior of pramipexole and its structurally related impurities. The extended thermodynamic approach enabled the understanding of the underlying separation mechanism. Comparing six different column-salt systems it was observed that general system hydrophobicity presented by salt chaotropicity and column hydrophobicity favors stationary phase ion-pairing over the ion-pair formation in the eluent. Further, an attempt was made to describe the influence of analytes' nature on their retention behavior in such chromatographic systems. An analysis is performed in order to select and elucidate the molecular descriptors (electrostatical, quantum-chemical, geometrical, topological, and constitutional) that best explain the experimental evidence and findings obtained by the thermodynamic approach. The results of this analysis suggest that analytes' charge distribution and its complementarity to the structure of the electric double layer formed on the surface of the stationary phase upon the addition of chaotropic additives can be useful for understanding the differences in retention of structurally related analytes. These findings provide a novel understanding of the interactions between all the components of the chromatographic system containing chaotropic additive and a good basis for further investigations suggesting the development of generally applicable predictors in structure-retention relationship studies in related chromatographic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Study on the mechanical properties of Cu/LDPE composite IUDs.

    PubMed

    Tang, Ying; Xia, Xianping; Wang, Yun; Xie, Changsheng

    2011-03-01

    The copper/low-density polyethylene composite (Cu/LDPE composite) intrauterine devices (IUDs), which can eliminate or lessen the side effects of existing IUDs, have been developed in our laboratory. As a novel type of copper-containing IUDs, it is not clear whether the mechanical properties of the Cu/LDPE composite IUDs can meet the need of clinical use or not. Therefore, the mechanical properties of the Cu/LDPE composite IUDs have been studied in the present article. The influence of copper particle content and size on the mechanical properties of the Cu/LDPE composite IUDs was analyzed firstly to provide guidance for the material composition design of the Cu/LDPE composite IUDs, and then the BaSO(4)/LDPE composite, which has been applied as a framework of the existing copper-containing IUDs in clinical use for decades, has been used as reference to judge whether the mechanical properties of the Cu/LDPE composite IUDs can meet the need of clinical use or not. However, the mechanical properties of IUDs cannot be characterized directly. Therefore, the mechanical properties of both the Cu/LDPE composite IUDs and the framework of the existing copper-containing IUDs were investigated by means of tensile test using standard tensile samples, and the fracture surface morphology of the tensile samples was characterized by scanning electron microscopy (SEM). Both the elongation at break and the tensile strength decrease with increasing of copper particle content and increase with increasing of the copper particle size, while the elastic modulus shows an opposite tendency. The tensile strength and elastic modulus of both the Cu/LDPE microcomposite IUDs and the Cu/LDPE nanocomposite IUDs with 25 wt.% of copper particles are higher than those of existing copper-containing IUDs (TCu220C; its framework is made of the BaSO(4)/LDPE composite with 20 wt.% of BaSO(4)). The content and size of the copper particles have significant effect on the mechanical properties of Cu

  14. Measurement of material mechanical properties in microforming

    NASA Astrophysics Data System (ADS)

    Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong

    2006-02-01

    As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.

  15. Characterization of Mechanical Properties of Microbial Biofilms

    NASA Astrophysics Data System (ADS)

    Callison, Elizabeth; Gose, James; Perlin, Marc; Ceccio, Steven

    2017-11-01

    The physical properties of microbial biofilms grown subject to shear flows determine the form and mechanical characteristics of the biofilm structure, and consequently, the turbulent interactions over and through the biofilm. These biofilms - sometimes referred to as slime - are comprised of microbial cells and extracellular polymeric substance (EPS) matrices that surround the multicellular communities. Some of the EPSs take the form of streamers that tend to oscillate in flows, causing increased turbulent mixing and drag. As the presence of EPS governs the compliance and overall stability of the filamentous streamers, investigation of the mechanical properties of biofilms may also inform efforts to understand hydrodynamic performance of fouled systems. In this study, a mixture of four diatom genera was grown under turbulent shear flow on test panels. The mechanical properties and hydrodynamic performance of the biofilm were investigated using rheology and turbulent flow studies in the Skin-Friction Flow Facility at the University of Michigan. The diatoms in the mixture of algae were identified, and the elastic and viscous moduli were determined from small-amplitude oscillations, while a creep test was used to evaluate the biofilm compliance.

  16. Controlling Mechanical Properties of Bis-leucine Oxalyl Amide Gels

    NASA Astrophysics Data System (ADS)

    Chang, William; Carvajal, Daniel; Shull, Kenneth

    2011-03-01

    is-leucine oxalyl amide is a low molecular weight gelator capable of gelling polar and organic solvents. A fundamental understanding of self-assembled systems can lead to new methods in drug delivery and the design of new soft material systems. An important feature of self-assembled systems are the intermolecular forces between solvent and gelator molecule; by changing the environment the gel is in, the mechanical properties also change. In this project two variables were considered: the degree of neutralization present for the gelator molecule from neutral to completely ionized, and the concentration of the gelator molecule, from 1 weight percent to 8 weight percent in 1-butanol. Mechanical properties were studied using displacement controlled indentation techniques and temperature sweep rheometry. It has been found that properties such as the storage modulus, gelation temperature and maximum stress allowed increase with bis-leucine oxalyl amide concentration. The results from this study establish a 3-d contour map between the gelator concentration, the gelator degree of ionization and mechanical properties such as storage modulus and maximum stress allowed. The intermolecular forces between the bis-leucine low molecular weight gelator and 1-butanol govern the mechanical properties of the gel system, and understanding these interactions will be key to rationally designed self-assembled systems.

  17. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon C.; Glidden, Joel Micah; Lamoreaux, Christopher

    2013-01-01

    The Orion CSM umbilical retention and release mechanism supports and protects all of the cross-module commodities between the spacecrafts crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. The mechanism employs a single separation interface which is retained with pyrotechnically actuated separation bolts and supports roughly two dozen electrical and fluid connectors. When module separation is commanded, either for nominal on-orbit CONOPS or in the event of an abort, the mechanism must release the separation interface and sever all commodity connections within milliseconds of command receipt. There are a number of unique and novel aspects of the design solution developed by the Orion mechanisms team. The design is highly modular and can easily be adapted to other vehiclesmodules and alternate commodity sets. It will be flight tested during Orions Exploration Flight Test 1 (EFT-1) in 2014, and the Orion team anticipates reuse of the design for all future missions. The design packages fluid, electrical, and ordnance disconnects in a single separation interface. It supports abort separations even in cases where aerodynamic loading prevents the deployment of the umbilical arm. Unlike the Apollo CSM umbilical which was a destructive separation device, the Orion design is resettable and flight units can be tested for separation performance prior to flight.Initial development testing of the mechanisms separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. These changes addressed the root cause of the binding failure by providing better control of connector alignment. The new design was tuned and validated analytically via Monte Carlo simulation. The

  18. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  19. Mechanical properties of normal versus cancerous breast cells

    PubMed Central

    Smelser, Amanda M.; Macosko, Jed C.; O’Dell, Adam P.; Smyre, Scott; Bonin, Keith

    2016-01-01

    A cell’s mechanical properties are important in determining its adhesion, migration, and response to the mechanical properties of its microenvironment and may help explain behavioral differences between normal and cancerous cells. Using fluorescently labeled peroxisomes as microrheological probes, the interior mechanical properties of normal breast cells were compared to a metastatic breast cell line, MDA-MB-231. To estimate the mechanical properties of cell cytoplasms from the motions of their peroxisomes, it was necessary to reduce the contribution of active cytoskeletal motions to peroxisome motion. This was done by treating the cells with blebbistatin, to inhibit myosin II, or with sodium azide and 2-deoxy-D-glucose, to reduce intracellular ATP. Using either treatment, the peroxisomes exhibited normal diffusion or subdiffusion, and their mean squared displacements (MSDs) showed that the MDA-MB-231 cells were significantly softer than normal cells. For these two cell types, peroxisome MSDs in treated and untreated cells converged at high frequencies, indicating that cytoskeletal structure was not altered by the drug treatment. The MSDs from ATP-depleted cells were analyzed by the generalized Stokes–Einstein relation to estimate the interior viscoelastic modulus G* and its components, the elastic shear modulus G′ and viscous shear modulus G″, at angular frequencies between 0.126 and 628rad/s. These moduli are the material coefficients that enter into stress–strain relations and relaxation times in quantitative mechanical models such as the poroelastic model of the interior regions of cancerous and non-cancerous cells. PMID:25929519

  20. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan

    2014-11-01

    Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.

  1. Mechanical properties of the beetle elytron, a biological composite material

    USDA-ARS?s Scientific Manuscript database

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  2. Mechanical Properties of 23 Species of Eastern Hardwoods.

    Treesearch

    B. A. Bendtsen; R. L. Ethington

    1975-01-01

    Important mechanical properties of clear, straight-grained wood of 23 species are tabulated, along with coefficients of variation. These property estimates can be used to match up species with kind of material needed for a specific job, or to search for substitutes for a presently used species. Some of the species appear, with allowable properties, in two published...

  3. Mechanical properties of reconstituted Australian black coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstitutedmore » coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.« less

  4. Retention behaviour of polyunsaturated fatty acid methyl esters on porous graphitic carbon.

    PubMed

    Gaudin, Karen; Hanai, Toshihiko; Chaminade, Pierre; Baillet, Arlette

    2007-07-20

    Retention with porous graphitic carbon was investigated with 25 structures of fatty acid methyl esters (FAMEs) with two different mobile phases: CH(3)CN:CHCl(3) 60:40 (v/v) and CH(3)OH:CHCl(3) 60:40 (v/v) with both 0.1% triethylamine (TEA) and an equimolar amount of HCOOH. Preliminary results showed that the use of TEA/HCOOH led to the response increase of saturated FAMEs with evaporative light scattering detection. No increase was observed for unsaturated one. These modifiers may slightly reduce the retention of FAMEs but did not significantly modify the separation factor with porous graphitic carbon. Thermodynamic parameters were calculated for each structure using Van't Hoff plot measured over the temperature range from 10 to 50 degrees C, with the both mobile phase conditions. All the studied compounds were found linked by the same retention mechanism on porous graphitic carbon. Quantitative in silico analysis of the retention using a molecular mechanics calculation demonstrated a good correlation between the retention factors and the molecular interaction energy values (r>0.93). Especially the Van der Waals energy was predominant, and the contribution of electrostatic energy was negligible for the quantitative analysis of the retention. The results indicate that Van der Waals force, hydrophobic interaction, is predominant for the retention of FAMEs on this packing material. The relative retention for highly unsaturated homologues can be changed by the selection of the weak solvent CH(3)CN or CH(3)OH. Then isomers differing only in the position of the carbon double bond on the alkyl chain can be separated and their behaviour is summarised as the closer the carbon double bonds to the FAME polar head, the more the retention decreases. Finally, the more important the number of carbon double bonds in the alkyl chain is, the smaller the retention is.

  5. Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?

    PubMed

    Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li

    2014-12-01

    The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.

  6. Structure-mechanics property relationship of waste derived biochars.

    PubMed

    Das, Oisik; Sarmah, Ajit K; Bhattacharyya, Debes

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X-ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900°C and 60min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01GPa, respectively. It was shown that a combination of higher heat treatment (≥500°C) temperature and longer residence time (~60min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    NASA Astrophysics Data System (ADS)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  8. Mechanisms of nitrogen retention in forest ecosystems - A field experiment

    NASA Technical Reports Server (NTRS)

    Vitousek, P. M.; Matson, P. A.

    1984-01-01

    Intensive forest management led to elevated losses of nitrogen from a recently harvested loblolly pine plantation in North Carolina. Measurements of nitrogen-15 retention in the field demonstrated that microbial uptake of nitrogen during the decomposition of residual organic material was the most important process retaining nitrogen. Management practices that remove this material cause increased losses of nitrogen to aquatic ecosystems and the atmosphere.

  9. Respiratory system dynamical mechanical properties: modeling in time and frequency domain.

    PubMed

    Carvalho, Alysson Roncally; Zin, Walter Araujo

    2011-06-01

    The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.

  10. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Bombyx mori silk: From mechanical properties to functionalities

    NASA Astrophysics Data System (ADS)

    Koh, Leng Duei

    Bombyx mori silkworms are the main producer of silk worldwide. It has been used as high-end textile fibers and as surgical sutures, and is being further developed for various emerging biomedical applications including drug delivery, tissue engineering, sensing, and imaging. The silk fibroin features a hierarchical architecture consisting of beta-sheet crystallites embedded in a less ordered amorphous matrix, which accounts for its unique combination of lustre appearance, soft-to-touch texture, and impressive mechanical properties. Notably, many applications of silk take advantage of its impressive mechanical properties, which by nature surpass many natural and synthetic materials. Interestingly, both the silkworm silk and spider dragline silk share similar hierarchical architecture but possess great disparity in mechanical properties. Inspired by spider dragline silk with much superior strength and toughness, there is an ever growing interest to enhance the mechanical properties of Bombyx mori silk. Here, we design a green and facile feeding method to modulate the structures of silk fibroin at the nanoscale using citric acid (CA), and achieved greatly enhanced mechanical properties. The silk obtained (i.e., CA silk) emerges to be the intrinsically toughest silkworm silk, with mechanical properties that exceed those of the previously reported natural and enhanced silkworm silk, and compare well with those of naturally produced spider silk (including those from spiders Araneus diadematus, Nephila clavipes, etc.).The underlying interactions of CA with fibroin structures are revealed by both advanced characterizations and simulations. It is found that CA interacts with fibroin, resulted in remarkably shorter crystallites, and thus giving the outstanding strength and toughness of the CA silk. The greatly enhanced mechanical properties are expected to lead to better functionalities and wider applications of the Bombyx mori silkworm silk. Silkworms usually produce white

  12. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    PubMed

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  13. Tissue-level Mechanical Properties of Bone Contributing to Fracture Risk

    PubMed Central

    Nyman, Jeffry S.; Granke, Mathilde; Singleton, Robert C.; Pharr, George M.

    2016-01-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown. PMID:27263108

  14. Linear solvation energy relationship (LSER) characterization of the normal phase retention mechanism on hypercrosslinked polystyrenes.

    PubMed

    Wu, Di; Jiang, Ping; Lucy, Charles A

    2018-03-30

    Linear solvation energy relationships (LSERs) were applied to retention on hypercrosslinked polystyrene on silica (HC-Tol) to elucidate the type and relative importance of molecular interactions between model solutes and the HC-Tol stationary phase. Classical amino phase and another hypercrosslinked phase (5-HGN) were used as reference columns. On both the HC-Tol and amino, polar interactions predominate and contribute to retention. Solute volume V has no impact on retention on the amino column, while V has a slightly negative influence on retention for the HC-Tol column. The differences in coefficient v between the amino and the HC-Tol columns might explain why the HC-Tol is capable of group-type separations. 5-HGN phase has smaller a and b values compared to HC-Tol, which means that 5-HGN is not as basic or acidic in terms of hydrogen bonds as is HC-Tol. This suggests that the hydrogen bonding character of the HC-Tol phase arises from its silica substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  16. Lead Retention in a Calcareous Soil Influenced by Calcium and Phosphate Amendments

    EPA Science Inventory

    Phosphate amendments in calcareous lead (Pb)-contaminated soils to immobilize Pb may be hindered due to competition of Pb with calcium (Ca) that may inhibit the retention of Pb as a precipitation mechanism. This study explored the retention of Pb in a calcareous soil spiked and ...

  17. DNA origami compliant nanostructures with tunable mechanical properties.

    PubMed

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2014-01-28

    DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.

  18. Characterizing the macro and micro mechanical properties of scaffolds for rotator cuff repair.

    PubMed

    Smith, Richard D J; Zargar, Nasim; Brown, Cameron P; Nagra, Navraj S; Dakin, Stephanie G; Snelling, Sarah J B; Hakimi, Osnat; Carr, Andrew

    2017-11-01

    Retearing after rotator cuff surgery is a major clinical problem. Numerous scaffolds are being used to try to reduce retear rates. However, few have demonstrated clinical efficacy. We hypothesize that this lack of efficacy is due to insufficient mechanical properties. Therefore, we compared the macro and nano/micro mechanical properties of 7 commercially available scaffolds to those of the human supraspinatus tendons, whose function they seek to restore. The clinically approved scaffolds tested were X-Repair, LARS ligament, Poly-Tape, BioFiber, GraftJacket, Permacol, and Conexa. Fresh frozen cadaveric human supraspinatus tendon samples were used. Macro mechanical properties were determined through tensile testing and rheometry. Scanning probe microscopy and scanning electron microscopy were performed to assess properties of materials at the nano/microscale (morphology, Young modulus, loss tangent). None of the scaffolds tested adequately approximated both the macro and micro mechanical properties of human supraspinatus tendon. Macroscale mechanical properties were insufficient to restore load-bearing function. The best-performing scaffolds on the macroscale (X-Repair, LARS ligament) had poor nano/microscale properties. Scaffolds approximating tendon properties on the nano/microscale (BioFiber, biologic scaffolds) had poor macroscale properties. Existing scaffolds failed to adequately approximate the mechanical properties of human supraspinatus tendons. Combining the macroscopic mechanical properties of a synthetic scaffold with the micro mechanical properties of biologic scaffold could better achieve this goal. Future work should focus on advancing techniques to create new scaffolds with more desirable mechanical properties. This may help improve outcomes for rotator cuff surgery patients. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    NASA Astrophysics Data System (ADS)

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.

    2016-09-01

    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  20. Simple display system of mechanical properties of cells and their dispersion.

    PubMed

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.

  1. Simple Display System of Mechanical Properties of Cells and Their Dispersion

    PubMed Central

    Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun

    2012-01-01

    The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others. PMID:22479595

  2. Lightweight Concrete : Mechanical Properties : TechBrief

    DOT National Transportation Integrated Search

    2013-06-01

    There is a limited amount of test data on the mechanical properties of high-strength lightweight concrete (LWC) with a concrete unit weight (wc) between that of traditional LWC and normal weight concrete (NWC). Concrete with a wc in this range is als...

  3. Rhenium Mechanical Properties and Joining Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  4. Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens)

    Treesearch

    H.Q. Yu; Z.H. Jiang; C.Y. Hse; T.F. Shupe

    2008-01-01

    Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). Selected physical and mechanical properties of 4?6 year old moso bamboo (Phyllostachys pubescens) grown in Zhejiang, China were investigated at different vertical and horizontal positions. Two way analysis of variance and Tukey?s mean comparison...

  5. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    PubMed Central

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages

  6. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Mechanical properties of canine osteosarcoma-affected antebrachia.

    PubMed

    Steffey, Michele A; Garcia, Tanya C; Daniel, Leticia; Zwingenberger, Allison L; Stover, Susan M

    2017-05-01

    To determine the influence of neoplasia on the biomechanical properties of canine antebrachia. Ex vivo biomechanical study. Osteosarcoma (OSA)-affected canine antebrachia (n = 12) and unaffected canine antebrachia (n = 9). Antebrachia were compressed in axial loading until failure. A load-deformation curve was used to acquire the structural mechanical properties of neoplastic and unaffected specimens. Structural properties and properties normalized by body weight (BW) and radius length were compared using analysis of variance (ANOVA). Modes of failure were compared descriptively. Neoplastic antebrachia fractured at, or adjacent to, the OSA in the distal radial diaphysis. Unaffected antebrachia failed via mid-diaphyseal radial fractures with a transverse cranial component and an oblique caudal component. Structural mechanical properties were more variable in neoplastic antebrachia than unaffected antebrachia, which was partially attributable to differences in bone geometry related to dog size. When normalized by dog BW and radial length, strength, stiffness, and energy to yield and failure, were lower in neoplastic antebrachia than in unaffected antebrachia. OSA of the distal radial metaphysis in dogs presented for limb amputation markedly compromises the structural integrity of affected antebrachia. However, biomechanical properties of affected bones was sufficient for weight-bearing, as none of the neoplastic antebrachia fractured before amputation. The behavior of tumor invaded bone under cyclic loading warrants further investigations to evaluate the viability of in situ therapies for bone tumors in dogs. © 2017 The American College of Veterinary Surgeons.

  8. Sex Equity: Recruitment and Retention of Non-Traditional Students.

    ERIC Educational Resources Information Center

    Mewhorter, V. Carolyn

    This document contains the materials required to present two courses that were developed during a project to increase the recruitment/retention of women in technical education programs. Presented first is Developing Mechanical/Electrical Aptitude, a 30-hour course to improve students' (primarily women's) mechanical and electrical aptitude and…

  9. Correlation between the mechanical and histological properties of liver tissue.

    PubMed

    Yarpuzlu, Berkay; Ayyildiz, Mehmet; Tok, Olgu Enis; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In order to gain further insight into the mechanisms of tissue damage during the progression of liver diseases as well as the liver preservation for transplantation, an improved understanding of the relation between the mechanical and histological properties of liver is necessary. We suggest that this relation can only be established truly if the changes in the states of those properties are investigated dynamically as a function of post mortem time. In this regard, we first perform mechanical characterization experiments on three bovine livers to investigate the changes in gross mechanical properties (stiffness, viscosity, and fracture toughness) for the preservation periods of 5, 11, 17, 29, 41 and 53h after harvesting. Then, the histological examination is performed on the samples taken from the same livers to investigate the changes in apoptotic cell count, collagen accumulation, sinusoidal dilatation, and glycogen deposition as a function of the same preservation periods. Finally, the correlation between the mechanical and histological properties is investigated via the Spearman's Rank-Order Correlation method. The results of our study show that stiffness, viscosity, and fracture toughness of bovine liver increase as the preservation period is increased. These macroscopic changes are very strongly correlated with the increase in collagen accumulation and decrease in deposited glycogen level at the microscopic level. Also, we observe that the largest changes in mechanical and histological properties occur after the first 11-17h of preservation. © 2013 Elsevier Ltd. All rights reserved.

