Science.gov

Sample records for properties retention mechanisms

  1. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  2. Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods.

    PubMed

    Felfel, R M; Ahmed, I; Parsons, A J; Palmer, G; Sottile, V; Rudd, C D

    2013-05-01

    Fibre reinforced composites have recently received much attention as potential bone fracture fixation applications. Bioresorbable composites based on poly lactic acid (PLA) and phosphate based glass fibre were investigated according to ion release, degradation, biocompatibility and mechanical retention profiles. The phosphate based glass fibres used in this study had the composition of 40P2O5-24MgO-16CaO-16Na2O-4Fe2O3 in mol% (P40). The degradation and ion release profiles for the composites showed similar trends with the amount of sodium and orthophosphate ions released being greater than the other cations and anions investigated. This was attributed to low Dietzal's field strength for the Na(+) in comparison with Mg(2+) and Ca(2+) and breakdown of longer chain polyphosphates into orthophosphate ions. P40 composites exhibited good biocompatibility to human mesenchymal stem cells (MSCs), which was suggested to be due to the low degradation rate of P40 fibres. After 63 days immersion in PBS at 37 °C, the P40 composite rods lost ~1.1% of mass. The wet flexural, shear and compressive strengths for P40 UD rods were ~70%, ~80% and ~50% of their initial dry values after 3 days of degradation, whereas the flexural modulus, shear and compressive strengths were ~70%, ~80%, and ~65% respectively. Subsequently, the mechanical properties remained stable for the duration of the study at 63 days. The initial decrease in mechanical properties was attributed to a combination of the plasticisation effect of water and degradation of the fibre-matrix interface, with the subsequent linear behaviour being attributed to the chemical durability of P40 fibres. P40 composite rods showed low degradation and ion release rates, good biocompatibility and maintained mechanical properties similar to cortical bone for the duration of the study. Therefore, P40 composite rods have huge potential as resorbable intramedullary nails or rods. PMID:23498213

  3. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  4. Mechanical properties and area retention of leather dried with biaxial stretching under vacuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of animal hides to leather involves many complicated chemical and mechanical operations. Drying is one of the mechanical operations, and plays a key role in determining the physical properties of leather. It is where leather acquires its final texture, consistency and flexibility. ...

  5. Water Retention Characteristics and State-Dependent Mechanical and Petro-Physical Properties of a Clay Shale

    NASA Astrophysics Data System (ADS)

    Wild, Katrin M.; Wymann, Linda P.; Zimmer, Sebastian; Thoeny, Reto; Amann, Florian

    2015-03-01

    A series of clay shale specimens in equilibrium with various humidity conditions were used to establish the water retention characteristics, the influence of suction on ultrasonic p-wave velocity and rock mechanical properties such as Young's modulus, Poisson's ratio, onset of dilatancy, unconfined compressive strength and Brazilian tensile strength. Opalinus Clay, a clay shale considered as host rock for the disposal of nuclear waste in Switzerland was utilized. The results showed that the p-wave velocity normal to bedding ( v p,n) dropped sharply upon desaturation until suction approached the air-entry value. The sharp decrease was associated with desiccation cracks solely oriented parallel to bedding. For suction in excess of the air-entry value, v p,n was constant, indicating no further desiccation damage. The suction at the shrinkage limit and at the air-entry point is similar in magnitude. The p-wave velocity parallel to bedding ( v p,p) remained constant in the entire range of suction investigated in this study. The constant v p,p with increasing suction might be associated with the disproportional decrease in the Poisson's ratio and Young's modulus and its opposing effect on p-wave velocity. An almost linear increase in unconfined compressive strength, Brazilian tensile strength, stress at the onset of dilatancy and Young's modulus with increasing suction was observed up to a suction of 56.6 MPa. For suction larger than 56.6 MPa, relatively constant strength and stiffness was observed. The increase is associated with the net contribution of suction to strength/stiffness, which decreases nonlinearly with decreasing volumetric water content. The rate of increase in tensile strength and unconfined compressive strength with increasing suction is different depending on the rock anisotropy. Compared to the strength values (Brazilian tensile and uniaxial compressive strength) obtained from specimens loaded parallel to bedding, the tensile strength parallel to

  6. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    NASA Astrophysics Data System (ADS)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-11-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180-914 cm-1) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention.

  7. Effect of Intercritical Thermomechanical Processing on Austenite Retention and Mechanical Properties in a Multiphase TRIP-Assisted Steel

    NASA Astrophysics Data System (ADS)

    Mohamadizadeh, Alireza; Zarei-Hanzaki, Abbas; Mehtonen, Saara; Porter, David; Moallemi, Mohammad

    2016-01-01

    The effect of dynamic microstructural evolution on austenite retention was investigated in a transformation-induced plasticity-assisted multiphase steel by compressive deformation between 993 K and 1233 K (720 °C and 960 °C) covering the intercritical two-phase region. Based on optical microscopy and electron backscatter diffraction observations, extensive dynamic recovery of ferrite occurred below 1113 K (840 °C), i.e., lower part of two-phase region, due to strain concentration in the ferrite. Deformation-induced ferrite formation occurred at temperatures between 1113 K and 1153 K (840 °C to 880 °C), i.e., upper part of two-phase region, providing up to 27 pct additional fine ferrite grains compared to the undeformed state. Dynamic recrystallization of austenite took place at temperatures above 1173 K (900 °C), above Ac3. The dynamic restoration phenomena were found to have no positive influence on austenite retention; however, shear punch test results indicated that the specimens processed at 1113 K to 1153 K (840 °C to 880 °C) had a very good combination of strength and elongation, which was attributed to the synergic effects of the transformation of retained austenite and the fine ferrite structure generated through deformation-induced ferrite formation. X-ray diffraction analysis and scanning electron microscopy showed that deformation-induced ferrite might have rejected the excess carbon to the boundaries, thereby promoting the austenite formation in these regions. The present findings suggest that austenite can be dynamically stabilized as the result of deformation-induced ferrite formation. The effect is referred to as dynamic transformation-assisted austenite retention.

  8. Scoring Dawg Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Backes, Paul G.

    2011-01-01

    This novel core break-off and retention mechanism consists of a scoring dawg controlled by a set of two tubes (a drill tube and an inner tube). The drill tube and the inner tube have longitudinal concentric holes. The solution can be implemented in an eccentric tube configuration as well where the tubes have eccentric longitudinal holes. The inner tube presents at the bottom two control surfaces for controlling the orientation of the scoring dawg. The drill tube presents a sunk-in profile on the inside of the wall for housing the scoring dawg. The inner tube rotation relative to the drill tube actively controls the orientation of the scoring dawg and hence its penetration and retrieval from the core. The scoring dawg presents a shaft, two axially spaced arms, and a tooth. The two arms slide on the control surfaces of the inner tube. The tooth, when rotated, can penetrate or be extracted from the core. During drilling, the two tubes move together maintaining the scoring dawg completely outside the core. After the desired drilling depth has been reached the inner tube is rotated relative to the drill tube such that the tooth of the scoring dawg moves toward the central axis. By rotating the drill tube, the scoring dawg can score the core and so reduce its cross sectional area. The scoring dawg can also act as a stress concentrator for breaking the core in torsion or tension. After breaking the core, the scoring dawg can act as a core retention mechanism. For scoring, it requires the core to be attached to the rock. If the core is broken, the dawg can be used as a retention mechanism. The scoring dawg requires a hard-tip insert like tungsten carbide for scoring hard rocks. The relative rotation of the two tubes can be controlled manually or by an additional actuator. In the implemented design solution the bit rotation for scoring was in the same direction as the drilling. The device was tested for limestone cores and basalt cores. The torque required for breaking the

  9. Colloid retention mechanisms in single, saturated, variable-aperture fractures.

    PubMed

    Rodrigues, S N; Dickson, S E; Qu, J

    2013-01-01

    The characterization of fractured aquifers is commonly limited to the methodologies developed for unconsolidated porous media aquifers, which results in many uncertainties. Recent work indicates that fractured rocks remove more particulates than they are conventionally credited for. This research was designed to quantify the number of Escherichia coli RS2-GFP retained in single, saturated, variable-aperture fractures extracted from the natural environment. Conservative solute and E. coli RS2-GFP tracer experiments were used to elucidate the relationships between dominant retention mechanisms, aperture field characteristics, and flow rate. A non-destructive method of determining a surrogate measure of a coefficient of variation (COV(S)) for each fracture was used to better understand the transport behaviour of E. coli RS2-GFP. The results from this research all point to the importance of aperture field characterization in understanding the fate and transport of contaminants in fractured aquifers. The mean aperture was a very important characteristic in determining particulate recovery, so were matrix properties, COV(s), and flow rate. It was also determined that attachment is a much more significant retention mechanism than straining under the conditions employed in this research. Finally, it was demonstrated that the dominant retention mechanism in a fracture varies depending on the specific discharge. An improved understanding of the mechanisms that influence the fate and transport of contaminants through fractures will lead to the development of better tools and methodologies for the characterization of fractured aquifers, as well as the ability to manipulate the relevant mechanisms to increase or decrease retention, depending on the application.

  10. Water retention curves and thermal insulating properties of Thermosand

    NASA Astrophysics Data System (ADS)

    Leibniz, Otto; Winkler, Gerfried; Birk, Steffen

    2010-05-01

    The heat loss and the efficiency of isolating material surrounding heat supply pipes are essential issues for the energy budget of heat supply pipe lines. Until now heat loss from the pipe is minimized by enlarging the polyurethane (PU) - insulation thickness around the pipe. As a new approach to minimize the heat loss a thermally insulating bedding material was developed and investigated. Conventional bedding sands cover all necessary soil mechanical properties, but have a high thermal conductivity from λ =1,5 to 1,7 W/(m K). A newly developed embedding material 'Thermosand' shows thermal properties from λ=0,18 W/(m K) (dry) up to 0,88 W/(m K) (wet). The raw material originates from the waste rock stockpiles of a coal mine near Fohnsdorf, Austria. With high temperatures up to nearly 1000 ° C and a special mineral mixture, a natural burned reddish material resembling clinker arises. The soilmechanical properties of Thermosand has been thoroughly investigated with laboratory testing and in situ investigations to determine compaction-, permeability- and shear-behaviour, stiffness and corresponding physical parameters. Test trenches along operational heat pipes with temperature-measurement along several cross-sections were constructed to compare conventional embedding materials with 'Thermosand'. To investigate the influence of varying moisture content on thermal conductivity a 1:1 large scale model test in the laboratory to simulate real insitu-conditions was established. Based on this model it is planned to develop numerical simulations concerning varying moisture contents and unsaturated soil mechanics with heat propagation, including the drying out of the soil during heat input. These simulations require the knowledge about the water retention properties of the material. Thus, water retention curves were measured using both steady-state tension and pressure techniques and the simplified evaporation method. The steady-state method employs a tension table (sand

  11. 32 CFR 637.13 - Retention of property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Retention of property. 637.13 Section 637.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.13 Retention of...

  12. 32 CFR 637.13 - Retention of property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Retention of property. 637.13 Section 637.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.13 Retention of...

  13. 32 CFR 637.13 - Retention of property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Retention of property. 637.13 Section 637.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.13 Retention of...

  14. 32 CFR 637.13 - Retention of property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Retention of property. 637.13 Section 637.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.13 Retention of...

  15. 32 CFR 637.13 - Retention of property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Retention of property. 637.13 Section 637.13 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.13 Retention of...

  16. Mechanical properties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite: an experimental study on rabbits.

    PubMed

    Kettunen, J; Mäkelä, E A; Miettinen, H; Nevalainen, T; Heikkilä, M; Pohjonen, T; Törmälä, P; Rokkanen, P

    1998-07-01

    A novel composite material with ultra-high flexural strength and cortical-bone-matched elastic modulus made of liquid crystalline polymer reinforced with carbon fibres (LCP/CF) is described. Cylindrical rods of 3.2 mm diameter and 50 mm length were fabricated by a preimpregnation/pultrusion method. The initial mechanical properties of the LCP/CF rods were as follows: flexural strength 448 MPa, flexural modulus 43 GPa, shear strength 164 MPa, and interlaminar shear strength 15.3 MPa. In the in vitro study the LCP/CF rods were immersed in phosphate-buffered saline of 37 degrees C for 12, 24, and 52 weeks. In the in vivo study the LCP/CF rods were implanted into the medullary cavity of both femora and subcutaneous tissue of the New Zealand White rabbits for 12, 24, and 52 weeks. The flexural strength of the LCP/CF rods at 52 weeks was 463 MPa in saline, 467 MPa in the subcutaneous tissue and 466 MPa in the medullary cavity of the femur. The flexural modulus was 44.6, 48.9 and 46.2 GPa, respectively. The corresponding shear strength values were 160, 178 and 181 MPa. We conclude that the LCP/CF is a promising material for high-load applications and the LCP/CF rods retain their initial mechanical properties in one-year follow-up in vivo and in vitro.

  17. Electrical Transmission Line Diametrical Retention Mechanism

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  18. A float mechanism of retention in reversed-phase chromatography

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Deineka, L. A.; Saenko, I. I.; Chulkov, A. N.

    2015-07-01

    A float mechanism of retention in reversed-phase HPLC is proposed as an alternative to the known mechanisms of the distribution and hydrophobic expulsion of sorbate to the surface of a sorbent. Experimental data that the sorption of a flavylium structure is poorly sensitive to the position of OH groups, and that the retention of anthocyanins depends on the length of bonded alkyl radicals of reversed phase, form the basis of the proposed hypothesis. It is noted that the retention of anthocyanins depends on the orientation of hydroxyl groups in carbohydrate radicals, due to which the chromatographic behavior of anthocyanins is different for glucosides and galactosides, for arabinosides and xylosides, and so on. In other words, retention is a reliable indicator of the composition of a carbohydrate fragment. It is concluded that carbohydrate radicals serve as unique floats, while flat flavilic ions penetrate into the bonded phase. The existence of floats is the main reason for the lower efficiency (of the number of theoretical plates) of the peaks of anthocyanins. It is shown that if two carbohydrate radicals are present at different sites of aglycone (a two-float sorbate), the peaks of the substance are characterized by substantial additional broadening.

  19. Influence of sodium chloride and pH during acidic marination on water retention and mechanical properties of turkey breast meat.

    PubMed

    Goli, T; Ricci, J; Bohuon, P; Marchesseau, S; Collignan, A

    2014-03-01

    Turkey breast cubes underwent acidic marination in the presence of salt. The transfer of water, salt and acid was measured, and texture was assessed on the cooked meat. While significant mass gains were observed during marination, from 20 minutes of immersion onwards, only long durations produced an overall matter balance greater than that of non-marinated meat. From the first minutes of immersion, these transfers caused hardening, regardless of the presence of salt in the marinade. For longer durations, only in the absence of salt was significant tenderizing seen in comparison to the non-marinated control. This effect appears to be due on the one hand to passing the isoelectric pH of the meat during acidification, and on the other hand to setting up antagonistic mechanisms breaking down or reinforcing connective tissues by acid and salt respectively. The high degree of tenderization observed in a water-acid solution can be explained partly by dilution of the fiber load per section unit due to protein solubilization.

  20. Characterization and radionuclide retention properties of heat-treated concrete

    NASA Astrophysics Data System (ADS)

    Kienzler, B.; Borkel, C.; Finck, N.; Heck, S.; Hilpp, S.; Schlieker, M.; Metz, V.; Plaschke, M.; Soballa, E.; Cron, T.; Miassoedov, A.

    This study was performed to obtain insight into the characteristics of contaminated cementitious materials which may result from a light water reactor core melt down accident. Such material arose in a huge amount from the Fukushima disaster. We analyzed the elemental and mineralogical composition of similar, heat-treated material and investigated its radionuclide retention properties. We present the radionuclide retention properties of concrete samples which originally were part of an experiment using a thick-walled concrete recipient that had been heated by simulating a reactor melt down. Batch sorption experiments have been performed with the elements Cs(I), Co(II), and Eu(III) in seawater under aerobic conditions. Sorption coefficients were measured: Rs(Eu) ∼5800 ml g-1 and Rs(Co) ∼110 ml g-1. A tentative value for Cs was determined, adulterated by the relatively high release of Cs from the concrete itself.

  1. Mechanical Properties of Polymers.

    ERIC Educational Resources Information Center

    Aklonis, J. J.

    1981-01-01

    Mechanical properties (stress-strain relationships) of polymers are reviewed, taking into account both time and temperature factors. Topics include modulus-temperature behavior of polymers, time dependence, time-temperature correspondence, and mechanical models. (JN)

  2. Praying Mantis Bending Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Lindermann, Randel A.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale, yet is robust and versatile enough to be used for a variety of core samples. The new design consists of a set of tubes (a drill tube, an outer tube, and an inner tube) and means of sliding the inner and outer tubes axially relative to each other. Additionally, a sample tube can be housed inside the inner tube for storing the sample. The inner tube fits inside the outer tube, which fits inside the drill tube. The inner and outer tubes can move axially relative to each other. The inner tube presents two lamellae with two opposing grabbing teeth and one pushing tooth. The pushing tooth is offset axially from the grabbing teeth. The teeth can move radially and their motion is controlled by the outer tube. The outer tube presents two lamellae with radial extrusions to control the inner tube lamellae motion. In breaking the core, the mechanism creates two support points (the grabbing teeth and the bit tip) and one push point. The core is broken in bending. The grabbing teeth can also act as a core retention mechanism. The praying mantis that is disclosed herein is an active core breaking/retention mechanism that requires only one additional actuator other than the drilling actuator. It can break cores that are attached to the borehole bottom as

  3. Retention mechanisms and binding states of deuterium implanted into beryllium

    NASA Astrophysics Data System (ADS)

    Reinelt, M.; Allouche, A.; Oberkofler, M.; Linsmeier, Ch

    2009-04-01

    The retention of 1 keV D+ ions implanted into clean and oxidized single crystalline Be at room and elevated temperatures is investigated by a combination of in situ analytical techniques including temperature programmed desorption (TPD), nuclear reaction analysis, low-energy ion spectroscopy (LEIS) and x-ray photoelectron spectroscopy. For the first time, the whole temperature regime for deuterium release and the influence of thin oxide films on the release processes are clarified. The cleaned and annealed Be sample has residual oxygen concentration equivalent to 0.2 monolayer (ML) BeO in the near-surface region as the only contamination. LEIS shows that Be from the volume covers thin BeO surface layers above an annealing temperature of 1000 K by segregation, forming a pure Be-terminated surface, which is stable at lower temperatures until again oxidized by residual gas. No deuterium is retained in the sample above 950 K. By analyzing TPD spectra, active retention mechanisms and six energetically different binding states are identified. Activation energies (EA) for the release of D from binding states in Be are obtained by modelling the experimental data. Two ion-induced trap sites with release temperatures between 770 and 840 K (EA= 1.88 and 2.05 eV, respectively) and two trap sites (release between 440 and 470 K) due to supersaturation of the bulk above the steady state fluence of 2×1017 cm-2 are identified. None of the release steps shows a surface recombination limit. A thin BeO surface layer introduces an additional binding state with a release temperature of 680 K. Implantation at elevated temperatures (up to 530 K) changes the retention mechanism above the saturation limit and populates a binding state with a release temperature of 570 K.

  4. Retention and release mechanisms of deuterium implanted into beryllium

    NASA Astrophysics Data System (ADS)

    Oberkofler, M.; Reinelt, M.; Linsmeier, Ch.

    2011-06-01

    The fraction of deuterium (D) that is retained upon irradiation of beryllium (Be) as well as the temperatures at which implanted D is released are of importance for the international fusion experiment ITER, where Be will be used as an armor material. The influence of single parameters on retention and release is investigated in laboratory experiments performed under well defined conditions with the aim to identify dominant underlying mechanisms and thus be able to predict the behavior of the Be wall in ITER. Recent progress in the quantification of retained fractions and release temperatures as well as in the understanding of the governing mechanisms is presented. The retained fraction upon implantation of D at 1 keV into Be(1 1 2¯ 0) to fluences far below the saturation threshold of 10 21 m -2 is almost 95%, the remaining 5% being attributed to reflection at the surface. At these low fluences, no dependence of the retained fractions on implantation energy is observed. At fluences of the order of 10 21 m -2 and higher, saturation of the irradiated material affects the retention, leading to lower retained fractions. Furthermore, at these fluences the retained fractions decrease with decreasing implantation energies. Differences in the retained fractions from implanted Be(1 1 2¯ 0) and polycrystalline Be are explained by anisotropic diffusion of interstitials during implantation, leading to an amount of surviving D-trap complexes that depends on surface-orientation. Temperature-programmed desorption (TPD) spectra are recorded after implantation of fluences of the order of 10 19 m -2 at various energies and simulated by means of a newly developed code based on coupled reaction-diffusion systems (CRDS). The asymmetric shape of the TPD peaks is reproduced by introducing a local D accumulation process into the model.

  5. Mechanical retention versus bonding of amalgam and gallium alloy restorations.

    PubMed

    Eakle, W S; Staninec, M; Yip, R L; Chavez, M A

    1994-10-01

    The retention of amalgam and gallium alloy restorations in proximal box forms was measured in vitro, and three different adhesives to conventional undercuts were compared. For control, restorations were placed without undercuts or adhesives. No significant difference was found between amalgam and gallium alloys with each of the five methods of retention used. Alloys placed without retention or adhesives were significantly less retentive than all other groups. When Tytin alloy was used, no difference was found in retention among the restorations retained with Panavia or All-Bond adhesive or an occlusal dovetail and retention grooves, but Amalgambond adhesive was less retentive than all three of these methods. When gallium alloy was used, both Panavia and All-Bond adhesive were more retentive than undercuts, but the effect of Amalgambond adhesive was more retentive than undercuts, but the effect of Amalgambond adhesive was comparable to that of undercuts. The results of this study indicate that adhesives could be used in place of traditional undercuts to retain amalgam and gallium alloys, thus saving a considerable amount of tooth structure. PMID:7990038

  6. Mechanisms of deterioration of nutrients. [retention of flavor during freeze drying

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1975-01-01

    The retention of flavor during freeze drying was studied with model systems. Mechanisms by which flavor retention phenomena is explained were developed and process conditions specified so that flavor retention is optimized. The literature is reviewed and results of studies of the flavor retention behavior of a number of real food products, including both liquid and solid foods are evaluated. Process parameters predicted by the mechanisms to be of greatest significance are freezing rate, initial solids content, and conditions which result in maintenance of sample structure. Flavor quality for the real food showed the same behavior relative to process conditions as predicted by the mechanisms based on model system studies.

  7. Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants

    SciTech Connect

    Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.; Brockman, Fred J.

    2012-02-24

    The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy's River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize progress and results on new experiments focused on understanding the conditions that result in low gas retention. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments began with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments. The most significant results from the current experiments are that progressively lower gas retention occurs in tests with progressively deeper sediment layers and that the method of gas generation also affects the maximum retention. Based on the results of this study, it is plausible that relatively low gas retention could occur in sufficiently deep tank waste in DSTs. The current studies and previous work, however, have not explored how gas retention and release will behave when two or more layers with different properties are present.

  8. Phosphorus retention mechanisms of a water treatment residual.

    PubMed

    Ippolito, J A; Barbarick, K A; Heil, D M; Chandler, J P; Redente, E F

    2003-01-01

    Water treatment residuals (WTRs) are a by-product of municipal drinking water treatment plants and can have the capacity to adsorb tremendous amounts of P. Understanding the WTR phosphorus adsorption process is important for discerning the mechanism and tenacity of P retention. We studied P adsorbing mechanism(s) of an aluminum-based [Al2(SO4)3 x 14H2O] WTR from Englewood, CO. In a laboratory study, we shook mixtures of P-loaded WTR for 1 to 211 d followed by solution pH analysis, and solution Ca, Al, and P analysis via inductively coupled plasma atomic emission spectroscopy. After shaking periods, we also examined the solids fraction by X-ray diffraction (XRD) and electron microprobe analysis using wavelength dispersive spectroscopy (EMPA-WDS). The shaking results indicated an increase in pH from 7.2 to 8.2, an increase in desorbed Ca and Al concentrations, and a decrease in desorbed P concentration. The pH and desorbed Ca concentration increases suggested that CaCO3 controlled Ca solubility. Increased desorbed Al concentration may have been due to Al(OH)4 formation. Decreased P content, in conjunction with the pH increase, was consistent with calcium phosphate formation or precipitation. The system appeared to be undersaturated with respect to dicalcium phosphate (DCP; CaHPO4) and supersaturated with respect to octacalcium phosphate [OCP; Ca4H(PO4)3 x 2.5H2O]. The Ca and Al increases, as well as OCP formation, were supported by MINTEQA2 modeling. The XRD and EMPA-WDS results for all shaking times, however, suggested surface P chemisorption as an amorphous Al-P mineral phase.

  9. Dislocation mechanism of deuterium retention in tungsten under plasma implantation.

    PubMed

    Dubinko, V I; Grigorev, P; Bakaev, A; Terentyev, D; van Oost, G; Gao, F; Van Neck, D; Zhurkin, E E

    2014-10-01

    We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented.

  10. Mechanical Properties of Cells

    NASA Technical Reports Server (NTRS)

    Bradley, Robert; Becerril, Joseph; Jeevarajan, Anthony

    2007-01-01

    Many physiologic and pathologic processes alter the biomechanical properties of the tissue they affect, and these changes may be manifest at the single cell level. The normal and abnormal mechanical properties of a given cell type can be established with the aid of an atomic force microscope (AFM), nonetheless, consistency in the area of the tip has been a mayor limitation of using the AFM for quantitative measurements of mechanical properties. This project attempts to overcome this limitation by using materials with a known elastic modulus, which resembles the one of the cell, to create force-deformation curves to calculate the area of indentation by means of Hooke s Law (sigma = E(epsilon)), which states that stress (sigma) is proportional to the strain (epsilon) where the constant of proportionality, E, is called the Young s modulus, also referred as the elastic modulus. Hook s Law can be rearranged to find the area of indentation (Area= Force/ E(epsilon)), where the indentation force is defined by the means of the added mass spring calibration method.

  11. Mechanical Properties of Aerogels

    NASA Technical Reports Server (NTRS)

    Parmenter, Kelly E.; Milstein, Frederick

    1995-01-01

    Aerogels are extremely low density solids that are characterized by a high porosity and pore sizes on the order of nanometers. Their low thermal conductivity and sometimes transparent appearance make them desirable for applications such as insulation in cryogenic vessels and between double paned glass in solar architecture. An understanding of the mechanical properties of aerogels is necessary before aerogels can be used in load bearing applications. In the present study, the mechanical behavior of various types of fiber-reinforced silica aerogels was investigated with hardness, compression, tension and shear tests. Particular attention was paid to the effects of processing parameters, testing conditions, storage environment, and age on the aerogels' mechanical response. The results indicate that the addition of fibers to the aerogel matrix generally resulted in softer, weaker materials with smaller elastic moduli. Furthermore, the testing environment significantly affected compression results. Tests in ethanol show an appreciable amount of scatter, and are not consistent with results for tests in air. In fact, the compression specimens appeared to crack and begin to dissolve upon exposure to the ethanol solution. This is consistent with the inherent hydrophobic nature of these aerogels. In addition, the aging process affected the aerogels' mechanical behavior by increasing their compressive strength and elastic moduli while decreasing their strain at fracture. However, desiccation of the specimens did not appreciably affect the mechanical properties, even though it reduced the aerogel density by removing trapped moisture. Finally, tension and shear test results indicate that the shear strength of the aerogels exceeds the tensile strength. This is consistent with the response of brittle materials. Future work should concentrate on mechanical testing at cryogenic temperatures, and should involve more extensive tensile tests. Moreover, before the mechanical response

  12. Rolling-Tooth Core Breakoff and Retention Mechanism

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bickler, Donald B.; Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Hudson, Nicolas H.

    2011-01-01

    Sampling cores requires the controlled breakoff of the core at a known location with respect to the drill end. An additional problem is designing a mechanism that can be implemented at a small scale that is robust and versatile enough to be used for a variety of core samples. This design consists of a set of tubes (a drill tube and an inner tube) and a rolling element (rolling tooth). An additional tube can be used as a sample tube. The drill tube and the inner tube have longitudinal holes with the axes offset from the axis of each tube. The two eccentricities are equal. The inner tube fits inside the drill tube, and the sample tube fits inside the inner tube. While drilling, the two tubes are positioned relative to each other such that the sample tube is aligned with the drill tube axis and core. The drill tube includes teeth and flutes for cuttings removal. The inner tube includes, at the base, the rolling element implemented as a wheel on a shaft in an eccentric slot. An additional slot in the inner tube and a pin in the drill tube limit the relative motion of the two tubes. While drilling, the drill assembly rotates relative to the core and forces the rolling tooth to stay hidden in the slot along the inner tube wall. When the drilling depth has been reached, the drill bit assembly is rotated in the opposite direction, and the rolling tooth is engaged and penetrates into the core. Depending on the strength of the created core, the rolling tooth can score, lock the inner tube relative to the core, start the eccentric motion of the inner tube, and break the core. The tooth and the relative position of the two tubes can act as a core catcher or core-retention mechanism as well. The design was made to fit the core and hole parameters produced by an existing bit; the parts were fabricated and a series of demonstration tests were performed. This invention is potentially applicable to sample return and in situ missions to planets such as Mars and Venus, to moons such

  13. Mechanisms of nitrogen retention in forest ecosystems - A field experiment

    NASA Technical Reports Server (NTRS)

    Vitousek, P. M.; Matson, P. A.

    1984-01-01

    Intensive forest management led to elevated losses of nitrogen from a recently harvested loblolly pine plantation in North Carolina. Measurements of nitrogen-15 retention in the field demonstrated that microbial uptake of nitrogen during the decomposition of residual organic material was the most important process retaining nitrogen. Management practices that remove this material cause increased losses of nitrogen to aquatic ecosystems and the atmosphere.

  14. Determining parameters and mechanisms of colloid retention and release in porous media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework is presented to determine fundamental parameters and mechanisms controlling colloid (including microbes and nanoparticles) retention and release on hypothetical porous medium surfaces that exhibit distributions of nanoscale chemical heterogeneity, nano- to microscale roughness, and spati...

  15. Magnitude and distribution of stresses in composite resin and sound dentine interface with mechanical retentions

    PubMed Central

    Borie, Eduardo; Orsi, Iara-Augusta; Del Sol, Mariano

    2015-01-01

    Background Adhesive systems are constantly subjected to mechanical and chemical stresses that negatively impact the integrity and durability of the dentine-adhesive interface. Despite the lack of evidence to support or reject the clinical indication for mechanical retention, the potential further contribution of these preparations to the behavior of the composite resin-sound dentine bond has been rarely addressed. The authors evaluated by finite element analysis the effect of mechanical retention on the magnitude and distribution of stresses in a composite resin-sound dentin bonding interface when subjected to tensile and shear forces. Material and Methods A three-dimensional model was created based on three cylindrical volumes representing the sound dentin, adhesive system, and composite resin. From this main model, two models were designed to simulate dentine bonding: 1) a model with no mechanical retention, which considered flat adhesion; and 2) a model with retention, which considered four hemispherical holes on the dentine surface. Both groups were subjected to linear static analysis under tensile and shear loading of 200N. Results At the model with retentions’ bonding interface under tensile and shear loading, a concentration of Von Mises equivalent stress was observed within the retentions, with a reduction of those stresses on the bonding boundary surface. Conclusions Additional mechanical retention increases the tensile strength of the sound dentin-composite resin bonding interface, promoting a decrease in the magnitude of the stresses and their redistribution under tensile and shear loading. Key words:Adhesion, composite resins, dentine, finite element analysis. PMID:26155338

  16. Payload retention fittings for space shuttle payload ground handling mechanism

    NASA Technical Reports Server (NTRS)

    Cassisi, V.

    1983-01-01

    New ground fittings for Space Shuttle payload handling were designed, built, and tested by Government and contractor personnel at the NASA John F. Kennedy Space Center (KSC), Florida, from May 1981 through November 1982. Design evolution of the Space Shuttle Orbiter payload retention fittings, which contained a load-sensitive split bushing in a pillow-block housing, created an incompatibility between the interfacing ground and airborne equipment. New fittings were designed and successfully used beginning with the fifth Space Shuttle flight, STS-5. An active hydraulic spring system containing a gas accumulator in the hydraulic system provided the load relief required to protect the Orbiter bushing from damage.

  17. The effect of surface properties of polycrystalline, single phase metal coatings on bacterial retention.

    PubMed

    Whitehead, Kathryn A; Olivier, Sebastien; Benson, Paul S; Arneborg, Nils; Verran, Joanna; Kelly, Peter

    2015-03-16

    In the food industry microbial contamination of surfaces can result in product spoilage which may lead to potential health problems of the consumer. Surface properties can have a substantial effect on microbial retention. The surface characteristics of chemically different coatings (Cu, Ti, Mo, Ag, Fe) were defined using white light profilometry (micro-topography and surface features), atomic force microscopy (nano-topography) and physicochemical measurements. The Ag coating had the greatest topography measurements and Fe and Mo the least. Mo was the most hydrophobic coating (lowest γAB,γ(+), γ(-)) whilst Ag was the most hydrophilic (greatest γAB,γ(+), γ(-)). The physicochemical results for the Fe, Ti and Cu coatings were found to lie between those of the Ag and Mo coatings. Microbiological retention assays were carried out using Listeria monocytogenes, Escherichia coli and Staphylococcus aureus in order to determine how surface properties influenced microbial retention. It was found that surface chemistry had an effect on microbial retention, whereas the shape of the surface features and nano-topography did not. L. monocytogenes and S. aureus retention to the surfaces were mostly affected by surface micro-topography, whereas retention of E. coli to the coatings was mostly affected by the coating physicochemistry. There was no trend observed between the bacterial cell surface physicochemistry and the coating physicochemistry. This work highlights that different surface properties may be linked to factors affecting microbial retention hence, the use of surface chemistry, topography or physicochemical factors alone to describe microbial retention to a surface is no longer adequate. Moreover, the effects of surface parameters on microbial retention should be considered individually for each bacterial genus.

  18. Critical contribution of nonlinear chromatography to the understanding of retention mechanism in reversed-phase liquid chromatography

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2005-11-01

    The retention of most compounds in RPLC proceeds through a combination of several independent mechanisms. We review a series of recent studies made on the behavior of several commercial C{sub 18}-bonded stationary phases and of the complex, mixed retention mechanisms that were observed in RPLC. These studies are essentially based on the acquisition of adsorption isotherm data, on the modeling, and on the interpretation of these data. Because linear chromatography deals only with the initial slope of the global, overall, or apparent isotherm, it is unable fully to describe the complete adsorption mechanism. It cannot even afford clues as to the existence of several overlaid retention mechanisms. More specifically, it cannot account for the consequences of the surface heterogeneity of the packing material. The acquisition of equilibrium data in a wide concentration range is required for this purpose. Frontal analysis (FA) of selected probes gives data that can be modeled into equilibrium isotherms of these probes and that can also be used to calculate their adsorption or affinity energy distribution (AED). The combination of these data, the detailed study of the best constants of the isotherm model, the determination of the influence of experimental parameters (e.g., buffer pH and pI, temperature) on the isotherm constants provide important clues regarding the heterogeneity of the adsorbent surface and the main properties of the adsorption mechanisms. The comparison of similar data obtained for the adsorption of neutral and ionizable compounds, treated with the same approach, and the investigation of the influence on the thermodynamics of phase equilibrium of the experimental conditions (temperature, average pressure, mobile phase composition, nature of the organic modifier, and, for ionizable compounds, of the ionic strength, the nature, the concentration of the buffer, and its pH) brings further information. This review provides original conclusions regarding

  19. Analysis of properties of synthetic mineral microparticles for retention and drainage system

    NASA Astrophysics Data System (ADS)

    Lee, Sa Yong

    Over the past 20 years there has been a revolution involving the use of nano- or macro-sized particles as a component of drainage and retention systems during the manufacture of paper. More recently a group of patented technologies called Synthetic Mineral Microparticles (SMM) has been invented and developed. This system has potential to further promote the drainage of water and retention of fine particles during papermaking. Prior research, as well as our own preliminary research showed that the SMM system has advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. In spite of the demonstrated advantages of this SMM system, the properties and activity of SMM particles in the aqueous state have not been elucidated yet. To help understand the molecular mechanisms involved in SMM technology, streaming current and potentiometric titration were employed to characterize the charge behavior of SMM, depending on the synthetic conditions, which included variation of the Al/Si ratio, partial neutralization of Al species, salt addition and shear rate. Surface area of SMM and the distribution of SMM particle size were investigated with scanning electron microscopy in order to elucidate the relationship between the morphology and coagulation behavior of SMM, versus the pre-stated synthetic conditions, as well as to estimate the optimal conditions to produce SMM as a retention and drainage aid for use during papermaking. Through the streaming current titration experiments it was found that pH variation, caused by the change of Al/Si ratio and partial neutralization of aluminum's acidity, profoundly affects the charge properties of SMM. These effects can be attributed to the variation of Al-ion speciation and the influence ionizable groups on the Si-containing particle surfaces. The relationship between Al/Si ratio and isoelectric pH, measured by potentiometric

  20. Detailed insights into the retention mechanism of caffeine metabolites on the amide stationary phase in hydrophilic interaction chromatography.

    PubMed

    Guo, Yong; Shah, Rajan

    2016-09-01

    The amide phase was investigated using a wide range of acetonitrile content in the mobile phase in both the HILIC and RPLC modes. Using caffeine metabolites as the model compounds, the retention, thermodynamic and kinetic data was obtained under various mobile phase conditions and supported the previous postulation that there might be a transition of the predominant retention mechanism in relation to the acetonitrile content in HILIC. On the amide phase, hydrophilic partitioning seemed to be the predominant retention mechanism below 85% acetonitrile; and a different retention mechanism (presumably surface adsorption) made more and more significant contributions to the overall retention when the acetonitrile content reached above 85%. This study also provided more direct evidences to explain the effect of salt concentration on the retention of non-charged solutes in HILIC. In addition, the retention, thermodynamic and kinetic data suggest that the amide phase behaved very differently from the conventional C18 phase in the RPLC mode. PMID:27522153

  1. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen.

    PubMed

    Picot, Julien; Ndour, Papa Alioune; Lefevre, Sophie D; El Nemer, Wassim; Tawfik, Harvey; Galimand, Julie; Da Costa, Lydie; Ribeil, Jean-Antoine; de Montalembert, Mariane; Brousse, Valentine; Le Pioufle, Bruno; Buffet, Pierre; Le Van Kim, Caroline; Français, Olivier

    2015-04-01

    Red blood cells (RBCs) are deformable and flow through vessels narrower than their own size. Their deformability is most stringently challenged when they cross micrometer-wide slits in the spleen. In several inherited or acquired RBC disorders, blockade of small vessels by stiff RBCs can trigger organ damage, but a functional spleen is expected to clear these abnormal RBCs from the circulation before they induce such complications. We analyzed flow behavior of RBCs in a microfluidic chip that replicates the mechanical constraints imposed on RBCs as they cross the human spleen. Polymer microchannels obtained by soft lithography with a hydraulic diameter of 25 μm drove flow into mechanical filtering units where RBCs flew either slowly through 5- to 2-μm-wide slits or rapidly along 10-μm-wide channels, these parallel paths mimicking the splenic microcirculation. Stiff heated RBCs accumulated in narrow slits seven times more frequently than normal RBCs infused simultaneously. Stage-dependent retention of Plasmodium falciparum-infected RBCs was also observed in these slits. We also analyzed RBCs from patients with hereditary spherocytosis and observed retention for those having the most altered mechanical properties as determined by ektacytometry. Thus, in keeping with previous observations in vivo and ex vivo, the chip successfully discriminated poorly deformable RBCs based on their distinct mechanical properties and on the intensity of the cell alteration. Applications to the exploration of the pathogenesis of malaria, hereditary spherocytosis, sickle cell disease and other RBC disorders are envisioned. PMID:25641515

  2. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen.

    PubMed

    Picot, Julien; Ndour, Papa Alioune; Lefevre, Sophie D; El Nemer, Wassim; Tawfik, Harvey; Galimand, Julie; Da Costa, Lydie; Ribeil, Jean-Antoine; de Montalembert, Mariane; Brousse, Valentine; Le Pioufle, Bruno; Buffet, Pierre; Le Van Kim, Caroline; Français, Olivier

    2015-04-01

    Red blood cells (RBCs) are deformable and flow through vessels narrower than their own size. Their deformability is most stringently challenged when they cross micrometer-wide slits in the spleen. In several inherited or acquired RBC disorders, blockade of small vessels by stiff RBCs can trigger organ damage, but a functional spleen is expected to clear these abnormal RBCs from the circulation before they induce such complications. We analyzed flow behavior of RBCs in a microfluidic chip that replicates the mechanical constraints imposed on RBCs as they cross the human spleen. Polymer microchannels obtained by soft lithography with a hydraulic diameter of 25 μm drove flow into mechanical filtering units where RBCs flew either slowly through 5- to 2-μm-wide slits or rapidly along 10-μm-wide channels, these parallel paths mimicking the splenic microcirculation. Stiff heated RBCs accumulated in narrow slits seven times more frequently than normal RBCs infused simultaneously. Stage-dependent retention of Plasmodium falciparum-infected RBCs was also observed in these slits. We also analyzed RBCs from patients with hereditary spherocytosis and observed retention for those having the most altered mechanical properties as determined by ektacytometry. Thus, in keeping with previous observations in vivo and ex vivo, the chip successfully discriminated poorly deformable RBCs based on their distinct mechanical properties and on the intensity of the cell alteration. Applications to the exploration of the pathogenesis of malaria, hereditary spherocytosis, sickle cell disease and other RBC disorders are envisioned.

  3. E. coli RS2GFP Retention Mechanisms in Laboratory-Scale Fractured Rocks: A Statistical Model

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. N.; Qu, J.; Dickson, S. E.

    2011-12-01

    With billions of gallons of groundwater being withdrawn every day in the US and Canada, it is imperative to understand the mechanisms which jeopardize this resource and the health of those who rely on it. Porous media aquifers have typically been considered to provide significant filtration of particulate matter (e.g. microorganisms), while the fractures in fractured rock aquifers and aquitards are considered to act as contaminant highways allowing a large fraction of pathogens to travel deep into an aquifer relatively quickly. Recent research results indicate that fractured rocks filter out more particulates than typically believed. The goal of the research presented here is to quantify the number of E. coli RS2GFP retained in a single, saturated, laboratory-scale fracture, and to relate the retention of E. coli RS2GFP to the aperture field characteristics and groundwater flow rate. To achieve this goal, physical experiments were conducted at the laboratory-scale to quantify the retention of E. coli RS2GFP through several single, saturated, dolomitic limestone fractures under a range of flow rates. These fractures were also cast with a transparent epoxy in order to visualize the transport mechanisms in the various different aperture fields. The E. coli RS2GFP is tagged with a green-fluorescent protein (GFP) that is used to obtain visualization data when excited by ultraviolet light. A series of experiments was conducted, each of which involved the release of a known number of E. coli RS2GFP at the upstream end of the fracture and measuring the effluent concentration profile. These experiments were conducted using both the natural rock and transparent cast of several different aperture fields, under a range of flow rates. The effects of different aperture field characteristics and flow rates on the retention of E. coli RS2GFP will be determined by conducting a statistical analysis of the retention data under different experimental conditions. The images captured

  4. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer.

    PubMed

    Liang, Rui; Liu, Mingzhu

    2006-02-22

    A double-coated, slow-release, and water-retention urea fertilizer (DSWU) was prepared by cross-linked poly(acrylic acid)-containing urea (PAAU) (the outer coating), polystyrene (PS) (the inner coating), and urea granule (the core). Elemental analysis results showed that the nitrogen content of the product was 33.6 wt %. The outer coating (PAAU) regulated the nitrogen release rate and protected the inner coating from damage. The slow-release property of the product was investigated in water and in soil. The possible mechanism of nitrogen release was proposed. The influences of PS coating percentage, temperature, water absorbency, and pH on the release of nitrogen were also investigated. It was found that PS coating percentage, temperature, and water absorbency had a significant influence on the release of nitrogen. However, the pH had no effect. The water-retention property of the product was also investigated. The results showed that the product not only had a good slow-release property but also excellent water-retention capacity, which could effectively improve the utilization of fertilizer and water resources. The results of the present work indicated that the DSWU would find good application in agriculture and horticulture, especially in drought-prone areas where the availability of water is insufficient. PMID:16478265

  5. Behavior of adsorbed and fluid phases versus retention properties of amino acids on the teicoplanin chiral selector.

    PubMed

    Poplewska, Izabela; Kramarz, Renata; Piatkowski, Wojciech; Seidel-Morgenstern, Andreas; Antos, Dorota

    2008-05-23

    The relationship between adsorption equilibria of two amino acids, i.e., l,d-threonine and l,d-methionine on the teicoplanin chiral selector and their phase behavior has been analyzed. The experimental and numerical methods have been proposed to determine activity coefficients of amino acids in different solvent systems. The procedure was based on the analysis of solubility properties of the amino acids in aqueous solutions of methanol, ethanol and propanol-2-ol used as the mobile phases in chromatographic elution. The solubility measured in mixed alcohol-water solutions was correlated with the non-random-two-liquid (NRTL) model for the activity coefficients. The values of activity coefficients were incorporated into the adsorption isotherm equation, which allowed the analysis of retention properties of the amino acids versus their fluid phase behavior. For the investigation the experimental data of adsorption equilibria of amino acids as well as of the mobile phase constituents acquired in a previous work were exploited. The composition of both the mobile and the adsorbed phases was found to affect the retention properties of the amino acids. For water-rich mobile phases the activity in the adsorbed phase determined the retention mechanism, while for the alcohol-rich systems activity in the mobile phase was predominant.

  6. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer.

    PubMed

    Liang, Rui; Liu, Mingzhu

    2006-02-22

    A double-coated, slow-release, and water-retention urea fertilizer (DSWU) was prepared by cross-linked poly(acrylic acid)-containing urea (PAAU) (the outer coating), polystyrene (PS) (the inner coating), and urea granule (the core). Elemental analysis results showed that the nitrogen content of the product was 33.6 wt %. The outer coating (PAAU) regulated the nitrogen release rate and protected the inner coating from damage. The slow-release property of the product was investigated in water and in soil. The possible mechanism of nitrogen release was proposed. The influences of PS coating percentage, temperature, water absorbency, and pH on the release of nitrogen were also investigated. It was found that PS coating percentage, temperature, and water absorbency had a significant influence on the release of nitrogen. However, the pH had no effect. The water-retention property of the product was also investigated. The results showed that the product not only had a good slow-release property but also excellent water-retention capacity, which could effectively improve the utilization of fertilizer and water resources. The results of the present work indicated that the DSWU would find good application in agriculture and horticulture, especially in drought-prone areas where the availability of water is insufficient.

  7. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  8. Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination.

    PubMed

    Roth, Jerome A

    2006-01-01

    This review attempts to summarize and clarify our basic knowledge as to the various factors that potentially influence the risks imposed from chronic exposure to high atmospheric levels of manganese (Mn). The studies describe the interrelationship of the different systems in the body that regulate Mn homeostasis by characterizing specific, biological components involved in its systemic and cellular uptake and its elimination from the body. A syndrome known as manganism occurs when individuals are exposed chronically to high levels of Mn, consisting of reduced response speed, intellectual deficits, mood changes, and compulsive behaviors in the initial stages of the disorder to more prominent and irreversible extrapyramidal dysfunction resembling Parkinson's disease upon protracted exposure. Mn intoxication is most often associated with occupations in which abnormally high atmospheric concentrations prevail, such as in welding and mining. There are three potentially important routes by which Mn in inspired air can gain access the body to: 1) direct uptake into the CNS via uptake into the olfactory or trigeminal presynaptic nerve endings located in the nasal mucosa and the subsequent retrograde axonal transport directly into the CNS; 2) transport across the pulmonary epithelial lining and its subsequent deposition into lymph or blood; and/or 3) mucocilliary elevator clearance from the lung and the subsequent ingestion of the metal in the gastrointestinal tract. Each of these processes and their overall contribution to the uptake of Mn in the body is discussed in this review as well as a description of the various mechanisms that have been proposed for the transport of Mn across the bloodbrain barrier which include both a transferrin-dependent and a transferrin-independent process that may involve store-operated Ca channels. PMID:16629164

  9. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.

    PubMed

    Xia, Tianjiao; Fortner, John D; Zhu, Dongqiang; Qi, Zhichong; Chen, Wei

    2015-10-01

    We describe how the reduction of graphene oxide (GO) via environmentally relevant pathways affects its transport behavior in porous media. A pair of sulfide-reduced GOs (RGOs), prepared by reducing 10 mg/L GO with 0.1 mM Na2S for 3 and 5 days, respectively, exhibited lower mobility than did parent GO in saturated quartz sand. Interestingly, decreased mobility cannot simply be attributed to the increased hydrophobicity and aggregation upon GO reduction because the retention mechanisms of RGOs were highly cation-dependent. In the presence of Na(+) (a representative monovalent cation), the main retention mechanism was deposition in the secondary energy minimum. However, in the presence of Ca(2+) (a model divalent cation), cation bridging between RGO and sand grains became the most predominant retention mechanism; this was because sulfide reduction markedly increased the amount of hydroxyl groups (a strong metal-complexing moiety) on GO. When Na(+) was the background cation, increasing pH (which increased the accumulation of large hydrated Na(+) ions on grain surface) and the presence of Suwannee River humic acid (SRHA) significantly enhanced the transport of RGO, mainly due to steric hindrance. However, pH and SRHA had little effect when Ca(2+) was the background cation because neither affected the extent of cation bridging that controlled particle retention. These findings highlight the significance of abiotic transformations on the fate and transport of GO in aqueous systems.

  10. Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media.

    PubMed

    Bradford, Scott A; Torkzaban, Saeed

    2015-11-10

    A modeling framework is presented to determine fundamental parameters and controlling mechanisms of colloid (microbes, clays, and nanoparticles) retention and release on surfaces of porous media that exhibit wide distributions of nanoscale chemical heterogeneity, nano- to microscale roughness, and pore water velocity. Primary and/or secondary minimum interactions in the zone of electrostatic influence were determined over the heterogeneous solid surface. The Maxwellian kinetic energy model was subsequently employed to determine the probability of immobilization and diffusive release of colloids from each of these minima. In addition, a balance of applied hydrodynamic and resisting adhesive torques was conducted to determine locations of immobilization and hydrodynamic release in the presence of spatially variable water flow and microscopic roughness. Locations for retention had to satisfy both energy and torque balance conditions for immobilization, whereas release could occur either due to diffusion or hydrodynamics. Summation of energy and torque balance results over the elementary surface area of the porous medium provided estimates for colloid retention and release parameters that are critical to predicting environmental fate, including the sticking and release efficiencies and the maximum concentration of retained colloids on the solid phase. Nanoscale roughness and chemical heterogeneity produced localized primary minimum interactions that controlled long-term retention, even when mean chemical conditions were unfavorable. Microscopic roughness played a dominant role in colloid retention under low ionic strength and high hydrodynamic conditions, especially for larger colloids.

