78 FR 51678 - Market Tests of Experimental Postal Products
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
...] Market Tests of Experimental Postal Products AGENCY: Postal Regulatory Commission. ACTION: Proposed rule... tests of experimental products. The proposed rules address the contents of market test filings, describe... Tests I. Introduction The Commission proposes to establish rules governing market tests of experimental...
Experimental investigation of an astronaut maneuvering scheme.
NASA Technical Reports Server (NTRS)
Kane, T. R.; Headrick, M. R.; Yatteau, J. D.
1972-01-01
A new concept for astronaut maneuvering in space is proposed, and an experimental study undertaken to test this concept is described. The series of experiments performed appear to promise advantages over previously proposed schemes in terms of propellant economy, system weight, reliability, and safety. The simulation tests established the feasibility of the proposed maneuvering concept by showing that test subjects were able to place their bodies sufficiently near the reference position to avoid excessive angular momentum build-up; no difficulties were encountered in selecting self-rotation maneuvers suitable for effecting desired changes in orientation; and the execution of these maneuvers produced predicted reorientations without tiring the test subject significantly.
Code of Federal Regulations, 2012 CFR
2012-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2011 CFR
2011-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2010 CFR
2010-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2014 CFR
2014-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
Code of Federal Regulations, 2013 CFR
2013-07-01
... program will be destroyed or fed only to experimental animals for testing purposes, or otherwise disposed... product, if registered; (iii) The purpose or objectives of the proposed testing; a description in detail of the proposed testing program including test parameters; a designation of the pest organism(s...
ERIC Educational Resources Information Center
Fagan, Mary K.; Doveikis, Kate N.
2017-01-01
Purpose: This study tested proposals that maternal verbal responses shape infant vocal development, proposals based in part on evidence that infants modified their vocalizations to match mothers' experimentally manipulated vowel or consonant-vowel responses to most (i.e., 70%-80%) infant vocalizations. We tested the proposal in ordinary rather…
77 FR 64566 - Market Test of Experimental Product-Metro Post
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-22
... Metro Post. This document describes the proposed test, addresses procedural aspects of the filing, and.... \\1\\ Notice of the United States Postal Service of Market Test of Experimental Product--Metro Post... the Metro Post market test under seal. Notice at 4. The Postal Service classifies Metro Post as a...
Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Thomas, Job; Ramadass, S.
2016-09-01
Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.
2006-02-01
Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.
78 FR 41128 - Market Test of International Merchandise Return Service
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
... POSTAL REGULATORY COMMISSION [Docket No. MT2013-2; Order No. 1771] Market Test of International... noticing a recently-filed Postal Service proposal to conduct a market test of a competitive experimental..., pursuant to 39 U.S.C. 3641, announcing its intent to conduct a market test of a competitive experimental...
Adaptive identification of vessel's added moments of inertia with program motion
NASA Astrophysics Data System (ADS)
Alyshev, A. S.; Melnikov, V. G.
2018-05-01
In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.
Shoreline Erosion and Proposed Control at Experimental Facility 15-Spesutie Island
2017-09-01
Island, it is made up of various facilities and ranges designed for weapons testing as well as automotive testing . These ranges belong to the...ARL-SR-0383 ● SEP 2017 US Army Research Laboratory Shoreline Erosion and Proposed Control at Experimental Facility 15–Spesutie...in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation
NASA Astrophysics Data System (ADS)
Aminuddin, K. M.; Saggaff, Anis; Tahir, Mahmood Md
2017-11-01
Beam-to-column connections setting up as isolated joint of cold-formed steel sections were tested up to failure. This experiment was conducted to observe the behaviour of connection in term of strength, stiffness and ductility. The type of connection used was rectangular gusset plate which stiffen the beam-to-column connection. The behaviour of the proposed connection was expressed with Moment-Rotation curves plotted from the experiment test results. The capacity of connections on this research were done in two ways: theoretical calculation by adopting Eurocode 3 BS EN 1993-1-8:2005 and experimental test results. The theoretical calculation of the moment capacit y of the proposed connection has found (Mj) to be 10.78 kNm with joint stiffness (Sj) amount to 458.53 kNm/rad. The experimental test results has recorded that the Moment capacity (Mj) of 15.68 kNm with joint stiffness (Sj) of 1948.06 kNm/rad. The moment ratio of theoretical to experimental amount to 0.69. The joint stiffness ratio of theoretical to experimental amount to 0.24.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology. The goals of the second six months of this project were to conduct high temperature sensing tests using the test chamber and optical sensing instrument designs developed in the first part of the project. In addition, a Phase I goal was to develop the basic processing theory and physics for the proposed first sensor experimentation and data processing. All these goals have been achieved and are described in detail. Both optical experimental design process and sensed temperature are provided. In addition, photographs of the fabricated SiC optical chips after deployment in the high temperature test chamber are shown from a material study point-of-view.« less
Replicates in high dimensions, with applications to latent variable graphical models.
Tan, Kean Ming; Ning, Yang; Witten, Daniela M; Liu, Han
2016-12-01
In classical statistics, much thought has been put into experimental design and data collection. In the high-dimensional setting, however, experimental design has been less of a focus. In this paper, we stress the importance of collecting multiple replicates for each subject in this setting. We consider learning the structure of a graphical model with latent variables, under the assumption that these variables take a constant value across replicates within each subject. By collecting multiple replicates for each subject, we are able to estimate the conditional dependence relationships among the observed variables given the latent variables. To test the null hypothesis of conditional independence between two observed variables, we propose a pairwise decorrelated score test. Theoretical guarantees are established for parameter estimation and for this test. We show that our proposal is able to estimate latent variable graphical models more accurately than some existing proposals, and apply the proposed method to a brain imaging dataset.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-15
... CRCR will design and administer the study. FDA is requesting OMB approval under the PRA for the CRCR to... distribution chain (Ref. 3). The goal of the proposed project is to test, by experimental study, whether the... will be assigned to one of the following experimental conditions (consisting of vignettes in the form...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Angular velocity estimation from measurement vectors of star tracker.
Liu, Hai-bo; Yang, Jun-cai; Yi, Wen-jun; Wang, Jiong-qi; Yang, Jian-kun; Li, Xiu-jian; Tan, Ji-chun
2012-06-01
In most spacecraft, there is a need to know the craft's angular rate. Approaches with least squares and an adaptive Kalman filter are proposed for estimating the angular rate directly from the star tracker measurements. In these approaches, only knowledge of the vector measurements and sampling interval is required. The designed adaptive Kalman filter can filter out noise without information of the dynamic model and inertia dyadic. To verify the proposed estimation approaches, simulations based on the orbit data of the challenging minisatellite payload (CHAMP) satellite and experimental tests with night-sky observation are performed. Both the simulations and experimental testing results have demonstrated that the proposed approach performs well in terms of accuracy, robustness, and performance.
Pilot Wave Model for Impulsive Thrust from RF Test Device Measured in Vacuum
NASA Technical Reports Server (NTRS)
White, Harold; Lawrence, James; Sylvester, Andre; Vera, Jerry; Chap, Andrew; George, Jeff
2017-01-01
A physics model is developed in detail and its place in the taxonomy of ideas about the nature of the quantum vacuum is discussed. The experimental results from the recently completed vacuum test campaign evaluating the impulsive thrust performance of a tapered RF test article excited in the TM212 mode at 1,937 megahertz (MHz) are summarized. The empirical data from this campaign is compared to the predictions from the physics model tools. A discussion is provided to further elaborate on the possible implications of the proposed model if it is physically valid. Based on the correlation of analysis prediction with experimental data collected, it is proposed that the observed anomalous thrust forces are real, not due to experimental error, and are due to a new type of interaction with quantum vacuum fluctuations.
NASA Astrophysics Data System (ADS)
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
General relativity at 75: how right was einstein?
Will, C M
1990-11-09
The status of experimental tests of general relativity is reviewed on the occasion of its 75th anniversary. Einstein's equivalence principle is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Tests of general relativity have reached high precision, including the light deflection and the perihelion advance of Mercury, proposed by Einstein 75 years ago, and new tests such as the Shapiro time delay and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected to an accuracy of 1 percent on the basis of measurements of the binary pulsar. The status of the "fifth force" is discussed, along with the frontiers of experimental relativity, including proposals for testing relativistic gravity with advanced technology and spacecraft.
Testing for intracycle determinism in pseudoperiodic time series.
Coelho, Mara C S; Mendes, Eduardo M A M; Aguirre, Luis A
2008-06-01
A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to lay the foundations for both the SiC front-end optical chip fabrication as well as the free-space laser beam interferometer designs and preliminary tests. In addition, a Phase I goal was to design and experimentally build the high temperature and pressure infrastructure and test systems that will be used in the next 6 months for proposed sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for the mechanical elements as well as the opticalmore » systems are provided. In addition, photographs of the fabricated SiC optical chips, the high temperature & pressure test chamber instrument, the optical interferometer, the SiC sample chip holder, and signal processing data are provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature optical sensor technology.« less
NASA Astrophysics Data System (ADS)
Zarrabian, Sina; Belkacemi, Rabie; Babalola, Adeniyi A.
2016-12-01
In this paper, a novel intelligent control is proposed based on Artificial Neural Networks (ANN) to mitigate cascading failure (CF) and prevent blackout in smart grid systems after N-1-1 contingency condition in real-time. The fundamental contribution of this research is to deploy the machine learning concept for preventing blackout at early stages of its occurrence and to make smart grids more resilient, reliable, and robust. The proposed method provides the best action selection strategy for adaptive adjustment of generators' output power through frequency control. This method is able to relieve congestion of transmission lines and prevent consecutive transmission line outage after N-1-1 contingency condition. The proposed ANN-based control approach is tested on an experimental 100 kW test system developed by the authors to test intelligent systems. Additionally, the proposed approach is validated on the large-scale IEEE 118-bus power system by simulation studies. Experimental results show that the ANN approach is very promising and provides accurate and robust control by preventing blackout. The technique is compared to a heuristic multi-agent system (MAS) approach based on communication interchanges. The ANN approach showed more accurate and robust response than the MAS algorithm.
Design and analysis of three-arm trials with negative binomially distributed endpoints.
Mütze, Tobias; Munk, Axel; Friede, Tim
2016-02-20
A three-arm clinical trial design with an experimental treatment, an active control, and a placebo control, commonly referred to as the gold standard design, enables testing of non-inferiority or superiority of the experimental treatment compared with the active control. In this paper, we propose methods for designing and analyzing three-arm trials with negative binomially distributed endpoints. In particular, we develop a Wald-type test with a restricted maximum-likelihood variance estimator for testing non-inferiority or superiority. For this test, sample size and power formulas as well as optimal sample size allocations will be derived. The performance of the proposed test will be assessed in an extensive simulation study with regard to type I error rate, power, sample size, and sample size allocation. For the purpose of comparison, Wald-type statistics with a sample variance estimator and an unrestricted maximum-likelihood estimator are included in the simulation study. We found that the proposed Wald-type test with a restricted variance estimator performed well across the considered scenarios and is therefore recommended for application in clinical trials. The methods proposed are motivated and illustrated by a recent clinical trial in multiple sclerosis. The R package ThreeArmedTrials, which implements the methods discussed in this paper, is available on CRAN. Copyright © 2015 John Wiley & Sons, Ltd.
Improved test time evaluation in an expansion tube
NASA Astrophysics Data System (ADS)
James, Christopher M.; Cullen, Timothy G.; Wei, Han; Lewis, Steven W.; Gu, Sangdi; Morgan, Richard G.; McIntyre, Timothy J.
2018-05-01
Traditionally, expansion tube test times have been experimentally evaluated using test section mounted impact pressure probes. This paper proposes two new methods which can be performed using a high-speed camera and a simple circular cylinder test model. The first is the use of a narrow bandpass optical filter to allow time-resolved radiative emission from an important species to be captured, and the second is using edge detection to track how the model shock standoff changes with time. Experimental results are presented for two test conditions using an air test gas and an optical filter aimed at capturing emission from the 777 nm atomic oxygen triplet. It is found that the oxygen emission is the most reliable experimental method, because it is shown to exhibit significant changes at the end of the test time. It is also proposed that, because the camera footage is spatially resolved, the radiative emission method can be used to examine the `effective' test time in multiple regions of the flow. For one of the test conditions, it is found that the effective test time away from the stagnation region for the cylindrical test model is at most 45% of the total test time. For the other test condition, it is found that the effective test time of a 54° wedge test model is at most a third of the total test time.
Study for verification testing of the helmet-mounted display in the Japanese Experimental Module.
Nakajima, I; Yamamoto, I; Kato, H; Inokuchi, S; Nemoto, M
2000-02-01
Our purpose is to propose a research and development project in the field of telemedicine. The proposed Multimedia Telemedicine Experiment for Extra-Vehicular Activity will entail experiments designed to support astronaut health management during Extra-Vehicular Activity (EVA). Experiments will have relevant applications to the Japanese Experimental Module (JEM) operated by National Space Development Agency of Japan (NASDA) for the International Space Station (ISS). In essence, this is a proposal for verification testing of the Helmet-Mounted Display (HMD), which enables astronauts to verify their own blood pressures and electrocardiograms, and to view a display of instructions from the ground station and listings of work procedures. Specifically, HMD is a device designed to project images and data inside the astronaut's helmet. We consider this R&D proposal to be one of the most suitable projects under consideration in response to NASDA's open invitation calling for medical experiments to be conducted on JEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2005-06-17
The testing described above demonstrates that the experimental sprinkler designed by Argonne could be successfully, and safely, used by the Village of Utica for irrigation of the town's playing fields, using contaminated (by carbon tetrachloride) groundwater from the shallow aquifer beneath the town. Routine operation of the sprinkler within the range of parameters identified by the testing program would effectively reduce carbon tetrachloride concentrations in the discharged spray reaching the ground to levels below the MCL (5 {micro}g/l). CCC/USDA and Argonne propose to test use of the experimental sprinkler by the Village of Utica during the next (Summer 2001) growingmore » season, under Argonne supervision. Water will be supplied from the well to the sprinkler drive unit using a temporary, flexible (high-pressure hose) connection. Argonne will provide training to Village staff in the setup and use of the sprinkler, and will conduct periodic monitoring (proposed biweekly, initially) of the watering operations and sampling and analysis of the spray discharge from the unit, to ensure that the specified groundwater cleanup performance of the sprinkler system (to carbon tetrachloride values <5 {micro}g/L) is maintained. If testing of the sprinkler in this manner proves successful during 2001, CCC/USDA will seek to permanently transfer ownership and operation responsibilities for the sprinkler to the Utica Village Board.« less
Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics.
Mulaveesala, Ravibabu; Venkata Ghali, Subbarao
2011-05-01
This paper proposes a Barker coded excitation for defect detection using infrared non-destructive testing. Capability of the proposed excitation scheme is highlighted with recently introduced correlation based post processing approach and compared with the existing phase based analysis by taking the signal to noise ratio into consideration. Applicability of the proposed scheme has been experimentally validated on a carbon fiber reinforced plastic specimen containing flat bottom holes located at different depths.
A proposed new test for aptitude screening of air traffic controller applicants.
DOT National Transportation Integrated Search
1972-05-01
The study concerns the development and experimental validation of a novel aptitude test, referred to as 'Directional Headings' (or DHT), for the selection of Air Traffic Control Specialist (ATCS) trainees. The test requires the subject to rapidly int...
Test of a hypothesis of realism in quantum theory using a Bayesian approach
NASA Astrophysics Data System (ADS)
Nikitin, N.; Toms, K.
2017-05-01
In this paper we propose a time-independent equality and time-dependent inequality, suitable for an experimental test of the hypothesis of realism. The derivation of these relations is based on the concept of conditional probability and on Bayes' theorem in the framework of Kolmogorov's axiomatics of probability theory. The equality obtained is intrinsically different from the well-known Greenberger-Horne-Zeilinger (GHZ) equality and its variants, because violation of the proposed equality might be tested in experiments with only two microsystems in a maximally entangled Bell state |Ψ-> , while a test of the GHZ equality requires at least three quantum systems in a special state |ΨGHZ> . The obtained inequality differs from Bell's, Wigner's, and Leggett-Garg inequalities, because it deals with spin s =1 /2 projections onto only two nonparallel directions at two different moments of time, while a test of the Bell and Wigner inequalities requires at least three nonparallel directions, and a test of the Leggett-Garg inequalities requires at least three distinct moments of time. Hence, the proposed inequality seems to open an additional experimental possibility to avoid the "contextuality loophole." Violation of the proposed equality and inequality is illustrated with the behavior of a pair of anticorrelated spins in an external magnetic field and also with the oscillations of flavor-entangled pairs of neutral pseudoscalar mesons.
Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M
2017-08-01
Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nabeel A. Riza
The goals of the first six months of this project were to begin laying the foundations for both the SiC front-end optical chip fabrication techniques for high pressure gas species sensing as well as the design, assembly, and test of a portable high pressure high temperature calibration test cell chamber for introducing gas species. This calibration cell will be used in the remaining months for proposed first stage high pressure high temperature gas species sensor experimentation and data processing. All these goals have been achieved and are described in detail in the report. Both design process and diagrams for themore » mechanical elements as well as the optical systems are provided. Photographs of the fabricated calibration test chamber cell, the optical sensor setup with the calibration cell, the SiC sample chip holder, and relevant signal processing mathematics are provided. Initial experimental data from both the optical sensor and fabricated test gas species SiC chips is provided. The design and experimentation results are summarized to give positive conclusions on the proposed novel high temperature high pressure gas species detection optical sensor technology.« less
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-21
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
NASA Astrophysics Data System (ADS)
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-01
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
An Improvement of the Anisotropy and Formability Predictions of Aluminum Alloy Sheets
NASA Astrophysics Data System (ADS)
Banabic, D.; Comsa, D. S.; Jurco, P.; Wagner, S.; Vos, M.
2004-06-01
The paper presents an yield criterion for orthotropic sheet metals and its implementation in a theoretical model in order to calculate the Forming Limit Curves. The proposed yield criterion has been validated for two aluminum alloys: AA3103-0 and AA5182-0, respectively. The biaxial tensile test of cross specimens has been used for the determination of the experimental yield locus. The new yield criterion has been implemented in the Marciniak-Kuczynski model for the calculus of limit strains. The calculated Forming Limit Curves have been compared with the experimental ones, determined by frictionless test: bulge test, plane strain test and uniaxial tensile test. The predicted Forming Limit Curves using the new yield criterion are in good agreement with the experimental ones.
Experimental Design for Evaluating the Safety Benefits of Railroad Advance Warning Signs
DOT National Transportation Integrated Search
1979-04-01
The report presents the findings and conclusions of a study to develop an experimental design and analysis plan for field testing and evaluation of the accident reduction potential of a proposed new railroad grade crossing advance warning sign. Sever...
NASA Astrophysics Data System (ADS)
Raimondi, Valentina; Palombi, Lorenzo; Lognoli, David; Masini, Andrea; Simeone, Emilio
2017-09-01
This paper presents experimental tests and radiometric calculations for the feasibility of an ultra-compact fluorescence LIDAR from an Unmanned Air Vehicle (UAV) for the characterisation of oil spills in natural waters. The first step of this study was to define the experimental conditions for a LIDAR and its budget constraints on the basis of the specifications of small UAVs already available on the market. The second step consisted of a set of fluorescence LIDAR measurements on oil spills in the laboratory in order to propose a simplified discrimination method and to calculate the oil fluorescence conversion efficiency. Lastly, the main technical specifications of the payload were defined and radiometric calculations carried out to evaluate the performances of both the payload and the proposed discrimination method.
Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction
Hihat, Nabil; Lecointe, Jean Philippe; Duchesne, Stephane; Napieralska, Ewa; Belgrand, Thierry
2010-01-01
This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature. PMID:22163394
Single-Molecule Test for Markovianity of the Dynamics along a Reaction Coordinate.
Berezhkovskii, Alexander M; Makarov, Dmitrii E
2018-05-03
In an effort to answer the much-debated question of whether the time evolution of common experimental observables can be described as one-dimensional diffusion in the potential of mean force, we propose a simple criterion that allows one to test whether the Markov assumption is applicable to a single-molecule trajectory x( t). This test does not involve fitting of the data to any presupposed model and can be applied to experimental data with relatively low temporal resolution.
NASA Astrophysics Data System (ADS)
Fakir, Rachid; Barka, Noureddine; Brousseau, Jean
2018-03-01
This paper proposes a statistical approach to analyze the mechanical properties of a standard test specimen, of cylindrical geometry and in steel 4340, with a diameter of 6 mm, heat-treated and quenched in three different fluids. Samples were evaluated in standard tensile test to access their characteristic quantities: hardness, modulus of elasticity, yield strength, tensile strength and ultimate deformation. The proposed approach is gradually being built (a) by a presentation of the experimental device, (b) a presentation of the experimental plan and the results of the mechanical tests, (c) anova analysis of variance and a representation of the output responses using the RSM response surface method, and (d) an analysis of the results and discussion. The feasibility and effectiveness of the proposed approach leads to a precise and reliable model capable of predicting the variation of mechanical properties, depending on the tempering temperature, the tempering time and the cooling capacity of the quenching medium.
NASA Astrophysics Data System (ADS)
Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.
2017-10-01
When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.
Experimental investigation of connection performance for prefabricated timber beam
NASA Astrophysics Data System (ADS)
Lesmana, C.; Suhendi, S.
2017-06-01
This paper presents an investigation of connection performance for a simple supported prefabricated timber beams using Meranti hardwood (Shorea sp.). The good connection is crucial for the proper functioning of the timber structures. The adequate connection condition should be assured to achieve the requirement capacity design and performance of the system. The property of material was tested according to [1]. The proposed design of bolted connections has been evaluated through experimental investigation and compared to the simple supported beam without connection. The results demonstrate the effectiveness of the proposed connection design although the ultimate load of the beam with connection is only half of the beam without connection. The test results obtained the purposed connection should be improved.
Access-in-turn test architecture for low-power test application
NASA Astrophysics Data System (ADS)
Wang, Weizheng; Wang, JinCheng; Wang, Zengyun; Xiang, Lingyun
2017-03-01
This paper presents a novel access-in-turn test architecture (AIT-TA) for testing of very large scale integrated (VLSI) designs. In the proposed scheme, each scan cell in a chain receives test data from shift-in line in turn while pushing its test response to the shift-out line. It solves the power problem of conventional scan architecture to a great extent and suppresses significantly the switching activity during shift and capture operation with acceptable hardware overhead. Thus, it can help to implement the test at much higher operation frequencies resulting shorter test application time. The proposed test approach enhances the architecture of conventional scan flip-flops and backward compatible with existing test pattern generation and simulation techniques. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate effectiveness of the proposed low-power test application scheme.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the test system. (8) A description of the experimental design, including methods for the control of... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Protocol. 792.120 Section 792.120... at which the study is being conducted. (4) The proposed experimental start and termination dates. (5...
Physical concepts in the development of constitutive equations
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1985-01-01
Proposed viscoplastic material models include in their formulation observed material response but do not generally incorporate principles from thermodynamics, statistical mechanics, and quantum mechanics. Numerous hypotheses were made for material response based on first principles. Many of these hypotheses were tested experimentally. The proposed viscoplastic theories and the experimental basis of these hypotheses must be checked against the hypotheses. The physics of thermodynamics, statistical mechanics and quantum mechanics, and the effects of defects, are reviewed for their application to the development of constitutive laws.
Experimental field test of proposed pedestrian safety messages. Volume 3
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) Messages. These messages were then produced and field tested. The objective...
Auton, Matthew; Ferreon, Allan Chris M; Bolen, D Wayne
2006-09-01
Osmolytes that are naturally selected to protect organisms against environmental stresses are known to confer stability to proteins via preferential exclusion from protein surfaces. Solvophobicity, surface tension, excluded volume, water structure changes and electrostatic repulsion are all examples of forces proposed to account for preferential exclusion and the ramifications exclusion has on protein properties. What has been lacking is a systematic way of determining which force(s) is(are) responsible for osmolyte effects. Here, we propose the use of two experimental metrics for assessing the abilities of various proposed forces to account for osmolyte-mediated effects on protein properties. Metric 1 requires prediction of the experimentally determined ability of the osmolyte to bring about folding/unfolding resulting from the application of the force in question (i.e. prediction of the m-value of the protein in osmolyte). Metric 2 requires prediction of the experimentally determined ability of the osmolyte to contract or expand the Stokes radius of the denatured state resulting from the application of the force. These metrics are applied to test separate claims that solvophobicity/solvophilicity and surface tension are driving forces for osmolyte-induced effects on protein stability. The results show clearly that solvophobic/solvophilic forces readily account for protein stability and denatured state dimensional effects, while surface tension alone fails to do so. The agreement between experimental and predicted m-values involves both positive and negative m-values for three different proteins, and as many as six different osmolytes, illustrating that the tests are robust and discriminating. The ability of the two metrics to distinguish which forces account for the effects of osmolytes on protein properties and which do not, provides a powerful means of investigating the origins of osmolyte-protein effects.
Hong, Chih-Yuan; Guo, Lan-Yuen; Song, Rong; Nagurka, Mark L; Sung, Jia-Li; Yen, Chen-Wen
2016-08-02
Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18-24 and 65-73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system.
Suboptimal LQR-based spacecraft full motion control: Theory and experimentation
NASA Astrophysics Data System (ADS)
Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.
2016-05-01
This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.
Development of an Experiment High Performance Nozzle Research Program
NASA Technical Reports Server (NTRS)
2004-01-01
As proposed in the above OAI/NASA Glenn Research Center (GRC) Co-Operative Agreement the objective of the work was to provide consultation and assistance to the NASA GRC GTX Rocket Based Combined Cycle (RBCC) Program Team in planning and developing requirements, scale model concepts, and plans for an experimental nozzle research program. The GTX was one of the launch vehicle concepts being studied as a possible future replacement for the aging NASA Space Shuttle, and was one RBCC element in the ongoing NASA Access to Space R&D Program (Reference 1). The ultimate program objective was the development of an appropriate experimental research program to evaluate and validate proposed nozzle concepts, and thereby result in the optimization of a high performance nozzle for the GTX launch vehicle. Included in this task were the identification of appropriate existing test facilities, development of requirements for new non-existent test rigs and fixtures, develop scale nozzle model concepts, and propose corresponding test plans. Also included were the evaluation of originally proposed and alternate nozzle designs (in-house and contractor), evaluation of Computational Fluid Dynamics (CFD) study results, and make recommendations for geometric changes to result in improved nozzle thrust coefficient performance (Cfg).
Crack propagation and arrest in CFRP materials with strain softening regions
NASA Astrophysics Data System (ADS)
Dilligan, Matthew Anthony
Understanding the growth and arrest of cracks in composite materials is critical for their effective utilization in fatigue-sensitive and damage susceptible applications such as primary aircraft structures. Local tailoring of the laminate stack to provide crack arrest capacity intermediate to major structural components has been investigated and demonstrated since some of the earliest efforts in composite aerostructural design, but to date no rigorous model of the crack arrest mechanism has been developed to allow effective sizing of these features. To address this shortcoming, the previous work in the field is reviewed, with particular attention to the analysis methodologies proposed for similar arrest features. The damage and arrest processes active in such features are investigated, and various models of these processes are discussed and evaluated. Governing equations are derived based on a proposed mechanistic model of the crack arrest process. The derived governing equations are implemented in a numerical model, and a series of simulations are performed to ascertain the general characteristics of the proposed model and allow qualitative comparison to existing experimental results. The sensitivity of the model and the arrest process to various parameters is investigated, and preliminary conclusions regarding the optimal feature configuration are developed. To address deficiencies in the available material and experimental data, a series of coupon tests are developed and conducted covering a range of arrest zone configurations. Test results are discussed and analyzed, with a particular focus on identification of the proposed failure and arrest mechanisms. Utilizing the experimentally derived material properties, the tests are reproduced with both the developed numerical tool as well as a FEA-based implementation of the arrest model. Correlation between the simulated and experimental results is analyzed, and future avenues of investigation are identified. Utilizing the developed model, a sensitivity study is conducted to assess the current proposed arrest configuration. Optimum distribution and sizing of the arrest zones is investigated, and general design guidelines are developed.
Experimental field test of proposed pedestrian safety messages. Volume 2, Child messages
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) messages. These messages were then produced and field tested. The objective...
DOT National Transportation Integrated Search
1979-03-01
This document reports the findings of helicopter noise tests conducted at the FAA National Aviation Facility Experimental Center (nafec), located in Atlantic City, New Jersey. The tests were conducted with the following objectives: first, determine t...
Color Image Classification Using Block Matching and Learning
NASA Astrophysics Data System (ADS)
Kondo, Kazuki; Hotta, Seiji
In this paper, we propose block matching and learning for color image classification. In our method, training images are partitioned into small blocks. Given a test image, it is also partitioned into small blocks, and mean-blocks corresponding to each test block are calculated with neighbor training blocks. Our method classifies a test image into the class that has the shortest total sum of distances between mean blocks and test ones. We also propose a learning method for reducing memory requirement. Experimental results show that our classification outperforms other classifiers such as support vector machine with bag of keypoints.
An alternative approach based on artificial neural networks to study controlled drug release.
Reis, Marcus A A; Sinisterra, Rubén D; Belchior, Jadson C
2004-02-01
An alternative methodology based on artificial neural networks is proposed to be a complementary tool to other conventional methods to study controlled drug release. Two systems are used to test the approach; namely, hydrocortisone in a biodegradable matrix and rhodium (II) butyrate complexes in a bioceramic matrix. Two well-established mathematical models are used to simulate different release profiles as a function of fundamental properties; namely, diffusion coefficient (D), saturation solubility (C(s)), drug loading (A), and the height of the device (h). The models were tested, and the results show that these fundamental properties can be predicted after learning the experimental or model data for controlled drug release systems. The neural network results obtained after the learning stage can be considered to quantitatively predict ideal experimental conditions. Overall, the proposed methodology was shown to be efficient for ideal experiments, with a relative average error of <1% in both tests. This approach can be useful for the experimental analysis to simulate and design efficient controlled drug-release systems. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) messages. These messages were then produced and field tested. The objective...
Robust volcano plot: identification of differential metabolites in the presence of outliers.
Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro
2018-04-11
The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .
Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua.