  10. Competing retention pathways of uranium upon reaction with Fe(II)

    NASA Astrophysics Data System (ADS)

    Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.; Ilton, Eugene S.; Cerrato, José M.; Bargar, John R.; Fendorf, Scott

    2014-10-01

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3·nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway's contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ∼7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14-89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ⩽50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64-89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron

  11. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  12. Evaluation of retentive strength of four luting cements with stainless steel crowns in primary molars: An in vitro study

    PubMed Central

    Parisay, Iman; Khazaei, Yegane

    2018-01-01

    Background: Stainless steel crown (SSC) is the most reliable restoration for primary teeth with extensive caries. Retention is of great importance for a successful restoration and is provided by various factors such as luting cements. The aim of this study was to evaluate the retentive strength of SSC cemented with four different luting cements. Materials and Methods: In this in vitro study, A total of 55 extracted primary first molars were selected. Following crown selection and cementation (one with no cement and four groups cemented with resin, glass ionomer, zinc phosphate, and polycarboxylate), all the specimens were incubated and thermocycled in 5°C–55°C. Retentive properties of SSCs were tested with a mechanical test machine. First dislodgement of each specimen and full crown removal were recorded. One-way ANOVA test followed by least significant difference test and Kruskal–Wallis test was used for retentive strength comparison at the level of significance of P < 0.05. Results: The results of the study showed that the specimens cemented with zinc phosphate exhibited higher retentive strength as compared to glass ionomer and polycarboxylate (P < 0.001 and P = 0.023, respectively). Conclusion: Zinc phosphate cement showed the most promising results; thus, it can be preferably used for cementation of the teeth with no grossly broken down crowns. PMID:29922339

  13. ZM-21 magnesium alloy corrosion properties and cryogenic to elevated temperature mechanical properties

    NASA Technical Reports Server (NTRS)

    Montana, J. W.; Nelson, E. E.

    1972-01-01

    The mechanical properties of bare ZM-21 magnesium alloy flat tensile specimens were determined for test temperatures of +400 F, +300 F, +200 F, +80 F, 0 F, -100 F, -200 F, and -320 F. The ultimate tensile and yield strengths of the material increased with decreasing temperature with a corresponding reduction in elongation values. Stress corrosion tests performed under: (1) MSFC atmospheric conditions; (2) 95% relative humidity; and (3) submerged in 100 ppm chloride solution for 8 weeks indicated that the alloy is not susceptible to stress corrosion. The corrosion tests indicated that the material is susceptible to attack by crevice corrosion in high humidity and chemical type attack by chloride solution. Atmospheric conditions at MSFC did not produce any adverse effects on the material, probably due to the rapid formation of a protective oxide coating. In both the mechanical properties and the stress corrosion evaluations the test specimens which were cut transverse to the rolling direction had superior properties when compared to the longitudinal properties.

  14. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    PubMed

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Long term mechanical properties of alkali activated slag

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  16. Wood plastic composites from agro-waste materials: Analysis of mechanical properties.

    PubMed

    Nourbakhsh, Amir; Ashori, Alireza

    2010-04-01

    This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Papermaking properties of aspen ultrahigh-yield mechanical pulps

    Treesearch

    J. N. McGovern; T. H. Wegner

    1991-01-01

    Eleven types of aspen ultra-high-yield (90% and above) mechanical pubs were evaluated for their chemical compositions (including sulfur), handsheet strength, and optical properties, fiber length indices, and fiberizing energies. The pulping processes were stone groundwood, pressurized stone groundwood, refiner mechanical, thermomechanical, chemimechanical (alkaline...

  18. ORTHODONTIC RETENTION. Studies of retention capacity, cost-effectiveness and long-term stability.

    PubMed

    Tynelius, Gudrun Edman

    2014-01-01

    Retention strategies, cost-effectiveness and long-term stability of treatment outcome are essential aspects of orthodontic treatment planning. The overall aim of this thesis was to compare and evaluate three different retention strategies, with special reference to short- and long-term clinical stability and cost-effectiveness. The approach was evidence-based, hence randomized controlled methodology was used in order to generate high levels of evidence. This thesis is based on four studies: Papers I and II are based on randomized controlled trials, evaluating the stability of treatment outcome after one and two years of retention, using three different retention strategies: a maxillary vacuum-formed retainer combined with a mandibular canine-to-canine retainer; a maxillary vacuum-formed retainer combined with stripping of the mandibular anterior teeth and a prefabricated positioner. Paper III presents a cost-minimization analysis of two years of retention treatment. Paper IV is based on a randomized controlled trial documenting the results five years post-retention. The following conclusions were drawn: Papers I and II. From a clinical perspective, asssessment after one year of retention disclosed that the three retention methods were successful in retaining the orthodontic treatment results. After two years of retention, all three retention methods were equally effective in controlling relapse at a clinically acceptable level. Most of the relapse occurred during the first year of retention; only minor or negligible changes were found during the second year. The subjects were grouped according to the level of compliance (excellent or good). After two years of retention there was a negative correlation between growth in body height and relapse of mandibular LII in the group of subjects with excellent compliance. The group with good compliance showed a positive correlation (Paper II, Figure 3). After two years of retention, growth in body height, initial crowding and

  19. Effects of heat treatment on mechanical properties of h13 steel

    NASA Astrophysics Data System (ADS)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  20. Mechanical properties of sugar beet root during storage

    NASA Astrophysics Data System (ADS)

    Nedomová, Šárka; Kumbár, Vojtěch; Pytel, Roman; Buchar, Jaroslav

    2017-10-01

    This paper is an investigation via two experimental methods, of the textural properties of sugar beet roots during the storage period. In the work, sugar beet roots mechanical properties were evaluated during the post-harvest period - 1, 8, 22, 43, and 71 days after crop. Both experimental methods, i.e. compression test and puncture test, suggest that the failure strength of the sugar beet root increases with the storage time. The parameters obtained using the puncture test, are more sensitive to the storage duration than those obtained by way of the compression test. We also found that such mechanical properties served as a reliable tool for monitoring the progress of sugar beet roots storage. The described methods could also be used to highlight important information on sugar beet evolution during storage.

  1. Mechanical property studies of human gallstones.

    PubMed

    Stranne, S K; Cocks, F H; Gettliffe, R

    1990-08-01

    The recent development of gallstone fragmentation methods has increased the significance of the study of the mechanical properties of human gallstones. In the present work, fracture strength data and microhardness values of gallstones of various chemical compositions are presented as tested in both dry and simulated bile environments. Generally, both gallstone hardness and fracture strength values were significantly less than kidney stone values found in previous studies. However, a single calcium carbonate stone was found to have an outer shell hardness exceeding those values found for kidney stones. Diametral compression measurements in simulated bile conclusively demonstrated low gallstone fracture strength as well as brittle fracture in the stones tested. Based on the results of this study, one may conclude that the wide range of gallstone microhardnesses found may explain the reported difficulties previous investigators have experienced using various fragmentation techniques on specific gallstones. Moreover, gallstone mechanical properties may be relatively sensitive to bile-environment composition.

  2. Mechanical properties of hydrogenated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Andrew, R. C.; Mapasha, R. E.; Chetty, N.

    2013-06-01

    Using first principle methods, we study the mechanical properties of monolayer and bilayer graphene with 50% and 100% coverage of hydrogen. We employ the vdW-DF, vdW-DF-C09x, and vdW-DF2-C09x van der Waals functionals for the exchange correlation interactions that give significantly improved interlayer spacings and energies. We also use the PBE form for the generalized gradient corrected exchange correlation functional for comparison. We present a consistent theoretical framework for the in-plane layer modulus and the out-of-plane interlayer modulus and we calculate, for the first time, these properties for these systems. This gives a measure of the change of the strength properties when monolayer and bilayer graphene are hydrogenated. Moreover, comparing the relative performance of these functionals in describing hydrogenated bilayered graphenes, we also benchmark these functionals in how they calculate the properties of graphite.

  3. Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xiao, Chufan; Tan, Yefa; Yang, Xupu; Xu, Ting; Wang, Lulu; Qi, Zehao

    2018-03-01

    Nano-SiO2 particles and MWCNTs were used to reinforce the EPs. The mechanical properties of the composites and the strengthening mechanisms of nano-SiO2 and MWCNTs on the mechanical properties of epoxy composites were studied. The results show that the mechanical properties of the reinforced epoxy composites are greatly improved. Especially, nano-SiO2/MWCNTs/EP composites exhibit the most excellent mechanical properties. The synergistic strengthening mechanisms of nano-SiO2 and MWCNTs on the EP are the micro plastic deformation effect, micro-cracks and their divarication effect, and the pull-out effect of MWCNTs in EP matrix, which can reduce the extent of stress concentration and absorb more energy.

  4. Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.

    PubMed

    Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y

    2017-08-14

    Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.

  5. Mechanical Properties of Additively Manufactured Thick Honeycombs.

    PubMed

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-07-23

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson's ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  6. Mechanical Properties of Additively Manufactured Thick Honeycombs

    PubMed Central

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions. PMID:28773735

  7. An Introduction to the Mechanical Properties of Ceramics

    NASA Astrophysics Data System (ADS)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  8. Manipulating the structure and mechanical properties of thermoplastic polyurethane/polycaprolactone hybrid small diameter vascular scaffolds fabricated via electrospinning using an assembled rotating collector.

    PubMed

    Mi, Hao-Yang; Jing, Xin; Yu, Emily; Wang, Xiaofeng; Li, Qian; Turng, Lih-Sheng

    2018-02-01

    The success of blood vessel transplants with vascular scaffolds (VSs) highly depends on their structure and mechanical properties. The fabrication of small diameter vascular scaffolds (SDVSs) mimicking the properties of native blood vessels has been a challenge. Herein, we propose a facile method to fabricate thermoplastic polyurethane (TPU)/polycaprolactone (PCL) hybrid SDVSs via electrospinning using a modified rotating collector. By varying the ratio between the TPU and the PCL, and changing the electrospinning volume, SDVSs with a wavy configuration and different properties could be obtained. Detailed investigation revealed that certain TPU/PCL hybrid SDVSs closely resembled the mechanical behaviors of blood vessels due to the presence of a wavy region and the combination of flexible TPU and rigid PCL, which mimicked the properties of elastin and collagen in blood vessels. The fabricated TPU/PCL SDVSs achieved lumen diameters of 1-3mm, wall thicknesses of 100-570µm, circumferential moduli of 1-6MPa, ultimate strengths of 2-8MPa, over 250% elongation-at-break values, toe regions of 5.3-9.4%, high recoverability, and compliances close to those of human veins. Moreover, these TPU/PCL SDVSs possessed sufficient suture retention strength and burst pressure to fulfill transplantation requirements and maintain normal blood flow. Human endothelial cell culture revealed good biocompatibility of the scaffolds, and cells were able to grow on the inner surface of the tubular scaffolds, indicating promising prospects for use as tissue-engineered vascular grafts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Phase imaging of mechanical properties of live cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wax, Adam

    2017-02-01

    The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.

  10. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    PubMed

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  11. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  12. Variability of Moisture Retention and Hydrophobicity Among Biochars

    EPA Science Inventory

    This research identifies factors and mechanisms that control changes in moisture retention when biochars produced from different feedstocks and under different heat treatment temperatures are mixed with fine sand. While substantial experimental research has been conducted on the ...

  13. Brain Mechanical Property Measurement Using MRE with Intrinsic Activation

    PubMed Central

    Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2013-01-01

    Problem Addressed Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed ‘intrinsic activation’, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. Methodology A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. Results, Significance and Potential Impact The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of 6 asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when

  14. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed ‘intrinsic activation’, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of six asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when the MRE procedures were repeated on the same day. Cardiac pulsation

  15. 36 CFR 908.12 - Retention on the List of Qualified Persons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Retention on the List of Qualified Persons. 908.12 Section 908.12 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Qualified Person is relocated into or has a binding lease commitment for Newly Developed Space; (3) The...

  16. 36 CFR 908.12 - Retention on the List of Qualified Persons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Retention on the List of Qualified Persons. 908.12 Section 908.12 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Qualified Person is relocated into or has a binding lease commitment for Newly Developed Space; (3) The...

  17. Cell Mechanosensitivity: Mechanical Properties and Interaction with Gravitational Field

    PubMed Central

    Ogneva, I. V.

    2013-01-01

    This paper addressed the possible mechanisms of primary reception of a mechanical stimulus by different cells. Data concerning the stiffness of muscle and nonmuscle cells as measured by atomic force microscopy are provided. The changes in the mechanical properties of cells that occur under changed external mechanical tension are presented, and the initial stages of mechanical signal transduction are considered. The possible mechanism of perception of different external mechanical signals by cells is suggested. PMID:23509748

  18. Measurement and Comparison of Mechanical Properties of Nitinol Stents

    NASA Astrophysics Data System (ADS)

    Hanus, Josef; Zahora, Jiri

    2005-01-01

    The self expandable Nitinol stents or stentgrafts are typically used for miniinvasive treatment of stenosis and aneurysms in the cardiovascular system. The minimal traumatisation of the patient, shorter time of hospitalization are typical advantages of these methods. More than ten years of experience has yielded also important information about the performance of stents in interaction with biological system and the possible problems related with it. The leakage or the shift of stent are some typical disadvantages, that can be related among other in the construction of the stent. The problem is that the mechanical properties, dimensions and the dynamical properties of the stent do not exactly correspond to the properties of the vessel or generally of tissue where this stent is introduced. The measurement, the description and the comparison of the relations between the mechanical properties of stents and tissues can be one of the possible ways to minimize these disadvantages. The developed original computer controlled measuring system allows the measurement of mechanical properties of stents, the measurement of strain-stress curves or simulation of interaction of the stent and vessel for exactly defined hemodynamic conditions. We measured and compared the mechanical parameters of different selfexpandable Nitinol stents, which differed in geometry (radius and length), in the type of construction (number of branches and rising of winding) and in the diameter of used wire. The results of measurements confirmed the theoretical assumptions that just the diameter of the Nitinol wire significantly influences the rigidity and the level of compressibility of the stent as well. A compromise must be found between the required rigidity of the stent and the minimal size of the delivery system. The exact description of the relation between the mechanical properties and geometry and construction of the stents enables to design the stent to fit the patient and it is expected that

  19. Mechanical and physical properties of agro-based fiberboard

    Treesearch

    S. Lee; T.F. Shupe; C.Y. Hse

    2006-01-01

    In order to better utilize agricultural fibers as an alternative resource for composite panels, several variables were investigated to improve mechanical and physical properties of agm-based fiberboard. This study focused on the effect of fiber morphology, slenderness ratios (UD), and fiber mixing combinations on panel properties. The panel construction types were also...

  20. Mechanical properties of contemporary composite resins and their interrelations.

    PubMed

    Thomaidis, Socratis; Kakaboura, Afrodite; Mueller, Wolf Dieter; Zinelis, Spiros

    2013-08-01

    To characterize a spectrum of mechanical properties of four representative types of modern dental resin composites and to investigate possible interrelations. Four composite resins were used, a microhybrid (Filtek Z-250), a nanofill (Filtek Ultimate), a nanohybrid (Majesty Posterior) and an ormocer (Admira). The mechanical properties investigated were Flexural Modulus and Flexural Strength (three point bending), Brinell Hardness, Impact Strength, mode I and mode II fracture toughness employing SENB and Brazilian tests and Work of Fracture. Fractographic analysis was carried out in an SEM to determine the origin of fracture for specimens subjected to SENB, Brazilian and Impact Strength testing. The results were statistically analyzed employing ANOVA and Tukey post hoc test (a=0.05) while Pearson correlation was applied among the mechanical properties. Significant differences were found between the mechanical properties of materials tested apart from mode I fracture toughness measured by Brazilian test. The latter significantly underestimated the mode I fracture toughness due to analytical limitations and thus its validity is questionable. Fractography revealed that the origin of fracture is located at notches for fracture toughness tests and contact surface with pendulum for Impact Strength testing. Pearson analysis illustrated a strong correlation between modulus of elasticity and hardness (r=0.87) and a weak negative correlation between Work of Fracture and Flexural Modulus (r=-0.46) and Work of Fracture and Hardness (r=-0.44). Weak correlations were also allocated between Flexural Modulus and Flexural Strength (r=0.40), Flexural Strength and Hardness (r=0.39), and Impact Strength and Hardness (r=0.40). Since the four types of dental resin composite tested exhibited large differences among their mechanical properties differences in their clinical performance is also anticipated. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights

  1. Towards child versus adult brain mechanical properties.

    PubMed

    Chatelin, S; Vappou, J; Roth, S; Raul, J S; Willinger, R

    2012-02-01

    The characterization of brain tissue mechanical properties is of crucial importance in the development of realistic numerical models of the human head. While the mechanical behavior of the adult brain has been extensively investigated in several studies, there is a considerable paucity of data concerning the influence of age on mechanical properties of the brain. Therefore, the implementation of child and infant head models often involves restrictive assumptions like properties scaling from adult or animal data. The present study presents a step towards the investigation of the effects of age on viscoelastic properties of human brain tissue from a first set of dynamic oscillatory shear experiments. Tests were also performed on three different locations of brain (corona radiata, thalamus and brainstem) in order to investigate regional differences. Despite the limited number of child brain samples a significant increase in both storage and loss moduli occurring between the age of 5 months and the age of 22 months was found, confirmed by statistical Student's t-tests (p=0.104,0.038 and 0.054 for respectively corona radiata, thalamus and brain stem samples locations respectively). The adult brain appears to be 3-4 times stiffer than the young child one. Moreover, the brainstem was found to be approximately 2-3 times stiffer than both gray and white matter from corona radiata and thalamus. As a tentative conclusion, this study provides the first rheological data on the human brain at different ages and brain regions. This data could be implemented in numerical models of the human head, especially in models concerning pediatric population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Retention strength of impression materials to a tray material using different adhesive methods: an in vitro study.

    PubMed

    Marafie, Yousef; Looney, Stephen; Nelson, Steven; Chan, Daniel; Browning, William; Rueggeberg, Frederick

    2008-12-01

    A new self-stick adhesive system has been purported to eliminate the need to use chemical adhesives with plastic impression trays; however, no testing has confirmed the claim. The purpose of this study was to compare the in vitro retentive strength of impression materials to plastic substrates having conventional adhesive (CA) or the self-stick adhesive system, with and without mechanical retention. Three types of impression materials (irreversible hydrocolloid (IH), vinyl polysiloxane (VPS), and polyether (PE)) were applied to polystyrene disc-shaped surfaces (33.68 cm(2)) that were held on the arms of a universal testing machine. The appropriate CA or the self-stick adhesive system (Self-Stick Dots) (SSD) was applied to the plates, which had either no mechanical retention, or equally spaced mechanical perforations (n=4). An in vivo pilot test determined the appropriate rate of plate separation. Plates with impression material were lowered to provide 4 mm of space, the material set, and plates were separated using the appropriate speed. Force at first separation was divided by plate area (peak stress). Five replications per test condition were made, and results were analyzed using ANOVA and Bonferroni-adjusted t tests (alpha=.05). Within each impression material/test combination, stress using SSD was significantly lower than CA (P<.05). Mechanical retention did not always provide significantly greater strength. The combination of mechanical retention and CA yielded the highest strength within each material type, except for PE, for which nonmechanical and CA strength did not differ from that of mechanical and CA. Use of the self-stick adhesive system provided significantly lower retentive strength to plastic tray material than chemical adhesives for irreversible hydrocolloid, vinyl polysiloxane, and polyether.

  3. Differences in time-dependent mechanical properties between extruded and molded hydrogels

    PubMed Central

    Ersumo, N; Witherel, CE; Spiller, KL

    2016-01-01

    The mechanical properties of hydrogels used in biomaterials and tissue engineering applications are critical determinants of their functionality. Despite the recent rise of additive manufacturing, and specifically extrusion-based bioprinting, as a prominent biofabrication method, comprehensive studies investigating the mechanical behavior of extruded constructs remain lacking. To address this gap in knowledge, we compared the mechanical properties and swelling properties of crosslinked gelatin-based hydrogels prepared by conventional molding techniques or by 3D bioprinting using a BioBots Beta pneumatic extruder. A preliminary characterization of the impact of bioprinting parameters on construct properties revealed that both Young's modulus and optimal extruding pressure increased with polymer content, and that printing resolution increased with both printing speed and nozzle gauge. High viability (>95%) of encapsulated NIH 3T3 fibroblasts confirmed the cytocompatibility of the construct preparation process. Interestingly, the Young's moduli of extruded and molded constructs were not different, but extruded constructs did show increases in both the rate and extent of time-dependent mechanical behavior observed in creep. Despite similar polymer densities, extruded hydrogels showed greater swelling over time compared to molded hydrogels, suggesting that differences in creep behavior derived from differences in microstructure and fluid flow. Because of the crucial roles of time-dependent mechanical properties, fluid flow, and swelling properties on tissue and cell behavior, these findings highlight the need for greater consideration of the effects of the extrusion process on hydrogel properties. PMID:27550945

  4. Study of hepatocyte plasma membrane mechanical properties using optical trapping

    NASA Astrophysics Data System (ADS)

    Vedyaykin, A. D.; Morozova, N. E.; Pobegalov, G. E.; Arseniev, A. N.; Khodorkoskii, M. A.; Sabantsev, A. V.