  11. Control of ice chromatographic retention mechanism by changing temperature and dopant concentration.

    PubMed

    Tasaki, Yuiko; Okada, Tetsuo

    2011-12-15

    A liquid phase coexists with solid water ice in a typical binary system, such as NaCl-water, in the temperature range between the freezing point and the eutectic point (t(eu)) of the system. In ice chromatography with salt-doped ice as the stationary phase, both solid and liquid phase can contribute to solute retention in different fashions; that is, the solid ice surface acts as an adsorbent, while a solute can be partitioned into the liquid phase. Thus, both adsorption and partition mechanisms can be utilized for ice chromatographic separation. An important feature in this approach is that the liquid phase volume can be varied by changing the temperature and the concentration of a salt incorporated into the ice stationary phase. Thus, we can control the relative contribution from the partition mechanism in the entire retention because the liquid phase volume can be estimated from the freezing depression curve. Separation selectivity can thereby be modified. The applicability of this concept has been confirmed for the solutes of different adsorption and partition abilities. The predicted retention based on thermodynamics basically agrees well with the corresponding experimental retention. However, one important inconsistency has been found. The calculation predicts a step-like discontinuity of the solute retention at t(eu) because the phase diagram suggests that the liquid phase abruptly appears at t(eu) when the temperature increases. In contrast, the corresponding experimental plots are continuous over the wider range including the subeutectic temperatures. This discrepancy is explained by the existence of the liquid phase below t(eu). A difference between predicted and measured retention factors allows the estimation of the volume of the subeutectic liquid phase. PMID:22053829

  12. Problems of predicting material property retention during long term service

    NASA Astrophysics Data System (ADS)

    Gordeev, Yu. P.; Khomutov, A. M.

    1995-01-01

    A procedure of materials-science studies accompanying the process of product development, manufacture and service is offered. It provides correct selection of materials, trustworthy prediction of their behavior, high reliability of their operation in products of space-rocket application. Reliable prediction of material behavior during long-term service is achieved by breaking up the complex effect of the environment into individual factors and by analyzing the effect of each factor on the properties of the material.

  13. Mechanisms affecting the transport and retention of bacteria, bacteriophage and microspheres in laboratory-scale saturated fractures

    NASA Astrophysics Data System (ADS)

    Seggewiss, G.; Dickson, S. E.

    2013-12-01

    Groundwater is becoming an increasingly important water source due to the ever-increasing demands from agricultural, residential and industrial consumers. In search of more secure sources, wells are routinely finished over large vertical depths in bedrock aquifers, creating new hydraulic pathways and thus increasing the risk of cross contamination. Moreover, hydraulic pathways are also being altered and created by increasing water withdrawal rates from these wells. Currently, it is not well understood how biological contaminants are transported through, and retained in, fractured media thereby making risk assessment and land use decisions difficult. Colloid transport within fractured rock is a complex process with several mechanisms affecting transport and retention, including: advection, hydrodynamic dispersion, diffusion, size exclusion, adsorption, and decay. Several researchers have investigated the transport of bacteria, bacteriophage, and microspheres (both carboxylated and plain) to evaluate the effects of surface properties and size on transport and retention. These studies have suggested that transport is highly dependent on the physico-chemical properties of the particle, the fracture, and the carrying fluid. However, these studies contain little detail regarding the specific mechanisms responsible for transport beyond speculating about their existence. Further, little work has been done to compare the transport of these particulate materials through the same fracture, allowing for direct observations based on particulate size and surface properties. This research examines the similarities and differences in transport and retention between four different particles through two different laboratory-scale, saturated fractures. This work is designed to explore the effects of particle size, surface properties, ionic strength of the carrying solution, and aperture field characteristics on transport and retention in single, saturated fractures. The particulates

  14. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  15. The pathophysiological mechanism of fluid retention in advanced cancer patients treated with docetaxel, but not receiving corticosteroid comedication

    PubMed Central

    Béhar, A.; Pujade-Lauraine, E.; Maurel, A.; Brun, M. D.; Lagrue, G.; Feuilhade De Chauvin, F.; Oulid-Aissa, D.; Hille, D.

    1997-01-01

    Aims Fluid retention is a phenomenon associated with taxoids. The principal objective of this study was to investigate the pathophysiological mechanism of docetaxel-induced fluid retention in advanced cancer patients. Methods Docetaxel was administered as a 1 h intravenous infusion every 3 weeks, for at least 4–6 consecutive cycles, to patients with advanced breast (n=21) or ovarian (n=3) carcinoma, who had received previous chemotherapy, 21 for advanced disease. Phase II clinical trials have shown that 5 day corticosteroid comedication, starting 1 day before docetaxel infusion, significantly reduces the incidence and severity of fluid retention. This prophylactic corticosteroid regimen is currently recommended for patients receiving docetaxel but was not permitted in this study because of its possible interference with the underlying pathophysiology of the fluid retention. Results Fluid retention occurred in 21 of the 24 patients but was mainly mild to moderate, with only five patients experiencing severe fluid retention. Eighteen patients received symptomatic flavonoid treatment, commonly prescribed after the last cycle. Specific investigations for fluid retention confirmed a relationship between cumulative docetaxel dose and development of fluid retention. Capillary filtration test analysis showed a two-step process for fluid retention generation, with progressive congestion of the interstitial space by proteins and water starting between the second and the fourth cycle, followed by insufficient lymphatic drainage. Conclusions A vascular protector such as micronized diosmine hesperidine with recommended corticosteroid premedication and benzopyrones may be useful in preventing and treating docetaxel-induced fluid retention. PMID:9205828

  16. [Renal and extra-renal mechanisms of sodium and water retention in cirrhosis with ascites].

    PubMed

    Peña, J C

    1995-01-01

    In this work we analyze the renal and systemic factors involved in the sodium retention in two conditions: in extracellular volume depletion and in edema forming states, particularly liver cirrhosis with ascitis. In this paper we accept that the volume loss of body fluids stimulates the "effective arterial blood volume" (VAE). This term results from a decrease in the arterial blood volume secondary to a fall in cardiac output or a peripheral arterial vasodilatation. The reduction in the VAE stimulates: the high pressure baroreceptors (carotid sinus and aortic arch); the intrarrenal mechanisms, such as the yuxtaglomerular apparatus and the renin angiotensin aldosterone system; the sympathetic adrenergic system; the non osmotic release of antidiuretic hormone; prostaglandins (PGE1, Tromboxane) and endothelin; and inhibits the atrial natriuretic peptide. We also describe the sodium transport mechanisms along the nephron during physiological conditions and after volume depletion, and in edema formation states, specially hepatic cirrhosis with ascitis. We speculate that the intrarenal mechanisms are more important and persistent than the systemic mechanisms. It is possible that the sodium retention of these states might be the result of direct stimuli of the tubular sodium transport mechanisms in the different segments of the nephron, mediated by the co and counter transports, ATPase activity or by the second messengers cyclic AMP and cyclic GMP. The clonation and structural characterization of the different sodium transports may help us to establish, more precisely, the intracellular tubular mechanisms responsible for the tendency of the body to retain sodium. The amount of information generated in the future may help us to demonstrate, with more precision, the mechanisms responsible for the sodium retention and excretion in normal and pathological conditions, particularly the edema forming states such as cardiac failure, nephrotic syndrome and hepatic cirrhosis with

  17. Characterization of Fly Ash from Coal-Fired Power Plant and Their Properties of Mercury Retention

    NASA Astrophysics Data System (ADS)

    He, Ping; Jiang, Xiumin; Wu, Jiang; Pan, Weiguo; Ren, Jianxing

    2015-12-01

    Recent research has shown that fly ash may catalyze the oxidation of elemental mercury and facilitate its removal. However, the nature of mercury-fly ash interaction is still unknown, and the mechanism of mercury retention in fly ash needs to be investigated more thoroughly. In this work, a fly ash from a coal-fired power plant is used to characterize the inorganic and organic constituents and then evaluate its mercury retention capacities. The as-received fly ash sample is mechanically sieved to obtain five size fractions. Their characteristics are examined by loss on ignition (LOI), scanning electron microscope (SEM), energy dispersive X-ray detector (EDX), X-ray diffraction (XRD), and Raman spectra. The results show that the unburned carbon (UBC) content and UBC structural ordering decrease with a decreasing particle size for the five ashes. The morphologies of different size fractions of as-received fly ash change from the glass microspheres to irregular shapes as the particle size increases, but there is no correlation between particle size and mineralogical compositions in each size fraction. The adsorption experimental studies show that the mercury-retention capacity of fly ash depends on the particle size, UBC, and the type of inorganic constituents. Mercury retention of the types of sp2 carbon is similar to that of sp3 carbon.

  18. Peat properties and water retention in boreal forested peatlands subject to wildfire

    NASA Astrophysics Data System (ADS)

    Thompson, Dan K.; Waddington, James M.

    2013-06-01

    Peat cores from a recently burned peatland and one over 75 years since fire in Alberta, Canada were analyzed for physical properties and water retention. Wildfire exposed denser peat at the peat surface, more so in hollow than hummock microforms. Water retention in peat has implications for postfire Sphagnum regeneration, as this more dense peat requires smaller volumes of water loss before a critical growth-inhibiting pore-water pressure of -100 mb is reached. Simulations of water retention after fire showed that hollow microforms are at a higher risk of losing low-density surface peat, which moderates water table (WT) declines via high specific yield. Exposure of dense peat to the surface after fire increases surface moisture under a constant WT. The net effect of decreasing specific yield and increasing water retention at the surface has implications on hydrologic stability and resilience of boreal peatlands to future wildfire risk under a changing climate. Earth system models incorporating wildfire disturbance in boreal peatlands would benefit from the inclusion of these hydrological feedbacks in this globally significant carbon reservoir.

  19. Mechanical properties of warped membranes.

    PubMed

    Košmrlj, Andrej; Nelson, David R

    2013-07-01

    We explore how a frozen background metric affects the mechanical properties of planar membranes with a shear modulus. We focus on a special class of "warped membranes" with a preferred random height profile characterized by random Gaussian variables h(q) in Fourier space with zero mean and variance <|h(q)|(2)>~q(-d(h)) and show that in the linear response regime the mechanical properties depend dramatically on the system size L for d(h)≥2. Membranes with d(h)=4 could be produced by flash polymerization of lyotropic smectic liquid crystals. Via a self-consistent screening approximation we find that the renormalized bending rigidity increases as κ(R)~L((d(h)-2)/2) for membranes of size L, while the Young and shear moduli decrease according to Y(R),μ(R)~L(-(d(h)-2)/2) resulting in a universal Poisson ratio. Numerical results show good agreement with analytically determined exponents.

  20. Fundamental mechanisms of deuterium retention in lithiated graphite plasma facing surfaces

    NASA Astrophysics Data System (ADS)

    Taylor, Chase N.

    Plasma impurities and undesirable deuterium recycling degrade plasma confinement and impede a sustainable fusion reaction. This occurs by inducing plasma instabilities and reducing plasma temperature. Lithium wall conditioning has been used in fusion devices including TFTR, CDX-U, FTU, TJ-II, MAST and NSTX as a means to reduce plasma impurities and improve deuterium retention, resulting in significant enhancements in plasma performance. These improvements have come via a reduction in deuterium recycling in addition to a reduction in oxygen and carbon impurities. NSTX, with ATJ graphite walls, is the leading fusion device in lithium research. Many previous studies have investigated deuterated lithium, deuterated graphite, and lithiated graphite in order to understand fundamental properties and particular applications. Deuterium irradiation of lithiated graphite studies are few in number and no systematic research has been conducted to determine the fundamental mechanisms by which deuterium is retained in lithiated graphite. This work presents controlled laboratory studies that use X-ray photoelectron spectroscopy (XPS) to identify the fundamental chemical interactions in lithiated graphite. Li-O chemical interactions are observed in the photoelectron energy spectrum at 529.5 eV after thermally depositing lithium onto ATJ graphite. Deuterium retention induces Li-O-D and Li-C-D interactions which are observed at 529.9 eV and 291.2 eV, respectively. Examination of NSTX post-mortem tiles confirms the formation of Li-O-D and Li-C-D chemical interactions and validates the procedures in these experiments. Prior to these findings, deuterium was assumed to bind exclusively with lithium to form stoichiometric LiD. Instead, we find that in a graphite matrix, lithium will always bind with oxygen and carbon (when present) prior to the introduction of deuterium. The deuterium saturation of lithiated graphite is also assessed using XPS and results indicate that saturation occurs

  1. Nitrogen retention mechanisms in tokamaks with beryllium and tungsten plasma-facing surfaces

    NASA Astrophysics Data System (ADS)

    Oberkofler, M.; Meisl, G.; Hakola, A.; Drenik, A.; Alegre, D.; Brezinsek, S.; Craven, R.; Dittmar, T.; Keenan, T.; Romanelli, S. G.; Smith, R.; Douai, D.; Herrmann, A.; Krieger, K.; Kruezi, U.; Liang, G.; Linsmeier, Ch; Mozetic, M.; Rohde, V.; the ASDEX Upgrade Team; the EUROfusion MST1 Team; Contributors, JET

    2016-02-01

    Global gas balance experiments at ASDEX Upgrade (AUG) and JET have shown that a considerable fraction of nitrogen injected for radiative cooling is not recovered as N2 upon regeneration of the liquid helium cryo pump. The most probable loss channels are ion implantation into plasma-facing materials, co-deposition and ammonia formation. These three mechanisms are investigated in laboratory and tokamak experiments and by numerical simulations. Laboratory experiments have shown that implantation of nitrogen ions into beryllium and tungsten leads to the formation of surface nitrides, which may decompose under thermal loads. On beryllium the presence of nitrogen at the surface has been seen to reduce the sputtering yield. On tungsten surfaces it has been observed that the presence of nitrogen can increase hydrogen retention. The global nitrogen retention in AUG by implantation into the tungsten surfaces saturates. At JET the steady state nitrogen retention is increased by co-deposition with beryllium. The tokamak experiments are interpreted in detail by simulations of the global migration with WallDYN. Mass spectrometry of the exhaust gas of AUG and JET has revealed the conversion of nitrogen to ammonia at percent-levels. Conclusions are drawn on the potential implications of nitrogen seeding on the operation of a reactor in a deuterium-tritium mix.

  2. Estimating Dry-Range Water Retention Properties Using Specific Surface Area and Particle-Size Measurements

    NASA Astrophysics Data System (ADS)

    Winfield, K. A.; Nimmo, J. R.

    2001-12-01

    between dry-range retention properties, particle size, and specific surface area provide the foundation for the development of property transfer models that are applicable over the low-water-content range of interest at many arid region sites. These models will permit the estimation of hydraulic properties, which are especially difficult to measure at low water contents, from less complicated bulk property measurements.

  3. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.

    PubMed

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC.

  4. Mineralocorticoid-induced sodium appetite and renal salt retention: evidence for common signaling and effector mechanisms.

    PubMed

    Fu, Yiling; Vallon, Volker

    2014-01-01

    An increase in renal sodium chloride (salt) retention and an increase in sodium appetite are the body's responses to salt restriction or depletion in order to restore salt balance. Renal salt retention and increased sodium appetite can also be maladaptive and sustain the pathophysiology in conditions like salt-sensitive hypertension and chronic heart failure. Here we review the central role of the mineralocorticoid aldosterone in both the increase in renal salt reabsorption and sodium appetite. We discuss the working hypothesis that aldosterone activates similar signaling and effector mechanisms in the kidney and brain, including the mineralocorticoid receptor, the serum- and glucocorticoid-induced kinase SGK1, the ubiquitin ligase NEDD4-2, and the epithelial sodium channel ENaC. The latter also mediates the gustatory salt sensing in the tongue, which is required for the manifestation of increased salt intake. Effects of aldosterone on both the brain and kidney synergize with the effects of angiotensin II. Thus, mineralocorticoids appear to induce similar molecular pathways in the kidney, brain, and possibly tongue, which could provide opportunities for more effective therapeutic interventions. Inhibition of renal salt reabsorption is compensated by stimulation of salt appetite and vice versa; targeting both mechanisms should be more effective. Inhibiting the arousal to consume salty food may improve a patient's compliance to reducing salt intake. While a better understanding of the molecular mechanisms is needed and will provide new therapeutic options, current pharmacological interventions that target both salt retention and sodium appetite include mineralocorticoid receptor antagonists and potentially inhibitors of angiotensin II and ENaC. PMID:25376899

  5. Woven TPS Mechanical Property Evaluation

    NASA Technical Reports Server (NTRS)

    Gonzales, Gregory Lewis; Kao, David Jan-Woei; Stackpoole, Margaret M.

    2013-01-01

    Woven Thermal Protection Systems (WTPS) is a relatively new program funded by the Office of the Chief Technologist (OCT). The WTPS approach to producing TPS architectures uses precisely engineered 3-D weaving techniques that allow tailoring material characteristics needed to meet specific mission requirements. A series of mechanical tests were performed to evaluate performance of different weave types, and get a better understanding of failure modes expected in these three-dimensional architectures. These properties will aid in material down selection and guide selection of the appropriate WTPS for a potential mission.

  6. Mechanical Property Data for Fiberboard

    SciTech Connect

    WILLIAM, daugherty

    2004-12-14

    The 9975 shipping package incorporates a cane fiberboard overpack for thermal insulation and impact resistance. Mechanical properties (tensile and compressive behavior) have been measured on cane fiberboard and a similar wood-based product following short-term conditioning in several temperature/humidity environments. Both products show similar trends, and vary in behavior with material orientation, temperature and humidity. A memory effect is also seen in that original strength values are only partially recovered following exposure to a degrading environment and return to ambient conditions.

  7. Mechanical Properties of Silicon Nanowires.

    PubMed

    Sohn, Young-Soo; Park, Jinsung; Yoon, Gwonchan; Song, Jiseok; Jee, Sang-Won; Lee, Jung-Ho; Na, Sungsoo; Kwon, Taeyun; Eom, Kilho

    2009-10-27

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm.

  8. Mechanical Properties of Silicon Nanowires

    PubMed Central

    2010-01-01

    Nanowires have been taken much attention as a nanoscale building block, which can perform the excellent mechanical function as an electromechanical device. Here, we have performed atomic force microscope (AFM)-based nanoindentation experiments of silicon nanowires in order to investigate the mechanical properties of silicon nanowires. It is shown that stiffness of nanowires is well described by Hertz theory and that elastic modulus of silicon nanowires with various diameters from ~100 to ~600 nm is close to that of bulk silicon. This implies that the elastic modulus of silicon nanowires is independent of their diameters if the diameter is larger than 100 nm. This supports that finite size effect (due to surface effect) does not play a role on elastic behavior of silicon nanowires with diameter of >100 nm. PMID:20652130

  9. Mechanical Properties of Niobium Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Matalevich, Joseph R.; Myneni, Ganapati Rao

    2015-09-01

    The mechanical stability of bulk Nb cavity is an important aspect to be considered in relation to cavity material, geometry and treatments. Mechanical properties of Nb are typically obtained from uniaxial tensile tests of small samples. In this contribution we report the results of measurements of the resonant frequency and local strain along the contour of single-cell cavities made of ingot and fine-grain Nb of different purity subjected to increasing uniform differential pressure, up to 6 atm. Measurements have been done on cavities subjected to different heat treatments. Good agreement between finite element analysis simulations and experimental data in the elastic regime was obtained with a single set of values of Young’s modulus and Poisson’s ratio. The experimental results indicate that the yield strength of medium-purity ingot Nb cavities is higher than that of fine-grain, high-purity Nb.

  10. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

  11. Mechanical properties of metal dihydrides

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.; Snow, Clark S.

    2016-03-01

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides, \\text{M}{{\\text{H}}2} {\\text{M}   =  Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. The source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.

  12. Development of a mechanism for detection of error and retention of a graded motor response.

    PubMed

    Wrisberg, C A; Metcalf, G R

    1977-04-01

    Several methods for developing an internal mechanism for error detection were compared to determine the extent to which a self-paced response could be acquired and retained without knowledge of results. During training, blindfolded subjects attempted to learn a positioning response under one of three conditions. One group was presented with the criterion end location by means of a stop and then required to recall the location with the stop removed. A second group moved the total distance of the track and then was instructed to replace the slide in a location representing a specific fraction of the total. A final group of subjects learned the criterion location by using post-response knowledge of results administered on each trial. Following acquisition subjects were give retention trials involving only repetition of the acquired response. The development of a strong mechanism for error detection was indicated only for those groups presented with the standard or with post-response knowledge of results. During retention trials (without knowledge of results), performance of the group required to learn the criterion by estimating a fraction of the total range was characterized by significanlty greater response biasing and less consistency than the other conditions. The findings were discussed in terms of several predictions from Adams' (1971) closed-loop theory of motor learning.

  13. Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II

    SciTech Connect

    Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

    2011-09-26

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

  14. Exploring particulate retention mechanisms through visualization of E. coli transport through a single, saturated fracture

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Dickson, S. E.; Schutten, M.

    2011-12-01

    Groundwater is an extremely valuable resource; a large body of work has been conducted towards remediating, tracking and reducing its contamination. Even so, there are large gaps within the current understanding of groundwater flow and contaminant transport, particularly within fractured media. Fractured media has the ability transport contaminants over longer distances in less time relative to porous media. Furthermore, colloids display unique transport characteristics in comparison to dissolved constituents, including the fact that they typically exhibit earlier initial arrival times. Of particular concern to human health are pathogenic microorganisms, which often originate from fecal contamination. Escherichia coli is a common indicator for fecal contamination; some strains are pathogenic, causing acute illness and sometimes death, in humans. A comprehensive understanding of the transport and retention of E. coli in fractured media will improve our ability to accurately assess whether a site is at risk of becoming contaminated by pathogenic microorganisms. Therefore, the goal of this work is to expand our mechanistic understanding particulate retention, specifically E. coli, in fractures, and the influence of flow rate on these mechanisms. In order to achieve this goal, clear epoxy casts were fabricated of two dolomitic limestone fractures retrieved from a quarry in Guelph, Ontario. Each aperture field was characterized through hydraulic and tracer tests, and measured directly using the light transmission technique. E. coli RS2-GFP, which is a non-pathogenic strain of E. coli that has been tagged with a green fluorescent protein, was injected into the cast under three separate specific discharges ranging from 5 - 30 m/d. These experiments were conducted on an ultraviolet light source, and a high resolution charged-couple device (CCD) camera was employed to take photos at regular intervals in order to capture the dominant flow paths and the areas of retention

  15. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon; Glidden, Joel; Lamoreaux, Christopher

    2013-01-01

    The Orion Crew-Service Module umbilical retention and release mechanism supports, protects and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. Subsequent analysis and testing verified that the design changes corrected the binding. This umbilical separation design will be used on Exploration Flight Test 1 (EFT-1) as well as all future Orion flights. The design is highly modular and can easily be adapted to other vehicles/modules and alternate commodity sets.

  16. Mechanical properties of electron vortices

    NASA Astrophysics Data System (ADS)

    Lloyd, S. M.; Babiker, M.; Yuan, J.

    2013-09-01

    It is shown how the quantum mechanical mass flux and the electromagnetic fields of an electron Bessel vortex mode generate its intrinsic linear momentum and angular momentum properties. Although the corresponding volume density vectors due to the mass flux contain transverse vector components, their volume integrals are shown by explicit analysis to yield null results. The total linear and angular momenta are thus purely axial vectors. There are additional contributions associated with the vortex electric and magnetic fields and these too are shown to be purely axial vectors. Order of magnitude estimates are made in the context of a suggested experiment on the rotation of an optically levitated nanoparticle subject to an electron vortex.

  17. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  18. Mechanical Properties of Primary Cilia

    NASA Astrophysics Data System (ADS)

    Battle, Christopher; Schmidt, Christoph F.

    2013-03-01

    Recent studies have shown that the primary cilium, long thought to be a vestigial cellular appendage with no function, is involved in a multitude of sensory functions. One example, interesting from both a biophysical and medical standpoint, is the primary cilium of kidney epithelial cells, which acts as a mechanosensitive flow sensor. Genetic defects in ciliary function can cause, e.g., polycystic kidney disease (PKD). The material properties of these non-motile, microtubule-based 9 +0 cilia, and the way they are anchored to the cell cytoskeleton, are important to know if one wants to understand the mechano-electrochemical response of these cells, which is mediated by their cilia. We have probed the mechanical properties, boundary conditions, and dynamics of the cilia of MDCK cells using optical traps and DIC/fluorescence microscopy. We found evidence for both elastic relaxation of the cilia themselves after bending and for compliance in the intracellular anchoring structures. Angular and positional fluctuations of the cilia reflect both thermal excitations and cellular driving forces.

  19. Water retention properties of soil in a tropical pre-montane transitional forest

    NASA Astrophysics Data System (ADS)

    Morgan, C.; Burns, J. N.; Ackerson, J. P.; Oien, R. P.

    2012-12-01

    The amount of water stored in soil at saturation and through dry conditions can be used to estimate the soil storage component of the water balance and key fluxes in the energy balance. The Texas A&M Soltis Research Center, near San Isidro de Penas Blancas, Costa Rica, is located in a transitional pre-montane cloud forest, with highly variable, steep slopes and weakly developed soils weathered from volcanic tuff. The objective if this project was to quantify the soil water retention curve for soils in a 2.63 ha watershed and discern the variability of soil hydraulic properties across the watershed for future characterization. Generally, soil moisture retention is estimated using a pedotransfer function, which predicts the hydraulic properties of a soil based on its particle size distribution. However, published data on hydraulic properties of andic (volcanic) soils in tropical watersheds is difficult to find. Quantified hydraulic and textural properties of soil at the Soltis Center could be used to expand this small extant data set and develop a pedotransfer function for andic tropical soils. Undisturbed soil samples were taken from three sites representing different slope classes and vertical distances from the watershed stream. Soil water contents at tensions between 0 and 2000 kPa were measured gravimetrically and converted to volumetric units using bulk density measurements from each soil horizon. The van Genuchten model was used to generate complete soil moisture release curves for each horizon at each site. Delineations in slope and distance from the stream did not account for significant differences in soil properties, though soil on the shallowest slope at site one had higher porosity, more clay-sized particles and 32% less plant available water. The water holding capacity of soils is strongly influenced by the amorphous clays abundant in andic soils. Combining this collected data with estimates of depth to saprolitic tuff across the study area will provide

  20. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts.

    PubMed

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R; Casaregola, Serge

    2015-06-25

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi-yeasts split concomitant with the yeasts' genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts.

  1. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2011-12-23

    Reversed-phase liquid chromatography (RPLC) is the foremost technique for the separation of analytes that have very similar chemical functionalities, but differ only in their molecular shape. This ability is crucial in the analysis of various mixtures with environmental and biological importance including polycyclic aromatic hydrocarbons (PAHs) and steroids. A large amount of effort has been devoted to studying this phenomenon experimentally, but a detailed molecular-level description remains lacking. To provide some insight on the mechanism of shape selectivity in RPLC, particle-based simulations were carried out for stationary phases and chromatographic parameters that closely mimic those in an experimental study by Sentell and Dorsey [J. Chromatogr. 461 (1989) 193]. The retention of aromatic hydrocarbons ranging in size from benzene to the isomeric PAHs of the formula C(18)H(12) was examined for model RPLC systems consisting of monomeric dimethyl octadecylsilane (ODS) stationary phases with surface coverages ranging from 1.6 to 4.2 μmol/m(2) (i.e., stationary phases yielding low to intermediate shape selectivity) in contact with a 67/33 mol% acetonitrile/water mobile phase. The simulations show that the stationary phase acts as a very heterogeneous environment where analytes with different shapes prefer different spatial regions with specific local bonding environments of the ODS chains. However, these favorable retentive regions cannot be described as pre-existing cavities because the chain conformation in these local stationary phase regions adapts to accommodate the analytes.

  2. Resolving structural influences on water-retention properties of alluvial deposits

    USGS Publications Warehouse

    Winfield, K.A.; Nimmo, J.R.; Izbicki, J.A.; Martin, P.M.

    2006-01-01

    With the goal of improving property-transfer model (PTM) predictions of unsaturated hydraulic properties, we investigated the influence of sedimentary structure, defined as particle arrangement during deposition, on laboratory-measured water retention (water content vs. potential [??(??)]) of 10 undisturbed core samples from alluvial deposits in the western Mojave Desert, California. The samples were classified as having fluvial or debris-flow structure based on observed stratification and measured spread of particle-size distribution. The ??(??) data were fit with the Rossi-Nimmo junction model, representing water retention with three parameters: the maximum water content (??max), the ??-scaling parameter (??o), and the shape parameter (??). We examined trends between these hydraulic parameters and bulk physical properties, both textural - geometric mean, Mg, and geometric standard deviation, ??g, of particle diameter - and structural - bulk density, ??b, the fraction of unfilled pore space at natural saturation, Ae, and porosity-based randomness index, ??s, defined as the excess of total porosity over 0.3. Structural parameters ??s and Ae were greater for fluvial samples, indicating greater structural pore space and a possibly broader pore-size distribution associated with a more systematic arrangement of particles. Multiple linear regression analysis and Mallow's Cp statistic identified combinations of textural and structural parameters for the most useful predictive models: for ??max, including Ae, ??s, and ??g, and for both ??o and ??, including only textural parameters, although use of Ae can somewhat improve ??o predictions. Textural properties can explain most of the sample-to-sample variation in ??(??) independent of deposit type, but inclusion of the simple structural indicators Ae and ??s can improve PTM predictions, especially for the wettest part of the ??(??) curve. ?? Soil Science Society of America.

  3. Seasonal Evolution of Surface Detention and Retention Properties with Rain Erosivity, at the Interill Scale

    NASA Astrophysics Data System (ADS)

    Bielders, C.; Antoine, M.; Javaux, M.

    2009-12-01

    Micro-topography, in interaction with the global slope, triggers and directs surface runoff. By concentrating the overland flow, it can promote the development of eroded pathways, while, by delimiting depressions where water accumulates, it can favor sedimentation. These erosion-deposition processes will in turn modify the micro-topography. The erosion-deposition processes depend on the runoff velocity field. Locally, velocity is a function of the water depth, of the local slope, of the friction of the bed and of backwater effects due to constrictions by obstacles. All those factors will evolve with the history of a particular site, favoring the connectivity of the runoff. According to the spatial patterns of the micro-topography, the runoff may conceptually be distributed among two compartments, each influencing the runoff connectivity: the surface retention and the surface detention. The surface retention (also called depression storage or dead storage) is the amount of water stored in surface pits and depressions. This water will subsequently infiltrate or evaporate. On the contrary, the surface detention corresponds to the water storage in excess of depression storage. It is due to the presence of flowing water and is proportional to the discharge itself. This amount of water will deplete as discharge decreases, and flow away at the end of the rain event. The velocity of the runoff is highly variable in space and particularly between the surface retention zones and the surface detention zones. In order to understand the connectivity evolution of a soil surface subjected to rainfall and runoff, we studied the seasonal evolution of the surface detention and retention hydrologic properties, for a bare soil just after tillage. Since surface detention and retention are not easily measured in situ due to the perturbing effect of the infiltration that occurs simultaneously during a rain event, we developed a fast and cheap in situ molding method (+/- 80 euros/m2) that

  4. Volatile Retention and Morphological Properties of Microencapsulated Tributyrin Varied by Wall Material and Drying Method.

    PubMed

    Donovan, Joseph D; Cadwallader, Keith R; Lee, Youngsoo

    2016-03-01

    Butyric acid is an important short-chain fatty acid for intestinal health and has been shown to improve certain intestinal disease states. A triglyceride containing 3 butyric acid esters, tributyrin (TB) can serve as a source of butyric acid; however, the need to target intestinal delivery and mitigate unpleasant sensory qualities has limited its use in food. Microencapsulation, the entrapment of one or more cores within a matrix, may provide a solution to the aforementioned challenge. This research primarily focused on the influence of (1) wall material: whey and soy protein isolate (WPI and SPI, respectively) and gamma-cyclodextrin (GCD), (2) wall additives: inulin of varying chain length, and (3) processing method: spray or oven drying (SD or OD, respectively) on the morphological properties and volatile retention of TB within microcapsules. SPI-based microcapsules retained significantly less (P < 0.001) TB compared to WPI-based microcapsules as measured by gas chromatography. The inclusion of inulin in the SD WPI-based microcapsules increased (P < 0.001) TB retention over WPI-based microcapsules without inulin. Inulin inclusion into WPI-based microcapsules resulted in a smoother, minimally-dented, circular morphology as compared to noninulin containing WPI-based microcapsules as shown by scanning electron microscopy. GCD and TB OD microcapsules retained more (P < 0.001) TB (94.5% ± 1.10%) than all other WPI, WPI-inulin, and GCD TB SD microcapsules. When spray dried, the GCD-based microcapsules exhibited (P < 0.001) TB retention than all other microcapsules, indicating the GCD may be unsuitable for spray drying. These findings demonstrate that microencapsulated TB in GCD can lead to minimal TB losses during processing that could be utilized in functional food applications for intestinal health.

  5. Water proof and strength retention properties of thermoplastic starch based biocomposites modified with glutaraldehyde.

    PubMed

    Yeh, Jen-taut; Hou, Yuan-jing; Cheng, Li; Wang, Ya-Zhou; Yang, Liang; Wang, Chuen-kai

    2015-01-01

    Water proof and strength retention properties of thermoplastic starch (TPS) resins were successfully improved by reacting glutaraldehyde (GA) with starch molecules during their gelatinization processes. Tensile strength (σf) values of initial and aged TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens improved significantly to a maximal value as GA contents approached an optimal value, while their moisture content and elongation at break values reduced to a minimal value, respectively, as GA contents approached the optimal value. The σf retention values of (TPS100BC0.02GA0.5)75PLA25 specimen aged for 56 days are more than 50 times higher than those of corresponding aged TPS and TPS100BC0.02 specimens, respectively. New melting endotherms and diffraction peaks of VH-type starch crystals were found on DSC thermograms and WAXD patterns of aged TPS or TPS100BC0.02 specimens, respectively, while negligible retrogradation effect was found for most aged TPS100BC0.02GAx and/or (TPS100BC0.02GAx)75PLA25 specimens. PMID:25965466

  6. Excretion-retention diagram to evaluate gas exchange properties of vertebrate respiratory systems.

    PubMed

    Zwart, A; Luijendijk, S C

    1982-09-01

    Excretion [E = (PE - PI)/(PV - PI)] and retention [R = (Pa - PI)/(PV -PI)]are completely model-free defined variables which describe the dual input-output black-box representation of vertebrate respiratory systems under steady-state conditions. In the excretion-retention diagram (E-R diagram), E is plotted as a function of R. The application of the principle of mass conservation confines the possible combinations of E and R for a gas with a blood-gas partition coefficient, lambda, in a respiratory system with an overall ventilation, VT, and an overall perfusion, QT, to E = (lambda QT/VT) (1 - R). In general, E can be described as a continuous function of R. The mathematical formulation of this function depends on the configuration of the respiratory system. Easily recognizable curvatures are obtained for counter-cross, and cocurrent systems with and without parallel inhomogeneities. Visual inspection of actual E and R data displayed in an E-R diagram therefore allows the correct choice of the configuration of the respiratory system to be eventually used for further parameter estimation schemes. The E-R diagram is also a powerful tutorial tool for visualizing the complex relationships between the gas exchange of agents with different physical properties and the consequences of changes in ventilation and perfusion distribution within the respiratory system on gas transport.

  7. Short-term retention of visual information: Evidence in support of feature-based attention as an underlying mechanism.

    PubMed

    Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein

    2015-01-01

    Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4.

  8. Retention property of deuterium for fuel recovery in divertor by using hydrogen storage material

    NASA Astrophysics Data System (ADS)

    Mera, Saori; Tonegawa, Akira; Matsumura, Yoshihito; Sato, Kohnosuke; Kawamura, Kazutaka

    2014-10-01

    Magnetic confinement fusion reactor by using Deuterium and Tritium of hydrogen isotope as fuels is suggested as one of the future energy source. Most fuels don't react and are exhausted out of fusion reactor. Especially, Tritium is radioisotope and rarely exists in nature, so fuels recovery is necessary. This poster presentation will explain about research new fuel recovery method by using hydrogen storage materials in divertor simulator TPD-Sheet IV. Samples are tungsten coated with titanium; tungsten of various thickness, and titanium films deposited by ion plating on tungsten substrates. The sample surface temperature is measured by radiation thermometer. Retention property of deuterium after deuterium plasma irradiation was examined with thermal desorption spectroscopy (TDS). As a result, the TDS measurement shows that deuterium is retained in titanium. Therefore, Titanium as a hydrogen storage material expects to be possible to use separating and recovering fuel particles in divertor.

  9. Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    NASA Technical Reports Server (NTRS)

    Delap, Damon C.; Glidden, Joel Micah; Lamoreaux, Christopher

    2013-01-01

    The Orion CSM umbilical retention and release mechanism supports and protects all of the cross-module commodities between the spacecrafts crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. The mechanism employs a single separation interface which is retained with pyrotechnically actuated separation bolts and supports roughly two dozen electrical and fluid connectors. When module separation is commanded, either for nominal on-orbit CONOPS or in the event of an abort, the mechanism must release the separation interface and sever all commodity connections within milliseconds of command receipt. There are a number of unique and novel aspects of the design solution developed by the Orion mechanisms team. The design is highly modular and can easily be adapted to other vehiclesmodules and alternate commodity sets. It will be flight tested during Orions Exploration Flight Test 1 (EFT-1) in 2014, and the Orion team anticipates reuse of the design for all future missions. The design packages fluid, electrical, and ordnance disconnects in a single separation interface. It supports abort separations even in cases where aerodynamic loading prevents the deployment of the umbilical arm. Unlike the Apollo CSM umbilical which was a destructive separation device, the Orion design is resettable and flight units can be tested for separation performance prior to flight.Initial development testing of the mechanisms separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. These changes addressed the root cause of the binding failure by providing better control of connector alignment. The new design was tuned and validated analytically via Monte Carlo simulation. The

  10. "OnTrack" to University: Understanding Mechanisms of Student Retention in an Australian Pre-University Enabling Program

    ERIC Educational Resources Information Center

    Lisciandro, Joanne G.; Gibbs, Gael

    2016-01-01

    University-based enabling programs have become an important pathway to university for non-traditional students. There is increasing interest in understanding the mechanisms that facilitate retention and success of enabling pathway students, with the aim of developing effective strategies for maximising opportunities for university access and…

  11. The influence of tooth preparation and crown manipulation on the mechanical retention of stainless steel crowns.

    PubMed

    Rector, J A; Mitchell, R J; Spedding, R H

    1985-01-01

    The belief that close adaptation of the metal margins to tooth surfaces in the undercut areas is the most important retentive feature, was borne out in this study. The type of preparation did not affect the retention of stainless steel crowns.

  12. Motor Learning in Childhood Reveals Distinct Mechanisms for Memory Retention and Re-Learning

    ERIC Educational Resources Information Center

    Musselman, Kristin E.; Roemmich, Ryan T.; Garrett, Ben; Bastian, Amy J.

    2016-01-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted…

  13. Involvement of central cholinergic mechanisms in the effects of oxytocin and an oxytocin receptor antagonist on retention performance in mice.

    PubMed

    Boccia, M M; Baratti, C M

    2000-11-01

    Oxytocin (OT, 0.10 microg/kg, sc) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. In contrast, the immediate post-training administration of the putative oxytocin receptor antagonist d(CH(2))(5)[Tyr(Me)(2), Thr(4), Thy-NH(9)(2)] OVT (AOT, 0.30 microg/kg, sc) significantly enhanced retention performance. Neither OT nor AOT affected response latencies in mice not given footshock on the training trial, and neither the impairing effects of OT nor the enhancing effects of AOT were seen when the training-treatment interval was 180 min, suggesting that both treatments influenced memory storage. The effects of OT (0.10 microg/kg, sc) on retention were prevented by AOT (0.03 microg/kg, sc) given immediately after training, but 10 min prior to OT treatment. The central acting anticholinesterase physostigmine (35, 70, or 150 microg/kg, i.p.), but not its quaternary analogue neostigmine (150 microg/kg, i.p.), reversed the impairment of retention performance induced by OT, whereas low subeffective doses of the centrally active muscarinic cholinergic antagonist atropine (0.5 mg/kg, i.p.) or the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg, i.p.), but not methylatropine (0.5 mg/kg, i.p.) or hexamethonium (5 mg/kg, i.p.) prevented the enhancement of retention performance caused by AOT. We suggest that oxytocin negatively modulates the activity of central cholinergic mechanisms during the posttraining period that follows an aversively motivated learning experience, leading to an impairment of retention performance of the inhibitory avoidance response. PMID:11031128

  14. Involvement of central cholinergic mechanisms in the effects of oxytocin and an oxytocin receptor antagonist on retention performance in mice.

    PubMed

    Boccia, M M; Baratti, C M

    2000-11-01

    Oxytocin (OT, 0.10 microg/kg, sc) impaired retention of a one-trial step-through inhibitory avoidance task when injected into male Swiss mice 10 min after training, as indicated by retention performance 48 h later. In contrast, the immediate post-training administration of the putative oxytocin receptor antagonist d(CH(2))(5)[Tyr(Me)(2), Thr(4), Thy-NH(9)(2)] OVT (AOT, 0.30 microg/kg, sc) significantly enhanced retention performance. Neither OT nor AOT affected response latencies in mice not given footshock on the training trial, and neither the impairing effects of OT nor the enhancing effects of AOT were seen when the training-treatment interval was 180 min, suggesting that both treatments influenced memory storage. The effects of OT (0.10 microg/kg, sc) on retention were prevented by AOT (0.03 microg/kg, sc) given immediately after training, but 10 min prior to OT treatment. The central acting anticholinesterase physostigmine (35, 70, or 150 microg/kg, i.p.), but not its quaternary analogue neostigmine (150 microg/kg, i.p.), reversed the impairment of retention performance induced by OT, whereas low subeffective doses of the centrally active muscarinic cholinergic antagonist atropine (0.5 mg/kg, i.p.) or the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg, i.p.), but not methylatropine (0.5 mg/kg, i.p.) or hexamethonium (5 mg/kg, i.p.) prevented the enhancement of retention performance caused by AOT. We suggest that oxytocin negatively modulates the activity of central cholinergic mechanisms during the posttraining period that follows an aversively motivated learning experience, leading to an impairment of retention performance of the inhibitory avoidance response.

  15. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  16. Enhancement of mechanical properties of 123 superconductors

    DOEpatents

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  17. Preliminary Study of Strong-Sludge Gas Retention and Release Mechanisms in Clay Simulants

    SciTech Connect

    Gauglitz, Phillip A.; Buchmiller, William C.; Probert, Samuel G.; Owen, Antionette T.

    2010-10-12

    The Hanford Site has 28 double-shell tanks (DSTs) and 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. The mission of the Department of Energy’s River Protection Project is to retrieve and treat the Hanford tank waste for disposal and close the tank farms. A key aspect of the mission is to retrieve and transfer waste from the SSTs, which are at greater risk for leaking, into DSTs for interim storage until the waste is transferred to and treated in the Waste Treatment and Immobilization Plant. There is, however, limited space in the existing DSTs to accept waste transfers from the SSTs, and approaches to overcoming the limited DST space will benefit the overall mission. The purpose of this study is to summarize and analyze the key previous experiment that forms the basis for the relaxed controls and to summarize initial progress and results on new experiments focused on understanding the conditions that result in low gas retention. The work is ongoing; this report provides a summary of the initial findings. The previous large-scale test used about 50 m3 of sediment, which would be unwieldy for doing multiple parametric experiments. Accordingly, experiments will begin with smaller-scale tests to determine whether the desired mechanisms can be studied without the difficulty of conducting very large experiments.

  18. Mechanism underlying the inner membrane retention of Escherichia coli lipoproteins caused by Lol avoidance signals.

    PubMed

    Hara, Takashi; Matsuyama, Shin-ichi; Tokuda, Hajime

    2003-10-10

    Escherichia coli lipoproteins are localized to either the inner or outer membrane depending on the residue at position 2. The inner membrane retention signal, Asp at position 2 in combination with certain residues at position 3, functions as a Lol avoidance signal, i.e. the signal inhibits the recognition of lipoproteins by LolCDE that releases lipoproteins from the inner membrane. To understand the role of the residue at position 2, outer membrane-specific lipoproteins with Cys at position 2 were subjected to chemical modification followed by the release reaction in reconstituted proteoliposomes. Sulfhydryl-specific introduction of nonprotein molecules or a negative charge to Cys did not inhibit the LolCDE-dependent release. In contrast, oxidation of Cys to cysteic acid resulted in generation of the Lol avoidance signal, indicating that the Lol avoidance signal requires a critical length of negative charge at the second residue. Furthermore, not only modification of the carboxylic acid of Asp at position 2 but also that of the amine of phosphatidylethanolamine abolished the Lol avoidance function. Based on these results, the Lol avoidance mechanism is discussed.

  19. Mechanical properties of C-5 epimerized alginates.

    PubMed

    Mørch, Y A; Holtan, S; Donati, I; Strand, B L; Skjåk-Braek, G

    2008-09-01

    There is an increased need for alginate materials with both enhanced and controllable mechanical properties in the fields of food, pharmaceutical and specialty applications. In the present work, well-characterized algal polymers and mannuronan were enzymatically modified using C-5 epimerases converting mannuronic acid residues to guluronic acid in the polymer chain. Composition and sequential structure of controls and epimerized alginates were analyzed by (1)H NMR spectroscopy. Mechanical properties of Ca-alginate gels were further examined giving Young's modulus, syneresis, rupture strength, and elasticity of the gels. Both mechanical strength and elasticity of hydrogels could be improved and manipulated by epimerization. In particular, alternating sequences were found to play an important role for the final mechanical properties of alginate gels, and interestingly, a pure polyalternating sample resulted in gels with extremely high syneresis and rupture strength. In conclusion, enzymatic modification was shown to be a valuable tool in modifying the mechanical properties of alginates in a highly specific manner.

  20. Retention of ionizable compounds on HPLC. 12. The properties of liquid chromatography buffers in acetonitrile-water mobile phases that influence HPLC retention.

    PubMed

    Espinosa, Sonia; Bosch, Elisabeth; Rosés, Marti

    2002-08-01

    The addition of acetonitrile to aqueous buffers to prepare RP HPLC mobile phases changes the buffer properties (pH and buffer capacity). This variation is studied for ace tate, phosphate, phthalate, citrate, and ammonia buffers in acetonitrile-water mixtures up to 60% in acetonitrile (v/v). Equations are proposed to relate pH and buffer capacity change of these buffers to the initial aqueous pH value and to the volume fraction of acetonitrile added. It is demonstrated that the pH change of the buffer depends not only on the initial aqueous pH of the buffer and on the percentage of acetonitrile added but also on the particular buffer used. The proposed equations allow an accurate prediction of this ionization for the studied buffers. Since the retention of acid/base compounds shows a strong dependence of their degree of ionization, the equations are used to predict the change in this ionization with addition of acetonitrile when the RP HPLC mobile phase is prepared. This prediction allows estimation of the retention of an acid/base compound in a particular acetonitrile-water buffered mobile phase.

  1. Thickness-dependent retention behaviors and ferroelectric properties of BiFeO3 thin films on BaPbO3 electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Ching; Wu, Jenn-Ming

    2007-09-01

    BiFeO3 (BFO) thin films produced with varied film thicknesses ranging from 100to230nm were fabricated on BaPbO3(BPO )/Pt/Ti/SiOx/Si substrates by rf-magnetron sputtering. Saturated polarization-electrical field hysteresis loops, polarization response by pulse measurement, and retention properties were obtained for BFO films with various thicknesses on BPO. The retention behaviors of BFO demonstrate logarithmic time dependence and stretched exponential law. When the thicknesses of BFO films increase, the contribution of logarithmic time dependence to retention, the stretched exponential law becomes dominant. BFO films with thinner thickness exhibit better retention properties but possess smaller remnant polarization.

  2. Mechanical properties of cells and ageing.

    PubMed

    Starodubtseva, Maria N

    2011-01-01

    Mechanical properties are fundamental properties of the cells and tissues of living organisms. The mechanical properties of a single cell as a biocomposite are determined by the interdependent combination of cellular components mechanical properties. Quantitative estimate of the cell mechanical properties depends on a cell state, method of measurement, and used theoretical model. Predominant tendency for the majority of cells with ageing is an increase of cell stiffness and a decrease of cell ability to undergo reversible large deformations. The mechanical signal transduction in old cells becomes less effective than that in young cells, and with ageing, the cells lose the ability of the rapid functional rearrangements of cellular skeleton. The article reviews the theoretical and experimental facts touching the age-related changes of the mechanical properties of cellular components and cells in the certain systems of an organism (the blood, the vascular system, the musculoskeletal system, the lens, and the epithelium). In fact, the cell mechanical parameters (including elastic modulii) can be useful as specific markers of cell ageing.

  3. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc.

  4. Microstructure and mechanical properties of sheep horn.

    PubMed

    Zhu, Bing; Zhang, Ming; Zhao, Jian

    2016-07-01

    The sheep horn presents outstanding mechanical properties of impact resistance and energy absorption, which suits the need of the vehicle bumper design, but the mechanism behind this phenomenon is less investigated. The microstructure and mechanical properties of the sheep horn of Small Tailed Han Sheep (Ovis aries) living in northeast China were investigated in this article. The effect of sampling position and orientation of the sheep horn sheath on mechanical properties were researched by tensile and compression tests. Meanwhile, the surface morphology and microstructure of the sheep horn were observed using scanning electron microscopy (SEM). The formation mechanism of the mechanical properties of the sheep horn was investigated by biological coupling analysis. The analytical results indicated that the outstanding mechanical properties of the sheep horn are determined by configuration, structure, surface morphology and material coupling elements. These biological coupling elements make the sheep horn possess super characteristics of crashworthiness and energy absorption through the internal coupling mechanism. We suppose that these findings would make a difference in vehicle bumper design. Microsc. Res. Tech. 79:664-674, 2016. © 2016 Wiley Periodicals, Inc. PMID:27184115

  5. Mechanical deformation mechanisms and properties of amyloid fibrils.

    PubMed

    Choi, Bumjoon; Yoon, Gwonchan; Lee, Sang Woo; Eom, Kilho

    2015-01-14

    Amyloid fibrils have recently received attention due to their remarkable mechanical properties, which are highly correlated with their biological functions. We have studied the mechanical deformation mechanisms and properties of amyloid fibrils as a function of their length scales by using atomistic simulations. It is shown that the length of amyloid fibrils plays a role in their deformation and fracture mechanisms in such a way that the competition between shear and bending deformations is highly dependent on the fibril length, and that as the fibril length increases, so does the bending strength of the fibril while its shear strength decreases. The dependence of rupture force for amyloid fibrils on their length is elucidated using the Bell model, which suggests that the rupture force of the fibril is determined from the hydrogen bond rupture mechanism that critically depends on the fibril length. We have measured the toughness of amyloid fibrils, which is shown to depend on the fibril length. In particular, the toughness of the fibril with its length of ∼3 nm is estimated to be ∼30 kcal mol(-1) nm(-3), comparable to that of a spider silk crystal with its length of ∼2 nm. Moreover, we have shown the important effect of the pulling rate on the mechanical deformation mechanisms and properties of amyloid fibril. It is found that as the pulling rate increases, so does the contribution of the shear effect to the elastic deformation of the amyloid fibril with its length of <10 nm. However, we found that the deformation mechanism of the amyloid fibril with its length of >15 nm is almost independent of the pulling rate. Our study sheds light on the role of the length scale of amyloid fibrils and the pulling rate in their mechanical behaviors and properties, which may provide insights into how the excellent mechanical properties of protein fibrils can be determined. PMID:25426573

  6. Mechanical properties of low tantalum alloys

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1982-01-01

    The mechanical property behavior of equiaxed cast B-1900 + Hf alloy as a function of tantalum content was studied. Tensile and stress rupture characterization was conducted on cast to size test bars containing tantalum at the 4.3% (standard level), 2.2% and 0% levels. Casting parameters were selected to duplicate conditions used to prepare test specimens for master metal heat qualification. The mechanical property results as well as results of microstructural/phase analysis of failed test bars are presented.