Brenner, Howard
2013-01-01
A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible fluid continua. The latter equation set, despite its longevity as constituting the fundamental paradigm of continuum fluid mechanics, has recently been criticized on the basis of its failure to properly incorporate volume transport phenomena-as embodied in the proposed bivelocity paradigm [H. Brenner, Int. J. Eng. Sci. 54, 67 (2012)]-into its formulation. Were the experimental or simulation results found to accord, even only qualitatively, with bivelocity predictions, the temperature distribution in a gas-filled, thermodynamically and mechanically isolated circular cylinder undergoing steady rigid-body rotation in an inertial reference frame would not be uniform; rather, the temperature would be higher at the cylinder wall than along the axis of rotation. This radial temperature nonuniformity contrasts with the uniformity of the temperature predicted by the NSF paradigm for these same circumstances. Easily attainable rates of rotation in centrifuges and readily available tools for measuring the expected temperature differences render experimental execution of the proposed scheme straightforward in principle. As such, measurement-via experiment or MD simulation-of, say, the temperature difference ΔT between the gas at the wall and along the axis of rotation would provide quantitative tests of both the NSF and bivelocity hydrodynamic models, whose respective solutions for the stated set of circumstances are derived in this paper. Independently of the correctness of the bivelocity model, any temperature difference observed during the proposed experiment or simulation, irrespective of magnitude, would preclude the possibility of the NSF paradigm being correct for fluid continua, except for incompressible flows.
On the Hedges Correction for a "t"-Test
ERIC Educational Resources Information Center
VanHoudnos, Nathan M.; Greenhouse, Joel B.
2016-01-01
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Experimental Evaluation of Stagnation Point Collection Efficiency of the NACA 0012 Swept Wing Tip
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Kreeger, Richard E.
2010-01-01
This paper presents the experimental work of a number of icing tests conducted in the Icing Research Tunnel at NASA Glenn Research Center to develop a test method for measuring the local collection efficiency of an impinging cloud at the leading edge of a NACA 0012 swept wing and with the data obtained to further calibrate a proposed correlation for such impingement efficiency calculation as a function of the modified inertia parameter and the sweep angle. The preliminary results showed that there could be some limitation of the test method due to the ice erosion problem when encountered, and also found that, for conditions free of such problem, the stagnation point collection efficiency measurement for sweep angles up to 45 could be well approximated by the proposed correlation. Further evaluation of this correlation is recommended in order to assess its applicability for swept-wing icing scaling analysis.
Testing quantum gravity through dumb holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7
We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogs for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate thatmore » such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.« less
Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.
Goncharov, A V; Dainty, J C; Esposito, S; Puglisi, A
2005-07-11
An experimental optical bench test-bed for developing new wavefront sensing concepts for Multi-Conjugate Adaptive Optics (MCAO) systems is described. The main objective is to resolve imaging problems associated with wavefront sensing of the atmospheric turbulence for future MCAO systems on Extremely Large Telescopes (ELTs). The test-bed incorporates five reference sources, two deformable mirrors (DMs) and atmospheric phase screens to simulate a scaled version of a 10-m adaptive telescope operating at the K band. A recently proposed compact tomographic wavefront sensor is employed for star-oriented DMs control in the MCAO system. The MCAO test-bed is used to verify the feasibility of the wavefront sensing concept utilizing a field lenslet array for multi-pupil imaging on a single detector. First experimental results of MCAO correction with the proposed tomographic wavefront sensor are presented and compared to the theoretical prediction based on the characteristics of the phase screens, actuator density of the DMs and the guide star configuration.
A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348
A vision-based dynamic rotational angle measurement system for large civil structures.
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system.
An Investigation Into the Effects of Frequency Response Function Estimators on Model Updating
NASA Astrophysics Data System (ADS)
Ratcliffe, M. J.; Lieven, N. A. J.
1999-03-01
Model updating is a very active research field, in which significant effort has been invested in recent years. Model updating methodologies are invariably successful when used on noise-free simulated data, but tend to be unpredictable when presented with real experimental data that are—unavoidably—corrupted with uncorrelated noise content. In the development and validation of model-updating strategies, a random zero-mean Gaussian variable is added to simulated test data to tax the updating routines more fully. This paper proposes a more sophisticated model for experimental measurement noise, and this is used in conjunction with several different frequency response function estimators, from the classical H1and H2to more refined estimators that purport to be unbiased. Finite-element model case studies, in conjunction with a genuine experimental test, suggest that the proposed noise model is a more realistic representation of experimental noise phenomena. The choice of estimator is shown to have a significant influence on the viability of the FRF sensitivity method. These test cases find that the use of the H2estimator for model updating purposes is contraindicated, and that there is no advantage to be gained by using the sophisticated estimators over the classical H1estimator.
The experimental identification of magnetorheological dampers and evaluation of their controllers
NASA Astrophysics Data System (ADS)
Metered, H.; Bonello, P.; Oyadiji, S. O.
2010-05-01
Magnetorheological (MR) fluid dampers are semi-active control devices that have been applied over a wide range of practical vibration control applications. This paper concerns the experimental identification of the dynamic behaviour of an MR damper and the use of the identified parameters in the control of such a damper. Feed-forward and recurrent neural networks are used to model both the direct and inverse dynamics of the damper. Training and validation of the proposed neural networks are achieved by using the data generated through dynamic tests with the damper mounted on a tensile testing machine. The validation test results clearly show that the proposed neural networks can reliably represent both the direct and inverse dynamic behaviours of an MR damper. The effect of the cylinder's surface temperature on both the direct and inverse dynamics of the damper is studied, and the neural network model is shown to be reasonably robust against significant temperature variation. The inverse recurrent neural network model is introduced as a damper controller and experimentally evaluated against alternative controllers proposed in the literature. The results reveal that the neural-based damper controller offers superior damper control. This observation and the added advantages of low-power requirement, extended service life of the damper and the minimal use of sensors, indicate that a neural-based damper controller potentially offers the most cost-effective vibration control solution among the controllers investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litvinenko,V.; Yakimenko, V.
We propose undertaking a demonstration experiment on suppressing spontaneous undulator radiation from an electron beam at BNL's Accelerator Test Facility (ATF). We describe the method, the proposed layout, and a possible schedule. There are several advantages in strongly suppressing shot noise in the electron beam, and the corresponding spontaneous radiation. The self-amplified spontaneous (SASE) emission originating from shot noise in the electron beam is the main source of noise in high-gain FEL amplifiers. It may negatively affect several HG FEL applications ranging from single- to multi-stage HGHG FELs. SASE saturation also imposes a fundamental hard limit on the gain ofmore » an FEL amplifier in a coherent electron-cooling scheme. A novel active method for suppressing shot noise in relativistic electron beams by many orders-of-magnitude was recently proposed. While theoretically such strong suppression appears feasible, the performance and applicability of this novel method must be evaluated experimentally. Several practical questions about the proposed noise suppressor, such as 3D effects and/or sensitivity to the e-beam parameters also require experimental clarification. To do this, we propose here a proof-of-principle experiment using elements of the VISA FEL at BNL's Accelerator Test Facility.« less
NASA Astrophysics Data System (ADS)
Nam, Kyoung Won; Kim, In Young; Kang, Ho Chul; Yang, Hee Kyung; Yoon, Chang Ki; Hwang, Jeong Min; Kim, Young Jae; Kim, Tae Yun; Kim, Kwang Gi
2012-10-01
Accurate measurement of binocular misalignment between both eyes is important for proper preoperative management, surgical planning, and postoperative evaluation of patients with strabismus. In this study, we proposed a new computerized diagnostic algorithm that can calculate the angle of binocular eye misalignment photographically by using a dedicated three-dimensional eye model mimicking the structure of the natural human eye. To evaluate the performance of the proposed algorithm, eight healthy volunteers and eight individuals with strabismus were recruited in this study, the horizontal deviation angle, vertical deviation angle, and angle of eye misalignment were calculated and the angular differences between the healthy and the strabismus groups were evaluated using the nonparametric Mann-Whitney test and the Pearson correlation test. The experimental results demonstrated a statistically significant difference between the healthy and strabismus groups (p = 0.015 < 0.05), but no statistically significant difference between the proposed method and the Krimsky test (p = 0.912 > 0.05). The measurements of the two methods were highly correlated (r = 0.969, p < 0.05). From the experimental results, we believe that the proposed diagnostic method has the potential to be a diagnostic tool that measures the physical disorder of the human eye to diagnose non-invasively the severity of strabismus.
78 FR 75353 - Agency Information Collection Activities: Proposed Collection: Public Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... cognitive interviews, focus groups, usability tests, field tests/pilot interviews, and experimental research... as more basic research on response errors in surveys. HRSA staff use various techniques to evaluate... interview structure consists of respondents first answering a draft survey question and then providing...
77 FR 4287 - Notice of Proposed Information Collection Requests
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
... other will not have experienced the feature (``control''). Average test scores of the two groups will... Promising Features of Teacher Preparation Programs; Phase 1--Recruitment. OMB Control Number: 1850-NEW... baseline student achievement test for an experimental study of the effect on student learning of teachers...
ERIC Educational Resources Information Center
Derico, Vontrice L.
2017-01-01
The purpose of the proposed quasi-experimental quantitative study was to determine if students who were taught in the inclusive setting yielded higher standardized test scores compared to students who were taught in the resource setting. The researcher analyzed the standardized test scores, in the areas of Language Arts, Reading, and Mathematics…
NASA Astrophysics Data System (ADS)
Leveuf, Louis; Navrátil, Libor; Le Saux, Vincent; Marco, Yann; Olhagaray, Jérôme; Leclercq, Sylvain
2018-01-01
A constitutive model for the cyclic behaviour of short carbon fibre-reinforced thermoplastics for aeronautical applications is proposed. First, an extended experimental database is generated in order to highlight the specificities of the studied material. This database is composed of complex tests and is used to design a relevant constitutive model able to capture the cyclic behaviour of the material. A general 3D formulation of the model is then proposed, and an identification strategy is defined to identify its parameters. Finally, a validation of the identification is performed by challenging the prediction of the model to the tests that were not used for the identification. An excellent agreement between the numerical results and the experimental data is observed revealing the capabilities of the model.
Experimental design and analysis of JND test on coded image/video
NASA Astrophysics Data System (ADS)
Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay
2015-09-01
The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.
2007-06-01
the CNES proposal to perform in-flight experimentation mainly on reusable thermal protections, aero-thermo-dynamics and guidance to secure the second...the vehicle. A preliminary in-flight experimentation and measurement plan has been assessed defining the main objectives in terms of reusable Thermal ...Energy Management THEFA Thermographie Face Arrière TPS Thermal Protection System VKI Von Karman Institute WRT With Respect To WTT Wind
Experimental Evaluation of the Drag Coefficient of Water Rockets by a Simple Free-Fall Test
ERIC Educational Resources Information Center
Barrio-Perotti, R.; Blanco-Marigorta, E. Arguelles-Diaz, K.; Fernandez-Oro, J.
2009-01-01
The flight trajectory of a water rocket can be reasonably calculated if the magnitude of the drag coefficient is known. The experimental determination of this coefficient with enough precision is usually quite difficult, but in this paper we propose a simple free-fall experiment for undergraduate students to reasonably estimate the drag…
Probing noncommutative theories with quantum optical experiments
NASA Astrophysics Data System (ADS)
Dey, Sanjib; Bhat, Anha; Momeni, Davood; Faizal, Mir; Ali, Ahmed Farag; Dey, Tarun Kumar; Rehman, Atikur
2017-11-01
One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.
Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà
2010-03-01
Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.
An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.
Zapateiro De la Hoz, Mauricio; Acho, Leonardo; Vidal, Yolanda
2015-01-01
Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes.
Experimental field test of proposed anti-dart-out training programs. Volume 1, Conduct and results
DOT National Transportation Integrated Search
1981-12-01
This report describes the conduct and results of an evaluation of a child pedestrian anti-dart-out training program. Two versions were tested: A film program and a film/simulator program. Before/after accident and street crossing behavior data were c...
Transport relaxation processes in supercritical fluids
NASA Astrophysics Data System (ADS)
Jonas, J.
The technique for solubility measurements of solids in compressed supercritical fluids using NMR and theoretical analysis of experimental data on collision induced scattering were examined. Initial tests for a determination of solid solubilities in supercritical fluids without mixing were previously described and these preparations have continued. Super critical carbon dioxide dissolving naphthalene, for which solubility data is already available (M. McHugh, M.E. Paulaitis, J. Chem. Eng. Data, Vol. 25 (4), 1980) is being studied. This initial testing of the NMR technique for measuring solubilities in a well characterized system should prove very valuable for our later determinations with the proposed mixing probe. Systematic experimental studies of collision induced spectra in several supercritical fluids using both Raman and Rayleigh scattering are continued. The experimental work on SF6 and CH4 was finished and the experimental data testing of the various theoretical models for collision induced scattering is being analyzed.
Measurement of fracture properties of concrete at high strain rates
Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.
2017-01-01
An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956510
A magneto-rheological fluid mount featuring squeeze mode: analysis and testing
NASA Astrophysics Data System (ADS)
Chen, Peng; Bai, Xian-Xu; Qian, Li-Jun; Choi, Seung-Bok
2016-05-01
This paper presents a mathematical model for a new semi-active vehicle engine mount utilizing magneto-rheological (MR) fluids in squeeze mode (MR mount in short) and validates the model by comparing analysis results with experimental tests. The proposed MR mount is mainly comprised of a frame for installation, a main rubber, a squeeze plate and a bobbin for coil winding. When the magnetic fields on, MR effect occurs in the upper gap between the squeeze plate and the bobbin, and the dynamic stiffness can be controlled by tuning the applied currents. Employing Bingham model and flow properties between parallel plates of MR fluids, a mathematical model for the squeeze type of MR mount is formulated with consideration of the fluid inertia, MR effect and hysteresis property. The field-dependent dynamic stiffness of the MR mount is then analyzed using the established mathematical model. Subsequently, in order to validate the mathematical model, an appropriate size of MR mount is fabricated and tested. The field-dependent force and dynamic stiffness of the proposed MR mount are evaluated and compared between the model and experimental tests in both time and frequency domains to verify the model efficiency. In addition, it is shown that both the damping property and the stiffness property of the proposed MR mount can be simultaneously controlled.
Proposal for a new categorization of aseptic processing facilities based on risk assessment scores.
Katayama, Hirohito; Toda, Atsushi; Tokunaga, Yuji; Katoh, Shigeo
2008-01-01
Risk assessment of aseptic processing facilities was performed using two published risk assessment tools. Calculated risk scores were compared with experimental test results, including environmental monitoring and media fill run results, in three different types of facilities. The two risk assessment tools used gave a generally similar outcome. However, depending on the tool used, variations were observed in the relative scores between the facilities. For the facility yielding the lowest risk scores, the corresponding experimental test results showed no contamination, indicating that these ordinal testing methods are insufficient to evaluate this kind of facility. A conventional facility having acceptable aseptic processing lines gave relatively high risk scores. The facility showing a rather high risk score demonstrated the usefulness of conventional microbiological test methods. Considering the significant gaps observed in calculated risk scores and in the ordinal microbiological test results between advanced and conventional facilities, we propose a facility categorization based on risk assessment. The most important risk factor in aseptic processing is human intervention. When human intervention is eliminated from the process by advanced hardware design, the aseptic processing facility can be classified into a new risk category that is better suited for assuring sterility based on a new set of criteria rather than on currently used microbiological analysis. To fully benefit from advanced technologies, we propose three risk categories for these aseptic facilities.
Analysis of autostereoscopic three-dimensional images using multiview wavelets.
Saveljev, Vladimir; Palchikova, Irina
2016-08-10
We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.
ERIC Educational Resources Information Center
Goldhammer, Frank
2015-01-01
The main challenge of ability tests relates to the difficulty of items, whereas speed tests demand that test takers complete very easy items quickly. This article proposes a conceptual framework to represent how performance depends on both between-person differences in speed and ability and the speed-ability compromise within persons. Related…
Fail Safe, High Temperature Magnetic Bearings
NASA Technical Reports Server (NTRS)
Minihan, Thomas; Palazzolo, Alan; Kim, Yeonkyu; Lei, Shu-Liang; Kenny, Andrew; Na, Uhn Joo; Tucker, Randy; Preuss, Jason; Hunt, Andrew; Carter, Bart;
2002-01-01
This paper contributes to the magnetic bearing literature in two distinct areas: high temperature and redundant actuation. Design considerations and test results are given for the first published combined 538 C (1000 F) high speed rotating test performance of a magnetic bearing. Secondly, a significant extension of the flux isolation based, redundant actuator control algorithm is proposed to eliminate the prior deficiency of changing position stiffness after failure. The benefit of the novel extension was not experimentally demonstrated due to a high active stiffness requirement. In addition, test results are given for actuator failure tests at 399 C (750 F), 12,500 rpm. Finally, simulation results are presented confirming the experimental data and validating the redundant control algorithm.
The strong Bell inequalities: A proposed experimental test
NASA Technical Reports Server (NTRS)
Fry, Edward S.
1994-01-01
All previous experimental tests of Bell inequalities have required additional assumptions. The strong Bell inequalities (i.e. those requiring no additional assumptions) have never been tested. An experiment has been designed that can, for the first time, provide a definitive test of the strong Bell inequalities. Not only will the detector efficiency loophole be closed; but the locality condition will also be rigorously enforced. The experiment involves producing two Hg-199 atoms by a resonant Raman dissociation of a mercury dimer ((199)Hg2) that is in an electronic and nuclear spin singlet state. Bell inequalities can be tested by measuring angular momentum correlations between the spin one-half nuclei of the two Hg-199 atoms. The method used to make these latter measurements will be described.
de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.
2015-01-01
This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754
de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D
2015-12-24
This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.
An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures
NASA Technical Reports Server (NTRS)
Blevins, John A.; Gostowski, Rudy; Chianese, Silvio
2003-01-01
An experimental evaluation of decomposition and ignition delay of hydrogen peroxide at concentrations of 80% to 98% with combinations of hydrocarbon fuels, tertiary amines and transition metal chelates will be presented in the proposed paper. The results will be compared to hydrazine ignition delays with hydrogen peroxide and nitric acid mixtures using the same test apparatus.
Experimental validation and testing of a NaI boron-lined neutron detector
NASA Astrophysics Data System (ADS)
Metwally, Walid A.; Emam, Amira G.
2018-05-01
Effective neutron detection systems are critical in various nuclear fields. Most of the current detection systems rely on He-3 detectors due to their high neutron cross section. However, the limited sizes and worldwide scarcity of He-3 lead to major research efforts to find alternative neutron detectors. One of the proposed cost-effective alternatives is using boron-lined NaI detectors to detect the gamma ray resulting from the 10B(n,α)7Li reaction. The proposed detector assembly has been experimentally tested and its results were compared with those from a He-3 detector. In addition to detecting the gamma rays from the source and surrounding medium, the boron-lined NaI detector showed a good sensitivity to changes in neutron flux distributions and a higher efficiency when compared to the He-3 detector used.
Design, analysis, and testing of a flexure-based vibration-assisted polishing device
NASA Astrophysics Data System (ADS)
Gu, Yan; Zhou, Yan; Lin, Jieqiong; Lu, Mingming; Zhang, Chenglong; Chen, Xiuyuan
2018-05-01
A vibration-assisted polishing device (VAPD) composed of leaf-spring and right-circular flexure hinges is proposed with the aim of realizing vibration-assisted machining along elliptical trajectories. To design the structure, energy methods and the finite-element method are used to calculate the performance of the proposed VAPD. An improved bacterial foraging optimization algorithm is used to optimize the structural parameters. In addition, the performance of the VAPD is tested experimentally. The experimental results indicate that the maximum strokes of the two directional mechanisms operating along the Z1 and Z2 directions are 29.5 μm and 29.3 μm, respectively, and the maximum motion resolutions are 10.05 nm and 10.01 nm, respectively. The maximum working bandwidth is 1,879 Hz, and the device has a good step response.
Realistic loophole-free Bell test with atom-photon entanglement
NASA Astrophysics Data System (ADS)
Teo, C.; Araújo, M.; Quintino, M. T.; Minář, J.; Cavalcanti, D.; Scarani, V.; Terra Cunha, M.; França Santos, M.
2013-07-01
The establishment of nonlocal correlations, guaranteed through the violation of a Bell inequality, is not only important from a fundamental point of view but constitutes the basis for device-independent quantum information technologies. Although several nonlocality tests have been conducted so far, all of them suffered from either locality or detection loopholes. Among the proposals for overcoming these problems are the use of atom-photon entanglement and hybrid photonic measurements (for example, photodetection and homodyning). Recent studies have suggested that the use of atom-photon entanglement can lead to Bell inequality violations with moderate transmission and detection efficiencies. Here we combine these ideas and propose an experimental setup realizing a simple atom-photon entangled state that can be used to obtain nonlocality when considering realistic experimental parameters including detection efficiencies and losses due to required propagation distances.
Rotaru, Iuliana; Bujoreanu, Carmen; Bele, Adrian; Cazacu, Maria; Olaru, Dumitru
2014-09-01
This research was focused on the damping capacity study of two types of silicone rubbers proposed as layers within total lumbar disc prostheses of ball-and-socket model. In order to investigate the damping capacity, the two silicone rubber types mainly differing by the molecular mass of polymeric matrix and the filler content, as was emphasized by scanning electron microscopy and differential scanning calorimetry, were subjected to free vibration testing. Using an adapted experimental installation, three kinds of damping testing were realised: tests without samples and tests with three samples of each type of silicone rubber (69 ShA and 99 ShA). The free vibration tests were performed at a frequency of about 6 Hz using a weight of 11.8 kg. The relative damping coefficient was determined by measuring of two successive amplitudes on the vibrogram and calculating of the logarithmic decrement. The test results with silicone rubber samples showed a relative damping coefficient of 0.058 and respectively 0.077, whilst test results without samples showed a relative damping coefficient of 0.042. These silicone rubbers were found to have acceptable damping properties to be used as layers placed inside the prosthetic components. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical and experimental investigations on cavitation erosion
NASA Astrophysics Data System (ADS)
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboud, C.; Premel, D.; Lesselier, D.
2007-03-21
Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.
Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations
NASA Astrophysics Data System (ADS)
Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.
2007-03-01
Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.
A standard for test reliability in group research.
Ellis, Jules L
2013-03-01
Many authors adhere to the rule that test reliabilities should be at least .70 or .80 in group research. This article introduces a new standard according to which reliabilities can be evaluated. This standard is based on the costs or time of the experiment and of administering the test. For example, if test administration costs are 7 % of the total experimental costs, the efficient value of the reliability is .93. If the actual reliability of a test is equal to this efficient reliability, the test size maximizes the statistical power of the experiment, given the costs. As a standard in experimental research, it is proposed that the reliability of the dependent variable be close to the efficient reliability. Adhering to this standard will enhance the statistical power and reduce the costs of experiments.
NASA Astrophysics Data System (ADS)
Hirano, Taichi; Sakai, Keiji
2017-07-01
Viscoelasticity is a unique characteristic of soft materials and describes its dynamic response to mechanical stimulations. A creep test is an experimental method for measuring the strain ratio/rate against an applied stress, thereby assessing the viscoelasticity of the materials. We propose two advanced experimental systems suitable for the creep test, adopting our original electromagnetically spinning (EMS) technique. This technique can apply a constant torque by a noncontact mechanism, thereby allowing more sensitive and rapid measurements. The viscosity and elasticity of a semidilute wormlike micellar solution were determined using two setups, and the consistency between the results was assessed.
NASA Astrophysics Data System (ADS)
de Souza, Gabriel Fernandes; Tan, Lippong; Singh, Baljit; Ding, Lai Chet; Date, Abhijit
2017-04-01
The paper presents a sustainable hybrid system, which is capable of generating electricity and producing freshwater from seawater using low grade heat source. This proposed system uses low grade heat that can be supplied from solar radiation, industrial waste heat or any other waste heat sources where the temperature is less than 150°C. The concept behind this system uses the Seebeck effect for thermoelectricity generation via incorporating the low boiling point of seawater under sub-atmospheric ambient pressure. A lab-test prototype of the proposed system was built and experimentally tested in RMIT University. The prototype utilised four commercial available thermoelectric generators (Bi2Te3) and a vacuum vessel to achieve the simultaneous production of electricity and freshwater. The temperature profiles, thermoelectric powers and freshwater productions were determined at several levels of salinity to study the influence of different salt concentrations. The theoretical description of system design and experimental results were analysed and discussed in detailed. The experiment results showed that 0.75W of thermoelectricity and 404g of freshwater were produced using inputs of 150W of simulated waste heat and 500g of 3% saline water. The proposed hybrid concept has demonstrated the potential to become the future sustainable system for electricity and freshwater productions.
G4RNA: an RNA G-quadruplex database
Garant, Jean-Michel; Luce, Mikael J.; Scott, Michelle S.
2015-01-01
Abstract G-quadruplexes (G4) are tetrahelical structures formed from planar arrangement of guanines in nucleic acids. A simple, regular motif was originally proposed to describe G4-forming sequences. More recently, however, formation of G4 was discovered to depend, at least in part, on the contextual backdrop of neighboring sequences. Prediction of G4 folding is thus becoming more challenging as G4 outlier structures, not described by the originally proposed motif, are increasingly reported. Recent observations thus call for a comprehensive tool, capable of consolidating the expanding information on tested G4s, in order to conduct systematic comparative analyses of G4-promoting sequences. The G4RNA Database we propose was designed to help meet the need for easily-retrievable data on known RNA G4s. A user-friendly, flexible query system allows for data retrieval on experimentally tested sequences, from many separate genes, to assess G4-folding potential. Query output sorts data according to sequence position, G4 likelihood, experimental outcomes and associated bibliographical references. G4RNA also provides an ideal foundation to collect and store additional sequence and experimental data, considering the growing interest G4s currently generate. Database URL: scottgroup.med.usherbrooke.ca/G4RNA PMID:26200754
NASA Astrophysics Data System (ADS)
Chtourou, Rim; Haugou, Gregory; Leconte, Nicolas; Zouari, Bassem; Chaari, Fahmi; Markiewicz, Eric
2015-09-01
Resistance Spot Welding (RSW) of multiple sheets with multiple materials are increasingly realized in the automotive industry. The mechanical strength of such new generation of spot welded assemblies is not that much dealt with. This is true in particular for experiments dedicated to investigate the mechanical strength of spot weld made by multi sheets of different grades, and their macro modeling in structural computations. Indeed, the most published studies are limited to two sheet assemblies. Therefore, in the first part of this work an advanced experimental set-up with a reduced mass is proposed to characterize the quasi-static and dynamic mechanical behavior and rupture of spot weld made by several sheets of different grades. The proposed device is based on Arcan test, the plates contribution in the global response is, thus, reduced. Loading modes I/II are, therefore, combined and well controlled. In the second part a simplified spot weld connector element (macroscopic modeling) is proposed to describe the nonlinear response and rupture of this new generation of spot welded assemblies. The weld connector model involves several parameters to be set. The remaining parameters are finally identified through a reverse engineering approach using mechanical responses of experimental tests presented in the first part of this work.
Method for universal detection of two-photon polarization entanglement
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol
2015-03-01
Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-06
... the technical report entitled `Experimental Measurements of the Third-Adjacent Channel Impacts of Low... rules designed to prevent any predicted interference. 31. We propose to adopt a basic threshold test. This test is designed to closely track the interference standard developed by Mitre, without...
Experimental design for drifting buoy Lagrangian test
NASA Technical Reports Server (NTRS)
Saunders, P. M.
1975-01-01
A test of instrumentation fabricated to measure the performance of a free drifting buoy as a (Lagrangian) current meter is described. Specifically it is proposed to distinguish between the trajectory of a drogued buoy and the trajectory of the water at the level of the drogue by measuring the flow relative to the drogue.
Detection of Misconceptions about Colour and an Experimentally Tested Proposal to Combat Them
ERIC Educational Resources Information Center
Martinez-Borreguero, Guadalupe; Perez-Rodriguez, Angel Luis; Suero-Lopez, Maria Isabel; Pardo-Fernandez, Pedro Jose
2013-01-01
We study the misconceptions about colour that most people hold, determining the general phenomenological laws that govern them. Concept mapping was used to combat the misconceptions which were found in the application of a test specifically designed to determine these misconceptions, while avoiding the possible misleading inductions that could…
ERIC Educational Resources Information Center
Kapatsinski, Vsevolod
2009-01-01
This article proposes and tests an experimental method to assess the psychological reality of hierarchical theories of constituent structure in particular domains. I show that a hierarchical theory of constituent structure necessarily makes the prediction that an association between constituents should be easier to learn than an association…
Virtual hybrid test control of sinuous crack
NASA Astrophysics Data System (ADS)
Jailin, Clément; Carpiuc, Andreea; Kazymyrenko, Kyrylo; Poncelet, Martin; Leclerc, Hugo; Hild, François; Roux, Stéphane
2017-05-01
The present study aims at proposing a new generation of experimental protocol for analysing crack propagation in quasi brittle materials. The boundary conditions are controlled in real-time to conform to a predefined crack path. Servo-control is achieved through a full-field measurement technique to determine the pre-set fracture path and a simple predictor model based on linear elastic fracture mechanics to prescribe the boundary conditions on the fly so that the actual crack path follows at best the predefined trajectory. The final goal is to identify, for instance, non-local damage models involving internal lengths. The validation of this novel procedure is performed via a virtual test-case based on an enriched damage model with an internal length scale, a prior chosen sinusoidal crack path and a concrete sample. Notwithstanding the fact that the predictor model selected for monitoring the test is a highly simplified picture of the targeted constitutive law, the proposed protocol exhibits a much improved sensitivity to the sought parameters such as internal lengths as assessed from the comparison with other available experimental tests.
Heisenberg's error-disturbance relations: A joint measurement-based experimental test
NASA Astrophysics Data System (ADS)
Zhao, Yuan-Yuan; Kurzyński, Paweł; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can
2017-04-01
The original Heisenberg error-disturbance relation was recently shown to be not universally valid and two different approaches to reformulate it were proposed. The first one focuses on how the error and disturbance of two observables A and B depend on a particular quantum state. The second one asks how a joint measurement of A and B affects their eigenstates. Previous experiments focused on the first approach. Here we focus on the second one. First, we propose and implement an extendible method of quantum-walk-based joint measurements of noisy Pauli operators to test the error-disturbance relation for qubits introduced in the work of Busch et al. [Phys. Rev. A 89, 012129 (2014), 10.1103/PhysRevA.89.012129], where the polarization of the single photon, corresponding to a walker's auxiliary degree of freedom that is commonly known as a coin, undergoes a position- and time-dependent evolution. Then we formulate and experimentally test a universally valid state-dependent relation for three mutually unbiased observables. We therefore establish a method of testing error-disturbance relations.
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
Micromechanical model for protein materials: From macromolecules to macroscopic fibers
NASA Astrophysics Data System (ADS)
Puglisi, G.; De Tommasi, D.; Pantano, M. F.; Pugno, N. M.; Saccomandi, G.