    2014-12-01

    In this paper we describe the use of membrane tether formation technique which is widely used to study mechanical properties of plasma membranes. This method was successfully used for the direct measurement of parameters characterizing membranes mechanical properties (static tether tension force and effective membrane viscosity) of human hepatocytes (HepG2 hepatocellular carcinoma line). These results allow using this method in future for diagnostics of the cell membrane, evaluating the influence on the mechanical parameters of various factors, including toxins and drugs.

  5. Mechanical Properties of Nylon Harp Strings.

    PubMed

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-05-04

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young's modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young's modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.

  6. Artificial insect wings with biomimetic wing morphology and mechanical properties.

    PubMed

    Liu, Zhiwei; Yan, Xiaojun; Qi, Mingjing; Zhu, Yangsheng; Huang, Dawei; Zhang, Xiaoyong; Lin, Liwei

    2017-09-26

    The pursuit of a high lift force for insect-scale flapping-wing micro aerial vehicles (FMAVs) requires that their artificial wings possess biomimetic wing features which are close to those of their natural counterpart. In this work, we present both fabrication and testing methods for artificial insect wings with biomimetic wing morphology and mechanical properties. The artificial cicada (Hyalessa maculaticollis) wing is fabricated through a high precision laser cutting technique and a bonding process of multilayer materials. Through controlling the shape of the wing venation, the fabrication method can achieve three-dimensional wing architecture, including cambers or corrugations. Besides the artificial cicada wing, the proposed fabrication method also shows a promising versatility for diverse wing types. Considering the artificial cicada wing's characteristics of small size and light weight, special mechanical testing systems are designed to investigate its mechanical properties. Flexural stiffness, maximum deformation rate and natural frequency are measured and compared with those of its natural counterpart. Test results reveal that the mechanical properties of the artificial cicada wing depend strongly on its vein thickness, which can be used to optimize an artificial cicada wing's mechanical properties in the future. As such, this work provides a new form of artificial insect wings which can be used in the field of insect-scale FMAVs.

  7. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  8. Mechanical properties of amyloid-like fibrils defined by secondary structures

    NASA Astrophysics Data System (ADS)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology

  9. The effects of multiple repairs on Inconel 718 weld mechanical properties

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C., Jr.; Moore, D.

    1991-01-01

    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal.

  10. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    NASA Astrophysics Data System (ADS)

    Nadkarni, Seemantini K.

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  11. Contribution of cytoskeletal elements to the axonal mechanical properties

    PubMed Central

    2013-01-01

    Background Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos. Results Microtubules, microfilaments, and neurofilaments in axons were disrupted by nocodazole, cytochalasin D, and acrylamide, respectively, or a combination of the three. An atomic force microscope (AFM) was then used to compress the treated axons, and the resulting corresponding force-deformation information was analyzed to estimate the mechanical properties of axons that were partially or fully disrupted. Conclusion We have found that the mechanical stiffness was most reduced in microtubules-disrupted-axons, followed by neurofilaments-disrupted- and microfilaments-disrupted-axons. This suggests that microtubules contribute the most of the mechanical stiffness to axons. PMID:24007256

  12. Mechanical properties evaluation of extruded wood polymer composites

    NASA Astrophysics Data System (ADS)

    Zaini, A. S. Syah M.; Rus, Anika Zafiah M.; Rahman, Norherman Abdul; Jais, Farhana Hazwanee M.; Fauzan, M. Zarif; Sufian, N. Afiqah

    2017-09-01

    The rapidly expanding of interest in the manufacture of composite materials from waste industrial and agricultural materials is due to high demand for environmentally friendly materials. Wood polymer composite (WPC) are being used in many type of applications such as in the automobile, electronic, aerospace industry and construction. Therefore, this research study is to determine the mechanical properties behaviour of WPC after an extended Ultra Violet (UV) irradiation exposure. The fabricated sample has been used and to be compared in this research is consists of rice husk, waste fibre and polypropylene (PP) with 4 different types of WPC which are wood block waste (WBW), wood block virgin (WBV), wood sheet (WS) and wood sheet waste (WSW). The extruded specimens were tested for mechanical properties such as strength under compression, puncture strength and impact resistance, and density. In addition, the specimen has been irradiated with the UV exposure at 5000 hours, 10000 hours and 15000 hours. Generally, the mechanical properties the WPC which made from the recycled material were lower than the WPC from virgin material but the density was comparable between the two products after UV irradiation exposure.

  13. Structure and mechanical properties of Octopus vulgaris suckers.

    PubMed

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-06

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  14. Structure and mechanical properties of Octopus vulgaris suckers

    PubMed Central

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N.; Mazzolai, Barbara

    2014-01-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894

  15. Length-dependent mechanical properties of gold nanowires

    NASA Astrophysics Data System (ADS)

    Han, Jing; Fang, Liang; Sun, Jiapeng; Han, Ying; Sun, Kun

    2012-12-01

    The well-known "size effect" is not only related to the diameter but also to the length of the small volume materials. It is unfortunate that the length effect on the mechanical behavior of nanowires is rarely explored in contrast to the intensive studies of the diameter effect. The present paper pays attention to the length-dependent mechanical properties of <111>-oriented single crystal gold nanowires employing the large-scale molecular dynamics simulation. It is discovered that the ultrashort Au nanowires exhibit a new deformation and failure regime-high elongation and high strength. The constrained dislocation nucleation and transient dislocation slipping are observed as the dominant mechanism for such unique combination of high strength and high elongation. A mechanical model based on image force theory is developed to provide an insight to dislocation nucleation and capture the yield strength and nucleation site of first partial dislocation indicated by simulation results. Increasing the length of the nanowires, the ductile-to-brittle transition is confirmed. And the new explanation is suggested in the predict model of this transition. Inspired by the superior properties, a new approach to strengthen and toughen nanowires-hard/soft/hard sandwich structured nanowires is suggested. A preliminary evidence from the molecular dynamics simulation corroborates the present opinion.

  16. Autoclaving and clinical recycling: effects on mechanical properties of orthodontic wires.

    PubMed

    Oshagh, M; Hematiyan, M R; Mohandes, Y; Oshagh, M R; Pishbin, L

    2012-01-01

    About half of the orthodontists recycle and reuse orthodontic wires because of their costs. So when talking about reuse and sterilization of wires, their effects on mechanical properties of wires should be clarified. The purpose of this study was to assess the effects of sterilization and clinical use on mechanical properties of stainless steel wires. Thirty stainless steel orthodontic wires were divided into three equal groups of control, autoclave (sterilized by autoclave), and recycle group (wires were used for orthodontic patients up to 4 weeks, cleaned by isopropyl alcohol and sterilized by autoclave). The mechanical properties (tensile test, three-point loading test for load-deflection curve) were determined. Fracture force, yield strength, stiffness and modulus of elasticity in recycle groups were significantly lower than the other groups (P < 0.05). Although recycle wires were softer than those of control group, relatively small differences and also various properties of available wires have obscured the clinical predictability of their application. There is seemingly no problem in terms of mechanical properties to recycle orthodontic wires.

  17. Sequence-Specific Model for Peptide Retention Time Prediction in Strong Cation Exchange Chromatography.

    PubMed

    Gussakovsky, Daniel; Neustaeter, Haley; Spicer, Victor; Krokhin, Oleg V

    2017-11-07

    The development of a peptide retention prediction model for strong cation exchange (SCX) separation on a Polysulfoethyl A column is reported. Off-line 2D LC-MS/MS analysis (SCX-RPLC) of S. cerevisiae whole cell lysate was used to generate a retention dataset of ∼30 000 peptides, sufficient for identifying the major sequence-specific features of peptide retention mechanisms in SCX. In contrast to RPLC/hydrophilic interaction liquid chromatography (HILIC) separation modes, where retention is driven by hydrophobic/hydrophilic contributions of all individual residues, SCX interactions depend mainly on peptide charge (number of basic residues at acidic pH) and size. An additive model (incorporating the contributions of all 20 residues into the peptide retention) combined with a peptide length correction produces a 0.976 R 2 value prediction accuracy, significantly higher than the additive models for either HILIC or RPLC. Position-dependent effects on peptide retention for different residues were driven by the spatial orientation of tryptic peptides upon interaction with the negatively charged surface functional groups. The positively charged N-termini serve as a primary point of interaction. For example, basic residues (Arg, His, Lys) increase peptide retention when located closer to the N-terminus. We also found that hydrophobic interactions, which could lead to a mixed-mode separation mechanism, are largely suppressed at 20-30% of acetonitrile in the eluent. The accuracy of the final Sequence-Specific Retention Calculator (SSRCalc) SCX model (∼0.99 R 2 value) exceeds all previously reported predictors for peptide LC separations. This also provides a solid platform for method development in 2D LC-MS protocols in proteomics and peptide retention prediction filtering of false positive identifications.

  18. An in vitro study on the retentive strength of orthodontic bands cemented with CPP-ACP-containing GIC

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-12-01

    Caries and white spot lesions around orthodontic bands are well known occurrences in fixed orthodontic treatment. There are several methods to overcome these problems. One of these includes modification of the band cement with remineralizing agents such as casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). However, it should be evaluated that the cement modification has no significant negative effects on the retentive strength of the cemented orthodontic bands. In a continuation of our previous studies on the effects of the addition of CPP-ACP on the mechanical properties of luting and lining glass ionomer cement (GIC), this study aimed to investigate the retentive strength of orthodontic bands cemented with CPP-ACP containing GIC. Sixty extracted human pre molars teeth were embedded in acrylic resin and randomly divided into two groups of 30 specimens. In group 1, bands were cemented to the tooth with a GIC. In group 2, CPP-ACP (1.56% w/w) was added to the GIC before cementation. The retentive strength of each groups was determined with a universal testing machine. Further, the amount of cement remaining on the tooth surface was evaluated under a stereomicroscope, and the adhesive remnant index (ARI) score was determined. Results of this study showed that there were no significant differences between the groups in retentive strength and ARI score. In conclusion, modification of GIC with 1.56% w/w CPP-ACP had no negative effects on the retentive strength of the bands so can be used during fixed orthodontic treatment.

  19. Improvement of the mechanical properties of reinforced aluminum foam samples

    NASA Astrophysics Data System (ADS)

    Formisano, A.; Barone, A.; Carrino, L.; De Fazio, D.; Langella, A.; Viscusi, A.; Durante, M.

    2018-05-01

    Closed-cell aluminum foam has attracted increasing attention due to its very interesting properties, thanks to which it is expected to be used as both structural and functional material. A research challenge is the improvement of the mechanical properties of foam-based structures adopting a reinforced approach that does not compromise their lightness. Consequently, the aim of this research is the fabrication of enhanced aluminum foam samples without significantly increasing their original weight. In this regard, cylindrical samples with a core of closed-cell aluminum foam and a skin of fabrics and grids of different materials were fabricated in a one step process and were mechanically characterized, in order to investigate their behaviour and to compare their mechanical properties to the ones of the traditional foam.

  20. Fuel nozzle tube retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cihlar, David William; Melton, Patrick Benedict

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  1. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint

    PubMed Central

    Zhang, Xiangming

    2011-01-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint. PMID:21061141

  2. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.

    PubMed

    Zhang, Xiangming; Gan, Rong Z

    2011-10-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.

  3. Passive and active mechanical properties of biotemplated ceramics revisited.

    PubMed

    Van Opdenbosch, Daniel; Fritz-Popovski, Gerhard; Plank, Johann; Zollfrank, Cordt; Paris, Oskar

    2016-10-13

    Living nature and human technology apply different principles to create hard, strong and tough materials. In this review, we compare and discuss prominent aspects of these alternative strategies, and demonstrate for selected examples that nanoscale-precision biotemplating is able to produce uncommon mechanical properties as well as actuating behavior, resembling to some extent the properties of the original natural templates. We present and discuss mechanical testing data showing for the first time that nanometer-precision biotemplating can lead to porous ceramic materials with deformation characteristics commonly associated with either biological or highly advanced technical materials. We also review recent findings on the relation between hierarchical structuring and humidity-induced directional motion. Finally, we discuss to which extent the observed behavior is in agreement with previous results and theories on the mechanical properties of multiscale hierarchical materials, as well as studies of highly disperse technical materials, together with an outlook for further lines of investigation.

  4. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells.

    PubMed

    Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook

    2016-05-06

    Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Mechanical properties of organic semiconductors for mechanically stable and intrinsically stretchable solar cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lipomi, Darren J.

    2016-09-01

    This presentation describes my group's efforts to understand the molecular and microstructural basis for the mechanical properties of organic semiconductors for organic photovoltaic (OPV) devices. Our work is motivated by two goals. The first goal is to mitigate mechanical forms of degradation of printed modules during roll-to-roll fabrication, installation, and environmental forces—i.e., wind, rain, snow, and thermal expansion and contraction. Mechanical stability is a prerequisite for inexpensive processing on flexible substrates: to encapsulate devices in glass is to surrender this advantage. The second goal is to enable the next generation of ultra-flexible and stretchable solar cells for collapsible, portable, and wearable applications, and as low-cost sources of energy—"solar tarps"—for disaster relief and for the developing world. It may seem that organic semiconductors, due to their carbon framework, are already sufficiently compliant for these applications. We have found, however, that the mechanical properties (stiffness and brittleness) occupy a wide range of values, and can be difficult to predict from molecular structure alone. We are developing an experimental and theoretical framework for how one can combine favorable charge-transport properties and mechanical compliance in organic semiconductor films. In particular, we have explored the roles of the backbone, alkyl side chain, microstructural order, the glass transition, molecular packing with fullerenes, plasticizing effects of additives, extent of separation of [60]PCBM and [70]PCBM, structural randomness in low-bandgap polymers, and reinforcement by encapsulation, on the mechanical compliance. We are exploring the applicability of semi-empirical "back-of-the-envelope" models, along with multi-scale molecular dynamics simulations, with the ultimate goal of designing electroactive organic materials whose mechanical properties can be dialed-in. We have used the insights we have developed to

  6. Learning and Retention of Quantum Concepts with Different Teaching Methods

    ERIC Educational Resources Information Center

    Deslauriers, Louis; Wieman, Carl

    2011-01-01

    We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning…

  7. Porous media augmented with biochar for the retention of E. coli

    NASA Astrophysics Data System (ADS)

    Kolotouros, Christos A.; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2016-04-01

    A significant number of epidemic outbreaks has been attributed to waterborne fecal-borne pathogenic microorganisms from contaminated ground water. The transport of pathogenic microorganisms in groundwater is controlled by physical and chemical soil properties like soil structure, texture, percent water saturation, soil ionic strength, pore-size distribution, soil and solution pH, soil surface charge, and concentration of organic carbon in solution. Biochar can increase soil productivity by improving both chemical and physical soil properties. The mixing of biochar into soils may stimulate microbial population and activate dormant soil microorganisms. Furthermore, the application of biochar into soil affects the mobility of microorganisms by altering the physical and chemical properties of the soil, and by retaining the microorganisms on the biochar surface. The aim of this study was to investigate the effect of biochar mixing into soil on the transport of Escherichia coli in saturated porous media. Initially, batch experiments were conducted at two different ionic strengths (1 and 150 mM KCl) and at varying E. coli concentrations in order to evaluate the retention of E. coli on biochar in aqueous solutions. Kinetic analysis was conducted, and three isotherm models were employed to analyze the experimental data. Column experiments were also conducted in saturated sand columns augmented with different biochar contents, in order to examine the effect of biochar on the retention of E. coli. The Langmuir model fitted better the retention experimental data, compared to Freundlich and Tempkin models. The retention of E. coli was enhanced at lower ionic strength. Finally, biochar-augmented sand columns were more capable in retaining E. coli than pure sand columns.

  8. Fluid Retention and Rostral Fluid Shift in Sleep-Disordered Breathing.

    PubMed

    Kasai, Takatoshi

    2016-01-01

    Sleep-disordered breathing (SDB) is common and adversely affects cardiovascular morbidity and mortality. Despite multifactorial pathogenesis, SDB is prevalent in patients with fluid retention disorders, such as drug-resistant hypertension, end-stage renal disease, and heart failure, suggesting that fluid retention may play a role in the pathogenesis of SDB. During the day, fluid is likely to accumulate in the legs, and upon lying down at night is displaced from the legs. Many data suggest that some of this fluid displaced from the legs may redistribute to the upper body and predispose to SDB. This review article will highlight evidence for a relationship between SDB and fluid retention or rostral fluid shift, and discuss mechanisms that link them.

  9. Competing retention pathways of uranium upon reaction with Fe(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation statemore » of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ≤ 50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U

  10. Comparison of mechanical properties for several electrical spring contact alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordstrom, Terry V.

    Work was conducted to determine whether beryllium-nickel alloy 440 had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: 1) measurement of the room temperature microplastic (epsilon approximately 10/sup -6/) and macroplastic (epsilon approximately 10/sup -3/) behavior of alloy 440 in various age hardeningmore » conditions, 2) determination of applied stress effects on stress relaxation or contact force loss and 3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. The primary results of the study show that beryllium-nickel alloy 440 is from a mechanical properties standpoint, equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties.« less

  11. Mechanical properties of experimental composites with different calcium phosphates fillers.

    PubMed

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mechanical properties of kinked silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jing, Yuhang; Zhang, Chuan; Liu, Yingzhi; Guo, Licheng; Meng, Qingyuan

    2015-04-01

    Molecular dynamics simulations are used to investigate the mechanical properties of KSiNWs. Our results show that KSiNWs have a much larger fracture strain compared to straight SiNWs. The effects of the periodic length of KSiNWs with symmetric arms and the arm length of the KSiNW with asymmetric arms on the mechanical properties of KSiNWs are studied. The fracture stress of KSiNWs decrease as the periodic length increases. However, the fracture strain of KSiNWs is not dependent on the short periodic length and the fracture strain of KSiNWs will abruptly increase to very large value and then vary slightly as the periodic length increases. In addition, the fracture stress is not dependent on arm length while the fracture strain monotonically increases as the arm length increases. We also investigate the fracture process of KSiNWs. The results in this paper suggest that the KSiNWs with larger fracture strain can be a promising anode materials in high performance Li-ion batteries.

  13. Glucocorticoid receptors and extinction retention deficits in the single prolonged stress model.

    PubMed

    Knox, D; Nault, T; Henderson, C; Liberzon, I

    2012-10-25

    Single prolonged stress (SPS) is a rodent model of post traumatic stress disorder that is comprised of serial application of restraint (r), forced swim (fs), and ether (eth) followed by a 7-day quiescent period. SPS induces extinction retention deficits and it is believed that these deficits are caused by the combined stressful effect of serial exposure to r, fs, and eth. However, this hypothesis remains untested. Neurobiological mechanisms by which SPS induces extinction retention deficits are unknown, but SPS enhances glucocorticoid receptor (GR) expression in the hippocampus, which is critical for contextual modulation of extinction retrieval. Upregulation of GRs in extinction circuits may be a mechanism by which SPS induces extinction retention deficits, but this hypothesis has not been examined. In this study, we systematically altered the stressors that constitute SPS (i.e. r, fs, eth), generating a number of partial SPS (p-SPS) groups, and observed the effects SPS and p-SPSs had on extinction retention and GR levels in the hippocampus and prefrontal cortex (PFC). PFC GRs were assayed, because regions of the PFC are critical for maintaining extinction. We predicted that only exposure to full SPS would result in extinction retention deficits and enhance hippocampal and PFC GR levels. Only exposure to full SPS induced extinction retention deficits. Hippocampal and PFC GR expression was enhanced by SPS and most p-SPSs, however hippocampal GR expression was significantly larger following the full SPS exposure than all other conditions. Our findings suggest that the combined stressful effect of serial exposure to r, fs, and eth results in extinction retention deficits. The results also suggest that simple enhancements in GR expression in the hippocampus and PFC are insufficient to result in extinction retention deficits, but raise the possibility that a threshold-enhancement in hippocampal GR expression contributes to SPS-induced extinction retention deficits

  14. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  15. Mechanical Properties of Nonwoven Reinforced Thermoplastic Polyurethane Composites

    PubMed Central

    Tausif, Muhammad; Pliakas, Achilles; O’Haire, Tom; Goswami, Parikshit; Russell, Stephen J.

    2017-01-01

    Reinforcement of flexible fibre reinforced plastic (FRP) composites with standard textile fibres is a potential low cost solution to less critical loading applications. The mechanical behaviour of FRPs based on mechanically bonded nonwoven preforms composed of either low or high modulus fibres in a thermoplastic polyurethane (TPU) matrix were compared following compression moulding. Nonwoven preform fibre compositions were selected from lyocell, polyethylene terephthalate (PET), polyamide (PA) as well as para-aramid fibres (polyphenylene terephthalamide; PPTA). Reinforcement with standard fibres manifold improved the tensile modulus and strength of the reinforced composites and the relationship between fibre, fabric and composite’s mechanical properties was studied. The linear density of fibres and the punch density, a key process variable used to consolidate the nonwoven preform, were varied to study the influence on resulting FRP mechanical properties. In summary, increasing the strength and degree of consolidation of nonwoven preforms did not translate to an increase in the strength of resulting fibre reinforced TPU-composites. The TPU composite strength was mainly dependent upon constituent fibre stress-strain behaviour and fibre segment orientation distribution. PMID:28772977

  16. Crystal Structure of the ERp44-Peroxiredoxin 4 Complex Reveals the Molecular Mechanisms of Thiol-Mediated Protein Retention.