  7. Some Mechanical Properties of Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.; Vorster, S. W.; Vorster, M. J.

    1998-12-01

    In the present investigation the influence of the microstructure, obtained after an austempering treatment in a "process window", on the mechanical properties of austempered ductile iron has been investigated. These properties include tensile strength, elongation and hardness. Conversion electron Mössbauer spectra (CEMS) were measured, after heat treatment.

  8. Thigmomorphogenesis: on the mechanical properties of mechanically perturbed bean plants.

    PubMed

    Jaffe, M J; Telewski, F W; Cooke, P W

    1984-01-01

    The mechanical properties of control and mechanically perturbed (MP) bean stems (Phaseolus vulgaris L., cv. Cherokee wax) were compared. The rubbed plants were greatly hardened against mechanical rupture by previous MP. This hardening was due to a dramatic increase in the flexibility of the stems, but not in their stiffness. The MP-plants were able to bend more than 90 degree without breaking, whereas the control plants broke after just slight bending. A comparison with other work reveals that different species utilize different tactics for achieving similar resistance to rupture due to mechanical stress. PMID:11540788

  9. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent.

    PubMed

    Jin, Shuping; Yue, Guoren; Feng, Lei; Han, Yuqi; Yu, Xinghai; Zhang, Zenghu

    2011-01-12

    In this investigation, a novel water-insoluble slow-release fertilizer, biuret polyphosphoramide (BPAM), was formulated and synthesized from urea, phosphoric acid (H(3)PO(4)), and ferric oxide (Fe(2)O(3)). The structure of BPAM was characterized by Fourier transform infrared (FTIR) spectroscopy. Subsequently, a coated slow-release BPAM fertilizer with superabsorbent was prepared by ionic cross-linked carboxymethylchitosan (the core), acrylic acid, acrylamide, and active carbon (the coating). The variable influences on the water absorbency were investigated and optimized. Component analysis results showed that the coated slow-release BPAM contained 5.66% nitrogen and 11.7% phosphorus. The property of water retention, the behavior of slow release of phosphorus, and the capacity of adsorption of cations were evaluated, and the results revealed that the product not only had good slow-release property and excellent water retention capacity but also higher adsorption capacities of cations in saline soil. PMID:21155599

  10. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent.

    PubMed

    Jin, Shuping; Yue, Guoren; Feng, Lei; Han, Yuqi; Yu, Xinghai; Zhang, Zenghu

    2011-01-12

    In this investigation, a novel water-insoluble slow-release fertilizer, biuret polyphosphoramide (BPAM), was formulated and synthesized from urea, phosphoric acid (H(3)PO(4)), and ferric oxide (Fe(2)O(3)). The structure of BPAM was characterized by Fourier transform infrared (FTIR) spectroscopy. Subsequently, a coated slow-release BPAM fertilizer with superabsorbent was prepared by ionic cross-linked carboxymethylchitosan (the core), acrylic acid, acrylamide, and active carbon (the coating). The variable influences on the water absorbency were investigated and optimized. Component analysis results showed that the coated slow-release BPAM contained 5.66% nitrogen and 11.7% phosphorus. The property of water retention, the behavior of slow release of phosphorus, and the capacity of adsorption of cations were evaluated, and the results revealed that the product not only had good slow-release property and excellent water retention capacity but also higher adsorption capacities of cations in saline soil.

  11. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    PubMed

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  12. How efficient are central mechanisms for the learning and retention of coincident timing actions?

    PubMed

    Fleury, M; Bard, C; Teasdale, N; Michaud, D; Lamarre, Y

    1999-06-01

    We compared the adaptive strategy and retention capacity of a deafferented subject and control subjects when intercepting, with a sliding-throw, an apparent movement coming at various speeds. Subjects were submitted to five practice sessions (30 trials per session) and to a retention test. The throwing kinematics was analysed, and spatial and temporal performance errors were measured. With practice, the deafferented subject showed modifications in movement initiation strategies and throwing patterns. With a slow apparent movement, the deafferented subject's initial behavior was characterized by short movement initiation and movement times. With practice, she showed an important increase in movement time in session 5, allowing longer visual control and leading to better temporal and spatial accuracy than that shown in session 1. In the retention session, the deafferented patient showed a late movement initiation strategy, similar to that of the control subjects. This increased movement initiation time was accompanied by an improved temporal accuracy compared to the deafferented subject's early results. However, spatial accuracy improvement was labile and could not be maintained over the retention interval. At the fast speed, all temporal components of the response, namely, movement initiation time (MIT), movement time (MT), and disk travel time (DTT), were similar for the deafferented and control subjects. Overall, the deafferented subject reduced her temporal error through practice, though without attaining the control subjects' accuracy. However, with a fast-moving stimulus, she showed a deteriorated spatial accuracy, even doubling her spatial errors at retention. In brief, the deafferented subject achieved proper temporal (perceptivo-cognitive) lasting control of her interceptive action, whereas spatial (sensorimotor) regulation raised mnemonic problems.

  13. The mechanical properties of FeAl

    SciTech Connect

    Baker, I.; George, E.P.

    1996-12-31

    Only in the last few years has progress been made in obtaining reproducible mechanical properties data for FeAl. Two sets of observations are the foundation of this progress. The first is that the large vacancy concentrations that exist in FeAl at high temperature are easily retained at low temperature and that these strongly affect the low-temperature mechanical properties. The second is that RT ductility is adversely affected by water vapor. Purpose of this paper is not to present a comprehensive overview of the mechanical properties of FeAl but rather to highlight our understanding of key phenomena and to show how an understanding of the factors which control the yield strength and fracture behavior has followed the discovery of the above two effects. 87 refs, 9 figs.

  14. Physical and mechanical properties of hemp seed

    NASA Astrophysics Data System (ADS)

    Taheri-Garavand, A.; Nassiri, A.; Gharibzahedi, S.

    2012-04-01

    The current study was conducted to investigate the effect of moisture content on the post-harvest physical and mechanical properties of hemp seed in the range of 5.39 to 27.12% d.b. Results showed that the effect of moisture content on the most physical properties of the grain was significant (P<0.05). The results of mechanical tests demonstrated that the effect of loading rate on the mechanical properties of hemp seed was not significant. However, the moisture content effect on rupture force and energy was significant (P<0.01). The lowest value of rupture force was obtained at the highest loading rate (3mm min-1)and in the moisture content of 27.12% d.b. Moreover, the interaction effects of loading rate and moisture content on the rupture force and energy of hemp seed were significant (P<0.05).

  15. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  16. Mechanical Properties of Ingot Nb Cavities

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Kneisel, Peter; Mammosser, John; Matalevich, Joseph; Rao Myneni, Ganapati

    2014-07-01

    This contribution presents the results of measurements of the resonant frequency and of strain along the contour of a single-cell cavity made of ingot Nb subjected to increasing uniform differential pressure, up to 6 atm. The data were used to infer mechanical properties of this material after cavity fabrication, by comparison with the results from simulation calculations done with ANSYS. The objective is to provide useful information about the mechanical properties of ingot Nb cavities which can be used in the design phase of SRF cavities intended to be built with this material.

  17. Mechanical Properties Of Large Sodium Iodide Crystals

    NASA Technical Reports Server (NTRS)

    Lee, Henry M.

    1988-01-01

    Report presents data on mechanical properties of large crystals of thallium-doped sodium iodide. Five specimens in shape of circular flat plates subjected to mechanical tests. Presents test results for each specimen as plots of differential pressure versus center displacement and differential pressure versus stress at center. Also tabulates raw data. Test program also developed procedure for screening candidate crystals for gamma-ray sensor. Procedure eliminates potentially weak crystals before installed and ensures material yielding kept to minimum.

  18. Laminar Tendon Composites with Enhanced Mechanical Properties

    PubMed Central

    Alberti, Kyle A.; Sun, Jeong-Yun; Illeperuma, Widusha R.; Suo, Zhigang; Xu, Qiaobing

    2015-01-01

    Purpose A strong isotropic material that is both biocompatible and biodegradable is desired for many biomedical applications, including rotator cuff repair, tendon and ligament repair, vascular grafting, among others. Recently, we developed a technique, called “bioskiving” to create novel 2D and 3D constructs from decellularized tendon, using a combination of mechanical sectioning, and layered stacking and rolling. The unidirectionally aligned collagen nanofibers (derived from sections of decellularized tendon) offer good mechanical properties to the constructs compared with those fabricated from reconstituted collagen. Methods In this paper, we studied the effect that several variables have on the mechanical properties of structures fabricated from tendon slices, including crosslinking density and the orientation in which the fibers are stacked. Results We observed that following stacking and crosslinking, the strength of the constructs is significantly improved, with crosslinked sections having an ultimate tens ile strength over 20 times greater than non-crosslinked samples, and a modulus nearly 50 times higher. The mechanism of the mechanical failure mode of the tendon constructs with or without crosslinking was also investigated. Conclusions The strength and fiber organization, combined with the ability to introduce transversely isotropic mechanical properties makes the laminar tendon composites a biocompatiable material that may find future use in a number of biomedical and tissue engineering applications. PMID:25691802

  19. Mechanisms for dose retention in conformal arsenic doping using a radial line slot antenna microwave plasma source

    NASA Astrophysics Data System (ADS)

    Ueda, Hirokazu; Ventzek, Peter L. G.; Oka, Masahiro; Kobayashi, Yuuki; Sugimoto, Yasuhiro

    2015-06-01

    Topographic structures such as Fin FETs and silicon nanowires for advanced gate fabrication require ultra-shallow high dose infusion of dopants into the silicon subsurface. Plasma doping meets this requirement by supplying a flux of inert ions and dopant radicals to the surface. However, the helium ion bombardment needed to infuse dopants into the fin surface can cause poor dose retention. This is due to the interaction between substrate damage and post doping process wet cleaning solutions required in the front end of line large-scale integration fabrication. We present findings from surface microscopy experiments that reveal the mechanism for dose retention in arsenic doped silicon fin samples using a microwave RLSA™ plasma source. Dilute aqueous hydrofluoric acid (DHF) cleans by themselves are incompatible with plasma doping processes because the films deposited over the dosed silicon and ion bombardment damaged silicon are readily removed. Oxidizing wet cleaning chemistries help retain the dose as silica rich over-layers are not significantly degraded. Furthermore, the dosed retention after a DHF clean following an oxidizing wet clean is unchanged. Still, the initial ion bombardment energy and flux are important. Large ion fluxes at energies below the sputter threshold and above the silicon damage threshold, before the silicon surface is covered by an amorphous mixed phase layer, allow for enhanced uptake of dopant into the silicon. The resulting dopant concentration is beyond the saturation limit of crystalline silicon.

  20. Probing cell mechanical properties with microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  1. Physicochemical properties related to long-term phosphorus retention by drinking-water treatment residuals.

    PubMed

    Makris, Konstantinos C; Harris, Willie G; O'Connor, George A; Obreza, Thomas A; Elliott, Herschel A

    2005-06-01

    Drinking-water treatment residuals (WTRs) are nonhazardous materials that can be obtained free-of-charge from drinking-water treatment plants to reduce soluble phosphorus (P) concentrations in poorly P sorbing soils. Phosphorus sorption capacities of WTRs can vary 1-2 orders of magnitude, on the basis of short-term equilibration times (up to 7 d), but studies dealing with long-term (weeks to months) P retention by WTRs are lacking. Properties that most affect long-term P sorption capacities are pertinent to the efficacy of WTRs as amendments to stabilize P in soils. This research addressed the long-term (up to 80 d) P sorption/desorption characteristics and kinetics for seven WTRs, including the influence of specific surface area (SSA), porosity, and total C content on the overall magnitude of P sorption by seven WTRs. The data confirm a strong but variable affinity for P by WTRs. Aluminum-based WTRs tended to have higher P sorption capacity than Fe-based WTRs. Phosphorus sorption with time was biphasic in nature for most samples and best fit to a second-order rate model. The P sorption rate dependency was strongly correlated with a hysteretic P desorption, consistent with kinetic limitations on P desorption from micropores. Oxalate-extractable Al + Fe concentrations of the WTRs did not effectively explain long-term (80 d) P sorption capacities of the WTRs. Micropore (CO2-based) SSAs were greater than BET-N2 SSAs for most WTRs, except those with the lowest (<80 g kg(-1)) total C content. There was a significant negative linear correlation between the total C content and the CO2/N2 SSA ratio. The data suggest that C in WTRs increases microporosity, but reduces P sorption per unit pore volume or surface area. Hence, variability in C content confounds direct relations among SSA, porosity, and P sorption. Total C, N2-based SSA, and CO2-based SSAs explained 82% of the variability in the long-term P sorption capacities of the WTRs. Prediction of long-term P sorption

  2. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  3. Chemical adhesion rather than mechanical retention enhances resin bond durability of a dental glass-ceramic with leucite crystallites.

    PubMed

    Meng, X F; Yoshida, K; Gu, N

    2010-08-01

    This study aims to evaluate the effect of chemical adhesion by a silane coupler and mechanical retention by hydrofluoric acid (HFA) etching on the bond durability of resin to a dental glass ceramic with leucite crystallites. Half of the ceramic plates were etched with 4.8% HFA (HFA group) for 60 s, and the other half were not treated (NoHFA group). The scale of their surface roughness and rough area was measured by a 3D laser scanning microscope. These plates then received one of the following two bond procedures to form four bond test groups: HFA/cement, NoHFA/cement, HFA/silane/cement and NoHFA/silane/cement. The associated micro-shear bond strength and bond failure modes were tested after 0 and 30 000 thermal water bath cycles. Four different silane/cement systems (Monobond S/Variolink II, GC Ceramic Primer/Linkmax HV, Clearfil Ceramic Primer/Clearfil Esthetic Cement and Porcelain Liner M/SuperBond C&B) were used. The data for each silane/cement system were analyzed by three-way ANOVA. HFA treatment significantly increased the surface R(a) and R(y) values and the rough area of the ceramic plates compared with NoHFA treatment. After 30 000 thermal water bath cycles, the bond strength of all the test groups except the HFA/Linkmax HV group was significantly reduced, while the HFA/Linkmax HV group showed only adhesive interface failure. The other HFA/cement groups and all NoHFA/cement groups lost bond strength completely, and all NoHFA/silane/cement groups with chemical adhesion had significantly higher bond strength and more ceramic cohesive failures than the respective HFA/cement groups with mechanical retention. The result of the HFA/silane/cement groups with both chemical adhesion and mechanical retention revealed that HFA treatment could enhance the bond durability of resin/silanized glass ceramics, which might result from the increase of the chemical adhesion area on the ceramic rough surface and subsequently reduced degradation speed of the silane coupler

  4. [Comparative study of tensile strength of enamel/resin/metal interface. Effect of bonding resins, retention mechanisms and metal alloys].

    PubMed

    Camparis Bussadori, C M; de Angelis Porto, C L

    1990-01-01

    The purpose of this study was to compare the enamel/resin/metal bond tensile strength by using human canines, in which castings were bonded. These castings were obtained by Co-Cr or Ni-Cr alloys and showed four types of mechanisms of retention: 50 micrograms aluminum oxide abrasive, electrochemical etch, acrylic beads metal mesh. The castings were bonded utilizing Comspan Opaque and Panavia Ex. The specimens were subjected to tensile forces after 24 hours in an Instron machine. The castings subjected to 50 micrograms aluminum oxide abrasive and bonded utilizing Panavia EX showed the biggest bond tensile strength. PMID:2099553

  5. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. PMID:27612831

  6. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs.

  7. Mechanical Properties of Polymer Nano-composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Iti

    Thermoset polymer composites are increasingly important in high-performance engineering industries due to their light-weight and high specific strength, finding cutting-edge applications such as aircraft fuselage material and automobile parts. Epoxy is the most widely employed thermoset polymer, but is brittle due to extensive cross-linking and notch sensitivity, necessitating mechanical property studies especially fracture toughness and fatigue resistance, to ameliorate the low crack resistance. Towards this end, various nano and micro fillers have been used with epoxy to form composite materials. Particularly for nano-fillers, the 1-100 nm scale dimensions lead to fascinating mechanical properties, oftentimes proving superior to the epoxy matrix. The chemical nature, topology, mechanical properties and geometry of the nano-fillers have a profound influence on nano-composite behavior and hence are studied in the context of enhancing properties and understanding reinforcement mechanisms in polymer matrix nano-composites. Using carbon nanotubes (CNTs) as polymer filler, uniquely results in both increased stiffness as well as toughness, leading to extensive research on their applications. Though CNTs-polymer nano-composites offer better mechanical properties, at high stress amplitude their fatigue resistance is lost. In this work covalent functionalization of CNTs has been found to have a profound impact on mechanical properties of the CNT-epoxy nano-composite. Amine treated CNTs were found to give rise to effective fatigue resistance throughout the whole range of stress intensity factor, in addition to significantly enhancing fracture toughness, ductility, Young's modulus and average hardness of the nano-composite by factors of 57%, 60%, 30% and 45% respectively over the matrix as a result of diminished localized cross-linking. Graphene, a one-atom-thick sheet of atoms is a carbon allotrope, which has garnered significant attention of the scientific community and is

  8. Food mechanical properties and dietary ecology.

    PubMed

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet.

  9. Microstructure and Mechanical Properties of Porous Mullite

    NASA Astrophysics Data System (ADS)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  10. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention.

    PubMed

    Wu, Lan; Liu, Mingzhu; Rui Liang

    2008-02-01

    A double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention was prepared by crosslinked poly(acrylic acid)/diatomite - containing urea (the outer coating), chitosan (the inner coating), and water-soluble granular fertilizer NPK (the core). The effects of the amount of crosslinker, initiator, degree of neutralization of acrylic acid, initial monomer and diatomite concentration on water absorbency were investigated and optimized. The water absorbency of the product was 75 times its own weight if it was allowed to swell in tap water at room temperature for 2 h. Atomic absorption spectrophotometer and element analysis results showed that the product contained 8.47% potassium (shown by K(2)O), 8.51% phosphorus (shown by P(2)O(5)), and 15.77% nitrogen. We also investigated the water-retention property of the product and the slow release behavior of N, P and K in the product. This product with excellent slow release and water-retention capacity, being nontoxic in soil and environment-friendly, could be especially useful in agricultural and horticultural applications. PMID:17320380

  11. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention.

    PubMed

    Wu, Lan; Liu, Mingzhu; Rui Liang

    2008-02-01

    A double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention was prepared by crosslinked poly(acrylic acid)/diatomite - containing urea (the outer coating), chitosan (the inner coating), and water-soluble granular fertilizer NPK (the core). The effects of the amount of crosslinker, initiator, degree of neutralization of acrylic acid, initial monomer and diatomite concentration on water absorbency were investigated and optimized. The water absorbency of the product was 75 times its own weight if it was allowed to swell in tap water at room temperature for 2 h. Atomic absorption spectrophotometer and element analysis results showed that the product contained 8.47% potassium (shown by K(2)O), 8.51% phosphorus (shown by P(2)O(5)), and 15.77% nitrogen. We also investigated the water-retention property of the product and the slow release behavior of N, P and K in the product. This product with excellent slow release and water-retention capacity, being nontoxic in soil and environment-friendly, could be especially useful in agricultural and horticultural applications.

  12. Mechanisms of nearshore retention and offshore export of mussel larvae over the Agulhas Bank

    NASA Astrophysics Data System (ADS)

    Weidberg, Nicolás; Porri, Francesca; Von der Meden, Charles E. O.; Jackson, Jennifer M.; Goschen, Wayne; McQuaid, Christopher D.

    2015-04-01

    Ecological connectivity is critical for population dynamics but in many benthic species it is complicated by a planktonic larval phase, whose dispersal remains poorly understood. Using a plankton pump, we examine the distribution of intertidal mussel larvae along three axes: alongshore, cross-shelf and by depth during a large scale (600 km) cruise over the Agulhas Bank off southern Africa in August/September 2010. As a general pattern, higher veliger abundances were found close to the coast. Our analyses of the nearshore flow, estimated from ADCP data and the vertical distribution of larvae, show that onshore larval retention may be mediated by active vertical swimming through the water column guided by light and wind-induced turbulence. A massive offshore export of larvae off St Francis Bay was, however, observed during an Agulhas Current meander which influenced inner shelf waters. We hypothesize that, by increasing and homogenizing flow, the Agulhas Current may erase the effects of larval vertical positioning on onshore retention and transport larvae offshore. Our study highlights the need to integrate the effects of complex, region-specific physical dynamics with the swimming behaviour of larvae in order to explain their spatial distribution, population connectivity and the consequences for population dynamics.

  13. Mechanical Properties of Fe-Ni Meteorites

    NASA Astrophysics Data System (ADS)

    Roberta, Mulford; El Dasher, B.

    2010-10-01

    Iron-nickel meteorites exhibit a unique lamellar microstructure, Widmanstatten patterns, consisting of small regions with steep-iron-nickel composition gradients.1,2 The microstructure arises as a result of extremely slow cooling in a planetary core or other large mass. Mechanical properties of these structures have been investigated using microindentation, x-ray fluorescence, and EBSD. Observation of local mechanical properties in these highly structured materials supplements bulk measurements, which can exhibit large variation in dynamic properties, even within a single sample. 3 Accurate mechanical properties for meteorites may enable better modeling of planetary cores, the likely origin of these objects. Appropriate values for strength are important in impact and crater modeling and in understanding the consequences of observed impacts on planetary crusts. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens.4 This was ascribed to the extreme work-hardening evident in the EBSD measurements. This particular specimen exhibited only residual Widmanstatten structures, and may have been heated and deformed during its traverse of the atmosphere. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and examples from the Muonionalusta meteorite and Gibeon fall ( both IVA, fine octahedrite), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure. 1. A. Christiansen, et.al., Physica Scripta, 29 94-96 (1984.) 2. Goldstein and Ogilvie, Geochim Cosmochim Acta, 29 893-925 (1965.) 3. M. D. Furnish, M.B. Boslough, G.T. Gray II, and J.L. Remo, Int. J. Impact Eng

  14. Mechanical Properties and Organic Carbon of Soil Aggregates in the Northern Appalachians

    SciTech Connect

    Blanco-Canqui, H.; Lal, Rattan; Owens, L. B.; Post, W. M.; Izaurralde, R Cesar C.

    2005-09-30

    The macroscale behavior of the soil depends on the mechanical properties of individual aggregates. The structural dynamics of the whole soil is defined by the architectural organization and attributes of ever-changing aggregates as the basic units of soil structure development. Aggregates influence root growth and seedling emergence (DeFreitas et al., 1996), soil moisture retention (SMR) and airflow (Watts and Dexter, 1997), and SOC sequestration and dynamics (Denef et al., 2004). Mechanical properties of aggregates are indicative of response of the soil system to tillage, compaction, and plant growth. The properties of aggregates may differ from those of the whole soil due to the dynamics of aggregate formation (Horn, 1990; Zhang, 1994). Understanding of mechanical properties of aggregates is cru- condicial to explain the macroscale functions of soil for plant growth (DeFreitas et al., 1996).

  15. Native SDS-PAGE: high resolution electrophoretic separation of proteins with retention of native properties including bound metal ions.

    PubMed

    Nowakowski, Andrew B; Wobig, William J; Petering, David H

    2014-05-01

    Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is commonly used to obtain high resolution separation of complex mixtures of proteins. The method initially denatures the proteins that will undergo electrophoresis. Although covalent structural features of resolved proteins can be determined with SDS-PAGE, functional properties are destroyed, including the presence of non-covalently bound metal ions. To address this shortcoming, blue-native (BN)-PAGE has been introduced. This method retains functional properties but at the cost of protein resolving power. To address the need for a high resolution PAGE method that results in the separation of native proteins, experiments tested the impact of changing the conditions of SDS-PAGE on the quality of protein separation and retention of functional properties. Removal of SDS and EDTA from the sample buffer together with omission of a heating step had no effect on the results of PAGE. Reduction of SDS in the running buffer from 0.1% to 0.0375% together with deletion of EDTA also made little impact on the quality of the electrophoretograms of fractions of pig kidney (LLC-PK1) cell proteome in comparison with that achieved with the SDS-PAGE method. The modified conditions were called native (N)SDS-PAGE. Retention of Zn(2+) bound in proteomic samples increased from 26 to 98% upon shifting from standard to modified conditions. Moreover, seven of nine model enzymes, including four Zn(2+) proteins that were subjected to NSDS-PAGE retained activity. All nine were active in BN-PAGE, whereas all underwent denaturation during SDS-PAGE. Metal retention after electrophoresis was additionally confirmed using laser ablation-inductively coupled plasma-mass spectrometry and in-gel Zn-protein staining using the fluorophore TSQ.

  16. Native SDS-PAGE: High Resolution Electrophoretic Separation of Proteins With Retention of Native Properties Including Bound Metal Ions

    PubMed Central

    Nowakowski, Andrew B.; Wobig, William J.; Petering, David H.

    2014-01-01

    Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is commonly used to obtain high resolution separation of complex mixtures of proteins. The method initially denatures the proteins that will undergo electrophoresis. Although covalent structural features of resolved proteins can be determined with SDS-PAGE, functional properties are destroyed, including the presence of non-covalently bound metal ions. To address this shortcoming, blue-native (BN)-PAGE has been introduced. This method retains functional properties but at the cost of protein resolving power. To address the need for a high resolution PAGE method that results in the separation of native proteins, experiments tested the impact of changing the conditions of SDS-PAGE on the quality of protein separation and retention of functional properties. Removal of SDS and EDTA from the sample buffer together with omission of a heating step had no effect on the results of PAGE. Reduction of SDS in the running buffer from 0.1% to 0.0375% together with deletion of EDTA also made little impact on the quality of the electrophoretograms of fractions of pig kidney (LLC-PK1) cell proteome in comparison with that achieved with the SDS-PAGE method. The modified conditions were called native (N)SDS-PAGE. Retention of Zn2+ bound in proteomic samples increased from 26 to 98% upon shifting from standard to modified conditions. Moreover, seven of nine model enzymes, including four Zn2+ proteins that were subjected to NSDS-PAGE retained activity. All nine were active in BN-PAGE, whereas all underwent denaturation during SDS-PAGE. Metal retention after electrophoresis was additionally confirmed using laser ablation-inductively coupled plasma-mass spectrometry and in-gel Zn-protein staining using the fluorophore TSQ. PMID:24686569

  17. Mechanical Properties of Cellulose Microfiber Reinforced Polyolefin

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoshi; Yamada, Hiroyuki

    Cellulose microfiber (CeF) has been expected as a reinforcement of polymer because of its high modulus and strength and lower cost. In the present study, mechanical properties of CeF/polyolefin were investigated. Tensile modulus increased with increasing CeF content. On the other hand, tensile strength decreased. Fatigue properties were also investigated with acoustic emission measurement. Stiffness of the composites gradually decreased with loading. Drastic decrease in stiffness was observed just before the final fracture. Based on the Mori-Tanaka's theory, the method to calculate modulus of CeF were proposed to evaluate dispersion of CeF.

  18. AFM Investigation of mechanical properties of dentin

    SciTech Connect

    Cohen, Sidney R; Apter, Nathan; Jesse, Stephen; Kalinin, Sergei V; Barlam, David; Peretz, Adi Idit; Ziskind, Daniel; Wagner, H. Daniel

    2008-01-01

    Mechanical properties of peritubular dentin were investigated using scanning probe microscopy techniques, namely Nanoindentation and Band Excitation. Particular attention was directed to the possible existence of a gradient in these properties moving outward from the tubular lumen to the junction with the intertubular dentin. Finite element analysis showed that the influence of the boundaries is small relative to the effects observed. Thus, these results strongly support the concept of a lowering of modulus and hardness from the tubular exterior to its periphery, which appear to correlate with graded changes in the mineral content.

  19. Mechanical properties of crosslinked polymer coatings

    NASA Technical Reports Server (NTRS)

    Csernica, Jeffrey

    1994-01-01

    The objectives of this experiment are to: fabricate and test thin films to explore relations between a polymer's structure and its mechanical properties; expose students to testing methods for hardness and impact energy that are simple to perform and which have results that are easy to comprehend; show importance of polymer properties in materials that students frequently encounter; illustrate a system which displays a tradeoff between strength and impact resistance, the combination of which would need to be optimized for a particular application; and to expose students to coatings technology and testing.

  20. Visualization of micro-scale phase displacement processes in retention and outflow experiments: Non-uniqueness of unsaturated flow properties

    SciTech Connect

    MORTENSEN,ANNETTE P.; GLASS JR.,ROBERT J.; HOLLENBECK,KARL; JENSEN,KARSTEN H.

    2000-03-09

    Methods to determine unsaturated hydraulic properties can exhibit random and non-unique behavior. The authors assess the causes for these behaviors by visualizing micro-scale phase displacement processes during equilibrium retention and transient outflow experiments. They observe that the drainage process is composed of a fast fingering followed by a slower backfilling. The influence of each these processes is controlled by the size and the speed of the applied boundary step, the initial saturation and its structure and by small-scale heterogeneities. Because the mixture of these micro-scale processes yields macro-scale effective behavior, measured unsaturated flow properties are also a function of these controls. These results suggest limitations on the current definitions and uniqueness of unsaturated hydraulic properties.

  1. The influence of salt chaotropicity, column hydrophobicity and analytes' molecular properties on the retention of pramipexole and its impurities.

    PubMed

    Vemić, Ana; Kalinić, Marko; Erić, Slavica; Malenović, Anđelija; Medenica, Mirjana

    2015-03-20

    The aim of this study was to examine the interaction of the chaotropic salts of different position in Hofmeister series (CF3COONa, NaClO4, NaPF6) added to the mobile phase with the stationary phases of different hydrophobicity (C8 and C18 XTerra(®) columns), as well as their common influence on the retention behavior of pramipexole and its structurally related impurities. The extended thermodynamic approach enabled the understanding of the underlying separation mechanism. Comparing six different column-salt systems it was observed that general system hydrophobicity presented by salt chaotropicity and column hydrophobicity favors stationary phase ion-pairing over the ion-pair formation in the eluent. Further, an attempt was made to describe the influence of analytes' nature on their retention behavior in such chromatographic systems. An analysis is performed in order to select and elucidate the molecular descriptors (electrostatical, quantum-chemical, geometrical, topological, and constitutional) that best explain the experimental evidence and findings obtained by the thermodynamic approach. The results of this analysis suggest that analytes' charge distribution and its complementarity to the structure of the electric double layer formed on the surface of the stationary phase upon the addition of chaotropic additives can be useful for understanding the differences in retention of structurally related analytes. These findings provide a novel understanding of the interactions between all the components of the chromatographic system containing chaotropic additive and a good basis for further investigations suggesting the development of generally applicable predictors in structure-retention relationship studies in related chromatographic systems. PMID:25681830

  2. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  3. Mechanical properties of intra-ocular lenses

    NASA Astrophysics Data System (ADS)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  4. Rhenium Mechanical Properties and Joining Technology

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  5. Mechanical properties of silicones for MEMS

    NASA Astrophysics Data System (ADS)

    Schneider, F.; Fellner, T.; Wilde, J.; Wallrabe, U.

    2008-06-01

    This paper focuses on the mechanical properties of polydimethylsiloxane (PDMS) relevant for microelectromechanical system (MEMS) applications. In view of the limited amount of published data, we analyzed the two products most commonly used in MEMS, namely RTV 615 from Bayer Silicones and Sylgard 184 from Dow Corning. With regard to mechanical properties, we focused on the dependence of the elastic modulus on the thinner concentration, temperature and strain rate. In addition, creep and thermal aging were analyzed. We conclude that the isotropic and constant elastic modulus has strong dependence on the hardening conditions. At high hardening temperatures and long hardening time, RTV 615 displays an elastic modulus of 1.91 MPa and Sylgard 184 of 2.60 MPa in a range up to 40% strain.

  6. Mechanical Properties of Palm Fiber Mattress

    NASA Astrophysics Data System (ADS)

    Li, Yu-Qian; Wu, Jia-Yu; Gu, Hao-Wei; Chen, Zong-Yong; Shi, Xiao-Bing; Liao, Ting-Mao; An, Cheng; Yuan, Hong; Liu, Ren-Huai

    2016-05-01

    Palm fiber mattress is increasingly accepted by many families. This study aims at evaluating the mechanical properties of palm fiber mattress. Two experiments were conduct to investigate the Young's modulus of palm fiber mattress in three directions. In addition, finite element models were established to characterize palm fiber mattress under uniform distributed pressure. Finally, results from finite element analysis are presented to illustrate that the thick mattress will stick with human body curve perfectly, which can support vertebral column effectively.

  7. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types. PMID:25940499

  8. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types.

  9. Determinants of the mechanical properties of bones

    NASA Technical Reports Server (NTRS)

    Martin, R. B.

    1991-01-01

    The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.

  10. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts.

    PubMed

    Xu, Long; Gong, Houjian; Dong, Mingzhe; Li, Yajun

    2015-11-01

    Rheological properties of a new microbial polysaccharide, diutan gum in aqueous solution have been systematically investigated. It is found that molecular aggregates of diutan gum can be formed at a very low concentration (0.12 g/L), and the mechanism of thickening by diutan gum is proposed. The viscosity retention rate of diutan gum changes little when increasing the temperature from 298 K to 348 K or in a high salinity solution (55.5 g L(-1)). Gel structure can be formed in the diutan gum solution, owing to the finding that the dynamic modulus has an exponential relationship with the concentration. The gel properties of diutan gum are not sensitive to temperature, and are virtually independent of cationic environment (Na(+) and Ca(2+)). The temperature/salt tolerance of the diutan gum solution is mainly attributed to its perfect double helix molecular conformation, the location of the side chains of its molecules, and its water retention capacity.

  11. Database of Mechanical Properties of Textile Composites

    NASA Technical Reports Server (NTRS)

    Delbrey, Jerry

    1996-01-01

    This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.

  12. Exploring Physical and Biological Mechanisms for Zooplankton Retention in the Estuarine Transition Zone of a Riverine Estuary

    NASA Astrophysics Data System (ADS)

    Simons, R. D.; Monismith, S. G.

    2002-12-01

    In this study, we use a coupled three-dimensional physical-biological model to investigate zooplankton retention in the estuarine transition zone (ETZ) of the St. Lawrence Estuary (SLE). Varying from well-mixed to partially stratified, the hydrodynamic environment of the SLE is defined by a large tidal range, strong salinity gradients, a large freshwater river flow, and complex bathymetry. The physical-biological model used for this study consisted of two parts: a circulation model and a zooplankton transport model. The circulation model is a three-dimensional Eulerian hydrodynamic model (TRIM3D) driven by the wind, tides, and freshwater outflow. The zooplankton transport model is a three-dimensional Lagrangian particle tracking model which simulates zooplankton movement using velocity fields derived from the three-dimensional circulation model. The circulation model is calibrated using field data such as salinity, pressure, and current time series from different locations in the ETZ. The transport and distribution of three zooplankton taxa, non-native zebra mussel veligers, resident mysids, and larval smelt, were simulated for this study. By simulating these three taxa, we were able to investigate the effect of a range of swimming speeds on zooplankton retention in the ETZ. We present the results of simulations exploring the efficiency of tidal vertical migration, a commonly described biological retention mechanism that is characterized by zooplankton migration up to the surface on flood and down to the bottom on ebb. Tidal vertical migration, also known as selective tidal stream transport, was investigated for several swimming speeds and endogenous rhythms.

  13. Mechanical Properties Characterization at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Fong, Hanson; Sopp, Jeffery; Sarikaya, Mehmet

    2001-05-01

    Nanoindentation is an unique technique that characterizes mechanical properties of materials down to the nanometer scale. With a force range from nanoNewtons to milliNewtons, unique properties of surface structures and thin films in the mesoscale can be routinely quantifieds. With technology continually pushing toward smaller feature size in electronic and mechanical devices as well as biomaterials applications, nanoindentation has become an invaluable method to measure these characteristic features. Here, we report its application in the study the biological hard tissues. For example, using engineered metallic indentation tips, the elastic properties of the 20 nm protein layer in the biocomposite of the abalone shell was measured. The elastic modulus was found to be exceptionally high compared to most synthetic polymers. With the combination of AFM imaging nanoindentation, we were able to measure the difference in deformation behavior at the mesoscale between normal and genetically altered mouse enamel. These measurements were complementary in determining the growth defects resulting from genetically modified enamel proteins. Details of these results and future prospects will be discussed.

  14. Experimental and numerical characterization of floc morphology: role of changing hydraulic retention time under flocculation mechanisms.

    PubMed

    Nan, Jun; Yao, Meng; Chen, Ting; Wang, Zhenbei; Li, Qinggui; Zhan, Dan

    2016-02-01

    The formation, breakage, and re-growth of flocs were investigated by using modified flocculation tests and numerical simulation to explore the evolution of floc morphology for different hydraulic retention times. The shorter the aggregation time was, the smaller the flocs produced for the same hydraulic conditions were. Another interesting discovery was that broken flocs that formed in shorter aggregation time had the capacity to completely recover, whereas those formed in a longer amount of time had rather worse reversibility of broken flocs. With the addition of the maximum motion step in the representative two-dimensional diffusion-limited aggregation (DLA) model, there was a transition for flocs from isotropic to anisotropic as the maximum motion step increased. The strength of flocs was mainly affected by the distribution of particles near the aggregated core rather than distant particles. A simplified breakage model, which found that broken flocs provided more chances for diffused particles to access the inner parts of flocs and to be uniformly packed around the aggregated core, was first proposed. Moreover, an important result showed that the floc fragments formed with a larger value of the maximum motion step had more growing sites than did those with a smaller msa value, which was a benefit of following the re-forming procedure. PMID:26490940

  15. Experimental and numerical characterization of floc morphology: role of changing hydraulic retention time under flocculation mechanisms.

    PubMed

    Nan, Jun; Yao, Meng; Chen, Ting; Wang, Zhenbei; Li, Qinggui; Zhan, Dan

    2016-02-01

    The formation, breakage, and re-growth of flocs were investigated by using modified flocculation tests and numerical simulation to explore the evolution of floc morphology for different hydraulic retention times. The shorter the aggregation time was, the smaller the flocs produced for the same hydraulic conditions were. Another interesting discovery was that broken flocs that formed in shorter aggregation time had the capacity to completely recover, whereas those formed in a longer amount of time had rather worse reversibility of broken flocs. With the addition of the maximum motion step in the representative two-dimensional diffusion-limited aggregation (DLA) model, there was a transition for flocs from isotropic to anisotropic as the maximum motion step increased. The strength of flocs was mainly affected by the distribution of particles near the aggregated core rather than distant particles. A simplified breakage model, which found that broken flocs provided more chances for diffused particles to access the inner parts of flocs and to be uniformly packed around the aggregated core, was first proposed. Moreover, an important result showed that the floc fragments formed with a larger value of the maximum motion step had more growing sites than did those with a smaller msa value, which was a benefit of following the re-forming procedure.

  16. Design of monoliths through their mechanical properties.

    PubMed

    Podgornik, Aleš; Savnik, Aleš; Jančar, Janez; Krajnc, Nika Lendero

    2014-03-14

    Chromatographic monoliths have several interesting properties making them attractive supports for analytics but also for purification, especially of large biomolecules and bioassemblies. Although many of monolith features were thoroughly investigated, there is no data available to predict how monolith mechanical properties affect its chromatographic performance. In this work, we investigated the effect of porosity, pore size and chemical modification on methacrylate monolith compression modulus. While a linear correlation between pore size and compression modulus was found, the effect of porosity was highly exponential. Through these correlations it was concluded that chemical modification affects monolith porosity without changing the monolith skeleton integrity. Mathematical model to describe the change of monolith permeability as a function of monolith compression modulus was derived and successfully validated for monoliths of different geometries and pore sizes. It enables the prediction of pressure drop increase due to monolith compressibility for any monolith structural characteristics, such as geometry, porosity, pore size or mobile phase properties like viscosity or flow rate, based solely on the data of compression modulus and structural data of non-compressed monolith. Furthermore, it enables simple determination of monolith pore size at which monolith compressibility is the smallest and the most robust performance is expected. Data of monolith compression modulus in combination with developed mathematical model can therefore be used for the prediction of monolith permeability during its implementation but also to accelerate the design of novel chromatographic monoliths with desired hydrodynamic properties for particular application.

  17. PICA Variants with Improved Mechanical Properties

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  18. Electrical and Mechanical Properties of Graphene

    NASA Astrophysics Data System (ADS)

    Bao, Wenzhong

    Graphene is an exciting new atomically-thin two-dimensional (2D) system of carbon atoms organized in a hexagonal lattice structure. This "wonder material" has been extensively studied in the last few years since it's first isolation in 2004. Its rapid rise to popularity in scientific and technological communities can be attributed to a number of its exceptional properties. In this thesis I will present several topics including fabrication of graphene devices, electrical and mechanical properties of graphene. I will start with a brief introduction of electronic transport in nanosclae system including quantum Hall effect, followed by a discussion of fundamental electrical and mechanical properties of graphene. Next I will describe how graphene devices are produced: from the famous "mechnical exfoliation" to our innovative "scratching exfoliation" method, together with the traditional lithography fabrication for graphene devices. We also developed a lithography-free technique for making electrical contacts to suspended graphene devices. Most of the suspended devices presented in this thesis are fabricated by this technique. Graphene has remarkable electrical properties thanks to its crystal and band structures. In Chapter 3, I will first focus on proximity-induced superconductivity in graphene Josephson transistors. In this section we investigate electronic transport in single layer graphene coupled to superconducting electrodes. We observe significant suppression in the critical current I c and large variation in the product IcR n in comparison to theoretic prediction; both phenomena can be satisfactorily accounted for by premature switching in underdamped Josephson junctions. Another focus of our studies is quantum Hall effect and many body physics in graphene in suspended bilayer and trilayer graphene. We demonstrate that symmetry breaking of the first 3 Landau levels and fractional quantum Hall states are observed in both bilayer and trilayer suspended graphene

  19. Mechanical properties of dried defatted spongy bone.

    PubMed

    Lindahl, O

    1976-02-01

    A study has been made of the compressive strength, compression at rupture, limit of proportionality, compression at the limit of proportionality and the modulus of elasticity of spongy bone from vertebrae and tibias. The specimens were obtained from autopsy subjects of both sexes aged 14 to 89 years. There was a qualitative deterioration of most of the strength parameters with age, and also differences between the sexes and between vertebrae and tibia. Spongy bone was found to have the unusual mechanical property that, despite rupture, its compressive strength often steadily increased; this was especially the case for vertebrae from young males.

  20. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  1. Passive mechanical properties of ovine rumen tissue

    NASA Astrophysics Data System (ADS)

    Waite, Stephen J.; Cater, John E.; Walker, Cameron G.; Amirapu, Satya; Waghorn, Garry C.; Suresh, Vinod

    2016-05-01

    Mechanical and structural properties of ovine rumen tissue have been determined using uniaxial tensile testing of tissue from four animals at five rumen locations and two orientations. Animal and orientation did not have a significant effect on the stress-strain response, but there was a significant difference between rumen locations. Histological studies showed two orthogonal muscle layers in all regions except the reticulum, which has a more isotropic structure. A quasi-linear viscoelastic model was fitted to the relaxation stage for each region. Model predictions of the ramp stage had RMS errors of 13-24% and were within the range of the experimental data.

  2. Mechanical properties of phosphorene nanoribbons and oxides

    SciTech Connect

    Hao, Feng; Chen, Xi

    2015-12-21

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion.

  3. The mechanical properties of breast prostheses.

    PubMed

    Peters, W J

    1981-03-01

    The mechanical properties of inflatable and gel-filled breast prostheses were evaluated using the Instron Universal Testing Machine. Prosthesis strength characteristics were evaluated in terms of compression strength (rather than tensile strength) because of the relationship to closed capsulotomy. The compression breaking strength of prostheses ranged from 0.62 to 10.8 pounds per square inch. There was considerable variation among prostheses. Pressures exceeding these values have been recorded during closed compression capsulotomy. The clinical relevance of these results is discussed.

  4. Surveyor v: lunar surface mechanical properties.

    PubMed

    Christensen, E M; Choate, R; Jaffe, L D; Spencer, R L; Sperling, F B; Batterson, S A; Benson, H E; Hutton, R E; Jones, R H; Ko, H Y; Schmidt, F N; Scott, R F; Sutton, G H

    1967-11-01

    The mechanical properties of the lunar soil at the Surveyor V landing site seem to be generally consistent with values determined for soils at the landing sites of Surveyor I and III. These three maria sites are hundreds of kilometers apart. However, the static bearing capability may be somewhat lower than that at the previous landing sites (2 x 10(5) to 6 x 10(5) dynes per square centimeter or 3 to 8 pounds per square inch). The results of the erosion experiment, the spacecraft landing effects, and other observations indicate that the soil has significant amounts of fine-grained material and a measurable cohesion.

  5. Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO3/metal devices.

    PubMed

    Baeumer, C; Raab, N; Menke, T; Schmitz, C; Rosezin, R; Müller, P; Andrä, M; Feyer, V; Bruchhaus, R; Gunkel, F; Schneider, C M; Waser, R; Dittmann, R

    2016-08-01

    Nanoscale redox reactions in transition metal oxides are believed to be the physical foundation of memristive devices, which present a highly scalable, low-power alternative for future non-volatile memory devices. The interface between noble metal top electrodes and Nb-doped SrTiO3 single crystals may serve as a prominent but not yet well-understood example of such memristive devices. In this report, we will present experimental evidence that nanoscale redox reactions and the associated valence change mechanism are indeed responsible for the resistance change in noble metal/Nb-doped SrTiO3 junctions with dimensions ranging from the micrometer scale down to the nanometer regime. Direct verification of the valence change mechanism is given by spectromicroscopic characterization of switching filaments. Furthermore, it is found that the resistance change over time is driven by the reoxidation of a previously oxygen-deficient region. The retention times of the low resistance states, accordingly, can be dramatically improved under vacuum conditions as well as through the insertion of a thin Al2O3 layer which prevents this reoxidation. These insights finally confirm the resistive switching mechanism at these interfaces and are therefore of significant importance for the study and application of memristive devices based on Nb-doped SrTiO3 as well as systems with similar switching mechanisms. PMID:27089047

  6. Polyaniline: Factors affecting conductivity and mechanical properties

    SciTech Connect

    Scherr, E.M.

    1993-01-01

    The main objectives of this study were: (a) to study electronic and mechanical properties of films of the conducting polymer, polyaniline, in the doped and undoped emeraldine oxidation state, (b) to study how the electronic and mechanical properties were modified through mechanical stretch-orientation of the films, (c) to study the effect of water vapor on the conductivity of stretched protonic acid doped films, (d) to observe changes in tensile strength and Young's modulus when selected plasticizers were introduced into the films, (e) to observe, using UV/Vis spectroscopy, the effect that neutral salts in the doping media have on the doping level of thin, optically transparent films of polyaniline, (f) to use thin, optically transparent films to spectroscopically study (by UV/Vis) hysteresis in the doping and undoping behavior of polyaniline. The significant results and conclusions are: (a) mechanical stretch-orientation of polyaniline increased the tensile strength of emeraldine base films, (b) the conductivity of doped films of polyaniline was increased approximately two orders of magnitude by stretch-orientation (four-fold elongation) from [approximately]5 S/cm to [approximately]90 S/cm, (c) an increase in the relative percent crystallinity (by x-ray diffraction) upon stretch-orientation of emeraldine base films, (d) the removal of water vapor was found to decrease the conductivity of stretched emeraldine, (e) both tensile strength and Young's modulus are decreased by the introduction of plasticizers and [open quotes]dopant plasticizers[close quotes] into the films, (f) no loss in conductivity was observed due to the addition of plasticizers, (g) the presence of neutral salts in the doping media increased the doping level of thin films of polyaniline, (h) observed hysteresis upon doping and undoping thin polyaniline films is due to irreversible morphological changes that take place in polyaniline upon doping and undoping.

  7. Mechanical Properties of Nanoceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Ojo, Ipidapo; Abunaemeh, Malek; Smith, Cydale; Muntele, Claudiu; Ila, Daryush

    2009-03-01

    Generation IV nuclear reactors will use the TRISO fuels, a type of micro fuel particle. It consists of a fuel kernel coated with four layers of isotropic material. One of the materials considered for these layers is silicon carbide ceramic. This lightweight material can maintain chemical and dimensional stability in adverse environments at very high temperatures up to 3000 C, and it is chemically inert. It is widely used as a semiconductor material in electronics because of its high thermo conductivity, high electric field break down strength, and high maximum current density, which makes it more desirable than silicon. Silicon carbide has a very low coefficient of thermal expansion and has no phase transition that would discontinue its thermal expansion. At the Center for Irradiation of Materials (C.I.M.) we are developing a new fabrication process for nanopowdered silicon carbide for TRISO fuel coating purposes. We also study the mechanical properties of the material produced. Among the different test being performed are particle induced X-ray emission (PIXE) an Rutherford backscattering spectroscopy (RBS). The mechanical properties of interest are hardness (measured by Vickers Hardness machine), toughness (measured by the Anstis equation, KIC= 1.6 x 10-2(E/H)^1/2(P/C0^3/2, where P=load, C0=crack length, E=Young's modulus and H=Vickers Hardness), tensile strength and flexural strength (measured by a three point bend test). Results will be presented during the meeting.

  8. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose. PMID:26521096

  9. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose.