2017-10-01
We propose a model for the mechanical behavior of protein materials. Based on a limited number of experimental macromolecular parameters (persistence and contour length) we obtain the macroscopic behavior of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects that are fundamental in many functions of life. We also show the capability of our approach to describe the main dissipation and permanent strain effects observed in the more complex spider silk fibers. The comparison between our results and the data obtained experimentally from cyclic tests demonstrates that our model is robust and is able to reproduce with a remarkable accuracy the experimental behavior of all protein materials we tested.
NASA Astrophysics Data System (ADS)
Poplawski, Blazej; Mikułowski, Grzegorz; Mróz, Arkadiusz; Jankowski, Łukasz
2018-02-01
This paper proposes, tests numerically and verifies experimentally a decentralized control algorithm with local feedback for semi-active mitigation of free vibrations in frame structures. The algorithm aims at transferring the vibration energy of low-order, lightly-damped structural modes into high-frequency modes of vibration, where it is quickly damped by natural mechanisms of material damping. Such an approach to mitigation of vibrations, known as the prestress-accumulation release (PAR) strategy, has been earlier applied only in global control schemes to the fundamental vibration mode of a cantilever beam. In contrast, the decentralization and local feedback allows the approach proposed here to be applied to more complex frame structures and vibration patterns, where the global control ceases to be intuitively obvious. The actuators (truss-frame nodes with controllable ability to transmit moments) are essentially unblockable hinges that become unblocked only for very short time periods in order to trigger local modal transfer of energy. The paper proposes a computationally simple model of the controllable nodes, specifies the control performance measure, yields basic characteristics of the optimum control, proposes the control algorithm and then tests it in numerical and experimental examples.
Research on Hartmann test for progressive addition lenses
NASA Astrophysics Data System (ADS)
Qin, Lin-ling; Yu, Jing-chi
2009-05-01
Recently, in the world some growing-up measurements for Progressive addition lenses and relevant equipments have been developed. They are single point measurement, moiré deflectometry, Ronchi test techniques. Hartmann test for Progressive addition lenses is proposed in the article. The measurement principle of Hartmann test for ophthalmic lenses and the power compensation of off-axis rays are introduced. The experimental setup used to test lenses is put forward. For experimental test, a spatial filter is used for selecting a clean Gaussian beam; a collimating lens with focal distance f =300 mm is used to produce collimated beam. The Hartmann plate with a square array of holes separated at 2 mm is selected. The selection of laser and CCD camera is critical to the accuracy of experiment and the image processing algorithm. The spot patterns from CCD are obtained from the experimental tests. The power distribution map for lenses can be obtained by image processing in theory. The results indicate that Hartmann test for Progressive addition lenses is convenient and feasible; also its structure is simple.
No information flow using statistical fluctuations and quantum cryptography
NASA Astrophysics Data System (ADS)
Larsson, Jan-Åke
2004-04-01
The communication protocol of Home and Whitaker [
2014-01-01
Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295
NASA Astrophysics Data System (ADS)
Kumavat, Hemraj Ramdas
2016-09-01
The compressive stress-strain behavior and mechanical properties of clay brick masonry and its constituents clay bricks and mortar, have been studied by several laboratory tests. Using linear regression analysis, a analytical model has been proposed for obtaining the stress-strain curves for masonry that can be used in the analysis and design procedures. The model requires only the compressive strengths of bricks and mortar as input data, which can be easily obtained experimentally. Development of analytical model from the obtained experimental results of Young's modulus and compressive strength. Simple relationships have been identified for obtaining the modulus of elasticity of bricks, mortar, and masonry from their corresponding compressive strengths. It was observed that the proposed analytical model clearly demonstrates a reasonably good prediction of the stress-strain curves when compared with the experimental curves.
Martinez‐Valdes, E.; Negro, F.; Laine, C. M.; Falla, D.; Mayer, F.
2017-01-01
Key points Classic motor unit (MU) recording and analysis methods do not allow the same MUs to be tracked across different experimental sessions, and therefore, there is limited experimental evidence on the adjustments in MU properties following training or during the progression of neuromuscular disorders.We propose a new processing method to track the same MUs across experimental sessions (separated by weeks) by using high‐density surface electromyography.The application of the proposed method in two experiments showed that individual MUs can be identified reliably in measurements separated by weeks and that changes in properties of the tracked MUs across experimental sessions can be identified with high sensitivity.These results indicate that the behaviour and properties of the same MUs can be monitored across multiple testing sessions.The proposed method opens new possibilities in the understanding of adjustments in motor unit properties due to training interventions or the progression of pathologies. Abstract A new method is proposed for tracking individual motor units (MUs) across multiple experimental sessions on different days. The technique is based on a novel decomposition approach for high‐density surface electromyography and was tested with two experimental studies for reliability and sensitivity. Experiment I (reliability): ten participants performed isometric knee extensions at 10, 30, 50 and 70% of their maximum voluntary contraction (MVC) force in three sessions, each separated by 1 week. Experiment II (sensitivity): seven participants performed 2 weeks of endurance training (cycling) and were tested pre–post intervention during isometric knee extensions at 10 and 30% MVC. The reliability (Experiment I) and sensitivity (Experiment II) of the measured MU properties were compared for the MUs tracked across sessions, with respect to all MUs identified in each session. In Experiment I, on average 38.3% and 40.1% of the identified MUs could be tracked across two sessions (1 and 2 weeks apart), for the vastus medialis and vastus lateralis, respectively. Moreover, the properties of the tracked MUs were more reliable across sessions than those of the full set of identified MUs (intra‐class correlation coefficients ranged between 0.63—0.99 and 0.39–0.95, respectively). In Experiment II, ∼40% of the MUs could be tracked before and after the training intervention and training‐induced changes in MU conduction velocity had an effect size of 2.1 (tracked MUs) and 1.5 (group of all identified motor units). These results show the possibility of monitoring MU properties longitudinally to document the effect of interventions or the progression of neuromuscular disorders. PMID:28032343
Proposed Schedule for Fenton Hill Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, James N.; Brown, Donald W.
To help in planning Fenton Hill experimental operations in concert with preparations for the Long-Term Flow Test (LTFT) next summer, the following schedule is proposed. This schedule fits some of the realities of the next few months, including the Laboratory closure during the Holidays, the seismic monitoring tests in Roswell, and the difficulties of operating during the winter months. Whenever possible, cyclic pumping operations during the colder months will be scheduled so that the pump will be on during the late evening and early morning hours to prevent freezeup.
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
Bell Test experiments explained without entanglement
NASA Astrophysics Data System (ADS)
Boyd, Jeffrey
2011-04-01
by Jeffrey H. Boyd. Jeffreyhboyd@gmail.com. John Bell proposed a test of what was called "local realism." However that is a different view of reality than we hold. Bell incorrectly assumed the validity of wave particle dualism. According to our model waves are independent of particles; wave interference precedes the emission of a particle. This results in two conclusions. First the proposed inequalities that apply to "local realism" in Bell's theorem do not apply to this model. The alleged mathematics of "local realism" is therefore wrong. Second, we can explain the Bell Test experimental results (such as the experiments done at Innsbruck) without any need for entanglement, non-locality, or particle superposition.
Life prediction and reliability assessment of lithium secondary batteries
NASA Astrophysics Data System (ADS)
Eom, Seung-Wook; Kim, Min-Kyu; Kim, Ick-Jun; Moon, Seong-In; Sun, Yang-Kook; Kim, Hyun-Soo
Reliability assessment of lithium secondary batteries was mainly considered. Shape parameter (β) and scale parameter (η) were calculated from experimental data based on cycle life test. We also examined safety characteristics of lithium secondary batteries. As proposed by IEC 62133 (2002), we had performed all of the safety/abuse tests such as 'mechanical abuse tests', 'environmental abuse tests', 'electrical abuse tests'. This paper describes the cycle life of lithium secondary batteries, FMEA (failure modes and effects analysis) and the safety/abuse tests we had performed.
A novel 3D deformation measurement method under optical microscope for micro-scale bulge-test
NASA Astrophysics Data System (ADS)
Wu, Dan; Xie, Huimin
2017-11-01
A micro-scale 3D deformation measurement method combined with optical microscope is proposed in this paper. The method is based on gratings and phase shifting algorithm. By recording the grating images before and after deformation from two symmetrical angles and calculating the phases of the grating patterns, the 3D deformation field of the specimen can be extracted from the phases of the grating patterns. The proposed method was applied to the micro-scale bulge test. A micro-scale thermal/mechanical coupling bulge-test apparatus matched with the super-depth microscope was exploited. With the gratings fabricated onto the film, the deformed morphology of the bulged film was measured reliably. The experimental results show that the proposed method and the exploited bulge-test apparatus can be used to characterize the thermal/mechanical properties of the films at micro-scale successfully.
Fuzzy logic controllers for electrotechnical devices - On-site tuning approach
NASA Astrophysics Data System (ADS)
Hissel, D.; Maussion, P.; Faucher, J.
2001-12-01
Fuzzy logic offers nowadays an interesting alternative to the designers of non linear control laws for electrical or electromechanical systems. However, due to the huge number of tuning parameters, this kind of control is only used in a few industrial applications. This paper proposes a new, very simple, on-site tuning strategy for a PID-like fuzzy logic controller. Thanks to the experimental designs methodology, we will propose sets of optimized pre-established settings for this kind of fuzzy controllers. The proposed parameters are only depending on one on-site open-loop identification test. In this way, this on-site tuning methodology has to be compared to the Ziegler-Nichols one's for conventional controllers. Experimental results (on a permanent magnets synchronous motor and on a DC/DC converter) will underline all the efficiency of this tuning methodology. Finally, the field of validity of the proposed pre-established settings will be given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Takenori
1995-11-01
This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method ismore » confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.« less
Thermoelastic vibration test techniques
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Snyder, H. Todd
1991-01-01
The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.
NASA Astrophysics Data System (ADS)
Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng
2017-12-01
Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.
Test Equality between Three Treatments under an Incomplete Block Crossover Design.
Lui, Kung-Jong
2015-01-01
Under a random effects linear additive risk model, we compare two experimental treatments with a placebo in continuous data under an incomplete block crossover trial. We develop three test procedures for simultaneously testing equality between two experimental treatments and a placebo, as well as interval estimators for the mean difference between treatments. We apply Monte Carlo simulations to evaluate the performance of these test procedures and interval estimators in a variety of situations. We note that the bivariate test procedure accounting for the dependence structure based on the F-test is preferable to the other two procedures when there is only one of the two experimental treatments has a non-zero effect vs. the placebo. We note further that when the effects of the two experimental treatments vs. a placebo are in the same relative directions and are approximately of equal magnitude, the summary test procedure based on a simple average of two weighted-least-squares (WLS) estimators can outperform the other two procedures with respect to power. When one of the two experimental treatments has a relatively large effect vs. the placebo, the univariate test procedure with using Bonferroni's equality can be still of use. Finally, we use the data about the forced expiratory volume in 1 s (FEV1) readings taken from a double-blind crossover trial comparing two different doses of formoterol with a placebo to illustrate the use of test procedures and interval estimators proposed here.
Flow Friction or Spontaneous Ignition?
NASA Technical Reports Server (NTRS)
Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle
2012-01-01
"Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.
Cost estimate for a proposed GDF Suez LNG testing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.
2014-02-01
At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire,more » and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongming; Oskay, Caglar
This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage ismore » directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.« less
Simplified Estimation and Testing in Unbalanced Repeated Measures Designs.
Spiess, Martin; Jordan, Pascal; Wendt, Mike
2018-05-07
In this paper we propose a simple estimator for unbalanced repeated measures design models where each unit is observed at least once in each cell of the experimental design. The estimator does not require a model of the error covariance structure. Thus, circularity of the error covariance matrix and estimation of correlation parameters and variances are not necessary. Together with a weak assumption about the reason for the varying number of observations, the proposed estimator and its variance estimator are unbiased. As an alternative to confidence intervals based on the normality assumption, a bias-corrected and accelerated bootstrap technique is considered. We also propose the naive percentile bootstrap for Wald-type tests where the standard Wald test may break down when the number of observations is small relative to the number of parameters to be estimated. In a simulation study we illustrate the properties of the estimator and the bootstrap techniques to calculate confidence intervals and conduct hypothesis tests in small and large samples under normality and non-normality of the errors. The results imply that the simple estimator is only slightly less efficient than an estimator that correctly assumes a block structure of the error correlation matrix, a special case of which is an equi-correlation matrix. Application of the estimator and the bootstrap technique is illustrated using data from a task switch experiment based on an experimental within design with 32 cells and 33 participants.
Gaussian process regression for sensor networks under localization uncertainty
Jadaliha, M.; Xu, Yunfei; Choi, Jongeun; Johnson, N.S.; Li, Weiming
2013-01-01
In this paper, we formulate Gaussian process regression with observations under the localization uncertainty due to the resource-constrained sensor networks. In our formulation, effects of observations, measurement noise, localization uncertainty, and prior distributions are all correctly incorporated in the posterior predictive statistics. The analytically intractable posterior predictive statistics are proposed to be approximated by two techniques, viz., Monte Carlo sampling and Laplace's method. Such approximation techniques have been carefully tailored to our problems and their approximation error and complexity are analyzed. Simulation study demonstrates that the proposed approaches perform much better than approaches without considering the localization uncertainty properly. Finally, we have applied the proposed approaches on the experimentally collected real data from a dye concentration field over a section of a river and a temperature field of an outdoor swimming pool to provide proof of concept tests and evaluate the proposed schemes in real situations. In both simulation and experimental results, the proposed methods outperform the quick-and-dirty solutions often used in practice.
IMPLEMENTING PRACTICAL PICO-HYDROPOWER
Deliverables for this proposal will be energy output data modeled from experimental testing of the hydropower unit and monitoring of the stormwater handling infrastructure in the GIS building; along with a design and engineering plan for implementation and building integrat...
Board Game in Physics Classes—a Proposal for a New Method of Student Assessment
NASA Astrophysics Data System (ADS)
Dziob, Daniel
2018-03-01
The aim of this study was to examine the impact of assessing students' achievements in a physics course in the form of a group board game. Research was conducted in two groups of 131 high school students in Poland. In each school, the research sample was divided into experimental and control groups. Each group was taught by the same teacher and participated in the same courses and tests before the game. Just after finishing the course on waves and vibrations (school 1) and optics (school 2), experimental groups took part in a group board game to assess their knowledge. One week after the game, the experimental and control groups (not involved in the game) took part in the post-tests. Students from the experimental groups performed better in the game than in the tests given before the game. As well their results in the post-tests were significantly higher statistically than students from the control groups. Simultaneously, student's opinions in the experimental groups about the board game as an assessment method were collected in an open-descriptive form and in a short questionnaire, and analyzed. Results showed that students experienced a positive attitude toward the assessment method, a reduction of test anxiety and an increase in their motivation for learning.
Sevillano, Enrique; Sun, Rui; Perera, Ricardo
2016-01-01
The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate—PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures. PMID:27164104
Rodríguez-Guerrero, Liliam; Santos-Sánchez, Omar-Jacobo; Cervantes-Escorcia, Nicolás; Romero, Hugo
2017-11-01
This article presents a suboptimal control strategy with finite horizon for affine nonlinear discrete systems with both state and input delays. The Dynamic Programming Approach is used to obtain the suboptimal control sequence, but in order to avoid the computation of the Bellman functional, a numerical approximation of this function is proposed in every step. The feasibility of our proposal is demonstrated via an experimental test on a dehydration process and the obtained results show a good performance and behavior of this process. Then in order to demonstrate the benefits of using this kind of control strategy, the results are compared with a non optimal control strategy, particularly with respect to results produced by an industrial Proportional Integral Derivative (PID) Honeywell controller, which is tuned using the Ziegler-Nichols method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Sevillano, Enrique; Sun, Rui; Perera, Ricardo
2016-05-05
The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate-PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures.
Fatigue crack localization with near-field acoustic emission signals
NASA Astrophysics Data System (ADS)
Zhou, Changjiang; Zhang, Yunfeng
2013-04-01
This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.
An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm.
Zhu, Qingling; Lin, Qiuzhen; Chen, Weineng; Wong, Ka-Chun; Coello Coello, Carlos A; Li, Jianqiang; Chen, Jianyong; Zhang, Jun
2017-09-01
The selection of swarm leaders (i.e., the personal best and global best), is important in the design of a multiobjective particle swarm optimization (MOPSO) algorithm. Such leaders are expected to effectively guide the swarm to approach the true Pareto optimal front. In this paper, we present a novel external archive-guided MOPSO algorithm (AgMOPSO), where the leaders for velocity update are all selected from the external archive. In our algorithm, multiobjective optimization problems (MOPs) are transformed into a set of subproblems using a decomposition approach, and then each particle is assigned accordingly to optimize each subproblem. A novel archive-guided velocity update method is designed to guide the swarm for exploration, and the external archive is also evolved using an immune-based evolutionary strategy. These proposed approaches speed up the convergence of AgMOPSO. The experimental results fully demonstrate the superiority of our proposed AgMOPSO in solving most of the test problems adopted, in terms of two commonly used performance measures. Moreover, the effectiveness of our proposed archive-guided velocity update method and immune-based evolutionary strategy is also experimentally validated on more than 30 test MOPs.
An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers
Zapateiro De la Hoz, Mauricio; Vidal, Yolanda
2015-01-01
Security and secrecy are some of the important concerns in the communications world. In the last years, several encryption techniques have been proposed in order to improve the secrecy of the information transmitted. Chaos-based encryption techniques are being widely studied as part of the problem because of the highly unpredictable and random-look nature of the chaotic signals. In this paper we propose a digital-based communication system that uses the logistic map which is a mathematically simple model that is chaotic under certain conditions. The input message signal is modulated using a simple Delta modulator and encrypted using a logistic map. The key signal is also encrypted using the same logistic map with different initial conditions. In the receiver side, the binary-coded message is decrypted using the encrypted key signal that is sent through one of the communication channels. The proposed scheme is experimentally tested using Arduino shields which are simple yet powerful development kits that allows for the implementation of the communication system for testing purposes. PMID:26413563
Impact fracture toughness evaluation for high-density polyethylene materials
NASA Astrophysics Data System (ADS)
Cherief, M. N. D.; Elmeguenni, M.; Benguediab, M.
2017-03-01
The impact fracture behavior of a high-density polyethylene (HDPE) material is investigated experimentally and theoretically. Single-edge notched bending (SENB) specimens are tested in experiments with three-point bending and in the Charpy impact tests. An energy model is proposed for evaluating the HDPE impact toughness, which provides a description of both brittle and ductile fracture.
A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States
NASA Technical Reports Server (NTRS)
Ryff, Luiz Carlos
1996-01-01
A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.
Comment on "Infants' perseverative search errors are induced by pragmatic misinterpretation".
Spencer, John P; Dineva, Evelina; Smith, Linda B
2009-09-25
Topál et al. (Reports, 26 September 2008, p. 1831) proposed that infants' perseverative search errors can be explained by ostensive cues from the experimenter. We use the dynamic field theory to test the proposal that infants encode locations more weakly when social cues are present. Quantitative simulations show that this account explains infants' performance without recourse to the theory of natural pedagogy.
NASA Astrophysics Data System (ADS)
Sun, Kai; Xu, Jin-Shi; Ye, Xiang-Jun; Wu, Yu-Chun; Chen, Jing-Ling; Li, Chuan-Feng; Guo, Guang-Can
2014-10-01
Einstein-Podolsky-Rosen (EPR) steering, a generalization of the original concept of "steering" proposed by Schrödinger, describes the ability of one system to nonlocally affect another system's states through local measurements. Some experimental efforts to test EPR steering in terms of inequalities have been made, which usually require many measurement settings. Analogy to the "all-versus-nothing" (AVN) proof of Bell's theorem without inequalities, testing steerability without inequalities would be more strong and require less resources. Moreover, the practical meaning of steering implies that it should also be possible to store the state information on the side to be steered, a result that has not yet been experimentally demonstrated. Using a recent AVN criterion for two-qubit entangled states, we experimentally implement a practical steering game using quantum memory. Furthermore, we develop a theoretical method to deal with the noise and finite measurement statistics within the AVN framework and apply it to analyze the experimental data. Our results clearly show the facilitation of the AVN criterion for testing steerability and provide a particularly strong perspective for understanding EPR steering.
Proposal and validation of a clinical trunk control test in individuals with spinal cord injury.
Quinzaños, J; Villa, A R; Flores, A A; Pérez, R
2014-06-01
One of the problems that arise in spinal cord injury (SCI) is alteration in trunk control. Despite the need for standardized scales, these do not exist for evaluating trunk control in SCI. To propose and validate a trunk control test in individuals with SCI. National Institute of Rehabilitation, Mexico. The test was developed and later evaluated for reliability and criteria, content, and construct validity. We carried out 531 tests on 177 patients and found high inter- and intra-rater reliability. In terms of criterion validity, analysis of variance demonstrated a statistically significant difference in the test score of patients with adequate or inadequate trunk control according to the assessment of a group of experts. A receiver operating characteristic curve was plotted for optimizing the instrument's cutoff point, which was determined at 13 points, with a sensitivity of 98% and a specificity of 92.2%. With regard to construct validity, the correlation between the proposed test and the spinal cord independence measure (SCIM) was 0.873 (P=0.001) and that with the evolution time was 0.437 (P=0.001). For testing the hypothesis with qualitative variables, the Kruskal-Wallis test was performed, which resulted in a statistically significant difference between the scores in the proposed scale of each group defined by these variables. It was proven experimentally that the proposed trunk control test is valid and reliable. Furthermore, the test can be used for all patients with SCI despite the type and level of injury.
No information flow using statistical fluctuations and quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Jan-Aake
2004-04-01
The communication protocol of Home and Whitaker [Phys. Rev. A 67, 022306 (2003)] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack,more » internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.« less
The dynamic properties behavior of high strength concrete under different strain rate
NASA Astrophysics Data System (ADS)
Abdullah, Hasballah; Husin, Saiful; Umar, Hamdani; Rizal, Samsul
2005-04-01
This paper present a number experimental data and numerical technique used in the dynamic behavior of high strength concrete. A testing device is presented for the experimental study of dynamic behavior material under high strain rates. The specimen is loaded by means of a high carbon steel Hopkinson pressure bar (40 mm diameter, 3000 mm long input bar and 1500 mm long out put bar) allowing for the testing of specimen diameter is large enough in relation to the size of aggregates. The other method also proposed for measuring tensile strength, the measurement method based on the superposition and concentration of tensile stress wave reflected both from the free-free ends of striking bar and the specimen bar. The compression Hopkinson bar test, the impact tensile test of high strength concrete bars are performed, together with compression static strength test. In addition, the relation between break position under finite element simulation and impact tensile strength are examined. The three-dimensional simulation of the specimen under transient loading are presented and comparisons between the experimental and numerical simulation on strain rate effects of constitutive law use in experimental are study.
Experimental analysis of large capacity MR dampers with short- and long-stroke
NASA Astrophysics Data System (ADS)
Zemp, René; de la Llera, Juan Carlos; Weber, Felix
2014-12-01
The purpose of this article is to study and characterize experimentally two magneto-rheological dampers with short- and long-stroke, denoted hereafter as MRD-S and MRD-L. The latter was designed to improve the Earthquake performance of a 21-story reinforced concrete building equipped with two 160 ton tuned pendular masses. The MRD-L has a nominal force capacity of 300 kN and a stroke of ±1 m; the MRD-S has a nominal force capacity of 150 kN, and a stroke of ±0.1 m. The MRD-S was tested with two different magneto-rheological and one viscous fluid. Due to the presence of Eddy currents, both dampers show a time lag between current intensity and damper force as the magnetization on the damper changes in time. Experimental results from the MRD-L show a force drop-off behavior. A decrease in active-mode forces due to temperature increase is also analyzed for the MRD-S and the different fluids. Moreover, the observed increase in internal damper pressure due to energy dissipation is evaluated for the different fluids in both dampers. An analytical model to predict internal pressure increase in the damper is proposed that includes as a parameter the concentration of magnetic particles inside the fluid. Analytical dynamic pressure results are validated using the experimental tests. Finally, an extended Bingham fluid model, which considers compressibility of the fluid, is also proposed and validated using damper tests.
Quadrennial Review of Military Compensation (5th). Executive Summary.
1984-01-01
COMBINATION Any proposed legislation to modify the current retire- ment system by reducing retired pay must stress the absolute requirement that a form of...Hazardous Duty Incentive Pays: — Parachute Duty — Flight Deck Duty -- Demolition Duty — Toxic Fuels and — Experimental Stress Duty Propellants — Non...3) Experimental Stress Duty Pay - an incentive for performance of hazardous duty while participating in acceleration/ deceleration testing, thermal
Adaptive design of visual perception experiments
NASA Astrophysics Data System (ADS)
O'Connor, John D.; Hixson, Jonathan; Thomas, James M., Jr.; Peterson, Matthew S.; Parasuraman, Raja
2010-04-01
Meticulous experimental design may not always prevent confounds from affecting experimental data acquired during visual perception experiments. Although experimental controls reduce the potential effects of foreseen sources of interference, interaction, or noise, they are not always adequate for preventing the confounding effects of unforeseen forces. Visual perception experimentation is vulnerable to unforeseen confounds because of the nature of the associated cognitive processes involved in the decision task. Some confounds are beyond the control of experimentation, such as what a participant does immediately prior to experimental participation, or the participant's attitude or emotional state. Other confounds may occur through ignorance of practical control methods on the part of the experiment's designer. The authors conducted experiments related to experimental fatigue and initially achieved significant results that were, upon re-examination, attributable to a lack of adequate controls. Re-examination of the original results and the processes and events that led to them yielded a second experimental design with more experimental controls and significantly different results. The authors propose that designers of visual perception experiments can benefit from planning to use a test-fix-test or adaptive experimental design cycle, so that unforeseen confounds in the initial design can be remedied.
Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form
NASA Astrophysics Data System (ADS)
Denis, V.; Jossic, M.; Giraud-Audine, C.; Chomette, B.; Renault, A.; Thomas, O.
2018-06-01
In this article, we address the model identification of nonlinear vibratory systems, with a specific focus on systems modeled with distributed nonlinearities, such as geometrically nonlinear mechanical structures. The proposed strategy theoretically relies on the concept of nonlinear modes of the underlying conservative unforced system and the use of normal forms. Within this framework, it is shown that without internal resonance, a valid reduced order model for a nonlinear mode is a single Duffing oscillator. We then propose an efficient experimental strategy to measure the backbone curve of a particular nonlinear mode and we use it to identify the free parameters of the reduced order model. The experimental part relies on a Phase-Locked Loop (PLL) and enables a robust and automatic measurement of backbone curves as well as forced responses. It is theoretically and experimentally shown that the PLL is able to stabilize the unstable part of Duffing-like frequency responses, thus enabling its robust experimental measurement. Finally, the whole procedure is tested on three experimental systems: a circular plate, a chinese gong and a piezoelectric cantilever beam. It enable to validate the procedure by comparison to available theoretical models as well as to other experimental identification methods.
Fan, Chunpeng; Zhang, Donghui
2012-01-01
Although the Kruskal-Wallis test has been widely used to analyze ordered categorical data, power and sample size methods for this test have been investigated to a much lesser extent when the underlying multinomial distributions are unknown. This article generalizes the power and sample size procedures proposed by Fan et al. ( 2011 ) for continuous data to ordered categorical data, when estimates from a pilot study are used in the place of knowledge of the true underlying distribution. Simulations show that the proposed power and sample size formulas perform well. A myelin oligodendrocyte glycoprotein (MOG) induced experimental autoimmunce encephalomyelitis (EAE) mouse study is used to demonstrate the application of the methods.
Performance analysis of hybrid vibrational energy harvesters with experimental verification
NASA Astrophysics Data System (ADS)
Sriramdas, Rammohan; Pratap, Rudra
2018-07-01
In the present work, performance indices for a hybrid energy harvester (HEH) that is composed of piezoelectric and electrodynamic or electromagnetic mechanisms of energy conversion are analyzed. Performance of a HEH is defined in terms of Q-normalized power factor and efficiency of conversion. They are observed to acutely depend on coupling strength or figures of merit in both piezoelectric and electrodynamic domains. The influence of figures of merit on the Q-normalized power factor, and the limits of conversion efficiency are explored. Based on the studies, a suitable range for figures of merit that would maximize both Q-normalized power factor and conversion efficiency in hybrid harvesters is proposed. The proposed idea is verified experimentally for the appropriate values of figures of merit and efficiencies by fabricating and testing four experimental models of the HEHs.
A new scenario-based approach to damage detection using operational modal parameter estimates
NASA Astrophysics Data System (ADS)
Hansen, J. B.; Brincker, R.; López-Aenlle, M.; Overgaard, C. F.; Kloborg, K.
2017-09-01
In this paper a vibration-based damage localization and quantification method, based on natural frequencies and mode shapes, is presented. The proposed technique is inspired by a damage assessment methodology based solely on the sensitivity of mass-normalized experimental determined mode shapes. The present method differs by being based on modal data extracted by means of Operational Modal Analysis (OMA) combined with a reasonable Finite Element (FE) representation of the test structure and implemented in a scenario-based framework. Besides a review of the basic methodology this paper addresses fundamental theoretical as well as practical considerations which are crucial to the applicability of a given vibration-based damage assessment configuration. Lastly, the technique is demonstrated on an experimental test case using automated OMA. Both the numerical study as well as the experimental test case presented in this paper are restricted to perturbations concerning mass change.
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Joppich, Tobias; Schirmaier, Fabian; Mosthaf, Tobias; Kärger, Luise; Henning, Frank
2016-10-01
Thermoforming of continuously fiber reinforced thermoplastics (CFRTP) is ideally suited to thin walled and complex shaped products. By means of forming simulation, an initial validation of the producibility of a specific geometry, an optimization of the forming process and the prediction of fiber-reorientation due to forming is possible. Nevertheless, applied methods need to be validated. Therefor a method is presented, which enables the calculation of error measures for the mismatch between simulation results and experimental tests, based on measurements with a conventional coordinate measuring device. As a quantitative measure, describing the curvature is provided, the presented method is also suitable for numerical or experimental sensitivity studies on wrinkling behavior. The applied methods for forming simulation, implemented in Abaqus explicit, are presented and applied to a generic geometry. The same geometry is tested experimentally and simulation and test results are compared by the proposed validation method.
[Experimental testing of Pflüger's reflex hypothesis of menstruation in late 19th century].