    PubMed

    Yang, Kai; Li, De-Feng; Wang, Xi'e; Liang, Jinzhao; Sitia, Roberto; Wang, Chih-Chen; Wang, Xi

    2016-10-04

    ERp44 controls the localization and transport of diverse proteins in the early secretory pathway. The mechanisms that allow client recognition and the source of the oxidative power for forming intermolecular disulfides are as yet unknown. Here we present the structure of ERp44 bound to a client, peroxiredoxin 4. Our data reveal that ERp44 binds the oxidized form of peroxiredoxin 4 via thiol-disulfide interchange reactions. The structure explains the redox-dependent recognition and characterizes the essential non-covalent interactions at the interface. The ERp44-Prx4 covalent complexes can be reduced by glutathione and protein disulfide isomerase family members in the ER, allowing the two components to recycle. This work provides insights into the mechanisms of thiol-mediated protein retention and indicates the key roles of ERp44 in this biochemical cycle to optimize oxidative folding and redox homeostasis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of stacking sequence on mechanical properties neem wood veneer plastic composites

    NASA Astrophysics Data System (ADS)

    Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.

    2018-04-01

    This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.

  18. Analysis of residual products in triethylbenzylammonium chloride by HPLC. Study of the retention mechanism.

    PubMed

    Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D

    2006-04-01

    The control of industrial products for minimization of their impact on the environment and human health requires the development of specific analysis methods. Information provided by these methods about toxic components, by-products, and other derivatives may also be useful to reduce the possible impact of industrial products. The studied compound in this paper, triethylbenzylammonium chloride (TEBA), is mainly used in industrial synthesis. This quaternary compound and its residual products coming from quaternization reaction (benzyl chloride, benzaldehyde, and benzyl alcohol) are analyzed by HPLC. The separation is based on control of the silanophilic contribution to TEBA retention because of the quaternary nature of this compound. The effect of the three buffers (sodium acetate, ammonium acetate, and sodium formate) and their concentrations in the chromatographic behavior of the quaternary compound is examined. The buffer cation and anion regulate TEBA retention. Also, the concentration of the quaternary compound is another parameter that had influence in some aspects of its chromatographic behavior (e.g., retention and symmetry). The proposed method is applied to TEBA synthesis along, with the formation and removal of impurities with the results compared with those obtained for the quaternary compound benzalkonium chloride.

  19. Mechanical property determination of high conductivity metals and alloys

    NASA Technical Reports Server (NTRS)

    Harrod, D. L.; Vandergrift, E.; France, L.

    1973-01-01

    Pertinent mechanical properties of three high conductivity metals and alloys; namely, vacuum hot pressed grade S-200E beryllium, OFHC copper and beryllium-copper alloy no. 10 were determined. These materials were selected based on their possible use in rocket thrust chamber and nozzle hardware. They were procured in a form and condition similar to that which might be ordered for actual hardware fabrication. The mechanical properties measured include (1) tension and compression stress strain curves at constant strain rate (2) tensile and compressive creep, (3) tensile and compressive stress-relaxation behavior and (4) elastic properties. Tests were conducted over the temperature range of from 75 F to 1600 F. The resulting data is presented in both graphical and tabular form.

  20. Mechanical Properties of Organized Microcomposites Fabricated by Interference Lithography

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Chang, Sehoon; Jang, Ji-Hyun; Davis, Whitney; Thomas, Edwin; Tsukruk, Vladimir

    2009-03-01

    We demonstrate that organized, porous, polymer microstructures with continuous open nanoscale pores and sub-micron spacings obtained via interference lithography can be successfully utilized in a highly non-traditional field of ordered microcomposites. Organized microcomposite structures are fabricated by employing two independent strategies, namely, capillary infiltration and in situ polymerization of the rubbery component into the porous glassy microframes. The mechanical properties and ultimate fracture behavior of the single and bicomponent microframes are investigated at different length scales. The ordered single and bi-component microstructures with high degree of control over the microscopic organization of the polymeric phases result in excellent mechanical properties. Combining hard and soft polymer components provides multifunctional materials and coatings with synergetic properties and is frequently utilized for design of advanced polymeric composites.

  1. Mechanical Properties of Nylon Harp Strings

    PubMed Central

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-01-01

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858

  2. Diffusion-limited retention of porous particles at density interfaces

    PubMed Central

    Kindler, Kolja; Khalili, Arzhang; Stocker, Roman

    2010-01-01

    Downward carbon flux in the ocean is largely governed by particle settling. Most marine particles settle at low Reynolds numbers and are highly porous, yet the fluid dynamics of this regime have remained unexplored. We present results of an experimental investigation of porous particles settling through a density interface at Reynolds numbers between 0.1 and 1. We tracked 100 to 500 μm hydrogel spheres with 95.5% porosity and negligible permeability. We found that a small negative initial excess density relative to the lower (denser) fluid layer, a common scenario in the ocean, results in long retention times of particles at the interface. We hypothesized that the retention time was determined by the diffusive exchange of the stratifying agent between interstitial and ambient fluid, which increases excess density of particles that have stalled at the interface, enabling their settling to resume. This hypothesis was confirmed by observations, which revealed a quadratic dependence of retention time on particle size, consistent with diffusive exchange. These results demonstrate that porosity can control retention times and therefore accumulation of particles at density interfaces, a mechanism that could underpin the formation of particle layers frequently observed at pycnoclines in the ocean. We estimate retention times of 3 min to 3.3 d for the characteristic size range of marine particles. This enhancement in retention time can affect carbon transformation through increased microbial colonization and utilization of particles and release of dissolved organics. The observed size dependence of the retention time could further contribute to improve quantifications of vertical carbon flux. PMID:21135242

  3. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP

    NASA Astrophysics Data System (ADS)

    Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.

  4. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    PubMed

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite

  5. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  6. The Effect of Water Molecules on Mechanical Properties of Bamboo Microfibrils

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima

    Bamboo fibers have higher strength-to-weight ratios than steel and concrete. The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. Our results suggest that hemicellulose exhibits better mechanical properties and lignin shows greater tendency to adhere to cellulose nanofibrils. Consequently, the role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils is responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content (less than 10 NSF CAREER Grant No. 1261284.

  7. Rheological and mechanical properties of recycled polyethylene films contaminated by biopolymer.

    PubMed

    Gere, D; Czigany, T

    2018-06-01

    Nowadays, with the increasing amount of biopolymers used, it can be expected that biodegradable polymers (e.g. PLA, PBAT) may appear in the petrol-based polymer waste stream. However, their impact on the recycling processes is not known yet; moreover, the properties of the products made from contaminated polymer blends are not easily predictable. Therefore, our goal was to investigate the rheological and mechanical properties of synthetic and biopolymer compounds. We made different compounds from regranulates of mixed polyethylene film waste and original polylactic acid (PLA) by extruison, and injection molded specimens from the compounds. We investigated the rheological properties of the regranulates, and the mechanical properties of the samples. When PLA was added, the viscosity and specific volume of all the blends decreased, and mechanical properties (tensile strength, modulus, and impact strength) changed significantly. Young's modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Mineral concentration dependent modulation of mechanical properties of bone-inspired bionanocomposite scaffold

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Ovaert, Timothy C.; Slaboch, Constance; Zhao, He; Bayer, Ilker S.; Biris, Alexandru S.; Wang, Tao

    2011-07-01

    We demonstrate tunable mechanical properties of bone-inspired bionanocomposite scaffolds while maintaining the required viscoelasticity. Mechanical properties such as hardness and elastic modulus of the bionanocomposite scaffolds were controlled by varying mineral concentrations of the bioscaffold. In particular, higher calcium and oxygen contents in the bioscaffold resulted in a significant enhancement in hardness and modulus of the bionanocomposite. Moreover, the phosphorous content appeared to be a determining factor in the hardness and mechanical properties of the bionanocomposites. These results open up the possibility of designing new engineered biocompatible nanoscaffolds with desired and tunable biomimetic functions and biomechanical properties with significant potential for advanced bone tissue engineering platforms and bone substitutes.

  9. Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi

    In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.

  10. Evaluation of Removal Mechanisms in a Graphene Oxide-Coated Ceramic Ultrafiltration Membrane for Retention of Natural Organic Matter, Pharmaceuticals, and Inorganic Salts.

    PubMed

    Chu, Kyoung Hoon; Fathizadeh, Mahdi; Yu, Miao; Flora, Joseph R V; Jang, Am; Jang, Min; Park, Chang Min; Yoo, Sung Soo; Her, Namguk; Yoon, Yeomin

    2017-11-22

    Functionalized graphene oxide (GO), derived from pure graphite via the modified Hummer method, was used to modify commercially available ceramic ultrafiltration membranes using the vacuum method. The modified ceramic membrane functionalized with GO (ceramic GO ) was characterized using a variety of analysis techniques and exhibited higher hydrophilicity and increased negative charge compared with the pristine ceramic membrane. Although the pure water permeability of the ceramic GO membrane (14.4-58.6 L/m 2 h/bar) was slightly lower than that of the pristine membrane (25.1-62.7 L/m 2 h/bar), the removal efficiencies associated with hydrophobic attraction and charge effects were improved significantly after GO coating. Additionally, solute transport in the GO nanosheets of the ceramic GO membrane played a vital role in the retention of target compounds: natural organic matter (NOM; humic acid and tannic acid), pharmaceuticals (ibuprofen and sulfamethoxazole), and inorganic salts (NaCl, Na 2 SO 4 , CaCl 2 , and CaSO 4 ). While the retention efficiencies of NOM, pharmaceuticals, and inorganic salts in the pristine membrane were 74.6%, 15.3%, and 2.9%, respectively, these increased to 93.5%, 51.0%, and 31.4% for the ceramic GO membrane. Consequently, the improved removal mechanisms of the membrane modified with functionalized GO nanosheets can provide efficient retention for water treatment under suboptimal environmental conditions of pH and ionic strength.

  11. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    rate constant for water indicating significant sediment resuspension episodes. It appears that these sediment resuspension events are aperiodic and control the loading and the chemical retention capability of Piedmont Pond for N,P,TOC. These calculated rate constants reflect the differing internal loading processes for each component and suggest means and mechanisms for the use of ponds in water quality management.

  12. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    NASA Astrophysics Data System (ADS)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  13. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites

    PubMed Central

    Li, Feng; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-01-01

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO4)2, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed. PMID:29659504

  14. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.

    PubMed

    Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-04-16

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  15. Impact of alkaline alterations to a Brazilian soil on cesium retention under low temperature conditions.

    PubMed

    Calábria, Jaqueline Alves de Almeida; Cota, Stela Dalva Santos; de Morais, Gustavo Ferrari; Ladeira, Ana Cláudia Queiroz

    2017-11-01

    To be used as backfilling materials in radioactive waste disposal facilities, a natural material must have a suitable permeability, mechanical properties and a high sorption capacity for radionuclides. Also important when considering a material as a backfill is the effect of its interaction with the alkaline solution generated from concrete degradation. This solution promotes mineralogical alterations that result in significant changes in the material key properties influencing its performance as a safety component of the repository. This paper presents results of an investigation on the effect of alkaline interaction under a low temperature on cesium retention properties of a local soil being considered suitable as a backfill for the Brazilian near surface disposal facility. A sample of the Brazilian soil was mixed with an alkaline solution, simulating the pore water leached in the first stage of cement degradation, during 1, 7, 14 and 28 days. The experiments were conducted under low temperature (25 °C) aiming to evaluate similar conditions found on a low and intermediate level radioactive waste disposal installation. A non-classical isotherm sorption model was fitted to sorption data obtained from batch experiments, for unaltered and altered samples, providing parameters that allowed us to assess the effect of the interaction on material quality as Cs sorbent. The sorption parameters obtained from the data-fitted isotherm were used then to estimate the corresponding retardation factor (R). Alkaline interaction significantly modified the soil sorption properties for Cs. The parameter Q, related to the maximum sorption capacity, as well as the affinity parameter (K) and the retardation coefficients became significantly smaller (about 1000 times for the R coefficient) after pretreatment with the simulated alkaline solutions. Moreover, the increase in n-values, which is related with the energy distribution width and heterogeneity of surface site energies

  16. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Mueller, P.; Spätig, P.; Baluc, N.

    2011-05-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 °C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 °C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 °C).

  17. Mechanical property quantification of endothelial cells using scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.

    2012-04-01

    The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD < 90 h) and old (tD > 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.

  18. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals.

  19. In vivo quantification of spatially-varying mechanical properties in developing tissues

    PubMed Central

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David A.; Lucio, Adam A.; Hockenbery, Zachary M.; Campàs, Otger

    2017-01-01

    It is generally believed that the mechanical properties of the cellular microenvironment and their spatiotemporal variations play a central role in sculpting embryonic tissues, maintaining organ architecture and controlling cell behavior, including cell differentiation. However, no direct in vivo and in situ measurement of mechanical properties within developing 3D tissues and organs has been performed yet. Here we introduce a technique that employs biocompatible ferrofluid microdroplets as local mechanical actuators and allows quantitative spatiotemporal measurements of mechanical properties in vivo. Using this technique, we show that vertebrate body elongation entails spatially-varying tissue mechanics along the anteroposterior axis. Specifically, we find that the zebrafish tailbud is viscoelastic (elastic below a few seconds and fluid after just one minute) and displays decreasing stiffness and increasing fluidity towards its posterior elongating region. This method opens new avenues to study mechanobiology in vivo, both in embryogenesis and in disease processes, including cancer. PMID:27918540

  20. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  1. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores

    PubMed Central

    Shrestha, Prakash; Emura, Tomoko; Koirala, Deepak; Cui, Yunxi; Hidaka, Kumi; Maximuck, William J; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2016-01-01

    DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10–35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as ‘mechanophores’ that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators. PMID:27387283

  2. Investigation of the influence of the composition on mechanical properties poly(glycolide-DL-lactide)

    NASA Astrophysics Data System (ADS)

    Baikin, A. S.; Sevostyanov, M. A.; Nasakina, E. O.; Sergienko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Kolmakova, A. A.; Yakubov, A. D.; Kolmakov, A. G.

    2018-04-01

    In this paper we describe the creation of films from poly (glycolide-DL-lactide). Studied the mechanical properties of developed polymer films of poly (glycolide-DL-lactide). The effect of the molecular weight of poly (glycolide-DL-lactide) on the mechanical properties of the resulting polymer films is shown. The dependence of the mechanical properties of poly (glycolide-DL-lactide) films on the polymer concentration in chloroform was studied. The possibility of creating biodegradable films with specified mechanical properties is shown.

  3. Mechanical property characterization of bilayered tablets using nondestructive air-coupled acoustics.

    PubMed

    Akseli, Ilgaz; Dey, Dipankar; Cetinkaya, Cetin

    2010-03-01

    A noncontact/nondestructive air-coupled acoustic technique to be potentially used in mechanical property determination of bilayer tablets is presented. In the reported experiments, a bilayer tablet is vibrated via an acoustic field of an air-coupled transducer in a frequency range sufficiently high to excite several vibrational modes (harmonics) of the tablet. The tablet vibrational transient responses at a number of measurement points on the tablet are acquired by a laser vibrometer in a noncontact manner. An iterative computational procedure based on the finite element method is utilized to extract the Young's modulus, the Poisson's ratio, and the mass density values of each layer material of a bilayer tablet from a subset of the measured resonance frequencies. For verification purposes, a contact ultrasonic technique based on the time-of-flight data of the longitudinal (pressure) and transverse (shear) acoustic waves in each layer of a bilayer tablet is also utilized. The extracted mechanical properties from the air-coupled acoustic data agree well with those determined from the contact ultrasonic measurements. The mechanical properties of solid oral dosage forms have been shown to impact its mechanical integrity, disintegration profile and the release rate of the drug in the digestive tract, thus potentially affecting its therapeutic response. The presented nondestructive technique provides greater insight into the mechanical properties of the bilayer tablets and has the potential to identify quality and performance problems related to the mechanical properties of the bilayer tablets early on the production process and, consequently, reduce associated cost and material waste.

  4. Mechanical properties and material characterization of polysialate structural composites

    NASA Astrophysics Data System (ADS)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  5. Predicting the Highly Nonlinear Mechanical Properties of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Porter, David

    2009-06-01

    Over the past few years, we have developed models that calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular and morphological structure. A review of these models is presented here, with emphasis on combining the fundamental aspects of molecular physics that dictate these properties and the pragmatic need to make realistic predictions for our customers; the designer of new materials and the engineers who use these materials. The models calculate the highly nonlinear mechanical properties of polymers as a function of temperature, strain and strain rate from their molecular structure. The model is based upon the premise that mechanical properties are a direct consequence of energy stored and energy dissipated during deformation of a material. This premise is transformed into a consistent set of structure-property relations for the equation of state, EoS, and the engineering constitutive relations in a polymer by quantifying energy storage and loss at the molecular level of interactions between characteristic groups of atoms in a polymer. These relations are derived from a simple volumetric mean field Lennard-Jones potential function for the potential energy of intermolecular interactions in a polymer. First, properties such as temperature-volume relations and glass transition temperature are calculated directly from the potential function. Then, the `shock' EoS is derived simply by differentiating the potential function with respect to volume, assuming that the molecules cannot relax in the time scales of the deformation. The energy components are then used to predict the dynamic mechanical spectrum of a polymer in terms of temperature and rate. This can be transformed directly into the highly nonlinear stress-strain relations through yield. The constitutive relations are formulated as a set of analytical equations that predict properties directly in terms of a small set of

  6. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  7. Retention of cast crown copings cemented to implant abutments.

    PubMed

    Dudley, J E; Richards, L C; Abbott, J R

    2008-12-01

    The cementation of crowns to dental implant abutments is an accepted form of crown retention that requires consideration of the properties of available cements within the applied clinical context. Dental luting agents are exposed to a number of stressors that may reduce crown retention in vivo, not the least of which is occlusal loading. This study investigated the influence of compressive cyclic loading on the physical retention of cast crown copings cemented to implant abutments. Cast crown copings were cemented to Straumann synOcta titanium implant abutments with three different readily used and available cements. Specimens were placed in a humidifier, thermocycled and subjected to one of four quantities of compressive cyclic loading. The uniaxial tensile force required to remove the cast crown copings was then recorded. The mean retention values for crown copings cemented with Panavia-F cement were statistically significantly greater than both KetacCem and TempBond non-eugenol cements at each compressive cyclic loading quantity. KetacCem and TempBond non-eugenol cements produced relatively low mean retention values that were not statistically significantly different at each quantity of compressive cyclic loading. Compressive cyclic loading had a statistically significant effect on Panavia-F specimens alone, but increased loading quantities produced no further statistically significant difference in mean retention. Within the limitations of the current in vitro conditions employed in this study, the retention of cast crown copings cemented to Straumann synOcta implant abutments with a resin, glass ionomer and temporary cement was significantly affected by cement type but not compressive cyclic loading. Resin cement is the cement of choice for the definitive non-retrievable cementation of cast crown copings to Straumann synOcta implant abutments out of the three cements tested.

  8. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  9. Mechanical properties of single electrospun drug-encapsulated nanofibres

    PubMed Central

    Chew, Sing Yian; Hufnagel, Todd C; Lim, Chwee Teck; Leong, Kam W

    2008-01-01

    The mechanical and structural properties of a surface play an important role in determining the morphology of attached cells, and ultimately their cellular functions. As such, mechanical and structural integrity are important design parameters for a tissue scaffold. Electrospun fibrous meshes are widely used in tissue engineering. When in contact with electrospun scaffolds, cells see the individual micro- or nanofibres as their immediate microenvironment. In this study, tensile testing of single electrospun nanofibres composed of poly(ε-caprolactone) (PCL), and its copolymer, poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP), revealed a size effect in the Young's modulus, E, and tensile strength, σT. Both strength and stiffness increase as the fibre diameter decreases from bulk (∼5 μm) into the nanometre region (200–300 nm). In particular, E and σT of individual PCL nanofibres were at least two-fold and an order of magnitude higher than that of PCL film, respectively. PCL films were observed to have more pronounced crystallographic texture than the nanofibres; however no difference in crystalline fraction, perfection, or texture was detected among the various fibres. When drugs were encapsulated into single PCLEEP fibres, mechanical properties were enhanced with 1–20 wt% of loaded retinoic acid, but weakened by 10–20 wt% of encapsulated bovine serum albumin. This understanding of the effect of size and drug and protein encapsulation on the mechanical properties of electrospun fibres may help in the optimization of tissue scaffold design that combines biochemical and biomechanical cues for tissue regeneration. PMID:19079553

  10. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    PubMed Central

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Tekkaya, A. Erman

    2018-01-01

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties. PMID:29747417

  11. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.