  10. A quantitative structure- property relationship of gas chromatographic/mass spectrometric retention data of 85 volatile organic compounds as air pollutant materials by multivariate methods

    PubMed Central

    2012-01-01

    A quantitative structure-property relationship (QSPR) study is suggested for the prediction of retention times of volatile organic compounds. Various kinds of molecular descriptors were calculated to represent the molecular structure of compounds. Modeling of retention times of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR) and artificial neural network (ANN). The stepwise regression was used for the selection of the variables which gives the best-fitted models. After variable selection ANN, MLR methods were used with leave-one-out cross validation for building the regression models. The prediction results are in very good agreement with the experimental values. MLR as the linear regression method shows good ability in the prediction of the retention times of the prediction set. This provided a new and effective method for predicting the chromatography retention index for the volatile organic compounds. PMID:22594439

  11. Planar defects as Ar traps in trioctahedral micas: A mechanism for increased Ar retentivity in phlogopite

    NASA Astrophysics Data System (ADS)

    Camacho, A.; Lee, J. K. W.; Fitz Gerald, J. D.; Zhao, J.; Abdu, Y. A.; Jenkins, D. M.; Hawthorne, F. C.; Kyser, T. K.; Creaser, R. A.; Armstrong, R.; Heaman, L. W.

    2012-08-01

    propose that these defect structures, which are enclosed entirely within the mineral grain may serve as Ar traps and effectively increase the Ar retentivity of the mineral. As this phenomenon has not been previously documented in micas, this may have significant implications for the interpretation of 40Ar/39Ar ages of minerals which have similar defect structures.

  12. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-05-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.

  13. Retention Mechanisms of Citric Acid in Ternary Kaolinite-Fe(III)-Citrate Acid Systems Using Fe K-edge EXAFS and L3,2-edge XANES Spectroscopy

    PubMed Central

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-01-01

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680

  14. Investigation into the phenomena affecting the retention behavior of basic analytes in chaotropic chromatography: Joint effects of the most relevant chromatographic factors and analytes' molecular properties.

    PubMed

    Čolović, Jelena; Kalinić, Marko; Vemić, Ana; Erić, Slavica; Malenović, Anđelija

    2015-12-18

    The aim of this study was to systematically investigate the phenomena affecting the retention behavior of structurally diverse basic drugs in ion-interaction chromatographic systems with chaotropic additives. To this end, the influence of three factors was studied: pH value of the aqueous phase, concentration of sodium hexafluorophosphate, and content of acetonitrile in the mobile phase. Mobile phase pH was found to affect the thermodynamic equilibria in the studied system beyond its effects on the analytes' ionization state. Specifically, increasing pH from 2 to 4 led to longer retention times, even with analytes which remain completely protonated. An explanation for this phenomenon was sought by studying the adsorption behavior of acetonitrile and chaotropic additive onto stationary phase. It was shown that the magnitude of the developed surface potential, which significantly affects retention - increases with pH, and that this can be attributed to the larger surface excess of acetonitrile. To study how analytes' structural properties influence their retention, quantitative structure-retention modeling was performed next. A support vector machine regression model was developed, relating mobile phase constituents and structural descriptors with retention data. While the ETA_EtaP_B_RC and XlogP can be considered as molecular descriptors which describe factors affecting retention in any RP-HPLC system, TDB9p and RDF45p are molecular descriptors which account for spatial arrangement of polarizable atoms and they can clearly relate to analytes' behavior on the stationary phase surface, where the electrostatic potential develops. Complementarity of analytes' structure with that of the electric double layer can be seen as a key factor influencing their retention behavior. Structural diversity of analytes and good predictive capabilities over a range of experimental conditions make the established model a useful tool in predicting retention behavior in the studied

  15. Mechanical properties of the beetle elytron, a biological composite material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  16. Hydrophilic interaction liquid chromatography in analysis of granisetron HCl and its related substances. Retention mechanisms and method development.

    PubMed

    Maksić, Jelena; Tumpa, Anja; Stajić, Ana; Jovanović, Marko; Rakić, Tijana; Jančić-Stojanović, Biljana

    2016-05-10

    In this paper separation of granisetron and its two related substances in HILIC mode is presented. Separation was done on silica column derivatized with sulfoalkylbetaine groups (ZIC-HILIC). Firstly, retention mechanisms were assessed whereby retention factors of substances were followed in wide range of acetonitrile content (80-97%), at constant concentration of aqueous buffer (10mM) as well as at constant pH value of 3.0. Further, in order to developed optimal HILIC method, Design of Experiments (DoE) methodology was applied. For optimization full factorial design 3(2) was employed. Influence of acetonitrile content and ammonium acetate concentration were investigated while pH of the water phase was kept at 3.3. Adequacy of obtained mathematical models was confirmed by ANOVA. Optimization goals (α>1.15 and minimal run time) were accomplished with 94.7% of acetonitrile in mobile phase and 70 mM of ammonium acetate in water phase. Optimal point was in the middle of defined Design Space. In the next phase, robustness was experimetally tested by Rechtschaffen design. The investigated factors and their levels were: acetonitrile content (±1%), ammonium acetate molarity in water phase (±2 mM), pH value of water phase (±0.2) and column temperature (±4 °C). The validation scope included selectivity, linearity, accuracy and precision as well as determination of limit of detection (LOD) and limit of quantification (LOQ) for the related substances. Additionally, the validation acceptance criteria were met in all cases. Finally, the proposed method could be successfully utilized for estimation of granisetron HCl and its related substances in tablets and parenteral dosage forms, as well as for monitoring degradation under various stress conditions.

  17. A Physiochemical Analysis of the Mechanisms for Transport and Retention of Technetium (Tc-99) in Hanford Sediments

    NASA Astrophysics Data System (ADS)

    Jansik, D. P.; Wellman, D. M.; Istok, J. D.; Cordova, E.

    2011-12-01

    The transport of technetium (Tc-99), like many other radionuclides, is of interest due to the potential for human exposure and impact on ecosystems. Technetium has been released to the environment through nuclear power production and nuclear fuel processing; as a result, further spreading of Tc-99 is a concern at DOE sites across the US. Specifically, technetium is a contaminant of concern at Hanford and Savannah River. The current body of work conducted on Tc-99 has provided a wealth of information regarding the redox relationships, sorption, solubility, and stability of the mineral phases (Artinger et al., 2003; Beals and Hayes, 1995; Cui and Eriksen, 1996b; Gu and Schulz, 1991; Jaisi et al., 2009; Keith-Roach et al., 2003; Kumar et al., 2007), however little work has been conducted on the physical transport of the highly soluble pertechnetate oxyanion (TcO4-), in the subsurface. Current conceptual models do not explain the persistence and presence of technetium in deep vadose zone environments such as the Hanford site. In an oxic reducing environment with low organic content the residence time of technetium is the soil would be expected to be low, due to its low sorption and high solubility. Surprisingly, nearly 50 years following the release of contamination into the site, much of the element has persisted in the subsurface in the 200 Area. In these experiments we combined a variety of techniques to examine the mechanisms for physical and chemical retention and transport of technetium in Hanford sediments. We first determined the aqueous leachability with regard to sediment pore size in sediments containing technetium contamination from the 200 area of the Hanford Site. Using a series of sequential extractions, we then evaluated the mineral association of technetium. In a second series of tests we then used an Unsaturated Flow Apparatus (UFA) to evaluate breakthrough curve behavior and the impact of immobile domains on the transport and retention of technetium

  18. Environmental properties set cell mechanics and morphology

    NASA Astrophysics Data System (ADS)

    Janmey, Paul

    2012-02-01

    Many cell types are sensitive to mechanical signals that are produced either by application of exogenous force to their surfaces, or by the resistance that their surroundings place on forces generated by the cells themselves. Cell morphology, motility, proliferation, and protein expression all change in response to substrate stiffness. Changing the elastic moduli of substrates alters the formation of focal adhesions, the assembly of actin filaments into bundles, and the stability of intermediate filaments. The range of stiffness over which different primary cell types respond can vary over a wide range and generally reflects the elastic modulus of the tissue from which these cells were isolated. Mechanosensing depends on the type of adhesion receptor by which the cell binds, and therefore on both the molecular composition of the extracellular matrix and the nature of its link to the cytoskeleton. Many cell types can alter their own stiffness to match that of the substrate to which they adhere. The maximal elastic modulus that cells such as fibroblasts can attain is similar to that of crosslinked actin networks at the concentrations in the cell cortex. The precise mechanisms of mechanosensing are not well defined, but they presumably require an elastic connection between cell and substrate, mediated by transmembrane proteins. The viscoelastic properties of different extracellular matrices and cytoskeletal elements strongly influence the response of cells to mechanical signals, and the unusual non-linear elasticity of many biopolymer gels, characterized by strain-stiffening, leads to novel mechanisms by which cells alter their stiffness by engagement of molecular motors that produce internal stresses. Cell cortical elasticity is dominated by cytoskeletal polymer networks and can be modulated by internal tension. Simultaneous control of substrate stiffness and adhesive patterns suggests that stiffness sensing occurs on a length scale much larger than single molecular

  19. Surface site density, silicic acid retention and transport properties of compacted magnetite powder

    NASA Astrophysics Data System (ADS)

    Mayant, C.; Grambow, B.; Abdelouas, A.; Ribet, S.; Leclercq, S.

    In France, within the framework of investigations of the feasibility of deep geological disposal of high-level radioactive waste, studies on corrosion products of steel over packs are ongoing. Such studies concern silica and radionuclide retention. The objective of the present work is to study sorption of silicic acid on compacted magnetite in percolation cells to attempt to simulate confined site conditions. Potentiometric titration of commercial magnetite was carried out with both dispersed and compacted magnetite. The titration of the magnetite suspension has been made with two different methods: a batch method (several suspensions) and a direct fast method (one suspension). The Gran’s function gave 1.7 (±0.4) and 2.4 (±0.5) sorption sites nm -2 with these respective methods but site densities as high as 20/nm 2 could be obtained by modelling. The titration of magnetite compacted at 120 bars showed that the evolution of charge density on magnetite surfaces is similar for compacted and dispersed magnetite. Silicic acid sorption onto dispersed and compacted magnetite was similar with sorption site densities ranging between 2.2 and 4.4/nm 2.

  20. Mechanical properties of low-nickel stainless steel

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1978-01-01

    Demand for improved corrosion-resistant steels, coupled with increased emphasis on conserving strategic metals, has led to development of family of stainless steels in which manganese and nitrogen are substituted for portion of usual nickel content. Advantages are approximately-doubled yield strength in annealed condition, better resistance to stress-corrosion cracking, retention of low magnetic permeability even after severe cold working, excellent strength and ductility at cryogenic temperatures, superior resistance to wear and galling, and excellent high-temperature properties.

  1. Mechanical properties of icosahedral virus capsids

    NASA Astrophysics Data System (ADS)

    Vliegenthart, G. A.; Gompper, G.

    2007-12-01

    Virus capsids are self-assembled protein shells in the size range of 10 to 100 nanometers. The shells of DNA-viruses have to sustain large internal pressures while encapsulating and protecting the viral DNA. We employ computer simulations to study the mechanical properties of crystalline shells with icosahedral symmetry that serve as a model for virus capsids. The shells are positioned on a substrate and deformed by a uni-axial force excerted by a small bead. We predict the elastic response for small deformations, and the buckling transitions at large deformations. Both are found to depend strongly on the number N of elementary building blocks (capsomers), and the Föppl-von Kármán number γ which characterizes the relative importance of shear and bending elasticity.

  2. Material modeling of biofilm mechanical properties.

    PubMed

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. PMID:24560820

  3. Evaluation of mechanical properties of esthetic brackets

    PubMed Central

    Umezaki, Eisaku; Komazawa, Daigo; Otsuka, Yuichiro; Suda, Naoto

    2015-01-01

    Plastic brackets, as well as ceramic brackets, are used in various cases since they have excellent esthetics. However, their mechanical properties remain uncertain. The purpose of this study was to determine how deformation and stress distribution in esthetic brackets differ among materials under the same wire load. Using the digital image correlation method, we discovered the following: (1) the strain of the wings of plastic brackets is within 0.2% and that of ceramic and metal brackets is negligible, (2) polycarbonate brackets having a stainless steel slot show significantly smaller displacement than other plastic brackets, and (3) there is a significant difference between plastic brackets and ceramic and stainless steel brackets in terms of the displacement of the bracket wing. PMID:25755677

  4. The minimal nanowire: Mechanical properties of carbyne

    NASA Astrophysics Data System (ADS)

    Nair, A. K.; Cranford, S. W.; Buehler, M. J.

    2011-07-01

    Advances in molecular assembly are converging to an ultimate in atomistic precision —nanostructures built by single atoms. Recent experimental studies confirm that single chains of carbon atoms —carbyne— exist in stable polyyne structures and can be synthesized, representing the minimal possible nanowire. Here we report the mechanical properties of carbyne obtained by first-principles-based ReaxFF molecular simulation. A peak Young's modulus of 288 GPa is found with linear stiffnesses ranging from 64.6-5 N/m for lengths of 5-64 Å. We identify a size-dependent strength that ranges from 11 GPa (1.3 nN) for the shortest to a constant 8 GPa (0.9 nN) for longer carbyne chains. We demonstrate that carbyne chains exhibit extremely high vibrational frequencies close to 6 THz for the shortest chains, which are found to be highly length-dependent.

  5. Rationally designing the mechanical properties of protein hydrogels

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    Naturally occurring biomaterials possess diverse mechanical properties, which are critical to their unique biological functions. However, it remains challenging to rationally control the mechanical properties of synthetic biomaterials. Here we provide a bottom-up approach to rationally design the mechanical properties of protein-based hydrogels. We first use atomic fore microscope (AFM) based single-molecule force spectroscopy to characterize the mechanical stability of individual protein building blocks. We then rationally design the mechanical properties of hydrogels by selecting different combination of protein building blocks of known mechanical properties. As a proof-of-principle, we demonstrate the engineering of hydrogels of distinct extensibility and toughness. This simple combinatorial approach allows direct translation of the mechanical properties of proteins from the single molecule level to the macroscopic level and represents an important step towards rationally designing the mechanical properties of biomaterials.

  6. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  7. Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO3/metal devices

    NASA Astrophysics Data System (ADS)

    Baeumer, C.; Raab, N.; Menke, T.; Schmitz, C.; Rosezin, R.; Müller, P.; Andrä, M.; Feyer, V.; Bruchhaus, R.; Gunkel, F.; Schneider, C. M.; Waser, R.; Dittmann, R.

    2016-07-01

    Nanoscale redox reactions in transition metal oxides are believed to be the physical foundation of memristive devices, which present a highly scalable, low-power alternative for future non-volatile memory devices. The interface between noble metal top electrodes and Nb-doped SrTiO3 single crystals may serve as a prominent but not yet well-understood example of such memristive devices. In this report, we will present experimental evidence that nanoscale redox reactions and the associated valence change mechanism are indeed responsible for the resistance change in noble metal/Nb-doped SrTiO3 junctions with dimensions ranging from the micrometer scale down to the nanometer regime. Direct verification of the valence change mechanism is given by spectromicroscopic characterization of switching filaments. Furthermore, it is found that the resistance change over time is driven by the reoxidation of a previously oxygen-deficient region. The retention times of the low resistance states, accordingly, can be dramatically improved under vacuum conditions as well as through the insertion of a thin Al2O3 layer which prevents this reoxidation. These insights finally confirm the resistive switching mechanism at these interfaces and are therefore of significant importance for the study and application of memristive devices based on Nb-doped SrTiO3 as well as systems with similar switching mechanisms.Nanoscale redox reactions in transition metal oxides are believed to be the physical foundation of memristive devices, which present a highly scalable, low-power alternative for future non-volatile memory devices. The interface between noble metal top electrodes and Nb-doped SrTiO3 single crystals may serve as a prominent but not yet well-understood example of such memristive devices. In this report, we will present experimental evidence that nanoscale redox reactions and the associated valence change mechanism are indeed responsible for the resistance change in noble metal/Nb-doped Sr

  8. Mechanical properties of different airway stents.

    PubMed

    Ratnovsky, Anat; Regev, Noa; Wald, Shaily; Kramer, Mordechai; Naftali, Sara

    2015-04-01

    Airway stents improve pulmonary function and quality of life in patients suffering from airway obstruction. The aim of this study was to compare main types of stents (silicone, balloon-dilated metal, self-expanding metal, and covered self-expanding metal) in terms of their mechanical properties and the radial forces they exert on the trachea. Mechanical measurements were carried out using a force gauge and specially designed adaptors fabricated in our lab. Numerical simulations were performed for eight different stent geometries, inserted into trachea models. The results show a clear correlation between stent diameter (oversizing) and the levels of stress it exerts on the trachea. Compared with uncovered metal stents, metal stents that are covered with less stiff material exert significantly less stress on the trachea while still maintaining strong contact with it. The use of such stents may reduce formation of mucosa necrosis and fistulas while still preventing stent migration. Silicone stents produce the lowest levels of stress, which may be due to weak contact between the stent and the trachea and can explain their propensity for migration. Unexpectedly, stents made of the same materials exerted different stresses due to differences in their structure. Stenosis significantly increases stress levels in all stents.

  9. Mechanical properties of DNA-like polymers

    PubMed Central

    Peters, Justin P.; Yelgaonkar, Shweta P.; Srivatsan, Seergazhi G.; Tor, Yitzhak; James Maher, L.

    2013-01-01

    The molecular structure of the DNA double helix has been known for 60 years, but we remain surprisingly ignorant of the balance of forces that determine its mechanical properties. The DNA double helix is among the stiffest of all biopolymers, but neither theory nor experiment has provided a coherent understanding of the relative roles of attractive base stacking forces and repulsive electrostatic forces creating this stiffness. To gain insight, we have created a family of double-helical DNA-like polymers where one of the four normal bases is replaced with various cationic, anionic or neutral analogs. We apply DNA ligase-catalyzed cyclization kinetics experiments to measure the bending and twisting flexibilities of these polymers under low salt conditions. Interestingly, we show that these modifications alter DNA bending stiffness by only 20%, but have much stronger (5-fold) effects on twist flexibility. We suggest that rather than modifying DNA stiffness through a mechanism easily interpretable as electrostatic, the more dominant effect of neutral and charged base modifications is their ability to drive transitions to helical conformations different from canonical B-form DNA. PMID:24013560

  10. Photopatterning the mechanical properties of polydimethylsiloxane films

    NASA Astrophysics Data System (ADS)

    Cotton, D. P. J.; Popel, A.; Graz, I. M.; Lacour, S. P.

    2011-03-01

    Silicone rubber films with graded and localized mechanical properties are prepared using two-part polydimethylsiloxane (PDMS) elastomer, photoinhibitor compounds and conventional photolithography. First the un-cross-linked PDMS is mixed with benzophenone. The resulting positive photosensitive material is then exposed through a mask to UV light from a conventional mask aligner. Cross-linking of the UV exposed elastomer is inhibited, leading to softer regions than the surrounding unexposed matrix. By empirically fitting the nonlinear, hyperelastic Mooney-Rivlin model to experimentally measured stress-strain curves we determine the equivalent tensile modulus (E) of the rubber film. We show the PDMS tensile modulus can then be adjusted in the 0.65-2.9 MPa range by decreasing the UV exposure dose (from 24 000 to 0 mJ cm-2). Further, using a patterned UV mask, we can locally define differential regions of tensile modulus within a single PDMS rubber film. We demonstrate that "hard islands" (E ≈ 2.9 MPa) of 100 μm minimum diameter can be patterned within a 100-μm-thick, single "soft" PDMS rubber membrane (E ≈ 0.65 MPa) cured at 150 °C for 24 h. Thin gold film conductors patterned directly onto the photopatterned PDMS are stretchable and withstand uniaxial cycling to tens of percent strain. The mechanically "pixellated" PDMS rubber film provides an improved substrate with built-in strain relief for stretchable electronics.

  11. Trabecular Bone Mechanical Properties and Fractal Dimension

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.

    1996-01-01

    Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again

  12. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media at Low-Ionic-Strength Conditions: Measurements and Mechanisms

    EPA Science Inventory

    The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...

  13. Signaling Mechanisms that Link Salt Retention to Hypertension: Endogenous Ouabain, the Na+ Pump, the Na+/Ca2+ Exchanger and TRPC Proteins

    PubMed Central

    Blaustein, Mordecai P.; Hamlyn, John M.

    2010-01-01

    Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na+ reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, the salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How the salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remain an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na+ pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca2+ channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca2+ signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension. PMID:20211726

  14. The mechanical properties of polyimide films after exposure to high pH

    NASA Technical Reports Server (NTRS)

    Croall, Catharine I.; St.clair, Terry L.

    1992-01-01

    Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.

  15. Kinetics and Mechanism of Metal Retention/Release in Geochemical Processes in Soil - Final Report

    SciTech Connect

    Taylor, Robert W.

    2000-12-29

    Effective, remediation of soils contaminated with heavy metals requires a better understanding of the mechanisms by which the metals are retained/released in soils over a long period of time. Studies on reaction of Cr(VI) with iron-rich clays indicated that structural iron (II) in these surfaces is capable of reducing chromate to chromium (III). We found that iron (II) either found naturally or produced by treatment of clay with sodium dithionite, effectively reduced Cr (VI) to Cr (III). Thus, in situ remediation of chromium combines reduction of Cr (VI) to Cr (III) and immobilization of chromium on mineral surfaces. During this study, lead sorption on a kaolin surface was found to be a rapid and a pH dependant process in which lead sorption significantly increased with the amount of phosphate on the clay surface. This study verifies that methylmercury cation remains intact when it binds to humic acids, forming a monodentate complex with some sub-population of humic thiol ligands .

  16. Improving the mechanical properties of collagen-based membranes using silk fibroin for corneal tissue engineering.

    PubMed

    Long, Kai; Liu, Yang; Li, Weichang; Wang, Lin; Liu, Sa; Wang, Yingjun; Wang, Zhichong; Ren, Li

    2015-03-01

    Although collagen with outstanding biocompatibility has promising application in corneal tissue engineering, the mechanical properties of collagen-based scaffolds, especially suture retention strength, must be further improved to satisfy the requirements of clinical applications. This article describes a toughness reinforced collagen-based membrane using silk fibroin. The collagen-silk fibroin membranes based on collagen [silk fibroin (w/w) ratios of 100:5, 100:10, and 100:20] were prepared by using silk fibroin and cross-linking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. These membranes were analyzed by scanning electron microscopy and their optical property, and NaCl and tryptophan diffusivity had been tested. The water content was found to be dependent on the content of silk fibroin, and CS10 membrane (loading 10 wt % of silk fibroin) performed the optimal mechanical properties. Also the suture experiments have proved CS10 has high suture retention strength, which can be sutured in rabbit eyes integrally. Moreover, the composite membrane proved good biocompatibility for the proliferation of human corneal epithelial cells in vitro. Lamellar keratoplasty shows that CS10 membrane promoted complete epithelialization in 35 ± 5 days, and their transparency is restored quickly in the first month. Corneal rejection reaction, neovascularization, and keratoconus are not observed. The composite films show potential for use in the field of corneal tissue engineering.

  17. Mechanism of altruism approach to blood donor recruitment and retention: a review and future directions.

    PubMed

    Ferguson, E

    2015-08-01

    Why do people donate blood? Altruism is the common answer. However, altruism is a complex construct and to answer this question requires a systematic analysis of the insights from the biology, economics and psychology of altruism. I term this the mechanism of altruism (MOA) approach and apply it here for understanding blood donor motivation. The answer also has enormous implications for the type of interventions we choose to adopt as a society. A MOA approach so far shows that blood donors are a mixture of (i) warm-glow givers (donation is emotionally rewarding) and (ii) reluctant altruists (cooperate rather than defect when free-riding is high). Donors also show 'saintly sinning' with the extra 'moral currency' form blood donation allowing them to be less generous in other contexts. The MOA approach suggests why financial incentives, in terms of gifts/lottery tickets, are effective and suggests a number of novel interventions for donor recruitment: 'voluntary reciprocal altruism' and 'charitable incentivisation'. The MOA approach also highlights the need for an intervention developed specifically for recipients to allow them to show their gratitude to donors and for society to celebrate blood donation. It is suggests a 'Monument to Blood Donors' will achieve this. The approach suggests a number of novel research questions into (i) donor self-selection effects, (ii) conditional cooperation and (iii) construct overlap with Theory of Planned Behaviour (e.g. affective attitudes and warm-glow). The MOA offers a powerful way to understand blood donor motivations around altruism and develop theoretically driven interventions. PMID:26311129

  18. Mechanism of altruism approach to blood donor recruitment and retention: a review and future directions.

    PubMed

    Ferguson, E

    2015-08-01

    Why do people donate blood? Altruism is the common answer. However, altruism is a complex construct and to answer this question requires a systematic analysis of the insights from the biology, economics and psychology of altruism. I term this the mechanism of altruism (MOA) approach and apply it here for understanding blood donor motivation. The answer also has enormous implications for the type of interventions we choose to adopt as a society. A MOA approach so far shows that blood donors are a mixture of (i) warm-glow givers (donation is emotionally rewarding) and (ii) reluctant altruists (cooperate rather than defect when free-riding is high). Donors also show 'saintly sinning' with the extra 'moral currency' form blood donation allowing them to be less generous in other contexts. The MOA approach suggests why financial incentives, in terms of gifts/lottery tickets, are effective and suggests a number of novel interventions for donor recruitment: 'voluntary reciprocal altruism' and 'charitable incentivisation'. The MOA approach also highlights the need for an intervention developed specifically for recipients to allow them to show their gratitude to donors and for society to celebrate blood donation. It is suggests a 'Monument to Blood Donors' will achieve this. The approach suggests a number of novel research questions into (i) donor self-selection effects, (ii) conditional cooperation and (iii) construct overlap with Theory of Planned Behaviour (e.g. affective attitudes and warm-glow). The MOA offers a powerful way to understand blood donor motivations around altruism and develop theoretically driven interventions.

  19. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  20. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars.

    PubMed

    Kaur, Amritpal; Singh, Narpinder; Kaur, Seeratpreet; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2014-09-01

    The relationships of grain, flour solvent retention capacity (SRC) and dough rheological properties with the cookie making properties of wheat cultivars were evaluated. Cultivars with higher proportion of intermolecular-β-sheets+antiparallel β sheets and lower α-helix had greater gluten strength. The grain weight and diameter positively correlated with the proportion of fine particles and the cookie spread factor (SF) and negatively to the grain hardness (GH) and Na2CO3 SRC. The SF was higher in the flour with a higher amount of fine particle and with a lower Na2CO3 SRC and dough stability (DS). The breaking strength (BS) of cookies was positively correlated to lactic acid (LA) SRC, DS, peak time, sedimentation value (SV), G' and G″. Na2CO3 SRC and GH were strongly correlated. The gluten performance index showed a strong positive correlation with SV, DS, G' and G″. The water absorption had a significant positive correlation with sucrose SRC and LASRC. Cultivars with higher GH produced higher amount of coarse particles in flours that had higher Na2CO3 SRC and lower cookie SF.

  1. Investigation of the capacity retention mechanisms in novel composite sulfur copolymer-base cathodes for high-energy density Li-S batteries

    NASA Astrophysics Data System (ADS)

    Oleshko, Vladimir; Kim, Jenny; Masser, Kevin; Hudson, Steven; Soles, Christopher; Griebel, Jared; Chung, Woo Jin; Simmonds, Adam; Pyun, Jeffrey

    2013-03-01

    Utilization of the active cathode material in high-energy density Li-S batteries limited by the insulating nature of sulfur and losses in the form of insoluble polysulfides was improved by the use of 1,3-diisopropenylbenzene (DIB) copolymerized with molten sulfur. This approach termed, inverse vulcanization, transforms elemental sulfur into chemically stable processable copolymer forms with tunable thermomechanical properties. According to dielectric spectroscopy and dc conductivity measurements, composite sulfur-DIB copolymer cathodes exhibit a glassy-state beta relaxation related to short sulfur segments or to the DIB cross-linker. High-resolution AEM and FESEM studies down to the atomic scale reveal multiscale 3D-architectures created within the pristine and cycled composite cathodes with various contents of the electroactive copolymers. The morphology, structures, bonding and local compositional distributions of the constituents (sulfur, copolymers, aggregated conductive carbon nanoparticles) as well as extended pore structures and their transformations under cycling have been examined to provide insights into mechanisms of the enhanced capacity retention in the modified Li-S cells. NIST support under grant MML12-1053-N00

  2. Mechanical Properties of Nuclear Fuel Surrogates using Picosecond Laser Ultrasonics

    SciTech Connect

    David Hurley; Marat Khafizov; Farhad Farzbod; Eric Burgett

    2013-05-01

    Detailed understanding between microstructure evolution and mechanical properties is important for designing new high burnup nuclear fuels. In this presentation we discuss the use of picosecond ultrasonics to measure localize changes in mechanical properties of fuel surrogates. We develop measurement techniques that can be applied to investigate heterogeneous elastic properties caused by localize changes in chemistry, grain microstructure caused by recrystallization, and mechanical properties of small samples prepared using focused ion beam sample preparation. Emphasis is placed on understanding the relationship between microstructure and mechanical properties

  3. Extracting nanobelt mechanical properties from nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Yin

    2010-06-01

    A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested.

  4. Mechanical properties of the aneurysmal aorta.

    PubMed

    MacSweeney, S T; Young, G; Greenhalgh, R M; Powell, J T

    1992-12-01

    The mechanical properties of the abdominal aorta were investigated non-invasively in 30 patients with aortic aneurysm and 11 with peripheral arterial disease. The distensibility of the aorta was measured using M-mode ultrasonography, permitting non-invasive assessment of the pressure--strain elastic modulus or aortic stiffness, Ep. The median Ep value increased from 4.0 N/cm2 in control subjects in their third decade of life (n = 10) to 10.4 N/cm2 in middle age (n = 11) to 14.0 N/cm2 in the elderly (n = 13). In the presence of a normal diameter, peripheral arterial disease with aortic atherosclerosis had little effect on aortic stiffness, median Ep being 16.0 N/cm2. Aneurysmal dilatation was associated with a significant increase in aortic stiffness, median Ep being 31.3 N/cm2 (P < 0.001). For aortas of normal diameter, Ep was at all ages dependent on mean arterial pressure. In patients with aortic aneurysms there was no clear relationship between Ep and mean arterial pressure or aortic diameter. Of the patients studied, 15 underwent aortic reconstruction; increasing aortic stiffness (log Ep) was associated with a decreased medial elastin content of the aortic biopsy (r = -0.63, P < 0.02). This study demonstrates the marked stiffness or inelasticity of dilated or aneurysmal vessels, part of which is attributable to the loss of elastin.

  5. Mechanical properties of carbon-implanted niobium

    SciTech Connect

    Zinkle, S.J. ); Huang, J.S. )

    1990-01-01

    Polycrystalline niobium specimens were implanted with either 200 keV carbon ions or a combination of 50, 100, and 200 keV carbon ions to peak concentrations of 0.6 to 50 at. {percent}. Microindentation techniques were used to measure the hardness and elastic modulus of the implanted layer. Both the hardness (H) and modulus (E) showed dramatic increases due to the carbon implantation. The measured peak hardness and modulus following uniform implantation with 16 at. {percent} C were 15{times} and 3{times} that of niobium, respectively, which is comparable to the literature values for NbC. The peak hardness and modulus for the implanted specimens were observed at an indent depth of {approximately}40 nm, which is about one-eighth of the depth of the implanted carbon layer. The decrease in the indentation mechanical properties at deeper indent depths is due to the interaction of long-ranging strain fields underneath the indenter with the niobium substrate. 17 refs., 6 figs.

  6. Mechanical properties of melamine-formaldehyde microcapsules.

    PubMed

    Sun, G; Zhang, Z

    2001-01-01

    The mechanical properties of melamine-formaldehyde (M-F) microcapsules were studied using a micromanipulation technique. Single microcapsules with diameters of 1-12 microm were compressed and held between two parallel planes, compressed and released, and compressed to burst at different speeds, whilst the force being imposed on the microcapsules and their deformation were measured simultaneously. This force increased as single microcapsules were compressed and then relaxed slightly as they were held. When the microcapsules were repeatedly compressed and released, a pseudo yield point was found for each microcapsule. Before the microcapsules were compressed to this point, the deformed microcapsules recovered to their original shape once the force was removed. However, when the deformation was beyond the 'yield point' there was profound hysteresis and the microcapsules showed plastic behaviour. As the microcapsules were compressed to burst at different speeds, ranging from 0.5-6.0 microm/s, it was found that their mean bursting forces did not change significantly. The deformations at the pseudo yield point and at bursting were also independent of the compression speed. On average, these melamine-formaldehyde microcapsules reached their 'yield point' at a deformation of about 19 +/- 1%, and burst at a deformation of 70 +/- 1%.

  7. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  8. Mechanisms of Docosahexaenoic and Eicosapentaenoic Acid Loss from Pacific Saury and Comparison of Their Retention Rates after Various Cooking Methods.

    PubMed

    Cheung, Lennie K Y; Tomita, Haruo; Takemori, Toshikazu

    2016-08-01

    The docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents of Pacific saury (Cololabis saira), a fatty fish and staple of the Japanese diet, have been reported to decrease after cooking. This study compared the DHA and EPA contents remaining in saury after grilling, pan-frying or deep-frying to center temperatures of 75, 85, or 95 °C, and examined physical loss, lipid oxidation, and thermal degradation as mechanisms of DHA and EPA loss. Temperature changes inside the saury were monitored using thermocouples, while DHA and EPA contents, oxygen radical absorbance capacity, and measurements of lipid oxidation (that is, carbonyl value and thiobarbituric acid value) were determined chemically. Visualization of temperature distribution inside fish samples during cooking revealed large differences in heat transfer among cooking methods. True retention rates in grilled (DHA: 84 ± 15%; EPA: 87 ± 14%) and pan-fried samples (DHA: 85 ± 16%; EPA: 77 ± 17%) were significantly higher than deep-fried samples (DHA: 58 ± 17%; EPA: 51 ± 18%), but were not affected by final center temperatures despite differences in cooking times. Physical loss via cooking losses (grilling and pan-frying) or migration into frying oil (deep-frying) accounted for large quantities of DHA and EPA loss, while lipid oxidation and thermal degradation did not appear to be major mechanisms of loss. The antioxidant capacity of saury was not significantly affected by cooking treatments. The results of this study suggest that minimization of physical losses during cooking may increase DHA and EPA contents retained in cooked Pacific saury. PMID:27305642

  9. Mechanisms of Docosahexaenoic and Eicosapentaenoic Acid Loss from Pacific Saury and Comparison of Their Retention Rates after Various Cooking Methods.

    PubMed

    Cheung, Lennie K Y; Tomita, Haruo; Takemori, Toshikazu

    2016-08-01

    The docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents of Pacific saury (Cololabis saira), a fatty fish and staple of the Japanese diet, have been reported to decrease after cooking. This study compared the DHA and EPA contents remaining in saury after grilling, pan-frying or deep-frying to center temperatures of 75, 85, or 95 °C, and examined physical loss, lipid oxidation, and thermal degradation as mechanisms of DHA and EPA loss. Temperature changes inside the saury were monitored using thermocouples, while DHA and EPA contents, oxygen radical absorbance capacity, and measurements of lipid oxidation (that is, carbonyl value and thiobarbituric acid value) were determined chemically. Visualization of temperature distribution inside fish samples during cooking revealed large differences in heat transfer among cooking methods. True retention rates in grilled (DHA: 84 ± 15%; EPA: 87 ± 14%) and pan-fried samples (DHA: 85 ± 16%; EPA: 77 ± 17%) were significantly higher than deep-fried samples (DHA: 58 ± 17%; EPA: 51 ± 18%), but were not affected by final center temperatures despite differences in cooking times. Physical loss via cooking losses (grilling and pan-frying) or migration into frying oil (deep-frying) accounted for large quantities of DHA and EPA loss, while lipid oxidation and thermal degradation did not appear to be major mechanisms of loss. The antioxidant capacity of saury was not significantly affected by cooking treatments. The results of this study suggest that minimization of physical losses during cooking may increase DHA and EPA contents retained in cooked Pacific saury.

  10. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile. I. Effect of γ-irradiation on grafting parameters

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, S.; Chvajarernpun, J.; Nakason, C.

    1993-07-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85°C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminum foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis.

  11. Retention and loss of water extractable carbon in soils: effect of clay properties.

    PubMed

    Nguyen, Trung-Ta; Marschner, Petra

    2014-02-01

    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important.

  12. Retention mechanisms of citric acid in ternary kaolinite-Fe(III)-citrate acid systems using Fe K-edge EXAFS and L3,2-edge XANES spectroscopy

    DOE PAGES

    Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald

    2016-05-23

    Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L-3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/ormore » coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less

  13. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. PMID:26952433

  14. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    PubMed

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution.

  15. Ultrasonic nondestructive evaluation, microstructure, and mechanical property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1984-01-01

    Ultrasonic techniques for mechanical property characterizations are reviewed and conceptual models are advanced for explaining and interpreting the empirically based results. At present, the technology is generally empirically based and is emerging from the research laboratory. Advancement of the technology will require establishment of theoretical foundations for the experimentally observed interrelations among ultrasonic measurements, mechanical properties, and microstructure. Conceptual models are applied to ultrasonic assessment of fracture toughness to illustrate an approach for predicting correlations found among ultrasonic measurements, microstructure, and mechanical properties.

  16. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells.

    PubMed

    Zhang, Xu; Liu, Xiaoli; Sun, Jialun; He, Shuojie; Lee, Imshik; Pak, Hyuk Kyu

    2008-09-01

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wistar rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E*. The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50s, the mechanical load-induced enhancement of E*-values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus.

  17. RP-HPTLC Retention Data in Correlation with the In-silico ADME Properties of a Series of s-triazine Derivatives

    PubMed Central

    Jevrić, Lidija R; Podunavac-Kuzmanović, Sanja O; Švarc-Gajić, Jaroslava V; Kovačević, Strahinja Z; Jovanović, Bratislav Ž

    2014-01-01

    The properties relevant to pharmacokinetics and pharmacodynamics of four series of synthesized s-triazine derivatives have been studied by Quantitative structure-retention relationship (QSRR) approach. The chromatographic behavior of these compounds was investigated by using reversed-phase high performance thin-layer chromatography (RP-HPTLC). Chromatographic retention (RM0) was correlated with selected physicochemical parameters relevant to pharmacokinetics, i.e. ADME (absorption, distribution, metabolism and excretion). In addition, the ability to act as kinase inhibitors and protease inhibitors was predicted for all investigated triazine classes. Also, in order to confirm similarities/dissimilarities between series of examined compounds, principal component analysis (PCA) based on calculated ADME properties was conducted. The RM0 values of the s-triazine derivatives have been recommended for description and evaluation of pharmacokinetic properties. According to results of this study, the synthesized s-triazine derivatives meet pharmacokinetic criteria of preselection for drug candidates. PMID:25587308

  18. The effect of pressure and mobile phase velocity on the retention properties of small analytes and large biomolecules in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy

    2012-12-28

    A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed).

  19. Wave-Mechanical Properties of Stationary States.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph is a review of the quantum mechanical concepts presented in two other monographs, "The Nature of Atoms" and "Bonds Between Atoms," by the same author. It is assumed the reader is familiar with these ideas. The monograph sketches only those aspects of quantum mechanics that are of most direct use in picturing and calculating the…

  20. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  1. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    PubMed

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  2. Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism.

    PubMed

    Kopf, S R; Baratti, C M

    1999-01-01

    Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber for a 10-min period. The procedure was repeated twice within a 24-h interval. The difference in the exploratory activity between the first (training) and the second exposure (testing) to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of insulin (8, 20, or 80 IU/kg) impaired retention in a dose-related manner, although only the dose of 20 IU/kg of insulin produced significant effects. Thus, the dose-response curve adopted a U-shaped form. Insulin (20 IU/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of insulin on retention were time dependent, suggesting an action on memory storage. An ineffective dose (8 IU/kg) of insulin given together with an ineffective dose of a central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) or with a central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg) interacted to impair retention. In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, interacted with the subeffective dose of insulin on retention. The impairing effects of insulin (20 IU/kg) on retention were reversed by the simultaneous administration of physostigmine (70 microg/kg) but not neostigmine (70 microg/kg). We suggest that insulin impairs memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through a decrement of brain acetylcholine synthesis. PMID:9889072

  3. Effects of posttraining administration of insulin on retention of a habituation response in mice: participation of a central cholinergic mechanism.

    PubMed

    Kopf, S R; Baratti, C M

    1999-01-01

    Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber for a 10-min period. The procedure was repeated twice within a 24-h interval. The difference in the exploratory activity between the first (training) and the second exposure (testing) to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of insulin (8, 20, or 80 IU/kg) impaired retention in a dose-related manner, although only the dose of 20 IU/kg of insulin produced significant effects. Thus, the dose-response curve adopted a U-shaped form. Insulin (20 IU/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of insulin on retention were time dependent, suggesting an action on memory storage. An ineffective dose (8 IU/kg) of insulin given together with an ineffective dose of a central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) or with a central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg) interacted to impair retention. In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, interacted with the subeffective dose of insulin on retention. The impairing effects of insulin (20 IU/kg) on retention were reversed by the simultaneous administration of physostigmine (70 microg/kg) but not neostigmine (70 microg/kg). We suggest that insulin impairs memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through a decrement of brain acetylcholine synthesis.

  4. Mechanical and physical properties of plasma-sprayed stabilized zirconia

    NASA Technical Reports Server (NTRS)

    Siemers, P. A.; Mehan, R. L.

    1983-01-01

    Physical and mechanical properties were determined for plasma-sprayed MgO- or Y2O3-stabilized ZrO2 thermal barrier coatings. Properties were determined for the ceramic coating in both the freestanding condition and as-bonded to a metal substrate. The properties of the NiCrAlY bond coating were also investigated.

  5. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.

    2000-01-01

    Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  6. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2013-06-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors' knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  7. Lunar soil properties and soil mechanics

    NASA Technical Reports Server (NTRS)

    Mitchell, J. K.; Houston, W. N.

    1974-01-01

    The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.

  8. Effects of posttraining administration of glucose on retention of a habituation response in mice: participation of a central cholinergic mechanism.

    PubMed

    Kopf, S R; Baratti, C M

    1996-05-01

    Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber, for 10 min. The procedure was repeated twice with a 24-h interval. The difference in the exploratory activity between the first (training) and the second (testing) exposures to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of glucose (10-300 mg/kg) enhanced retention in a dose-related manner, although only the dose of 30 mg/kg of glucose produced significant effects. Thus, the dose-response curve adopted an inverted U-shaped form. Glucose (30 mg/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of glucose on retention were time-dependent, suggesting an action on memory storage. The memory-improving actions of glucose were prevented by the simultaneous administration of both the central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) and by the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg). In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, prevented the effects of glucose on retention. Low subeffective doses of glucose (10 mg/kg) and the central anticholinesterase physostigmine (35 microg/kg), but not neostigmine (35 microg/kg), given together, act synergistically and facilitated retention. We suggest that glucose modulates memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through an enhancement of brain acetylcholine synthesis and/or its release. PMID:8616589

  9. Effects of posttraining administration of glucose on retention of a habituation response in mice: participation of a central cholinergic mechanism.

    PubMed

    Kopf, S R; Baratti, C M

    1996-05-01

    Male Swiss mice were allowed to explore a novel environment, provided by an open-field activity chamber, for 10 min. The procedure was repeated twice with a 24-h interval. The difference in the exploratory activity between the first (training) and the second (testing) exposures to the chamber was taken as an index of retention of this habituation task. Posttraining intraperitoneal administration of glucose (10-300 mg/kg) enhanced retention in a dose-related manner, although only the dose of 30 mg/kg of glucose produced significant effects. Thus, the dose-response curve adopted an inverted U-shaped form. Glucose (30 mg/kg) given to untrained mice did not modify their exploratory performance when recorded 24 h later. The effects of glucose on retention were time-dependent, suggesting an action on memory storage. The memory-improving actions of glucose were prevented by the simultaneous administration of both the central acting muscarinic cholinergic antagonist atropine (0.5 mg/kg) and by the central acting nicotinic cholinergic antagonist mecamylamine (5 mg/kg). In contrast, neither methylatropine (0.5 mg/kg), a peripherally acting muscarinic receptor blocker, nor hexamethonium (5 mg/kg), a peripherally acting nicotinic receptor blocker, prevented the effects of glucose on retention. Low subeffective doses of glucose (10 mg/kg) and the central anticholinesterase physostigmine (35 microg/kg), but not neostigmine (35 microg/kg), given together, act synergistically and facilitated retention. We suggest that glucose modulates memory storage of one form of learning elicited by stimuli repeatedly presented without reinforcement, probably through an enhancement of brain acetylcholine synthesis and/or its release.

  10. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  11. Physical and mechanical properties of icebergs

    SciTech Connect

    Gammon, P.H.; Bobby, W.; Gagnon, R.E.; Russell, W.E.

    1983-05-01

    Physical and mechanical characteristics of iceberg ice were studied from samples collected near the shores of eastern Newfoundland. Although the physical characteristics show considerable diversity, iceberg ice has some common features and is generally porous, lacks significant concentrations of dissolved materials, contains internal cracks and has an irregular interlocking grain structure. A review of mechanical testing of ice was carried out and an experimental setup was devised to reduce effects of improper contact between specimen and loading apparatus. Uniaxial compressive strength for iceberg ice was determined and compared with that for lake ice. The strength of iceberg ice was higher than that of lake ice but Young's Modulus for lake ice was higher.

  12. Bone mechanical properties and changes with osteoporosis.

    PubMed

    Osterhoff, Georg; Morgan, Elise F; Shefelbine, Sandra J; Karim, Lamya; McNamara, Laoise M; Augat, Peter

    2016-06-01

    This review will define the role of collagen and within-bone heterogeneity and elaborate the importance of trabecular and cortical architecture with regard to their effect on the mechanical strength of bone. For each of these factors, the changes seen with osteoporosis and ageing will be described and how they can compromise strength and eventually lead to bone fragility. PMID:27338221

  13. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  14. Influence of pressure and temperature on molar volume and retention properties of peptides in ultra-high pressure liquid chromatography.

    PubMed

    Fekete, Szabolcs; Horváth, Krisztián; Guillarme, Davy

    2013-10-11

    In this study, pressure induced changes in retention were measured for model peptides possessing molecular weights between ∼1 and ∼4kDa. The goal of the present work was to evaluate if such changes were only attributed to the variation of molar volume and if they could be estimated prior to the experiments, using theoretical models. Restrictor tubing was employed to generate pressures up to 1000bar and experiments were conducted for mobile phase temperatures comprised between 30 and 80°C. As expected, the retention increases significantly with pressure, up to 200% for glucagon at around 1000bar compared to ∼100bar. The obtained data were fitted with a theoretical model and the determination coefficients were excellent (r(2)>0.9992) for the peptides at various temperatures. On the other hand, the pressure induced change in retention was found to be temperature dependent and was more pronounced at 30°C vs. 60 or 80°C. Finally, using the proposed model, it was possible to easily estimate the pressure induced increase in retention for any peptide and mobile phase temperature. This allows to easily estimating the expected change in retention, when increasing the column length under UHPLC conditions.

  15. Mechanical properties of alumina porcelain during heating

    NASA Astrophysics Data System (ADS)

    Šín, Peter; Podoba, Rudolf; ŠtubÅa, Igor; Trník, Anton

    2014-11-01

    The mechanical strength and Young's modulus of green alumina porcelain (50 wt. % of kaolin, 25 wt. % of Al2O3, and 25 wt. % of feldspar) were measured during heating up to 900 °C and 1100 °C, respectively. To this end, we used the three point-bending method and modulated force thermomechanical analysis (mf-TMA). The loss liberation - of the physically bound water (20 - 250 °C) strengthens the sample and Young's modulus increases its values significantly. The dehydroxylation that takes place in the range of 400 - 650 °C causes a slight decrease in Young's modulus. On the other hand, the mechanical strength slightly increases in this temperature range, although it has a sudden drop at 420 °C. Beyond the dehydroxylation range, above 650 °C, both Young's modulus and mechanical strength increase. Above 950 °C, a sharp increase of Young's modulus is caused by the solid-state sintering and the new structure created by the high-temperature reactions in metakaolinite.

  16. Mechanical Properties of Intermediate Filament Proteins.

    PubMed

    Charrier, Elisabeth E; Janmey, Paul A

    2016-01-01

    Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.

  17. Mechanical properties of intermediate filament proteins

    PubMed Central

    Charrier, Elisabeth E.; Janmey, Paul A.

    2016-01-01

    Purified intermediate filament proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filament form viscoelastic gels. The crosslinks holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking non-linear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large stains resembling those that soft tissues undergo in vivo. Individual Ifs can be stretched to more than 2 or 3 times their resting length without breaking. At least ten different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of IF on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations. PMID:26795466

  18. Mechanical Properties of the Frog Sarcolemma

    PubMed Central

    Fields, R. Wayne

    1970-01-01

    The elastic properties of cylindrical segments of sarcolemma were studied in single striated fibers of the frog semitendinosus muscle. All measurements were made on membranes of retraction zones, cell segments from which the sarcoplasm had retracted. Quantitative morphological studies indicated that three deforming forces interact with the intrinsic elastic properties of the sarcolemma to determine membrane configuration in retraction zone segments. The three deforming forces, namely intrazone pressure, axial fiber loads, and radial stresses introduced by retracted cell contents, could all be experimentally removed, permitting determination of the “undeformed” configuration of the sarcolemma. Analysis of these results indicated that membrane of intact fibers at rest length is about four times as wide and two-thirds as long as undeformed membrane. Membrane geometry was also studied as a function of internal hydrostatic pressure and axial loading to permit calculation of the circumferential and longitudinal tension-strain (T-S) diagrams. The sarcolemma exhibited nonlinear T-S properties concave to the tension axis in both directions. Circumferential T-S slopes (measures of membrane stiffness) ranged from 1500 to greater than 50,000 dynes/cm over the range of deformations investigated, while longitudinal T-S slopes varied from 23,000 to 225,000 dynes/cm. Thus, the membrane is anisotropic, being much stiffer in the longitudinal direction. Certain ramifications of the present results are discussed in relation to previous biomechanical studies of the sarcolemma and of other tissues. ImagesFigure 2Figure 3Figure 4 PMID:5439320

  19. The mechanical and strength properties of diamond.

    PubMed

    Field, J E

    2012-12-01

    Diamond is an exciting material with many outstanding properties; see, for example Field J E (ed) 1979 The Properties of Diamond (London: Academic) and Field J E (ed) 1992 The Properties of Natural and Synthetic Diamond (London: Academic). It is pre-eminent as a gemstone, an industrial tool and as a material for solid state research. Since natural diamonds grew deep below the Earth's surface before their ejection to mineable levels, they also contain valuable information for geologists. The key to many of diamond's properties is the rigidity of its structure which explains, for example, its exceptional hardness and its high thermal conductivity. Since 1953, it has been possible to grow synthetic diamond. Before then, it was effectively only possible to have natural diamond, with a small number of these found in the vicinity of meteorite impacts. Techniques are now available to grow gem quality synthetic diamonds greater than 1 carat (0.2 g) using high temperatures and pressures (HTHP) similar to those found in nature. However, the costs are high, and the largest commercially available industrial diamonds are about 0.01 carat in weight or about 1 mm in linear dimension. The bulk of synthetic diamonds used industrially are 600 µm or less. Over 75% of diamond used for industrial purposes today is synthetic material. In recent years, there have been two significant developments. The first is the production of composites based on diamond; these materials have a significantly greater toughness than diamond while still maintaining very high hardness and reasonable thermal conductivity. The second is the production at low pressures by metastable growth using chemical vapour deposition techniques. Deposition onto non-diamond substrates was first demonstrated by Spitsyn et al 1981 J. Cryst. Growth 52 219-26 and confirmed by Matsumoto et al 1982 Japan J. Appl. Phys. 21 L183-5. These developments have added further to the versatility of diamond. Two other groups of

  20. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    PubMed

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line.