Simmer, H H
1980-07-01
Pflüger's hypothesis of a nerve reflex as the cause of menstruation published in 1865 and accepted by many, nonetheless did not lead to experimental investigations for 25 years. According to this hypothesis the nerve reflex starts in the ovary by an increase of the intraovarian pressure by the growing follicles. In 1884 Adolph Kehrer proposed a program to test the nerve reflex, but only in 1890, Cohnstein artificially increased the intraovarian pressure in women by bimanual compression from the outside and the vagina. His results were not convincing. Six years later, Strassmann injected fluids into ovaries of animals and obtained changes in the uterus resembling those of oestrus. His results seemed to verify a prognosis derived from Pflüger's hypothesis. Thus, after a long interval, that hypothesis had become a paradigma. Though reasons can be given for the delay, it is little understood, why experimental testing started so late.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.
2015-05-01
This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.
An approach to an acute emotional stress reference scale.
Garzon-Rey, J M; Arza, A; de-la-Camara, C; Lobo, A; Armario, A; Aguilo, J
2017-06-16
The clinical diagnosis aims to identify the degree of affectation of the psycho-physical state of the patient as a guide to therapeutic intervention. In stress, the lack of a measurement tool based on a reference makes it difficult to quantitatively assess this degree of affectation. To define and perform a primary assessment of a standard reference in order to measure acute emotional stress from the markers identified as indicators of the degree. Psychometric tests and biochemical variables are, in general, the most accepted stress measurements by the scientific community. Each one of them probably responds to different and complementary processes related to the reaction to a stress stimulus. The reference that is proposed is a weighted mean of these indicators by assigning them relative weights in accordance with a principal components analysis. An experimental study was conducted on 40 healthy young people subjected to the psychosocial stress stimulus of the Trier Social Stress Test in order to perform a primary assessment and consistency check of the proposed reference. The proposed scale clearly differentiates between the induced relax and stress states. Accepting the subjectivity of the definition and the lack of a subsequent validation with new experimental data, the proposed standard differentiates between a relax state and an emotional stress state triggered by a moderate stress stimulus, as it is the Trier Social Stress Test. The scale is robust. Although the variations in the percentage composition slightly affect the score, but they do not affect the valid differentiation between states.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.
Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results
Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575
Use of Seawater for Fighting Electrical Fires
1989-05-25
56,300 microsiemens/cm, after mixing with the AFFF concentrate (3M Company’s FC 206 CE brand). In view of this similarity in conductivity, it is not...gpm Nozzle ... ...... 7 Feecon Dual Agent Nozzle, 95 gpm ... ...... 7 Portable AFFF Extinguisher .... ......... 7 EXPERIMENTAL PROCEDURES...29 Fresh Watet "Oest ..... .............. . 29 AFFF Test ...... .................. . 29 Proposed Type III Nozzle Test Results .... 29
Shanks, Ryan A; Robertson, Chuck L; Haygood, Christian S; Herdliksa, Anna M; Herdliska, Heather R; Lloyd, Steven A
2017-01-01
Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model's ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads.
Acoustic-Structure Interaction in Rocket Engines: Validation Testing
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.
2009-01-01
While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.
Identification of Load Categories in Rotor System Based on Vibration Analysis
Yang, Zhaojian
2017-01-01
Rotating machinery is often subjected to variable loads during operation. Thus, monitoring and identifying different load types is important. Here, five typical load types have been qualitatively studied for a rotor system. A novel load category identification method for rotor system based on vibration signals is proposed. This method is a combination of ensemble empirical mode decomposition (EEMD), energy feature extraction, and back propagation (BP) neural network. A dedicated load identification test bench for rotor system was developed. According to loads characteristics and test conditions, an experimental plan was formulated, and loading tests for five loads were conducted. Corresponding vibration signals of the rotor system were collected for each load condition via eddy current displacement sensor. Signals were reconstructed using EEMD, and then features were extracted followed by energy calculations. Finally, characteristics were input to the BP neural network, to identify different load types. Comparison and analysis of identifying data and test data revealed a general identification rate of 94.54%, achieving high identification accuracy and good robustness. This shows that the proposed method is feasible. Due to reliable and experimentally validated theoretical results, this method can be applied to load identification and fault diagnosis for rotor equipment used in engineering applications. PMID:28726754
Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling
2014-01-01
Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738
Structural Benchmark Testing for Stirling Convertor Heater Heads
NASA Technical Reports Server (NTRS)
Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.
2007-01-01
The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.
Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael
2007-01-01
In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.
Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon
2013-01-01
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040
Off-Road Soft Soil Tire Model Development and Experimental Testing
2011-06-29
Eduardo Pinto 2 , Mr. Scott Naranjo 3 , Dr. Paramsothy Jayakumar 4 , Dr. Archie Andonian 5 , Dr. Dave Hubbell 6 , Dr. Brant Ross 7 1Virginia...The effect of soil charac- teristics on the tire dynamics will be studied. Validation against data collected from full vehicle testing is included in...the proposed future work. Keywords: tire model, soft soil, terramechanics, vehicle dynamics , indoor testing 1 Introduction The goal of this paper is
Microwave scanning beam approach and landing system phased array antenna volume I
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
Microwave scanning beam approach and landing system phased array antenna : volume II
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
NASA Astrophysics Data System (ADS)
Krishna, Anirudh; Spekkens, Robert W.; Wolfe, Elie
2017-12-01
When a measurement is compatible with each of two other measurements that are incompatible with one another, these define distinct contexts for the given measurement. The Kochen-Specker theorem rules out models of quantum theory that satisfy a particular assumption of context-independence: that sharp measurements are assigned outcomes both deterministically and independently of their context. This notion of noncontextuality is not suited to a direct experimental test because realistic measurements always have some degree of unsharpness due to noise. However, a generalized notion of noncontextuality has been proposed that is applicable to any experimental procedure, including unsharp measurements, but also preparations as well, and for which a quantum no-go result still holds. According to this notion, the model need only specify a probability distribution over the outcomes of a measurement in a context-independent way, rather than specifying a particular outcome. It also implies novel constraints of context-independence for the representation of preparations. In this article, we describe a general technique for translating proofs of the Kochen-Specker theorem into inequality constraints on realistic experimental statistics, the violation of which witnesses the impossibility of a noncontextual model. We focus on algebraic state-independent proofs, using the Peres-Mermin square as our illustrative example. Our technique yields the necessary and sufficient conditions for a particular set of correlations (between the preparations and the measurements) to admit a noncontextual model. The inequalities thus derived are demonstrably robust to noise. We specify how experimental data must be processed in order to achieve a test of these inequalities. We also provide a criticism of prior proposals for experimental tests of noncontextuality based on the Peres-Mermin square.
Experimental characterization of a binary actuated parallel manipulator
NASA Astrophysics Data System (ADS)
Giuseppe, Carbone
2016-05-01
This paper describes the BAPAMAN (Binary Actuated Parallel MANipulator) series of parallel manipulators that has been conceived at Laboratory of Robotics and Mechatronics (LARM). Basic common characteristics of BAPAMAN series are described. In particular, it is outlined the use of a reduced number of active degrees of freedom, the use of design solutions with flexural joints and Shape Memory Alloy (SMA) actuators for achieving miniaturization, cost reduction and easy operation features. Given the peculiarities of BAPAMAN architecture, specific experimental tests have been proposed and carried out with the aim to validate the proposed design and to evaluate the practical operation performance and the characteristics of a built prototype, in particular, in terms of operation and workspace characteristics.
Frequency domain surface EMG sensor fusion for estimating finger forces.
Potluri, Chandrasekhar; Kumar, Parmod; Anugolu, Madhavi; Urfer, Alex; Chiu, Steve; Naidu, D; Schoen, Marco P
2010-01-01
Extracting or estimating skeletal hand/finger forces using surface electro myographic (sEMG) signals poses many challenges due to cross-talk, noise, and a temporal and spatially modulated signal characteristics. Normal sEMG measurements are based on single sensor data. In this paper, array sensors are used along with a proposed sensor fusion scheme that result in a simple Multi-Input-Single-Output (MISO) transfer function. Experimental data is used along with system identification to find this MISO system. A Genetic Algorithm (GA) approach is employed to optimize the characteristics of the MISO system. The proposed fusion-based approach is tested experimentally and indicates improvement in finger/hand force estimation.
Brodic, Darko; Milivojevic, Dragan R.; Milivojevic, Zoran N.
2011-01-01
The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures. PMID:22164106
Brodic, Darko; Milivojevic, Dragan R; Milivojevic, Zoran N
2011-01-01
The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures.
Preliminary Design of Winged Experimental Rocket by University Consortium
NASA Astrophysics Data System (ADS)
Wakita, Masashi; Yonemoto, Koichi; Akiyama, Tomoki; Aso, Shigeru; Kohsetsu, Yuji; Nagata, Harunori
The project of Winged Experimental Rocket described here is a proposal by the alliance of universities (University Consortium) expanding and integrating the research activities of reusable space transportation system performed by individual universities, and is the proposal that aims at flight proof of the results of advanced research conducted by the universities and JAXA using the university-centered experimental launch systems. This paper verifies the validity of the winged experimental rocket by surveying the technical issues that should be demonstrated and by estimating the airframe scale, weight and finally the total cost. The development schedule of this project was set to five years, where two airframes of different scales will be developed to minimize the risks. A 1.5-meter-long airframe will be first manufactured and conduct flight tests in the third year to verify the design issues. Then, a 2.5-meter-long airframe will be finally developed and conduct a complete flight demonstration of various research issues in the fifth year.
Partial Shade Stress Test for Thin-Film Photovoltaic Modules: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris
2015-09-02
Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we propose a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. We designed the test with the aid of a computer model that predicts the local voltage, current and temperature stress that result from partial shade. The model predicts the module-scale interactions among the illumination pattern, the electrical properties of the photovoltaic material and the thermal properties of the module package. The test reproduces shading and loading conditions that may occur in the field. It accounts formore » reversible light-induced performance changes and for additional stress that may be introduced by light-enhanced reverse breakdown. We present simulated and experimental results from the application of the proposed test.« less
AC-Induced Bias Potential Effect on Corrosion of Steels
2009-02-05
induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models AC Simulated Corrosion testing Stainless steel pipe and coating Cathodic protection Experimental Setup Preliminary
Locality-preserving sparse representation-based classification in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting
2016-10-01
This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.
Sensor Drift Compensation Algorithm based on PDF Distance Minimization
NASA Astrophysics Data System (ADS)
Kim, Namyong; Byun, Hyung-Gi; Persaud, Krishna C.; Huh, Jeung-Soo
2009-05-01
In this paper, a new unsupervised classification algorithm is introduced for the compensation of sensor drift effects of the odor sensing system using a conducting polymer sensor array. The proposed method continues updating adaptive Radial Basis Function Network (RBFN) weights in the testing phase based on minimizing Euclidian Distance between two Probability Density Functions (PDFs) of a set of training phase output data and another set of testing phase output data. The output in the testing phase using the fixed weights of the RBFN are significantly dispersed and shifted from each target value due mostly to sensor drift effect. In the experimental results, the output data by the proposed methods are observed to be concentrated closer again to their own target values significantly. This indicates that the proposed method can be effectively applied to improved odor sensing system equipped with the capability of sensor drift effect compensation
Multiple disturbances classifier for electric signals using adaptive structuring neural networks
NASA Astrophysics Data System (ADS)
Lu, Yen-Ling; Chuang, Cheng-Long; Fahn, Chin-Shyurng; Jiang, Joe-Air
2008-07-01
This work proposes a novel classifier to recognize multiple disturbances for electric signals of power systems. The proposed classifier consists of a series of pipeline-based processing components, including amplitude estimator, transient disturbance detector, transient impulsive detector, wavelet transform and a brand-new neural network for recognizing multiple disturbances in a power quality (PQ) event. Most of the previously proposed methods usually treated a PQ event as a single disturbance at a time. In practice, however, a PQ event often consists of various types of disturbances at the same time. Therefore, the performances of those methods might be limited in real power systems. This work considers the PQ event as a combination of several disturbances, including steady-state and transient disturbances, which is more analogous to the real status of a power system. Six types of commonly encountered power quality disturbances are considered for training and testing the proposed classifier. The proposed classifier has been tested on electric signals that contain single disturbance or several disturbances at a time. Experimental results indicate that the proposed PQ disturbance classification algorithm can achieve a high accuracy of more than 97% in various complex testing cases.
An Elasto-Plastic Damage Model for Rocks Based on a New Nonlinear Strength Criterion
NASA Astrophysics Data System (ADS)
Huang, Jingqi; Zhao, Mi; Du, Xiuli; Dai, Feng; Ma, Chao; Liu, Jingbo
2018-05-01
The strength and deformation characteristics of rocks are the most important mechanical properties for rock engineering constructions. A new nonlinear strength criterion is developed for rocks by combining the Hoek-Brown (HB) criterion and the nonlinear unified strength criterion (NUSC). The proposed criterion takes account of the intermediate principal stress effect against HB criterion, as well as being nonlinear in the meridian plane against NUSC. Only three parameters are required to be determined by experiments, including the two HB parameters σ c and m i . The failure surface of the proposed criterion is continuous, smooth and convex. The proposed criterion fits the true triaxial test data well and performs better than the other three existing criteria. Then, by introducing the Geological Strength Index, the proposed criterion is extended to rock masses and predicts the test data well. Finally, based on the proposed criterion, a triaxial elasto-plastic damage model for intact rock is developed. The plastic part is based on the effective stress, whose yield function is developed by the proposed criterion. For the damage part, the evolution function is assumed to have an exponential form. The performance of the constitutive model shows good agreement with the results of experimental tests.
NASA Astrophysics Data System (ADS)
Wang, Kelu; Li, Xin; Zhang, Xiaobo
2018-03-01
The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.
Design and test of a simulation system for autonomous optic-navigated planetary landing
NASA Astrophysics Data System (ADS)
Cai, Sheng; Yin, Yanhe; Liu, Yanjun; He, Fengyun
2018-02-01
In this paper, a simulation system based on commercial projector is proposed to test the optical navigation algorithms for autonomous planetary landing in laboratorial scenarios. The design work of optics, mechanics and synchronization control are carried out. Furthermore, the whole simulation system is set up and tested. Through the calibration of the system, two main problems, synchronization between the projector and CCD and pixel-level shifting caused by the low repeatability of DMD used in the projector, are settled. The experimental result shows that the RMS errors of pitch, yaw and roll angles are 0.78', 0.48', and 2.95' compared with the theoretical calculation, which can fulfill the requirement of experimental simulation for planetary landing in laboratory.
Christ, Andreas; Chavannes, Nicolas; Nikoloski, Neviana; Gerber, Hans-Ulrich; Poković, Katja; Kuster, Niels
2005-02-01
A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.
Similarity regularized sparse group lasso for cup to disc ratio computation.
Cheng, Jun; Zhang, Zhuo; Tao, Dacheng; Wong, Damon Wing Kee; Liu, Jiang; Baskaran, Mani; Aung, Tin; Wong, Tien Yin
2017-08-01
Automatic cup to disc ratio (CDR) computation from color fundus images has shown to be promising for glaucoma detection. Over the past decade, many algorithms have been proposed. In this paper, we first review the recent work in the area and then present a novel similarity-regularized sparse group lasso method for automated CDR estimation. The proposed method reconstructs the testing disc image based on a set of reference disc images by integrating the similarity between testing and the reference disc images with the sparse group lasso constraints. The reconstruction coefficients are then used to estimate the CDR of the testing image. The proposed method has been validated using 650 images with manually annotated CDRs. Experimental results show an average CDR error of 0.0616 and a correlation coefficient of 0.7, outperforming other methods. The areas under curve in the diagnostic test reach 0.843 and 0.837 when manual and automatically segmented discs are used respectively, better than other methods as well.
Efficiency improvement of a concentrated solar receiver for water heating system using porous medium
NASA Astrophysics Data System (ADS)
Prasartkaew, Boonrit
2018-01-01
This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.
SORPTION OF TOXIC ORGANIC COMPOUNDS ON WATERWATER SOLIDS: MECHANISMS AND MODELING
It is proposed that sorption is a combination of two fundamentally different processes: adsorption and partitioning. A sorption model was developed for both single-component and multicomponent systems. The model was tested using single-component experimental isotherm data of eig...
Permutation tests for goodness-of-fit testing of mathematical models to experimental data.
Fişek, M Hamit; Barlas, Zeynep
2013-03-01
This paper presents statistical procedures for improving the goodness-of-fit testing of theoretical models to data obtained from laboratory experiments. We use an experimental study in the expectation states research tradition which has been carried out in the "standardized experimental situation" associated with the program to illustrate the application of our procedures. We briefly review the expectation states research program and the fundamentals of resampling statistics as we develop our procedures in the resampling context. The first procedure we develop is a modification of the chi-square test which has been the primary statistical tool for assessing goodness of fit in the EST research program, but has problems associated with its use. We discuss these problems and suggest a procedure to overcome them. The second procedure we present, the "Average Absolute Deviation" test, is a new test and is proposed as an alternative to the chi square test, as being simpler and more informative. The third and fourth procedures are permutation versions of Jonckheere's test for ordered alternatives, and Kendall's tau(b), a rank order correlation coefficient. The fifth procedure is a new rank order goodness-of-fit test, which we call the "Deviation from Ideal Ranking" index, which we believe may be more useful than other rank order tests for assessing goodness-of-fit of models to experimental data. The application of these procedures to the sample data is illustrated in detail. We then present another laboratory study from an experimental paradigm different from the expectation states paradigm - the "network exchange" paradigm, and describe how our procedures may be applied to this data set. Copyright © 2012 Elsevier Inc. All rights reserved.
Perales-Martínez, Imperio Anel; Moreno-Guerra, Mario Regino; Elías-Zúñiga, Alex
2017-01-01
The aim of this paper focused on obtaining the optimum cruciform geometry of reinforced magnetorheological elastomers (MRE) to perform homogeneous equibiaxial deformation tests, by using optimization algorithms and Finite Element Method (FEM) simulations. To validate the proposed specimen geometry, a digital image correlation (DIC) system was used to compare experimental result measurements with respect to those of FEM simulations. Moreover, and based on the optimum cruciform geometry, specimens produced from MRE reinforced with carbonyl-iron microparticles or iron nanoparticles were subjected to equibiaxial loading and unloading cycles to examine their Mullin’s effect and their residual strain deformations. PMID:28869523
Palacios-Pineda, Luis Manuel; Perales-Martínez, Imperio Anel; Moreno-Guerra, Mario Regino; Elías-Zúñiga, Alex
2017-09-03
The aim of this paper focused on obtaining the optimum cruciform geometry of reinforced magnetorheological elastomers (MRE) to perform homogeneous equibiaxial deformation tests, by using optimization algorithms and Finite Element Method (FEM) simulations. To validate the proposed specimen geometry, a digital image correlation (DIC) system was used to compare experimental result measurements with respect to those of FEM simulations. Moreover, and based on the optimum cruciform geometry, specimens produced from MRE reinforced with carbonyl-iron microparticles or iron nanoparticles were subjected to equibiaxial loading and unloading cycles to examine their Mullin's effect and their residual strain deformations.
Palmprint identification using FRIT
NASA Astrophysics Data System (ADS)
Kisku, D. R.; Rattani, A.; Gupta, P.; Hwang, C. J.; Sing, J. K.
2011-06-01
This paper proposes a palmprint identification system using Finite Ridgelet Transform (FRIT) and Bayesian classifier. FRIT is applied on the ROI (region of interest), which is extracted from palmprint image, to extract a set of distinctive features from palmprint image. These features are used to classify with the help of Bayesian classifier. The proposed system has been tested on CASIA and IIT Kanpur palmprint databases. The experimental results reveal better performance compared to all well known systems.
Medeiros, Renan Landau Paiva de; Barra, Walter; Bessa, Iury Valente de; Chaves Filho, João Edgar; Ayres, Florindo Antonio de Cavalho; Neves, Cleonor Crescêncio das
2018-02-01
This paper describes a novel robust decentralized control design methodology for a single inductor multiple output (SIMO) DC-DC converter. Based on a nominal multiple input multiple output (MIMO) plant model and performance requirements, a pairing input-output analysis is performed to select the suitable input to control each output aiming to attenuate the loop coupling. Thus, the plant uncertainty limits are selected and expressed in interval form with parameter values of the plant model. A single inductor dual output (SIDO) DC-DC buck converter board is developed for experimental tests. The experimental results show that the proposed methodology can maintain a desirable performance even in the presence of parametric uncertainties. Furthermore, the performance indexes calculated from experimental data show that the proposed methodology outperforms classical MIMO control techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Teodorani, M.; Strand, E.
Unexplained plasma-like atmospheric `light balls' are observed at very low altitudes during alternate phases of maximum and minimum in the Hessdalen area, located in central Norway. Several theories are presented in order to explain the observed phenomenon; among these: piezo-electricity from rocks, atmospheric ionization triggered by solar activity and cosmic rays. The presented study is aimed at proposing the use of a dedicated instrumental set-up, research experimental procedures and methods in order to prove or disprove every single theory: in this context several kinds of observational techniques, measurement strategies and physical tests of tactical relevance are discussed in detail. An introduction on any considered theory is presented together with a detailed discussion regarding the subsequent experimental phase. For each specific theory brief descriptions of the observable parameters and of the essential instrumental choices and a detailed discussion of measurement procedures coupled with suitable flow-charts, are presented.
Do you remember proposing marriage to the Pepsi machine? False recollections from a campus walk.
Seamon, John G; Philbin, Morgan M; Harrison, Liza G
2006-10-01
During a campus walk, participants were given familiar or bizarre action statements (e.g., "Check the Pepsi machine for change" vs. "Propose marriage to the Pepsi machine") with instructions either to perform the actions or imagine performing the actions (Group 1) or to watch the experimenter perform the actions or imagine the experimenter performing the actions (Group 2). One day later, some actions were repeated, along with new actions, on a second walk. Two weeks later, the participants took a recognition test for actions presented during the first walk, and they specified whether a recognized action was imagined or performed. Imagining themselves or the experimenter performing familiar or bizarre actions just once led to false recollections of performance for both types of actions. This study extends previous research on imagination inflation by demonstrating that these false performance recollections can occur in a natural, real-life setting following just one imagining.
Loukriz, Abdelhamid; Haddadi, Mourad; Messalti, Sabir
2016-05-01
Improvement of the efficiency of photovoltaic system based on new maximum power point tracking (MPPT) algorithms is the most promising solution due to its low cost and its easy implementation without equipment updating. Many MPPT methods with fixed step size have been developed. However, when atmospheric conditions change rapidly , the performance of conventional algorithms is reduced. In this paper, a new variable step size Incremental Conductance IC MPPT algorithm has been proposed. Modeling and simulation of different operational conditions of conventional Incremental Conductance IC and proposed methods are presented. The proposed method was developed and tested successfully on a photovoltaic system based on Flyback converter and control circuit using dsPIC30F4011. Both, simulation and experimental design are provided in several aspects. A comparative study between the proposed variable step size and fixed step size IC MPPT method under similar operating conditions is presented. The obtained results demonstrate the efficiency of the proposed MPPT algorithm in terms of speed in MPP tracking and accuracy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental Studies on the Mechanical Behaviour of Rock Joints with Various Openings
NASA Astrophysics Data System (ADS)
Li, Y.; Oh, J.; Mitra, R.; Hebblewhite, B.
2016-03-01
The mechanical behaviour of rough joints is markedly affected by the degree of joint opening. A systematic experimental study was conducted to investigate the effect of the initial opening on both normal and shear deformations of rock joints. Two types of joints with triangular asperities were produced in the laboratory and subjected to compression tests and direct shear tests with different initial opening values. The results showed that opened rock joints allow much greater normal closure and result in much lower normal stiffness. A semi-logarithmic law incorporating the degree of interlocking is proposed to describe the normal deformation of opened rock joints. The proposed equation agrees well with the experimental results. Additionally, the results of direct shear tests demonstrated that shear strength and dilation are reduced because of reduced involvement of and increased damage to asperities in the process of shearing. The results indicate that constitutive models of rock joints that consider the true asperity contact area can be used to predict shear resistance along opened rock joints. Because rock masses are loosened and rock joints become open after excavation, the model suggested in this study can be incorporated into numerical procedures such as finite-element or discrete-element methods. Use of the model could then increase the accuracy and reliability of stability predictions for rock masses under excavation.
NASA Astrophysics Data System (ADS)
Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2017-10-01
In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.
ERIC Educational Resources Information Center
Heilprin, Laurence B.
The Committee to Investigate Copyright Problems (CICP), a non-profit organization dedicated to resolving the conflict known as the "copyright photocopying problem" was joined by the American Society for Testing and Materials (ASTM), a large national publisher of technical and scientific standards, in a plan to simulate a long-proposed…
Fernández, Roemi; Salinas, Carlota; Montes, Héctor; Sarria, Javier
2014-01-01
The motivation of this research was to explore the feasibility of detecting and locating fruits from different kinds of crops in natural scenarios. To this end, a unique, modular and easily adaptable multisensory system and a set of associated pre-processing algorithms are proposed. The offered multisensory rig combines a high resolution colour camera and a multispectral system for the detection of fruits, as well as for the discrimination of the different elements of the plants, and a Time-Of-Flight (TOF) camera that provides fast acquisition of distances enabling the localisation of the targets in the coordinate space. A controlled lighting system completes the set-up, increasing its flexibility for being used in different working conditions. The pre-processing algorithms designed for the proposed multisensory system include a pixel-based classification algorithm that labels areas of interest that belong to fruits and a registration algorithm that combines the results of the aforementioned classification algorithm with the data provided by the TOF camera for the 3D reconstruction of the desired regions. Several experimental tests have been carried out in outdoors conditions in order to validate the capabilities of the proposed system. PMID:25615730
NASA Astrophysics Data System (ADS)
Secondo, R.; Alía, R. Garcia; Peronnard, P.; Brugger, M.; Masi, A.; Danzeca, S.; Merlenghi, A.; Vaillé, J.-R.; Dusseau, L.
2017-08-01
A single event latchup (SEL) experiment based on commercial static random access memory (SRAM) memories has recently been proposed in the framework of the European Organization for Nuclear Research (CERN) Latchup Experiment and Student Satellite nanosatellite low Earth orbit (LEO) space mission. SEL characterization of three commercial SRAM memories has been carried out at the Paul Scherrer Institut (PSI) facility, using monoenergetic focused proton beams and different acquisition setups. The best target candidate was selected and a circuit for SEL detection has been proposed and tested at CERN, in the CERN High Energy AcceleRator Mixed-field facility (CHARM). Experimental results were carried out at test locations representative of the LEO environment, thus providing a full characterization of the SRAM cross sections, together with the analysis of the single-event effect and total ionizing dose of the latchup detection circuit in relation to the particle spectra expected during mission. The setups used for SEL monitoring are described, and details of the proposed circuit components and topology are presented. Experimental results obtained both at PSI and at CHARM facilities are discussed.
NASA Technical Reports Server (NTRS)
Siegel, W. H.
1978-01-01
As part of NASA's continuing research into hypersonics and 85 square foot hypersonic wing test section of a proposed hypersonic research airplane was laboratory tested. The project reported on in this paper has carried the hypersonic wing test structure project one step further by testing a single beaded panel to failure. The primary interest was focused upon the buckling characteristics of the panel under pure compression with boundary conditions similar to those found in a wing mounted condition. Three primary phases of analysis are included in the report. These phases include: experimental testing of the beaded panel to failure; finite element structural analysis of the beaded panel with the computer program NASTRAN; a summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. Comparisons between each of the analysis methods are also included.
Testing the quantum superposition principle: matter waves and beyond
NASA Astrophysics Data System (ADS)
Ulbricht, Hendrik
2015-05-01
New technological developments allow to explore the quantum properties of very complex systems, bringing the question of whether also macroscopic systems share such features, within experimental reach. The interest in this question is increased by the fact that, on the theory side, many suggest that the quantum superposition principle is not exact, departures from it being the larger, the more macroscopic the system. Testing the superposition principle intrinsically also means to test suggested extensions of quantum theory, so-called collapse models. We will report on three new proposals to experimentally test the superposition principle with nanoparticle interferometry, optomechanical devices and by spectroscopic experiments in the frequency domain. We will also report on the status of optical levitation and cooling experiments with nanoparticles in our labs, towards an Earth bound matter-wave interferometer to test the superposition principle for a particle mass of one million amu (atomic mass unit).
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-08-30
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.
Li, Zhenyu; Wang, Bin; Liu, Hong
2016-01-01
Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748
A universal test for gravitational decoherence
Pfister, C.; Kaniewski, J.; Tomamichel, M.; Mantri, A.; Schmucker, R.; McMahon, N.; Milburn, G.; Wehner, S.
2016-01-01
Quantum mechanics and the theory of gravity are presently not compatible. A particular question is whether gravity causes decoherence. Several models for gravitational decoherence have been proposed, not all of which can be described quantum mechanically. Since quantum mechanics may need to be modified, one may question the use of quantum mechanics as a calculational tool to draw conclusions from the data of experiments concerning gravity. Here we propose a general method to estimate gravitational decoherence in an experiment that allows us to draw conclusions in any physical theory where the no-signalling principle holds, even if quantum mechanics needs to be modified. As an example, we propose a concrete experiment using optomechanics. Our work raises the interesting question whether other properties of nature could similarly be established from experimental observations alone—that is, without already having a rather well-formed theory of nature to make sense of experimental data. PMID:27694976
Effect of corrosion on the buckling capacity of tubular members
NASA Astrophysics Data System (ADS)
Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.
2017-12-01
Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.
A new optimal sliding mode controller design using scalar sign function.
Singla, Mithun; Shieh, Leang-San; Song, Gangbing; Xie, Linbo; Zhang, Yongpeng
2014-03-01
This paper presents a new optimal sliding mode controller using the scalar sign function method. A smooth, continuous-time scalar sign function is used to replace the discontinuous switching function in the design of a sliding mode controller. The proposed sliding mode controller is designed using an optimal Linear Quadratic Regulator (LQR) approach. The sliding surface of the system is designed using stable eigenvectors and the scalar sign function. Controller simulations are compared with another existing optimal sliding mode controller. To test the effectiveness of the proposed controller, the controller is implemented on an aluminum beam with piezoceramic sensor and actuator for vibration control. This paper includes the control design and stability analysis of the new optimal sliding mode controller, followed by simulation and experimental results. The simulation and experimental results show that the proposed approach is very effective. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Development and validation of a lateral MREs isolator
NASA Astrophysics Data System (ADS)
Xing, Zhi-Wei; Yu, Miao; Fu, Jie; Zhao, Lu-Jie
2015-02-01
A novel lateral vibration isolator utilizing magnetorheological elastomers (MREs) with the field-dependent damping and stiffness was proposed in order to improve the adaptive performance. First, soft silicone rubber MREs with a highly adjustable shear storage modulus was fabricated. Then, the lateral MREs isolator was developed with a unique laminated structure of MRE layers and steel plates, which enables to withstand large vertical loads and adapts to the situation of large lateral displacement. Also, the electromagnetic analysis and design employed electromagnetic finite element method (FEM) to optimize magnetic circuit inside the proposed device. To evaluate the effectiveness of the lateral MREs isolator, a series of experimental tests were carried out under various applied magnetic fields. Experimental results show that the proposed MREs isolator can triumphantly change the lateral stiffness and equivalent damping up to 140% and 125%, respectively. This work demonstrates the performance of the designed lateral MREs isolator and its capacity in vibration mitigation for the complex situation.