    PubMed

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Clausmeyer, Till; Tekkaya, A Erman

    2018-05-09

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  12. Thermally Sprayed High Temperature Sandwich Structures: Physical Properties and Mechanical Performance

    NASA Astrophysics Data System (ADS)

    Salavati, Saeid

    Metallic foam core sandwich structures have been of particular interest for engineering applications in recent decades due to their unique physical and mechanical properties. One of the potential applications of open pore metallic foam core sandwich structures is in heat exchangers. An investigation of sandwich structures fabricated from materials suitable for application at high temperatures and in corrosive environments was undertaken in this project. A novel method for fabrication of metallic foam core sandwich structures is thermal spray deposition of the faces on the prepared surfaces of the metallic foam substrate. The objective of the current study was to optimize the twin wire arc spray process parameters for the deposition of alloy 625 faces with controllable porosity content on the nickel foam substrate, and to characterize the physical and mechanical properties of the sandwich structure. The experimental investigations consisted of microstructural evaluation of the skin material and the foam substrate, investigation of the effect of alloying on the mechanical and thermal properties of the nickel foam, optimization of the grit-blasting and arc spray processes, observation of mechanical properties of the alloy 625 deposit by tensile testing and evaluation of the overall mechanical properties of the sandwich structure under flexural loading condition. The optimization of arc spraying process parameters allowed deposition of alloy 625 faces with a porosity of less than 4% for heat exchanger applications. Modification of the arc spraying process by co-deposition of polyester powder enabled 20% porosity to be obtained in the deposited faces for heat shield applications with film cooling. The effects of nickel foam alloying and heat treatment on the flexural rigidity of the sandwich structures were investigated and compared with as-received foam and as-fabricated sandwich structures. Available analytical models were employed to describe the effect of

  13. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    NASA Astrophysics Data System (ADS)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  14. Effect of alkaline treatment on mechanical properties of kenaf fiber reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Reddy, Bijjam Ramgopal; Dhoria, Sneha H.

    2018-04-01

    This paper focuses on the study of the effect of chemical treatment on mechanical properties such as tensile, flexural and impact properties of kenaf fiber reinforced polyester composites. Adhesion between the fiber and polymer is one of factors affecting the mechanical properties of composites. In order to increase the adhesion, the fibers are chemically treated with 5% of sodium hydroxide (NaOH) solution. The composite specimens are prepared in both untreated and treated forms of kenaf fibers with five levels of fiber volume fractions. The specimens are prepared according to ASTM standards. Mechanical tests such as tensile, flexural and impact are conducted to determine ultimate tensile strength, bending strength and impact strength of composites. The effect of change in volume fraction on the mechanical properties of the composites is studied for both untreated (raw) and chemically treated kenaf fibers. It has been found that the composites made of chemically treated fibers have good mechanical properties compared to untreated fibers.

  15. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu; Shafei, Behrouz, E-mail: shafei@iastate.edu

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanicalmore » properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.« less

  16. Methodologies in determining mechanical properties of thin films using nanoindentation

    NASA Astrophysics Data System (ADS)

    Han, Seung Min Jane

    Thin films are critical components of microelectronic and MEMS devices, and evaluating their mechanical properties is of current interest. As the dimensions of the devices become smaller and smaller, however, understanding the mechanical properties of materials at sub-micron length scales becomes more challenging. The conventional methods for evaluating strengths of materials in bulk form cannot be applied, and new methodologies are required for accurately evaluating mechanical properties of thin films. In this work, development of methodologies using the nanoindenter was pursued in three parts: (1) creation of a new method for extracting thin film hardness, (2) use of combinatorial methods for determining compositions with desired mechanical properties, and (3) use of microcompression testing of sub-micron sized pillars to understand plasticity in Al-Sc multilayers. The existing nanoindentation hardness model by Oliver & Pharr is unable to accurately determine the hardness of thin films on substrates with an elastic mismatch. Thus, a new method of analysis for extracting thin film hardness from film/substrate systems, that eliminates the effect of elastic mismatch of the underlying substrate, surface roughness, and also pile-up/sink-in, is needed. Such a method was developed in the first part of this study. The feasibility of using the nanoindentation hardness together with combinatorial methods to efficiently scan through mechanical properties of Ti-Al metallic alloys was examined in the second part of this study. The combinatorial approach provides an efficient method that can be used to determine alloy compositions that might merit further exploration and development as bulk materials. Finally, the mechanical properties of Al-Al3Sc multilayers with bilayer periods ranging from 6-100 nm were examined using microcompression. The sub-micron sized pillars were prepared using the focused ion beam (FIB) and compression tested with the flat tip of the nanoindenter

  17. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  18. Assessing Potential Additional PFAS Retention Processes in the Subsurface

    NASA Astrophysics Data System (ADS)

    Brusseau, M. L.

    2017-12-01

    Understanding the transport and fate of per- and poly-fluorinated alkyl substances (PFASs) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. Current conceptual and mathematical models are based on an assumption that solid-phase adsorption is the sole source of retention for PFASs. However, additional retention processes may be relevant for PFAS compounds in vadose-zone systems and in source zones that contain trapped immiscible organic liquids. These include adsorption at the air-water interface, partitioning to the soil atmosphere, adsorption at the NAPL-water interface, and absorption by NAPL. A multi-process retention model is proposed to account for these potential additional sources of PFAS retardation. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for three representative PFASs, perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (FTOH). Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for a representative porous medium. Adsorption at the air-water interface was shown to be a primary source of retention for PFOA and PFOS, contributing approximately 80% of total retardation. Adsorption to NAPL-water interfaces and absorption by bulk NAPL were also shown to be significant sources of retention for PFOS and PFOA. The latter process was the predominant source of retention for 8:2 FTOH, contributing 98% of total retardation. These results indicate that we may anticipate significant retention of PFASs by these additional processes. In such cases, retardation of PFASs in source areas may be significantly greater than what is typically estimated based on the standard assumption of solid-phase adsorption as the sole retention mechanism. This has significant ramifications for

  19. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  20. Effect of vitro preservation on mechanical properties of brain tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Yi-fan; Liu, Li-fu; Niu, Ying; Ma, Jian-li; Wu, Cheng-wei

    2017-05-01

    To develop the protective devices for preventing traumatic brain injuries, it requires the accurate characterization of the mechanical properties of brain tissue. For this, it necessary to elucidate the effect of vitro preservation on the mechanical performance of brain tissue as usually the measurements are carried out in vitro. In this paper, the thermal behavior of brain tissue preserved for various period of time was first investigated and the mechanical properties were also measured. Both reveals the deterioration with prolonged preservation duration. The observations of brain tissue slices indicates the brain tissue experiences karyorrhexis and karyorrhexis in sequence, which accounts for the deterioration phenomena.

  1. Auxiliary KChIP4a Suppresses A-type K+ Current through Endoplasmic Reticulum (ER) Retention and Promoting Closed-state Inactivation of Kv4 Channels*

    PubMed Central

    Tang, Yi-Quan; Liang, Ping; Zhou, Jingheng; Lu, Yanxin; Lei, Lei; Bian, Xiling; Wang, KeWei

    2013-01-01

    In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K+ channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1–4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12–17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19–21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation. PMID:23576435

  2. Auxiliary KChIP4a suppresses A-type K+ current through endoplasmic reticulum (ER) retention and promoting closed-state inactivation of Kv4 channels.

    PubMed

    Tang, Yi-Quan; Liang, Ping; Zhou, Jingheng; Lu, Yanxin; Lei, Lei; Bian, Xiling; Wang, KeWei

    2013-05-24

    In the brain and heart, auxiliary Kv channel-interacting proteins (KChIPs) co-assemble with pore-forming Kv4 α-subunits to form a native K(+) channel complex and regulate the expression and gating properties of Kv4 currents. Among the KChIP1-4 members, KChIP4a exhibits a unique N terminus that is known to suppress Kv4 function, but the underlying mechanism of Kv4 inhibition remains unknown. Using a combination of confocal imaging, surface biotinylation, and electrophysiological recordings, we identified a novel endoplasmic reticulum (ER) retention motif, consisting of six hydrophobic and aliphatic residues, 12-17 (LIVIVL), within the KChIP4a N-terminal KID, that functions to reduce surface expression of Kv4-KChIP complexes. This ER retention capacity is transferable and depends on its flanking location. In addition, adjacent to the ER retention motif, the residues 19-21 (VKL motif) directly promote closed-state inactivation of Kv4.3, thus leading to an inhibition of channel current. Taken together, our findings demonstrate that KChIP4a suppresses A-type Kv4 current via ER retention and enhancement of Kv4 closed-state inactivation.

  3. Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires.

    PubMed

    Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; He, Yunbo; Wong, Ching-Ping

    2017-12-01

    Kinked silicon nanowires (KSiNWs) have many special properties that make them attractive for a number of applications. The mechanical properties of KSiNWs play important roles in the performance of sensors. In this work, the effects of defects on the mechanical properties of KSiNWs are studied using molecular dynamics simulations and indirectly validated by experiments. It is found that kinks are weak points in the nanowire (NW) because of inharmonious deformation, resulting in a smaller elastic modulus than that of straight NWs. In addition, surface defects have more significant effects on the mechanical properties of KSiNWs than internal defects. The effects of the width or the diameter of the defects are larger than those of the length of the defects. Overall, the elastic modulus of KSiNWs is not sensitive to defects; therefore, KSiNWs have a great potential as strain or stress sensors in special applications.

  4. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  5. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

  6. The effect of pre-straining and pre-ageing on a novel thermomechanical treatment for improving the mechanical properties of AA2139 aerospace aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bakare, F.; Alsubhi, Y.; Ragkousis, A.; Ebomwonyi, O.; Damisa, J.; Okunzuwa, S.

    2017-07-01

    The novel thermomechanical treatment employed by Wang Z et al (2014 Mater. Sci. Eng. A 607 313-7) in enhancing the mechanical and microstructure properties of 6000 series aluminium alloys has been replicated for AA2139 aerospace aluminium alloys. The novel route which involves under-ageing, cold-rolling reductions and re-ageing at a fixed temperature has been carried out focusing on the effect of pre-straining and pre-ageing on the alloy properties. The influence of varying cold-rolling reductions and pre-ageing has been examined by tensile testing, hardness testing, differential scanning calorimetry, thermoelectric power measurements and scanning electron microscope (SEM). Further analyses were conducted with DSC and TEP measurements to check for precipitation sequence and solute retention respectively. On comparing the hardness and strength of the non pre-aged to the pre-aged samples, there is a remarkable increase in the hardness and strength of the aerospace alloy showing the huge influence of both pre-ageing and pre-straining stage of the novel thermomechanical treatment as observed in the 6000 series alloy, albeit at a higher rate. The treatments that exhibited the most promising mechanical properties (hardness, yield and ultimate tensile strength, elongation to failure) were found to be at a pre-ageing temperature of 175 °C for 1.5 h, 40% cold-rolling and re-ageing at 150 °C. The material was found to have yield strength of 590 MPa and 8.1% uniform elongation, which is well above the 5% acceptable value for structural applications and with strength levels adaptable for aerospace industries. The presence of higher volume fraction of well dispersed precipitates observed in the SEM further shows that intermediate cold-rolling reductions combines well with pre-ageing to give the best mechanical properties in this alloy.

  7. Micro-mechanical evaluation of SiC-SiC composite interphase properties and debond mechanisms

    DOE PAGES

    Kabel, Joey; Yang, Y.; Balooch, Mehdi; ...

    2017-07-31

    SiC-SiC composites exhibit exceptional high temperature strength and oxidation properties making them an advantageous choice for accident tolerant nuclear fuel cladding. In the present work, small scale mechanical testing along with AFM and TEM analysis were employed to evaluate PyC interphase properties that play a key role in the overall mechanical behavior of the composite. The Mohr-Coulomb formulation allowed for the extraction of the internal friction coefficient and debonding shear strength as a function of the PyC layer thickness, an additional parameter. Here, these results have led to re-evaluation of the Mohr-Coulomb failure criterion and adjustment via a new phenomenologicalmore » equation.« less

  8. Theoretical considerations of soil retention. [dirtying of solar energy devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1980-01-01

    The performance of solar energy devices is adversely affected by surface soiling, and generally, the loss of performance increases with increases in the quantity of soil retained on their surfaces. To minimize performance losses caused by soiling, solar devices should not only be deployed in low soiling geographical areas, but employ surfaces or surfacing materials having low affinity for soil retention, maximum susceptibility to be naturally cleaned by wind, rain and snow, and to be readily cleanable by simple and inexpensive maintenance cleaning techniques. This article describes known and postulated mechanisms of soil retention on surfaces, and infers from these mechanisms that low soiling and easily cleanable surfaces should have low surface energy, and be hard, smooth, hydrophobic and chemically clean of sticky materials and water soluble salts.

  9. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    PubMed

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication

  10. Determination of mechanical properties of battery films from acoustic resonances

    NASA Astrophysics Data System (ADS)

    Dallon, Kathryn L.; Yao, Jing; Wheeler, Dean R.; Mazzeo, Brian A.

    2018-04-01

    Measuring the mechanical properties of lithium-ion battery films, such as thickness and elasticity, is important for predicting and improving homogeneity of the films and subsequent performance of the battery. Problems with film heterogeneity could be identified and addressed early on through accurate, non-destructive inspection of the electrode as it is being manufactured. This research investigates the use of acoustic measurements as an alternative means of non-destructive quality control that could be adapted for on-line use. Here we report on our efforts to distinguish among films with different mechanical properties using acoustic resonances. A clamped film is excited using a pulsed infrared laser to produce an acoustic resonance in a confined area, and a microphone measures the acoustic response. Because the resonance depends on properties such as thickness and density, the resonance frequency shifts with changes in these properties. As the thickness increases, the resonance frequency decreases. These results show that acoustic tests can demonstrate observable differences between films with different properties.

  11. Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores.

    PubMed

    Shrestha, Prakash; Emura, Tomoko; Koirala, Deepak; Cui, Yunxi; Hidaka, Kumi; Maximuck, William J; Endo, Masayuki; Sugiyama, Hiroshi; Mao, Hanbin

    2016-08-19

    DNA nanoassemblies have demonstrated wide applications in various fields including nanomaterials, drug delivery and biosensing. In DNA origami, single-stranded DNA template is shaped into desired nanostructure by DNA staples that form Holliday junctions with the template. Limited by current methodologies, however, mechanical properties of DNA origami structures have not been adequately characterized, which hinders further applications of these materials. Using laser tweezers, here, we have described two mechanical properties of DNA nanoassemblies represented by DNA nanotubes, DNA nanopyramids and DNA nanotiles. First, mechanical stability of DNA origami structures is determined by the effective density of Holliday junctions along a particular stress direction. Second, mechanical isomerization observed between two conformations of DNA nanotubes at 10-35 pN has been ascribed to the collective actions of individual Holliday junctions, which are only possible in DNA origami with rotational symmetric arrangements of Holliday junctions, such as those in DNA nanotubes. Our results indicate that Holliday junctions control mechanical behaviors of DNA nanoassemblies. Therefore, they can be considered as 'mechanophores' that sustain mechanical properties of origami nanoassemblies. The mechanical properties observed here provide insights for designing better DNA nanostructures. In addition, the unprecedented mechanical isomerization process brings new strategies for the development of nano-sensors and actuators. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor.

    PubMed

    Mansour, Joseph M; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D; Liu, Yiying; Welter, Jean F

    2014-10-01

    Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. The statistical model generally predicted the Young's moduli in compression to within <10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor.

  13. Towards the feasibility of using ultrasound to determine mechanical properties of tissues in a bioreactor

    PubMed Central

    Mansour, Joseph M.; Gu, Di-Win Marine; Chung, Chen-Yuan; Heebner, Joseph; Althans, Jake; Abdalian, Sarah; Schluchter, Mark D.; Liu, Yiying; Welter, Jean F.

    2016-01-01

    Introduction Our ultimate goal is to non-destructively evaluate mechanical properties of tissue-engineered (TE) cartilage using ultrasound (US). We used agarose gels as surrogates for TE cartilage. Previously, we showed that mechanical properties measured using conventional methods were related to those measured using US, which suggested a way to non-destructively predict mechanical properties of samples with known volume fractions. In this study, we sought to determine whether the mechanical properties of samples, with unknown volume fractions could be predicted by US. Methods Aggregate moduli were calculated for hydrogels as a function of SOS, based on concentration and density using a poroelastic model. The data were used to train a statistical model, which we then used to predict volume fractions and mechanical properties of unknown samples. Young's and storage moduli were measured mechanically. Results The statistical model generally predicted the Young's moduli in compression to within < 10% of their mechanically measured value. We defined positive linear correlations between the aggregate modulus predicted from US and both the storage and Young's moduli determined from mechanical tests. Conclusions Mechanical properties of hydrogels with unknown volume fractions can be predicted successfully from US measurements. This method has the potential to predict mechanical properties of TE cartilage non-destructively in a bioreactor. PMID:25092421

  14. Woven TPS Mechanical Property Evaluation

    NASA Technical Reports Server (NTRS)

    Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.

    2013-01-01

    Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.

  15. Size Effect on the Mechanical Properties of CF Winding Composite

    NASA Astrophysics Data System (ADS)

    Cui, Yuqing; Yin, Zhongwei

    2017-12-01

    Mechanical properties of filament winding composites are usually tested by NOL ring samples. Few people have studied the size effect of winding composite samples on the testing result of mechanical property. In this research, winding composite thickness, diameter, and geometry of NOL ring samples were prepared to investigate the size effect on the mechanical strength of carbon fiber (CF) winding composite. The CF T700, T1000, M40, and M50 were adopted for the winding composite, while the matrix was epoxy resin. Test results show that the tensile strength and ILSS of composites decreases monotonically with an increase of thickness from 1 mm to 4 mm. The mechanical strength of composite samples increases monotonically with the increase in diameter from 100 mm to 189 mm. The mechanical strength of composite samples with two flat sides are higher than those of cyclic annular samples.

  16. Field Soil Water Retention of the Prototype Hanford Barrier and Its Variability with Space and Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. F.

    Engineered surface barriers are used to isolate underlying contaminants from water, plants, animals, and humans. To understand the flow processes within a barrier and the barrier’s ability to store and release water, the field hydraulic properties of the barrier need to be known. In situ measurement of soil hydraulic properties and their variation over time is challenging because most measurement methods are destructive. A multiyear test of the Prototype Hanford Barrier (PHB) has yielded in situ soil water content and pressure data for a nine-year period. The upper 2 m layer of the PHB is a silt loam. Within thismore » layer, water content and water pressure were monitored at multiple depths at 12 water balance stations using a neutron probe and heat dissipation units. Valid monitoring data from 1995 to 2003 for 4 depths at 12 monitoring stations were used to determine the field water retention of the silt loam layer. The data covered a wide range of wetness, from near saturation to the permanent wilt point, and each retention curve contained 51 to 96 data points. The data were described well with the commonly used van Genuchten water retention model. It was found that the spatial variation of the saturated and residual water content and the pore size distribution parameter were relatively small, while that of the van Genuchten alpha was relatively large. The effects of spatial variability of the retention properties appeared to be larger than the combined effects of added 15% w/w pea gravel and plant roots on the properties. Neither of the primary hydrological processes nor time had a detectible effect on the water retention of the silt loam barrier.« less

  17. High-Throughput Assessment of Cellular Mechanical Properties.

    PubMed

    Darling, Eric M; Di Carlo, Dino

    2015-01-01

    Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.

  18. Mechanical properties of graphene oxides.

    PubMed

    Liu, Lizhao; Zhang, Junfeng; Zhao, Jijun; Liu, Feng

    2012-09-28

    The mechanical properties, including the Young's modulus and intrinsic strength, of graphene oxides are investigated by first-principles computations. Structural models of both ordered and amorphous graphene oxides are considered and compared. For the ordered graphene oxides, the Young's modulus is found to vary from 380 to 470 GPa as the coverage of oxygen groups changes, respectively. The corresponding variations in the Young's modulus of the amorphous graphene oxides with comparable coverage are smaller at 290-430 GPa. Similarly, the ordered graphene oxides also possess higher intrinsic strength compared with the amorphous ones. As coverage increases, both the Young's modulus and intrinsic strength decrease monotonically due to the breaking of the sp(2) carbon network and lowering of the energetic stability for the ordered and amorphous graphene oxides. In addition, the band gap of the graphene oxide becomes narrower under uniaxial tensile strain, providing an efficient way to tune the electronic properties of graphene oxide-based materials.

  19. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    PubMed Central

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  20. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    PubMed

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  1. Structural, Mechanical, and Magnetic Properties of W Reinforced FeCo Alloys

    NASA Astrophysics Data System (ADS)

    Li, Gang; Corte-Real, Michelle; Yarlagadda, Shridhar; Vaidyanathan, Ranji; Xiao, John; Unruh, Karl

    2002-03-01

    Despite their superior soft magnetic properties, the poor mechanical properties of FeCo alloys have limited their potential use in rotating machines operating at elevated temperatures. In an attempt to address this shortcoming we have prepared bulk FeCo alloys at near equiatomic compositions reinforced by a relatively small volume fraction of continuous W fibers. These materials have been assembled by consolidating individual FeCo coated W fibers at elevated temperatures and moderate pressures. The mechanical and magnetic properties of the fiber reinforced composites have been studied and correlated with results of microstructural characterization.

  2. Adhesive and Composite Properties of a New Phenylethynyl Terminated Imide

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Connell, J. W.; Hergenrother, P. M.