  1. Quantifying tissue mechanical properties using photoplethysmography

    SciTech Connect

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Cote, Gerard L.

    2014-01-01

    Photoplethysmography (PPG) is a non-invasive optical method that can be used to detect blood volume changes in the microvascular bed of tissue. The PPG signal comprises two components; a pulsatile waveform (AC) attributed to changes in the interrogated blood volume with each heartbeat, and a slowly varying baseline (DC) combining low frequency fluctuations mainly due to respiration and sympathetic nervous system activity. In this report, we investigate the AC pulsatile waveform of the PPG pulse for ultimate use in extracting information regarding the biomechanical properties of tissue and vasculature. By analyzing the rise time of the pulse in the diastole period, we show that PPG is capable of measuring changes in the Young s Modulus of tissue mimicking phantoms with a resolution of 4 KPa in the range of 12 to 61 KPa. In addition, the shape of the pulse can potentially be used to diagnose vascular complications by differentiating upstream from downstream complications. A Windkessel model was used to model changes in the biomechanical properties of the circulation and to test the proposed concept. The modeling data confirmed the response seen in vitro and showed the same trends in the PPG rise and fall times with changes in compliance and vascular resistance.

  2. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  3. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  4. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  5. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  6. Retention of alkali ions by hydrated low-pH cements: Mechanism and Na{sup +}/K{sup +} selectivity

    SciTech Connect

    Bach, T.T.H.; Chabas, E.; Cau Dit Coumes, C.; Frizon, F.

    2013-09-15

    Low-pH cements, also referred to as low-alkalinity cements, can be designed by replacing significant amounts of Portland cement by pozzolanic materials. Their pore solution is characterized by a pH near 11, and an alkali concentration much lower than that of Portland cement. This work investigates the retention of sodium and potassium by a hydrated low-pH cement comprising 60% Portland cement and 40% silica fume. It is shown that sorption of potassium is higher than that of sodium and mainly results from counterion charge balancing of the C-S-H negative surface charge. To explain the greater retention of potassium compared to sodium, it is postulated that potassium, unlike sodium, may enter the interlayer of C-S-H to compensate the negative charges in the interlayer, in addition to the external surfaces. This assumption is supported by structural characterization of C-S-H using X-ray diffraction.

  7. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Kalatur, Ekaterina Narikovich, Anton; Buyakova, Svetlana E-mail: kulkov@ispms.tsc.ru; Kulkov, Sergey E-mail: kulkov@ispms.tsc.ru

    2014-11-14

    The article studies the porous ceramics consisting of ultra-fine ZrO{sub 2} powders. The porosity of ceramic samples varied from 15% to 80%. The structure of the ceramic materials had a cellular configuration. The distinctive feature of all experimentally obtained strain diagrams is their nonlinearity at low deformations characterized by the parabolic law. It was shown that the observed nonlinear elasticity for low deformations shown in strain diagrams is due to the mechanical instability of cellular elements of the ceramic framework.

  8. Lysozyme adsorption onto a cation-exchanger: mechanism of interaction study based on the analysis of retention chromatographic data.

    PubMed

    Marques, F S; Silva, G L; Thrash, M E; Dias-Cabral, A C

    2014-10-01

    In this study, based on the analysis of retention chromatographic data, we examined the adsorption of lysozyme onto carboxymethyl cellulose. Lysozyme retention data was collected at pH 5 and pH 8. The sodium chloride (NaCl) concentration in the mobile phase ranged from 300mM to 500mM and the temperature for this study varied from 288K to 308K. The retention measurements generated from these experimental conditions were analyzed with the Van't Hoff method, the preferential interaction model and the stoichiometric displacement model. Endothermic heats-of-adsorption and increases in entropy were observed under certain experimental conditions. These data suggest the presence of entropic driving forces such as the release of water and/or possibly structural changes in lysozyme molecules adsorbed to the surface of carboxymethyl cellulose. The modest observed exergonic adsorption ΔG° and the preferential interaction analysis corroborate the presence of water-release for this study. Additional analysis with the stoichiometric displacement model method revealed negligible changes in the structure of lysozyme molecules in contact with the surface of carboxymethyl cellulose. PMID:25193151

  9. Effect of glycerol on retention time and electrical properties of polymer bistable memory devices based on glycerol-modified PEDOT:PSS.

    PubMed

    Park, Boongik; Lee, Junhwan; Kim, Ohyun

    2012-01-01

    The addition of glycerol to Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) (PEDOT:PSS) films affected the bipolar switching characteristics of nonvolatile polymer memory devices (PMDs). Increasing the glycerol/PEDOT:PSS ratio caused increase in the OFF-current of the PMDs, but did not affect the ON-current levels. This result demonstrates that highly-conductive current paths occur in the ON-state. The write-read-erase-read cycle test was operated > 10(5) times. And, the ON-retention time is largely dependent on the glycerol to PEDOT:PSS ratio and annealing temperature. In addition, AFM analysis on the G-PEDOT:PSS films to see how the surface morphology of G-PEDOT:PSS layer influences the retention time properties was carried out. PMID:22524004

  10. Interfaces with Tunable Mechanical and Radiosensitizing Properties.

    PubMed

    Berg, Nora G; Pearce, Brady L; Snyder, Patrick J; Rohrbaugh, Nathaniel; Nolan, Michael W; Adhikari, Prajesh; Khan, Saad A; Ivanisevic, Albena

    2016-08-31

    We report the fabrication of a composite containing nanostructured GaOOH and Matrigel with tunable radiosensitizing and stiffness properties. Composite characterization was done with microscopy and rheology. The utility of the interface was tested in vitro using fibroblasts. Cell viability and reactive oxygen species assays quantified the effects of radiation dosages and GaOOH concentrations. Fibroblasts' viability decreased with increasing concentration of GaOOH and composite stiffness. During ionizing radiation experiments the presence of the scintillating GaOOH triggered a different cellular response. Reactive oxygen species data demonstrated that one can reduce the amount of radiation needed to modulate the behavior of cells on interfaces with different stiffness containing a radiosensitizing material. PMID:26882455

  11. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.; Cordova, Elsa A.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.

  12. Primate dietary ecology in the context of food mechanical properties.

    PubMed

    Coiner-Collier, Susan; Scott, Robert S; Chalk-Wilayto, Janine; Cheyne, Susan M; Constantino, Paul; Dominy, Nathaniel J; Elgart, Alison A; Glowacka, Halszka; Loyola, Laura C; Ossi-Lupo, Kerry; Raguet-Schofield, Melissa; Talebi, Mauricio G; Sala, Enrico A; Sieradzy, Pawel; Taylor, Andrea B; Vinyard, Christopher J; Wright, Barth W; Yamashita, Nayuta; Lucas, Peter W; Vogel, Erin R

    2016-09-01

    Substantial variation exists in the mechanical properties of foods consumed by primate species. This variation is known to influence food selection and ingestion among non-human primates, yet no large-scale comparative study has examined the relationships between food mechanical properties and feeding strategies. Here, we present comparative data on the Young's modulus and fracture toughness of natural foods in the diets of 31 primate species. We use these data to examine the relationships between food mechanical properties and dietary quality, body mass, and feeding time. We also examine the relationship between food mechanical properties and categorical concepts of diet that are often used to infer food mechanical properties. We found that traditional dietary categories, such as folivory and frugivory, did not faithfully track food mechanical properties. Additionally, our estimate of dietary quality was not significantly correlated with either toughness or Young's modulus. We found a complex relationship among food mechanical properties, body mass, and feeding time, with a potential interaction between median toughness and body mass. The relationship between mean toughness and feeding time is straightforward: feeding time increases as toughness increases. However, when considering median toughness, the relationship with feeding time may depend upon body mass, such that smaller primates increase their feeding time in response to an increase in median dietary toughness, whereas larger primates may feed for shorter periods of time as toughness increases. Our results emphasize the need for additional studies quantifying the mechanical and chemical properties of primate diets so that they may be meaningfully compared to research on feeding behavior and jaw morphology.

  13. Primate dietary ecology in the context of food mechanical properties.

    PubMed

    Coiner-Collier, Susan; Scott, Robert S; Chalk-Wilayto, Janine; Cheyne, Susan M; Constantino, Paul; Dominy, Nathaniel J; Elgart, Alison A; Glowacka, Halszka; Loyola, Laura C; Ossi-Lupo, Kerry; Raguet-Schofield, Melissa; Talebi, Mauricio G; Sala, Enrico A; Sieradzy, Pawel; Taylor, Andrea B; Vinyard, Christopher J; Wright, Barth W; Yamashita, Nayuta; Lucas, Peter W; Vogel, Erin R

    2016-09-01

    Substantial variation exists in the mechanical properties of foods consumed by primate species. This variation is known to influence food selection and ingestion among non-human primates, yet no large-scale comparative study has examined the relationships between food mechanical properties and feeding strategies. Here, we present comparative data on the Young's modulus and fracture toughness of natural foods in the diets of 31 primate species. We use these data to examine the relationships between food mechanical properties and dietary quality, body mass, and feeding time. We also examine the relationship between food mechanical properties and categorical concepts of diet that are often used to infer food mechanical properties. We found that traditional dietary categories, such as folivory and frugivory, did not faithfully track food mechanical properties. Additionally, our estimate of dietary quality was not significantly correlated with either toughness or Young's modulus. We found a complex relationship among food mechanical properties, body mass, and feeding time, with a potential interaction between median toughness and body mass. The relationship between mean toughness and feeding time is straightforward: feeding time increases as toughness increases. However, when considering median toughness, the relationship with feeding time may depend upon body mass, such that smaller primates increase their feeding time in response to an increase in median dietary toughness, whereas larger primates may feed for shorter periods of time as toughness increases. Our results emphasize the need for additional studies quantifying the mechanical and chemical properties of primate diets so that they may be meaningfully compared to research on feeding behavior and jaw morphology. PMID:27542555

  14. Processing effects on the mechanical properties of tungsten heavy alloys

    NASA Technical Reports Server (NTRS)

    Kishi, Toshihito; German, R. M.

    1990-01-01

    Tungsten heavy alloys exhibit significant mechanical property sensitivities to the fabrication variables. These sensitivities are illustrated in this examination of vacuum sintering and the effects of composition, sintering temperature, and sintering time on the mechanical properties of tungsten heavy alloys. Measurements were conducted to assess the density, strength, hardness, and elongation dependencies. A detrimental aspect of vacuum sintering is matrix phase evaporation, although vacuum sintering does eliminate the need for postsintering heat treatments.

  15. Dynamic mechanical properties of an inlay composite.

    PubMed

    Dionysopoulos, P; Watts, D C

    1989-06-01

    A visible light-cured composite resin (Brilliant DI) has been studied over a wide range of temperature and frequency by a dynamic mechanical flexural method. The derived data of logarithmic modulus and loss tangent (tan delta) show considerable changes following a secondary-cure process applied to the material. This involved the application of heat and intense light with temperatures rising to 120 degrees C in 7 min. Following this oven-cure the resin phase exhibited enhanced stiffness with the activation-energy barrier for molecular motion at the glass-transition rising from 220 to 291 kJ/mol. This study clarifies the nature and extent of the internal molecular changes which may be produced in the fabrication of a composite inlay.

  16. Measuring the mechanical properties of molecular conformers

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  17. Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

    SciTech Connect

    Buchheit, T.E.; Christenson, T.R.; Lavan, D.A.; Schmale, D.T.

    1999-01-25

    LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

  18. Mechanical properties of nanotubes of polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Cuenot, S.; Alem, H.; Louarn, G.; Demoustier-Champagne, S.; Jonas, A. M.

    2008-04-01

    The elastic properties of nanotubes fabricated by layer-by-layer (LbL) assembly of polyelectrolytes in the nanopores of polycarbonate track-etched membranes have been investigated by resonant contact Atomic Force Microscopy (AFM), for nanotube diameters in the range of 100 to 200nm. The elastic modulus of the nanotubes was computed from the resonance frequencies of a cantilever resting on freely suspended LbL nanotubes. An average value of 115MPa was found in air for Young's modulus of these nanostructures, well below the values reported for dry, flat multilayers, but in the range of values reported for water-swollen flat multilayers. These low values are most probably due to the lower degree of ionic cross-linking of LbL nanotubes and their consequently higher water content in air, resulting from the peculiar mode of growth of nanoconfined polyelectrolyte multilayers. The computation of the moment of inertia of the LbL nanostructures is only available in electronic form at 10.1140/epje/i2007-10291-3 and are accessible for authorised users.

  19. Analgesic Drugs Alter Connective Tissue Remodeling and Mechanical Properties.

    PubMed

    Carroll, Chad C

    2016-01-01

    Exercising individuals commonly consume analgesics, but these medications alter tendon and skeletal muscle connective tissue properties, possibly limiting a person from realizing the full benefits of exercise training. I detail the novel hypothesis that analgesic medications alter connective tissue structure and mechanical properties by modifying fibroblast production of growth factors and matrix enzymes, which are responsible for extracellular matrix remodeling.

  20. Mechanical and Thermophysical Properties of Cerium Monopnictides

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Singh, Devraj; Jain, S. K.

    2016-03-01

    The ultrasonic attenuation due to phonon-phonon interaction, thermoelastic relaxation and dislocation damping mechanisms has been investigated in cerium monopnictides CeX (X: N, P, As, Sb and Bi) for longitudinal and shear waves along {< }100{rangle }, {< }110{rangle } and {< }111{rangle } directions. The second- and third-order elastic constants of CeX have also been computed in the temperature range 0 K to 500 K using Coulomb and Born-Mayer potential upto second nearest neighbours. The computed values of these elastic constants have been applied to find out Young's moduli, bulk moduli, Breazeale's non-linearity parameters, Zener anisotropy, ultrasonic velocity, ultrasonic Grüneisen parameter, thermal relaxation time, acoustic coupling constants and ultrasonic attenuation. The fracture/toughness ratio is less than 1.75, which shows that the chosen materials are brittle in nature as found for other monopnictides. The drag coefficient acting on the motion of screw and edge dislocations due to shear and compressional phonon viscosities of the lattice have also been evaluated for both the longitudinal and shear waves. The thermoelastic loss and dislocation damping loss are negligible in comparison to loss due to Akhieser damping (phonon-phonon interaction). The obtained results for CeX are in qualitative agreement with other semi-metallic monopnictides.

  1. Mechanical Properties of Nanoscopic Lipid Domains.

    PubMed

    Nickels, Jonathan D; Cheng, Xiaolin; Mostofian, Barmak; Stanley, Christopher; Lindner, Benjamin; Heberle, Frederick A; Perticaroli, Stefania; Feygenson, Mikhail; Egami, Takeshi; Standaert, Robert F; Smith, Jeremy C; Myles, Dean A A; Ohl, Michael; Katsaras, John

    2015-12-23

    The lipid raft hypothesis presents insights into how the cell membrane organizes proteins and lipids to accomplish its many vital functions. Yet basic questions remain about the physical mechanisms that lead to the formation, stability, and size of lipid rafts. As a result, much interest has been generated in the study of systems that contain similar lateral heterogeneities, or domains. In the current work we present an experimental approach that is capable of isolating the bending moduli of lipid domains. This is accomplished using neutron scattering and its unique sensitivity to the isotopes of hydrogen. Combining contrast matching approaches with inelastic neutron scattering, we isolate the bending modulus of ∼13 nm diameter domains residing in 60 nm unilamellar vesicles, whose lipid composition mimics the mammalian plasma membrane outer leaflet. Importantly, the bending modulus of the nanoscopic domains differs from the modulus of the continuous phase surrounding them. From additional structural measurements and all-atom simulations, we also determine that nanoscopic domains are in-register across the bilayer leaflets. Taken together, these results inform a number of theoretical models of domain/raft formation and highlight the fact that mismatches in bending modulus must be accounted for when explaining the emergence of lateral heterogeneities in lipid systems and biological membranes.

  2. Porosity and mechanical properties of zirconium ceramics

    NASA Astrophysics Data System (ADS)

    Buyakova, S.; Sablina, T.; Kulkov, S.

    2015-11-01

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO2(MgO), ZrO2(Y2O3) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO2 powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO2 grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  3. Measuring the mechanical properties of molecular conformers

    PubMed Central

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-01-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules. PMID:26388232

  4. Porosity and mechanical properties of zirconium ceramics

    SciTech Connect

    Buyakova, S. Kulkov, S.; Sablina, T.

    2015-11-17

    Has been studied a porous ceramics obtained from ultra-fine powders. Porous ceramic ZrO{sub 2}(MgO), ZrO{sub 2}(Y{sub 2}O{sub 3}) powder was prepared by pressing and subsequent sintering of compacts homologous temperatures ranging from 0.63 to 0.56 during the isothermal holding duration of 1 to 5 hours. The porosity of ceramic samples was from 15 to 80%. The structure of the ceramic materials produced from plasma-sprayed ZrO{sub 2} powder was represented as a system of cell and rod structure elements. Cellular structure formed by stacking hollow powder particles can be easily seen at the images of fracture surfaces of obtained ceramics. There were three types of pores in ceramics: large cellular hollow spaces, small interparticle pores which are not filled with powder particles and the smallest pores in the shells of cells. The cells generally did not have regular shapes. The size of the interior of the cells many times exceeded the thickness of the walls which was a single-layer packing of ZrO{sub 2} grains. A distinctive feature of all deformation diagrams obtained in the experiment was their nonlinearity at low deformations which was described by the parabolic law. It was shown that the observed nonlinear elasticity for low deformation on deformation diagrams is due to mechanical instability of the cellular elements in the ceramic carcass.

  5. Mechanical properties of lanthanum and yttrium chromites

    SciTech Connect

    Paulik, S.W.; Armstrong, T.R.

    1996-12-31

    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  6. Fluid mechanical properties of flames in enclosures

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.; Oppenheim, A.K.

    1988-07-01

    In an enclosure where the reacting medium is initially at rest, the flame first generates a flowfield that then gets stretched, i.e., its front is pulled along the surface by the flowfield in which it then finds itself residing. A methodology developed for numerical modeling of such fields is described. Of key significance in this respect is the zero Mach number model/endash/a reasonable idealization in view of the relatively high temperature, and hence sound speed, that exists, concomitantly with a comparatively low particle velocity, in the confinement of a combustion chamber. According to this model, the density gradient in the field is nullified, while across the flame front it approaches infinity. One has thus two regimes: one of the unburned medium and the other of the burned gas, each of spatially uniform density, separated by a flame front interface. The latter is endowed with four properties, of which the first two are purely kinematic and the others dynamic in nature, namely: 1) it is advected at the local velocity of flow; 2) it self-advances at the normal burning speed, the eigenvalue of the system; 3) it acts as the velocity source due to the exothermicity of the combustion process; and 4) it acts as the vorticity source due to the baroclinic effect generated by the pressure gradient along its surface and the density gradient across it. A solution obtained for a flame propagating in an oblong rectangular enclosure demonstrates that the latter has a significant influence upon the formation of the well known tulip shape. 12 refs., 4 figs.

  7. Mechanical and biological properties of keratose biomaterials.

    PubMed

    de Guzman, Roche C; Merrill, Michelle R; Richter, Jillian R; Hamzi, Rawad I; Greengauz-Roberts, Olga K; Van Dyke, Mark E

    2011-11-01

    The oxidized form of extractable human hair keratin proteins, commonly referred to as keratose, is gaining interest as a biomaterial for multiple tissue engineering studies including those directed toward peripheral nerve, spinal cord, skin, and bone regeneration. Unlike its disulfide cross-linked counterpart, kerateine, keratose does not possess a covalently cross-linked network structure and consequently displays substantially different characteristics. In order to understand its mode(s) of action and potential for clinical translatability, detailed characterization of the composition, physical properties, and biological responses of keratose biomaterials are needed. Keratose was obtained from end-cut human hair fibers by peracetic acid treatment, followed by base extraction, and subsequent dialysis. Analysis of lyophilized keratose powder determined that it contains 99% proteins by mass with amino acid content similar to human hair cortex. Metallic elements were also found in minute quantities. Protein oxidation led to disulfide bond cleavage and drastic reduction of free thiols due to conversion of sulfhydryl to sulfonic acid, chain fragmentation, and amino acid modifications. Mass spectrometry identified the major protein constituents as a heterogeneous mixture of 15 hair keratins (type I: K31-35 and K37-39, and type II: K81-86) with small amounts of epithelial keratins which exist in monomeric, dimeric, multimeric, and even degraded forms. Re-hydration with PBS enabled molecular assembly into an elastic solid-like hydrogel. Highly-porous scaffolds formed by lyophilization of the gel had the compression behavior of a cellular foam material and reverted back to gel upon wetting. Cytotoxicity assays showed that the EC50 for various cell lines were attained at 8-10 mg/mL keratose, indicating the non-toxic nature of the material. Implantation in mouse subcutaneous tissue pockets demonstrated that keratose resorption follows a rectangular hyperbolic regression

  8. Dynamic monitoring of cell mechanical properties using profile microindentation

    NASA Astrophysics Data System (ADS)

    Guillou, L.; Babataheri, A.; Puech, P.-H.; Barakat, A. I.; Husson, J.

    2016-02-01

    We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells’ actin is depolymerized using cytochalasin-D.

  9. Dynamic monitoring of cell mechanical properties using profile microindentation

    PubMed Central

    Guillou, L.; Babataheri, A.; Puech, P.-H.; Barakat, A. I.; Husson, J.

    2016-01-01

    We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells’ actin is depolymerized using cytochalasin-D. PMID:26857265

  10. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  11. Mechanical Properties and Durability of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Grugel, Richard N.

    2008-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and by oxidation soil iron and sulfur can be produced. Iron can be used to reinforce the sulfur concrete. Sulfur concrete specimens were cycled between liquid nitrogen (approximately 191 C) and room temperature (approximately 21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (approximately 21 C) and approximately 101 C. Test results showed that due to temperature cycling, compressive strength of cycled specimens was 20% of those non-cycled. Microscopic examination of the fracture surfaces from the cycled samples showed clear de-bonding of the sulfur from the aggregate material whereas it was seen well bonded in those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibers. The glass fibers from lunar regolith simulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to 1 hour. Glass fibers were cast from the melt into graphite crucibles and were annealed for a couple of hours at 600 C. Glass fibers and small rods were pulled from the melt. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The glass fibers were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Prisms beams strengthened with glass fibers were tested in 4-point bending test. Beams strengthened with glass fiber showed to

  12. Bio-inspired particle separator design based on the food retention mechanism by suspension-feeding fish.

    PubMed

    Hung, Tien-Chieh; Piedrahita, Raul H; Cheer, Angela

    2012-12-01

    A new particle separator is designed using a crossflow filtration mechanism inspired by suspension-feeding fish in this study. To construct the model of the bio-inspired particle separator, computational fluid dynamics techniques are used, and parameters related to separator shape, fluid flow and particle properties that might affect the performance in removing particles from the flow, are varied and tested. The goal is to induce a flow rotation which enhances the separation of particles from the flow, reduce the particle-laden flow that exits via a collection zone at the lower/posterior end of the separator, while at the same time increase the concentration of particles in that flow. Based on preliminary particle removal efficiency tests, an exiting flow through the collection zone of about 8% of the influent flow rate is selected for all the performance tests of the separator including trials with particles carried by air flow instead of water. Under this condition, the simulation results yield similar particle removal efficiencies in water and air but with different particle properties. Particle removal efficiencies (percentage of influent particles that exit through the collection zone) were determined for particles ranging in size from 1 to 1500 µm with a density between 1000 and 1150 kg m(-3) in water and 2 and 19 mm and 68 and 2150 kg m(-3) in air. As an example, removal efficiencies are 66% and 64% for 707 µm diameter particles with a density of 1040 kg m(-3) in water and for 2 mm particles with a density of 68 kg m(-3) in air, respectively. No significant performance difference is found by geometrically scaling the inlet diameter of the separator up or down in the range from 2.5 to 10 cm.

  13. Three-Dimensional Aggregates of Mesenchymal Stem Cells: Cellular Mechanisms, Biological Properties, and Applications

    PubMed Central

    Sart, Sébastien; Tsai, Ang-Chen; Li, Yan

    2014-01-01

    Mesenchymal stem cells (MSCs) are primary candidates in cell therapy and tissue engineering and are being tested in clinical trials for a wide range of diseases. Originally isolated and expanded as plastic adherent cells, MSCs have intriguing properties of in vitro self-assembly into three-dimensional (3D) aggregates reminiscent of skeletal condensation in vivo. Recent studies have shown that MSC 3D aggregation improved a range of biological properties, including multilineage potential, secretion of therapeutic factors, and resistance against ischemic condition. Hence, the formation of 3D MSC aggregates has been explored as a novel strategy to improve cell delivery, functional activation, and in vivo retention to enhance therapeutic outcomes. This article summarizes recent reports of MSC aggregate self-assembly, characterization of biological properties, and their applications in preclinical models. The cellular and molecular mechanisms underlying MSC aggregate formation and functional activation are discussed, and the areas that warrant further investigation are highlighted. These analyses are combined to provide perspectives for identifying the controlling mechanisms and refining the methods of aggregate fabrication and expansion for clinical applications. PMID:24168395

  14. Influence of Water Content on the Mechanical Properties of an Argillaceous Swelling Rock

    NASA Astrophysics Data System (ADS)

    Vergara, Maximiliano R.; Triantafyllidis, Theodoros

    2016-07-01

    This work presents the results of an experimental investigation aimed to study the effect of water on the mechanical properties of a partially saturated argillaceous swelling rock. The mineralogical composition of the rock, in particular the portion of swelling clays, was determined with X-ray diffraction. The water retention curve was estimated using a dew-point potential meter and the swelling behavior of the studied rock was examined by unconfined and oedometric swelling tests. The influence of water on the rock mechanical properties was assessed by means of triaxial tests. The experimental results indicate a strong decrease of strength and stiffness with increasing saturation or decreasing suction. This occurs only within a certain range of saturation. Degradation of the rock properties can be expected for small increments in the water content within this range. At low suction and close to the air-entry value, the stiffness remained constant. As the rock desaturates, the strength and stiffness increase approaching constant values. For suction greater than about 76 MPa, low increase of strength and stiffness was observed. The specimens in the swelling tests reached a saturation degree of 70 % which corresponds to a decrease of strength and stiffness of approximately 80 %. Rock swelling occurring simultaneously with reduction of strength and stiffness, increases deformations and it is an important issue for the stability of excavations.

  15. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    SciTech Connect

    D. Rigby

    2004-11-10

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components).

  16. A simple auxetic tubular structure with tuneable mechanical properties

    NASA Astrophysics Data System (ADS)

    Ren, Xin; Shen, Jianhu; Ghaedizadeh, Arash; Tian, Hongqi; Xie, Yi Min

    2016-06-01

    Auxetic materials and structures are increasingly used in various fields because of their unusual properties. Auxetic tubular structures have been fabricated and studied due to their potential to be adopted as oesophageal stents where only tensile auxetic performance is required. However, studies on compressive mechanical properties of auxetic tubular structures are limited in the current literature. In this paper, we developed a simple tubular structure which exhibits auxetic behaviour in both compression and tension. This was achieved by extending a design concept recently proposed by the authors for generating 3D metallic auxetic metamaterials. Both compressive and tensile mechanical properties of the auxetic tubular structure were investigated. It was found that the methodology for generating 3D auxetic metamaterials could be effectively used to create auxetic tubular structures as well. By properly adjusting certain parameters, the mechanical properties of the designed auxetic tubular structure could be easily tuned.

  17. Salt-leached silk scaffolds with tunable mechanical properties.

    PubMed

    Yao, Danyu; Dong, Sen; Lu, Qiang; Hu, Xiao; Kaplan, David L; Zhang, Bingbo; Zhu, Hesun

    2012-11-12

    Substrate mechanical properties have remarkable influences on cell behavior and tissue regeneration. Although salt-leached silk scaffolds have been used in tissue engineering, applications in softer tissue regeneration can be encumbered with excessive stiffness. In the present study, silk-bound water interactions were regulated by controlling processing to allow the preparation of salt-leached porous scaffolds with tunable mechanical properties. Increasing silk-bound water interactions resulted in reduced silk II (β-sheet crystal) formation during salt-leaching, which resulted in a modulus decrease in the scaffolds. The microstructures as well as degradation behavior were also changed, implying that this water control and salt-leaching approach can be used to achieve tunable mechanical properties. Considering the utility of silk in various fields of biomedicine, the results point to a new approach to generate silk scaffolds with controllable properties to better mimic soft tissues by combining scaffold preparation methods and silk self-assembly in aqueous solutions.

  18. Mechanical properties of carbon nanotube/polymer composites

    PubMed Central

    Arash, B.; Wang, Q.; Varadan, V. K.

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region. PMID:25270167

  19. Mechanical properties of carbon nanotubes and their polymer nanocomposites.

    PubMed

    Miyagawa, Hiroaki; Misra, Manjusri; Mohanty, Amar K

    2005-10-01

    More than 10 years have passed since carbon nanotubes (CNT) have been found during observations by transmission electron microscopy (TEM). Since then, one of the major applications of the CNT is the reinforcements of plastics in processing composite materials, because it was found by experiments that CNT possessed splendid mechanical properties. Various experimental methods are conducted in order to understand the mechanical properties of varieties of CNT and CNT-based composite materials. The systematized data of the past research results of CNT and their nanocomposites are extremely useful to improve processing and design criteria for new nanocomposites in further studies. Before the CNT observations, vapor grown carbon fibers (VGCF) were already utilized for composite applications, although there have been only few experimental data about the mechanical properties of VGCF. The structure of VGCF is similar to that of multi-wall carbon nanotubes (MWCNT), and the major benefit of VGCF is less commercial price. Therefore, this review article overviews the experimental results regarding the various mechanical properties of CNT, VGCF, and their polymer nanocomposites. The experimental methods and results to measure the elastic modulus and strength of CNT and VGCF are first discussed in this article. Secondly, the different surface chemical modifications for CNT and VGCF are reviewed, because the surface chemical modifications play an important role for polymer nanocomposite processing and properties. Thirdly, fracture and fatigue properties of CNT/polymer nanocomposites are reviewed, since these properties are important, especially when these new nanocomposite materials are applied for structural applications.

  20. Mechanical properties of carbon nanotube/polymer composites.

    PubMed

    Arash, B; Wang, Q; Varadan, V K

    2014-01-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region.

  1. Mechanical properties of carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.; Varadan, V. K.

    2014-10-01

    The remarkable mechanical properties of carbon nanotubes, such as high elastic modulus and tensile strength, make them the most ideal and promising reinforcements in substantially enhancing the mechanical properties of resulting polymer/carbon nanotube composites. It is acknowledged that the mechanical properties of the composites are significantly influenced by interfacial interactions between nanotubes and polymer matrices. The current challenge of the application of nanotubes in the composites is hence to determine the mechanical properties of the interfacial region, which is critical for improving and manufacturing the nanocomposites. In this work, a new method for evaluating the elastic properties of the interfacial region is developed by examining the fracture behavior of carbon nanotube reinforced poly (methyl methacrylate) (PMMA) matrix composites under tension using molecular dynamics simulations. The effects of the aspect ratio of carbon nanotube reinforcements on the elastic properties, i.e. Young's modulus and yield strength, of the interfacial region and the nanotube/polymer composites are investigated. The feasibility of a three-phase micromechanical model in predicting the elastic properties of the nanocomposites is also developed based on the understanding of the interfacial region.

  2. Mechanical Properties Comparing Composite Fiber Length to Amalgam

    PubMed Central

    Petersen, Richard C.; Liu, Perng-Ru

    2016-01-01

    Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p < 1.1×10−5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity. PMID:27642629

  3. Mechanical Properties Comparing Composite Fiber Length to Amalgam

    PubMed Central

    Petersen, Richard C.; Liu, Perng-Ru

    2016-01-01

    Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p < 1.1×10−5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity.

  4. Coupling of mechanical and electronic properties of carbon nanotubes.

    PubMed

    Cristancho, Dahiyana; Benitez, Laura; Seminario, Jorge M

    2013-12-01

    Because of the potential importance of carbon nanotubes (CNT) in renewable energy and other fields, molecular orbital ab initio calculations are used to study the relation between mechanical and electronic properties of such structures. We estimate a modulus of elasticity of 1.3 TPa and find out that the mechanism of CNT structure deformation is dependent on their chirality. Armchair and chiral nanotubes have ductile deformation fracture while zigzag have both ductile and brittle; on the other hand armchair nanotubes fracture and form two caps while chiral nanotubes adopt a helical-structure conformation. In addition, the energy gap between occupied and unoccupied molecular orbitals increases when nanotubes are under plastic deformation. This strong coupling between mechanical and electrical properties can be used to tune CNT mechanically to specific electronic bandgaps, affecting directly their electromagnetic absorption properties.

  5. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering.

    PubMed

    Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara

    2013-01-01

    Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering.

  6. Mechanical properties of jennite: A theoretical and experimental study

    SciTech Connect

    Moon, Juhyuk; Yoon, Seyoon; Monteiro, Paulo J.M.

    2015-05-15

    The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.

  7. Altered mechanical properties of the nucleus in disease.

    PubMed

    Lombardi, Maria Lucia; Lammerding, Jan

    2010-01-01

    In eukaryotic cells, the nucleus is the largest and most rigid organelle. Therefore, its physical properties contribute critically to the biomechanical behavior of cells, e.g., during amoeboid migration or perfusion through narrow capillaries. Furthermore, it has been speculated that nuclear deformations could directly allow cells to sense mechanical stress, e.g., by modulating the access of specific transcription factors to their binding sites. Defects in nuclear mechanics have also been reported in a variety of muscular dystrophies caused by mutations in nuclear envelope proteins, indicating an important role in the maintenance of cells in mechanically stressed tissue. These findings have prompted the growing field of nuclear mechanics to develop advanced experimental methods to study the physical properties of the nucleus as a function of nuclear structure and organization, and to understand its role in physiology and disease. These experimental techniques include micropipette aspiration, atomic force microscopy of isolated nuclei, cellular strain and compression experiments, and microneedle manipulation of intact cells. These experiments have provided important insights into the mechanical behavior of the nucleus under physiological conditions, the distinct mechanical contributions of the nuclear lamina and interior, and how mutations in nuclear envelope proteins associated with a variety of human diseases can cause distinct alterations in the physical properties of the nucleus and contribute to the disease mechanism. Here, we provide a brief overview of the most common experimental techniques and their application and discuss the implication of their results on our current understanding of nuclear mechanics.

  8. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  9. [Bonding strength of metal frameworks and adhesive agents in the resin-bonded bridge technic. 3. Comparative research on various retention mechanisms and adhesive systems].

    PubMed

    Wirz, J; Besimo, C; Schmidli, F

    1989-01-01

    In fixed denture prosthetics, macro- and micromechanical as well as chemical adhesive mechanisms may be used between metal and bonding agent. The in vitro research presented here determines the adhesive strength of six different bonding agents and five different retention mechanisms on twelve precious and nonprecious metal alloys using shearing stress. The evaluation of the results should help to assess the suitability of the various combinations of materials and anchoring methods for the fixation of adhesive bridges. On the basis of the adhesive strengths and the examination of the various clinical advantages and disadvantages of the different methods that were analyzed, the electrolytic etching of nonprecious metal alloys appears to be particularly suitable for fixed denture prostheses. An efficient combination between alloy and bonding agent is of particular importance in this area. Macromechanical mesh and negative retentions can only be used to a limited clinical extent due to their high space requirements. Very good results were produced by the preconditioning of inner anchor surfaces with silanes. Sandblasting, however, provided unsatisfactory shear-stress results over a broad front independently of the type of alloy.

  10. Measurements and Characterizations of Mechanical Properties of Human Skins

    NASA Astrophysics Data System (ADS)

    Song, Han Wook; Park, Yon Kyu

    A skin is an indispensible organ for humans because it contributes to metabolism using its own biochemical functions and protects the human body from external stimuli. Recently, mechanical properties such as a thickness, a friction and an elastic coefficient have been used as a decision index in the skin physiology and in the skin care market due to the increased awareness of wellbeing issues. In addition, the use of mechanical properties is known to have good discrimination ability in the classification of human constitutions, which are used in the field of an alternative medicine. In this study, a system that measures mechanical properties such as a friction and an elastic coefficient is designed. The equipment consists of a load cell type (manufactured by the authors) for the measurements of a friction coefficient, a decompression tube for the measurement of an elastic coefficient. Using the proposed system, the mechanical properties of human skins from different constitutions were compared, and the relative repeatability error for measurements of mechanical properties was determined to be less than 2%. Combining the inspection results of medical doctors in the field of an alternative medicine, we could conclude that the proposed system might be applicable to a quantitative constitutional diagnosis between human constitutions within an acceptable level of uncertainty.

  11. Mechanical properties and in vitro degradation of bioresorbable knitted stents.

    PubMed

    Nuutinen, Juha-Pekka; Välimaa, Tero; Clerc, Claude; Törmälä, Pertti

    2002-01-01

    The aim of this study was to characterize the mechanical properties and in vitro degradation of bioresorbable knitted stents. Each stent was knitted using a single self-reinforced fibre made out of either PLLA or 96L/4D PLA or 80L/20G PLGA. The mechanical and physical properties of the fibres and stents were measured before and after gamma sterilization, as well as during in vitro degradation. The mechanical properties of the knitted stents made out of bioresorbable fibres were similar to those of commercially available metallic stents. The knitting geometry (loop height) had a marked effect on the mechanical properties of the stents. The rate of in vitro degradation in mechanical and physical properties for the PLLA and 96L/4D PLA stents was similar and significantly lower than that of the 80L/20G PLGA stents. The 80L/20G PLGA stents lost about 35% of their initial weight at 11 weeks. At this time, they had lost all their compression resistance strength. These data can be used as a guideline in planning further studies in vivo. PMID:12555898

  12. Deformation behavior and mechanical properties of amyloid protein nanowires.

    PubMed

    Solar, Max; Buehler, Markus J

    2013-03-01

    Amyloid fibrils are most often associated with their pathological role in diseases like Alzheimer's disease and Parkinson's disease, but they are now increasingly being considered for uses in functional engineering materials. They are among the stiffest protein fibers known but they are also rather brittle, and it is unclear how this combination of properties affects the behavior of amyloid structures at larger length scales, such as in films, wires or plaques. Using a coarse-grained model for amyloid fibrils, we study the mechanical response of amyloid nanowires and examine fundamental mechanical properties, including mechanisms of deformation and failure under tensile loading. We also explore the effect of varying the breaking strain and adhesion strength of the constituent amyloid fibrils on the properties of the larger structure. We find that deformation in the nanowires is controlled by a combination of fibril sliding and fibril failure and that there exists a transition from brittle to ductile behavior by either increasing the fibril failure strain or decreasing the strength of adhesion between fibrils. Furthermore, our results reveal that the mechanical properties of the nanowires are quite sensitive to changes in the properties of the individual fibrils, and the larger scale structures are found to be more mechanically robust than the constituent fibrils, for all cases considered. More broadly, this work demonstrates the promise of utilizing self-assembled biological building blocks in the development of hierarchical nanomaterials. PMID:23290516

  13. Microstructural influences on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Goldstein, J.L.F.; Mei, Z.

    1993-04-01

    Intent of this book is to review analytic methods for predicting behavior of solder joints, based on continuum mechanics. The solder is treated as a continuous, homogeneous body, or composite of such bodies, whose mechanical behavior is uniform and governed by simple constitutive equations. The microstructure of a solder joint influences its mechanical properties in 3 ways: it governs deformation and failure; common solders deform inhomogeneously; and common solders are microstructurally unstable. The variety of microstructures often found in solder joints are briefly reviewed, and some of the ways are discussed in which the microstructure influences the common types of high-temperature mechanical behavior. 25 figs, 40 refs.

  14. Method of predicting mechanical properties of decayed wood

    DOEpatents

    Kelley, Stephen S.

    2003-07-15

    A method for determining the mechanical properties of decayed wood that has been exposed to wood decay microorganisms, comprising: a) illuminating a surface of decayed wood that has been exposed to wood decay microorganisms with wavelengths from visible and near infrared (VIS-NIR) spectra; b) analyzing the surface of the decayed wood using a spectrometric method, the method generating a first spectral data of wavelengths in VIS-NIR spectra region; and c) using a multivariate analysis to predict mechanical properties of decayed wood by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of wavelengths in VIS-NIR spectra obtained from a reference decay wood, the second spectral data being correlated with a known mechanical property analytical result obtained from the reference decayed wood.

  15. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties.

    PubMed

    Avinash, M B; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T

    2015-11-03

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

  16. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Avinash, M. B.; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T.

    2015-11-01

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

  17. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties

    PubMed Central

    Avinash, M. B.; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T.

    2015-01-01

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50–300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties. PMID:26525957

  18. Thin Films of Quasicrystals: Optical, Electronic, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Symko, Orest G.

    1998-03-01

    In order to extend some of the unusual properties of quasicrystals toward practical applications and to study fundamental aspects of these properties, we have developed a technology for the deposition of high quality thin films of quasicrystals on a variety of substrates. Mechanical support for the thin films is provided by the substrate as bulk quasicrystals are brittle. We have applied the thin films to studies of their optical, electrical, and mechanical properties as well as to coatings of biomedical devices. An important characteristic of a quasicrystal is its pseudogap in the electronic density of states; it is determined directly from optical transmission measurements. Optical and mechanical characteristics of the thin films provide strong support for the cluster nature of quasicrystals and emphasize their importance for coatings. When used in biomedical devices, thin film quasicrystalline coatings show remarkable strength, low friction, and non-stick behavior. This work was in collaboration with W. Park, E. Abdel-Rahman, and T. Klein.

  19. Electronic and Mechanical Properties of Hydrogen Functionalized Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Yang, Liu; Han, Jie; Jaffe, Richard L.; Arnold, Jim (Technical Monitor)

    2001-01-01

    We examined the electronic and mechanical properties of hydrogen functionalized carbon nanotubes. The functionalization pattern covers two extreme groups. One group has randomly selected functionalization sites including one to twenty percent of the carbon atoms. The other group has regularly patterned functional sites parallel to the tube axis. Metallic, small-gap semiconducting and large-gap semiconducting carbon nanotubes are studied. The results reveal that the electronic properties of the tubes are very sensitive to the degree of functionalization, with even one percent functionalization being enough to render metallic tubes semiconducting. On the other hand, the mechanical properties, like tensile modulus, are much less sensitive to functionalization. For carbon nanotubes functionalized with specific patterns, the electric properties depends strongly on the nature of the functionalization pattern.

  20. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  1. Microstructures and Mechanical Properties of Irradiated Metals and Alloys

    SciTech Connect

    Zinkle, Steven J

    2008-01-01

    The effects of neutron irradiation on the microstructural evolution of metals and alloys are reviewed, with an emphasis on the roles of crystal structure, neutron dose and temperature. The corresponding effects of neutron irradiation on mechanical properties of metals and alloys are summarized, with particular attention on the phenomena of low temperature radiation hardening and embrittlement. The prospects of developing improved high-performance structural materials with high resistance to radiation-induced property degradation are briefly discussed.

  2. Rock Mechanical Properties from Logs Petrophysics : Concepts and Results

    NASA Astrophysics Data System (ADS)

    Gaillot, Philippe; Crawford, Brian; Alramahi, Bashar; Karner, Steve

    2010-05-01

    The objective of the "geomechanics from logs" (GML) research project is to develop model-driven predictive software for determining rock mechanical properties (specifically rock strength, compressibility and fracability) from other, more easily measured, rock properties (e.g. lithology, porosity, clay volume, velocity) routinely derived from nuclear, resistivity and acoustic logging tools. To this end, geomechanics from logs seeks to increase fundamental understanding of the primary geologic controls on rock mechanical properties and to translate this new insight into novel predictive tools. In detail, GML predictors rely on (i) the generation of relational rock mechanical properties databases incorporating QC'd core-based laboratory measurements (both in-house and high-precision published data); (ii) the use of established rock physics models (e.g. friable sand, contact cement models) to investigate theoretical relationships between geologic processes, reservoir environment, rock microstructure and elastic, bulk and transport petrophysical attributes/properties; (iii) the subdivision of database rocks into generic lithotypes (e.g. sand, shaly sand, sandy shale, shale) with common petrophysical attributes/properties; (iv) the use of multivariate statistics to generate lithotype-dependent empirical predictive relationships between mechanical properties and log-derived petrophysical attributes/properties; (v) the estimation of uncertainties associated with predictive function parameters; (vi) the application and validation of mechanical properties predictive tools to well-documented case studies (e.g. sand strength for perforation stability, rock compressibility for reservoir simulation) to test overall performance and quantify uncertainty in predictions. This paper presents the results of various rock strength, rock compressibility and rock fracability case studies conducted in wells of different stratigraphic age and depositional environment. Overall, GML (i

  3. Investigation of mechanical properties of cryogenically treated music wire.

    PubMed

    Heptonstall, A; Waller, M; Robertson, N A

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors. PMID:26329213

  4. Mechanical properties of the brain-skull interface.

    PubMed

    Mazumder, Mohammad Mynuddin Gani; Miller, Karol; Bunt, Stuart; Mostayed, Ahmed; Joldes, Grand; Day, Robert; Hart, Robin; Wittek, Adam

    2013-01-01

    Knowledge of the mechanical properties of the brain-skull interface is important for surgery simulation and injury biomechanics. These properties are known only to a limited extent. In this study we conducted in situ indentation of the sheep brain, and proposed to derive the macroscopic mechanical properties of the brain-skull interface from the results of these experiments. To the best of our knowledge, this is the first ever analysis of this kind. When conducting in situ indentation of the brain, the reaction force on the indentor was measured. After the indentation, a cylindrical sample of the brain tissue was extracted and subjected to uniaxial compression test. A model of the brain indentation experiment was built in the Finite Element (FE) solver ABAQUS™. In the model, the mechanical properties of the brain tissue were assigned as obtained from the uniaxial compression test and the brain-skull interface was modeled as linear springs. The interface stiffness (defined as sum of stiffnesses of the springs divided by the interface area) was varied to obtain good agreement between the calculated and experimentally measured indentor force-displacement relationship. Such agreement was found to occur for the brain-skull interface stiffness of 11.45 Nmm⁻¹/mm². This allowed identification of the overall mechanical properties of the brain-skull interface. PMID:23951996

  5. Effects of humidity on the mechanical properties of gecko setae.

    PubMed

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction.

  6. Mechanical property quantification of endothelial cells using scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.

    2012-04-01

    The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD < 90 h) and old (tD > 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.

  7. Investigation of mechanical properties of cryogenically treated music wire

    NASA Astrophysics Data System (ADS)

    Heptonstall, A.; Waller, M.; Robertson, N. A.

    2015-08-01

    It has been reported that treating music wire (high carbon steel wire) by cooling to cryogenic temperatures can enhance its mechanical properties with particular reference to those properties important for musical performance. We use such wire for suspending many of the optics in Advanced LIGO, the upgrade to LIGO—the Laser Interferometric Gravitational-Wave Observatory. Two properties that particularly interest us are mechanical loss and breaking strength. A decrease in mechanical loss would directly reduce the thermal noise associated with the suspension, thus enhancing the noise performance of mirror suspensions within the detector. An increase in strength could allow thinner wire to be safely used, which would enhance the dilution factor of the suspension, again leading to lower suspension thermal noise. In this article, we describe the results of an investigation into some of the mechanical properties of music wire, comparing untreated wire with the same wire which has been cryogenically treated. For the samples we studied, we conclude that there is no significant difference in the properties of interest for application in gravitational wave detectors.

  8. Transient dynamic mechanical properties of resilin-based elastomeric hydrogels

    PubMed Central

    Li, Linqing; Kiick, Kristi L.

    2014-01-01

    The outstanding high-frequency properties of emerging resilin-like polypeptides (RLPs) have motivated their development for vocal fold tissue regeneration and other applications. Recombinant RLP hydrogels show efficient gelation, tunable mechanical properties, and display excellent extensibility, but little has been reported about their transient mechanical properties. In this manuscript, we describe the transient mechanical behavior of new RLP hydrogels investigated via both sinusoidal oscillatory shear deformation and uniaxial tensile testing. Oscillatory stress relaxation and creep experiments confirm that RLP-based hydrogels display significantly reduced stress relaxation and improved strain recovery compared to PEG-based control hydrogels. Uniaxial tensile testing confirms the negligible hysteresis, reversible elasticity and superior resilience (up to 98%) of hydrated RLP hydrogels, with Young's modulus values that compare favorably with those previously reported for resilin and that mimic the tensile properties of the vocal fold ligament at low strain (<15%). These studies expand our understanding of the properties of these RLP materials under a variety of conditions, and confirm the unique applicability, for mechanically demanding tissue engineering applications, of a range of RLP hydrogels. PMID:24809044

  9. Hygrothermal ageing effect on mechanical properties of FRP laminates

    NASA Astrophysics Data System (ADS)

    Larbi, S.; Bensaada, R.; Bilek, A.; Djebali, S.

    2015-03-01

    The aim of this work is to study the effect of hygrothermal aging on mechanical properties of two composite materials (carbon fiber / epoxy and glass fiber E / vinylester). Two stratifications are studied for each material. Both materials are exposed to two different environments, the sea water and the deionized water at a temperature of 40°C. The kinetic of material absorption is plotted. We see an irreversible degradation of material caused by exposure time. The characterization of samples in the virgin state and the aged condition is achieved with three points bending tests. We can see significant loss of mechanical properties due to hygrothermal aging.