NASA Astrophysics Data System (ADS)
Shutov, A. V.; Larichkin, A. Yu
2017-10-01
A cyclic creep damage model, previously proposed by the authors, is modified for a better description of the transient creep of D16T alloy observed in the finite strain range under rapidly changing stresses. The new model encompasses the concept of kinematic hardening, which allows us to account for the creep-induced anisotropy. The model kinematics is based on the nested multiplicative split of the deformation gradient, proposed by Lion. The damage evolution is accounted for by the classical Kachanov-Rabotnov approach. The material parameters are identified using experimental data on cyclic torsion of thick-walled samples with different holding times between load reversals. For the validation of the proposed material model, an additional experiment is analyzed. Although this additional test is not involved in the identification procedure, the proposed cyclic creep damage model describes it accurately.
Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer
NASA Astrophysics Data System (ADS)
An, Yun-Kyu; Lee, Dong Jun
2016-04-01
This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.
Creep rupture behavior of unidirectional advanced composites
NASA Technical Reports Server (NTRS)
Yeow, Y. T.
1980-01-01
A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.
NASA Astrophysics Data System (ADS)
Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei
2015-02-01
An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.
Eye vision system using programmable micro-optics and micro-electronics
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.
2014-02-01
Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.
Towards homoscedastic nonlinear cointegration for structural health monitoring
NASA Astrophysics Data System (ADS)
Zolna, Konrad; Dao, Phong B.; Staszewski, Wieslaw J.; Barszcz, Tomasz
2016-06-01
The paper presents the homoscedastic nonlinear cointegration. The method leads to stable variances in nonlinear cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity (or homoscedasticity) in the cointegration residuals obtained from the nonlinear cointegration analysis. Three different time series - i.e. one with a nonlinear quadratic deterministic trend, simulated vibration data and experimental wind turbine data - are used to illustrate the application of the proposed method. The proposed approach can be used for effective removal of nonlinear trends from various types of data and for reliable structural damage detection based on data that are corrupted by environmental and/or operational nonlinear trends.
Parametric, nonparametric and parametric modelling of a chaotic circuit time series
NASA Astrophysics Data System (ADS)
Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.
2000-09-01
The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.
NASA Astrophysics Data System (ADS)
Parma, Valentina; Sartori, Luisa; Castiello, Umberto
2018-03-01
Becchio et al. [1] propose a model to render other's minds observable against the Unobservability Principle. Such model develops over four, distinct steps. First, it provides experimental evidence indicating that mental states (i.e., intentions) can be encoded in behavioral patterns (e.g., movement kinematics). Second, it provides strategies to test the efficiency of the quantification of such intention-related behavioral manifestations (i.e., resolution of the uncertainty between two intentions based on different patterns of accumulation of kinematic parameters). Third, it indicates specific features of the observed behavior that viewers use to detect different intentions (i.e., a series of decision rules based on kinematic features through which intention categorization occurs). Fourth, it proposes a manner to manipulate such specific behavioral features so that an observer can detect different intentions, based on how informative such behavioral features are. We see in this operational/experimental approach a significant contribution to the theoretical debate on the possibility to observe mental states, allowing the direct testing of the unobservability principle and therefore providing falsifiable hypotheses. Besides this already central aspect, we believe this approach holds promise to the elucidation of clinical open questions, such as those posed by autism spectrum disorders (ASD). Indeed, experimentally evaluating the ability to observe and manipulate other's intentions allow us to quantify with high accuracy the deficits in the representation of other people's minds that so chiefly characterize ASD as well as the outcomes of treatment options focusing on this aspect. Here we suggest a few clarifications and extensions of the proposed model which will make it possibly tailored for clinical applications.
Quantifying the Influence of Lightning Strike Pressure Loading on Composite Specimen Damage
NASA Astrophysics Data System (ADS)
Foster, P.; Abdelal, G.; Murphy, A.
2018-04-01
Experimental work has shown that a component of lightning strike damage is caused by a mechanical loading. As the profile of the pressure loading is unknown a number of authors propose different pressure loads, varying in form, application area and magnitude. The objective of this paper is to investigate the potential contribution of pressure loading to composite specimen damage. This is achieved through a simulation study using an established modelling approach for composite damage prediction. The study examines the proposed shockwave loads from the literature. The simulation results are compared with measured test specimen damage examining the form and scale of damage. The results for the first time quantify the significance of pressure loading, demonstrating that although a pressure load can cause damage consistent with that measured experimentally, it has a negligible contribution to the overall scale of damage. Moreover the requirements for a pressure to create the damage behaviours typically witnessed in testing requires that the pressure load be within a very precise window of magnitude and loading area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikitin, N. V., E-mail: nnikit@mail.cern.ch; Sotnikov, V.P., E-mail: sotnikov@physics.msu.ru; Toms, K. S., E-mail: ktoms@mail.cern.ch
A radically new class of Bell inequalities in Wigner’s form was obtained on the basis of Kolmorov’s axiomatization of probability theory and the hypothesis of locality. These inequalities take explicitly into account the dependence on time (time-dependent Bell inequalities in Wigner’s form). By using these inequalities, one can propose a means for experimentally testing Bohr’ complementarity principle in the relativistic region. The inequalities in question open broad possibilities for studying correlations of nonrelativistic and relativistic quantum systems in external fields. The violation of the time-dependent inequalities in quantum mechanics was studied by considering the behavior of a pair of anticorrelatedmore » spins in a constant external magnetic field and oscillations of neutral pseudoscalar mesons. The decay of a pseudoscalar particle to a fermion–antifermion pair is considered within quantum field theory. In order to test experimentally the inequalities proposed in the present study, it is not necessary to perform dedicated noninvasive measurements required in the Leggett–Garg approach, for example.« less
Analytical & Experimental Study of Radio Frequency Cavity Beam Profile Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcazar, Mario D.; Yonehara, Katsuya
The purpose of this analytical and experimental study is multifold: 1) To explore a new, radiation-robust, hadron beam profile monitor for intense neutrino beam applications; 2) To test, demonstrate, and develop a novel gas-filled Radio-Frequency (RF) cavity to use in this monitoring system. Within this context, the first section of the study analyzes the beam distribution across the hadron monitor as well as the ion-production rate inside the RF cavity. Furthermore a more effecient pixel configuration across the hadron monitor is proposed to provide higher sensitivity to changes in beam displacement. Finally, the results of a benchtop test of themore » tunable quality factor RF cavity will be presented. The proposed hadron monitor configuration consists of a circular array of RF cavities located at a radial distance of 7cm { corresponding to the standard deviation of the beam due to scatering { and a gas-filled RF cavity with a quality factor in the range 400 - 800.« less
Shear test on viscoelastic granular material using Contact Dynamics simulations
NASA Astrophysics Data System (ADS)
Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille
2017-06-01
By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.
IMAGE-GUIDED TREATMENT USING AN X-RAY THERAPY UNIT AND GOLD NANOPARTICLES: TEST OF CONCEPT.
Le Loirec, Cindy; Chambellan, Dominique; Tisseur, David
2016-06-01
Gold nanoparticles (GNPs) have the potential to enhance the radiation dose locally in conjunction with kV X-rays used for radiation therapy. As for other radiotherapy modalities, the absorbed dose needs to be controlled. To do that, it is an advantage to know the distribution of GNPs. However, no effective imaging tool exists to determine the GNP distribution in vivo. Various approaches have been proposed to determine the concentration of GNPs and its distribution in a tumour and in other organs and tissues. X-ray fluorescence computed tomography (XFCT) is a promising imaging technique to do that. A new experimental device based on the XFCT technique allowing the in vivo control of GNP radiotherapy treatments is proposed. As a test of concept, experimental acquisitions and Monte Carlo simulations were performed to determine the performance that a XFCT detector has to fulfil. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Allman, Derek; Reiter, Austin; Bell, Muyinatu
2018-02-01
We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.
NASA Technical Reports Server (NTRS)
Kashangaki, Thomas A. L.
1992-01-01
This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.
Development of a low cost test rig for standalone WECS subject to electrical faults.
Himani; Dahiya, Ratna
2016-11-01
In this paper, a contribution to the development of low-cost wind turbine (WT) test rig for stator fault diagnosis of wind turbine generator is proposed. The test rig is developed using a 2.5kW, 1750 RPM DC motor coupled to a 1.5kW, 1500 RPM self-excited induction generator interfaced with a WT mathematical model in LabVIEW. The performance of the test rig is benchmarked with already proven wind turbine test rigs. In order to detect the stator faults using non-stationary signals in self-excited induction generator, an online fault diagnostic technique of DWT-based multi-resolution analysis is proposed. It has been experimentally proven that for varying wind conditions wavelet decomposition allows good differentiation between faulty and healthy conditions leading to an effective diagnostic procedure for wind turbine condition monitoring. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Shanks, Ryan A.; Robertson, Chuck L.; Haygood, Christian S.; Herdliksa, Anna M.; Herdliska, Heather R.; Lloyd, Steven A.
2017-01-01
Introductory biology courses provide an important opportunity to prepare students for future courses, yet existing cookbook labs, although important in their own way, fail to provide many of the advantages of semester-long research experiences. Engaging, authentic research experiences aid biology students in meeting many learning goals. Therefore, overlaying a research experience onto the existing lab structure allows faculty to overcome barriers involving curricular change. Here we propose a working model for this overlay design in an introductory biology course and detail a means to conduct this lab with minimal increases in student and faculty workloads. Furthermore, we conducted exploratory factor analysis of the Experimental Design Ability Test (EDAT) and uncovered two latent factors which provide valid means to assess this overlay model’s ability to increase advanced experimental design abilities. In a pre-test/post-test design, we demonstrate significant increases in both basic and advanced experimental design abilities in an experimental and comparison group. We measured significantly higher gains in advanced experimental design understanding in students in the experimental group. We believe this overlay model and EDAT factor analysis contribute a novel means to conduct and assess the effectiveness of authentic research experiences in an introductory course without major changes to the course curriculum and with minimal increases in faculty and student workloads. PMID:28904647
NASA Astrophysics Data System (ADS)
Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin
2016-08-01
This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.
Dong, Bing; Booth, Martin J
2018-01-22
In adaptive optical microscopy of thick biological tissue, strong scattering and aberrations can change the effective pupil shape by rendering some Shack-Hartmann spots unusable. The change of pupil shape leads to a change of wavefront reconstruction or control matrix that should be updated accordingly. Modified slope and modal wavefront control methods based on measurements of a Shack-Hartmann wavefront sensor are proposed to accommodate an arbitrarily shaped pupil. Furthermore, we present partial wavefront control methods that remove specific aberration modes like tip, tilt and defocus from the control loop. The proposed control methods were investigated and compared by simulation using experimentally obtained aberration data. The performance was then tested experimentally through closed-loop aberration corrections using an obscured pupil.
NASA Astrophysics Data System (ADS)
Grzesik, W.; Niesłony, P.; Laskowski, P.
2017-12-01
In this paper, a special procedure for the prediction of parameters of the Johnson-Cook constitutive material models is proposed based on the experimental data and specially developed MATLAB scripts which allow advanced modeling of complex 3D response surfaces. Experimental investigations concern two various strain rates of 10-3 and 101 1/s and the testing temperature ranging from the ambient up to 700 °C. As a result, a set of mathematical equations which fit the experimental data is determined. The applicability of the experimentally derived constitutive models to the FEM modeling of real machining processes of Inconel 718 alloy is verified.
Investigation of approximate models of experimental temperature characteristics of machines
NASA Astrophysics Data System (ADS)
Parfenov, I. V.; Polyakov, A. N.
2018-05-01
This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.
Shredded Waste Downdraft Gasifier for Overseas Contingency Operations Waste-to-Energy Conversion
2015-06-01
results of the proposed experimental test plan and the design of a shredded waste WEC system in Task 5. A. Generators (Left) and Shredded...Shredded Waste 4 8.5 – 27.1 5.1.1.4 Wall Friction Tests In addition to a properly sized outlet, the design of a mass flow vessel must consider...consolidating pressures. 5.1.2.3 Wall Friction Tests In addition to a properly sized outlet, the design of a mass flow vessel must consider the
Relationship of fruit and vegetable intake with adiposity: a systematic review
USDA-ARS?s Scientific Manuscript database
Fruit and vegetable (FV) intake has been proposed to protect against obesity. The purpose of this paper was to assess the FV consumption to adiposity relationship. Twenty-three publications were included. Inclusion criteria: longitudinal or experimental designs; FV intake tested in relation to adipo...
78 FR 65745 - Agency Information Collection Activities: Proposed Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... benefits as earnings increase. The experimental design for BOND tests a benefit offset alone and in conjunction with enhanced work incentives counseling. The central research questions include: What is the... public survey data collections have four components--an impact study, a cost-benefit analysis, a...
75 FR 9189 - Notice of Proposed Information Collection Requests
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-01
... mandated standardized test scores); follow-up surveys for students; teacher and parent rating/observation on various student aspects (e.g., student social skills); baseline and follow-up surveys for teachers... Character (LIC) program. This study is based on an experimental design that utilizes the random assignment...
Zhang, Xiaowei; Sahraei, Elham; Wang, Kai
2016-01-01
Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185
Peridynamic Applications for Orthotropic Materials
2012-09-26
test and a vibration excitation of a laminated beam. An SEN (single edge notch) test of a 0° laminated plate was simulated by peridynamics and the...computational results matched very well with published experimental results. Fracture initiation and crack path of laminated plates with different fiber...Dwivedi [1] modeled the propagation of single-edge notch (SEN) in 0° laminated plate using cohesizve zone method. Xu [2] and Hu [3] proposed a two
High Fidelity Drug Repurposing, Molecular Profiling, and Cell Reprogramming
2016-09-01
network pharmacology and CRCs) to discover and test repurposed drugs that target PCa on an individual patient basis. Objective 1: We will enrich the FDA...repurposing”, for all FDA-approved and experimental drugs. We have recently integrated our proprietary TMFS with network pharmacology , which will help to...samples. In this proposal we integrate two paradigm-shifting Georgetown-Lombardi technologies (TMFS/network pharmacology and CRCs) to discover and test
Experimental Study On The Effect Of Micro-Cracks On Brazilian Tensile Strength
NASA Astrophysics Data System (ADS)
Wang, Xiangyu
2015-12-01
For coal mine ground control issues, it is necessary to propose a failure criteria accounting for the transversely isotropic behaviors of rocks. Hence, it is very helpful to provide experimental data for the validation of the failure criteria. In this paper, the method for preparing transversely isotropic specimens and the scheme of the Brazilian tensile strength test are presented. Results obtained from Brazilian split tests under dry and water-saturated conditions reflect the effect of the development direction β of the structural plane, such as the bedding fissure, on the tensile strength, ultimate displacement, failure mode, and the whole splitting process. The results show that the tensile strength decreases linearly with increasing β. The softening coefficient of the tensile strength shows a sinusoidal function. The values of the slope and inflection point for the curve vary at the different stages of the Brazilian test. The failure mode of the rock specimen presented in this paper generally coincides with the standard Brazilian splitting failure mode. Based on the test results, the major influencing factors for the Brazilian splitting strength are analyzed and a mathematical model for solving the Brazilian splitting strength is proposed. The findings in this paper would greatly benefit the coal mine ground control studies when the surrounding rocks of interest show severe transversely isotropic behaviors.
Thermal stress characterization using the electro-mechanical impedance method
NASA Astrophysics Data System (ADS)
Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood
2017-04-01
This study examines the potential of the Electro-Mechanical Impedance (EMI) method to provide an estimation of the developed thermal stress in constrained bar-like structures. This non-invasive method features the easiness of implementation and interpretation, while it is notoriously known for being vulnerable to environmental variability. A comprehensive analytical model is proposed to relate the measured electric admittance signatures of the PZT element to temperature and uniaxial stress applied to the underlying structure. The model results compare favorably to the experimental ones, where the sensitivities of features extracted from the admittance signatures to the varying stress levels and temperatures are determined. Two temperature compensation frameworks are proposed to characterize the thermal stress states: (a) a regression model is established based on temperature-only tests, and the residuals from the thermal stress tests are then used to isolate the stress measurand; (b) the temperature-only tests are decomposed by Principle Components Analysis (PCA) and the feature vectors of the thermal stress tests are reconstructed after removal of the temperaturesensitive components. For both methods, the features were selected based on their performance in Receiver Operating Characteristic (ROC) curves. Experimental results on the Continuous Welded Rails (CWR) are shown to demonstrate the effectiveness of these temperature compensation methods.
Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M
2016-07-01
This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Experimental studies of rock fracture behavior related to hydraulic fracture
NASA Astrophysics Data System (ADS)
Ma, Zifeng
The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.
Strain Modal Analysis of Small and Light Pipes Using Distributed Fibre Bragg Grating Sensors
Huang, Jun; Zhou, Zude; Zhang, Lin; Chen, Juntao; Ji, Chunqian; Pham, Duc Truong
2016-01-01
Vibration fatigue failure is a critical problem of hydraulic pipes under severe working conditions. Strain modal testing of small and light pipes is a good option for dynamic characteristic evaluation, structural health monitoring and damage identification. Unique features such as small size, light weight, and high multiplexing capability enable Fibre Bragg Grating (FBG) sensors to measure structural dynamic responses where sensor size and placement are critical. In this paper, experimental strain modal analysis of pipes using distributed FBG sensors ispresented. Strain modal analysis and parameter identification methods are introduced. Experimental strain modal testing and finite element analysis for a cantilever pipe have been carried out. The analysis results indicate that the natural frequencies and strain mode shapes of the tested pipe acquired by FBG sensors are in good agreement with the results obtained by a reference accelerometer and simulation outputs. The strain modal parameters of a hydraulic pipe were obtained by the proposed strain modal testing method. FBG sensors have been shown to be useful in the experimental strain modal analysis of small and light pipes in mechanical, aeronautic and aerospace applications. PMID:27681728
Pourazar, Morteza; Mirakhori, Fatemeh; Hemayattalab, Rasool; Bagherzadeh, Fazlolah
2017-09-21
The purpose of this study was to investigate the training effects of Virtual Reality (VR) intervention program on reaction time in children with cerebral palsy. Thirty boys ranging from 7 to 12 years (mean = 11.20; SD = .76) were selected by available sampling method and randomly divided into the experimental and control groups. Simple Reaction Time (SRT) and Discriminative Reaction Time (DRT) were measured at baseline and 1 day after completion of VR intervention. Multivariate analysis of variance (MANOVA) and paired sample t-test were performed to analyze the results. MANOVA test revealed significant effects for group in posttest phase, with lower reaction time in both measures for the experimental group. Based on paired sample t-test results, both RT measures significantly improved in experimental group following the VR intervention program. This paper proposes VR as a promising tool into the rehabilitation process for improving reaction time in children with cerebral palsy.
Noise Prediction of NASA SR2 Propeller in Transonic Conditions
NASA Astrophysics Data System (ADS)
Gennaro, Michele De; Caridi, Domenico; Nicola, Carlo De
2010-09-01
In this paper we propose a numerical approach for noise prediction of high-speed propellers for Turboprop applications. It is based on a RANS approach for aerodynamic simulation coupled with Ffowcs Williams-Hawkings (FW-H) Acoustic Analogy for propeller noise prediction. The test-case geometry adopted for this study is the 8-bladed NASA SR2 transonic cruise propeller, and simulated Sound Pressure Levels (SPL) have been compared with experimental data available from Wind Tunnel and Flight Tests for different microphone locations in a range of Mach numbers between 0.78 and 0.85 and rotational velocities between 7000 and 9000 rpm. Results show the ability of this approach to predict noise to within a few dB of experimental data. Moreover corrections are provided to be applied to acoustic numerical results in order for them to be compared with Wind Tunnel and Flight Test experimental data, as well computational grid requirements and guidelines in order to perform complete aerodynamic and aeroacoustic calculations with highly competitive computational cost.
Structural and Optical Properties Studies Of Ar2+ Ion Implanted Mn Deposited GaAs
NASA Astrophysics Data System (ADS)
De Gennaro, Michele; Caridi, Domenico; de Nicola, Carlo
2010-09-01
In this paper we propose a numerical approach for noise prediction of high-speed propellers for Turboprop applications. It is based on a RANS approach for aerodynamic simulation coupled with Ffowcs Williams-Hawkings (FW-H) Acoustic Analogy for propeller noise prediction. The test-case geometry adopted for this study is the 8-bladed NASA SR2 transonic cruise propeller, and simulated Sound Pressure Levels (SPL) have been compared with experimental data available from Wind Tunnel and Flight Tests for different microphone locations in a range of Mach numbers between 0.78 and 0.85 and rotational velocities between 7000 and 9000 rpm. Results show the ability of this approach to predict noise to within a few dB of experimental data. Moreover corrections are provided to be applied to acoustic numerical results in order for them to be compared with Wind Tunnel and Flight Test experimental data, as well computational grid requirements and guidelines in order to perform complete aerodynamic and aeroacoustic calculations with highly competitive computational cost.
Lee, Jeong Wan
2008-01-01
This paper proposes a field calibration technique for aligning a wind direction sensor to the true north. The proposed technique uses the synchronized measurements of captured images by a camera, and the output voltage of a wind direction sensor. The true wind direction was evaluated through image processing techniques using the captured picture of the sensor with the least square sense. Then, the evaluated true value was compared with the measured output voltage of the sensor. This technique solves the discordance problem of the wind direction sensor in the process of installing meteorological mast. For this proposed technique, some uncertainty analyses are presented and the calibration accuracy is discussed. Finally, the proposed technique was applied to the real meteorological mast at the Daegwanryung test site, and the statistical analysis of the experimental testing estimated the values of stable misalignment and uncertainty level. In a strict sense, it is confirmed that the error range of the misalignment from the exact north could be expected to decrease within the credibility level. PMID:27873957
ASME B89.4.19 Performance Evaluation Tests and Geometric Misalignments in Laser Trackers
Muralikrishnan, B.; Sawyer, D.; Blackburn, C.; Phillips, S.; Borchardt, B.; Estler, W. T.
2009-01-01
Small and unintended offsets, tilts, and eccentricity of the mechanical and optical components in laser trackers introduce systematic errors in the measured spherical coordinates (angles and range readings) and possibly in the calculated lengths of reference artifacts. It is desirable that the tests described in the ASME B89.4.19 Standard [1] be sensitive to these geometric misalignments so that any resulting systematic errors are identified during performance evaluation. In this paper, we present some analysis, using error models and numerical simulation, of the sensitivity of the length measurement system tests and two-face system tests in the B89.4.19 Standard to misalignments in laser trackers. We highlight key attributes of the testing strategy adopted in the Standard and propose new length measurement system tests that demonstrate improved sensitivity to some misalignments. Experimental results with a tracker that is not properly error corrected for the effects of the misalignments validate claims regarding the proposed new length tests. PMID:27504211
Huang, Shuguang; Yeo, Adeline A; Li, Shuyu Dan
2007-10-01
The Kolmogorov-Smirnov (K-S) test is a statistical method often used for comparing two distributions. In high-throughput screening (HTS) studies, such distributions usually arise from the phenotype of independent cell populations. However, the K-S test has been criticized for being overly sensitive in applications, and it often detects a statistically significant difference that is not biologically meaningful. One major reason is that there is a common phenomenon in HTS studies that systematic drifting exists among the distributions due to reasons such as instrument variation, plate edge effect, accidental difference in sample handling, etc. In particular, in high-content cellular imaging experiments, the location shift could be dramatic since some compounds themselves are fluorescent. This oversensitivity of the K-S test is particularly overpowered in cellular assays where the sample sizes are very big (usually several thousands). In this paper, a modified K-S test is proposed to deal with the nonspecific location-shift problem in HTS studies. Specifically, we propose that the distributions are "normalized" by density curve alignment before the K-S test is conducted. In applications to simulation data and real experimental data, the results show that the proposed method has improved specificity.
Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Pardo-Vazquez, Jose L; Leboran, Victor; Molenberghs, Geert; Faes, Christel; Acuña, Carlos
2011-06-30
It is well established that neural activity is stochastically modulated over time. Therefore, direct comparisons across experimental conditions and determination of change points or maximum firing rates are not straightforward. This study sought to compare temporal firing probability curves that may vary across groups defined by different experimental conditions. Odds-ratio (OR) curves were used as a measure of comparison, and the main goal was to provide a global test to detect significant differences of such curves through the study of their derivatives. An algorithm is proposed that enables ORs based on generalized additive models, including factor-by-curve-type interactions to be flexibly estimated. Bootstrap methods were used to draw inferences from the derivatives curves, and binning techniques were applied to speed up computation in the estimation and testing processes. A simulation study was conducted to assess the validity of these bootstrap-based tests. This methodology was applied to study premotor ventral cortex neural activity associated with decision-making. The proposed statistical procedures proved very useful in revealing the neural activity correlates of decision-making in a visual discrimination task. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Burley, Richard R.; Harrington, Douglas E.
1987-01-01
An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.
Fragmentation modeling of a resin bonded sand
NASA Astrophysics Data System (ADS)
Hilth, William; Ryckelynck, David
2017-06-01
Cemented sands exhibit a complex mechanical behavior that can lead to sophisticated models, with numerous parameters without real physical meaning. However, using a rather simple generalized critical state bonded soil model has proven to be a relevant compromise between an easy calibration and good results. The constitutive model formulation considers a non-associated elasto-plastic formulation within the critical state framework. The calibration procedure, using standard laboratory tests, is complemented by the study of an uniaxial compression test observed by tomography. Using finite elements simulations, this test is simulated considering a non-homogeneous 3D media. The tomography of compression sample gives access to 3D displacement fields by using image correlation techniques. Unfortunately these fields have missing experimental data because of the low resolution of correlations for low displacement magnitudes. We propose a recovery method that reconstructs 3D full displacement fields and 2D boundary displacement fields. These fields are mandatory for the calibration of the constitutive parameters by using 3D finite element simulations. The proposed recovery technique is based on a singular value decomposition of available experimental data. This calibration protocol enables an accurate prediction of the fragmentation of the specimen.
Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode
NASA Astrophysics Data System (ADS)
Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun
2011-12-01
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.
Laboratory plasma interactions experiments: Results and implications to future space systems
NASA Technical Reports Server (NTRS)
Leung, Philip
1986-01-01
The experimental results discussed show the significance of the effects caused by spacecraft plasma interactions, in particular the generation of Electromagnetic Interference. As the experimental results show, the magnitude of the adverse effects induced by Plasma Interactions (PI) will be more significant for spacecraft of the next century. Therefore, research is needed to control possible adverse effects. Several techniques to control the selected PI effects are discussed. Tests, in the form of flight experiments, are needed to validate these proposed ideas.
Tests of alternative quantum theories with neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.
2014-12-04
According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.
Hawking radiation in an electromagnetic waveguide?
Schützhold, Ralf; Unruh, William G
2005-07-15
It is demonstrated that the propagation of electromagnetic waves in an appropriately designed waveguide is (for large wavelengths) analogous to that within a curved space-time--such as around a black hole. As electromagnetic radiation (e.g., microwaves) can be controlled, amplified, and detected (with present-day technology) much easier than sound, for example, we propose a setup for the experimental verification of the Hawking effect. Apart from experimentally testing this striking prediction, this would facilitate the investigation of the trans-Planckian problem.
NASA Astrophysics Data System (ADS)
Zhu, Meng-Hua; Liu, Liang-Gang; You, Zhong; Xu, Ao-Ao
2009-03-01
In this paper, a heuristic approach based on Slavic's peak searching method has been employed to estimate the width of peak regions for background removing. Synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectrum, we find it is simple and effective enough to be used together with the Statistics-sensitive Nonlinear Iterative Peak-Clipping method.
Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown
NASA Astrophysics Data System (ADS)
Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás
2018-05-01
The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.
A test data compression scheme based on irrational numbers stored coding.
Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan
2014-01-01
Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.
NASA Astrophysics Data System (ADS)
Sotner, R.; Kartci, A.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K.
2012-12-01
Several behavioral models of current active elements for experimental purposes are introduced in this paper. These models are based on commercially available devices. They are suitable for experimental tests of current- and mixed-mode filters, oscillators, and other circuits (employing current-mode active elements) frequently used in analog signal processing without necessity of onchip fabrication of proper active element. Several methods of electronic control of intrinsic resistance in the proposed behavioral models are discussed. All predictions and theoretical assumptions are supported by simulations and experiments. This contribution helps to find a cheaper and more effective way to preliminary laboratory tests without expensive on-chip fabrication of special active elements.
NASA Astrophysics Data System (ADS)
Geiger, E.; Le Gall, C.; Gallais-During, A.; Pontillon, Y.; Lamontagne, J.; Hanus, E.; Ducros, G.
2017-11-01
Within the framework of the International Source Term Programme (ISTP), the VERDON programme aims at quantifying the source term of radioactive materials in case of a hypothetical severe accident in a light water reactor (LWR). Tests were performed in a new experimental laboratory (VERDON) built in the LECA-STAR facility (CEA Cadarache). The VERDON-1 test was devoted to the study of a high burn-up UO2 fuel and FP releases at very high temperature (≈2873 K) in a reducing atmosphere. Post-test qualitative and quantitative characterisations of the VERDON-1 sample led to the proposal of a scenario explaining the phenomena occurring during the experimental sequence. Hence, the fuel and the cladding may have interacted which led to the melting of UO2-ZrO2 alloy. Although no relocation was observed during the test, it may have been imminent.
DOT National Transportation Integrated Search
1981-12-01
This report (Volume 2 of three volumes) provides detailed descriptions of all program materials employed with the recommended version of a child pedestrian safety program. Volume 1 of this report describes the conduct and results of the evaluation of...