    2002-01-01

    A relatively new phenylethynyl terminated imide oligomer (PETI) from the reaction of 2,3,',4'- biphenyltetracarboxylic dianhydride, 4,4'-oxydianiline and endcapped with 4- phenylethynylphthalic anhydride at a calculated number average molecular weight of 5000 g/mole was evaluated as an adhesive and composite matrix. The asymmetric dianhydride imparts a low melt viscosity to the oligomer and a high glass transition temperature to the cured resin. Preliminary adhesive work with titanium (6Al-4V) adherend gave good room temperature (RT) tensile shear strengths and excellent retention of RT strength at 260 C. Preliminary composite work using unsized IM7 carbon fiber provided moderate to high mechanical properties. The chemistry, mechanical, and physical properties of the new PETI in neat resin, adhesive and composite form are presented.

  3. Comparison of Predicted and Measured Soil Retention Curve in Lombardy Region Northern of Italy

    NASA Astrophysics Data System (ADS)

    Wassar, Fatma; Rienzner, Michele; Chiaradia, Enrico Antonio; Gandolfi, Claudio

    2013-04-01

    Water retention characteristics are crucial input parameters in any modeling study on water flow and solute transport. These properties are difficult to measure and therefore the use of both direct and indirect methods is required in order to adequately describe them with sufficient accuracy. Several field methods, laboratory methods and theoretical models for such determinations exist, each having their own limitations and advantages (Stephens, 1994). Therefore, extensive comparisons between estimated, field and laboratory results to determine it still requires their validity for a range of different soils and specific cases. This study attempts to make a contribution specifically in this connection. The soil water retention characteristics were determined in two representative sites (PMI-1 and PMI-5) located in Landriano field, in Lombardy region, northern Italy. In the laboratory, values of both volumetric water content (θ) and soil water matric potential (h) are measured in the same sample using the tensiometric box and pressure plate apparatus. Field determination of soil water retention involved measurements of soil water content with SENTEK probes, and matric potential with tensiometers. The retention curve characteristics were also determined using some of the most commonly cited and some recently developed PTFs that use soil properties such as particle-size distribution (sand, silt, and clay content), organic matter or organic Carbon content, and dry bulk density. Field methods are considered to be more representative than laboratory and estimation methods for determining water retention characteristics (Marion et al., 1996). Therefore, field retention curves were compared against retention curves obtained from laboratory measurements and PTFs estimations. The performances of laboratory and PTFs in predicting field measured data were evaluated using root mean square error (RMSE) and bias. The comparison showed that laboratory measurements were the most

  4. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  5. Data for prediction of mechanical properties of aspen flakeboards

    Treesearch

    C. G. Carll; P. Wang

    1983-01-01

    This research compared two methods of producing flakeboards with uniform density distribution (which could then be used to predict bending properties of flakeboards with density gradients). One of the methods was suspected of producing weak boards because it involved exertion of high pressures on cold mats. Although differences were found in mechanical properties of...

  6. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  7. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours.

    PubMed

    Drakos, Antonios; Kyriakakis, Georgios; Evageliou, Vasiliki; Protonotariou, Styliani; Mandala, Ioanna; Ritzoulis, Christos

    2017-01-15

    Finer barley and rye flours were produced by jet milling at two feed rates. The effect of reduced particle size on composition and several physicochemical and mechanical properties of all flours were evaluated. Moisture content decreased as the size of the granules decreased. Differences on ash and protein contents were observed. Jet milling increased the amount of damaged starch in both rye and barley flours. True density increased with decreased particle size whereas porosity and bulk density increased. The solvent retention capacity profile was also affected by jet milling. Barley was richer in phenolics and had greater antioxidant activity than rye. Regarding colour, both rye and barley flours when subjected to jet milling became brighter, whereas their yellowness was not altered significantly. The minimum gelation concentration for all flours was 16%w/v. Barley flour gels were stronger, firmer and more elastic than the rye ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  9. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.

    PubMed

    Cui, Bencang; Li, Jing; Wang, Huining; Lin, Yuanhua; Shen, Yang; Li, Ming; Deng, Xuliang; Nan, Cewen

    2017-07-01

    To fabricate indirect restorative composites for CAD/CAM applications and evaluate the mechanical properties. Polymer-infiltrated-ceramic composites were prepared through infiltrating polymer into partially sintered sodium aluminum silicate ceramic blocks and curing. The corresponding samples were fabricated according to standard ISO-4049 using for mechanical properties measurement. The flexural strength and fracture toughness were measured using a mechanical property testing machine. The Vickers hardness and elastic modulus were calculated from the results of nano-indentation. The microstructures were investigated using secondary electron detector. The density of the porous ceramic blocks was obtained through TG-DTA. The conversion degrees were calculated from the results of mid-infrared spectroscopy. The obtained polymer infiltrated composites have a maximum flexural strength value of 214±6.5MPa, Vickers hardness of 1.76-2.30GPa, elastic modulus of 22.63-27.31GPa, fracture toughness of 1.76-2.35MPam 1/2 and brittleness index of 0.75-1.32μm -1/2 . These results were compared with those of commercial CAD/CAM blocks. Our results suggest that these materials with good mechanical properties are comparable to two commercial CAD/CAM blocks. The sintering temperature could dramatically influence the mechanical properties. Restorative composites with superior mechanical properties were produced. These materials mimic the properties of natural dentin and could be a promising candidate for CAD/CAM applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our

  11. Measurement of the Mechanical Properties of Intact Collagen Fibrils

    NASA Astrophysics Data System (ADS)

    Mercedes, H.; Heim, A.; Matthews, W. G.; Koob, T.

    2006-03-01

    Motivated by the genetic disorder Ehlers-Danlos syndrome (EDS), in which proper collagen synthesis is interrupted, we are investigating the structural and mechanical properties of collagen fibrils. The fibrous glycoprotein collagen is the most abundant protein found in the human body and plays a key role in the extracellular matrix of the connective tissue, the properties of which are altered in EDS. We have selected as our model system the collagen fibrils of the sea cucumber dermis, a naturally mutable tissue. This system allows us to work with native fibrils which have their proteoglycan complement intact, something that is not possible with reconstituted mammalian collagen fibrils. Using atomic force microscopy, we measure, as a function of the concentration of divalent cations, the fibril diameter, its response to force loading, and the changes in its rigidity. Through these experiments, we will shed light on the mechanisms which control the properties of the sea cucumber dermis and hope to help explain the altered connective tissue extracellular matrix properties associated with EDS.

  12. Effects of tetraamine crosslinking agents on the thermomechanical properties of PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Delvigs, P.

    1976-01-01

    The effects were investigated of partial substitution of tetraamine crosslinking agents for diamine reactants on the thermomechanical properties of PMR polyimide resins and graphite fiber-reinforced composites. The effect of tetraamine content on isothermal weight loss, glass transition, and softening temperatures of neat resin samples is discussed. Composites were fabricated using PMR methodology. Monomeric solution of various stoichiometric ratios was used to impregnate Hercules HTS graphite fiber. The mechanical property retention characteristics of the composites at 316 C (600 F) are described.

  13. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys.

    PubMed

    Zhang, Erlin; Ren, Jing; Li, Shengyi; Yang, Lei; Qin, Gaowu

    2016-10-21

    Ti-Cu sintered alloys have shown good antibacterial abilities. However, the sintered method (powder metallurgy) is not convenient to produce devices with a complex structure. In this paper, Ti-Cu alloys with 2.0, 3.0 and 4.0 wt.% Cu were prepared in an arc melting furnace and subjected to different heat treatments: solid solution and ageing, to explore the possibility of preparing an antibacterial Ti-Cu alloy by a casting method and to examine the effect of Cu content. Phase identification was conducted on an XRD diffraction meter, and the microstructure was observed by a metallographic microscope, a scanning electron microscope (SEM) with energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM). Microhardness and the compressive property of Ti-Cu alloys were tested, and the corrosion resistance and antibacterial activity were assessed in order to investigate the effect of the Cu content. Results showed that the as-cast Ti-Cu alloys exhibited a very low antibacterial rate against Staphylococcus aureus (S. aureus). Heat treatment improved the antibacterial rate significantly, especially after a solid and ageing treatment (T6). Antibacterial rates as high as 90.33% and 92.57% were observed on Ti-3Cu alloy and Ti-4Cu alloy, respectively. The hardness, the compressive yield strength, the anticorrosion resistance and the antibacterial rate of Ti-Cu alloys increased with an increase of Cu content in all conditions. It was demonstrated that homogeneous distribution and a fine Ti 2 Cu phase played a very important role in the mechanical property, anticorrosion and antibacterial properties. Furthermore, it should be pointed out that the Cu content should be at least 3 wt.% to obtain good antibacterial properties (>90% antibacterial rate) as well as satisfactory mechanical properties.

  14. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  15. Effects of mechanical strain on optical properties of ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  16. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China.

    PubMed

    Liu, Jinqiang; Cao, Zhiguo; Zou, Songyan; Liu, Huanhuan; Hai, Xiao; Wang, Shihua; Duan, Jie; Xi, Benye; Yan, Guangxuan; Zhang, Shaowei; Jia, Zhongkui

    2018-03-01

    Urban trees have the potential to reduce air pollution, but the retention capacity and efficiency of different tree species for atmospheric particulate matter (PM) accumulation and the underlying mechanism hasn't been well understood. To select tree species with high air purification abilities, the supplementing ultrasonic cleaning (UC) procedure was first introduced into the conventional leaf cleaning methods [single water cleaning (WC) or plus brush cleaning (BC)] for eluting the leaf-retained PM. Further updates to the methodology were applied to investigate the retention capacity, efficiency, and mechanism for PM of five typical greening tree species in Beijing, China. Meanwhile, the particle size distribution of PM on the leaves, the PM retention efficiencies of easily removable (ERP), difficult-to-remove (DRP) and totally removable (TRP) particles on the leaf (AE leaf ), and the individual tree scales were estimated. The experimental leaf samples were collected from trees with similar sizes 4 (SDR) and 14days (LDR) after rainfall. When the leaves were cleaned by WC+BC, there was, on average, 29%-46% of the PM remaining on the leaves of different species, which could be removed almost completely if UC was supplemented. From SDR to LDR, the mass of the leaf-retained PM increased greatly, and the particle size distribution changed markedly for all species except for Sophorajaponica. Pinus tabuliformis retains particles with the largest average diameter (34.2μm), followed by Ginkgo biloba (20.5μm), Sabina chinensis (16.4μm), Salix babylonica (16.0μm), and S. japonica (13.1μm). S. japonica and S. chinensis had the highest AE leaf to retain the TRP and ERP of both PM 1 and PM 1-2.5 , respectively. Conversely, S. babylonica and P. tabuliformis could retain both TRP and ERP of PM 2.5-5 and PM 5-10 , and PM >10 and TSP with the highest AE leaf , respectively. In conclusion, our results could be useful in selecting greening tree species with high air purification

  17. Morphology, orientation, and mechanical properties of gelatin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can bemore » formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.« less

  18. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  19. Room temperature mechanical properties of electron beam welded zircaloy-4 sheet

    DOE PAGES

    Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...

    2017-11-04

    Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less

  20. Boulder Valley Kindergarten Study: Retention Practices and Retention Effects.

    ERIC Educational Resources Information Center

    Shepard, Lorrie A.; Smith, Mary Lee

    Having implemented a policy that allowed schools to retain children in kindergarten an extra year, the Boulder Valley Public School District in Colorado conducted a study to determine the cognitive and emotional benefits of retention in kindergarten and the characteristics that led to decisions about retention. The study involved a research review…

  1. Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils

    PubMed Central

    Kim, Jae In; Na, Sungsoo; Eom, Kilho

    2014-01-01

    Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP) fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD) simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain). Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture. PMID:24551113

  2. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    NASA Astrophysics Data System (ADS)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  3. Resistive switching properties and physical mechanism of cobalt ferrite thin films

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Zou, Lilan; Chen, Ruqi; Xie, Wei; Chen, Xinman; Qin, Ni; Li, Shuwei; Yang, Guowei; Bao, Dinghua

    2014-04-01

    We report reproducible resistive switching performance and relevant physical mechanism of sandwiched Pt/CoFe2O4/Pt structures in which the CoFe2O4 thin films were fabricated by a chemical solution deposition method. Uniform switching voltages, good endurance, and long retention have been demonstrated in the Pt/CoFe2O4/Pt memory cells. On the basis of the analysis of current-voltage characteristic and its temperature dependence, we suggest that the carriers transport through the conducting filaments in low resistance state with Ohmic conduction behavior, and the Schottky emission and Poole-Frenkel emission dominate the conduction mechanism in high resistance state. From resistance-temperature dependence of resistance states, we believe that the physical origin of the resistive switching refers to the formation and rupture of the oxygen vacancies related filaments. The nanostructured CoFe2O4 thin films can find applications in resistive random access memory.

  4. Effect of Graphene Oxide on Mechanical Properties of Recycled Mortar

    NASA Astrophysics Data System (ADS)

    Fang, Changle; Long, Wujian; Wei, Jingjie; Xiao, Bingxu; Yan, Chen

    2017-12-01

    The use of recycled aggregate as replacement of natural aggregate has increased in recent years in order to reduce the high consumption of natural resources in construction industry. This paper presents an experimental investigation on the effect of graphene oxide (GO) on the mechanical properties of recycled mortar. It is showed that the recycled mortar with GO has a better mechanical properties than the recycled mortar without GO. Microstructural analysis of the recycled mortar with GO showed to have much denser and better crystallization of hydration product.

  5. Mechanical properties of monolayer graphene oxide.

    PubMed

    Suk, Ji Won; Piner, Richard D; An, Jinho; Ruoff, Rodney S

    2010-11-23

    Mechanical properties of ultrathin membranes consisting of one layer, two overlapped layers, and three overlapped layers of graphene oxide platelets were investigated by atomic force microscopy (AFM) imaging in contact mode. In order to evaluate both the elastic modulus and prestress of thin membranes, the AFM measurement was combined with the finite element method (FEM) in a new approach for evaluating the mechanics of ultrathin membranes. Monolayer graphene oxide was found to have a lower effective Young's modulus (207.6 ± 23.4 GPa when a thickness of 0.7 nm is used) as compared to the value reported for "pristine" graphene. The prestress (39.7-76.8 MPa) of the graphene oxide membranes obtained by solution-based deposition was found to be 1 order of magnitude lower than that obtained by others for mechanically cleaved graphene. The novel AFM imaging and FEM-based mapping methods presented here are of general utility for obtaining the elastic modulus and prestress of thin membranes.

  6. The Effect of Water Molecules on Mechanical Properties of Cell Walls

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima; Youssefian, Sina

    The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. The role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils are responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content and decreases in higher water content, whereas the hemicellulose elastic modulus constantly decreases. The variations of Radial Distribution Function and Free Fractional Volume of these materials with water suggest that water molecules enhance the mechanical properties of lignin by filling voids in the system and creating Hbond bridges between polymer chains. For hemicellulose, however, the effect is always regressive due to the destructive effect of water molecules on the Hbond of its dense structure.

  7. Increased Mechanical Properties Through the Addition of Zr to GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Lerch, Bradley A.

    2011-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has shown exceptional mechanical properties above 932 F (773 K). However, its properties below 932 F (773 K) are inferior to precipitation strengthened alloys such as Cu-Cr, Cu-Zr and Cu-Cr-Zr when they are in the fully aged, hard-drawn condition. It has been noted that the addition of small amounts of Zr, typically 0.1 wt.% to 0.5 wt.%, can greatly enhance the mechanical properties of copper-based alloys. Limited testing was conducted upon GRCop-84 with an addition of 0.4 wt.% Zr to determine its tensile, creep and low cycle fatigue (LCF) properties. Very large increases in strength (up to 68%) and ductility (up to 123%) were observed at both room temperature and 932 F (773 K). Creep properties at 932 F (773 K) demonstrated more than an order of magnitude decrease in the creep rate relative to unmodified GRCop-84 with a corresponding order of magnitude increase in creep life. Limited LCF testing showed that the modified alloy had a comparable LCF life at room temperature, but it was capable of sustaining a much higher load. While more testing and composition optimization are required, the addition of Zr to GRCop-84 has shown clear benefits to mechanical properties.

  8. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  9. Effect of nanopatterning on mechanical properties of Lithium anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Colin; Lee, Yong Min; Cho, Kuk Young

    One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less

  10. Effect of nanopatterning on mechanical properties of Lithium anode

    DOE PAGES

    Campbell, Colin; Lee, Yong Min; Cho, Kuk Young; ...

    2018-02-06

    One of the challenges in developing Lithium anodes for Lithium ion batteries (LIB) is controlling the formation of Li dendrites during cycling of the battery. Nanostructuring and nanopatterning of electrodes shows a promising way to suppress the growth of Li dendrites. However, in order to control this behavior, a fundamental understanding of the effect of nanopatterning on the electromechanical properties of Li metal is necessary. In this paper, we have investigated the mechanical and wear properties of Li metal using Atomic Force Microscopy (AFM) in an airtight cell. By using different load regimes, we determined the mechanical properties of Limore » metal. Here, we show that as a result of nanopatterning, Li metal surface underwent work hardening due to residual compressive stress. The presence of such stresses can help to improve cycle lifetime of LIBs with Li anodes and obtain very high energy densities.« less

  11. [A light-cured acrylic adhesive for fixing resin retention devices to the wax pattern].

    PubMed

    Matsumura, H; Tanaka, T; Atsuta, M

    1990-04-01

    A light-cured acrylic adhesive for fixing resin retention devices to the wax pattern was prepared. The adhesive consisted of trimethylolpropane triacrylate, 2-ethylhexyl acrylate, benzoin methyl ether, p dimethylaminobenzaldehyde and p-methoxyphenol. The adhesive could be cured within 20 sec not only by an UV photo curing unit but by a visible-light source with a xenon lamp. The adhesive and retention beads burned out after about an hour in the electric furnace at 400 c. The metal specimens with retention devices were cast in Ag-Pd-Cu-Au alloy with the use of two types of retention beads adhesive. The light-cured adhesive was superior to the conventional one in handling and some other properties. This adhesive may be used to fabricate composite veneered prostheses with minimum errors in laboratory procedure.

  12. Crash Padding Research : Vol. I. Material Mechanical Properties.

    DOT National Transportation Integrated Search

    1986-08-01

    The dynamic mechanical properties of Uniroyal Ensolite AAC, a viscoelastic closed-cell foam rubber, are investigated by means of materials tests. Sufficient test data is presented to form a basis for one-dimensional (uniform compression) empirical co...

  13. Microstructure and Mechanical Properties of Additively Manufactured Parts with Staircase Feature

    NASA Astrophysics Data System (ADS)

    Keya, Tahmina

    This thesis focuses on a part with staircase feature that is made of Inconel 718 and fabricated by SLM process. The objective of the study was to observe build height effect on the microstructure and mechanical properties of the part. Due to the nature of SLM, there is possibility of different microstructure and mechanical properties in different locations depending on the design of the part. The objective was to compare microstructure and mechanical properties from different location and four comparison groups were considered: 1. Effect of thermal cycle; 2. External and internal surfaces; 3. Build height effect and 4. Bottom surfaces. To achieve the goals of this research, standard metallurgical procedure has been performed to prepare samples. Etching was done to reveal the microstructure of SLM processed Inconel 718 parts. Young's modulus and hardness were measured using nanoindentation technique. FEM analysis was performed to simulate nanoindentation. The conclusions drawn from this research are: 1. The microstructure of front and side surface of SLM processed Inconel 718 consists of arc shaped cut ends of melt pools with intermetallic phase at the border of the melt pool; 2. On top surface, melted tracks and scanning patterns can be observed and the average width of melted tracks is 100-150 microm; 3. The microstructure looks similar at different build height; 4. Microstructure on the top of a stair is more defined and organized than the internal surface; 5. The mechanical properties are highest at the bottom. OM images revealed slight difference in microstructure in terms of build height for this specific part, but mechanical properties seem to be vary noticeably. This is something to be kept in mind while designing or determining build orientation. External and internal surfaces of a stair at the same height showed difference in both microstructure and mechanical properties. To minimize that effect and to make it more uniform, gradual elevation can be

  14. Intravenous immunoglobulins – understanding properties and mechanisms

    PubMed Central

    Durandy, A; Kaveri, S V; Kuijpers, T W; Basta, M; Miescher, S; Ravetch, J V; Rieben, R

    2009-01-01

    High-dose intravenous immunoglobulin (IVIg) preparations are used currently for the treatment of autoimmune or inflammatory diseases. Despite numerous studies demonstrating efficacy, the precise mode of action of IVIg remains unclear. Paradoxically, IgG can exert both pro- and anti-inflammatory activities, depending on its concentration. The proinflammatory activity of low-dose IVIg requires complement activation or binding of the Fc fragment of IgG to IgG-specific receptors (FcγR) on innate immune effector cells. In contrast, when administered in high concentrations, IVIg has anti-inflammatory properties. How this anti-inflammatory effect is mediated has not yet been elucidated fully, and several mutually non-exclusive mechanisms have been proposed. This paper represents the proceedings of a session entitled ‘IVIg – Understanding properties and mechanisms’ at the 6th International Immunoglobulin Symposium that was held in Interlaken on 26–28 March 2009. The presentations addressed how IgG may affect the cellular compartment, evidence for IVIg-mediated scavenging of complement fragments, the role of the dimeric fraction of IVIg, the anti-inflammatory properties of the minor fraction of sialylated IgG molecules, and the genetic organization and variation in FcγRs. These findings demonstrate the considerable progress that has been made in understanding the mechanisms of action of IVIgs, and may influence future perspectives in the field of Ig therapy. PMID:19883419

  15. Improvement of Mechanical Properties of Spheroidized 1045 Steel by Induction Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Minwook; Shin, Jung-Ho; Choi, Young; Lee, Seok-Jae

    2016-04-01

    The effects of induction heat treatment on the formation of carbide particles and mechanical properties of spheroidized 1045 steel were investigated by means of microstructural analysis and tensile testing. The induction spheroidization accelerated the formation of spherical cementite particles and effectively softened the steel. The volume fraction of cementite was found to be a key factor that affected the mechanical properties of spheroidized steels. Further tests showed that sequential spheroidization by induction and furnace heat treatments enhanced elongation within a short spheroidization time, resulting in better mechanical properties. This was due to the higher volume fraction of spherical cementite particles that had less diffusion time for particle coarsening.