  10. Mechanical and Electrical Properties of Cryo-worked Cu

    NASA Astrophysics Data System (ADS)

    Bettinali, Livio; Tosti, Silvano; Pizzuto, Aldo

    2014-01-01

    For manufacturing the magnets of fusion machines pure copper of both high mechanical resistance and electrical conductivity is required. Though high purity copper guarantees high electrical conductivity, its mechanical properties may be not suitable for the applications in tokamaks. In this view, a new procedure developed for obtaining high purity copper with excellent mechanical strength is described in this work. Samples of oxygen free copper (OFC) have been worked by pressing in liquid nitrogen (77 K). It has been verified that the mechanical properties of the worked metal are strongly dependent on the strain rate. Very low strain rates permitted to attain values of tensile yield strength (550 MPa) significantly higher than those obtained by traditional cold-working at room temperature (450 MPa). The electrical conductivity of the cryo-worked Cu decreases with the tensile yield strength even though the hardest samples of tensile yield strength of 550 MPa exhibit still acceptable values of conductivity (about 94 % IACS at room temperature).

  11. Characterization of High Temperature Mechanical Properties Using Laser Ultrasound

    SciTech Connect

    David Hurley; Stephen Reese; Farhad Farzbod; Rory Kennedy

    2012-05-01

    Mechanical properties are controlled to a large degree by defect structures such as dislocations and grain boundaries. These microstructural features involve a perturbation of the perfect crystal lattice (i.e. strain fields). Viewed in this context, high frequency strain waves (i.e. ultrasound) provide a natural choice to study microstructure mediated mechanical properties. In this presentation we use laser ultrasound to probe mechanical properties of materials. This approach utilizes lasers to excite and detect ultrasonic waves, and as a consequence has unique advantages over other methods—it is noncontacting, requires no couplant or invasive sample preparation (other than that used in metallurgical analysis), and has the demonstrated capability to probe microstructure on a micron scale. Laser techniques are highly reproducible enabling sophisticated, microstructurally informed data analysis. Since light is being used for generation and detection of the ultrasonic wave, the specimen being examined is not mechanically coupled to the transducer. As a result, laser ultrasound can be carried out remotely, an especially attractive characteristic for in situ measurements in severe environments. Several examples involving laser ultrasound to measure mechanical properties in high temperature environments will be presented. Emphasis will be place on understanding the role of grain microstructure.

  12. Mechanical properties of carbon fiber composites for applications in space

    NASA Astrophysics Data System (ADS)

    Hana, P.; Inneman, A.; Daniel, V.; Sieger, L.; Petru, M.

    2015-01-01

    This article describes method of measurement mechanical properties of carbon fiber composites in space. New material structures are specifically designed for use on space satellites. Composite structures will be exposed to cosmic radiation in Earth orbit on board of a '2U CubeSat' satellite. Piezoelectric ceramic sensors are used for detection mechanical vibrations of composite test strip. A great deal of attention is paid to signal processing using 8-bit microcontroler. Fast Fourier Transformation is used. Fundamental harmonic frequencies and damping from on-board measurements will serve as the input data for terrestrial data processing. The other step of elaboration data is creation of the physical model for evaluating mechanical properties of Carbon composite - Piezoelectric ceramic system. Evaluation of anisotropic mechanical properties of piezoelectric ceramics is an interesting secondary outcome of the investigation. Extreme changes in temperature and the effect of cosmic rays will affect the mechanical properties and durability of the material used for the external construction of satellites. Comparative terrestrial measurements will be performed.

  13. Mechanical and tribological properties of ion beam-processed surfaces

    NASA Astrophysics Data System (ADS)

    Kodali, Padma

    A variety of surface modification and surface coating techniques are currently used in industry to modify the near-surface mechanical properties that influence the friction and wear behavior of metals, metallic alloys, ceramics, and polymers. Near-surface mechanical properties such as hardness and fracture toughness of a coating-substrate system can be tailored economically without changing the bulk properties of the system. The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) Investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation. (2) Characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation. (3) Developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. Wear mechanisms that occurred in implanted and unimplanted surfaces tested against AIS152100

  14. Mechanical properties of cottage cheese-fortified wheat dough and loaf bread.

    PubMed

    Guemes-Vera, Norma; Gonzalez-Victoriano, Lizbeth; Soto-Simental, Sergio; Hernandez-Chavez, Juan Francisco; Reyes-Santamaria, Ma Isabel

    2014-10-01

    Milk whey and its derivatives are commonly used to fortify food products. A study was done on the effect of seven cottage cheese (sour/sweet whey mixture) inclusion concentrations (5, 7.5, 10, 12.5, 15, 17.5 and 20 %) on the mechanical properties of white wheat bread dough using a texture analyser. Cottage cheese protein content was 10.05 %. Loaf bread made using the 7.5, 12.5 and 17.5 % cottage cheese concentrations showed crumb quality similar to the control in the 12.5 and 17.5 % treatments, but more open and less homogeneous in 7.5 % treatment. Cottage cheese concentration affected bread volume, with the higher concentrations lowering volume by up to 50 %, in response to increased water retention. Sensory analysis showed bread containing 7.5 % cottage cheese was not different from the control, with an 83.33 % acceptance rate. The 7.5 % concentration was optimum for white wheat loaf bread production since its mechanical and sensory properties were most similar to the control. PMID:25328228

  15. Quadriceps Muscle Mechanical Simulator for Training of Vastus Medialis Obliquus and Vastus Lateralis Obliquus Mechanical Properties

    PubMed Central

    Irmak, Rafet; Irmak, Ahsen; Biçer, Gökhan

    2014-01-01

    Objectives: In classical anatomy quadriceps muscle has four heads. Clinical studies have demostrated 6 heads of this muscle. These heads were demostrated seperately not only by their functional properties,but also by innervation and kinesiological properties. In our previous study we have developed and demostrated electrophysiological properties of vastus medialis obliquus by an electronic patient simulator. The purpose of this study is to develop a mechanical simulator which can be used to demostrate mechanical properties of 6 heads of quadriceps muscle and the screw home mechanism. Methods: Quadriceps femoris muscle has 6 heads: rectus femoris, vastus intermedius, vastus medialis obliquus, vastus medialis longus, vastus lateralis obliquus and vastus lateralis longus. The fundamental mechanical properties of each head is seperated by insersio and angle of pull. Main design principle was to demostrate all heads with insersio and angle of pull properties. Second design principle was to demostrate the screw-home mechanism which is the result of difference in articular surfaces of medial and lateral of condyles of femur. Results: Final design of the simulator consists of three planes for demostration of angle of pull and pulling forces (patellar plane, proximal and distal planes) of each heads. On each plane channels were graved as origo and insersio for demostration of angle of pull. Distal plane was movable for demostration of pulling forces in different angels of knee flexion and extention. Also proximal plane was adjustable to demostrate different sitting and standing positions. Srew home mechanism was demostrated by specially designed hingle mechanism. Left and right side hingle mechanisms have different radii as femoral condyles and this difference can cause rotation in terminal extension as in the screw home mechanism. Conclusion: Vastus medialis obliquus, vastus lateralis obliquus and screw-home mechanism have clinical significance. We were not able to find

  16. Limitations to maximum sprinting speed imposed by muscle mechanical properties.

    PubMed

    Miller, Ross H; Umberger, Brian R; Caldwell, Graham E

    2012-04-01

    It has been suggested that the force-velocity relationship of skeletal muscle plays a critical limiting role in the maximum speed at which humans can sprint. However, this theory has not been tested directly, and it is possible that other muscle mechanical properties play limiting roles as well. In this study, forward dynamics simulations of human sprinting were generated using a 2D musculoskeletal model actuated by Hill muscle models. The initial simulation results compared favorably to kinetic, kinematic, and electromyographic data recorded from sprinting humans. Muscle mechanical properties were then removed in isolation to quantify their effect on maximum sprinting speed. Removal of the force-velocity, excitation-activation, and force-length relationships increased the maximum speed by 15, 8, and 4%, respectively. Removal of the series elastic force-extension relationship decreased the maximum speed by 26%. Each relationship affected both stride length and stride frequency except for the force-length relationship, which mainly affected stride length. Removal of all muscular properties entirely (optimized joint torques) increased speed (+22%) to a greater extent than the removal of any single contractile property. The results indicate that the force-velocity relationship is indeed the most important contractile property of muscle regarding limits to maximum sprinting speed, but that other muscular properties also play important roles. Interactions between the various muscular properties should be considered when explaining limits to maximal human performance.

  17. [The effect of physical properties of chitosan on cell activity and on its mechanics property].

    PubMed

    Tian, Shengli; Ye, Zhiyi

    2012-12-01

    Chitosan is a natural biopolymer and is made up of D-glucosamine subunits linked by beta-(1,4) glycosidic bond. In recent years, the application of chitosan has attracted more and more attention because of its good biological function in cell biology. The properties of chitosan-based biomaterial are attributed to the physical properties and chemical composition of chitosan. The author of this paper summarized recent related studies and progresses of the influence of physical properties of chitosan on cell activity and cell mechanics property at home and abroad. The findings show that most studies mainly focused on the influence of chitosan and cell activity, while few were on cell mechanics property. The related studies of the influence of chitosan on cell will contribute to the explanation for the mechanism of the interaction between chitosan and cell, and provide the theoretical support for the further study.

  18. Measurement and Comparison of Mechanical Properties of Nitinol Stents

    NASA Astrophysics Data System (ADS)

    Hanus, Josef; Zahora, Jiri

    2005-01-01

    The self expandable Nitinol stents or stentgrafts are typically used for miniinvasive treatment of stenosis and aneurysms in the cardiovascular system. The minimal traumatisation of the patient, shorter time of hospitalization are typical advantages of these methods. More than ten years of experience has yielded also important information about the performance of stents in interaction with biological system and the possible problems related with it. The leakage or the shift of stent are some typical disadvantages, that can be related among other in the construction of the stent. The problem is that the mechanical properties, dimensions and the dynamical properties of the stent do not exactly correspond to the properties of the vessel or generally of tissue where this stent is introduced. The measurement, the description and the comparison of the relations between the mechanical properties of stents and tissues can be one of the possible ways to minimize these disadvantages. The developed original computer controlled measuring system allows the measurement of mechanical properties of stents, the measurement of strain-stress curves or simulation of interaction of the stent and vessel for exactly defined hemodynamic conditions. We measured and compared the mechanical parameters of different selfexpandable Nitinol stents, which differed in geometry (radius and length), in the type of construction (number of branches and rising of winding) and in the diameter of used wire. The results of measurements confirmed the theoretical assumptions that just the diameter of the Nitinol wire significantly influences the rigidity and the level of compressibility of the stent as well. A compromise must be found between the required rigidity of the stent and the minimal size of the delivery system. The exact description of the relation between the mechanical properties and geometry and construction of the stents enables to design the stent to fit the patient and it is expected that

  19. Characterization of mechanical and biochemical properties of developing embryonic tendon.

    PubMed

    Marturano, Joseph E; Arena, Jeffrey D; Schiller, Zachary A; Georgakoudi, Irene; Kuo, Catherine K

    2013-04-16

    Tendons have uniquely high tensile strength, critical to their function to transfer force from muscle to bone. When injured, their innate healing response results in aberrant matrix organization and functional properties. Efforts to regenerate tendon are challenged by limited understanding of its normal development. Consequently, there are few known markers to assess tendon formation and parameters to design tissue engineering scaffolds. We profiled mechanical and biological properties of embryonic tendon and demonstrated functional properties of developing tendon are not wholly reflected by protein expression and tissue morphology. Using force volume-atomic force microscopy, we found that nano- and microscale tendon elastic moduli increase nonlinearly and become increasingly spatially heterogeneous during embryonic development. When we analyzed potential biochemical contributors to modulus, we found statistically significant but weak correlation between elastic modulus and collagen content, and no correlation with DNA or glycosaminoglycan content, indicating there are additional contributors to mechanical properties. To investigate collagen cross-linking as a potential contributor, we inhibited lysyl oxidase-mediated collagen cross-linking, which significantly reduced tendon elastic modulus without affecting collagen morphology or DNA, glycosaminoglycan, and collagen content. This suggests that lysyl oxidase-mediated cross-linking plays a significant role in the development of embryonic tendon functional properties and demonstrates that changes in cross-links alter mechanical properties without affecting matrix content and organization. Taken together, these data demonstrate the importance of functional markers to assess tendon development and provide a profile of tenogenic mechanical properties that may be implemented in tissue engineering scaffold design to mechanoregulate new tendon regeneration.

  20. Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems

    USGS Publications Warehouse

    Krusor, Colin; Smith, Woutrina A.; Tinker, M. Tim; Silver, Mary; Conrad, Patricia A.; Shapiro, Karen

    2015-01-01

    The parasite Toxoplasma gondii is an environmentally persistent pathogen that can cause fatal disease in humans, terrestrial warm-blooded animals and aquatic mammals. Although an association between T. gondii exposure and prey specialization on marine snails was identified in threatened California sea otters, the ability of kelp-dwelling snails to transmit terrestrially derived pathogens has not been previously investigated. The objective of this study was to measure concentration and retention of T. gondii by marine snails in laboratory aquaria, and to test for natural T. gondii contamination in field-collected snails. Following exposure to T. gondii-containing seawater, oocysts were detected by microscopy in snail faeces and tissues for 10 and 3 days respectively. Nested polymerase chain reaction was also applied as a method for confirming putative T. gondii oocysts detected in snail faeces and tissues by microscopy. Toxoplasma gondiiwas not detected in field-collected snails. Results suggest that turban snails are competent transport hosts for T. gondii. By concentrating oocysts in faecal pellets, snails may facilitate entry of T. gondii into the nearshore marine food web. This novel mechanism also represents a general pathway by which marine transmission of terrestrially derived microorganisms can be mediated via pathogen concentration and retention by benthic invertebrates.

  1. Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems.

    PubMed

    Krusor, Colin; Smith, Woutrina A; Tinker, M Tim; Silver, Mary; Conrad, Patricia A; Shapiro, Karen

    2015-11-01

    The parasite Toxoplasma gondii is an environmentally persistent pathogen that can cause fatal disease in humans, terrestrial warm-blooded animals and aquatic mammals. Although an association between T. gondii exposure and prey specialization on marine snails was identified in threatened California sea otters, the ability of kelp-dwelling snails to transmit terrestrially derived pathogens has not been previously investigated. The objective of this study was to measure concentration and retention of T. gondii by marine snails in laboratory aquaria, and to test for natural T. gondii contamination in field-collected snails. Following exposure to T. gondii-containing seawater, oocysts were detected by microscopy in snail faeces and tissues for 10 and 3 days respectively. Nested polymerase chain reaction was also applied as a method for confirming putative T. gondii oocysts detected in snail faeces and tissues by microscopy. Toxoplasma gondii was not detected in field-collected snails. Results suggest that turban snails are competent transport hosts for T. gondii. By concentrating oocysts in faecal pellets, snails may facilitate entry of T. gondii into the nearshore marine food web. This novel mechanism also represents a general pathway by which marine transmission of terrestrially derived microorganisms can be mediated via pathogen concentration and retention by benthic invertebrates.

  2. Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems.

    PubMed

    Krusor, Colin; Smith, Woutrina A; Tinker, M Tim; Silver, Mary; Conrad, Patricia A; Shapiro, Karen

    2015-11-01

    The parasite Toxoplasma gondii is an environmentally persistent pathogen that can cause fatal disease in humans, terrestrial warm-blooded animals and aquatic mammals. Although an association between T. gondii exposure and prey specialization on marine snails was identified in threatened California sea otters, the ability of kelp-dwelling snails to transmit terrestrially derived pathogens has not been previously investigated. The objective of this study was to measure concentration and retention of T. gondii by marine snails in laboratory aquaria, and to test for natural T. gondii contamination in field-collected snails. Following exposure to T. gondii-containing seawater, oocysts were detected by microscopy in snail faeces and tissues for 10 and 3 days respectively. Nested polymerase chain reaction was also applied as a method for confirming putative T. gondii oocysts detected in snail faeces and tissues by microscopy. Toxoplasma gondii was not detected in field-collected snails. Results suggest that turban snails are competent transport hosts for T. gondii. By concentrating oocysts in faecal pellets, snails may facilitate entry of T. gondii into the nearshore marine food web. This novel mechanism also represents a general pathway by which marine transmission of terrestrially derived microorganisms can be mediated via pathogen concentration and retention by benthic invertebrates. PMID:26033089

  3. Mechanical properties and barrier function of healthy human skin.

    PubMed

    Pedersen, Louise; Jemec, Gregor B E

    2006-01-01

    The aim of this study was to investigate the relationship between the mechanical properties and the epidermal barrier function of the skin in vivo. A suction cup device commonly used for measurement of skin mechanics was used to provide a defined stress to the skin using the ventral forearm in 16 healthy volunteers. The integrity of the barrier function was assessed by trans-epidermal water loss and skin capacitance. In the first part of the study, changes in barrier function were measured following the application of standardized strain to the skin barrier. In the second part of the study changes in skin mechanics were assessed following standardized barrier removal. The Wilcoxon signed rank test and Spearman's rank correlation were used for statistical analysis. Significant increases were established in trans-epidermal water loss (p < 0.01) with concomitant significant decreases in capacitance (p < 0.05) following 400 mbar and 600 mbar of suction, suggesting that the mechanical integrity of the skin barrier was disrupted. A significant increase in distensibility (p < 0.05) and hysteresis (p < 0.01) was found following stripping, relating the role of the skin barrier to the overall mechanical properties of the skin. This study showed that the water permeability of the epidermis was significantly affected by the application of mechanical stress to the skin and vice versa, the mechanical properties of the skin were altered when the barrier was compromised. These observations suggest that the mechanical strength of the skin barrier may play a role in the development of, for example, friction dermatitis and other skin diseases affected by mechanical stress.

  4. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism.

    PubMed

    Tsui, Hung-Wei; Franses, Elias I; Wang, Nien-Hwa Linda

    2014-02-01

    Various displacement models in the literature have been widely used for understanding the adsorption mechanisms of solutes in various chromatography systems. The models were used for describing the often-observed linear plots of the logarithms of the retention factor versus the logarithms of the polar modifier concentration CI(0). The slopes of such a plot was inferred to be equal to the number of the displaced modifier molecules upon adsorption of one solute molecule, and were generally found to be greater than 1. In this study, the retention factors of four structurally related chiral solutes, ethyl lactate (EL), methyl mandelate (MM), benzoin (B), and pantolactone (PL), were measured for the amylose tris[(S)-α-methylbenzylcarbamate] sorbent, or AS, as a function of the concentration of isopropanol (IPA) in n-hexane. With increasing IPA concentration CI(0), the slopes increase from less than 1, at a concentration range from 0.13 to 1.3M, to slightly more than 1 at higher concentrations. Such slopes cannot be explained by the conventional retention models. It was found previously for monovalent solutes that such slopes can only be explained when the aggregation of the mobile phase modifier, isopropyl alcohol, was accounted for. A new retention model is presented here, accounting for alcohol aggregation, multivalent solute adsorption, multivalent solute-alcohol complexation, alcohol adsorption, and solute intra hydrogen-bonding, which occur in these four solutes. The slope is found to be controlled by three key dimensionless groups, the fraction of the sorbent binding sites covered by IPA, the fraction of the solute molecules in complex form, and the fraction of the IPA molecules in aggregate form. The limiting slope at a very high IPA concentration is equal to the value of (x+y)/n, where x is the number of the solute-sorbent binding sites and y is the number of the alcohol molecules in the solute-alcohol complex, and n is the alcohol aggregation number. The model

  5. Effect of SrO additions on the grain-boundary microstructure and mechanical properties of magnesia-partially-stabilized zirconia

    SciTech Connect

    Drennan, J.; Hannik, R.H.J.

    1986-07-01

    Improvements in the mechanical properties of magnesia-partially-stabilized zirconia are obtained by the addition of SrO. Evidence is presented which indicates that the added SrO effectively neutralizes the detrimental effect of SiO/sub 2/ contaminant by forming a glass phase which is effected from the bulk of the ceramic during sintering. this combined effect results in the retardation of the subeutectoid decomposition reaction while minimizing retention of glass phases at the grain boundaries.

  6. The Effect of Excess Carbon on the Crystallographic, Microstructural, and Mechanical Properties of CVD Silicon Carbide Fibers

    SciTech Connect

    Marzik, J V; Croft, W J; Staples, R J; MoberlyChan, W J

    2006-12-05

    Silicon carbide (SiC) fibers made by chemical vapor deposition (CVD) are of interest for organic, ceramic, and metal matrix composite materials due their high strength, high elastic modulus, and retention of mechanical properties at elevated processing and operating temperatures. The properties of SCS-6{trademark} silicon carbide fibers, which are made by a commercial process and consist largely of stoichiometric SiC, were compared with an experimental carbon-rich CVD SiC fiber, to which excess carbon was added during the CVD process. The concentration, homogeneity, and distribution of carbon were measured using energy dispersive x-ray spectroscopy (SEM/EDS). The effect of excess carbon on the tensile strength, elastic modulus, and the crystallographic and microstructural properties of CVD silicon carbide fibers was investigated using tensile testing, x-ray diffraction, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

  7. High-rate mechanical properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Siviour, C. R.; Drodge, D. R.; Williamson, D. M.

    2010-01-01

    Compared to the many thousands of studies that have been performed on the energy release mechanisms of high energy materials, relatively few studies have been performed (a few hundred) into their mechanical properties. Since it is increasingly desired to model the high rate deformation of such materials, it is of great importance to gather data on their response so that predictive constitutive models can be constructed. This paper reviews the state of the art concerning what is known about the mechanical response of high energy materials. Examples of such materials are polymer bonded explosives (used in munitions), propellants (used to propel rockets), and pyrotechnics (used to initiate munitions and also in flares).

  8. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion.

  9. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    SciTech Connect

    Nguyen, Trung Dung; Gu, YuanTong

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  10. Mechanical Behavior of Agave Americana L. Fibres: Correlation Between Fine Structure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Msahli, S.; Chaabouni, Y.; Sakli, F.; Drean, J. Y.

    In this study, results of a mechanical behavior study of fibres extracted from the agave Americana L. plant, the most abundant variety in Tunisia, are presented. These results deal with the principal and mechanical characteristics of these fibres which are the elongation at break, the elasticity modulus and the rupture facture. These results permitted to situate these fibres, compared to the other textile fibres, as materials that can be used in technical applications such as reinforcing composites or geotextile. In order to understand the mechanical properties of these fibres, a correlation study between the properties already cited and the fine structure was done. The obtained results showed that the mechanical properties of agave Americana L. fibres are closely related to the individual fibers deformations and to the natural matrix (lignin and gums) that links these elementary fibres.

  11. Mechanical and physical properties of modern boron fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1978-01-01

    The results of accurate measurements of the modern boron fiber's Young's modulus, flexural modulus, shear modulus, and Poisson's ratio are reported. Physical property data concerning fiber density, thermal expansion, and resistance obtained during the course of the mechanical studies are also given.

  12. Engineered disulfides improve mechanical properties of recombinant spider silk

    PubMed Central

    Grip, S; Johansson, J; Hedhammar, M

    2009-01-01

    Nature's high-performance polymer, spider silk, is composed of specific proteins, spidroins, which form solid fibers. So far, fibers made from recombinant spidroins have failed in replicating the extraordinary mechanical properties of the native material. A recombinant miniature spidroin consisting of four poly-Ala/Gly-rich tandem repeats and a nonrepetitive C-terminal domain (4RepCT) can be isolated in physiological buffers and undergoes self assembly into macrofibers. Herein, we have made a first attempt to improve the mechanical properties of 4RepCT fibers by selective introduction of AA → CC mutations and by letting the fibers form under physiologically relevant redox conditions. Introduction of AA → CC mutations in the first poly-Ala block in the miniature spidroin increases the stiffness and tensile strength without changes in ability to form fibers, or in fiber morphology. These improved mechanical properties correlate with degree of disulfide formation. AA → CC mutations in the forth poly-Ala block, however, lead to premature aggregation of the protein, possibly due to disulfide bonding with a conserved Cys in the C-terminal domain. Replacement of this Cys with a Ser, lowers thermal stability but does not interfere with dimerization, fiber morphology or tensile strength. These results show that mutagenesis of 4RepCT can reveal spidroin structure-activity relationships and generate recombinant fibers with improved mechanical properties. PMID:19388023

  13. Sterilizing elastomeric chains without losing mechanical properties. Is it possible?

    PubMed Central

    Pithon, Matheus Melo; Ferraz, Caio Souza; Rosa, Francine Cristina Silva; Rosa, Luciano Pereira

    2015-01-01

    OBJECTIVE: To investigate the effects of different sterilization/disinfection methods on the mechanical properties of orthodontic elastomeric chains. METHODS: Segments of elastomeric chains with 5 links each were sent for sterilization by cobalt 60 (Co60) (20 KGy) gamma ray technology. After the procedure, the elastomeric chains were contaminated with clinical samples of Streptococcus mutans. Subsequently, the elastomeric chains were submitted to sterilization/disinfection tests carried out by means of different methods, forming six study groups, as follows: Group 1 (control - without contamination), Group 2 (70°GL alcohol), Group 3 (autoclave), Group 4 (ultraviolet), Group 5 (peracetic acid) and Group 6 (glutaraldehyde). After sterilization/disinfection, the effectiveness of these methods, by Colony forming units per mL (CFU/mL), and the mechanical properties of the material were assessed. Student's t-test was used to assess the number of CFUs while ANOVA and Tukey's test were used to assess elastic strength. RESULTS: Ultraviolet treatment was not completely effective for sterilization. No loss of mechanical properties occurred with the use of the different sterilization methods (p > 0.05). CONCLUSION: Biological control of elastomeric chains does not affect their mechanical properties. PMID:26154462

  14. Mechanical Properties of Irradiated Polarization-Maintaining Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Ally, A.; Barnes, S.; Watkins, L.; Cuddihy, E.

    1996-01-01

    Polarization-maintaining optical fibers, referred to as PANDA fibers, were subjected to Cobalt 60 radiation (300,000 Rad). The mechanical properties of the PANDA fibers were measured after exposure to gamma radiation and compared to non-irradiated PANDA fibers.

  15. Barrier and Mechanical Properties of Starch-Clay Nanocomposite Films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poor barrier and mechanical properties of biopolymer-based food packaging can potentially be enhanced by the use of layered silicates (nanoclay) to produce nanocomposites. In this study, starch-clay nano-composites were synthesized by a melt extrusion method. Natural (MMT) and organically modifi...

  16. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties.

    PubMed

    Cao, Bin; Tang, Qiong; Li, Linlin; Humble, Jayson; Wu, Haiyan; Liu, Lingyun; Cheng, Gang

    2013-08-01

    New switchable hydrogels are developed. Under acidic conditions, hydrogels undergo self-cyclization and can catch and kill bacteria. Under neutral/basic conditions, hydrogels undergo ring-opening and can release killed bacterial cells and resist protein adsorption and bacterial attachment. Smart hydrogels also show a dramatically improved mechanical property, which is highly desired for biomedical applications.

  17. Mechanical shear and tensile properties of selected biomass stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass, such as big bluestem, corn stalk, intermediate wheat grass and switchgrass stem are abundant and dominant species in the Midwest region of US. There is a need to understand the mechanical properties for these crops for better handling and processing of the biomass feedstocks...

  18. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    PubMed

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies. PMID:17586107

  19. Enhanced Graphene Mechanical Properties through Ultrasmooth Copper Growth Substrates.

    PubMed

    Griep, Mark H; Sandoz-Rosado, Emil; Tumlin, Travis M; Wetzel, Eric

    2016-03-01

    The combination of extraordinary strength and stiffness in conjunction with exceptional electronic and thermal properties in lightweight two-dimensional materials has propelled graphene research toward a wide array of applications including flexible electronics and functional structural components. Tailoring graphene's properties toward a selected application requires precise control of the atomic layer growth process, transfer, and postprocessing procedures. To date, the mechanical properties of graphene are largely controlled through postprocess defect engineering techniques. In this work, we demonstrate the role of varied catalytic surface morphologies on the tailorability of subsequent graphene film quality and breaking strength, providing a mechanism to tailor the physical, electrical, and mechanical properties at the growth stage. A new surface planarization methodology that results in over a 99% reduction in Cu surface roughness allows for smoothness parameters beyond that reported to date in literature and clearly demonstrates the role of Cu smoothness toward a decrease in the formation of bilayer graphene defects, altered domain sizes, monolayer graphene sheet resistance values down to 120 Ω/□ and a 78% improvement in breaking strength. The combined electrical and mechanical enhancements achieved through this methodology allows for the direct growth of application quality flexible transparent conductive films with monolayer graphene. PMID:26882091

  20. Physical and mechanical properties of the lunar soil (a review)

    NASA Astrophysics Data System (ADS)

    Slyuta, E. N.

    2014-09-01

    We review the data on the physical and mechanical properties of the lunar soil that were acquired in the direct investigations on the lunar surface carried out in the manned and automatic missions and in the laboratory examination of the lunar samples returned to the Earth. In justice to the American manned program Apollo, we show that a large volume of the data on the properties of the lunar soil was also obtained in the Soviet automatic program Lunokhod and with the automatic space stations Luna-16, -20, and -24 that returned the lunar soil samples to the Earth. We consider all of the main physical and mechanical properties of the lunar soil, such as the granulometric composition, density and porosity, cohesion and adhesion, angle of internal friction, shear strength of loose soil, deformation characteristics (the deformation modulus and Poisson ratio), compressibility, and the bearing capacity, and show the change of some properties versus the depth. In most cases, the analytical dependence of the main parameters is presented, which is required in developing reliable engineering models of the lunar soil. The main physical and mechanical properties are listed in the summarizing table, and the currently available models and simulants of the lunar soil are reviewed.

  1. Hyperoxia alters the mechanical properties of alveolar epithelial cells.

    PubMed

    Roan, Esra; Wilhelm, Kristina; Bada, Alex; Makena, Patrudu S; Gorantla, Vijay K; Sinclair, Scott E; Waters, Christopher M

    2012-06-15

    Patients with severe acute lung injury are frequently administered high concentrations of oxygen (>50%) during mechanical ventilation. Long-term exposure to high levels of oxygen can cause lung injury in the absence of mechanical ventilation, but the combination of the two accelerates and increases injury. Hyperoxia causes injury to cells through the generation of excessive reactive oxygen species. However, the precise mechanisms that lead to epithelial injury and the reasons for increased injury caused by mechanical ventilation are not well understood. We hypothesized that alveolar epithelial cells (AECs) may be more susceptible to injury caused by mechanical ventilation if hyperoxia alters the mechanical properties of the cells causing them to resist deformation. To test this hypothesis, we used atomic force microscopy in the indentation mode to measure the mechanical properties of cultured AECs. Exposure of AECs to hyperoxia for 24 to 48 h caused a significant increase in the elastic modulus (a measure of resistance to deformation) of both primary rat type II AECs and a cell line of mouse AECs (MLE-12). Hyperoxia also caused remodeling of both actin and microtubules. The increase in elastic modulus was blocked by treatment with cytochalasin D. Using finite element analysis, we showed that the increase in elastic modulus can lead to increased stress near the cell perimeter in the presence of stretch. We then demonstrated that cyclic stretch of hyperoxia-treated cells caused significant cell detachment. Our results suggest that exposure to hyperoxia causes structural remodeling of AECs that leads to decreased cell deformability. PMID:22467640

  2. Mechanical properties of liquid-filled shellac composite capsules.

    PubMed

    Leick, Sabine; Kott, Maureen; Degen, Patrick; Henning, Stefan; Päsler, Tobias; Suter, Dieter; Rehage, Heinz

    2011-02-21

    This paper describes the mechanical properties of thin-walled, liquid-filled composite capsules consisting of calcium pectinate and shellac. In a series of experiments we measured the deformation of these particles in a spinning drop apparatus. For different pH-values we studied the elastic properties of these particles and compared the obtained results with the mechanical response measured by squeezing capsule experiments. In analogy to these experiments, we also investigated liquid-filled unloaded calcium pectinate capsules without the addition of shellac. The deformation properties of these experiments and the surface Young moduli were in good agreement. Furthermore we investigated the liquid-filled calcium pectinate and the composite capsules by NMR microscopy. These experiments allowed investigations of the membrane thickness and the kinetics of membrane growing. Additional characterizations by stress controlled small amplitude surface shear experiments of similar composed gel layers provided coherent results for the surface Young modulus.

  3. Processing dependence of mechanical properties of metallic glass nanowires

    SciTech Connect

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2015-02-16

    Compared to their crystalline counterparts, nanowires made of metallic glass have not only superb properties but also remarkable processing ability. They can be processed easily and cheaply like plastics via a wide range of methods. To date, the underlying mechanisms of how these different processing routes affect the wires' properties as well as the atomic structure remains largely unknown. Here, by using atomistic modeling, we show that different processing methods can greatly influence the mechanical properties. The nanowires made via focused ion beam milling and embossing exhibit higher strength but localized plastic deformation, whereas that made by casting from liquid shows excellent ductility with homogeneous deformation but reduced strength. The different responses are reflected sensitively in the underlying atomic structure and packing density, some of which have been observed experimentally. The presence of the gradient of alloy concentration and surface effect will be discussed.

  4. Custom impression trays: Part I--Mechanical properties.

    PubMed

    Breeding, L C; Dixon, D L; Moseley, J P

    1994-01-01

    Dimensional stability of custom impression trays is an important factor in determining the degree of accuracy achieved in forming a master cast. Such trays must remain stable over time and must not exhibit permanent deformation when a completed impression is removed from the oral cavity. Measurement of the mechanical properties allows comparison between various tray materials and is useful in interpreting data on stresses incurred during removal of the completed impression. In Part I of this three-part series, the various mechanical properties of five tray resins: one autopolymerizing polymethyl methacrylate, one light-polymerizing, and three brands of thermoplastic resins were recorded and compared. The thermoplastic resins studied in this investigation exhibited lower measured values for the strength and elastic modulus properties than the light-polymerizing resin and the autopolymerizing polymethyl methacrylate resin studied.

  5. Custom impression trays: Part I--Mechanical properties.

    PubMed

    Breeding, L C; Dixon, D L; Moseley, J P

    1994-01-01

    Dimensional stability of custom impression trays is an important factor in determining the degree of accuracy achieved in forming a master cast. Such trays must remain stable over time and must not exhibit permanent deformation when a completed impression is removed from the oral cavity. Measurement of the mechanical properties allows comparison between various tray materials and is useful in interpreting data on stresses incurred during removal of the completed impression. In Part I of this three-part series, the various mechanical properties of five tray resins: one autopolymerizing polymethyl methacrylate, one light-polymerizing, and three brands of thermoplastic resins were recorded and compared. The thermoplastic resins studied in this investigation exhibited lower measured values for the strength and elastic modulus properties than the light-polymerizing resin and the autopolymerizing polymethyl methacrylate resin studied. PMID:8120842

  6. The influence of microstructure on the mechanical properties of solder

    SciTech Connect

    Morris, J.W. Jr.; Reynolds, H.L.

    1996-06-01

    Solder joints in microelectronics devices consist of low-melting solder compositions that wet and join metal contacts and are, ordinarily, used at high homologous temperatures in the as-solidified condition. Differences in solidification rate and substrate interactions have the consequence that even solder joints of similar compositions exhibit a wide range of microstructures. The variation in microstructure causes a variation in properties; in particular, the high-temperature creep properties that govern much of the mechanical behavior of the solder may differ significantly from joint to joint. The present paper reviews the varieties of microstructure that are found in common solder joints, and describes some of the ways in which microstructural changes affect mechanical properties and joint reliability.

  7. Determining the Mechanical Properties of Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  8. Mechanical and thermal properties of the Czech marbles

    NASA Astrophysics Data System (ADS)

    Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Keppert, Martin; Černý, Robert

    2016-06-01

    The paper is dealing with selected parameters of four marbles with respect to their utilization as building materials. Stones from four function quarries in the Czech Republic were chosen and scopes of physical properties were determined. Basic physical, mechanical and thermal properties belong among studied characteristics. Bulk density of studied marbles is in average 2750 kg/m3, matrix density 2770 kg/m3, open porosity 0.7%. Pore structure show similar distributions. Mechanical properties show more differences; however minimal value of compressive strength was 66.5 MPa, while maximum was 174 MPa. Thermal conductivity of studied marbles was about 2.955 W/mK. Last measured characteristic was specific heat capacity; its average value was 609 J/kgK.

  9. Mechanical and wear properties of PMMA/PVDF microfilled systems

    SciTech Connect

    Garcia, J.L.; Koelling, K.W.; Seghi, R.R.

    1996-12-31

    There is a clinical need in fixed prosthodontics for aesthetic materials that are biologically compatible. Polymethylmethacrylate (PMMA) has been used extensively in dental applications. Blends of PMMA and polyvinylidene fluoride (PVDF) are a new class of materials that might perform as aesthetic restorative materials. The fracture properties of PMMA have been intensively studied because it is an amorphous glass below 110{degrees}C, thus exhibiting brittle fracture under normal testing conditions below about 85{degrees}C. However, this brittle behavior leads to poor wear resistance. The properties of the matrix can be tailored by blending with PVDF. The blends are composed of homogeneous mixtures of the two polymers at the molecular level. Polyvinylidene fluoride molecules do not contribute to the mechanical yield behavior of the blend but do act as plasticizers. Improvements in the mechanical properties may be achieved by incorporating a filler into the polymer matrix.

  10. A review of mechanical and electromechanical properties of piezoelectric nanowires.

    PubMed

    Espinosa, Horacio D; Bernal, Rodrigo A; Minary-Jolandan, Majid

    2012-09-01

    Piezoelectric nanowires are promising building blocks in nanoelectronic, sensing, actuation and nanogenerator systems. In spite of great progress in synthesis methods, quantitative mechanical and electromechanical characterization of these nanostructures is still limited. In this article, the state-of-the art in experimental and computational studies of mechanical and electromechanical properties of piezoelectric nanowires is reviewed with an emphasis on size effects. The review covers existing characterization and analysis methods and summarizes data reported in the literature. It also provides an assessment of research needs and opportunities. Throughout the discussion, the importance of coupling experimental and computational studies is highlighted. This is crucial for obtaining unambiguous size effects of nanowire properties, which truly reflect the effect of scaling rather than a particular synthesis route. We show that such a combined approach is critical to establish synthesis-structure-property relations that will pave the way for optimal usage of piezoelectric nanowires. PMID:22581695

  11. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  12. Brillouin microspectroscopy of nanostructured biomaterials: photonics assisted tailoring mechanical properties

    NASA Astrophysics Data System (ADS)

    Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.

    2016-03-01

    Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).

  13. Do Non-Collagenous Proteins Affect Skeletal Mechanical Properties?

    PubMed Central

    Morgan, Stacyann; Poundarik, Atharva A.; Vashishth, Deepak

    2015-01-01

    The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone’s structural and material hierarchy, and identify three principal pathways by which they determine bone’s mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone’s structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load bearing structural proteins. PMID:26048282

  14. Multiscale Approach to Characterize Mechanical Properties of Tissue Engineered Skin.

    PubMed

    Tupin, S; Molimard, J; Cenizo, V; Hoc, T; Sohm, B; Zahouani, H

    2016-09-01

    Tissue engineered skin usually consist of a multi-layered visco-elastic material composed of a fibrillar matrix and cells. The complete mechanical characterization of these tissues has not yet been accomplished. The purpose of this study was to develop a multiscale approach to perform this characterization in order to link the development process of a cultured skin to the mechanical properties. As a proof-of-concept, tissue engineered skin samples were characterized at different stages of manufacturing (acellular matrix, reconstructed dermis and reconstructed skin) for two different aging models (using cells from an 18- and a 61-year-old man). To assess structural variations, bi-photonic confocal microscopy was used. To characterize mechanical properties at a macroscopic scale, a light-load micro-mechanical device that performs indentation and relaxation tests was designed. Finally, images of the internal network of the samples under stretching were acquired by combining confocal microscopy with a tensile device. Mechanical properties at microscopic scale were assessed. Results revealed that adding cells during manufacturing induced structural changes, which provided higher elastic modulus and viscosity. Moreover, senescence models exhibited lower elastic modulus and viscosity. This multiscale approach was efficient to characterize and compare skin equivalent samples and permitted the first experimental assessment of the Poisson's ratio for such tissues.

  15. Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?

    PubMed

    Morgan, Stacyann; Poundarik, Atharva A; Vashishth, Deepak

    2015-09-01

    The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption, and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases, and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone's structural and material hierarchy, and identify three principal pathways by which they determine bone's mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone's structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load-bearing structural proteins.

  16. Influence of sedimentary environments on mechanical properties of clastic rocks

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoping; Zhang, Jincai; Peng, Suping

    2006-10-01

    The sedimentary environments are the intrinsic factor controlling the mechanical properties of clastic rocks. Examining the relationship between rock sedimentary environments and rock mechanical properties gives a better understanding of rock deformation and failure mechanisms. In this study, more than 55 samples in coal measures were taken from seven different lithologic formations in eastern China. Using the optical microscope the sedimentary characteristics, such as components of clastic rocks and sizes of clastic grains were quantitatively tested and analyzed. The corresponding mechanical parameters were tested using the servo-controlled testing system. Different lithologic attributes in the sedimentary rocks sampled different stress-strain behaviors and failure characteristics under different confining pressures, mainly due to different compositions and textures. Results demonstrate that clastic rocks have the linear best-fit for Mohr-Coulomb failure criterion. The elastic moduli in clastic rocks are highly dependent upon confining pressures, unlike hard rocks. The envelope lines of the mechanical properties versus the contents of quartz, detritus of the grain diameter of more than 0.03 mm, and grain size in clastic rocks are given. The compressive strength or elastic modulus and the grain diameter have a non-monotonic relation and demonstrate the “grain-diameter softening” effect.

  17. Mechanical Properties of Non-Accreting Neutron Star Crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey L.; Heyl, J. S.

    2013-01-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from Soft Gamma-ray Repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014g cm-3 for simulations with an initially perfect BCC lattice. With these crustal properties and the observed properties of PSR J2124-3358 the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone can not be ruled out for triggering the energy in SGR bursts.

  18. Mechanical properties of non-accreting neutron star crusts

    NASA Astrophysics Data System (ADS)

    Hoffman, Kelsey; Heyl, Jeremy

    2012-11-01

    The mechanical properties of a neutron star crust, such as breaking strain and shear modulus, have implications for the detection of gravitational waves from a neutron star as well as bursts from soft Gamma-ray repeaters (SGRs). These properties are calculated here for three different crustal compositions for a non-accreting neutron star that results from three different cooling histories, as well as for a pure iron crust. A simple shear is simulated using molecular dynamics to the crustal compositions by deforming the simulation box. The breaking strain and shear modulus are found to be similar in the four cases, with a breaking strain of ˜0.1 and a shear modulus of ˜1030 dyne cm-2 at a density of ρ = 1014 g cm-3 for simulations with an initially perfect body-centred cubic (BCC) lattice. With these crustal properties and the observed properties of PSR J2124-3358, the predicted strain amplitude of gravitational waves for a maximally deformed crust is found to be greater than the observational upper limits from LIGO. This suggests that the neutron star crust in this case may not be maximally deformed or it may not have a perfect BCC lattice structure. The implications of the calculated crustal properties of bursts from SGRs are also explored. The mechanical properties found for a perfect BCC lattice structure find that crustal events alone cannot be ruled out for triggering the energy in SGR bursts.

  19. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization. PMID:18471849

  20. Ultrasonic evaluation of the physical and mechanical properties of granites.

    PubMed

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  1. Chirality-Mediated Mechanical and Structural Properties of Oligopeptide Hydrogels

    SciTech Connect

    Taraban, Marc B.; Feng, Yue; Hammouda, Boualem; Hyland, Laura L.; Yu, Y. Bruce

    2012-10-29

    The origin and the effects of homochirality in the biological world continuously stimulate numerous hypotheses and much debate. This work attempts to look at the biohomochirality issue from a different angle - the mechanical properties of the bulk biomaterial and their relation to nanoscale structures. Using a pair of oppositely charged peptides that co-assemble into hydrogels, we systematically investigated the effect of chirality on the mechanical properties of these hydrogels through different combinations of syndiotactic and isotactic peptides. It was found that homochirality confers mechanical advantage, resulting in a higher elastic modulus and strain yield value. Yet, heterochirality confers kinetic advantage, resulting in faster gelation. Structurally, both homochiral and heterochiral hydrogels are made of fibers interconnected by lappet-like webs, but the homochiral peptide fibers are thicker and denser. These results highlight the possible role of biohomochirality in the evolution and/or natural selection of biomaterials.

  2. Quantitative Characterization of Mechanical Property of Annealed Monolayer Colloidal Crystal.

    PubMed

    Zhang, Lijing; Wang, Weiqi; Zheng, Lu; Wang, Xiuyu; Yan, Qingfeng

    2016-01-19

    Quantitative characterization of the mechanical properties of a polystyrene (PS) monolayer colloidal crystal (MCC) annealed with solvent vapor has been performed for the first time by means of atomic force microscopy nanoindentation. The results showed that both the compressive and bending elastic modulus of PS MCC increased with the prolongation of annealing time from initial to 13 min. When the annealing time reached 15 min or even more, the PS MCC almost deformed to a planar film, and the elastic modulus of the PS MCC presented a drastic increase. These results provide a basis for tailoring the mechanical properties of a polymer colloidal monolayer via solvent vapor annealing. Such self-supported and high-mechanical-strength colloidal monolayers can be transferred to other surfaces for potential and promising applications in the bottom-up fabrication of highly ordered nanostructured materials such as nano dot arrays, photonic crystals, and many others.

  3. An Introduction to the Mechanical Properties of Ceramics

    NASA Astrophysics Data System (ADS)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  4. The influence of grain size on the mechanical properties ofsteel

    SciTech Connect

    Morris Jr., J.W.

    2001-05-01

    Many of the important mechanical properties of steel, including yield strength and hardness, the ductile-brittle transition temperature and susceptibility to environmental embrittlement can be improved by refining the grain size. The improvement can often be quantified in a constitutive relation that is an appropriate variant on the familiar Hall-Petch relation: the quantitative improvement in properties varies with d{sup -1/2}, where d is the grain size. Nonetheless, there is considerable uncertainty regarding the detailed mechanism of the grain size effect, and appropriate definition of ''grain size''. Each particular mechanism of strengthening and fracture suggests its own appropriate definition of the ''effective grain size'', and how it may be best controlled.

  5. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  6. Quantitative Characterization of Mechanical Property of Annealed Monolayer Colloidal Crystal.

    PubMed

    Zhang, Lijing; Wang, Weiqi; Zheng, Lu; Wang, Xiuyu; Yan, Qingfeng

    2016-01-19

    Quantitative characterization of the mechanical properties of a polystyrene (PS) monolayer colloidal crystal (MCC) annealed with solvent vapor has been performed for the first time by means of atomic force microscopy nanoindentation. The results showed that both the compressive and bending elastic modulus of PS MCC increased with the prolongation of annealing time from initial to 13 min. When the annealing time reached 15 min or even more, the PS MCC almost deformed to a planar film, and the elastic modulus of the PS MCC presented a drastic increase. These results provide a basis for tailoring the mechanical properties of a polymer colloidal monolayer via solvent vapor annealing. Such self-supported and high-mechanical-strength colloidal monolayers can be transferred to other surfaces for potential and promising applications in the bottom-up fabrication of highly ordered nanostructured materials such as nano dot arrays, photonic crystals, and many others. PMID:26700374

  7. Effects of sludge retention time on oxic-settling-anoxic process performance: Biosolids reduction and dewatering properties.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Bustamante, Heriberto; Price, William E; Nghiem, Long D

    2016-10-01

    In this study, the effect of sludge retention time (SRT) on oxic-settling-anoxic (OSA) process was determined using a sequencing batch reactor (SBR) attached to external aerobic/anoxic reactors. The SRT of the external reactors was varied from 10 to 40d. Increasing SRT from 10 to 20d enhanced volatile solids destruction in the external anoxic reactor as evidenced by the release of nutrients, however, increasing the SRT to 40d did not enhance volatile solids destruction further. Relatively short SRT (10-20d) favoured the conversion of destroyed solids into inert products. The application of an intermediate SRT (20d) of the external reactor showed the highest sludge reduction performance (>35%). Moreover, at the optimum SRT, OSA improved sludge dewaterability as demonstrated by lower capillary suction time and higher dewatered cake solids content. PMID:27474952

  8. Structures and Mechanical Properties of Natural and Synthetic Diamonds

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    A revolution in the diamond technology is in progress, as the low-pressure process becomes an industrial reality. It will soon be possible to take advantage of the demanding properties of diamond to develop a myriad of new applications, particularly for self-lubricating, wear-resistant, and superhard coatings. The production of large diamond films or sheets at low cost, a distinct possibility in the not-too-distant future, may drastically change tribology technology, particularly regarding solid lubricants and lubricating materials and systems. This paper reviews the structures and properties of natural and synthetic diamonds to gain a better understanding of the tribological properties of diamond and related materials. Atomic and crystal structure, impurities, mechanical properties, and indentation hardness of diamond are described.

  9. Mechanical properties of several iron-nickel meteorites

    SciTech Connect

    Mulford, Roberta N; El - Dasher, Bassem

    2011-01-06

    Iron-nickel meteorites exhibit a unique lamellar microstructure, consisting of small regions with steep-iron-nickel composition gradients. The microstructure arises as a result of slow cooling in a planetary core or other large mass. The microstructure is further influenced by variable concentrations of other elements such as phosphorous which may have influenced cooling and phase separation. Mechanical properties of these composite structures have been investigated using Vickers and spherical indentation, x-ray fluorescence, and EBSD. Direct observation of mechanical properties in these highly structured materials provides a valuable supplement to bulk measurements, which frequently exhibit large variation in dynamic properties, even within a single sample. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens. This was ascribed to the extreme work-hardening evident in the EBSD measurements. Additional specimens from the Canyon Diablo fall (type IAB, coarse octahedrite) and several fine octahedrite meteorites, from the Muonionalusta meteorite (IVA) and Gibeon fall (IVA), have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon reentry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure.

  10. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  11. Mechanical properties of DyBaCuO superconducting bulks

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Shimada, H.; Yoshizawa, S.

    2007-10-01

    Melt-processed REBaCuO (RE: rare earth) superconductors have a high Jc at 77 K and a high magnetic field, which are expected to be used for high field applications such as superconducting permanent magnets with liquid nitrogen refrigeration, flywheels, current leads and so on. Mechanical properties such as flexural strength, fracture toughness and ductility are very crucial as well as the superconducting properties: Tc, Jc, and Hirr for industrial applications of high-Tc oxide superconductors. However, oxide superconductors have the intrinsic brittleness of the perovskite structure, thus, the strength and the fracture toughness of REBaCuO superconductors have been reported to be low and anisotropic. Therefore, we should investigate and improve mechanical properties to achieve structural reliability for applications. Large single domain of melt-processed REBaCuO (Dy-123) superconductors with Dy2BaCuO5 (Dy-211) particles and Ag2O of 10 wt% was fabricated with a seeding and temperature gradient method in air. In this study, we discuss mechanical properties such as the hardness and the surface roughness, and the flexural strength of the RE-123 bulk, measured at RT. The results of Vickers hardness, surface roughness and the flexural strength showed very important information for evaluating characteristics of RE-123 bulks.