DOT National Transportation Integrated Search
1981-12-01
This report (Volume 3 of three volumes) provides detailed descriptions of additional program materials suggested for use with the recommended version of a child pedestrian safety program. Volume 1 of this report describes the conduct and results of t...
A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandidov, V P; Kosareva, O G; Nyakk, A V
A method for spatial regularisation of chaotically located filaments, which appear in a high-power femtosecond laser pulse, is proposed, numerically substantiated, and experimentally tested. This method is based on the introduction of regular light-field perturbations into the femtosecond-pulse cross section. (letters)
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.
1972-01-01
A group of suggested experiments is described, which are to be conducted with ERTS-A and high altitude aircraft imagery during the 1972 period. Methods of analysis and observation of land use, urban change, transportation, and possible pollution, using small scale, low resolution data, are discussed.
Artificial-neural-network-based failure detection and isolation
NASA Astrophysics Data System (ADS)
Sadok, Mokhtar; Gharsalli, Imed; Alouani, Ali T.
1998-03-01
This paper presents the design of a systematic failure detection and isolation system that uses the concept of failure sensitive variables (FSV) and artificial neural networks (ANN). The proposed approach was applied to tube leak detection in a utility boiler system. Results of the experimental testing are presented in the paper.
Expressed Sexual Assault Legal Context and Victim Culpability Attributions
ERIC Educational Resources Information Center
Miller, Audrey K.; Markman, Keith D.; Amacker, Amanda M.; Menaker, Tasha A.
2012-01-01
Legal scholars have argued that laws have an "expressive function", specifically that sexual assault laws may convey social-level messages that victims are culpable for crimes against them. In a university sample, we conducted the first experimental test of legal scholars' proposal, hypothesizing that legal messages--specifically their…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
..., experimentation, biological testing, or related purposes) involving live vertebrate animals. The eighth edition of... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Laboratory Animal Welfare... Animals AGENCY: National Institutes of Health, HHS. ACTION: Notice of Additional Extension of Comment...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
..., experimentation or biological testing, or related purposes) involving live vertebrate animals. The eighth edition... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Laboratory Animal Welfare... Animals AGENCY: National Institutes of Health, HHS. ACTION: Notice of Extension of Public Comment Period...
Misconduct in the Prosecution of Severe Crimes: Theory and Experimental Test
ERIC Educational Resources Information Center
Lucas, Jeffrey W.; Graif, Corina; Lovaglia, Michael J.
2006-01-01
Prosecutorial misconduct involves the intentional use of illegal or improper methods for attaining convictions against defendants in criminal trials. Previous research documented extensive errors in the prosecution of severe crimes. A theory formulated to explain this phenomenon proposes that in serious cases, increased pressure to convict…
Effect of Digitally-Inspired Instruction on Seventh Grade Science Achievement
ERIC Educational Resources Information Center
Winn, Pam; Erwin, Susan; Becker, Melissa; White, Misty
2013-01-01
Results of a collaborative, quasi-experimental, research and development project partnering university professors with a seventh grade science teacher are reported. The study proposed to test the academic effectiveness of innovative digitally-inspired instruction using commonly available digital tools on 33 North Texas public school students…
Modified current follower-based immittance function simulators
NASA Astrophysics Data System (ADS)
Alpaslan, Halil; Yuce, Erkan
2017-12-01
In this paper, four immittance function simulators consisting of a single modified current follower with single Z- terminal and a minimum number of passive components are proposed. The first proposed circuit can provide +L parallel with +R and the second proposed one can realise -L parallel with -R. The third proposed structure can provide +L series with +R and the fourth proposed one can realise -L series with -R. However, all the proposed immittance function simulators need a single resistive matching constraint. Parasitic impedance effects on all the proposed immittance function simulators are investigated. A second-order current-mode (CM) high-pass filter derived from the first proposed immittance function simulator is given as an application example. Also, a second-order CM low-pass filter derived from the third proposed immittance function simulator is given as an application example. A number of simulation results based on SPICE programme and an experimental test result are given to verify the theory.
Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design
NASA Astrophysics Data System (ADS)
Potthoff, Annegret; Weil, Mirco; Meißner, Tobias; Kühnel, Dana
2015-12-01
During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure—physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.
Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design.
Potthoff, Annegret; Weil, Mirco; Meißner, Tobias; Kühnel, Dana
2015-12-01
During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure-physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.
Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data
NASA Astrophysics Data System (ADS)
Reinscheid, F.; Reinscheid, U. M.
2016-02-01
Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.
NASA Astrophysics Data System (ADS)
Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.
2017-07-01
This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; OConnell, Tod F.; Cheatwood, F. McNeil; Prabhu, Ramadas K.; Alter, Stephen J.
2002-01-01
Aerodynamic wind-tunnel screening tests were conducted on a 0.029 scale model of a proposed Mars Surveyor 2001 Precision Lander (70 deg half angle spherically blunted cone with a conical afterbody). The primary experimental objective was to determine the effectiveness of a single flap to trim the vehicle at incidence during a lifting hypersonic planetary entry. The laminar force and moment data, presented in the form of coefficients, and shock patterns from schlieren photography were obtained in the NASA Langley Aerothermodynamic Laboratory for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 2,637 to 92,350, angles of attack ranging from 0 tip to 23 degrees at 0 and 2 degree sideslip, and normal-shock density ratios of 5 and 12. Based upon the proposed entry trajectory of the 2001 Lander, the blunt body heavy gas tests in CF, simulate a Mach number of approximately 12 based upon a normal shock density ratio of 12 in flight at Mars. The results from this experimental study suggest that when traditional means of providing aerodynamic trim for this class of planetary entry vehicle are not possible (e.g. offset c.g.), a single flap can provide similar aerodynamic performance. An assessment of blunt body aerodynamic effects attributed to a real gas were obtained by synergistic testing in Mach 6 ideal-air at a comparable Reynolds number. From an aerodynamic perspective, an appropriately sized flap was found to provide sufficient trim capability at the desired L/D for precision landing. Inviscid hypersonic flow computations using an unstructured grid were made to provide a quick assessment of the Lander aerodynamics. Navier-Stokes computational predictions were found to be in very good agreement with experimental measurement.
Infrared emission contrast for the visualization of subsurface graphical features in artworks
NASA Astrophysics Data System (ADS)
Mercuri, Fulvio; Paoloni, Stefano; Cicero, Cristina; Zammit, Ugo; Orazi, Noemi
2018-03-01
In this paper a method is presented based on the use of active infrared thermography for the detection of subsurface graphical features in artworks. A theoretical model for the thermographic signal describing the physical mechanisms which allow the identification of the buried features has been proposed and thereafter it has been applied to the analysis of the results obtained on specifically made test samples. It is shown that the proposed model predictions adequately describe the experimental results obtained on the test samples. A comparative analysis between the proposed technique and infrared reflectography is also presented. The comparison shows that active thermography can be more effective in the detection of features buried below infrared translucent layers and, in addition, that it can provide information about the depth of the detected features, particularly in highly IR diffusing materials.
Smoke regions extraction based on two steps segmentation and motion detection in early fire
NASA Astrophysics Data System (ADS)
Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan
2018-03-01
Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.
Achievement goals, self-handicapping, and performance: a 2 x 2 achievement goal perspective.
Ntoumanis, Nikos; Thøgersen-Ntoumani, Cecilie; Smith, Alison L
2009-11-01
Elliot and colleagues (2006) examined the effects of experimentally induced achievement goals, proposed by the trichotomous model, on self-handicapping and performance in physical education. Our study replicated and extended the work of Elliot et al. by experimentally promoting all four goals proposed by the 2 x 2 model (Elliot & McGregor, 2001), measuring the participants' own situational achievement goals, using a relatively novel task, and testing the participants in a group setting. We used a randomized experimental design with four conditions that aimed to induce one of the four goals advanced by the 2 x 2 model. The participants (n = 138) were undergraduates who engaged in a dart-throwing task. The results pertaining to self-handicapping partly replicated Elliot and colleagues' findings by showing that experimentally promoted performance-avoidance goals resulted in less practice. In contrast, the promotion of mastery-avoidance goals did not result in less practice compared with either of the approach goals. Dart-throwing performance did not differ among the four goal conditions. Personal achievement goals did not moderate the effects of experimentally induced goals on self-handicapping and performance. The extent to which mastery-avoidance goals are maladaptive is discussed, as well as the interplay between personal and experimentally induced goals.
Digital evaluation of sitting posture comfort in human-vehicle system under Industry 4.0 framework
NASA Astrophysics Data System (ADS)
Tao, Qing; Kang, Jinsheng; Sun, Wenlei; Li, Zhaobo; Huo, Xiao
2016-09-01
Most of the previous studies on the vibration ride comfort of the human-vehicle system were focused only on one or two aspects of the investigation. A hybrid approach which integrates all kinds of investigation methods in real environment and virtual environment is described. The real experimental environment includes the WBV(whole body vibration) test, questionnaires for human subjective sensation and motion capture. The virtual experimental environment includes the theoretical calculation on simplified 5-DOF human body vibration model, the vibration simulation and analysis within ADAMS/VibrationTM module, and the digital human biomechanics and occupational health analysis in Jack software. While the real experimental environment provides realistic and accurate test results, it also serves as core and validation for the virtual experimental environment. The virtual experimental environment takes full advantages of current available vibration simulation and digital human modelling software, and makes it possible to evaluate the sitting posture comfort in a human-vehicle system with various human anthropometric parameters. How this digital evaluation system for car seat comfort design is fitted in the Industry 4.0 framework is also proposed.
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.
1994-01-01
This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.
Cautionary tales for reduced-gravity particle research
NASA Technical Reports Server (NTRS)
Marshall, John R.; Greeley, Ronald; Tucker, D. W.
1987-01-01
Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.
Space charge distributions in insulating polymers: A new non-contacting way of measurement.
Marty-Dessus, D; Ziani, A C; Petre, A; Berquez, L
2015-04-01
A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. These predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.
Broadband Tomography System: Direct Time-Space Reconstruction Algorithm
NASA Astrophysics Data System (ADS)
Biagi, E.; Capineri, Lorenzo; Castellini, Guido; Masotti, Leonardo F.; Rocchi, Santina
1989-10-01
In this paper a new ultrasound tomographic image algorithm is presented. A complete laboratory system is built up to test the algorithm in experimental conditions. The proposed system is based on a physical model consisting of a bidimensional distribution of single scattering elements. Multiple scattering is neglected, so Born approximation is assumed. This tomographic technique only requires two orthogonal scanning sections. For each rotational position of the object, data are collected by means of the complete data set method in transmission mode. After a numeric envelope detection, the received signals are back-projected in the space-domain through a scalar function. The reconstruction of each scattering element is accomplished by correlating the ultrasound time of flight and attenuation with the points' loci given by the possible positions of the scattering element. The points' locus is represented by an ellipse with the focuses located on the transmitter and receiver positions. In the image matrix the ellipses' contributions are coherently summed in the position of the scattering element. Computer simulations of cylindrical-shaped objects have pointed out the performances of the reconstruction algorithm. Preliminary experimental results show the laboratory system features. On the basis of these results an experimental procedure to test the confidence and repeatability of ultrasonic measurements on human carotid vessel is proposed.
Optimal design and dynamic impact tests of removable bollards
NASA Astrophysics Data System (ADS)
Chen, Suwen; Liu, Tianyi; Li, Guoqiang; Liu, Qing; Sun, Jianyun
2017-10-01
Anti-ram bollard systems, which are installed around buildings and infrastructure, can prevent unauthorized vehicles from entering, maintain distance from vehicle-borne improvised explosive devices (VBIED) and reduce the corresponding damage. Compared with a fixed bollard system, a removable bollard system provides more flexibility as it can be removed when needed. This paper first proposes a new type of K4-rated removable anti-ram bollard system. To simulate the collision of a vehicle hitting the bollard system, a finite element model was then built and verified through comparison of numerical simulation results and existing experimental results. Based on the orthogonal design method, the factors influencing the safety and economy of this proposed system were examined and sorted according to their importance. An optimal design scheme was then produced. Finally, to validate the effectiveness of the proposed design scheme, four dynamic impact tests, including two front impact tests and two side impact tests, have been conducted according to BSI Specifications. The residual rotation angles of the specimen are smaller than 30º and satisfy the requirements of the BSI Specification.
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen
2013-06-01
In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.
Developing a cost effective rock bed thermal energy storage system: Design and modelling
NASA Astrophysics Data System (ADS)
Laubscher, Hendrik Frederik; von Backström, Theodor Willem; Dinter, Frank
2017-06-01
Thermal energy storage is an integral part of the drive for low cost of concentrated solar power (CSP). Storage of thermal energy enables CSP plants to provide base load power. Alternative, cheaper concepts for storing thermal energy have been conceptually proposed in previous studies. Using rocks as a storage medium and air as a heat transfer fluid, the proposed concept offers the potential of lower cost storage because of the abundance and affordability of rocks. A packed rock bed thermal energy storage (TES) concept is investigated and a design for an experimental rig is done. This paper describes the design and modelling of an experimental test facility for a cost effective packed rock bed thermal energy storage system. Cost effective, simplified designs for the different subsystems of an experimental setup are developed based on the availability of materials and equipment. Modelling of this design to predict the thermal performance of the TES system is covered in this study. If the concept under consideration proves to be successful, a design that is scalable and commercially viable can be proposed for further development of an industrial thermal energy storage system.
Simulated annealing with restart strategy for the blood pickup routing problem
NASA Astrophysics Data System (ADS)
Yu, V. F.; Iswari, T.; Normasari, N. M. E.; Asih, A. M. S.; Ting, H.
2018-04-01
This study develops a simulated annealing heuristic with restart strategy (SA_RS) for solving the blood pickup routing problem (BPRP). BPRP minimizes the total length of the routes for blood bag collection between a blood bank and a set of donation sites, each associated with a time window constraint that must be observed. The proposed SA_RS is implemented in C++ and tested on benchmark instances of the vehicle routing problem with time windows to verify its performance. The algorithm is then tested on some newly generated BPRP instances and the results are compared with those obtained by CPLEX. Experimental results show that the proposed SA_RS heuristic effectively solves BPRP.
Coil-free active stabilisation of extended payloads with optical inertial sensors
NASA Astrophysics Data System (ADS)
Watchi, J.; Ding, B.; Tshilumba, D.; Artoos, K.; Collette, C.
2018-05-01
This paper presents a new active isolation strategy and system which is dedicated to extended payloads, and compatible with the particle accelerator environment. In comparison to the current isolation systems used in this environment, the system proposed does not contain any coil or elastomer, and the supporting frame is dedicated to isolating long payloads from seismic motion. The concept proposed has been tested numerically on 3 and 6 degrees of freedom (DOF) models, and validated experimentally on a 1-DOF scaled test set-up. An attenuation of 40 dB at 1 Hz has been reached with the stage built. The complete description of performance and a noise budgeting are included in this paper.
Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire
NASA Astrophysics Data System (ADS)
Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi
2017-11-01
Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.
Antioxidant Capacity: Experimental Determination by EPR Spectroscopy and Mathematical Modeling.
Polak, Justyna; Bartoszek, Mariola; Chorążewski, Mirosław
2015-07-22
A new method of determining antioxidant capacity based on a mathematical model is presented in this paper. The model was fitted to 1000 data points of electron paramagnetic resonance (EPR) spectroscopy measurements of various food product samples such as tea, wine, juice, and herbs with Trolox equivalent antioxidant capacity (TEAC) values from 20 to 2000 μmol TE/100 mL. The proposed mathematical equation allows for a determination of TEAC of food products based on a single EPR spectroscopy measurement. The model was tested on the basis of 80 EPR spectroscopy measurements of herbs, tea, coffee, and juice samples. The proposed model works for both strong and weak antioxidants (TEAC values from 21 to 2347 μmol TE/100 mL). The determination coefficient between TEAC values obtained experimentally and TEAC values calculated with proposed mathematical equation was found to be R(2) = 0.98. Therefore, the proposed new method of TEAC determination based on a mathematical model is a good alternative to the standard EPR method due to its being fast, accurate, inexpensive, and simple to perform.
NASA Astrophysics Data System (ADS)
Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar
2018-04-01
Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.
Hu, Cong; Li, Zhi; Zhou, Tian; Zhu, Aijun; Xu, Chuanpei
2016-01-01
We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed.
Hu, Cong; Li, Zhi; Zhou, Tian; Zhu, Aijun; Xu, Chuanpei
2016-01-01
We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed. PMID:27926946
A thermodynamic and theoretical view for enzyme regulation.
Zhao, Qinyi
2015-01-01
Precise regulation is fundamental to the proper functioning of enzymes in a cell. Current opinions about this, such as allosteric regulation and dynamic contribution to enzyme regulation, are experimental models and substantially empirical. Here we proposed a theoretical and thermodynamic model of enzyme regulation. The main idea is that enzyme regulation is processed via the regulation of abundance of active conformation in the reaction buffer. The theoretical foundation, experimental evidence, and experimental criteria to test our model are discussed and reviewed. We conclude that basic principles of enzyme regulation are laws of protein thermodynamics and it can be analyzed using the concept of distribution curve of active conformations of enzymes.
Operational stability prediction in milling based on impact tests
NASA Astrophysics Data System (ADS)
Kiss, Adam K.; Hajdu, David; Bachrathy, Daniel; Stepan, Gabor
2018-03-01
Chatter detection is usually based on the analysis of measured signals captured during cutting processes. These techniques, however, often give ambiguous results close to the stability boundaries, which is a major limitation in industrial applications. In this paper, an experimental chatter detection method is proposed based on the system's response for perturbations during the machining process, and no system parameter identification is required. The proposed method identifies the dominant characteristic multiplier of the periodic dynamical system that models the milling process. The variation of the modulus of the largest characteristic multiplier can also be monitored, the stability boundary can precisely be extrapolated, while the manufacturing parameters are still kept in the chatter-free region. The method is derived in details, and also verified experimentally in laboratory environment.
NASA Astrophysics Data System (ADS)
Cardone, Donatello; Sofia, Salvatore
2012-12-01
Metallic tie-rods are currently used in many historical buildings for absorbing the out-of-plane horizontal forces of arches, vaults and roof trusses, despite they exhibit several limitations under service and seismic conditions. In this paper, a post-tensioned system based on the superelastic properties of Ni-Ti shape memory alloys is proposed for improving the structural performances of traditional metallic tie-rods. First, the thermal behavior under service conditions is investigated based on the results of numerical and experimental studies. Subsequently, the seismic performances under strong earthquakes are verified trough a number of shaking table tests on a 1:4-scale timber roof truss model. The outcomes of these studies fully confirm the achievement of the design objectives of the proposed prototype device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, M. D.; Andre, R.; Gates, D. A.
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, amore » flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.« less
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.
2015-05-01
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.
Lluch, Enrique; Nijs, Jo; Courtney, Carol A; Rebbeck, Trudy; Wylde, Vikki; Baert, Isabel; Wideman, Timothy H; Howells, Nick; Skou, Søren T
2017-08-02
Despite growing awareness of the contribution of central pain mechanisms to knee osteoarthritis pain in a subgroup of patients, routine evaluation of central sensitization is yet to be incorporated into clinical practice. The objective of this perspective is to design a set of clinical descriptors for the recognition of central sensitization in patients with knee osteoarthritis that can be implemented in clinical practice. A narrative review of original research papers was conducted by nine clinicians and researchers from seven different countries to reach agreement on clinically relevant descriptors. It is proposed that identification of a dominance of central sensitization pain is based on descriptors derived from the subjective assessment and the physical examination. In the former, clinicians are recommended to inquire about intensity and duration of pain and its association with structural joint changes, pain distribution, behavior of knee pain, presence of neuropathic-like or centrally mediated symptoms and responsiveness to previous treatment. The latter includes assessment of response to clinical test, mechanical hyperalgesia and allodynia, thermal hyperalgesia, hypoesthesia and reduced vibration sense. This article describes a set of clinically relevant descriptors that might indicate the presence of central sensitization in patients with knee osteoarthritis in clinical practice. Although based on research data, the descriptors proposed in this review require experimental testing in future studies. Implications for Rehabilitation Laboratory evaluation of central sensitization for people with knee osteoarthritis is yet to be incorporated into clinical practice. A set of clinical indicators for the recognition of central sensitization in patients with knee osteoarthritis is proposed. Although based on research data, the clinical indicators proposed require further experimental testing of psychometric properties.
NASA Astrophysics Data System (ADS)
Bevilacqua, R.; Lehmann, T.; Romano, M.
2011-04-01
This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.
Experimental vibroacoustic testing of plane panels using synthesized random pressure fields.
Robin, Olivier; Berry, Alain; Moreau, Stéphane
2014-06-01
The experimental reproduction of random pressure fields on a plane panel and corresponding induced vibrations is studied. An open-loop reproduction strategy is proposed that uses the synthetic array concept, for which a small array element is moved to create a large array by post-processing. Three possible approaches are suggested to define the complex amplitudes to be imposed to the reproduction sources distributed on a virtual plane facing the panel to be tested. Using a single acoustic monopole, a scanning laser vibrometer and a baffled simply supported aluminum panel, experimental vibroacoustic indicators such as the Transmission Loss for Diffuse Acoustic Field, high-speed subsonic and supersonic Turbulent Boundary Layer excitations are obtained. Comparisons with simulation results obtained using a commercial software show that the Transmission Loss estimation is possible under both excitations. Moreover and as a complement to frequency domain indicators, the vibroacoustic behavior of the panel can be studied in the wave number domain.
Lo Iacono, Sergio
2018-07-01
Despite the theoretical relevance attributed to the spillover effect, little empirical research has focused on testing its causal validity. Addressing this gap in the literature, I propose a novel experimental design to test if the overall density of social links in a community promotes trustworthy and trusting behaviors with absolute strangers. Controlling for social integration (i.e. the individual number of social connections), I found that density fosters higher levels of trust. In particular, results show that people in denser communities are more likely to trust their unknown fellow citizens, encouraging isolated subjects to engage with strangers. However, evidence did not support the idea that community social embeddedness causes an increase of trustworthiness, indicating that the spillover effect works only with respect to trust. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lokoshchenko, A.; Teraud, W.
2018-04-01
The work describes an experimental research of creep of cylindrical tensile test specimens made of aluminum alloy D16T at a constant temperature of 400°C. The issue to be examined was the necking at different values of initial tensile stresses. The use of a developed noncontacting measuring system allowed us to see variations in the specimen shape and to estimate the true stress in various times. Based on the obtained experimental data, several criteria were proposed for describing the point of time at which the necking occurs (necking point). Calculations were carried out at various values of the parameters in these criteria. The relative interval of deformation time in which the test specimen is uniformly stretched was also determined.
Numerical Modeling of Gas Turbine Combustor Utilizing One-Dimensional Acoustics
NASA Astrophysics Data System (ADS)
Caley, Thomas M.
This study focuses on the numerical modeling of a gas turbine combustor set-up with known regions of thermoacoustic instability. The proposed model takes the form of a hybrid thermoacoustic network, with lumped elements representing boundary conditions and the flame, and 3-dimensional geometry volumes representing the geometry. The model is analyzed using a commercial 3-D finite element method (FEM) software, COMSOL Multiphysics. A great deal of literature is available covering thermoacoustic modeling, but much of it utilizes more computationally expensive techniques such as Large-Eddy Simulations, or relies on analytical modeling that is limited to specific test cases or proprietary software. The present study models the 3-D geometry of a high-pressure combustion chamber accurately, and uses the lumped elements of a thermoacoustic network to represent parts of the combustor system that can be experimentally tested under stable conditions, ensuring that the recorded acoustic responses can be attributed to that element alone. The numerical model has been tested against the experimental model with and without an experimentally-determined impedance boundary condition. Eigenfrequency studies are used to compare the frequency and growth rates (and from that, the thermoacoustic stability) of resonant modes in the combustor. The flame in the combustor is modeled with a flame transfer function that was determined from experimental testing using frequency forcing. The effect of flow rate on the impedance boundary condition is also examined experimentally and numerically to qualify the practice of modeling an orifice plate as an acoustically-closed boundary. Using the experimental flame transfer function and boundary conditions in the numerical model produced results that closely matched previous experimental tests in frequency, but not in stability characteristics. The lightweight nature of the numerical model means additional lumped elements can be easily added when experimental data is available, creating a more accurate model without noticeably increasing the complexity or computational time.
Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform
NASA Astrophysics Data System (ADS)
Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.
2015-11-01
In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.
Modelling short time series in metabolomics: a functional data analysis approach.
Montana, Giovanni; Berk, Maurice; Ebbels, Tim
2011-01-01
Metabolomics is the study of the complement of small molecule metabolites in cells, biofluids and tissues. Many metabolomic experiments are designed to compare changes observed over time under two or more experimental conditions (e.g. a control and drug-treated group), thus producing time course data. Models from traditional time series analysis are often unsuitable because, by design, only very few time points are available and there are a high number of missing values. We propose a functional data analysis approach for modelling short time series arising in metabolomic studies which overcomes these obstacles. Our model assumes that each observed time series is a smooth random curve, and we propose a statistical approach for inferring this curve from repeated measurements taken on the experimental units. A test statistic for detecting differences between temporal profiles associated with two experimental conditions is then presented. The methodology has been applied to NMR spectroscopy data collected in a pre-clinical toxicology study.
Kovács, Béla; Kántor, Lajos Kristóf; Croitoru, Mircea Dumitru; Kelemen, Éva Katalin; Obreja, Mona; Nagy, Előd Ernő; Székely-Szentmiklósi, Blanka; Gyéresi, Árpád
2018-06-01
A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20-320 μg mL-1 (R2 = 0.99998). Recovery, tested in the range of 40-120 μg mL-1, was found to be 96.1-102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0-1.4 and 1.2-1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL-1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.
NASA Astrophysics Data System (ADS)
Kaloop, Mosbeh R.; Yigit, Cemal O.; Hu, Jong W.
2018-03-01
Recently, the high rate global navigation satellite system-precise point positioning (GNSS-PPP) technique has been used to detect the dynamic behavior of structures. This study aimed to increase the accuracy of the extraction oscillation properties of structural movements based on the high-rate (10 Hz) GNSS-PPP monitoring technique. A developmental model based on the combination of wavelet package transformation (WPT) de-noising and neural network prediction (NN) was proposed to improve the dynamic behavior of structures for GNSS-PPP method. A complicated numerical simulation involving highly noisy data and 13 experimental cases with different loads were utilized to confirm the efficiency of the proposed model design and the monitoring technique in detecting the dynamic behavior of structures. The results revealed that, when combined with the proposed model, GNSS-PPP method can be used to accurately detect the dynamic behavior of engineering structures as an alternative to relative GNSS method.
Quantum exhaustive key search with simplified-DES as a case study.
Almazrooie, Mishal; Samsudin, Azman; Abdullah, Rosni; Mutter, Kussay N
2016-01-01
To evaluate the security of a symmetric cryptosystem against any quantum attack, the symmetric algorithm must be first implemented on a quantum platform. In this study, a quantum implementation of a classical block cipher is presented. A quantum circuit for a classical block cipher of a polynomial size of quantum gates is proposed. The entire work has been tested on a quantum mechanics simulator called libquantum. First, the functionality of the proposed quantum cipher is verified and the experimental results are compared with those of the original classical version. Then, quantum attacks are conducted by using Grover's algorithm to recover the secret key. The proposed quantum cipher is used as a black box for the quantum search. The quantum oracle is then queried over the produced ciphertext to mark the quantum state, which consists of plaintext and key qubits. The experimental results show that for a key of n-bit size and key space of N such that [Formula: see text], the key can be recovered in [Formula: see text] computational steps.
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Xu, Jing; Zheng, Kehong
2015-11-13
In order to efficiently and accurately identify the cutting condition of a shearer, this paper proposed an intelligent multi-sensor data fusion identification method using the parallel quasi-Newton neural network (PQN-NN) and the Dempster-Shafer (DS) theory. The vibration acceleration signals and current signal of six cutting conditions were collected from a self-designed experimental system and some special state features were extracted from the intrinsic mode functions (IMFs) based on the ensemble empirical mode decomposition (EEMD). In the experiment, three classifiers were trained and tested by the selected features of the measured data, and the DS theory was used to combine the identification results of three single classifiers. Furthermore, some comparisons with other methods were carried out. The experimental results indicate that the proposed method performs with higher detection accuracy and credibility than the competing algorithms. Finally, an industrial application example in the fully mechanized coal mining face was demonstrated to specify the effect of the proposed system.
Flow balancing orifice for ITER toroidal field coil
NASA Astrophysics Data System (ADS)
Litvinovich, A. V.; Y Rodin, I.; Kovalchuk, O. A.; Safonov, A. V.; Stepanov, D. B.; Guryeva, T. M.
2017-12-01
Flow balancing orifices (FBOs) are used in in International thermonuclear experimental reactor (ITER) Toroidal Field coil to uniform flow rate of cooling gas in the side double pancakes which have a different conductor length: 99 m and 305 m, respectively. FBOs consist of straight parts, elbows produced from a 316L stainless steel tube 21.34 x 2.11 mm and orifices made from a 316L stainless steel rod. Each of right and left FBOs contains 6 orifices, straight FBOs contain 4 and 6 orifices. Before manufacturing of qualification samples D.V. Efremov Institute of Electrophysical Apparatus (JSC NIIEFA) proposed to ITER a new approach to provide the seamless connection between a tube and a plate therefore the most critical weld between the orifice with 1 mm thickness and the tube removed from the FBOs final design. The proposed orifice diameter is three times less than the minimum requirement of the ISO 5167, therefore it was tasked to define accuracy of calculation flow characteristics at room temperature and compare with the experimental data. In 2015 the qualification samples of flow balancing orifices were produced and tested. The results of experimental data showed that the deviation of calculated data is less than 7%. Based on this result and other tests ITER approved the design of FBOs, which made it possible to start the serial production. In 2016 JSC NIIEFA delivered 50 FBOs to ITER, i.e. 24 left side, 24 right side and 2 straight FBOs. In order to define the quality of FBOs the test facility in JSC NIIEFA was prepared. The helium tightness test at 10-9 m3·Pa/s the pressure up to 3 MPa, flow rate measuring at the various pressure drops, the non-destructive tests of orifices and weld seams (ISO 5817, class B) were conducted. Other tests such as check dimensions and thermo cycling 300 - 80 - 300 K also were carried out for each FBO.