  16. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    PubMed

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  17. Elastic and Mechanical Properties of the MAX Phases

    NASA Astrophysics Data System (ADS)

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  18. Mechanical properties of a biodegradable bone regeneration scaffold

    NASA Technical Reports Server (NTRS)

    Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J.

    2000-01-01

    Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.

  19. Selective flow-induced vesicle rupture to sort by membrane mechanical properties

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria

    2015-08-01

    Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.

  20. Selective flow-induced vesicle rupture to sort by membrane mechanical properties

    PubMed Central

    Pommella, Angelo; Brooks, Nicholas J.; Seddon, John M.; Garbin, Valeria

    2015-01-01

    Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells. PMID:26302783

  1. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    PubMed

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  2. Effect of Casting Defect on Mechanical Properties of 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Yup; Lee, Joon-Hyun; Nahm, Seung-Hoon

    Damage and integrity evaluation techniques should be developed steadily in order to ensure the reliability and the economic efficiency of gas turbine engines. Casting defects may exist in most casting components of gas turbine engines, and the defects could give serious effect on mechanical properties and fracture toughness. Therefore, it is very important to understand the effect of casting defects on the above properties in order to predict the safety and life of components. In this study, specimens with internal casting defects, made from 17-4PH stainless steel, were prepared and evaluated and characterized based on the volume fraction of defects. The relation between mechanical properties such as tensile, low cycle fatigue and fracture toughness and volume fraction of defect has been investigated. As a result of the analysis, the mechanical properties of 17-4PH decreased as the defect volume fraction increased with very good linearity. The mechanical properties also showed an inversely proportional relationship to electrical resistivity.

  3. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahtrus, Mikk; Šutka, Andris

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases weremore » close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.« less

  4. The effect of thermal damage on the mechanical properties of polymer regrinds

    NASA Technical Reports Server (NTRS)

    Kundu, Nikhil K.

    1990-01-01

    Reprocessed polymers are subjected to high processing temperatures that result in the breakdown of molecular chains and changes in the molecular structures. These phenomena are reflected in the mechanical properties of materials. Practically every regrind is seen as a new material. These experiments deal with the molding, regrinding, and reprocessing of test specimens for the study of their mechanical properties. The comparative test data from each recycled material would give students an insight of the molecular structures and property degradation. Three important rheological and mechanical properties such as melt flow, impact strength, and flexural strength are to be determined. These properties play key roles in the selection of engineering materials. The material selected for demonstration was Makrolon 3000L, a polycarbonate thermoplastic from Bayer AG. The thermal degradation due to repeated processing is reflected in the decrease in molecular weight and breakdown of molecular chains causing increase in melt flow. The Izod-impact resistance and the flexural strength deteriorate gradually.

  5. Mechanical properties of 4d transition metals in molten state

    NASA Astrophysics Data System (ADS)

    Singh, Deobrat; Sonvane, Yogesh; Thakor, P. B.

    2016-05-01

    Mechanical properties of 4d transition metals in molten state have been studied in the present study. We have calculated mechanical properties such as isothermal bulk modulus (B), modulus of rigidity (G), Young's modulus (Y) and Hardness have also been calculated from the elastic part of the Phonon dispersion curve (PDC). To describe the structural information, we have used different structure factor S(q) using Percus-Yevick hard sphere (PYHS) reference systems along with our newly constructed parameter free model potential.To see the influence of exchange and correlation effect on the above said properties of 3d liquid transition metals, we have used Sarkar et al (S)local field correction functions. Present results have been found good in agreement with available experimental data.

  6. Design and mechanical properties of insect cuticle.

    PubMed

    Vincent, Julian F V; Wegst, Ulrike G K

    2004-07-01

    Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.

  7. PICA Variants with Improved Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  8. Interface effects on mechanical properties of particle-reinforced composites.

    PubMed

    Debnath, S; Ranade, R; Wunder, S L; McCool, J; Boberick, K; Baran, G

    2004-09-01

    Effective bonding between the filler and matrix components typically improves the mechanical properties of polymer composites containing inorganic fillers. The aim of this study was to test the hypothesis that composite flexural modulus, flexure strength, and toughness are directly proportional to filler-matrix interfacial shear strength. The resin matrix component of the experimental composite consisted of a 60:40 blend of BisGMA:TEGDMA. Two levels of photoinitiator components were used: 0.15, and 0.5%. Raman spectroscopy was used to determine degree of cure, and thermogravimetry (TGA) was used to quantify the degree of silane, rubber, or polymer attachment to silica and glass particles. Filler-matrix interfacial shear strengths were measured using a microbond test. Composites containing glass particles with various surface treatments were prepared and the modulus, flexure strength, and fracture toughness of these materials obtained using standard methods. Mechanical properties were measured on dry and soaked specimens. The interfacial strength was greatest for the 5% MPS treated silica, and it increased for polymers prepared with 0.5% initiator compared with 0.15% initiator concentrations. For the mechanical properties measured, the authors found that: (1) the flexural modulus was independent of the type of filler surface treatment, though flexural strength and toughness were highest for the silanated glass; (2) rubber at the interface, whether bonded to the filler and matrix or not, did not improve toughness; (3) less grafting of resin to silanated filler particles was observed when the initiator concentration decreased. These findings suggest that increasing the strength of the bond between filler and matrix will not result in improvements in the mechanical properties of particulate-reinforced composites in contrast to fiber-reinforced composites. Also, contraction stresses in the 0.5 vs 0.15% initiator concentration composites may be responsible for increases

  9. Some physical and mechanical properties of recycled polyurethane foam blends

    NASA Astrophysics Data System (ADS)

    Bledzki, A. K.; Zicans, J.; Merijs Meri, R.; Kardasz, D.

    2008-09-01

    Blends of secondary rigid polyurethane foams (RPUFs) with soft polyurethane foams (SPUFs) were investigated. The effect of SPUF content and its chemical nature on some physical and mechanical properties of the blends was evaluated. Owing to the stronger intermolecular interaction and higher values of cohesion energy, the blends of RPUFs with polyester SPUFs showed higher mechanical properties than those with polyether SPUFs. The density, hardness, ultimate strength, and the tensile, shear, and flexural moduli increased, while the impact toughness, ultimate elongation, and damping characteristics decreased with increasing RPUF content in the blends.

  10. Fall 1982 Retention Study.

    ERIC Educational Resources Information Center

    Peralta Community Coll. District, Oakland, CA. Office of Research, Planning and Development.

    In fall 1982, a study was conducted in the Peralta Community College District (PCCD) using withdrawal and grade distribution data to analyze student retention patterns. Successful retention rates were based on the percentage of students who received a passing grade, while total retention rates were based on the percentage of students who received…

  11. Short time-scale wind forced variability in the Río de la Plata Estuary and its role on ichthyoplankton retention

    NASA Astrophysics Data System (ADS)

    Simionato, C. G.; Berasategui, A.; Meccia, V. L.; Acha, M.; Mianzan, H.

    2008-01-01

    The Río de la Plata Estuary presents a strong bottom salinity front located over a submerged shoal. Apparently favored by retention processes, it is a spawning ground for several coastal fishes. This estuary is very shallow and essentially wind driven and, moreover, in time scales relevant to biota, estuarine circulation is wind dominated and highly variable. Two intriguing questions are, therefore, how this system can favor retention and what the involved mechanisms are. This paper qualitatively explores mechanisms involved in the estuary where retention is favored applying numerical simulations in which neutral particles - simulating fish eggs and early larvae - are released along the bottom frontal zone and tracked for different wind conditions. Results suggest that retentive features can be a consequence of estuarine response to natural wind variability acting over bathymetric features. For winds from most directions, particles either remain trapped near their launching position or move northeastward to southwestward along the shoal. As alternation of winds that favor along-shoal motion is the dominant feature of wind variability in the region, a retentive scenario results from prevailing wind variability. Additionally, winds that tend to export particles with a poor chance of being restored to the front are neither frequent nor persistent. Results show, therefore, that physical forcing alone might generate a retentive scenario at the inner part of this estuary. The physical retention mechanism is more effective for bottom than for surface launched particles. Wind statistics indicate that the proposed mechanism has different implications for retention along the seasons. Spring is the most favorable season, followed by summer, when particles would have a larger propensity to reach the southern area of the estuary (Samborombón Bay). Fall and winter are increasingly less favorable. All these features are consistent with patterns observed in the region in

  12. Mechanical Properties of Irradiated Polarization-Maintaining Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Ally, A.; Barnes, S.; Watkins, L.; Cuddihy, E.

    1996-01-01

    Polarization-maintaining optical fibers, referred to as PANDA fibers, were subjected to Cobalt 60 radiation (300,000 Rad). The mechanical properties of the PANDA fibers were measured after exposure to gamma radiation and compared to non-irradiated PANDA fibers.

  13. Intrinsic mineralocorticoid agonist activity of some nonsteroidal anti-inflammatory drugs. A postulated mechanism for sodium retention.

    PubMed Central

    Feldman, D; Couropmitree, C

    1976-01-01

    Because some nonsteroidal anti-inflammatory drugs (NSAID) induce salt and water retention and exhibit other steroid-like actions, studies were performed to ascertain whether these drugs possess intrinsic mineralocorticoid agonist activity. In vitro competitive binding assays utilizing tissue from adrenalectomized rats demonstrated that some NSAID can displace [3H]-aldosterone from renal cytoplasmic mineralocorticoid receptors. Displacement potency for these sites was in the sequence: aldosterone greater than spironolactone greater than phenylbutazone (PBZ) greater than aspirin (ASA) greater than indomethacin (IDM). Concentration ratios required to obtain significant displacement of [3H]aldosterone were high but clearly within the therapeutic range for PBZ and ASA but not IDM. The analogues oxyphenbutazone (OBZ) and sodium salicylate (SS) were similar in binding activity to PBZ and ASA, respectively. Lineweaver-Burk analysis revealed that the inhibition of [3H]aldosterone binding was competitive in nature. In addition, PBZ was shown to prevent the nuclear binding of [3H]aldosterone. In vivo injection of PBZ and ASA resulted in competition for [3H]aldosterone renal binding comparable to the in vitro studies. Administration of PBZ and OBZ to adrenalectomized rats resulted in significant salt retention whereas ASA and SS did not differ significantly from controls. Salt retention elicited by PBZ and OBZ was inhibited by spironolactone, a competitive mineralocorticoid antagonist. These data suggest that, despite nonsteroidal structures, PBZ and OBZ induce salt retention via a receptor-mediated mineralocorticoid pathway analogous to aldosterone action. PMID:173739

  14. Effect of SMAT on microstructural and mechanical properties of AA2024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadge, Prashant, E-mail: prashant-tadge@rediffmail.com; Sasikumar, C., E-mail: csasimv@gmail.com

    In recent days surface mechanical attrition treatment (SMAT) had attracted the attention of researchers as it produces a nano-crystalline surface with improved mechanical properties. In the present study Al-4%Cu alloy used in automobile and aerospace application is subjected to surface mechanical attrition treatment using steel shots. The microstructural changes introduced on the surface of the Al alloy was investigated using Scanning Electron Microscopy (SEM). The secondary phases formed during the SMAT process is been investigated using EDX and XRD analysis. The effects of SMAT on the mechanical properties were analyzed using a tensile testing. The SMA treatment had resulted inmore » severe plastic deformation of the surface, thereby yielded a nanocrystalline surface with a grain size of 30 to 50 nm. Further, it is also found that the SMAT produced ultra nanocrystalline particles of Cu{sub 2}Al dispersed uniformly into α-Al matrix. These microstructural changes had resulted in considerable change in the mechanical properties of these alloys. The tensile strength of these alloys had increased from ∼212 MPa to 303 MPa while the fracture toughness increased up to 28% in 10 minutes of SMAT.« less

  15. Effect of SMAT on microstructural and mechanical properties of AA2024

    NASA Astrophysics Data System (ADS)

    Tadge, Prashant; Sasikumar, C.

    2016-05-01

    In recent days surface mechanical attrition treatment (SMAT) had attracted the attention of researchers as it produces a nano-crystalline surface with improved mechanical properties. In the present study Al-4%Cu alloy used in automobile and aerospace application is subjected to surface mechanical attrition treatment using steel shots. The microstructural changes introduced on the surface of the Al alloy was investigated using Scanning Electron Microscopy (SEM). The secondary phases formed during the SMAT process is been investigated using EDX and XRD analysis. The effects of SMAT on the mechanical properties were analyzed using a tensile testing. The SMA treatment had resulted in severe plastic deformation of the surface, thereby yielded a nanocrystalline surface with a grain size of 30 to 50 nm. Further, it is also found that the SMAT produced ultra nanocrystalline particles of Cu2Al dispersed uniformly into α-Al matrix. These microstructural changes had resulted in considerable change in the mechanical properties of these alloys. The tensile strength of these alloys had increased from ˜212 MPa to 303 MPa while the fracture toughness increased up to 28% in 10 minutes of SMAT.

  16. Nanostructured BN-Mg composites: features of interface bonding and mechanical properties.

    PubMed

    Kvashnin, Dmitry G; Krasheninnikov, Arkady V; Shtansky, Dmitry; Sorokin, Pavel B; Golberg, Dmitri

    2016-01-14

    Magnesium (Mg) is one of the lightest industrially used metals. However, wide applications of Mg-based components require a substantial enhancement of their mechanical characteristics. This can be achieved by introducing small particles or fibers into the metal matrix. Using first-principles calculations, we investigate the stability and mechanical properties of a nanocomposite made of magnesium reinforced with boron nitride (BN) nanostructures (BN nanotubes and BN monolayers). We show that boron vacancies at the BN/Mg interface lead to a substantial increase in BN/Mg bonding establishing an efficient route towards the development of BN/Mg composite materials with enhanced mechanical properties.

  17. Resource Letter MPF-1: Mechanical Properties of Fluids

    ERIC Educational Resources Information Center

    Stanley, R. C.

    1974-01-01

    Presents an annotated bibliography concerning the mechanical properties of fluids, including topics for use at elementary, secondary, undergraduate, and graduate levels. Indicates that the material can particularly help college physicists in improving course contents in specified fields of physics. (CC)

  18. Anisotropic mechanical properties of zircon and the effect of radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 10 18 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increasemore » of the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.« less

  19. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    PubMed Central

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yang, Fan

    2018-01-01

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future. PMID:29385745

  20. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    PubMed

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  1. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  2. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  3. Physical and Mechanical Properties of Composites and Light Alloys Reinforced with Detonation Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.

    2016-07-01

    The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.

  4. [Comparative study of retention of a Zn phosphate cement and 4-META].

    PubMed

    Maroto Garcia, J

    1990-12-01

    The recent appearance, in the market of the supercements, suggest to us, news concepts of retention-adhesion, of our preparations, that they are going to put in to the mouth. Between his applications, we have the cementation of crowns, post or dowels, adhesive-prosthesis, and inlays. According to the manufactures, the long duration of the bond power, his great physiques properties, and his easy management, gives to this products a good conditions, to use in the mouth. The present report to prove in vitro, the retentive capacity on the dentine without treatment, and metal.

  5. Wildfire impacts on soil-water retention in the Colorado Front Range, United States

    NASA Astrophysics Data System (ADS)

    Ebel, Brian A.

    2012-12-01

    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can "homogenize" soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  6. Effect of cold drawing on mechanical properties of biodegradable fibers.

    PubMed

    La Mantia, Francesco Paolo; Ceraulo, Manuela; Mistretta, Maria Chiara; Morreale, Marco

    2017-01-26

    Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.

  7. Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.

  8. Mechanical properties of a collagen fibril under simulated degradation.

    PubMed

    Malaspina, David C; Szleifer, Igal; Dhaher, Yasin

    2017-11-01

    Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes. In this work we use molecular dynamics simulations to study the influence of simulated degradation on the mechanical properties of the collagen fibril. We applied tensile stress to the collagen fiber at different stages of degradation. We compared the difference in the fibril mechanical priorities due the removal of enzymatic crosslink, surface degradation and volumetric degradation. As anticipated, our results indicated that, regardless of the degradation scenario, fibril mechanical properties is reduced. The type of degradation mechanism (crosslink, surface or volumetric) expressed differential effect on the change in the fibril stiffness. Our simulation results showed dramatic change in the fibril stiffness with a small amount of degradation. This suggests that the hierarchical structure of the fibril is a key component for the toughness and is very sensitive to changes in the organization of the fibril. The overall results are intended to provide a theoretical framework for the understanding the mechanical behavior of collagen fibrils under degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    NASA Astrophysics Data System (ADS)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    the water retention effect decreases. The second factor is the hydraulic behavior of soils. The initial properties of the SRC soils (pore volume, field capacity, hydraulic conductivity etc.) shortly after implementation of the plantation can be assumed to be similar to arable land if there is no prior conditioning such as deep tilling. However with increasing age of the plantation the properties are expected to converge to forest soils with their higher water retention capacities. Accordingly the infiltration potentials of the plantation strongly depends on the development of soil properties underneath. In general it can be concluded that short rotation coppices cannot solve flood problems in mountain areas solely. However together with other natural and distributed measures (e.g. retention basins, reforestation, conservation tillage etc.) they can be interesting elements of flood retention strategies in mountain areas.

  10. The Genetic Basis of Natural Variation in Drosophila (Diptera: Drosophilidae) Virgin Egg Retention

    PubMed Central

    Akhund-Zade, Jamilla; Bergland, Alan O.; Crowe, Sarah O.; Unckless, Robert L.

    2017-01-01

    Drosophila melanogaster is able to thrive in harsh northern climates through adaptations in life-history traits and physiological mechanisms that allow for survival through the winter. We examined the genetic basis of natural variation in one such trait, female virgin egg retention, which was previously shown to vary clinally and seasonally. To further our understanding of the genetic basis and evolution of virgin egg retention, we performed a genome-wide association study (GWAS) using the previously sequenced Drosophila Genetic Reference Panel (DGRP) mapping population. We found 29 single nucleotide polymorphisms (SNPs) associated with virgin egg retention and assayed 6 available mutant lines, each harboring a mutation in a candidate gene, for effects on egg retention time. We found that four out of the six mutant lines had defects in egg retention time as compared with the respective controls: mun, T48, Mes-4, and Klp67A. Surprisingly, none of these genes has a recognized role in ovulation control, but three of the four genes have known effects on fertility or have high expression in the ovaries. We also found that the SNP set associated with egg retention time was enriched for clinal SNPs. The majority of clinal SNPs had alleles associated with longer egg retention present at higher frequencies in higher latitudes. Our results support previous studies that show higher frequency of long retention times at higher latitude, providing evidence for the adaptive value of virgin egg-retention. PMID:28042107

  11. Mechanical Properties of Primary Cilia

    NASA Astrophysics Data System (ADS)

    Battle, Christopher; Schmidt, Christoph F.

    2013-03-01

    Recent studies have shown that the primary cilium, long thought to be a vestigial cellular appendage with no function, is involved in a multitude of sensory functions. One example, interesting from both a biophysical and medical standpoint, is the primary cilium of kidney epithelial cells, which acts as a mechanosensitive flow sensor. Genetic defects in ciliary function can cause, e.g., polycystic kidney disease (PKD). The material properties of these non-motile, microtubule-based 9 +0 cilia, and the way they are anchored to the cell cytoskeleton, are important to know if one wants to understand the mechano-electrochemical response of these cells, which is mediated by their cilia. We have probed the mechanical properties, boundary conditions, and dynamics of the cilia of MDCK cells using optical traps and DIC/fluorescence microscopy. We found evidence for both elastic relaxation of the cilia themselves after bending and for compliance in the intracellular anchoring structures. Angular and positional fluctuations of the cilia reflect both thermal excitations and cellular driving forces.