  12. Mechanical properties of Municipal Solid Waste by SDMT

    SciTech Connect

    Castelli, Francesco; Maugeri, Michele

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  13. [Mechanical properties and biological evaluation of buffalo horn material].

    PubMed

    Zhang, Quanbin; Zhou, Qunfei; Shan, Guanghua; Cao, Ping; Huang, Yaoxiong; Ao, Ningjian

    2014-12-01

    Mechanical properties and biological evaluation of buffalo horn material were examined in this study. The effects of sampling position of buffalo horn on mechanical properties were investigated with uniaxial tension and micron indentation tests. Meanwhile, the variation of element contents in different parts of buffalo horn was determined with elemental analysis, and the microstructure of the horn was measured with scanning electron microscopy. In addition, biological evaluation of buffalo horn was studied with hemolytic test, erythrocyte morphology, platelet and erythrocyte count, and implantation into mouse. Results showed that the buffalo horn had good mechanical properties and mechanical characteristic values of it gradually increased along with the growth direction of the horn, which may be closely related to its microstructure and element content of C, N, and S in different parts of the buffalo horn. On the other hand, because the buffalo horn does not have toxicity, it therefore does not cause hemolysis of erythrocyte and has a good affinity with it. Buffalo horn has good histocompatibility but meanwhile it may induce the platelet adhesion and aggregation. Even so, it does not continue to rise to induce a large number of platelet to aggregate with resulting blood clotting. Therefore, the buffalo horn material has been proved to possess good blood compatibility according to the preliminary evaluation. PMID:25868248

  14. Mechanical properties of fibroblasts depend on level of cancer transformation.

    PubMed

    Efremov, Yu M; Lomakina, M E; Bagrov, D V; Makhnovskiy, P I; Alexandrova, A Y; Kirpichnikov, M P; Shaitan, K V

    2014-05-01

    Recently, it was revealed that tumor cells are significantly softer than normal cells. Although this phenomenon is well known, it is connected with many questions which are still unanswered. Among these questions are the molecular mechanisms which cause the change in stiffness and the correlation between cell mechanical properties and their metastatic potential. We studied mechanical properties of cells with different levels of cancer transformation. Transformed cells in three systems with different transformation types (monooncogenic N-RAS, viral and cells of tumor origin) were characterized according to their morphology, actin cytoskeleton and focal adhesion organization. Transformation led to reduction of cell spreading and thus decreasing the cell area, disorganization of actin cytoskeleton, lack of actin stress fibers and decline in the number and size of focal adhesions. These alterations manifested in a varying degree depending on type of transformation. Force spectroscopy by atomic force microscopy with spherical probes was carried out to measure the Young's modulus of cells. In all cases the Young's moduli were fitted well by log-normal distribution. All the transformed cell lines were found to be 40-80% softer than the corresponding normal ones. For the cell system with a low level of transformation the difference in stiffness was less pronounced than for the two other systems. This suggests that cell mechanical properties change upon transformation, and acquisition of invasive capabilities is accompanied by significant softening.

  15. Mechanical Properties of Nanoworm Assembled by DNA and Nanoparticle Conjugates.

    PubMed

    Zhou, Yihua; Sohrabi, Salman; Tan, Jifu; Liu, Yaling

    2016-06-01

    Recently, DNA-nanoparticle conjugates have been widely used as building blocks for assembling complex nanostructures, due to their programmable recognitions, high cellular uptake and enhanced binding capabilities. In this study, a nanoworm structure, which can be applied in fields of drug targeting, image probing and thermal therapies, has been assembled by DNA-nanoparticle conjugates. Subsequently, its mechanical properties have been investigated due to their importance on the structural stability, transport and circulations of the nanoworm. Stiffness and strengths of the nanoworm under different deformation types are studied by coarse-grained molecular dynamics simulations. Effects of temperature, DNA coating density and particle size on mechanical properties of nanoworms are also thoroughly investigated. Results show that both resistance and strength of the nanoworm are the weakest along the axial direction, indicating it is more prone to be ruptured by a stretching force. i addition, DNA strands are found to be more important than nanoparticles in determining mechanical properties of the nanoworm. Moreover, both strength and resistance in regardless of directions are proved to be enhanced by decreasing the temperature, raising the DNA coating density and enlarging the particle size. This study is capable of serving as guidance for designing nanoworms with optimal mechanical strengths for applications.

  16. Mechanical Properties of Nanoworm Assembled by DNA and Nanoparticle Conjugates.

    PubMed

    Zhou, Yihua; Sohrabi, Salman; Tan, Jifu; Liu, Yaling

    2016-06-01

    Recently, DNA-nanoparticle conjugates have been widely used as building blocks for assembling complex nanostructures, due to their programmable recognitions, high cellular uptake and enhanced binding capabilities. In this study, a nanoworm structure, which can be applied in fields of drug targeting, image probing and thermal therapies, has been assembled by DNA-nanoparticle conjugates. Subsequently, its mechanical properties have been investigated due to their importance on the structural stability, transport and circulations of the nanoworm. Stiffness and strengths of the nanoworm under different deformation types are studied by coarse-grained molecular dynamics simulations. Effects of temperature, DNA coating density and particle size on mechanical properties of nanoworms are also thoroughly investigated. Results show that both resistance and strength of the nanoworm are the weakest along the axial direction, indicating it is more prone to be ruptured by a stretching force. i addition, DNA strands are found to be more important than nanoparticles in determining mechanical properties of the nanoworm. Moreover, both strength and resistance in regardless of directions are proved to be enhanced by decreasing the temperature, raising the DNA coating density and enlarging the particle size. This study is capable of serving as guidance for designing nanoworms with optimal mechanical strengths for applications. PMID:27427583

  17. Mechanical Properties of Murine and Porcine Ocular Tissues in Compression

    PubMed Central

    Worthington, Kristan S.; Wiley, Luke A.; Bartlett, Alexandra M.; Stone, Edwin M.; Mullins, Robert F.; Salem, Aliasger K.; Guymon, C. Allan; Tucker, Budd A.

    2014-01-01

    Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized. In this study, the compressive moduli of eye tissues, especially the retina, were probed using a dynamic mechanical analysis instrument in static mode. The retinal compressive modulus was lower than that of the sclera or cornea, but higher than that of the RPE and choroid. Compressive modulus remained relatively stable with age. Conversely, apparent retinal softening occurred at an early age in mice with inherited retinal degeneration. Compressive modulus is an important consideration for the design of retinal implants. Polymer scaffolds with moduli that are substantially different than that of the native tissue in which they will ultimately reside will be less likely to aid in the differentiation and development of the appropriate cell types in vitro and will have reduced biocompatibility in vivo. PMID:24613781

  18. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  19. Mechanical properties of murine and porcine ocular tissues in compression.

    PubMed

    Worthington, Kristan S; Wiley, Luke A; Bartlett, Alexandra M; Stone, Edwin M; Mullins, Robert F; Salem, Aliasger K; Guymon, C Allan; Tucker, Budd A

    2014-04-01

    Sub-retinal implantation of foreign materials is becoming an increasingly common feature of novel therapies for retinal dysfunction. The ultimate compatibility of implants depends not only on their in vitro chemical compatibility, but also on how well the mechanical properties of the material match those of the native tissue. In order to optimize the mechanical properties of retinal implants, the mechanical properties of the mammalian retina itself must be carefully characterized. In this study, the compressive moduli of eye tissues, especially the retina, were probed using a dynamic mechanical analysis instrument in static mode. The retinal compressive modulus was lower than that of the sclera or cornea, but higher than that of the RPE and choroid. Compressive modulus remained relatively stable with age. Conversely, apparent retinal softening occurred at an early age in mice with inherited retinal degeneration. Compressive modulus is an important consideration for the design of retinal implants. Polymer scaffolds with moduli that are substantially different than that of the native tissue in which they will ultimately reside will be less likely to aid in the differentiation and development of the appropriate cell types in vitro and will have reduced biocompatibility in vivo. PMID:24613781

  20. Characterization of the mechanical properties of freestanding platinum thin films

    NASA Astrophysics Data System (ADS)

    Abbas, Khawar

    Many MEMS devices utilize nanocrystalline thin metallic films as mechanical structures, in particular, micro switching devices where these films are used as Ohmic contacts. But the elastic and plastic properties of these thin films (thickness < 1mum) are significantly different from those of the bulk material. At these scales the volume fraction of material defects such as: grain boundaries, dislocations and interstitials become quite significant and become a chief contributor to the physical and mechanical material properties. In order to effectively design MEMS devices it is important that these material properties are explored and mechanical behavior of the structure they form be characterized. Popular thin film materials used in MEMS devices are Aluminum (Al), Copper (Cu), Nickel (Ni) and Gold (Au). Platinum has traditionally gained acceptance into the MEMS industry because of its chemical inertness and high temperature stability. However the mechanical properties of platinum remains the least exploited. Platinum has a high Young's Modulus (164 GPa, for bulk) and high melting temperature (1768 °C) and therefore can be used as a 'thin film' structure (cantilever, a bridge or a membrane) in high temperature environments with high resistance to mechanical failure. The physical size of these thin film structure make it very difficult to handle them and employ traditional mechanical testing methodologies and techniques and therefore require custom test platforms. One such recently developed platform is presented in this dissertation. The test platform is comprised of a microfabricated cascaded thermal actuator system and test specimen. The cascaded thermal actuator system is capable of providing tens of microns of displacement and tens of milli-Newton forces simultaneously while applying a relatively low temperature gradient across the test specimen. The dimensions of the platform make its use possible in both the SEM/TEM environments and on a probe station under

  1. Woven glass fabric reinforced laminates based on polyolefin wastes: Thermal, mechanical and dynamic-mechanical properties

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Acierno, Domenico; Simeoli, Giorgio; Lopresto, Valentina

    2014-05-01

    Potentialities of polyolefin wastes in place of virgin polypropylene to produce composite laminates have been investigated. Plaques reinforced with a woven glass fabric were prepared by film-stacking technique and systematically analyzed in terms of thermal, mechanical and dynamic-mechanical properties. In case of PP matrices, the use of a typical compatibilizer to improve the adhesion at the interface has been considered. Thermal properties emphasized the chemical nature of plastic wastes. About mechanical properties, static tests showed an increase of flexural parameters for compatibilized systems due to the coupling effect between grafted maleic anhydride and silane groups on the surface of the glass fabric. These effects, maximized for composites based on car bumper wastes, is perfectly reflected in terms of storage modulus and damping ability of products as determined by single-cantilever bending dynamic tests.

  2. Mechanical properties and material characterization of polysialate structural composites

    NASA Astrophysics Data System (ADS)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  3. Mechanical and tribological properties of ion beam-processed surfaces

    SciTech Connect

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  4. The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements.

    PubMed

    Gong, Kemeng; Qu, Shuxin; Liu, Yumei; Wang, Jing; Zhang, Yongchao; Jiang, Chongxi; Shen, Ru

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) has tremendous potential as an orthopeadic biomaterial for joint replacements. However, poor mechanical and tribological properties of UHMWPE-ALN are still obstacle for further application. The purpose of this study was to investigate the effect and mechanism of mechanical activation on mechanical and tribological properties of 1wt% ALN-loaded UHMWPE (UHMWPE-ALN-ma). In this study, tensile test, small punch test and reciprocating sliding wear test were applied to characterize the mechanical and tribological properties of UHMWPE-ALN-ma. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize UHMWPE-ALN-ma. Tensile test and small punch test showed that Young׳s modulus, tensile strength and work-to-failure (WTF) of UHMWPE-ALN-ma increased significantly compared to those of UHMWPE-ALN. The friction coefficients and wear factors of UHMWPE-ALN-ma both decreased significantly compared to those of UHMWPE-ALN. Mechanical activation obviously reduced type 1 (void) and type 2 (the disconnected and dislocated machining marks) fusion defects of UHMWPE-ALN-ma, which were revealed by SEM images of freeze fracture surfaces after etching and lateral surfaces of specimens after extension to fracture, respectively. It was attributed to peeled-off layers and chain scission of molecular chains of UHMWPE particles after mechanical activation, which were revealed by SEM images and FTIR spectra of UHMWPE-ALN-ma and UHMWPE-ALN, respectively. Moreover, EDS spectra revealed the more homogeneous distribution of ALN in UHMWPE-ALN-ma compared to that of UHMWPE-ALN. The present results showed that mechanical activation was a potential strategy to improve mechanical and tribological properties of UHMWPE-ALN-ma as an orthopeadic biomaterial for joint replacements. PMID:27104932

  5. The mechanical and tribological properties of UHMWPE loaded ALN after mechanical activation for joint replacements.

    PubMed

    Gong, Kemeng; Qu, Shuxin; Liu, Yumei; Wang, Jing; Zhang, Yongchao; Jiang, Chongxi; Shen, Ru

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) loaded with alendronate sodium (ALN) has tremendous potential as an orthopeadic biomaterial for joint replacements. However, poor mechanical and tribological properties of UHMWPE-ALN are still obstacle for further application. The purpose of this study was to investigate the effect and mechanism of mechanical activation on mechanical and tribological properties of 1wt% ALN-loaded UHMWPE (UHMWPE-ALN-ma). In this study, tensile test, small punch test and reciprocating sliding wear test were applied to characterize the mechanical and tribological properties of UHMWPE-ALN-ma. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize UHMWPE-ALN-ma. Tensile test and small punch test showed that Young׳s modulus, tensile strength and work-to-failure (WTF) of UHMWPE-ALN-ma increased significantly compared to those of UHMWPE-ALN. The friction coefficients and wear factors of UHMWPE-ALN-ma both decreased significantly compared to those of UHMWPE-ALN. Mechanical activation obviously reduced type 1 (void) and type 2 (the disconnected and dislocated machining marks) fusion defects of UHMWPE-ALN-ma, which were revealed by SEM images of freeze fracture surfaces after etching and lateral surfaces of specimens after extension to fracture, respectively. It was attributed to peeled-off layers and chain scission of molecular chains of UHMWPE particles after mechanical activation, which were revealed by SEM images and FTIR spectra of UHMWPE-ALN-ma and UHMWPE-ALN, respectively. Moreover, EDS spectra revealed the more homogeneous distribution of ALN in UHMWPE-ALN-ma compared to that of UHMWPE-ALN. The present results showed that mechanical activation was a potential strategy to improve mechanical and tribological properties of UHMWPE-ALN-ma as an orthopeadic biomaterial for joint replacements.

  6. Bubble growth and mechanical properties of tissue in decompression.

    PubMed

    Vann, R D; Clark, H G

    1975-09-01

    A survey of decompression literature leads to the conclusion that when tissue is subjected to gaseous supersaturation, pre-existing gas micronuclei grow into the gas bubbles which are routinely observed in decompression studies. These micronuclei may originate from mechanically induced tribonucleation or cavitation within joints. A new tissue model for decompression sickness based upon failure theory in rubber is proposed. The model shows theoretically that pre-existing sea-level nuclei can be stabilized at depth by elastic forces in tissue. These same elastic forces restrain the growth of nuclei when supersaturation occurs. Mechanical stress will lower the gaseous supersaturation required for growth of nuclei. Gaseous supersaturation, mechanical stress, and the elastic properties of various tissues interact to produce unbounded bubble growth leading to tissue lesions when combined gaseous and mechanical supersaturation exceeds a threshold value. The recommendation is made that the high levels of supersaturation generally used for the decompression of men be reduced.

  7. Brain mechanical property measurement using MRE with intrinsic activation

    NASA Astrophysics Data System (ADS)

    Weaver, John B.; Pattison, Adam J.; McGarry, Matthew D.; Perreard, Irina M.; Swienckowski, Jessica G.; Eskey, Clifford J.; Lollis, S. Scott; Paulsen, Keith D.

    2012-11-01

    Many pathologies alter the mechanical properties of tissue. Magnetic resonance elastography (MRE) has been developed to noninvasively characterize these quantities in vivo. Typically, small vibrations are induced in the tissue of interest with an external mechanical actuator. The resulting displacements are measured with phase contrast sequences and are then used to estimate the underlying mechanical property distribution. Several MRE studies have quantified brain tissue properties. However, the cranium and meninges, especially the dura, are very effective at damping externally applied vibrations from penetrating deeply into the brain. Here, we report a method, termed ‘intrinsic activation’, that eliminates the requirement for external vibrations by measuring the motion generated by natural blood vessel pulsation. A retrospectively gated phase contrast MR angiography sequence was used to record the tissue velocity at eight phases of the cardiac cycle. The velocities were numerically integrated via the Fourier transform to produce the harmonic displacements at each position within the brain. The displacements were then reconstructed into images of the shear modulus based on both linear elastic and poroelastic models. The mechanical properties produced fall within the range of brain tissue estimates reported in the literature and, equally important, the technique yielded highly reproducible results. The mean shear modulus was 8.1 kPa for linear elastic reconstructions and 2.4 kPa for poroelastic reconstructions where fluid pressure carries a portion of the stress. Gross structures of the brain were visualized, particularly in the poroelastic reconstructions. Intra-subject variability was significantly less than the inter-subject variability in a study of six asymptomatic individuals. Further, larger changes in mechanical properties were observed in individuals when examined over time than when the MRE procedures were repeated on the same day. Cardiac pulsation

  8. Micro-mechanical properties of bio-materials

    NASA Astrophysics Data System (ADS)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  9. Mechanical properties characterization and modeling of active polymer gels

    NASA Astrophysics Data System (ADS)

    Marra, Steven Paul

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as actuators and "artificial muscles." While much work has been done to study the behavior and properties of these gels, little information is available regarding the full constitutive description of the mechanical and actuation properties. This work focuses on developing a means of characterizing the mechanical properties of active polymer gels and describing how these properties evolve as the gel actuates. Poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) gel was chosen as the model material for this work because it is relatively simple and safe to both fabricate and actuate. PVA-PAA gels are fabricated on-site using a solvent-casting technique. These gels expand when moved from acidic to basic solutions, and contract when moved from basic to acidic solutions. Citric acid and sodium bicarbonate were used as the testing solutions for this work. The mechanical properties of the gel were characterized by conducting uniaxial and biaxial tests on thin PVA-PAA gel films. A biaxial testing system has been developed which can measure stresses and deformations of these films in a variety of liquid environments. The experimental results on PVA-PAA gels show these materials to be relatively compliant, and slightly viscoelastic and compressible. These gels are also capable of large recoverable deformations in both acidic and basic environments. A thermodynamically consistent finite-elastic constitutive model was developed to describe the mechanical and actuation behaviors of active polymer gels. The mechanical properties of the gel are characterized by a free-energy function, and the model utilizes an evolving internal variable to describe the actuation

  10. Constitutive Modeling of the Mechanical Properties of Optical Fibers

    NASA Technical Reports Server (NTRS)

    Moeti, L.; Moghazy, S.; Veazie, D.; Cuddihy, E.

    1998-01-01

    Micromechanical modeling of the composite mechanical properties of optical fibers was conducted. Good agreement was obtained between the values of Young's modulus obtained by micromechanics modeling and those determined experimentally for a single mode optical fiber where the wave guide and the jacket are physically coupled. The modeling was also attempted on a polarization-maintaining optical fiber (PANDA) where the wave guide and the jacket are physically decoupled, and found not to applicable since the modeling required perfect bonding at the interface. The modeling utilized constituent physical properties such as the Young's modulus, Poisson's ratio, and shear modulus to establish bounds on the macroscopic behavior of the fiber.

  11. Study of mechanical properties of nanomaterials under high pressure

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Kaur, Namrat; Srivastava, A. K.

    2015-08-01

    In the present work, the study of physical properties and behaviour of nanomaterials i.e. n-γ- Al2O3and n-Si3C4 under high pressure is done. For this purpose Murnaghan equation of state is used. The applicability of Murnaghan equation of state is fully tested by calculating mechanical properties of nano materials i.e. volume compression (V/Vo), bulk modulus (KT) and relative isothermal compression coefficient (α(P)/α0) at different pressures. The present calculated values of compression curve for the cited nanomaterials come out to be in reasonable good agreement with the available experimental data.

  12. Workability and mechanical properties of alkali activated slag concrete

    SciTech Connect

    Collins, F.G.; Sanjayan, J.G.

    1999-03-01

    This paper reports the results of an investigation on concrete containing alkali activated slag (AAS) as the binder, with emphasis on achievement of reasonable workability and equivalent one-day strength to portland cement concrete at normal curing temperatures. Two types of activators were used: sodium hydroxide in combination with sodium carbonate and sodium silicate in combination with hydrated lime. The fresh concrete properties reported include slump and slump loss, air content, and bleed. Mechanical properties of AAS concrete, including compressive strength, elastic modulus, flexural strength, drying shrinkage, and creep are contrasted with those of portland cement concrete.

  13. Electrical and dielectric properties of bovine trabecular bone - relationships with mechanical properties and mineral density

    NASA Astrophysics Data System (ADS)

    Sierpowska, J.; Töyräs, J.; Hakulinen, M. A.; Saarakkala, S.; Jurvelin, J. S.; Lappalainen, R.

    2003-03-01

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  14. Quantification of mechanical properties of human skin in vivo

    NASA Astrophysics Data System (ADS)

    Heinrich, Thorsten; Lunderstaedt, Reinhart A.

    2001-12-01

    Dermatologist as well as the cosmetical industry are interested in evaluating the mechanical properties of human skin. Many devices have been developed to measure skin's response to mechanical stress. In the presented paper a new approach to quantify the viscoelastic behavior of human skin on mechanical stress is proposed. Image processing techniques are used to detect the two-dimensional deformation of the skin in uniaxial tensile tests. The apparatus consists of a computer-controlled stepper motor drive mechanism to extend the skin, a load cell to measure displacement vector fields are calculated by a method based on local template matching and interpolation algorithms. From the displacement vector fields a strain tensor and the principal strain directions are evaluated. A model built up of springs and dashpots, is used to characterize the stress-strain-time relationships of skin and to obtain a set of parameters, which represent the instantaneous elasticity, the delayed elasticity and the viscosity of skin on loading. The results show the accuracy of the model. The method seems to be useful to investigate the influences of age, test area, cosmetics, etc. on the mechanical properties of human skin in vivo.

  15. Material properties and fracture mechanics in relation to ceramic machining

    SciTech Connect

    Griffith, L.V.

    1993-12-02

    Material removal rate, surface finish, and subsurface damage are largely governed by fracture mechanics and plastic deformation, when ceramics are machined using abrasive methods. A great deal of work was published on the fracture mechanics of ceramics in the late 1970s and early 1980s, although this work has never resulted in a comprehensive model of the fixed abrasive grinding process. However, a recently published model describes many of the most important features of the loose abrasive machining process, for example depth of damage, surface roughness, and material removal rate. Many of the relations in the loose abrasive machining model can be readily discerned from fracture mechanics models, in terms of material properties. By understanding the mechanisms of material removal, from a material properties perspective, we can better estimate how one material will machine in relation to another. Although the fracture mechanics models may have been developed for loose abrasive machining, the principles of crack initiation and propagation are equally valuable for fixed abrasive machining. This report provides a brief review of fracture in brittle materials, the stress distribution induced by abrasives, critical indenter loads, the extension of cracks, and the relation of the fracture process to material removal.

  16. Drying and Storage Effects on Poly(ethylene glycol) Hydrogel Mechanical Properties and Bioactivity

    PubMed Central

    Luong, P.T.; Browning, M.B.; Bixler, R.S.; Cosgriff-Hernandez, E.

    2014-01-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications due to the ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions and hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying) and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. PMID:24123725

  17. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  18. Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.

    PubMed

    Fusco, Sabato; Panzetta, Valeria; Embrione, Valerio; Netti, Paolo A

    2015-09-01

    Mechanical properties of materials strongly influence cell fate and functions. Focal adhesions are involved in the extremely important processes of mechanosensing and mechanotransduction. To address the relationship between the mechanical properties of cell substrates, focal adhesion/cytoskeleton assembly and cell functions, we investigated the behavior of NIH/3T3 cells over a wide range of stiffness (3-1000kPa) using two of the most common synthetic polymers for cell cultures: polyacrylamide and polydimethylsiloxane. An overlapping stiffness region was created between them to compare focal adhesion characteristics and cell functions, taking into account their different time-dependent behavior. Indeed, from a rheological point of view, polyacrylamide behaves like a strong gel (elastically), whereas polydimethylsiloxane like a viscoelastic solid. First, focal adhesion characteristics and dynamics were addressed in terms of material stiffness, then cell spreading area, migration rate and cell mechanical properties were correlated with focal adhesion size and assembly. Focal adhesion size was found to increase in the whole range of stiffness and to be in agreement in the overlapping rigidity region for the investigated materials. Cell mechanics directly correlated with focal adhesion lengths, whereas migration rate followed an inverse correlation. Cell spreading correlated with the substrate stiffness on polyacrylamide hydrogel, while no specific trend was found on polydimethylsiloxane. Substrate mechanics can be considered as a key physical cue that regulates focal adhesion assembly, which in turn governs important cellular properties and functions. PMID:26004223

  19. Structure and mechanical properties of liquid crystalline filaments

    SciTech Connect

    Eremin, Alexey; Nemes, Alexandru; Stannarius, Ralf; Schulz, Mario; Nadasi, Hajnalka; Weissflog, Wolfgang

    2005-03-01

    The formation of stable freely suspended filaments is an interesting peculiarity of some liquid crystal phases. So far, little is known about their structure and stability. Similarly to free-standing smectic films, an internal molecular structure of the mesophase stabilizes these macroscopically well-ordered objects with length to diameter ratios of 10{sup 3} and above. In this paper, we report observations of smectic liquid crystal fibers formed by bent-shaped molecules in different mesophases. Our study, employing several experimental techniques, focuses on mechanical and structural aspects of fiber formation such as internal structure, stability, and mechanical and optical properties.

  20. Mechanical properties testing and results for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Cruse, T. A.; Johnsen, B. P.; Nagy, A.

    1997-03-01

    Mechanical test data for thermal barrier coatings, including modulus, static strength, and fatigue strength data, are reviewed in support of the development of durability models for heat engine applica-tions. The materials include 7 and 8 wt % yttria partially stabilized zirconia (PSZ) as well as a cermet ma-terial (PSZ +10 wt % NiCoCrAlY). Both air plasma sprayed and electron beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  1. Time-temperature superposition applied to PBX mechanical properties

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; DeLuca, Racci; Wright, Walter J.

    2012-03-01

    The use of plastic-bonded explosives (PBXs) in weapon applications requires that they possess and maintain a level of structural/mechanical integrity. Uniaxial tension and compression experiments are typically used to characterize the mechanical response of materials over a wide range of temperatures and strain rates, providing the basis for predictive modeling in more complex geometries. After many years of data collection on a variety of PBX formulations, we have here applied the principles of time-temperature superposition to a mechanical properties database which includes PBX 9501, PBX 9502, PBXN-110, PBXN-9, and HPP (propellant). Consistencies are demonstrated between the results of quasi-static tension and compression, dynamic Split-Hopkinson Pressure Bar (SHPB) compression, and cantilever Dynamic Mechanical Analysis (DMA). Timetemperature relationships of maximum stress and corresponding strain values are analyzed, in addition to the more conventional analysis of modulus. The extensive analysis shows adherence to the principles of time-temperature superposition and correlations of mechanical response to binder glasstransition temperature (Tg) and specimen density. Direct ties exist between the time-temperature analysis and the underlying basis of a useful existing PBX mechanical model (ViscoSCRAM). Results give confidence that, with some limitations, mechanical response can be predicted at conditions not explicitly measured.

  2. Prediction of Mechanical Properties of Polymers With Various Force Fields

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.

  3. On the mechanical properties of selenite glass nanocomposites

    NASA Astrophysics Data System (ADS)

    Bar, Arun Kr.; Kundu, Ranadip; Roy, Debasish; Bhattacharya, Sanjib

    2016-05-01

    In this paper the room temperature micro-hardness of selenite glass-nanocomposites has been measured using a Vickers and Knoop micro hardness tester where the applied load varies from 0.01N to 0.98 N. A significant indentation size effect was observed for each sample at relatively low indentation test loads. The classical Meyer's law and the proportional specimen resistance model were used to analyze the micro-hardness behavior. It was found that the selenite glass-nanocomposite becomes harder with increasing CuI composition and the work hardening coefficient and mechanical properties like Young modulus, E, were also calculated. Our results open the way for the preparation, application and investigation of significant mechanical properties of new type of glass-nanocomposites.

  4. [A study of mechanical properties of orthodontic wires in tension].

    PubMed

    Konstantellos, B; Lagoudakis, M; Toutountzakis, N

    1990-12-01

    Orthodontic forces are applied to the teeth basically by means of different types of orthodontic wires. Knowledge of the mechanical properties of such wires are very helpful to the clinician in design and application of optimal force systems during orthodontic treatment. The basic mechanical properties were studied for 17 types of orthodontic wires (all rectangular and of the same size), in tension. Modulus of elasticity (E), yield strength (YS) and maximum elastic strain (Springback) (YS/E) were calculated for each type of wires. Stainless steel wires have demonstrated higher modulus of elasticity (and yield strength) in comparison with wires of nickel-titanium and beta titanium alloys. B-titanium wires showed higher modulus of elasticity than nickel-titanium ones. In addition stainless steel wires were found to have higher values for springback than cobalt-chromium ones and lower values (for the same variable) than nickel-titanium and B-titanium wires. PMID:2129597

  5. Synchronization properties of self-sustained mechanical oscillators.

    PubMed

    Arroyo, Sebastián I; Zanette, Damián H

    2013-05-01

    We study, both analytically and numerically, the dynamics of mechanical oscillators kept in motion by a feedback force, which is generated electronically from a signal produced by the oscillators themselves. This kind of self-sustained systems may become standard in the design of frequency-control devices at microscopic scales. Our analysis is thus focused on their synchronization properties under the action of external forces and on the joint dynamics of two to many coupled oscillators. Existence and stability of synchronized motion are assessed in terms of the mechanical properties of individual oscillators, namely, their natural frequencies and damping coefficients, and synchronization frequencies are determined. Similarities and differences with synchronization phenomena in other coupled oscillating systems are emphasized.

  6. Enhancement in mechanical properties of concrete due to blended ash

    SciTech Connect

    Naik, T.R.; Singh, S.S.; Hossain, M.M.

    1996-01-01

    This study was carried out to evaluate the effects of blended ash mixture on mechanical properties of concrete. In this study two reference mixtures were used. One of the mixtures was a no-fly ash mixture, and the other mixture contained 35% unblended Class C fly ash. Additional mixtures were composed of three blends of Class C and Class F fly ash while maintaining a total fly ash content of 40% of the total cementitious materials. Mechanical properties such as compressive strength, tensile strength, flexural strength, and modulus of elasticity were determined as a function of age ranging from 1 to 91 days. The results showed that blending of Class F fly ash with Class C fly ash showed either comparable or better results compared to either the reference mixture without fly ash or the unblended Class C fly ash concrete mixture at a fly ash concentration of 40% of total cementitious materials.

  7. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  8. Enhanced Mechanical Properties in PVA/SWNT Composite Fibers

    NASA Astrophysics Data System (ADS)

    Sampson, William; Dalton, Alan

    2005-03-01

    Composite fibers of polyvinyl alcohol (PVA) and HiPco Single Walled Carbon Nanotubes (SWNT) have been developed at The University of Texas at Dallas that show greatly enhanced mechanical properties, with typical strengths of 1.8GPa and toughness in excess of that of spider silk, making these the toughest known fibers to date. However, the exact interactions leading to the enhanced mechanical properties are not as yet fully understood. We have used a series of Raman and DSC experiments to discover the nature of the strength-enhancing interactions in these composite materials. The results lead to the conclusion that the bulk of the improvements are due to SWNT-nucleated PVA crystallinity, with the SWNTs playing less of a direct role than we originally thought.

  9. Effect of drying conditions on properties, pigments and antioxidant activity retentions of pretreated orange and purple-fleshed sweet potato flours.

    PubMed

    Ruttarattanamongkol, Khanitta; Chittrakorn, Sasivimon; Weerawatanakorn, Monthana; Dangpium, Narong

    2016-04-01

    Pigmented sweet potatoes (SPs) are outstanding sources of anthocyanin, β-carotene and other color-related phytonutrients. However, fresh SP roots are highly perishable and difficult to store. To reduce losses and extend their uses, fresh SP could be converted into flour. SP cultivars with deep purple (Phichit 65-3) and orange-fleshed (T101) colors newly developed in Thailand were studied. The influence of drying methods on physico-chemical properties, anthocyanin, β-carotene and antioxidant activity retentions of purple and orange-fleshed SP flours (SPFs) was investigated. Peeled purple and orange SPs were pretreated by blanching (100 °C, 5 sec) and soaking in 0.5 % (w/v) sodium metabisulphite, then dried in either hot air oven at 50-80 °C or steamed for 10 min and placed to the drum dryer at 80-110 °C and 3-7 rpm drum speed. The drying processes significantly enhanced anthocyanin contents of SPFs by 1.8 to 3.8 times; however, there was a significant loss of β-carotene occurred during drying processes. Drum drying yielded SPFs with better color, higher total phenolic contents and antioxidant activity than the hot air drying. Pasting temperatures of hot air dried orange-fleshed SPFs (84-85 °C) were slightly higher than those of purple-fleshed SPFs (80-83 °C). Drum drying process produced pre-gelatinized (instant) SPFs as indicated by RVA and DSC results. The optimal conditions for drum dried and hot air dried SPF manufactured were 95 °C at 5 rpm and 70 °C, respectively, based on anthocyanin, β-carotene, total phenolic, antioxidant activity, color retentions, and pasting properties.

  10. Effect of drying conditions on properties, pigments and antioxidant activity retentions of pretreated orange and purple-fleshed sweet potato flours.

    PubMed

    Ruttarattanamongkol, Khanitta; Chittrakorn, Sasivimon; Weerawatanakorn, Monthana; Dangpium, Narong

    2016-04-01

    Pigmented sweet potatoes (SPs) are outstanding sources of anthocyanin, β-carotene and other color-related phytonutrients. However, fresh SP roots are highly perishable and difficult to store. To reduce losses and extend their uses, fresh SP could be converted into flour. SP cultivars with deep purple (Phichit 65-3) and orange-fleshed (T101) colors newly developed in Thailand were studied. The influence of drying methods on physico-chemical properties, anthocyanin, β-carotene and antioxidant activity retentions of purple and orange-fleshed SP flours (SPFs) was investigated. Peeled purple and orange SPs were pretreated by blanching (100 °C, 5 sec) and soaking in 0.5 % (w/v) sodium metabisulphite, then dried in either hot air oven at 50-80 °C or steamed for 10 min and placed to the drum dryer at 80-110 °C and 3-7 rpm drum speed. The drying processes significantly enhanced anthocyanin contents of SPFs by 1.8 to 3.8 times; however, there was a significant loss of β-carotene occurred during drying processes. Drum drying yielded SPFs with better color, higher total phenolic contents and antioxidant activity than the hot air drying. Pasting temperatures of hot air dried orange-fleshed SPFs (84-85 °C) were slightly higher than those of purple-fleshed SPFs (80-83 °C). Drum drying process produced pre-gelatinized (instant) SPFs as indicated by RVA and DSC results. The optimal conditions for drum dried and hot air dried SPF manufactured were 95 °C at 5 rpm and 70 °C, respectively, based on anthocyanin, β-carotene, total phenolic, antioxidant activity, color retentions, and pasting properties. PMID:27413208

  11. Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties

    NASA Astrophysics Data System (ADS)

    Jänchen, J.; Meeßen, J.; Herzog, T. H.; Feist, M.; de la Torre, R.; Devera, J.-P. P.

    2015-07-01

    We quantitatively studied the hydration and dehydration behaviour of the three astrobiological model lichens Xanthoria elegans, Buellia frigida and Circinaria gyrosa by thermoanalysis and gravimetric isotherm measurements under close-to-Martian environmental conditions in terms of low temperature and low pressure. Additionally, the impact of UVC exposure on the isolated symbionts of B. frigida and X. elegans was studied by thermoanalysis and mass spectrometry as well as by gravimetric isotherm measurements. The thermal analysis revealed whewellite as a component of C. gyrosa which was not found in B. frigida and X. elegans. Neither the water retention nor the thermal behaviour of symbionts changed when irradiated with UVC under dry conditions. On the other hand, UVC irradiation of the wet mycobiont of B. frigida had a distinct impact on the hydration/dehydration ability which was not observed for the mycobiont of X. elegans. Possibly the melanin of B. frigida's mycobiont, that is not present in X. elegans, or a specifically damaged acetamido group of the chitin of B. frigida may be the sources of additional UVC-induced sorption sites for water associated with the UVC exposure.

  12. Mechanical and thermophysical properties of hot-pressed SYNROC B

    SciTech Connect

    Hoenig, C.L.; Newkirk, H.W.; Otto, R.A.; Brady, R.L.; Brown, A.E.; Ulrich, A.R.; Lum, R.C.

    1981-05-06

    The optimal SYNROC compositons for use with commercial waste are reviewed. Large amounts of powder (about 2.5 kg) were prepared by convention al ceramic operations to test the SYNROC concept on a processing scale. Samples, 15.2 cm in diameter, were hot pressed in graphite, and representative samples were cut for microstructural evaluations. Measured mechanical and thermophysical properties did not vary significantly as a function of sample location and were typical of titanate ceramic materials.

  13. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  14. Mechanical properties of D0 Run IIB silicon detector staves

    SciTech Connect

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and a composite shell mechanical structure is evaluated for self-deflection and deflection due to external loads. This paper contains an introduction to the stave structure, a section devoted to composite lamina and laminate properties and finally a section discussing the beam deflections expected for assembled staves using these laminates.

  15. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    NASA Astrophysics Data System (ADS)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal–submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa–submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered

  16. ORMOSIL thin films: tuning mechanical properties via a nanochemistry approach.

    PubMed

    Palmisano, Giovanni; Le Bourhis, Eric; Ciriminna, Rosaria; Tranchida, Davide; Pagliaro, Mario

    2006-12-19

    The mechanical properties (hardness and elastic modulus) of organically modified silicate thin films can be finely tuned by varying the degree of alkylation and thus the fraction of six- and four-membered siloxane rings in the organosilica matrix. This opens the way to large tunability of parameters that are of crucial practical importance for films that are finding increasing application in numerous fields ranging from microelectronics to chemical sensing.

  17. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry.

    PubMed

    Aho, Johnathon M; Qiang, Bo; Wigle, Dennis A; Tschumperlin, Daniel J; Urban, Matthew W

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  18. The mechanical properties of density graded hemp/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  19. Rubber-toughened cyanate composites - Properties and toughening mechanism

    NASA Technical Reports Server (NTRS)

    Yang, P. C.; Woo, E. P.; Laman, S. A.; Jakubowski, J. J.; Pickelman, D. M.; Sue, H. J.

    1991-01-01

    Earlier work by Young et al. (1990) has shown that Dow experimental cyanate ester resin XU71787.02 is readily toughenable by rubber. A particularly effective rubber for this purpose is an experimental core-shell rubber which toughens the polymer by inducing shear yielding. This paper describes an investigation into the toughening mechanism in the corresponding carbon-fiber composite systems and the effect of fibers on composite properties. Resin-fiber interfacial shear strengths have been successfully correlated to the compressive strengths after impact and other key properties of composites based on rubber-toughened cyanate and several carbon fibers. The differences in the properties are explained by the difference in the functioning of the rubber particles during the fracture process.

  20. Vibrational, mechanical, and thermal properties of III-V semiconductors

    NASA Astrophysics Data System (ADS)

    Dow, John D.

    1989-02-01

    Theories of the mechanical, vibrational, and electronic properties of 3 to 5 semiconductors were developed and applied to: (1) help determine the feasibility of InN-based visible and ultraviolet lasers and light detectors, (2) develop a theory of phonons in semiconductor alloys, (3) understand surface reconstruction of semiconductors, (4) predict the effects of atomic correlations on the light-scattering (Raman) properties of semiconductive alloys, (5) develop a new first principles pseudo-function implementation of local-density theory, (6) study the oxidation of GaAs, (7) develop a theory of scanning tunneling microscope images, and (8) understand the electronic and optical properties of highly strained artificial semiconductors and small semiconductor particles.

  1. Protocol dependence of mechanical properties in granular systems.

    PubMed

    Inagaki, S; Otsuki, M; Sasa, S

    2011-11-01

    We study the protocol dependence of the mechanical properties of granular media by means of computer simulations. We control a protocol of realizing disk packings in a systematic manner. In 2D, by keeping material properties of the constituents identical, we carry out compaction with various strain rates. The disk packings exhibit the strain rate dependence of the critical packing fraction above which the pressure becomes non-zero. The observed behavior contrasts with the well-studied jamming transitions for frictionless disk packings. We also observe that the elastic moduli of the disk packings depend on the strain rate logarithmically. Our results suggest that there exists a time-dependent state variable to describe macroscopic material properties of disk packings, which depend on its protocol.

  2. Mechanical properties of tendons: changes with sterilization and preservation.

    PubMed

    Smith, C W; Young, I S; Kearney, J N

    1996-02-01

    Tendon allografts are commonly used to replace damaged anterior cruciate ligaments (ACL). Some of the sterilization and preservation techniques used by tissue banks with tendon allografts are thought to impair the mechanical properties of graft tissues. The tensile mechanical properties of porcine toe extensor tendons were measured using a dynamic testing machine following either freezing, freeze-drying, freezing then irradiation at 25 kGy (2.5 MRad), freeze-drying then irradiation, or freeze-drying then ethylene oxide gas sterilization. There was a small but significant difference in Young's modulus between the frozen group (0.88 GPa + 0.09 SD) and both the fresh group (0.98 GPa 1 0.12 SD) and the frozen irradiated group (0.97 GPa 1 0.08 SD). No values of Young's modulus were obtained for the freeze-dried irradiated tendons. The ultimate tensile stress (UTS) of the freeze-dried irradiated group (4.7 MPa 1 4.8 SD) was significantly different from both the fresh and the frozen irradiated groups, being reduced by approximately 90 percent. There were no significant changes in UTS or Young's modulus between any of the other groups. If irradiation is to be used to sterilize a tendon replacement for an ACL it must take place after freeze-drying to maintain mechanical properties.

  3. Structure and mechanical properties of Octopus vulgaris suckers.

    PubMed

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894

  4. Mechanical properties of human dental enamel on the nanometre scale.

    PubMed

    Habelitz, S; Marshall, S J; Marshall, G W; Balooch, M

    2001-02-01

    Atomic force microscopy (AFM) combined with a nano-indentation technique was used to reveal the structure and to perform site-specific mechanical testing of the enamel of third molars. Nano-indentations (size<500 nm) were made in the cusp area to measure the mechanical properties of single enamel rods at different orientations. The influence of etching on the physical properties was studied and etching conditions that did not significantly alter the plastic-elastic response of enamel were defined. Elasticity and hardness were found to be a function of the microstructural texture. Mean Young's moduli of 87.5 (+/-2.2) and 72.2 (+/-4.5) GPa and mean hardness of 3.9+/-0.3 and 3.3+/-0.3 GPa were measured in directions parallel and perpendicular to the enamel rods, respectively. Analysis of variance showed that the differences were significant. The observed anisotropy of enamel is related to the alignment of fibre-like apatite crystals and the composite nature of enamel rods. Mechanical properties were also studied at different locations on single enamel rods. Compared to those in the head area of the rods, Young's moduli and hardness were lower in the tail area and in the inter-rod enamel, which can be attributed to changes in crystal orientation and the higher content of soft organic tissue in these areas.

  5. Experimental study determining the mechanical properties of dental floss holders.

    PubMed

    Wolff, Anna; Pritsch, Maria; Dörfer, Christof; Staehle, Hans Jörg

    2011-06-01

    This study determined the mechanical properties of 19 dental floss holders. Eight single-use holders and 11 reusable ones were tested. An in vitro model with dental proximal contact strength of 8 N was created. Every device had to pass the proximal contact 30 times. We measured (1) the displacement of the floss [mm], (2) the force [N] necessary to pass the proximal contact after the 30th passage, (3) the loosening of the floss (offset [mm]), and (4) the change in the distance between the branches [mm]. Each measurement was repeated seven times. The results are displacement of the floss after 30 passages, 2.0 to 9.2 mm; passage force, 2.6 to 11 N; increases in branch distance, 0-2.9 mm; offset of the floss, 0-1.8 mm (all numbers are medians). Based on cleaning a full dentition (30 passages), we suggest introducing minimal requirements of <4 mm for the displacement of the floss, ≥11 N for the force, and <0.1 mm for the difference in branch distance and the offset. Only two products fulfilled our criteria. The tests show that dental floss holders vary extremely in their mechanical properties. Their effective use seems often impossible due to limited mechanical properties.

  6. Structure and mechanical properties of Octopus vulgaris suckers

    PubMed Central

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N.; Mazzolai, Barbara

    2014-01-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894

  7. Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation

    NASA Astrophysics Data System (ADS)

    Resnick, Andrew

    Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.

  8. Structure and mechanical properties of Octopus vulgaris suckers.

    PubMed

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-01

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  9. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals. PMID:12398171

  10. Fatigue and mechanical properties of nickel-titanium endodontic instruments.

    PubMed

    Kuhn, Grégoire; Jordan, Laurence

    2002-10-01

    Shape memory alloys are increasingly used in superelastic conditions under complex cyclic deformation situations. In these applications, it is very difficult to predict the service life based on the theoretical law. In the present work, fatigue properties of NiTi engine-driven rotary files have been characterized by using differential scanning calorimetry (DSC) and mechanical testing (bending). The DSC technique was used to measure precise transformation. The degree of deformation by bending was studied with combined DSC and mechanical property measurements. In these cold-worked files, the high dislocation density influences the reorientation processes and the crack growth. Some thermal treatments are involved in promoting some changes in the mechanical properties and transformation characteristics. Annealing around 400 degrees C shows good results; the recovery allows a compromise between an adequate density for the R-Phase germination and a low density to limit the brittleness of these instruments. In clinical usage, it is important to consider different canal shapes. It could be proposed that only few cycles of use is safe for very curved canals but to follow the manufacturer's advise for straight canals.

  11. Influence of mechanical properties on the combustion of propellants

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.; Culick, F. E. C.

    1973-01-01

    Experimental study of the effects of minor compositional variables upon the combustion behavior of composite solid propellants. More specifically, it was attempted to determine the influence of ingredients that improve the mechanical properties upon the oscillatory combustion characteristics. Tests were carried out in the familiar Crawford bomb, a low-pressure L-star burner, and a high-pressure T-burner. Two families of propellants were investigated; each family consists of two propellants with a minor compositional variation between them. In the family that shows a decreasing (steady state) pressure index (n) with increasing pressures, all of the combustion characteristics are found to be very similar although the mechanical properties are widely different. In the other family, which shows an increasing n with increasing pressures, unmistakable differences are found between the two propellants in the low-pressure L-star instability behavior (along with the differences in the mechanical properties), while the other combustion characteristics are almost identical. The results are interpreted to be consistent with a theory that highlights the importance of condensed phase heat-transfer effects.

  12. Reconstruction of Sedimentary Rock Based on MechanicalProperties

    SciTech Connect

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2004-05-04

    We describe a general, physics-based approach to numericalreconstruction of the geometrical structure and mechanical properties ofnatural sedimentary rock in 3D. Our procedure consists of three mainsteps: sedimentation, compaction, and diagenesis, followed by theverification of rock mechanical properties. The dynamic geologicprocesses of grain sedimentation and compaction are simulated by solvinga dimensionless form of Newton's equations of motion for an ensemble ofgrains. The diagenetic rock transformation is modeled using a cementationalgorithm, which accounts for the effect of rock grain size on therelative rate of cement overgrowth. Our emphasis is on unconsolidatedsand and sandstone. The main input parameters are the grain sizedistribution, the final rock porosity, the type and amount of cement andclay minerals, and grain mechanical properties: the inter-grain frictioncoefficient, the cement strength, and the grain stiffness moduli. We usea simulated 2D Fontainebleau sandstone to obtain the grain mechanicalproperties. This Fontainebleau sandstone is also used to study theinitiation, growth, and coalescence of micro-cracks under increasingvertical stress. The box fractal dimension of the micro-crackdistribution, and its variation with the applied stress areestimated.

  13. Bulk Mechanical Properties of Single Walled Carbon Nanotube Electrodes

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Landi, Brian; Cress, Cory; Raffaelle, Ryne

    2007-03-01

    The unique properties of single walled carbon nanotubes (SWNTs) make them especially well suited for use as electrodes in power devices such as lithium ion batteries, hydrogen fuel cells, solar cells, and supercapacitors. The performances of such devices are expected to be influenced, at least in part, by the mechanical properties of the SWNTs used in composites or in stand alone ``papers.'' Therefore, the elastic moduli and ultimate tensile strengths of SWNT papers were measured as functions of temperature, SWNT purity, SWNT length, and SWNT bundling. The SWNTs used to produce the papers were synthesized in an alexandrite laser vaporization reactor at 1100^oC and purified using conventional acid-reflux conditions. Characterization of the SWNTs was performed using SEM, BET, TGA, and optical and Raman spectroscopy. The purified material was filtered and dried to yield papers of bundled SWNTs which were analyzed using dynamic mechanical analysis (DMA). It was observed that the mechanical properties of acid-refluxed SWNT papers were significantly improved by controlled thermal oxidation and strain-hardening. Elastic moduli of SWNT papers were measured between 3 and 6 GPa. Ultimate (breaking) tensile stresses were measured between 45 and 90 MPa at 1-3% strain. These results and their implications in regard to potential applications in power devices will be discussed.

  14. Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties?

    PubMed

    Opplert, J; Genty, J-B; Babault, N

    2016-08-01

    The aim of the study was to determine whether stretching durations influence acute changes of mechanical and neurophysiological properties of plantar flexor muscles. Plantar flexors of 10 active males were stretched in passive conditions on an isokinetic dynamometer. Different durations of static stretching were tested in 5 randomly ordered experimental trials (1, 2, 3, 4 and 10×30-s). Fascicle stiffness index, evoked contractile properties and spinal excitability (Hmax/Mmax) were examined before (PRE), immediately after (POST0) and 5 min after (POST5) stretching. No stretch duration effect was recorded for any variable. Moreover, whatever the stretching duration, stiffness index, peak twitch torque and rate of force development were significantly lower at POST0 and POST5 as compared to PRE (P<0.05). Electromechanical delay was longer at POST0 and POST5 as compared to PRE (P<0.05). Whatever the stretch duration, no significant changes of Hmax/Mmax ratio were recorded. In conclusion, 30 s of static stretching to maximum tolerated discomfort is sufficient enough to alter mechanical properties of plantar flexor muscles, but 10×30 s does not significantly affect these properties further. Stretching does not impair spinal excitability. PMID:27191211

  15. Measurement of the Mechanical Properties of Intact Collagen Fibrils

    NASA Astrophysics Data System (ADS)

    Mercedes, H.; Heim, A.; Matthews, W. G.; Koob, T.