Tone-assisted time delay interferometry on GRACE Follow-On
NASA Astrophysics Data System (ADS)
Francis, Samuel P.; Shaddock, Daniel A.; Sutton, Andrew J.; de Vine, Glenn; Ware, Brent; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk
2015-07-01
We have demonstrated the viability of using the Laser Ranging Interferometer on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) space mission to test key aspects of the interspacecraft interferometry proposed for detecting gravitational waves. The Laser Ranging Interferometer on GRACE-FO will be the first demonstration of interspacecraft interferometry. GRACE-FO shares many similarities with proposed space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) concept. Given these similarities, GRACE-FO provides a unique opportunity to test novel interspacecraft interferometry techniques that a LISA-like mission will use. The LISA Experience from GRACE-FO Optical Payload (LEGOP) is a project developing tests of arm locking and time delay interferometry (TDI), two frequency stabilization techniques, that could be performed on GRACE-FO. In the proposed LEGOP TDI demonstration one GRACE-FO spacecraft will have a free-running laser while the laser on the other spacecraft will be locked to a cavity. It is proposed that two one-way interspacecraft phase measurements will be combined with an appropriate delay in order to produce a round-trip, dual one-way ranging (DOWR) measurement independent of the frequency noise of the free-running laser. This paper describes simulated and experimental tests of a tone-assisted TDI ranging (TDIR) technique that uses a least-squares fitting algorithm and fractional-delay interpolation to find and implement the delays needed to form the DOWR TDI combination. The simulation verifies tone-assisted TDIR works under GRACE-FO conditions. Using simulated GRACE-FO signals the tone-assisted TDIR algorithm estimates the time-varying interspacecraft range with a rms error of ±0.2 m , suppressing the free-running laser frequency noise by 8 orders of magnitude. The experimental results demonstrate the practicability of the technique, measuring the delay at the 6 ns level in the presence of a significant displacement signal.
Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.; Lovato, M. L.; Clarke, K. D.
We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.
Miniature bulge test and energy release rate in HIPed aluminum/aluminum interfacial fracture
Liu, C.; Lovato, M. L.; Clarke, K. D.; ...
2017-10-13
We summarize the development of a technique of using miniature bulge test combined with three-dimensional digital image correlation (3D-DIC) for measuring energy release rate or fracture toughness of bimaterial interface of thin metal foils. Furthermore, the energy release rate associated with the HIPed aluminum/aluminum interfacial delamination is determined experimentally using the proposed technique. Detailed discussions of the schemes of preparing and conducting the bulge test, and computing various quantities required for the determination of the energy release rate are presented.
Coronary artery segmentation in X-ray angiograms using gabor filters and differential evolution.
Cervantes-Sanchez, Fernando; Cruz-Aceves, Ivan; Hernandez-Aguirre, Arturo; Solorio-Meza, Sergio; Cordova-Fraga, Teodoro; Aviña-Cervantes, Juan Gabriel
2018-08-01
Segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided diagnosis, since it can help cardiologists in diagnosing and monitoring vascular abnormalities. Due to the main disadvantages of the X-ray angiograms are the nonuniform illumination, and the weak contrast between blood vessels and image background, different vessel enhancement methods have been introduced. In this paper, a novel method for blood vessel enhancement based on Gabor filters tuned using the optimization strategy of Differential evolution (DE) is proposed. Because the Gabor filters are governed by three different parameters, the optimal selection of those parameters is highly desirable in order to maximize the vessel detection rate while reducing the computational cost of the training stage. To obtain the optimal set of parameters for the Gabor filters, the area (Az) under the receiver operating characteristics curve is used as objective function. In the experimental results, the proposed method achieves an A z =0.9388 in a training set of 40 images, and for a test set of 40 images it obtains the highest performance with an A z =0.9538 compared with six state-of-the-art vessel detection methods. Finally, the proposed method achieves an accuracy of 0.9423 for vessel segmentation using the test set. In addition, the experimental results have also shown that the proposed method can be highly suitable for clinical decision support in terms of computational time and vessel segmentation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mae, H.
2006-08-01
The strong strain-rate dependence, neck propagation and craze evolution characterize the large plastic deformation and fracture behavior of polymer. In the latest study, Kobayashi, Tomii and Shizawa suggested the elastoviscoplastic constitutive equation based on craze evolution and annihilation and then applied it to the plane strain issue of polymer. In the previous study, the author applied their suggested elastoviscoplastic constitutive equation with craze effect to the three dimensional shell and then showed that the load displacement history was in good agreement with the experimental result including only microscopic crack such as crazes. For the future industrial applications, the macroscopic crack has to be taken into account. Thus, the main objective of this study is to propose the tensile softening equation and then add it to the elastoviscoplastic constitutive equation with craze effect so that the load displacement history can be roughly simulated during the macroscopic crack propagation. The tested material in this study is the elastomer blended polypropylene used in the interior and exterior of automobiles. First, the material properties are obtained based on the tensile test results at wide range of strain rates: 10 - 4-102 (1/sec). Next, the compact tension test is conducted and then the tensile softening parameters are fixed. Then, the dart impact test is carried out in order to obtain the load displacement history and also observe the macroscopic crack propagation at high strain rate. Finally, the fracture behavior is simulated and then compared with the experimental results. It is shown that the predictions of the constitutive equation with the proposed tensile softening equation are in good agreement with the experimental results for the future industrial applications.
Experimental evidence for bounds on quantum correlations.
Bovino, F A; Castagnoli, G; Degiovanni, I P; Castelletto, S
2004-02-13
We implemented the experiment proposed by Cabello in the preceding Letter to test the bounds of quantum correlation. As expected from the theory we found that, for certain choices of local observables, Tsirelson's bound of the Clauser-Horne-Shimony-Holt inequality (2 x square root of 2) is not reached by any quantum states.
Optimization Techniques for Analysis of Biological and Social Networks
2012-03-28
analyzing a new metaheuristic technique, variable objective search. 3. Experimentation and application: Implement the proposed algorithms , test and fine...alternative mathematical programming formulations, their theoretical analysis, the development of exact algorithms , and heuristics. Originally, clusters...systematic fashion under a unifying theoretical and algorithmic framework. Optimization, Complex Networks, Social Network Analysis, Computational
The Cognitive-Miser Response Model: Testing for Intuitive and Deliberate Reasoning
ERIC Educational Resources Information Center
Bockenholt, Ulf
2012-01-01
In a number of psychological studies, answers to reasoning vignettes have been shown to result from both intuitive and deliberate response processes. This paper utilizes a psychometric model to separate these two response tendencies. An experimental application shows that the proposed model facilitates the analysis of dual-process item responses…
An Alternative Study of Transfer of Learning in Clinical Evaluation.
ERIC Educational Resources Information Center
Patel, Vimla; Cranton, Patricia A.
The use of an alternative methodology to study transfer of learning in clinical instruction during medical school was investigated. The environment in which clinical instruction takes place was examined, after which hypotheses were proposed and tested in a quasi-experimental design. The first phase of the study, an ethnographic analysis of the…
75 FR 65046 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-21
... benefits as earnings increase. The experimental design for BOND will test a benefit offset alone and in... proposed public survey data collections will have four components--an impact study, a cost-benefit analysis..., 2010 at 75 FR 49013. Average burden Survey Number of Frequency of Number of per response Total annual...
Test of localized nanagement for reducing deer browsing in forest regeneration areas
Brad F. Miller; Tyler A. Campbell; Ben R. Laseter; W.Mark Ford; Karl V. Miller
2010-01-01
White-tailed deer (Odocoileus virginianus) browsing in forest regeneration sites can affect current and future stand structure and species composition. Removal of deer social units (localized management) has been proposed as a strategy to alleviate deer overbrowsing in forest systems. We conducted an experimental localized removal in a high-density...
Fixation-Dependent Memory for Natural Scenes: An Experimental Test of Scanpath Theory
ERIC Educational Resources Information Center
Foulsham, Tom; Kingstone, Alan
2013-01-01
Many modern theories propose that perceptual information is represented by the sensorimotor activity elicited by the original stimulus. Scanpath theory (Noton & Stark, 1971) predicts that reinstating a sequence of eye fixations will help an observer recognize a previously seen image. However, the only studies to investigate this are…
Semantic Memory Redux: An Experimental Test of Hierarchical Category Representation
ERIC Educational Resources Information Center
Murphy, Gregory L.; Hampton, James A.; Milovanovic, Goran S.
2012-01-01
Four experiments investigated the classic issue in semantic memory of whether people organize categorical information in hierarchies and use inference to retrieve information from them, as proposed by Collins and Quillian (1969). Past evidence has focused on RT to confirm sentences such as "All birds are animals" or "Canaries breathe." However,…
Proposing and Testing a Model to Explain Traits of Algebra Preparedness
ERIC Educational Resources Information Center
Venenciano, Linda; Heck, Ronald
2016-01-01
Early experiences with theoretical thinking and generalization in measurement are hypothesized to develop constructs we name here as logical reasoning and preparedness for algebra. Based on work of V. V. Davydov (1975), the Measure Up (MU) elementary grades experimental mathematics curriculum uses quantities of area, length, volume, and mass to…
Optimal test selection for prediction uncertainty reduction
Mullins, Joshua; Mahadevan, Sankaran; Urbina, Angel
2016-12-02
Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecisemore » data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. Furthermore, the proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.« less
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations
NASA Technical Reports Server (NTRS)
Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.
2002-01-01
Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.
Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi
2017-12-01
Identifying the viscous properties of the plantar soft tissue is crucial not only for understanding the dynamic interaction of the foot with the ground during locomotion, but also for development of improved footwear products and therapeutic footwear interventions. In the present study, the viscous and hyperelastic material properties of the plantar soft tissue were experimentally identified using a spherical indentation test and an analytical contact model of the spherical indentation test. Force-relaxation curves of the heel pads were obtained from the indentation experiment. The curves were fit to the contact model incorporating a five-element Maxwell model to identify the viscous material parameters. The finite element method with the experimentally identified viscoelastic parameters could successfully reproduce the measured force-relaxation curves, indicating the material parameters were correctly estimated using the proposed method. Although there are some methodological limitations, the proposed framework to identify the viscous material properties may facilitate the development of subject-specific finite element modeling of the foot and other biological materials. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Experimental Design for Multi-drug Combination Studies Using Signaling Networks
Huang, Hengzhen; Fang, Hong-Bin; Tan, Ming T.
2017-01-01
Summary Combinations of multiple drugs are an important approach to maximize the chance for therapeutic success by inhibiting multiple pathways/targets. Analytic methods for studying drug combinations have received increasing attention because major advances in biomedical research have made available large number of potential agents for testing. The preclinical experiment on multi-drug combinations plays a key role in (especially cancer) drug development because of the complex nature of the disease, the need to reduce development time and costs. Despite recent progresses in statistical methods for assessing drug interaction, there is an acute lack of methods for designing experiments on multi-drug combinations. The number of combinations grows exponentially with the number of drugs and dose-levels and it quickly precludes laboratory testing. Utilizing experimental dose-response data of single drugs and a few combinations along with pathway/network information to obtain an estimate of the functional structure of the dose-response relationship in silico, we propose an optimal design that allows exploration of the dose-effect surface with the smallest possible sample size in this paper. The simulation studies show our proposed methods perform well. PMID:28960231
Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming
2014-03-01
In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.
Measurement of the refractive index of solutions based on digital holographic microscopy
NASA Astrophysics Data System (ADS)
Huang, Sujuan; Wang, Weiping; Zeng, Junzhang; Yan, Cheng; Lin, Yunyi; Wang, Tingyun
2018-01-01
A new approach for the refractive index (RI) measurement of solutions is proposed based on digital holographic microscopy. The experimental system consists of a modified Mach-Zehnder interferometer and related lab-developed analysis software. The high quality digital hologram of the tested solution is obtained by the real-time analysis software, which is firstly encapsulated into a capillary tube, and then the capillary tube is inserted in a matching fluid. An angular spectrum algorithm is adopted to extract the phase distribution from the hologram recorded by a CCD. Based on a capillary multi-layer calculation model, the RI of the tested solution is obtained at high accuracy. The results of transparent glycerol solution measured by the proposed method are more accurate than those measured by the Abbe refractometer. We also measure the RI of translucent magnetic fluid, which is not suitable to be measured by the Abbe refractometer. The relationship between the RI and the concentration of magnetic fluid is experimentally studied, and the results show that the RI is linearly related to the concentration of dilute magnetic fluid.
Modeling of NiTiHf using finite difference method
NASA Astrophysics Data System (ADS)
Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad
2018-03-01
NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.
Temperature and speed of testing influence on the densification and recovery of polyurethane foams
NASA Astrophysics Data System (ADS)
Apostol, Dragoş Alexandru; Constantinescu, Dan Mihai
2013-02-01
Polyurethane foams with densities of 35, 93, and 200 kg/m3 were tested in compression at three levels of temperatures as: -60 °C, 23 °C, and 80 °C. The influence of speed of testing from 2 mm/min up to 6 m/s (0.0014 to 545 s-1) on the response of the foams is analyzed. Testing is done separately on the rise direction and on the in-plane direction of the foams, and differences in their behavior are commented. With interpolation functions which approximate the plateau and densification region, the specific strain energy is calculated together with the energy efficiency and onset strain of densification. A Nagy-type phenomenological strain-rate-dependent model is proposed to generate engineering stress-strain curves and is validated through comparison with experimental stress-strain curves obtained at different speeds of testing. Starting from a reference experimental curve, two material parameters which are density and temperature dependent are established. Foam recovery for each density of the polyurethane foams is analyzed as a function of direction of testing, temperature, and speed of testing.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Li, Jun-qing; Pan, Quan-ke; Mao, Kun
2014-01-01
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414
Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter
NASA Astrophysics Data System (ADS)
Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel
2010-01-01
This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.
Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya
2017-12-01
We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.
Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.
Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing
2017-01-01
Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.
Characterization of the performance of shoe insert materials.
Lewis, G; Tan, T; Shiue, Y S
1991-08-01
It has been widely reported that shoe inserts are an effective interventional modality either for the relief of discomfort to the feet associated with a variety of orthopedic disorders or conditions or simply for comfort. Results from many types of experimental tests have been used to obtain the shock absorption capacity of shoe insert materials. The authors contend in this study that, while shock absorption is a highly desirable property, it is by no means the only that should be used to characterize these materials. Thus, a new index of performance of these materials is proposed. This index is computed from data, obtained in a simple experimental test, on both the shock absorption and energy return performances of the insert material.
Fault-tolerant Greenberger-Horne-Zeilinger paradox based on non-Abelian anyons.
Deng, Dong-Ling; Wu, Chunfeng; Chen, Jing-Ling; Oh, C H
2010-08-06
We propose a scheme to test the Greenberger-Horne-Zeilinger paradox based on braidings of non-Abelian anyons, which are exotic quasiparticle excitations of topological states of matter. Because topological ordered states are robust against local perturbations, this scheme is in some sense "fault-tolerant" and might close the detection inefficiency loophole problem in previous experimental tests of the Greenberger-Horne-Zeilinger paradox. In turn, the construction of the Greenberger-Horne-Zeilinger paradox reveals the nonlocal property of non-Abelian anyons. Our results indicate that the non-Abelian fractional statistics is a pure quantum effect and cannot be described by local realistic theories. Finally, we present a possible experimental implementation of the scheme based on the anyonic interferometry technologies.
Numerical-experimental investigation of PE/EVA foam injection molded parts
NASA Astrophysics Data System (ADS)
Spina, Roberto
The main objective of the presented work is to propose a robust framework to test foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of a new foam material based on numerical and experimental results. The research purpose is to assess parameters influencing several aspects, such as foam morphology and compression behavior, using useful suggestions from finite element analysis. The investigated polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the numerical models and the parameters of the injection molding process.
Blocking Breast Cancer Metastasis by Targeting RNA-Binding Protein HuR
2017-10-01
used for proposed pre -clinical anti-HuR drug testing . Local IACUC was renewed and we are awaiting re-review by DOD. 15. SUBJECT TERMS HuR, Mouse model...metastasis-associated phenotypes. This project will be accomplished on two campuses, where our group will be primarily responsible for the in vivo... pre -clinical testing in experimental and spontaneous metastasis assays. To date, our objective has been to obtain, validate and begin verification of
Implementation and performance test of cloud platform based on Hadoop
NASA Astrophysics Data System (ADS)
Xu, Jingxian; Guo, Jianhong; Ren, Chunlan
2018-01-01
Hadoop, as an open source project for the Apache foundation, is a distributed computing framework that deals with large amounts of data and has been widely used in the Internet industry. Therefore, it is meaningful to study the implementation of Hadoop platform and the performance of test platform. The purpose of this subject is to study the method of building Hadoop platform and to study the performance of test platform. This paper presents a method to implement Hadoop platform and a test platform performance method. Experimental results show that the proposed test performance method is effective and it can detect the performance of Hadoop platform.
Dynamic characterization of high damping viscoelastic materials from vibration test data
NASA Astrophysics Data System (ADS)
Martinez-Agirre, Manex; Elejabarrieta, María Jesús
2011-08-01
The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem. PMID:24851085
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
Space debris detection in optical image sequences.
Xi, Jiangbo; Wen, Desheng; Ersoy, Okan K; Yi, Hongwei; Yao, Dalei; Song, Zongxi; Xi, Shaobo
2016-10-01
We present a high-accuracy, low false-alarm rate, and low computational-cost methodology for removing stars and noise and detecting space debris with low signal-to-noise ratio (SNR) in optical image sequences. First, time-index filtering and bright star intensity enhancement are implemented to remove stars and noise effectively. Then, a multistage quasi-hypothesis-testing method is proposed to detect the pieces of space debris with continuous and discontinuous trajectories. For this purpose, a time-index image is defined and generated. Experimental results show that the proposed method can detect space debris effectively without any false alarms. When the SNR is higher than or equal to 1.5, the detection probability can reach 100%, and when the SNR is as low as 1.3, 1.2, and 1, it can still achieve 99%, 97%, and 85% detection probabilities, respectively. Additionally, two large sets of image sequences are tested to show that the proposed method performs stably and effectively.
Non-overlap subaperture interferometric testing for large optics
NASA Astrophysics Data System (ADS)
Wu, Xin; Yu, Yingjie; Zeng, Wenhan; Qi, Te; Chen, Mingyi; Jiang, Xiangqian
2017-08-01
It has been shown that the number of subapertures and the amount of overlap has a significant influence on the stitching accuracy. In this paper, a non-overlap subaperture interferometric testing method (NOSAI) is proposed to inspect large optical components. This method would greatly reduce the number of subapertures and the influence of environmental interference while maintaining the accuracy of reconstruction. A general subaperture distribution pattern of NOSAI is also proposed for the large rectangle surface. The square Zernike polynomial is employed to fit such wavefront. The effect of the minimum fitting terms on the accuracy of NOSAI and the sensitivities of NOSAI to subaperture's alignment error, power systematic error, and random noise are discussed. Experimental results validate the feasibility and accuracy of the proposed NOSAI in comparison with wavefront obtained by a large aperture interferometer and stitching surface by multi-aperture overlap-scanning technique (MAOST).
Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares
Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai
2013-01-01
Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results. PMID:24453923
NASA Astrophysics Data System (ADS)
Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao
2018-04-01
The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.
NASA Astrophysics Data System (ADS)
Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan
2018-03-01
In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecseli, H. L.; Trulsen, J.
2009-10-08
Experimental as well as theoretical studies have demonstrated that turbulence can play an important role for the biosphere in marine environments, in particular also by affecting prey-predator encounter rates. Reference models for the encounter rates rely on simplifying assumptions of predators and prey being described as point particles moving passively with the local flow velocity. Based on simple arguments that can be tested experimentally we propose corrections for the standard expression for the encounter rates, where now finite sizes and Stokes drag effects are included.
NASA Astrophysics Data System (ADS)
Grubov, V. V.; Runnova, A. E.; Hramov, A. E.
2018-05-01
A new method for adaptive filtration of experimental EEG signals in humans and for removal of different physiological artifacts has been proposed. The algorithm of the method includes empirical mode decomposition of EEG, determination of the number of empirical modes that are considered, analysis of the empirical modes and search for modes that contains artifacts, removal of these modes, and reconstruction of the EEG signal. The method was tested on experimental human EEG signals and demonstrated high efficiency in the removal of different types of physiological EEG artifacts.
Energy harvesting from torsions of patterned piezoelectrics
NASA Astrophysics Data System (ADS)
Cha, Youngsu; You, Hangil
2018-03-01
In this paper, we investigate the feasibility of energy harvesting from the torsions using a piezoelectric beam. The piezoelectric beam is partially patterned and is tested in an experimental setup to force pure torsional deformation. In particular, the beam consists of two identical piezoelectric parts attached on one side of a supporting substrate. We propose a model for the energy harvesting system through the equations for a slender composite beam with the physical properties and the electromechanical coupling equations of the piezoelectric material. The theoretical predictions are validated by the comparison with the experimental results.
Hontinfinde, Régis; Coulibaly, Saliya; Megret, Patrice; Taki, Majid; Wuilpart, Marc
2017-05-01
Supercontinuum generation (SCG) in optical fibers arises from the spectral broadening of an intense light, which results from the interplay of both linear and nonlinear optical effects. In this Letter, a nondestructive optical time domain reflectometry method is proposed for the first time, to the best of our knowledge, to measure the spatial (longitudinal) evolution of the SC induced along an optical fiber. The method was experimentally tested on highly nonlinear fibers. The experimental results are in a good agreement with the optical spectra measured at the fiber outputs.
Long-term strength of metals in complex stress state (a survey)
NASA Astrophysics Data System (ADS)
Lokoshchenko, A. M.
2012-05-01
An analytic survey of experimental data and theoretical approaches characterizing the long-term strength of metals in complex stress state is given. In Sections 2 and 3, the results of plane stress tests (with opposite and equal signs of the nonzero principal stresses, respectively) are analyzed. In Section 4, the results of inhomogeneous stress tests (thick-walled tubes under the action of internal pressures and tensile forces) are considered. All known experimental data (35 test series) are analyzed by a criterion approach. An equivalent stress σ e is introduced as a characteristic of the stress state. Attention is mainly paid to the dependence of σ e on the principal stresses. Statistical methods are used to obtain an expression for σ e, which can be used to study various types of the complex stress state. It is shown that for the long-term strength criterion one can use the power or power-fractional dependence of the time to rupture on the equivalent stress. The methods proposed to describe the test results give a good correspondence between the experimental and theoretical values of the time to rupture. In Section 5, the possibilities of complicating the expressions for σ e by using additional material constants are considered.
Baseline experimental investigation of an electrohydrodynamically assisted heat pipe
NASA Technical Reports Server (NTRS)
Duncan, A. B.
1995-01-01
The increases in power demand and associated thermal management requirements of future space programs such as potential Lunar/Mars missions will require enhancing the operating efficiencies of thermal management devices. Currently, the use of electrohydrodynamically (EHD) assisted thermal control devices is under consideration as a potential method of increasing thermal management system capacity. The objectives of the currently described investigation included completing build-up of the EHD-Assisted Heat Pipe Test bed, developing test procedures for an experimental evaluation of the unassisted heat pipe, developing an analytical model capable of predicting the performance limits of the unassisted heat pipe, and obtaining experimental data which would define the performance characteristics of the unassisted heat pipe. The information obtained in the currently proposed study will be used in order to provide extensive comparisons with the EHD-assisted performance observations to be obtained during the continuing investigation of EHD-Assisted heat transfer devices. Through comparisons of the baseline test bed data and the EHD assisted test bed data, accurate insight into the performance enhancing characteristics of EHD augmentation may be obtained. This may lead to optimization, development, and implementation of EHD technology for future space programs.
Potential pressurized payloads: Fluid and thermal experiments
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.
1992-01-01
Space Station Freedom (SSF) presents the opportunity to perform long term fluid and thermal experiments in a microgravity environment. This presentation provides perspective on the need for fluids/thermal experimentation in a microgravity environment, addresses previous efforts, identifies possible experiments, and discusses the capabilities of a proposed fluid physics/dynamics test facility. Numerous spacecraft systems use fluids for their operation. Thermal control, propulsion, waste management, and various operational processes are examples of such systems. However, effective ground testing is very difficult. This is because the effect of gravity induced phenomena, such as hydrostatic pressure, buoyant convection, and stratification, overcome such forces as surface tension, diffusion, electric potential, etc., which normally dominate in a microgravity environment. Hence, space experimentation is necessary to develop and validate a new fluid based technology. Two broad types of experiments may be performed on SSF: basic research and applied research. Basic research might include experiments focusing on capillary phenomena (with or without thermal and/or solutal gradients), thermal/solutal convection, phase transitions, and multiphase flow. Representative examples of applied research might include two-phase pressure drop, two-phase flow instabilities, heat transfer coefficients, fluid tank fill/drain, tank slosh dynamics, condensate removal enhancement, and void formation within thermal energy storage materials. In order to better support such fluid/thermal experiments on board SSF, OSSA has developed a conceptual design for a proposed Fluid Physics/Dynamics Facility (FP/DF). The proposed facility consists of one facility rack permanently located on SSF and one experimenter rack which is changed out as needed to support specific experiments. This approach will minimize the on-board integration/deintegration required for specific experiments. The FP/DF will have acceleration/vibration compensation, power and thermal interfaces, computer command/data collection, a video imaging system, and a portable glove box for operations. This facility will allow real-time astronaut interaction with the testing.
A compact ball screw based electromagnetic energy harvester for railroad application
NASA Astrophysics Data System (ADS)
Pan, Yu; Lin, Teng; Liu, Cheng; Yu, Jie; Zuo, Jianyong; Zuo, Lei
2018-03-01
To enable the smart technologies, such as the positive train controls, rail damage detection and track health monitoring on the railroad side, the electricity is required and in needed. In this paper, we proposed a novel ball-screw based electromagnetic energy harvester for railway track with mechanical-motion-rectifier (MMR) mechanism, to harvest the energy that usually dissipated and wasted during train induced track vibration. Ball screw based design reduces backlash during motion transmission, and MMR nonlinear characteristics with one way clutches makes the harvester convert the bi-direction track vibration into a generator's unidirectional rotation, which improves the transmission reliability and increases the energy harvesting efficiency. A systematic model combining train-rail-harvester was established to analyze the dynamic characteristic of the proposed railway energy, and lab and in-field tests were carried out to experimentally characterize the proposed energy harvester. In lab bench test showed the proposed harvester reached a 70% mechanical efficiency with a high sensitivity to the environment vibration. In filed test showed that a peak 7.8W phase power was achieved when a two marshaling type A metro train passed by with a 30 km/h.
NASA Technical Reports Server (NTRS)
Saltsman, James F.; Halford, Gary R.
1988-01-01
A method is proposed (without experimental verification) for extending the total strain version of Strainrange Partitioning (TS-SRP) to predict the lives of thermomechanical fatigue (TMF) cycles. The principal feature of TS SRP is the determination of the time-temperature-waveshape dependent elastic strainrange versus life lines that are added subsequently to the classical inelastic strainrange versus life lines to form the total strainrange versus life relations. The procedure is based on a derived relation between failure and flow behavior. Failure behavior is represented by conventional SRP inelastic strainrange versus cyclic life relations, while flow behavior is captured in terms of the cyclic stress-strain response characteristics. Stress-strain response is calculated from simple equations developed from approximations to more complex cyclic constitutive models. For applications to TMF life prediction, a new testing technique, bithermal cycling, is proposed as a means for generating the inelastic strainrange versus life relations. Flow relations for use in predicting TMF lives would normally be obtained from approximations to complex thermomechanical constitutive models. Bithermal flow testing is also proposed as an alternative to thermomechanical flow testing at low strainranges where the hysteresis loop is difficult to analyze.
Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring
NASA Astrophysics Data System (ADS)
Chen, Zhao; Xie, Zhipeng; Zhang, Jian
2018-05-01
The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.
Using factorial experimental design to evaluate the separation of plastics by froth flotation.
Salerno, Davide; Jordão, Helga; La Marca, Floriana; Carvalho, M Teresa
2018-03-01
This paper proposes the use of factorial experimental design as a standard experimental method in the application of froth flotation to plastic separation instead of the commonly used OVAT method (manipulation of one variable at a time). Furthermore, as is common practice in minerals flotation, the parameters of the kinetic model were used as process responses rather than the recovery of plastics in the separation products. To explain and illustrate the proposed methodology, a set of 32 experimental tests was performed using mixtures of two polymers with approximately the same density, PVC and PS (with mineral charges), with particle size ranging from 2 to 4 mm. The manipulated variables were frother concentration, air flow rate and pH. A three-level full factorial design was conducted. The models establishing the relationships between the manipulated variables and their interactions with the responses (first order kinetic model parameters) were built. The Corrected Akaike Information Criterion was used to select the best fit model and an analysis of variance (ANOVA) was conducted to identify the statistically significant terms of the model. It was shown that froth flotation can be used to efficiently separate PVC from PS with mineral charges by reducing the floatability of PVC, which largely depends on the action of pH. Within the tested interval, this is the factor that most affects the flotation rate constants. The results obtained show that the pure error may be of the same magnitude as the sum of squares of the errors, suggesting that there is significant variability within the same experimental conditions. Thus, special care is needed when evaluating and generalizing the process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Renal cortex segmentation using optimal surface search with novel graph construction.
Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie
2011-01-01
In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which has rarely been studied. In this study, the renal cortex segmentation problem is handled as a multiple-surfaces extraction problem, which is solved using the optimal surface search method. We propose a novel graph construction scheme in the optimal surface search to better accommodate multiple surfaces. Different surface sub-graphs are constructed according to their properties, and inter-surface relationships are also modeled in the graph. The proposed method was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results demonstrate the effectiveness of the proposed method.
Objectification of perceptual image quality for mobile video
NASA Astrophysics Data System (ADS)
Lee, Seon-Oh; Sim, Dong-Gyu
2011-06-01
This paper presents an objective video quality evaluation method for quantifying the subjective quality of digital mobile video. The proposed method aims to objectify the subjective quality by extracting edgeness and blockiness parameters. To evaluate the performance of the proposed algorithms, we carried out subjective video quality tests with the double-stimulus continuous quality scale method and obtained differential mean opinion score values for 120 mobile video clips. We then compared the performance of the proposed methods with that of existing methods in terms of the differential mean opinion score with 120 mobile video clips. Experimental results showed that the proposed methods were approximately 10% better than the edge peak signal-to-noise ratio of the J.247 method in terms of the Pearson correlation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
...; Proposed Revision To the Nonessential Experimental Population of the Mexican Wolf AGENCY: Fish and Wildlife...), propose to revise the existing nonessential experimental population designation of the Mexican wolf (Canis... nonessential experimental population designation of Mexican wolves in order to correctly associate this...