  12. Role of differential physical properties in the collective mechanics and dynamics of tissues

    NASA Astrophysics Data System (ADS)

    Das, Moumita

    Living cells and tissues are highly mechanically sensitive and active. Mechanical stimuli influence the shape, motility, and functions of cells, modulate the behavior of tissues, and play a key role in several diseases. In this talk I will discuss how collective biophysical properties of tissues emerge from the interplay between differential mechanical properties and statistical physics of underlying components, focusing on two complementary tissue types whose properties are primarily determined by (1) the extracellular matrix (ECM), and (2) individual and collective cell properties. I will start with the structure-mechanics-function relationships in articular cartilage (AC), a soft tissue that has very few cells, and its mechanical response is primarily due to its ECM. AC is a remarkable tissue: it can support loads exceeding ten times our body weight and bear 60+ years of daily mechanical loading despite having minimal regenerative capacity. I will discuss the biophysical principles underlying this exceptional mechanical response using the framework of rigidity percolation theory, and compare our predictions with experiments done by our collaborators. Next I will discuss ongoing theoretical work on how the differences in cell mechanics, motility, adhesion, and proliferation in a co-culture of breast cancer cells and healthy breast epithelial cells may modulate experimentally observed differential migration and segregation. Our results may provide insights into the mechanobiology of tissues with cell populations with different physical properties present together such as during the formation of embryos or the initiation of tumors. This work was partially supported by a Cottrell College Science Award.

  13. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-08-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research.

  14. Microstructure, Mechanical Properties, and Toughening Mechanisms of a New Hot Stamping-Bake Toughening Steel

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Song, Hong-Wu; Zhang, Shi-Hong; Cheng, Ming; Liu, Wei-Jie; Chen, Yun

    2015-09-01

    In this article, the hot stamping-bake toughening process has been proposed following the well-known concept of bake hardening. The influences of the bake time on the microstructure and the mechanical properties of the hot stamped-baked part were studied by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and mechanical tests at room temperature. The results show that the amount of the retained austenite was nearly not changed by the bake process. Also observed were spherical Cu-rich precipitates of about 15 nm in martensite laths. According to the Orowan mechanism, their contribution of the Cu-rich precipitates to the strength is approximately 245 MPa. With the increase of the bake time, the tensile strength of the part was decreased, whereas both the ductility and the product of the tensile strength and ductility were increased then decreased. The tensile strength and ductility product and the tensile strength are as high as 21.9 GPa pct, 2086 MPa, respectively. The excellent combined properties are due to the transformation-induced plasticity effect caused by retained austenite.

  15. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.

    PubMed

    Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P

    2016-08-01

    In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite.

    PubMed

    Liu, Fengwei; Sun, Bin; Jiang, Xiaoze; Aldeyab, Sultan S; Zhang, Qinghong; Zhu, Meifang

    2014-12-01

    To investigate the reinforcing effect of urchin-like hydroxyapatite (UHA) in bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) dental resin (without silica nanoparticles) and dental composites (with silica nanoparticles), and explore the effect of HA filler morphologies and loadings on the mechanical properties. UHA was synthesized by a facile method of microwave irradiation and studied by X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). Mechanical properties of the dental resin composites containing silanized UHA were tested by a universal mechanical testing machine. Analysis of variance was used for the statistical analysis of the acquired data. The fracture morphologies of tested composites were observed by SEM. Composites with silanized irregular particulate hydroxyapatite (IPHA) and hydroxyapatite whisker (HW) were prepared for comparative studies. Impregnation of lower loadings (5 wt% and 10 wt%) of silanized UHA into dental resin (without silica nanoparticles) substantially improved the mechanical properties; higher UHA loadings (20 wt% and 30 wt%) of impregnation continuously improved the flexural modulus and microhardness, while the strength would no longer be increased. Compared with silanized IPHA and HW, silanized UHA consisting of rods extending radially from center were embedded into the matrix closely and well dispersed in the composite, increasing filler-matrix interfacial contact area and combination. At higher filler loadings, UHA interlaced together tightly without affecting the mobility of monomer inside, which might bear higher loads during fracture of the composite, leading to higher strengths than those of dental resins with IPHA and HW. Besides, impregnation of silanized UHA into dental composites (with silica nanoparticles) significantly improved the strength and modulus. UHA could serve as novel reinforcing HA filler to improve the mechanical properties

  17. Atomistic modeling of mechanical properties of polycrystalline graphene.

    PubMed

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  18. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  19. Mechanical properties of cement concrete composites containing nano-metakaolin

    NASA Astrophysics Data System (ADS)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  20. Multiscale mechanisms of nutritionally induced property variation in spider silks

    PubMed Central

    Nobbs, Madeleine; Martens, Penny J.; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn

    2018-01-01

    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider’s silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk’s alanine and proline compositions influenced the alignment of the proteins within the silk’s amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers. PMID:29390013

  1. Multiscale mechanisms of nutritionally induced property variation in spider silks.

    PubMed

    Blamires, Sean J; Nobbs, Madeleine; Martens, Penny J; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn

    2018-01-01

    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider's silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk's alanine and proline compositions influenced the alignment of the proteins within the silk's amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers.

  2. Engineering the Mechanical Properties of Polymer Networks with Precise Doping of Primary Defects.

    PubMed

    Chan, Doreen; Ding, Yichuan; Dauskardt, Reinhold H; Appel, Eric A

    2017-12-06

    Polymer networks are extensively utilized across numerous applications ranging from commodity superabsorbent polymers and coatings to high-performance microelectronics and biomaterials. For many applications, desirable properties are known; however, achieving them has been challenging. Additionally, the accurate prediction of elastic modulus has been a long-standing difficulty owing to the presence of loops. By tuning the prepolymer formulation through precise doping of monomers, specific primary network defects can be programmed into an elastomeric scaffold, without alteration of their resulting chemistry. The addition of these monomers that respond mechanically as primary defects is used both to understand their impact on the resulting mechanical properties of the materials and as a method to engineer the mechanical properties. Indeed, these materials exhibit identical bulk and surface chemistry, yet vastly different mechanical properties. Further, we have adapted the real elastic network theory (RENT) to the case of primary defects in the absence of loops, thus providing new insights into the mechanism for material strength and failure in polymer networks arising from primary network defects, and to accurately predict the elastic modulus of the polymer system. The versatility of the approach we describe and the fundamental knowledge gained from this study can lead to new advancements in the development of novel materials with precisely defined and predictable chemical, physical, and mechanical properties.

  3. CRITICAL MECHANICAL PROPERTIES OF STRUCTURAL LIGHT-WEIGHT CONCRETE AND THE EFFECTS OF THESE PROPERTIES ON THE DESIGN OF THE PAVEMENT STRUCTURE.

    DOT National Transportation Integrated Search

    1965-01-01

    In this study, critical mechanical properties of structural lightweight concrete were determined and utilized in the evaluation of a design of concrete pavements. Also presented are the critical mechanical properties resulting from unrestrained and r...

  4. Improving the mechanical properties of nano-hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Khanal, Suraj Prasad

    Hydroxyapatite (HAp) is an ideal bioactive material that is used in orthopedics. Chemical composition and crystal structure properties of HAp are similar to the natural bone hence it promotes bone growth. However, its mechanical properties of synthetic HAp are not sufficient for major load-bearing bone replacement. The potential of improving the mechanical properties of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNT) and polymerized epsilon-caprolactam (nylon) is studied. The fracture toughness, tensile strength, Young's modulus, stiffness and fracture energy were studied for a series of HAp samples with CfSWCNT concentrations varying from 0 to 1.5 wt. % without, and with nylon addition. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were used to characterize the samples. The fracture toughness and tensile test was performed under the standard protocol of ASTM D5045 and ASTM D638-02a respectively. Reproducible maximum values of (3.60 +/- 0.3) MPa.m1/2 for fracture toughness and 65.38 MPa for tensile strength were measured for samples containing 1 wt. % CfSWCNT and nylon. The Young's modulus, stiffness and fracture energy of the samples are 10.65 GPa, 1482.12 N/mm, and 644 J/m2 respectively. These values are comparable to those of the cortical bone. Further increase of the CfSWCNT content results to a decreased fracture toughness and tensile strength and formation of a secondary phase.

  5. First-principles investigation of mechanical properties of silicene, germanene and stanene

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Rahaman, Obaidur; Makaremi, Meysam; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2017-03-01

    Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young's modulus, Poisson's ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.

  6. Microstructural evolution and mechanical properties of SnAgCu alloys

    NASA Astrophysics Data System (ADS)

    Fouassier, O.; Heintz, J.-M.; Chazelas, J.; Geffroy, P.-M.; Silvain, J.-F.

    2006-08-01

    Lead containing solder paste is now considered as an environmental threat. In order to eliminate this undesirable environmental impact associated to their production, a family of lead-free solder joint, Sn-3.8Ag-0.7Cu, is proposed. Microstructural and mechanical data of this solder joint have been acquired and compared with the most common used SnPb solder paste. The evolution of the microstructure as well as the failure mode and the mechanical properties of SnAgCu solder joint are discussed as a function of strain rate, annealing treatments, and testing temperature. Tensile tests have been performed, at temperatures ranging from -50to+150°C, on bulk samples. Changes of the mechanical properties of bulk tested samples are actually correlated with microstructural changes, as shown by transmission electronic microscopy investigations.

  7. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  8. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.

    PubMed

    Ulrich, Daniela; Edwards, Sharon L; Alexander, David L J; Rosamilia, Anna; Werkmeister, Jerome A; Gargett, Caroline E; Letouzey, Vincent

    2016-02-01

    Pelvic organ prolapse (POP) is a multifactorial disease that manifests as the herniation of the pelvic organs into the vagina. Surgical methods for prolapse repair involve the use of a synthetic polypropylene mesh. The use of this mesh has led to significantly higher anatomical success rates compared with native tissue repairs, and therefore, despite recent warnings by the Food and Drug Administration regarding the use of vaginal mesh, the number of POP mesh surgeries has increased over the last few years. However, mesh implantation is associated with higher postsurgery complications, including pain and erosion, with higher consecutive rates of reoperation when placed vaginally. Little is known on how the mechanical properties of the implanted mesh itself change in vivo. It is assumed that the mechanical properties of these meshes remain unchanged, with any differences in mechanical properties of the formed mesh-tissue complex attributed to the attached tissue alone. It is likely that any changes in mesh mechanical properties that do occur in vivo will have an impact on the biomechanical properties of the formed mesh-tissue complex. The objective of the study was to assess changes in the multiaxial mechanical properties of synthetic clinical prolapse meshes implanted abdominally for up to 90 days, using a rat model. Another objective of the study was to assess the biomechanical properties of the formed mesh-tissue complex following implantation. Three nondegradable polypropylene clinical synthetic mesh types for prolapse repair (Gynemesh PS, Polyform Lite, and Restorelle) and a partially degradable polypropylene/polyglecaprone mesh (UltraPro) were mechanically assessed before and after implantation (n = 5/ mesh type) in Sprague Dawley rats for 30 (Gynemesh PS, Polyform Lite, and Restorelle) and 90 (UltraPro and Polyform Lite) days. Stiffness and permanent extension following cyclic loading, and breaking load, of the preimplanted mesh types, explanted mesh

  9. Effects of Hydrocarbon-Based Grease on Rapid Prototype Material Used for Grease Retention Shrouds

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Andrew J.; Valco, Daniel J.; Street, Kenneth W., Jr.

    2010-01-01

    Effects of hydrocarbon-based greases on specific rapid prototype (RP) materials used to fabricate grease retention shrouds (GRS) were explored in this study. Grease retention shrouds are being considered as a way to maintain adequate grease lubrication at the gear mesh in a prototype research transmission system. Due to their design and manufacturing flexibility, rapid prototype materials were chosen for the grease retention shrouds. In order to gain a better understanding of the short and long term effects grease pose on RP materials, research was conducted on the interaction of hydrocarbon-based grease with RP materials. The materials used in this study were durable polyamide (nylon), acrylonitrile butadiene styrene (ABS), and WaterClear 10120. Testing was conducted using Mobilgrease 28 and Syn-Tech 3913G grease (gear coupling grease). These greases were selected due to their regular use with mechanical components. To investigate the effect that grease has on RP materials, the following methods were used to obtain qualitative and quantitative data: Fourier transform infrared spectroscopy (FT-IR), interference profilometer measurements, digital camera imaging, physical shape measurement, and visual observations. To record the changes in the RP materials due to contact with the grease, data was taken before and after the grease application. Results showed that the WaterClear 10120 RP material provided the best resistance to grease penetration as compared to nylon and ABS RP materials. The manufacturing process, and thus resulting surface conditions of the RP material, played a key role in the grease penetration properties and resilience of these materials.

  10. Relationship between critical mechanical properties and age for structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-02-25

    The necessity to use structural lightweight concrete has created : a need for investigations into its critical mechanical properties that : affect the design and performance of structures. The primary critical : properties were found to be direct ten...

  11. Spatial patterns of self-recruitment of a coral reef fish in relation to island-scale retention mechanisms.

    PubMed

    Beldade, Ricardo; Holbrook, Sally J; Schmitt, Russell J; Planes, Serge; Bernardi, Giacomo

    2016-10-01

    Oceanographic features influence the transport and delivery of marine larvae, and physical retention mechanisms, such as eddies, can enhance self-recruitment (i.e. the return of larvae to their natal population). Knowledge of exact locations of hatching (origin) and settlement (arrival) of larvae of reef animals provides a means to compare observed patterns of self-recruitment 'connectivity' with those expected from water circulation patterns. Using parentage inference based on multiple sampling years in Moorea, French Polynesia, we describe spatial and temporal variation in self-recruitment of the anemonefish Amphiprion chrysopterus, evaluate the consistency of net dispersal distances of self-recruits against the null expectation of passive particle dispersal and test the hypothesis that larvae originating in certain reef habitats (lagoons and passes) would be retained and thus more likely to self-recruit than those originating on the outer (fore) reef. Estimates of known self-recruitment were consistent across the sampling years (~25-27% of sampled recruits). For most (88%) of these self-recruits, the net distance between hatching and settlement locations was within the maximum dispersal distance expected for a neutrally buoyant passive particle based on the longest duration of the larval dispersive phase and the average direction and speed of current flow around Moorea. Furthermore, a parent of a given body size on the outer (fore) reef of Moorea was less likely to produce self-recruits than those in passes. Our findings show that even a simple dispersal model based on net average flow and direction of alongshore currents can provide insight into landscape-scale retention patterns of reef fishes. © 2016 John Wiley & Sons Ltd.

  12. Simplified tools for measuring retention in care in antiretroviral treatment program in Ethiopia: cohort and current retention in care.

    PubMed

    Assefa, Yibeltal; Worku, Alemayehu; Wouters, Edwin; Koole, Olivier; Haile Mariam, Damen; Van Damme, Wim

    2012-01-01

    Patient retention in care is a critical challenge for antiretroviral treatment programs. This is mainly because retention in care is related to adherence to treatment and patient survival. It is therefore imperative that health facilities and programs measure patient retention in care. However, the currently available tools, such as Kaplan Meier, for measuring retention in care have a lot of practical limitations. The objective of this study was to develop simplified tools for measuring retention in care. Retrospective cohort data were collected from patient registers in nine health facilities in Ethiopia. Retention in care was the primary outcome for the study. Tools were developed to measure "current retention" in care during a specific period of time for a specific "ART-age group" and "cohort retention" in care among patients who were followed for the last "Y" number of years on ART. "Probability of retention" based on the tool for "cohort retention" in care was compared with "probability of retention" based on Kaplan Meier. We found that the new tools enable to measure "current retention" and "cohort retention" in care. We also found that the tools were easy to use and did not require advanced statistical skills. Both "current retention" and "cohort retention" are lower among patients in the first two "ART-age groups" and "ART-age cohorts" than in subsequent "ART-age groups" and "ART-age cohorts". The "probability of retention" based on the new tools were found to be similar to the "probability of retention" based on Kaplan Meier. The simplified tools for "current retention" and "cohort retention" will enable practitioners and program managers to measure and monitor rates of retention in care easily and appropriately. We therefore recommend that health facilities and programs start to use these tools in their efforts to improve retention in care and patient outcomes.

  13. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  14. Microstructural Evolution and Mechanical Properties of Simulated Heat-Affected Zones in Cast Precipitation-Hardened Stainless Steels 17-4 and 13-8+Mo

    NASA Astrophysics Data System (ADS)

    Hamlin, Robert J.; DuPont, John N.

    2017-01-01

    , which was supported by the MatCalc modeling results. MatCalc modeling results for samples in the S-W-A condition predicted uniform size of precipitates across all regions of the HAZ, and these predictions were supported by the observed trends in mechanical properties. Cross-weld tensile tests performed on GMA welds showed the same trends in mechanical behavior as the simulated HAZ samples. Welding in the S-W-A condition resulted in over 90 pct retention in yield strength when compared to base metal strengths. These findings indicate that welding these PH stainless steels in the solution-treated condition and using a postweld age will provide better and more uniform mechanical properties in the HAZ that are more consistent with the base metal properties.

  15. On colloid retention in saturated porous media in the presence of energy barriers: The failure of α, and opportunities to predict η

    NASA Astrophysics Data System (ADS)

    Johnson, William P.; Tong, Meiping; Li, Xiqing

    2007-12-01

    This contribution reviews recent findings that illuminate the processes governing colloid retention in porous media under environmentally relevant conditions. In the environment, colloids act as conveyors of contaminants, or even as contaminants themselves; however, despite decades of research, we are unable to accurately predict the retention of colloids in granular aquifer media under environmental conditions, where repulsion exists between colloids and surfaces. This failure cannot be blamed solely on the complexities of the subsurface, since colloid filtration theory (CFT) works well in the absence of colloid-collector repulsion despite its idealization of porous media as consisting of spherical grains completely surrounded by fluid envelopes. Rather, the failure of CFT stems from failure to incorporate the correct mechanisms of retention when repulsion exists. Recent observations implicate wedging in grain-to-grain contacts and retention in secondary energy minima as dominant mechanisms of colloid retention in the presence of an energy barrier. Mechanistic simulations in unit cells containing grain-to-grain contacts corroborate these mechanisms of colloid retention. The resulting concept for colloid retention in the presence of an energy barrier involves translation of colloids across the collector surfaces until they become wedged within grain-to-grain contacts, or are retained via secondary energy minima (without attachment) in zones where the balance of fluid drag, diffusion, gravitational, and colloid-collector interaction forces allow retention. The above findings highlight the pore domain geometry as a dominant governor of colloid retention in so far as the geometry gives rise to grain-to-grain contacts and zones of relatively low fluid drag.

  16. Anisotropic mechanical properties of zircon and the effect of radiation damage

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-10-01

    This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson's ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510-1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772-4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson's ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401-2412, 2000a; Farnan and Salje in J Appl Phys 89:2084-2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057-3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.

  17. Mechanical properties of niobium radio-frequency cavities

    DOE PAGES

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; ...

    2015-07-02

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 722 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structure have been conducted up to the tensile strength of the material. Finite-element analysismore » of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young's modulus value of 88.5 GPa and a Poisson's ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities with large crystals are comparable to those of cavities made of fine-grain niobium.« less

  18. Mechanical properties of asthmatic airway smooth muscle.

    PubMed

    Chin, Leslie Y M; Bossé, Ynuk; Pascoe, Chris; Hackett, Tillie L; Seow, Chun Y; Paré, Peter D

    2012-07-01

    Airway smooth muscle (ASM) is the major effector of excessive airway narrowing in asthma. Changes in some of the mechanical properties of ASM could contribute to excessive narrowing and have not been systematically studied in human ASM from nonasthmatic and asthmatic subjects. Human ASM strips (eight asthmatic and six nonasthmatic) were studied at in situ length and force was normalised to maximal force induced by electric field stimulation (EFS). Measurements included: passive and active force versus length before and after length adaptation, the force-velocity relationship, maximal shortening and force recovery after length oscillation. Force was converted to stress by dividing by cross-sectional area of muscle. The only functional differences were that the asthmatic tissue was stiffer at longer lengths (p<0.05) and oscillatory strain reduced isometric force in response to EFS by 19% as opposed to 36% in nonasthmatics (p<0.01). The mechanical properties of human ASM from asthmatic and nonasthmatic subjects are comparable except for increased passive stiffness and attenuated decline in force generation after an oscillatory perturbation. These data may relate to reduced bronchodilation induced by a deep inspiration in asthmatic subjects.

  19. Evaluation of consolidation method on mechanical and structural properties of ODS RAF steel

    NASA Astrophysics Data System (ADS)

    Frelek-Kozak, M.; Kurpaska, L.; Wyszkowska, E.; Jagielski, J.; Jozwik, I.; Chmielewski, M.

    2018-07-01

    In the present work, the effects of the fabrication method on mechanical and structural properties of 12%Cr, 2%W, 0.25%Ti, 0.25%Y2O3 steels were investigated. Materials obtained by Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and Hot Extrusion (HE) methods were studied. The microstructure was characterized by using Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction analysis (EBSD). Mechanical properties of the studied samples were evaluated by using Vickers micro hardness HV0.1, Small Punch Test (SPT) and nanoindentation (NI) methods. The analysis revealed that samples manufactured via HIP and SPS processes exhibit very similar properties, whereas SPS method produces material with slightly lower hardness. In addition, significantly lower mechanical properties of the specimens after HE process were observed. The study described in this article addresses also the problems of mechanical parameters measured in micro- and nano-scale experiments and aims to identify possible pitfalls related to the use of various manufacturing technologies.

  20. Mechanical properties of turbine blade alloys in hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Deluca, D. P.

    1981-01-01

    The mechanical properties of single crystal turbine blade alloys in a gaseous hydrogen environment were determined. These alloys are proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. Mechanical property tests included: tensile, creep, low fatigue (LCF), and crack growth. Specimens were in both transverse and longitudinal directions relative to the casting solidification direction. Testing was conducted on solid specimens exposed to externally pressurized environments of gaseous hydrogen and hydrogen-enriched steam.