    2006-03-01

    Motivated by the genetic disorder Ehlers-Danlos syndrome (EDS), in which proper collagen synthesis is interrupted, we are investigating the structural and mechanical properties of collagen fibrils. The fibrous glycoprotein collagen is the most abundant protein found in the human body and plays a key role in the extracellular matrix of the connective tissue, the properties of which are altered in EDS. We have selected as our model system the collagen fibrils of the sea cucumber dermis, a naturally mutable tissue. This system allows us to work with native fibrils which have their proteoglycan complement intact, something that is not possible with reconstituted mammalian collagen fibrils. Using atomic force microscopy, we measure, as a function of the concentration of divalent cations, the fibril diameter, its response to force loading, and the changes in its rigidity. Through these experiments, we will shed light on the mechanisms which control the properties of the sea cucumber dermis and hope to help explain the altered connective tissue extracellular matrix properties associated with EDS.

  16. Mechanical and thermophysical properties of rare-earth monopnictides

    NASA Astrophysics Data System (ADS)

    Bhalla, Vyoma; Singh, Devraj; Jain, Sushil Kumar

    2016-08-01

    The present paper addresses the temperature dependent elastic, mechanical and thermal properties of NaCl structure (B1 type) holmium monopnictides, HoX (X = N, P, As, Sb, Bi) computed using Coulomb and Born repulsive potentials extended up to second nearest neighbors. The second-order elastic constants (SOECs) of single crystals HoX are calculated as a function of temperature in the range 0-500K. The compounds under study are found to be brittle in nature. Beside these calculations, the theoretical hardness has been obtained for various rare-earth monopnictides using the elastic properties in the polycrystalline approach. The obtained hardness values indicate HoN to be hard, but cannot be considered super hard. The anisotropic nature of the chosen single crystal is an important physical quantity in studying the directional dependent thermal properties such as Debye temperature and thermal conductivity computed using ultrasonic velocities along different crystallographic directions. The obtained results are discussed in correlation with mechanical and thermophysical properties of similar materials.

  17. Deterioration of Mechanical Properties of Discs in Chronically Inflamed TMJ

    PubMed Central

    Wang, X.D.; Cui, S.J.; Liu, Y.; Luo, Q.; Du, R.J.; Kou, X.X.; Zhang, J.N.; Zhou, Y.H.; Gan, Y.H.

    2014-01-01

    Temporomandibular joint (TMJ) discs frequently undergo degenerative changes in arthritis. However, the biomechanical properties of pathogenic discs remain to be explored. In this study, we evaluated the effects of chronic inflammation on the biomechanical properties of TMJ discs in rats. Chronic inflammation of TMJs was induced by double intra-articular injections of complete Freund’s adjuvant for 5 weeks, and biomechanical properties and ultrastructure of the discs were examined by mechanical testing, scanning electron microscopy, and transmission electron microscopy. The instantaneous compressive moduli of the anterior and posterior bands of discs in inflamed TMJs were decreased significantly compared with those in the control group. The instantaneous tensile moduli of the discs of inflamed TMJs also showed significant decreases in both the anterior-posterior and mesial-lateral directions. The relaxation moduli of the discs of inflamed TMJs showed nearly the same tendency as the instantaneous moduli. The surfaces of the discs of inflamed TMJs became rough and porous due to the loss of the superficial gel-like stratum, with many collagen fibers exposed and degradation of the sub-superficial collagen fibrils. Our results suggested that chronic inflammation of TMJ could lead to deterioration of mechanical properties and alteration of disc ultrastructure, which might contribute to TMJ disc displacement. PMID:25266714

  18. Modeling the mechanical and aging properties of silicone rubber and foam - stockpile-historical & additively manufactured materials

    SciTech Connect

    Maiti, A.; Weisgraber, T. H.; Gee, R. H.

    2014-09-30

    M97* and M9763 belong to the M97xx series of cellular silicone materials that have been deployed as stress cushions in some of the LLNL systems. Their purpose of these support foams is to distribute the stress between adjacent components, maintain relative positioning of various components, and mitigate the effects of component size variation due to manufacturing and temperature changes. In service these materials are subjected to a continuous compressive strain over long periods of time. In order to ensure their effectiveness, it is important to understand how their mechanical properties change over time. The properties we are primarily concerned about are: compression set, load retention, and stress-strain response (modulus).

  19. Mechanical Properties of Mineralized Collagen Fibrils As Influenced By Demineralization

    SciTech Connect

    Balooch, M.; Habelitz, S.; Kinney, J.H.; Marshall, S.J.; Marshall, G.W.

    2009-05-11

    Dentin and bone derive their mechanical properties from a complex arrangement of collagen type-I fibrils reinforced with nanocrystalline apatite mineral in extra- and intrafibrillar compartments. While mechanical properties have been determined for the bulk of the mineralized tissue, information on the mechanics of the individual fibril is limited. Here, atomic force microscopy was used on individual collagen fibrils to study structural and mechanical changes during acid etching. The characteristic 67 nm periodicity of gap zones was not observed on the mineralized fibril, but became apparent and increasingly pronounced with continuous demineralization. AFM-nanoindentation showed a decrease in modulus from 1.5 GPa to 50 MPa during acid etching of individual collagen fibrils and revealed that the modulus profile followed the axial periodicity. The nanomechanical data, Raman spectroscopy and SAXS support the hypothesis that intrafibrillar mineral etches at a substantially slower rate than the extrafibrillar mineral. These findings are relevant for understanding the biomechanics and design principles of calcified tissues derived from collagen matrices.

  20. Mechanical Properties of Type IV Pili in P. Aeruginosa

    NASA Astrophysics Data System (ADS)

    Lu, Shun; Touhami, Ahmed; Scheurwater, Edie; Harvey, Hanjeong; Burrows, Lori; Dutcher, John

    2009-03-01

    Type IV pili (Tfp) are thin flexible protein filaments that extend from the cell membrane of bacteria such as Pseudomonas aeruginosa and Neisseria gonorrhoeae. The mechanical properties of Tfp are of great importance since they allow bacteria to interact with and colonize various surfaces. In the present study, we have used atomic force microscopy (AFM) for both imaging and pulling on Tfp from P. aeruginosa (PAO1) and from its PilA, PilT, and FliC mutants. A single pilus filament was mechanically stretched and the resulting force-extension profiles were fitted using the worm-like-chain (WLC) model. The statistical distributions obtained for contour length, persistence length, and number of pili per bacteria pole, were used to evaluate the mechanical properties of a single pilus and the biogenesis functions of different proteins (PilA, PilT) involved in its assembly and disassembly. Importantly, the persistence length value of ˜ 1 μm measured in the present study, which is consistent with the curvature of the pili observed in our AFM images, is significantly lower than the value of 5 μm reported earlier by Skerker et al. (1). Our results shed new light on the role of mechanical forces that mediate bacteria-surface interactions and biofilm formation. 1- J.M. Skerker and H.C. Berg, Proc. Natl. Acad. Sci. USA, 98, 6901-6904 (2001).

  1. Time-Temperature Superposition Applied to PBX Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Thompson, Darla; Deluca, Racci

    2011-06-01

    The use of plastic-bonded explosives (PBXs) in weapon applications requires a certain level of structural/mechanical integrity. Uniaxial tension and compression experiments characterize the mechanical response of materials over a wide range of temperatures and strain rates, providing the basis for predictive modeling in more complex geometries. After years of data collection on a wide variety of PBX formulations, we have applied time-temperature superposition principles to a mechanical properties database which includes PBX 9501, PBX 9502, PBXN-110, PBXN-9, and HPP (propellant). The results of quasi-static tension and compression, SHPB compression, and cantilever DMA are compared. Time-temperature relationships of maximum stress and corresponding strain values are analyzed in addition to the more conventional analysis of modulus. Our analysis shows adherence to the principles of time-temperature superposition and correlations of mechanical response to the binder glass transition and specimen density. Direct ties relate time-temperature analysis to the underlying basis of existing PBX mechanical models (ViscoSCRAM). Results suggest that, within limits, mechanical response can be predicted at conditions not explicitly measured. LA-UR 11-01096.

  2. Nondestructive evaluation of hydrogel mechanical properties using ultrasound

    PubMed Central

    Walker, Jason M.; Myers, Ashley M.; Schluchter, Mark D.; Goldberg, Victor M.; Caplan, Arnold I.; Berilla, Jim A.; Mansour, Joseph M.; Welter, Jean F.

    2012-01-01

    The feasibility of using ultrasound technology as a noninvasive, nondestructive method for evaluating the mechanical properties of engineered weight-bearing tissues was evaluated. A fixture was designed to accurately and reproducibly position the ultrasound transducer normal to the test sample surface. Agarose hydrogels were used as phantoms for cartilage to explore the feasibility of establishing correlations between ultrasound measurements and commonly used mechanical tissue assessments. The hydrogels were fabricated in 1–10% concentrations with a 2–10 mm thickness. For each concentration and thickness, six samples were created, for a total of 216 gel samples. Speed of sound was determined from the time difference between peak reflections and the known height of each sample. Modulus was computed from the speed of sound using elastic and poroelastic models. All ultrasonic measurements were made using a 15 MHz ultrasound transducer. The elastic modulus was also determined for each sample from a mechanical unconfined compression test. Analytical comparison and statistical analysis of ultrasound and mechanical testing data was carried out. A correlation between estimates of compressive modulus from ultrasonic and mechanical measurements was found, but the correlation depended on the model used to estimate the modulus from ultrasonic measurements. A stronger correlation with mechanical measurements was found using the poroelastic rather than the elastic model. Results from this preliminary testing will be used to guide further studies of native and engineered cartilage. PMID:21773854

  3. Mechanical properties of graphene on deformable patterned substrates: Experimental studies

    NASA Astrophysics Data System (ADS)

    Scharfenberg, S.; Chialvo, C.; Rocklin, D. Z.; Weaver, R.; Goldbart, P. M.; Mason, N.

    2010-03-01

    The mechanical properties of graphene can strongly influence its electronic behavior, and are relevant for implementing novel nano-mechanical devices. In this talk we present results on the mechanical behavior of few-layered graphene (FLG) placed on a patterned rubbery surface. Samples of FLG, with thicknesses ranging from 1-7 atomic layers, were deposited on micro-scale grooved polydimethylsiloxane (PDMS) substrates. AFM imaging techniques were then used to study the surface deformations, and to perform thickness measurements on the samples. AFM phase-imaging shows that the graphene strongly adheres to the substrate. The graphene also substantially deforms the substrate, with thicker pieces causing greater deformation. The results are discussed in the context of a linear elasticity theory (detailed in an accompanying paper) which can be used to explain the data and place bounds on the various interface strengths.

  4. Mechanical properties testing and results for thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Cruse, Thomas A.; Johnsen, B. P.; Nagy, Andrew

    1995-01-01

    The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  5. Mechanical properties testing and results for thermal barrier coatings

    SciTech Connect

    Cruse, T.A.; Johnsen, B.P.; Nagy, A.

    1995-10-01

    The paper reports on several years of mechanical testing of thermal barrier coatings. The test results were generated to support the development of durability models for the coatings in heat engine applications. The test data that are reviewed include modulus, static strength, and fatigue strength data. The test methods and results are discussed, along with the significant difficulties inherent in mechanical testing of thermal barrier coating materials. The materials include 7 percent wt. and 8 percent wt. yttria, partially stabilized zirconia as well as a cermet material. Both low pressure plasma spray and electron-beam physical vapor deposited coatings were tested. The data indicate the basic trends in the mechanical properties of the coatings over a wide range of isothermal conditions. Some of the trends are correlated with material density.

  6. Floating nut retention system

    NASA Technical Reports Server (NTRS)

    Charles, J. F.; Theakston, H. A. (Inventor)

    1980-01-01

    A floating nut retention system includes a nut with a central aperture. An inner retainer plate has an opening which is fixedly aligned with the nut aperture. An outer retainer member is formed of a base plate having an opening and a surface adjacent to a surface of the inner retainer plate. The outer retainer member includes a securing mechanism for retaining the inner retainer plate adjacent to the outer retainer member. The securing mechanism enables the inner retainer plate to float with respect to the outer retainer number, while simultaneously forming a bearing surface for inner retainer plate.

  7. Mechanical and hydraulic properties of rocks related to induced seismicity

    USGS Publications Warehouse

    Witherspoon, P.A.; Gale, J.E.

    1977-01-01

    Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now

  8. An Experimental Investigation of Shale Mechanical Properties Through Drained and Undrained Test Mechanisms

    NASA Astrophysics Data System (ADS)

    Islam, Md. Aminul; Skalle, Paal

    2013-11-01

    Shale mechanical properties are evaluated from laboratory tests after a complex workflow that covers tasks from sampling to testing. Due to the heterogeneous nature of shale, it is common to obtain inconsistent test results when evaluating the mechanical properties. In practice, this variation creates errors in numerical modeling when test results differ significantly, even when samples are from a similar core specimen. This is because the fundamental models are based on the supplied test data and a gap is, therefore, always observed during calibration. Thus, the overall goal of this study was to provide additional insight regarding the organization of the non-linear model input parameters in borehole simulations and to assist other researchers involved in the rock physics-related research fields. To achieve this goal, the following parallel activities were carried out: (1) perform triaxial testing with different sample orientations, i.e., 0°, 45°, 60°, and 90°, including the Brazilian test and CT scans, to obtain a reasonably accurate description of the anisotropic properties of shale; (2) apply an accurate interpretative method to evaluate the elastic moduli of shale; (3) evaluate and quantify the mechanical properties of shale by accounting for the beddings plane, variable confinement pressures, drained and undrained test mechanisms, and cyclic versus monotonic test effects. The experimental results indicate that shale has a significant level of heterogeneity. Postfailure analysis confirmed that the failure plane coincides nicely with the weak bedding plane. The drained Poisson’s ratios were, on average, 40 % or lower than the undrained rates. The drained Young’s modulus was approximately 48 % that of the undrained value. These mechanical properties were significantly impacted by the bedding plane orientation. Based on the Brazilian test, the predicted tensile strength perpendicular to the bedding plane was 12 % lower than the value obtained using the

  9. Size effects on mechanical and thermal properties of thin films

    NASA Astrophysics Data System (ADS)

    Alam, Md Tarekul

    Materials, from electronic to structural, exhibit properties that are sensitive to their composition and internal microstructures such as grain and precipitate sizes, crystalline phases, defects and dopants. Therefore, the research trend has been to obtain fundamental understanding in processing-structure-properties to develop new materials or new functionalities for engineering applications. The advent of nanotechnology has opened a new dimension to this research area because when material size is reduced to nanoscale, properties change significantly from the bulk values. This phenomenon expands the problem to 'size-processing-structure-propertiesfunctionalities'. The reinvigorated research for the last few decades has established size dependency of the material properties such as thermal conductivity, Young's modulus and yield strength, electrical resistivity, photo-conductance etc. It is generally accepted that classical physical laws can be used to scale down the properties up to 25-50 nm length-scale, below which their significant deviation or even breakdown occur. This dissertation probes the size effect from a different perspective by asking the question, if nanoscale size influences one physical domain, why it would not influence the coupling between two or more domains? Or in other words, if both mechanical and thermal properties are different at the nanoscale, can mechanical strain influence thermal conductivity? The hypothesis of size induced multi-domain coupling is therefore the foundation of this dissertation. It is catalyzed by the only few computational studies available in the literature while experimental validations have been non-existent owing to experimental challenges. The objective of this research is to validate this hypothesis, which will open a novel avenue to tune properties and functionalities of materials with the size induced multi-domain coupling. Single domain characterization itself is difficult at the nanoscale due to specimen

  10. Effect of diet on mechanical properties of horse's hair.

    PubMed

    Kania, Małgorzata; Mikołajewska, Dorota; Marycz, Krzysztof; Kobielarz, Magdalena

    2009-01-01

    The aim of this research was to assess the effect of diet supplementation with zinc and copper, in different chemical forms (organic and inorganic), on the mechanical properties of the hair of healthy English thoroughbred horses. Hairs were taken from 18 horses which had been fed with oats and hay for a period of 110 days. Twelve of the horses had been additionally given a daily dose of 700 g of highquality 44-ingredients Fohlengold St-Hippolyt muesli made by Muhle Ebert Dilheim. Six of them had received the muesli-containing organic zinc and copper (OS), while the other six horses had received the muesli-containing inorganic zinc and copper (IS). The mechanical properties of the hairs before and after the supplementation period were tested in a Synergie 100 (MTS) testing machine. Each of the hairs was loaded at a constant rate of 20 mm/min until rupture. Young modulus (E), breaking stress (Ru) and yield point (Rs) of the particular hairs were determined. No significant changes in the mechanical parameters were observed in the reference group in which the horses were fed with only oats and hay for the whole experimental period of 110 days. The supplementation of the diet with inorganic zinc and copper resulted in an increase in the elasticity and diameter of the hairs and in a simultaneous reduction in their strength. Whereas organic zinc and copper caused an increase in the elasticity and strength of the hairs and a simultaneous reduction in their diameter. It has been shown that the organic form of the supplemented trace zinc and copper (mainly copper) elements has a beneficial effect on the mechanical properties of the hairs since it results in an increase in both their elasticity and strength.

  11. Morphology, orientation, and mechanical properties of gelatin films

    SciTech Connect

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can be formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.

  12. Mechanical properties of single electrospun drug-encapsulated nanofibres

    PubMed Central

    Chew, Sing Yian; Hufnagel, Todd C; Lim, Chwee Teck; Leong, Kam W

    2008-01-01

    The mechanical and structural properties of a surface play an important role in determining the morphology of attached cells, and ultimately their cellular functions. As such, mechanical and structural integrity are important design parameters for a tissue scaffold. Electrospun fibrous meshes are widely used in tissue engineering. When in contact with electrospun scaffolds, cells see the individual micro- or nanofibres as their immediate microenvironment. In this study, tensile testing of single electrospun nanofibres composed of poly(ε-caprolactone) (PCL), and its copolymer, poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP), revealed a size effect in the Young's modulus, E, and tensile strength, σT. Both strength and stiffness increase as the fibre diameter decreases from bulk (∼5 μm) into the nanometre region (200–300 nm). In particular, E and σT of individual PCL nanofibres were at least two-fold and an order of magnitude higher than that of PCL film, respectively. PCL films were observed to have more pronounced crystallographic texture than the nanofibres; however no difference in crystalline fraction, perfection, or texture was detected among the various fibres. When drugs were encapsulated into single PCLEEP fibres, mechanical properties were enhanced with 1–20 wt% of loaded retinoic acid, but weakened by 10–20 wt% of encapsulated bovine serum albumin. This understanding of the effect of size and drug and protein encapsulation on the mechanical properties of electrospun fibres may help in the optimization of tissue scaffold design that combines biochemical and biomechanical cues for tissue regeneration. PMID:19079553

  13. Mechanical properties of lunar regolith and lunar soil simulant

    NASA Technical Reports Server (NTRS)

    Perkins, Steven W.

    1989-01-01

    Through the Surveyor 3 and 7, and Apollo 11-17 missions a knowledge of the mechanical properties of Lunar regolith were gained. These properties, including material cohesion, friction, in-situ density, grain-size distribution and shape, and porosity, were determined by indirect means of trenching, penetration, and vane shear testing. Several of these properties were shown to be significantly different from those of terrestrial soils, such as an interlocking cohesion and tensile strength formed in the absence of moisture and particle cementation. To characterize the strength and deformation properties of Lunar regolith experiments have been conducted on a lunar soil simulant at various initial densities, fabric arrangements, and composition. These experiments included conventional triaxial compression and extension, direct tension, and combined tension-shear. Experiments have been conducted at low levels of effective confining stress. External conditions such as membrane induced confining stresses, end platten friction and material self weight have been shown to have a dramatic effect on the strength properties at low levels of confining stress. The solution has been to treat these external conditions and the specimen as a full-fledged boundary value problem rather than the idealized elemental cube of mechanics. Centrifuge modeling allows for the study of Lunar soil-structure interaction problems. In recent years centrifuge modeling has become an important tool for modeling processes that are dominated by gravity and for verifying analysis procedures and studying deformation and failure modes. Centrifuge modeling is well established for terrestrial enginering and applies equally as well to Lunar engineering. A brief review of the experiments is presented in graphic and outline form.

  14. Managing retention.

    PubMed

    Carter, Tony

    2007-01-01

    To build this process it is necessary to consult customers for preferences, build familiarity and knowledge to build a relationship and conduct business in a customized fashion. The process takes every opportunity to build customer satisfaction with each customer contact. It is an important process to have, since customers today are more demanding, sophisticated, educated and comfortable speaking to the company as an equal (Belk, 2003). Customers have more customized expectations so they want to be reached as individuals (Raymond and Tanner, 1994). Also, a disproportionate search for new business is costly. The cost to cultivate new customers is more than maintaining existing customers (Cathcart, 1990). Other reasons that customer retention is necessary is because many unhappy customers will never buy again from a company that dissatisfied them and they will communicate their displeasure to other people. These dissatisfied customers may not even convey their displeasure but without saying anything just stop doing business with that company, which may keep them unaware for some time that there is any problem (Cathcart, 1990). PMID:18453139

  15. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  16. The mechanical properties of human ribs in young adult.

    PubMed

    Pezowicz, Celina; Głowacki, Maciej

    2012-01-01

    A good understanding of thoracic biomechanics is important for complete examination and control of chest behaviour under conditions of physiological and pathological work, and under the impact of external forces leading to traumatic loading of the chest. The purpose of the study was to analyse the mechanical properties of human ribs obtained from individuals under the age of 25 with scoliosis deformation and to correlate them with geometric properties of ribs. Thirty three fragments of ribs (9th to 12th) were tested in three-point bending. Rib fragments were collected intraoperatively from female patients treated for scoliosis in the thoracic, thoracolumbar, and lumbar spine. The results were used to determine the maximum failure force, stiffness, and Young's modulus. A significant relationship was found between the age and elastic modulus of the ribs. The analysis was carried out for two age groups, i.e., between the ages of 10 and 15 and between the ages of 16 and 22, and statistically significant differences were obtained for Young's modulus (p = 0.0001) amounting to, respectively, 2.79 ± 1.34 GPa for the first group and 7.44 ± 2.85 GPa for the second group. The results show a significant impact of age on the mechanical properties of ribs.

  17. Dynamic and mechanical properties of supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-04-01

    Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh2 and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts.

  18. Effects of prestresses on mechanical properties of isotropic graphite materials

    NASA Astrophysics Data System (ADS)

    Oku, T.; Kurumada, A.; Imamura, Y.; Kawamata, K.; Shiraishi, M.

    1998-10-01

    Graphite materials which are used for plasma facing components and other components are subjected to stresses due to the high heat flux from the fusion plasma. Some mechanical properties of graphite materials can change due to the prestresses. The property changes should be considered for the design of the plasma facing components. The purpose of this study is to examine the effects of prestresses on the mechanical properties of isotropic graphite materials. Compressive prestresses were applied to two kinds of isotropic fine-grained graphites (IG-430 and IG-11) at 298 K (both), 1873 K (IG-11), 2273 K (IG-11) and 2283 K (IG-430). As a result, the decrease in Young's modulus for IG-430 due to high-temperature prestressing was 56% which was much larger than the 6.4% that was due to prestressing at 298 K. The results for IG-11 were the same as those for IG-430 graphite. This finding was considered to be due primarily to a difference in degree of the preferred orientation of crystallites in the graphite on the basis of the Bacon anisotropy factor (BAF) obtained from X-ray diffraction measurement of the prestressed specimens. Furthermore, high-temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that the isotropic graphite which is subjected to high-temperature compressive stresses can become anisotropic in service.

  19. Local Mechanical Properties by Atomic Force Microscopy Nanoindentations

    NASA Astrophysics Data System (ADS)

    Tranchida, Davide; Piccarolo, Stefano

    The analysis of mechanical properties on a nanometer scale is a useful tool for combining information concerning texture organization obtained by microscopy with the properties of individual components. Moreover, this technique promotes the understanding of the hierarchical arrangement in complex natural materials as well in the case of simpler morphologies arising from industrial processes. Atomic Force Microscopy (AFM) can bridge morphological information, obtained with outstanding resolution, to local mechanical properties. When performing an AFM nanoindentation, the rough force curve, i.e., the plot of the voltage output from the photodiode vs. the voltage applied to the piezo-scanner, can be translated into a curve of the applied load vs. the penetration depth after a series of preliminary determinations and calibrations. However, the analysis of the unloading portion of the force curves collected for polymers does not lead to a correct evaluation of Young's modulus. The high slope of the unloading curves is not linked to an elastic behavior, as would be expected, but rather to a viscoelastic effect. This can be argued on the basis that the unloading curves are superimposed on the loading curves in the case of an ideal elastic behavior, as for rubbers, or generally in the case of materials with very short relaxation times. In contrast, when the relaxation time of the sample is close to or even much larger than the indentation time scale, very high slopes are recorded.

  20. Optical and mechanical properties of thermally evaporated fluoride thin films

    SciTech Connect

    Zhang, K.; Fahey, R.; Jasinski, D.; Scarpino, C.; Dziendziel, R.; Burger, S.; DePoy, D.

    1998-06-08

    As a result of health and safety issues surrounding the use of radioactive materials on coated optical components, there has been renewed interest in coating materials whose optical and mechanical properties approach those offered by their radioactive counterparts. Due to the radioactive nature of ThF{sub 4} and its widespread use in optical coatings, the coating industry is examining other low index and non-radioactive fluorides as possible alternatives. In this paper, the authors present the results of an experimental study on the optical and mechanical properties of thermally evaporated ThF{sub 4}, DyF{sub 3}, CeF{sub 3}, LiF, HfF{sub 4}, IRX, and IRB thin films, where the materials were deposited at different substrate temperatures. The objective is to examine this series of fluorides under comparable deposition conditions and with respect to such material properties as: n and k, film stress, and environmental stability. The optical constants of these fluorides were evaluated over the wavelength region from 1.0 {micro}m to 12.5 {micro}m.

  1. Dynamic and mechanical properties of supported lipid bilayers.

    PubMed

    Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-04-21

    Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh(2) and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts. PMID:27389237

  2. High-Throughput Assessment of Cellular Mechanical Properties.

    PubMed

    Darling, Eric M; Di Carlo, Dino

    2015-01-01

    Traditionally, cell analysis has focused on using molecular biomarkers for basic research, cell preparation, and clinical diagnostics; however, new microtechnologies are enabling evaluation of the mechanical properties of cells at throughputs that make them amenable to widespread use. We review the current understanding of how the mechanical characteristics of cells relate to underlying molecular and architectural changes, describe how these changes evolve with cell-state and disease processes, and propose promising biomedical applications that will be facilitated by the increased throughput of mechanical testing: from diagnosing cancer and monitoring immune states to preparing cells for regenerative medicine. We provide background about techniques that laid the groundwork for the quantitative understanding of cell mechanics and discuss current efforts to develop robust techniques for rapid analysis that aim to implement mechanophenotyping as a routine tool in biomedicine. Looking forward, we describe additional milestones that will facilitate broad adoption, as well as new directions not only in mechanically assessing cells but also in perturbing them to passively engineer cell state.

  3. Monte Carlo studies of the mechanical properties of biopolymers

    NASA Astrophysics Data System (ADS)

    Sadeghi, Sara

    Biopolymers are one of the main components of living systems. Their sequence dictates their structure that ultimately determines their function. Many factors play key mechanical roles in the cell and one of the most abundant biopolymers that is involved in such tasks is the class of coiled-coil proteins. Various theoretical and experimental studies have been done to explore the mechanical properties of these proteins and there are now a number of single molecule measurements that measure their force response characteristics, making coiled-coils an excellent model system to test folding models connecting sequence to structure to function. In this thesis we have developed a coarse-grained atomistic model to study coiled-coil formation and explore both mechanical and thermal properties. Our model is able to reproduce known coiled-coil structures using only a simple hydrophobic-polar (HP) representation of their sequence and is able to explain the observed mechanical response measured in single molecule experiments. To address how common coiled-coil formation is with respect to all possible helix packs, we have evaluated the designability of the space of possible helical folds, defined as the number of sequences that can fold into a particular structure. We find that left-handed coils emerge as one of the most highly designable structures. From the designability calculation we can identify sequence patterns that design particular coiled-coil folds and mutations that lead to their instability. We also predict that designable coiled-coil structures are more mechanically stable than less designable helical packs. Keywords: Monte Carlo; coiled-coils; alpha-helices; transition force; transition temperature; designability

  4. Atomic vacancies significantly degrade the mechanical properties of phosphorene

    NASA Astrophysics Data System (ADS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Zhang, Ying-Yan; Zhang, Yong-Wei

    2016-08-01

    Due to low formation energies, it is very easy to create atomic defects in phosphorene during its fabrication process. How these atomic defects affect its mechanical behavior, however, remain unknown. Here, we report on a systematic study of the effect of atomic vacancies on the mechanical properties and failure behavior of phosphorene using molecular dynamics simulations. It is found that atomic vacancies induce local stress concentration and cause early bond-breaking, leading to a significant degradation of the mechanical properties of the material. More specifically, a 2% concentration of randomly distributed mono-vacancies is able to reduce the fracture strength by ∼40%. An increase in temperature from 10 to 400 K can further deteriorate the fracture strength by ∼60%. The fracture strength of defective phosphorene is also found to be affected by defect distribution. When the defects are patterned in a line, the reduction in fracture strength greatly depends on the tilt angle and the loading direction. Furthermore, we find that di-vacancies cause an even larger reduction in fracture strength than mono-vacancies when the loading is in an armchair direction. These findings provide important guidelines for the structural design of phosphorene in future applications.

  5. Atomic vacancies significantly degrade the mechanical properties of phosphorene.

    PubMed

    Sha, Zhen-Dong; Pei, Qing-Xiang; Zhang, Ying-Yan; Zhang, Yong-Wei

    2016-08-01

    Due to low formation energies, it is very easy to create atomic defects in phosphorene during its fabrication process. How these atomic defects affect its mechanical behavior, however, remain unknown. Here, we report on a systematic study of the effect of atomic vacancies on the mechanical properties and failure behavior of phosphorene using molecular dynamics simulations. It is found that atomic vacancies induce local stress concentration and cause early bond-breaking, leading to a significant degradation of the mechanical properties of the material. More specifically, a 2% concentration of randomly distributed mono-vacancies is able to reduce the fracture strength by ∼40%. An increase in temperature from 10 to 400 K can further deteriorate the fracture strength by ∼60%. The fracture strength of defective phosphorene is also found to be affected by defect distribution. When the defects are patterned in a line, the reduction in fracture strength greatly depends on the tilt angle and the loading direction. Furthermore, we find that di-vacancies cause an even larger reduction in fracture strength than mono-vacancies when the loading is in an armchair direction. These findings provide important guidelines for the structural design of phosphorene in future applications.

  6. Probing mechanical properties of living cells by magnetopneumography.

    PubMed

    Möller, W; Takenaka, S; Rust, M; Stahlhofen, W; Heyder, J

    1997-01-01

    Magnetopneumography (MPG) has been used to study long-term particle clearance from human lungs as well as cellular motility of pulmonary macrophages (PMs). This study describes an extension of the method enabling the measurement of mechanical properties of PM cells in vivo. Ferromagnetic microparticles are inhaled and then retained in the alveolar region of the lungs, where they are phagocytized within hours by PMs. The magnetic particles can be rotated in weak magnetic fields, and the response to this twisting shear (force) is detected as a macroscopic magnetic field producing a measure of cytoskeletal mechanics. Cytoplasmic viscosity is very high compared with that of water and is strongly non-Newtonian. Under rotational stresses from 0.4 to 6.4 Pa, it acts like a pseudoplastic fluid showing a characteristic shear rate dependence. The viscosity as well as the stiffness of the cytoskeleton increases with increasing shear stress as seems typical for living tissue and evidence for an intact cytoskeletal matrix. The particle recoil as measured by the amount of recoverable strain following a short twisting force describes a cytoplasmic elasticity that depends on both level and duration of stress. These investigations on the mechanical properties of living human cells are promising and should lead to better understanding of cellular dysfunction in disease as well as pathways for drug administration. PMID:10174196

  7. Mechanical properties of borophene films: a reactive molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Quy Le, Minh; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1–0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young’s modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young’s modulus and fracture stress of these five sheets appear in the range 63–136 N m‑1 and 12–19 N m‑1, respectively. In addition, the strains at tensile strength are in the ranges of 9%–14%, 11%–19%, and 10%–16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  8. Mechanical properties for irradiated face-centred cubic nanocrystalline metals

    PubMed Central

    Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.

    2015-01-01

    In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091

  9. Mechanical properties of borophene films: a reactive molecular dynamics investigation.

    PubMed

    Le, Minh Quy; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young's modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young's modulus and fracture stress of these five sheets appear in the range 63-136 N m(-1) and 12-19 N m(-1), respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures. PMID:27678335

  10. Mechanical Property of HVOF Inconel 718 Coating for Aeronautic Repair

    NASA Astrophysics Data System (ADS)

    Lyphout, Christophe; Fasth, Angelica; Nylen, Per

    2014-02-01

    The module of elasticity is one of the most important mechanical properties defining the strength of a material which is a prerequisite to design a component from its early stage of conception to its field of application. When a material is to be thermally sprayed, mechanical properties of the deposited layers differ from the bulk material, mainly due to the anisotropy of the highly textured coating microstructure. The mechanical response of the deposited layers significantly influences the overall performance of the coated component. It is, therefore, of importance to evaluate the effective module of elasticity of the coating. Conventional experimental methods such as microindentation, nanoindentation and four-point bending tests have been investigated and their results vary significantly, mainly due to inhomogeneous characteristics of the coating microstructure. Synchrotron radiation coupled with a tensile test rig has been proposed as an alternative method to determine the coating anisotropic elastic behavior dependence on crystallographic orientations. The investigation was performed on Inconel 718 (IN718) HVOF coatings sprayed on IN718 substrates. Combining these experimental techniques yield a deeper understanding of the nature of the HVOF coating Young's modulus and thus a tool for Design Practice for repair applications.

  11. Study on Thermal and Mechanical Properties of EPDM Insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-Shui; Xu, Jin-Sheng; Chen, Xiong; Jiang, Jing

    As the most common insulation material of solid rocket motors, thermal and mechanical properties of ethylene propylene diene monomer (EPDM) composite are inspected in the study. Referring to the results of thermogravimetric analysis (TGA), composition and morphology of EPDM composite in different thermal degradation degree are investigated by scanning electron microscope (SEM) to inspect the mechanism of thermal insulation. Mechanical properties of EPDM composite in the state of pyrolysis are investigated by uniaxial tensile tests. At the state of initial pyrolysis, composite belongs to the category of hyperelastic-viscoelastic material. The tendency of tensile strength increased and elongation decreased with increasing of heating temperature. Composite behaves as the linear rule at the state of late pyrolysis, which belongs to the category of bittle. The elasticity modulus of curves are almost the same while the heating temperature ranges from 200°C to 300°C, and then gradually go down. The tensile strength of pyrolytic material reach the highest at the heating temperature of 300°C, and the virgin material has the largest elongation.

  12. Mechanical properties of borophene films: a reactive molecular dynamics investigation.

    PubMed

    Le, Minh Quy; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young's modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young's modulus and fracture stress of these five sheets appear in the range 63-136 N m(-1) and 12-19 N m(-1), respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures.

  13. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  14. Mechanical property degradation of graphite/polyimide composites after exposure to moisture or shuttle orbiter fluids

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1979-01-01

    The effects of moisture exposure on the mechanical properties of graphite polyimide systems are presented. The mechanism of the degradation and the magnitude of the affect associated with specific mechanical properties is investigated. An experimental effort involving exposure to selected environmental variables and subsequent mechanical property testing and analysis is included.

  15. Mechanical Properties of ZnSe for the FEANICS Module

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2006-01-01

    Mechanical and physical properties of ZnSe windows to be used with the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) experiments were measured in order to determine design allowables. In addition, the literature on crack growth properties was summarized. The average Young's modulus, Poisson's ratio, equibiaxial fracture strength, flaw size, grain size, Knoop hardness, Vicker's hardness, and branching constant were 74.3 +/- 0.1 GPa, 0.31, 57.8 +/- 6.5 MPa, 21 4 mm, 43 +/- 9 micron, 0.97 +/- 0.02 GPa, 0.97 +/- 0.02 GPa, and 1.0 +/- 0.1 MPam(exp 0.5), respectively. The properties of current ZnSe made by chemical vapor deposition are in good agreement with those measured in the 1970's. The hardness of CVD ZnSe windows is about one twentieth of the sapphire window being replaced, and about one-sixth of that of window glass. Thus the ZnSe window must be handled with great care. The large grain size relative to the inherent crack size implies the need to use single crystal crack growth properties in the design process. In order to determine the local failure stresses in one of the test specimens, a solution for the stresses between the support ring and the edge of a circular plate load between concentric rings was derived.

  16. Low-temperature mechanical properties of glass/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-01

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  17. Modeling the mechanical properties of liver fibrosis in rats.

    PubMed

    Zhu, Ying; Chen, Xin; Zhang, Xinyu; Chen, Siping; Shen, Yuanyuan; Song, Liang

    2016-06-14

    The progression of liver fibrosis changes the biomechanical properties of liver tissue. This study characterized and compared different liver fibrosis stages in rats in terms of viscoelasticity. Three viscoelastic models, the Voigt, Maxwell, and Zener models, were applied to experimental data from rheometer tests and then the elasticity and viscosity were estimated for each fibrosis stage. The study found that both elasticity and viscosity are correlated with the various stages of liver fibrosis. The study revealed that the Zener model is the optimal model for describing the mechanical properties of each fibrosis stage, but there is no significant difference between the Zener and Voigt models in their performance on liver fibrosis staging. Therefore the Voigt model can still be effectively used for liver fibrosis grading. PMID:27017300

  18. Double-peak mechanical properties of carbon-nanotube fibers.

    PubMed

    Zhao, Jingna; Zhang, Xiaohua; Di, Jiangtao; Xu, Geng; Yang, Xiaojie; Liu, Xiangyang; Yong, Zhenzhong; Chen, Minghai; Li, Qingwen

    2010-11-22

    The introduction of twist during the spinning of carbon nanotubes from their arrays (forests) has been widely applied in making ultrastrong, stiff, and lightweight nanotube fibers. Here, for the first time, an important observation of a double-peak behavior of the tensile properties, as a function of the twist angle, that is different from the single peak of traditional fibers is reported. Raman spectra show that the new peak arises from the collapse of nanotubes, showing a strong "nano" element in applying the ancient draw-and-twist technique, besides the downsizing. A qualitative continuum model is also presented to describe the collapse-induced enhancement as well as traditional fibers. Our combined experimental and theoretical studies indicate the direction of full utilization of the nano element in improving the mechanical properties of nanotube fibers. PMID:20941775

  19. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  20. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  1. Low-temperature mechanical properties of glass/epoxy laminates

    SciTech Connect

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  2. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  3. Mechanical properties of the gastrocnemius aponeurosis in wild turkeys

    PubMed Central

    Azizi, Emanuel; Halenda, Gregory M.; Roberts, Thomas J.

    2009-01-01

    In many muscles, the tendinous structures include both an extramuscular free tendon as well as a sheet-like aponeurosis. In both free tendons and aponeuroses the collagen fascicles are oriented primarily longitudinally, along the muscle's line of action. It is generally assumed that this axis represents the direction of loading for these structures. This assumption is well founded for free tendons, but aponeuroses undergo a more complex loading regime. Unlike free tendons, aponeuroses surround a substantial portion of the muscle belly and are therefore loaded both parallel (longitudinal) and perpendicular (transverse) to a muscle's line of action when contracting muscles bulge to maintain a constant volume. Given this biaxial loading pattern, it is critical to understand the mechanical properties of aponeuroses in both the longitudinal and transverse directions. In this study, we use uniaxial testing of isolated tissue samples from the aponeurosis of the lateral gastrocnemius of wild turkeys to determine mechanical properties of samples loaded longitudinally (along the muscle's line of action) and transversely (orthogonal to the line of action). We find that the aponeurosis has a significantly higher Young's modulus in the longitudinal than in the transverse direction. Our results also show that aponeuroses can behave as efficient springs in both the longitudinal and transverse directions, losing little energy to hysteresis. We also test the failure properties of aponeuroses to quantify the likely safety factor with which these structures operate during muscular force production. These results provide an essential foundation for understanding the mechanical function of aponeuroses as biaxially loaded biological springs. PMID:21120110

  4. Mechanical properties of a biodegradable bone regeneration scaffold

    NASA Technical Reports Server (NTRS)

    Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J.

    2000-01-01

    Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.

  5. Thermal and mechanical treatments for nickel and some nickel-base alloys: Effects on mechanical properties

    NASA Technical Reports Server (NTRS)

    Hall, A. M.; Beuhring, V. F.

    1972-01-01

    This report deals with heat treating and working nickel and nickel-base alloys, and with the effects of these operations on the mechanical properties of the materials. The subjects covered are annealing, solution treating, stress relieving, stress equalizing, age hardening, hot working, cold working, combinations of working and heat treating (often referred to as thermomechanical treating), and properties of the materials at various temperatures. The equipment and procedures used in working the materials are discussed, along with the common problems that may be encountered and the precautions and corrective measures that are available.

  6. Mechanical properties of several Fe-Ni meteorites

    SciTech Connect

    Mulford, Roberta N; El - Dasher, Bassem

    2010-10-28

    The strength and elastic constants of meteorites are of increasing interest as predictions of meteorite impacts on earth come within the realm of possibility. In addition, meteorite impacts on extraterrestrial bodies provide an excellent sampling tool for evaluation of planetary compositions and properties. Fe-Ni meteorites provide a well-defined group of materials of fairly uniform composition. Iron-nickel meteorites exhibit a unique lamellar microstructure, a Widmanstatten structure, consisting of small regions with steep-iron-nickel composition gradients. This microstructure is found in the Fe-Ni system only in meteorites, and is believed to arise as a result of slow cooling in a planetary core or other large mass. Meteorites with compositions consisting of between 5 and 17% nickel in iron are termed 'octahedrite,' and further characterized according to the width of the Ni-poor kamacite bands; 'fine,' (0.2-0.5 mm) 'medium,' (0.5-1.3 mm) and 'coarse,' (1.5-3.3 mm). Many meteorites have inclusions and structures indicating that the material has been shocked at some point early in its evolution. Several Iron-nickel meteorites have been examined using Vickers and spherical indentation, x-ray fluorescence, and EBSD. Direct observation of mechanical properties in these highly structured materials provides a valuable supplement to bulk measurements, which frequently exhibit large variation in dynamic properties, even within a single sample. Previous studies of the mechanical properties of a typical iron-nickel meteorite, a Diablo Canyon specimen, indicated that the strength of the composite was higher by almost an order of magnitude than values obtained from laboratory-prepared specimens. Additional meteorite specimens have been examined to establish a range of error on the previously measured yield, to determine the extent to which deformation upon re-entry contributes to yield, and to establish the degree to which the strength varies as a function of microstructure.

  7. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  8. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  9. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  10. Electronic, mechanical and dielectric properties of silicane under tensile strain

    SciTech Connect

    Jamdagni, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  11. Electronic, mechanical and dielectric properties of silicane under tensile strain

    NASA Astrophysics Data System (ADS)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  12. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  13. Nanometer scale mechanical properties of Au(111) thin films

    SciTech Connect

    Salmeron, M.; Folch, A.; Neubauer, G.

    1992-11-01

    The mechanical properties of gold films of (111) orientation were studied as a function of load when contacted by a single asperity Pt-Rh alloy tip. The interaction forces were measured in the direction perpendicular to the surface. The contribution of various types of forces (van der Waals, capillarity from contaminants, and metallic adhesion) in the process of contact was determined. We investigated the elastic and plastic response of the gold film as a function of applied load by examination of the contact area in subsequent imaging with STM and AFM.

  14. Microstructure and mechanical properties of eutectic nickel alloy coatings

    NASA Astrophysics Data System (ADS)

    Bezborodov, V. P.; Saraev, Yu N.

    2016-04-01

    The paper discusses the peculiarities of a structure and a coating composition after reflow. It was established that the structure of coatings from nickel alloy is a solid solution based on nickel, the eutectic of γ-Ni+Ni3B composition and dispersed reinforcing particles. The content of alloying elements in the initial powder material determines the type of the coating structure and the formation of hypoeutectic or hypereutectic structures. The influence of formation conditions on the structure and physical-mechanical properties of the coatings is considered in this paper.

  15. Shear mechanical properties of the spleen: experiment and analytical modelling.

    PubMed

    Nicolle, S; Noguer, L; Palierne, J-F

    2012-05-01

    This paper aims at providing the first shear mechanical properties of spleen tissue. Rheometric tests on porcine splenic tissues were performed in the linear and nonlinear regime, revealing a weak frequency dependence of the dynamic moduli in linear regime and a distinct strain-hardening effect in nonlinear regime. These behaviours are typical of soft tissues such as kidney and liver, with however a less pronounced strain-hardening for the spleen. An analytical model based on power laws is then proposed to describe the general shear viscoelastic behaviour of the spleen. PMID:22498291

  16. On the mechanical and electronic properties of thiolated gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Smaali, K.; Desbief, S.; Foti, G.; Frederiksen, T.; Sanchez-Portal, D.; Arnau, A.; Nys, J. P.; Leclère, P.; Vuillaume, D.; Clément, N.

    2015-01-01

    We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single nanoparticle (NP) level. We determined the response of the NPs to external pressure in a controlled manner using an atomic force microscope tip. We found a strong reduction in their Young's modulus, as compared to bulk gold, and a significant influence of strain on the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases by increasing the applied load, which translates in a remarkable and unprecedented increase in the tunnel current. These observations are successfully explained using simulations based on the finite element analysis (FEA) and first-principles calculations that permit one to consider the coupling between the mechanical response of the system and the electric dipole variations at the interface.We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single nanoparticle (NP) level. We determined the response of the NPs to external pressure in a controlled manner using an atomic force microscope tip. We found a strong reduction in their Young's modulus, as compared to bulk gold, and a significant influence of strain on the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases by increasing the applied load, which translates in a remarkable and unprecedented increase in the tunnel current. These observations are successfully explained using simulations based on the finite element

  17. Mechanical and electrical properties of polycarbonate nanotube buckypaper composite sheets.

    PubMed

    Pham, Giang T; Park, Young-Bin; Wang, Shiren; Liang, Zhiyong; Wang, Ben; Zhang, Chuck; Funchess, Percy; Kramer, Leslie

    2008-08-13

    The thermogravimetric, mechanical, and electrical properties of composite sheets produced by infiltrating single-wall carbon nanotube films (also known as 'buckypapers') with polycarbonate solution were characterized. The composite sheets showed improved stiffness and toughness, while the electrical conductivity decreased, as compared to a neat buckypaper. In addition, polycarbonate/buckypaper composite sheets showed higher resistance to handling and processing damages. Experimental results suggest the viability of the infiltration process as a means to toughen buckypapers and to fabricate polymer/carbon nanotube composites having high nanotube concentration and controlled nanotube structure.

  18. Genetic and environmental modification of the mechanical properties of wood

    NASA Astrophysics Data System (ADS)

    Sederoff, R.; Allona, I.; Whetten, R.

    1996-02-01

    Wood is one of the nation's leading raw materials and is used for a wide variety of products, either directly as wood, or as derived materials in pulp and paper. Wood is a biological material and evolved to provide mechanical support and water transport to the early plants that conquered the land. Wood is a tissue that results from the differentiation and programmed cell death of cells that derive from a tissue known as the vascular cambium. The vascular cambium is a thin cylinder of undifferentiated tissue in plant stems and roots that gives rise to several different cell types. Cells that differentiate on the internal side of the cambium form xylem, a tissue composed in major part, of long thin cells that die leaving a network of interconnected cell walls that serve to transport water and to provide mechanical support for the woody plant. The shape and chemical composition of the cells in xylem are well suited for these functions. The structure of cells in xylem determines the mechanical properties of the wood because of the strength derived from the reinforced matrix of the wall. The hydrophobic phenolic surface of the inside of the cell walls is essential to maintain surface tension upon which water transport is based and to resist decay caused by microorganisms. The properties of wood derived from the function of xylem also determine its structural and chemical properties as wood and paper products. Therefore, the physical and chemical properties of wood and paper products also depend on the morphology and composition of the cells from which they are derived. Wood (xylem cell walls) is an anisotropic material, a composite of lignocellulose. It is a matrix of cellulose microfibrils, complexed with hemicelluloses, (carbohydrate polymers which contain sugars other than glucose, both pentoses and hexoses), embedded together in a phenolic matrix of lignin. The high tensile strength of wood in the longitudinal direction, is due to the structure of cellulose and the

  19. Mechanical properties of porcine femoral cortical bone measured by nanoindentation.

    PubMed

    Feng, Liang; Chittenden, Michael; Schirer, Jeffrey; Dickinson, Michelle; Jasiuk, Iwona

    2012-06-26

    This study uses a nanoindentation technique to examine variations in the local mechanical properties of porcine femoral cortical bone under hydrated conditions. Bone specimens from three age groups (6, 12 and 42 months), representing developing bone, ranging from young to mature animals, were tested on the longitudinal and transverse cross-sectional surfaces. Elastic modulus and hardness of individual lamellae within bone's microstructure: laminar bone, interstitial bone, and osteons, were measured. Both the elastic modulus and hardness increased with age. However, the magnitudes of these increases were different for each microstructural component. The longitudinal moduli were higher than the transverse moduli. Dehydrated samples were also tested to allow a comparison with hydrated samples and these resulted in higher moduli and hardness than the hydrated samples. Again, the degree of variation was different for each microstructural component. These results indicate that the developmental changes in bone have different rates of mechanical change within each microstructural component.

  20. Mechanical properties study of SW480 cells based on AFM.

    PubMed

    Liu, Xiaogang; Song, Zhengxun; Qu, Yingmin; Wang, Guoliang; Wang, Zuobin

    2015-08-01

    Since the invention of the atomic force microscope (AFM), it has been widely applied in biomedicine. One of the most important applications is used as an indenter tool to do the indentation experiment in order to get the mechanical properties of cells. In this paper, SW480 cells were used as the test subjects. Through the analysis of the contact and indentation, Young's modulus (E), which is an important parameter of cancer cells, has been estimated. Experimental results show that different mechanical models should be chosen to calculate the E in different indentation depths. Here, the E of SW480 cells was (2.5 ± 0.8) KPa a