Tornambè, A; Manfra, L; Canepa, S; Oteri, F; Martuccio, G; Cicero, A M; Magaletti, E
2018-02-01
The OECD TG 215 method (2000) (C.14 method of EC Regulation 440/2008) was developed on the rainbow trout (Oncorynchus mykiss) to assess chronic toxicity (28d) of chemicals on fish juveniles. It contemplates to use other well documented species identifying suitable conditions to evaluate their growth. OECD proposes the European sea bass (Dicentrarchus labrax, L. 1758) as Mediterranean species among vertebrates recommended in the OECD guidelines for the toxicity testing of chemicals. In this context, our study is aimed to proposing the adaptation of the growth test (OECD TG 215, 2000) to D. labrax. For this purpose toxicity tests were performed with sodium dodecyl sulfate, a reference toxicant commonly used in fish toxicity assays. The main aspects of the testing procedure were reviewed: fish size (weight), environmental conditions, dilution water type, experimental design, loading rate and stocking density, feeding (food type and ration), test validity criteria. The experience gained from growth tests with the sea bass allows to promote its inclusion among the species to be used for the C.14 method. Copyright © 2016. Published by Elsevier Inc.
Motorcycle Start-stop System based on Intelligent Biometric Voice Recognition
NASA Astrophysics Data System (ADS)
Winda, A.; E Byan, W. R.; Sofyan; Armansyah; Zariantin, D. L.; Josep, B. G.
2017-03-01
Current mechanical key in the motorcycle is prone to bulgary, being stolen or misplaced. Intelligent biometric voice recognition as means to replace this mechanism is proposed as an alternative. The proposed system will decide whether the voice is belong to the user or not and the word utter by the user is ‘On’ or ‘Off’. The decision voice will be sent to Arduino in order to start or stop the engine. The recorded voice is processed in order to get some features which later be used as input to the proposed system. The Mel-Frequency Ceptral Coefficient (MFCC) is adopted as a feature extraction technique. The extracted feature is the used as input to the SVM-based identifier. Experimental results confirm the effectiveness of the proposed intelligent voice recognition and word recognition system. It show that the proposed method produces a good training and testing accuracy, 99.31% and 99.43%, respectively. Moreover, the proposed system shows the performance of false rejection rate (FRR) and false acceptance rate (FAR) accuracy of 0.18% and 17.58%, respectively. In the intelligent word recognition shows that the training and testing accuracy are 100% and 96.3%, respectively.
Impact of an inquiry unit on grade 4 students' science learning
NASA Astrophysics Data System (ADS)
Di Mauro, María Florencia; Furman, Melina
2016-09-01
This paper concerns the identification of teaching strategies that enhance the development of 4th grade students' experimental design skills at a public primary school in Argentina. Students' performance in the design of relevant experiments was evaluated before and after an eight-week intervention compared to a control group, as well as the persistence of this learning after eight months. The study involved a quasi-experimental longitudinal study with pre-test/post-test/delayed post-test measures, complemented with semi-structured interviews with randomly selected students. Our findings showed improvement in the experimental design skills as well as its sustainability among students working with the inquiry-based sequence. After the intervention, students were able to establish valid comparisons, propose pertinent designs and identify variables that should remain constant. Contrarily, students in the control group showed no improvement and continued to solve the posed problems based on prior beliefs. In summary, this paper shows evidence that implementing inquiry-based units involving problems set in cross-domain everyday situations that combine independent student work with teacher guidance significantly improves the development of scientific skills in real classroom contexts.
The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.
Experimental evaluation of tool run-out in micro milling
NASA Astrophysics Data System (ADS)
Attanasio, Aldo; Ceretti, Elisabetta
2018-05-01
This paper deals with micro milling cutting process focusing the attention on tool run-out measurement. In fact, among the effects of the scale reduction from macro to micro (i.e., size effects) tool run-out plays an important role. This research is aimed at developing an easy and reliable method to measure tool run-out in micro milling based on experimental tests and an analytical model. From an Industry 4.0 perspective this measuring strategy can be integrated into an adaptive system for controlling cutting forces, with the objective of improving the production quality, the process stability, reducing at the same time the tool wear and the machining costs. The proposed procedure estimates the tool run-out parameters from the tool diameter, the channel width, and the phase angle between the cutting edges. The cutting edge phase measurement is based on the force signal analysis. The developed procedure has been tested on data coming from micro milling experimental tests performed on a Ti6Al4V sample. The results showed that the developed procedure can be successfully used for tool run-out estimation.
A wire calorimeter for the SPIDER beam: Experimental tests and feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasqualotto, R., E-mail: roberto.pasqualotto@igi.cnr.it; Serianni, G.; Veltri, P.
2015-04-08
To study and optimize negative ion production and acceleration, in view of the use of neutral beam injectors in the ITER project, the SPIDER test facility (particle energy 100keV; beam current 50A, distributed over 1280 beamlets) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation, by means of several diagnostic systems. An array of tungsten wires, directly exposed to the beam and consequently heated to high temperature, is used in similar experiments at IPP-Garching to study the beam optics, which is one of the most important issues, in a qualitativemore » way. The present contribution gives a description of an experimental investigation of the behavior of tungsten wires under high heat loads in vacuum. Samples of tungsten wires are heated by electrical currents and the emitted light is measured by a camera in the 400-1100nm wavelength range, which is proposed as a calibration tool. Simultaneously, the voltage applied to the wire is measured to study the dependency of emissivity on temperature. The feasibility study of a wire calorimeter for SPIDER is finally proposed; to this purpose, the expected behaviour of tungsten with the two-dimensional beam profile in SPIDER is numerically addressed.« less
Smart monitoring system based on adaptive current control for superconducting cable test.
Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare
2014-12-01
A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.
NASA Technical Reports Server (NTRS)
Moore, R. D.; Boldman, D. R.; Shyne, R. J.
1986-01-01
Two turning vane designs were experimentally evaluated for corner 1 (downstream of the test section) of a 0.1-scale model of the NASA Lewis Research Center's proposed Altitude Wind Tunnel (AWT). Vane A was a controlled-diffusion airfoil shape; vane B was a circular-arc airfoil shape. The vane designs were tested over corner inlet Mach numbers from 0.16 to 0.465. Several modifications in vane setting angle and vane spacing were also evaluated for vane A. The overall performance obtained from total pressure rakes indicated that vane B had a slightly lower loss coefficient than vane A. At Mach 0.35 (the design Mach number without the engine exhaust removal scoop), the loss coefficients were 0.150 and 0.178 for vanes B and A, respectively. Resetting the vane A angle by -5 deg. (vane A10) to turn the flow toward the outside corner reduced the loss coefficient to 0.119. The best configuration (vane A10) was also tested with a simulated engine exhaust removal scoop. The loss coefficient for that configuration was 0.164 at Mach 0.41 (the approximate design Mach number with the scoop).
Non-contact data access with direction identification for industrial differential serial bus
NASA Astrophysics Data System (ADS)
Xie, Kai; Li, Xiaoping; Zhang, Hanlu; Yang, Ming; Ye, Yinghao
2013-06-01
We propose a non-contact method for accessing data in industrial differential serial bus applications, which could serve as an effective and safe online testing and diagnosing tool. The data stream and the transmission direction are reconstructed simultaneously from the near-field emanations of a twisted pair, eliminating direct contact with the actual conductors, and avoiding damage to the insulation (only the outer sheathing is removed). A non-contact probe with the ability to sense electric and magnetic fields is presented, as are theories for data reconstruction, direction identification, and a circuit implementation. The prototype was built using inexpensive components and then tested on a standard RS-485 industrial serial bus. Experimental results verified the validity of the proposed scheme.
Real time automatic detection of bearing fault in induction machine using kurtogram analysis.
Tafinine, Farid; Mokrani, Karim
2012-11-01
A proposed signal processing technique for incipient real time bearing fault detection based on kurtogram analysis is presented in this paper. The kurtogram is a fourth-order spectral analysis tool introduced for detecting and characterizing non-stationarities in a signal. This technique starts from investigating the resonance signatures over selected frequency bands to extract the representative features. The traditional spectral analysis is not appropriate for non-stationary vibration signal and for real time diagnosis. The performance of the proposed technique is examined by a series of experimental tests corresponding to different bearing conditions. Test results show that this signal processing technique is an effective bearing fault automatic detection method and gives a good basis for an integrated induction machine condition monitor.
NASA Astrophysics Data System (ADS)
Manikandan, P.; Balaji, S.; Sukumar, S.; Sivakumar, M.
2017-06-01
This paper presents the strength and behaviour of web stiffened cold formed steel channel column with various types of edge stiffener under axial compression. An accurate finite element model is developed to simulate the tests results of the proposed section. The finite element model is verified by the test results and good correlation is achieved. The failure modes local, distortional, flexural buckling as well as the interaction between these modes is found in this study. The column strength predicted from the parametric study is compared with the nominal strength calculated by using the direct strength method for cold formed steel members. The reliability of this method is evaluated and suitable modification factor is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir
2014-09-22
Four helium-3 ( 3He) detector/preamplifier packages (¾”/KM200, DDSI/PDT-A111, DDA/PDT-A111, and DDA/PDT10A) were experimentally tested to determine the deadtime effects at different DT neutron generator output settings. At very high count rates, the ¾”/KM200 package performed best. At high count rates, the ¾”/KM200 and the DDSI/PDT-A111 packages performed very well, with the DDSI/PDT-A111 operating with slightly higher efficiency. All of the packages performed similarly at mid to low count rates. Proposed improvements include using a fast recovery LANL-made dual channel preamplifier, testing smaller diameter 3He tubes, and further investigating quench gases.
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
Zlotnik, V.A.; McGuire, V.L.
1998-01-01
Using the developed theory and modified Springer-Gelhar (SG) model, an identification method is proposed for estimating hydraulic conductivity from multi-level slug tests. The computerized algorithm calculates hydraulic conductivity from both monotonic and oscillatory well responses obtained using a double-packer system. Field verification of the method was performed at a specially designed fully penetrating well of 0.1-m diameter with a 10-m screen in a sand and gravel alluvial aquifer (MSEA site, Shelton, Nebraska). During well installation, disturbed core samples were collected every 0.6 m using a split-spoon sampler. Vertical profiles of hydraulic conductivity were produced on the basis of grain-size analysis of the disturbed core samples. These results closely correlate with the vertical profile of horizontal hydraulic conductivity obtained by interpreting multi-level slug test responses using the modified SG model. The identification method was applied to interpret the response from 474 slug tests in 156 locations at the MSEA site. More than 60% of responses were oscillatory. The method produced a good match to experimental data for both oscillatory and monotonic responses using an automated curve matching procedure. The proposed method allowed us to drastically increase the efficiency of each well used for aquifer characterization and to process massive arrays of field data. Recommendations generalizing this experience to massive application of the proposed method are developed.Using the developed theory and modified Springer-Gelhar (SG) model, an identification method is proposed for estimating hydraulic conductivity from multi-level slug tests. The computerized algorithm calculates hydraulic conductivity from both monotonic and oscillatory well responses obtained using a double-packer system. Field verification of the method was performed at a specially designed fully penetrating well of 0.1-m diameter with a 10-m screen in a sand and gravel alluvial aquifer (MSEA site, Shelton, Nebraska). During well installation, disturbed core samples were collected every 0.6 m using a split-spoon sampler. Vertical profiles of hydraulic conductivity were produced on the basis of grain-size analysis of the disturbed core samples. These results closely correlate with the vertical profile of horizontal hydraulic conductivity obtained by interpreting multi-level slug test responses using the modified SG model. The identification method was applied to interpret the response from 474 slug tests in 156 locations at the MSEA site. More than 60% of responses were oscillatory. The method produced a good match to experimental data for both oscillatory and monotonic responses using an automated curve matching procedure. The proposed method allowed us to drastically increase the efficiency of each well used for aquifer characterization and to process massive arrays of field data. Recommendations generalizing this experience to massive application of the proposed method are developed.
Wu, Jiayang; Cao, Pan; Hu, Xiaofeng; Jiang, Xinhong; Pan, Ting; Yang, Yuxing; Qiu, Ciyuan; Tremblay, Christine; Su, Yikai
2014-10-20
We propose and experimentally demonstrate an all-optical temporal differential-equation solver that can be used to solve ordinary differential equations (ODEs) characterizing general linear time-invariant (LTI) systems. The photonic device implemented by an add-drop microring resonator (MRR) with two tunable interferometric couplers is monolithically integrated on a silicon-on-insulator (SOI) wafer with a compact footprint of ~60 μm × 120 μm. By thermally tuning the phase shifts along the bus arms of the two interferometric couplers, the proposed device is capable of solving first-order ODEs with two variable coefficients. The operation principle is theoretically analyzed, and system testing of solving ODE with tunable coefficients is carried out for 10-Gb/s optical Gaussian-like pulses. The experimental results verify the effectiveness of the fabricated device as a tunable photonic ODE solver.
Experimental implementation of the Bacon-Shor code with 10 entangled photons
NASA Astrophysics Data System (ADS)
Gimeno-Segovia, Mercedes; Sanders, Barry C.
The number of qubits that can be effectively controlled in quantum experiments is growing, reaching a regime where small quantum error-correcting codes can be tested. The Bacon-Shor code is a simple quantum code that protects against the effect of an arbitrary single-qubit error. In this work, we propose an experimental implementation of said code in a post-selected linear optical setup, similar to the recently reported 10-photon GHZ generation experiment. In the procedure we propose, an arbitrary state is encoded into the protected Shor code subspace, and after undergoing a controlled single-qubit error, is successfully decoded. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter, which is an NSF Physics Frontiers Center(NSF Grant PHY-1125565) with support of the Moore Foundation(GBMF-2644).
Pyrotechnically Operated Valves for Testing and Flight
NASA Technical Reports Server (NTRS)
Conley, Edgar G.; St.Cyr, William (Technical Monitor)
2002-01-01
Pyrovalves still warrant careful description of their operating characteristics, which is consistent with the NASA mission - to assure that both testing and flight hardware perform with the utmost reliability. So, until the development and qualification of the next generation of remotely controlled valves, in all likelihood based on shape memory alloy technology, pyrovalves will remain ubiquitous in controlling flow systems aloft and will possibly see growing use in ground-based testing facilities. In order to assist NASA in accomplishing this task, we propose a three-phase, three-year testing program. Phase I would set up an experimental facility, a 'test rig' in close cooperation with the staff located at the White Sands Test Facility in Southern New Mexico.
Slagt, Meike; Dubas, Judith Semon; van Aken, Marcel A G; Ellis, Bruce J; Deković, Maja
2017-02-01
Differential susceptibility theory proposes that a subset of individuals exist who display enhanced susceptibility to both negative (risk-promoting) and positive (development-enhancing) environments. This experiment represents the first attempt to directly test this assumption by exposing children in the experimental group to both negative and positive feedback using puppet role-plays. It thereby serves as an empirical test as well as a methodological primer for testing differential susceptibility. Dutch children (N=190, 45.3% girls) between the ages of 4 and 6years participated. We examined whether negative and positive feedback would differentially affect changes in positive and negative affect, in prosocial and antisocial intentions and behavior, depending on children's negative emotionality. Results show that on hearing negative feedback, children in the experimental group increased in negative affect and decreased in positive affect more strongly than children in the control group. On hearing positive feedback, children in the experimental group tended to increase in positive affect and decrease in prosocial behavior. However, changes in response to negative or positive feedback did not depend on children's negative emotionality. Moreover, using reliable change scores, we found support for a subset of "vulnerable" children but not for a subset of "susceptible" children. The findings offer suggestions to guide future differential susceptibility experiments. Copyright © 2016 Elsevier Inc. All rights reserved.
Diepens, Noël J; Koelmans, Albert A; Baveco, Hans; van den Brink, Paul J; van den Heuvel-Greve, Martine J; Brock, Theo C M
A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.
Advanced Communications Technology Satellite (ACTS). Phase 1: Industrial/academic experimenters
NASA Technical Reports Server (NTRS)
Maisel, James E.; Nowlin, Robert W.
1992-01-01
This report presents the work done at Arizona State University under the ACTS Experimenters Program. The main thrust of the Program was to develop experiments to test, evaluate, and prove the commercial worthiness of the ACTS satellite which is scheduled for launch in 1993. To accomplish this goal, meetings were held with various governmental, industrial, and academic units to discuss the ACTS satellite and its technology and possible experiments that would generate industrial interest and support for ASU's efforts. Several local industries generated several experiments of their own. The investigators submitted several experiments of educational, medical, commercial, and technical value and interest. The disposition of these experimental proposals is discussed in this report.
NASA Astrophysics Data System (ADS)
Guy, N.; Seyedi, D. M.; Hild, F.
2018-06-01
The work presented herein aims at characterizing and modeling fracturing (i.e., initiation and propagation of cracks) in a clay-rich rock. The analysis is based on two experimental campaigns. The first one relies on a probabilistic analysis of crack initiation considering Brazilian and three-point flexural tests. The second one involves digital image correlation to characterize crack propagation. A nonlocal damage model based on stress regularization is used for the simulations. Two thresholds both based on regularized stress fields are considered. They are determined from the experimental campaigns performed on Lower Watrous rock. The results obtained with the proposed approach are favorably compared with the experimental results.
The Cognitive and Motivation Intervention Program in Youth Female Volleyball Players.
Claver, Fernando; Jiménez, Ruth; Gil-Arias, Alexander; Moreno, Alberto; Moreno, M Perla
2017-10-01
This study, grounded in Self-Determination Theory (Deci and Ryan, 1985, 2002) was aimed to determine the influence of a cognitive-motivational intervention program, to improve the basic psychological need satisfaction of autonomy and competence, autonomous motivation, procedural knowledge, perceived performance and sport commitment, in youth volleyball players. Participants included 34 Under-19 female volleyball players. A quasi-experimental design was carried out with an experimental group (n = 16; M = 17.45; SD = .45) and a control group (n = 18; M = 16.64; SD = .70). The experimental group followed a multidimensional intervention program comprised of 24 sessions held over three months (two training sessions per week). It was based on two strategies: giving athletes the possibility of choice in specific training tasks (proposing training situations with several action alternatives) and questioning (cognitively involving players through tactical questions). A repeated-measures MANOVA 2 (group: experimental and control) x 2 (time: pre-test and post-test) was used to analyse the effect of Group x Time interaction. The results of the inter-group analysis showed significant differences in the post-test measurement between the experimental group and the control group (in favour of the experimental group) in the variables: basic psychological need satisfaction of autonomy and competence, autonomous motivation, procedural knowledge, perceived performance and sport commitment. Given the relevance of the cognitive-motivational processes, not only for performance but also for sport commitment, this intervention has important implications for sport coaching.
Solar powered automobile automation for heatstroke prevention
NASA Astrophysics Data System (ADS)
Singh, Navtej Swaroop; Sharma, Ishan; Jangid, Santosh
2016-03-01
Heatstroke inside a car has been critical problem in every part of the world. Non-exertional heat stroke results from exposure to a high environmental temperature. Exertional heat stroke happens from strenuous exercise. This paper presents a solution for this fatal problem and proposes an embedded solution, which is cost effective and shows the feasibility in implementation. The proposed system consists of information sharing platform, interfacing of sensors, Global System Mobile (GSM), real time monitoring system and the system is powered by the solar panel. The system has been simulated and tested with experimental setup.
Modeling Quasi-Static and Fatigue-Driven Delamination Migration
NASA Technical Reports Server (NTRS)
De Carvalho, N. V.; Ratcliffe, J. G.; Chen, B. Y.; Pinho, S. T.; Baiz, P. M.; Tay, T. E.
2014-01-01
An approach was proposed and assessed for the high-fidelity modeling of progressive damage and failure in composite materials. It combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. Delamination, matrix cracking, and migration were captured failure and migration criteria based on fracture mechanics. Quasi-static and fatigue loading were modeled within the same overall framework. The methodology proposed was illustrated by simulating the delamination migration test, showing good agreement with the available experimental data.
Numerical modeling of dynamics of heart rate and arterial pressure during passive orthostatic test
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Kiselev, A. R.; Karavaev, A. S.
2018-04-01
A model of human cardiovascular system is proposed to describe the main heart rhythm, influence of autonomous regulation on frequency and strength of heart contractions and resistance of arterial vessels; process of formation of arterial pressure during systolic and diastolic phases; influence of respiration; synchronization between loops of autonomous regulation. The proposed model is used to simulate the dynamics of heart rate and arterial pressure during passive transition from supine to upright position. Results of mathematical modeling are compared to original experimental data.
New efficient algorithm for recognizing handwritten Hindi digits
NASA Astrophysics Data System (ADS)
El-Sonbaty, Yasser; Ismail, Mohammed A.; Karoui, Kamal
2001-12-01
In this paper a new algorithm for recognizing handwritten Hindi digits is proposed. The proposed algorithm is based on using the topological characteristics combined with statistical properties of the given digits in order to extract a set of features that can be used in the process of digit classification. 10,000 handwritten digits are used in the experimental results. 1100 digits are used for training and another 5500 unseen digits are used for testing. The recognition rate has reached 97.56%, a substitution rate of 1.822%, and a rejection rate of 0.618%.
Securing Digital Images Integrity using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed
2018-05-01
Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.
Lapierre-Landry, Maryse; Tucker-Schwartz, Jason M.; Skala, Melissa C.
2016-01-01
Photothermal OCT (PT-OCT) is an emerging molecular imaging technique that occupies a spatial imaging regime between microscopy and whole body imaging. PT-OCT would benefit from a theoretical model to optimize imaging parameters and test image processing algorithms. We propose the first analytical PT-OCT model to replicate an experimental A-scan in homogeneous and layered samples. We also propose the PT-CLEAN algorithm to reduce phase-accumulation and shadowing, two artifacts found in PT-OCT images, and demonstrate it on phantoms and in vivo mouse tumors. PMID:27446693
Predicted Sensitivity for Tests of Short-range Gravity with a Novel Parallel-plate Torsion Pendulum
NASA Astrophysics Data System (ADS)
Richards, Matthew; Baxley, Brandon; Hoyle, C. D.; Leopardi, Holly; Shook, David
2011-11-01
The parallel-plate torsion pendulum apparatus at Humboldt State University is designed to test the Weak Equivalence Principle (WEP) and the gravitational inverse-square law (ISL) of General Relativity at unprecedented levels in the sub-millimeter regime. Some versions of String Theory predict additional dimensions that might affect the gravitational inverse-square law (ISL) at sub-millimeter levels. Some models also predict the existence of unobserved subatomic particles, which if exist, could cause a violation in the WEP at short distances. Short-range tests of gravity and the WEP are also instrumental in investigating possible proposed mechanisms that attempt to explain the accelerated expansion of the universe, generally attributed to Dark Energy. The weakness of the gravitational force makes measurement very difficult at small scales. Testing such a minimal force requires highly isolated experimental systems and precise measurement and control instrumentation. Moreover, a dedicated test of the WEP has not been performed below the millimeter scale. This talk will discuss the improved sensitivity that we expect to achieve in short-range gravity tests with respect to previous efforts that employ different experimental configurations.
An Electromagnetic/Capacitive Composite Sensor for Testing of Thermal Barrier Coatings
Ren, Yuan; Pan, Mengchun; Chen, Dixiang; Tian, Wugang
2018-01-01
Thermal barrier coatings (TBCs) can significantly reduce the operating temperature of the aeroengine turbine blade substrate, and their testing technology is very urgently demanded. Due to their complex multi-layer structure, it is hard to evaluate TBCs with a single function sensor. In this paper, an electromagnetic/capacitive composite sensor is proposed for the testing of thermal barrier coatings. The dielectric material is tested with planar capacitor, and the metallic material is tested with electromagnetic coils. Then, the comprehensive test and evaluation of thermal barrier coating system can be realized. The sensor is optimized by means of theoretical and simulation analysis, and the interaction between the planar capacitor and the electromagnetic coil is studied. The experimental system is built based on an impedance analyser and multiplex unit to evaluate the performance of the composite sensor. The transimpedances and capacitances are measured under different coating parameters, such as thickness and permittivity of top coating as well as bond layer conductivity. The experimental results agree with the simulation analysis, and the feasibility of the sensor is proved. PMID:29783746
Clinical trials transparency and the Trial and Experimental Studies Transparency (TEST) act.
Logvinov, Ilana
2014-03-01
Clinical trial research is the cornerstone for successful advancement of medicine that provides hope for millions of people in the future. Full transparency in clinical trials may allow independent investigators to evaluate study designs, perform additional analysis of data, and potentially eliminate duplicate studies. Current regulatory system and publishers rely on investigators and pharmaceutical industries for complete and accurate reporting of results from completed clinical trials. Legislation seems to be the only way to enforce mandatory disclosure of results. The Trial and Experimental Studies Transparency (TEST) Act of 2012 was introduced to the legislators in the United States to promote greater transparency in research industry. Public safety and advancement of science are the driving forces for the proposed policy change. The TEST Act may benefit the society and researchers; however, there are major concerns with participants' privacy and intellectual property protection. Copyright © 2014 Elsevier Inc. All rights reserved.
[Mes differ by positioning: empirical testing of decentralized dynamics of the self].
Mizokami, Shinichi
2013-10-01
The present study empirically tested the conceptualization of the decentralized dynamics of the self proposed by Hermans & Kempen (1993), which they developed theoretically and from clinical cases, not from large samples of empirical data. They posited that worldviews and images of the self could vary by positioning even in the same individual, and denied that the ego was an omniscient entity that knew and controlled all aspects of the self (centralized ego). Study 1 tested their conceptualization empirically with 47 university students in an experimental group and 17 as a control group. The results showed that the scores on the Rosenberg's self-esteem scale and images of the Mes in the experimental group significantly varied by positioning, but those in the control group did not. Similar results were found in Study 2 with a sample of 120 university students. These results empirically supported the conceptualization of the decentralized dynamics of the self.
Assessing noninferiority in a three-arm trial using the Bayesian approach.
Ghosh, Pulak; Nathoo, Farouk; Gönen, Mithat; Tiwari, Ram C
2011-07-10
Non-inferiority trials, which aim to demonstrate that a test product is not worse than a competitor by more than a pre-specified small amount, are of great importance to the pharmaceutical community. As a result, methodology for designing and analyzing such trials is required, and developing new methods for such analysis is an important area of statistical research. The three-arm trial consists of a placebo, a reference and an experimental treatment, and simultaneously tests the superiority of the reference over the placebo along with comparing this reference to an experimental treatment. In this paper, we consider the analysis of non-inferiority trials using Bayesian methods which incorporate both parametric as well as semi-parametric models. The resulting testing approach is both flexible and robust. The benefit of the proposed Bayesian methods is assessed via simulation, based on a study examining home-based blood pressure interventions. Copyright © 2011 John Wiley & Sons, Ltd.
Wave velocity characteristic for Kenaf natural fibre under impact damage
NASA Astrophysics Data System (ADS)
Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd
2017-01-01
This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.
Wu, Chien Hua; Chiu, Ruey Kei; Yeh, Hong Mo; Wang, Da Wei
2017-11-01
In 2011, the Ministry of Health and Welfare of Taiwan established the National Electronic Medical Record Exchange Center (EEC) to permit the sharing of medical resources among hospitals. This system can presently exchange electronic medical records (EMRs) among hospitals, in the form of medical imaging reports, laboratory test reports, discharge summaries, outpatient records, and outpatient medication records. Hospitals can send or retrieve EMRs over the virtual private network by connecting to the EEC through a gateway. International standards should be adopted in the EEC to allow users with those standards to take advantage of this exchange service. In this study, a cloud-based EMR-exchange prototyping system was implemented on the basis of the Integrating the Healthcare Enterprise's Cross-Enterprise Document Sharing integration profile and the existing EMR exchange system. RESTful services were used to implement the proposed prototyping system on the Microsoft Azure cloud-computing platform. Four scenarios were created in Microsoft Azure to determine the feasibility and effectiveness of the proposed system. The experimental results demonstrated that the proposed system successfully completed EMR exchange under the four scenarios created in Microsoft Azure. Additional experiments were conducted to compare the efficiency of the EMR-exchanging mechanisms of the proposed system with those of the existing EEC system. The experimental results suggest that the proposed RESTful service approach is superior to the Simple Object Access Protocol method currently implemented in the EEC system, according to the irrespective response times under the four experimental scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.
Pacilio, M; Basile, C; Shcherbinin, S; Caselli, F; Ventroni, G; Aragno, D; Mango, L; Santini, E
2011-06-01
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging play an important role in the segmentation of functioning parts of organs or tumours, but an accurate and reproducible delineation is still a challenging task. In this work, an innovative iterative thresholding method for tumour segmentation has been proposed and implemented for a SPECT system. This method, which is based on experimental threshold-volume calibrations, implements also the recovery coefficients (RC) of the imaging system, so it has been called recovering iterative thresholding method (RIThM). The possibility to employ Monte Carlo (MC) simulations for system calibration was also investigated. The RIThM is an iterative algorithm coded using MATLAB: after an initial rough estimate of the volume of interest, the following calculations are repeated: (i) the corresponding source-to-background ratio (SBR) is measured and corrected by means of the RC curve; (ii) the threshold corresponding to the amended SBR value and the volume estimate is then found using threshold-volume data; (iii) new volume estimate is obtained by image thresholding. The process goes on until convergence. The RIThM was implemented for an Infinia Hawkeye 4 (GE Healthcare) SPECT/CT system, using a Jaszczak phantom and several test objects. Two MC codes were tested to simulate the calibration images: SIMIND and SimSet. For validation, test images consisting of hot spheres and some anatomical structures of the Zubal head phantom were simulated with SIMIND code. Additional test objects (flasks and vials) were also imaged experimentally. Finally, the RIThM was applied to evaluate three cases of brain metastases and two cases of high grade gliomas. Comparing experimental thresholds and those obtained by MC simulations, a maximum difference of about 4% was found, within the errors (+/- 2% and +/- 5%, for volumes > or = 5 ml or < 5 ml, respectively). Also for the RC data, the comparison showed differences (up to 8%) within the assigned error (+/- 6%). ANOVA test demonstrated that the calibration results (in terms of thresholds or RCs at various volumes) obtained by MC simulations were indistinguishable from those obtained experimentally. The accuracy in volume determination for the simulated hot spheres was between -9% and 15% in the range 4-270 ml, whereas for volumes less than 4 ml (in the range 1-3 ml) the difference increased abruptly reaching values greater than 100%. For the Zubal head phantom, errors ranged between 9% and 18%. For the experimental test images, the accuracy level was within +/- 10%, for volumes in the range 20-110 ml. The preliminary test of application on patients evidenced the suitability of the method in a clinical setting. The MC-guided delineation of tumor volume may reduce the acquisition time required for the experimental calibration. Analysis of images of several simulated and experimental test objects, Zubal head phantom and clinical cases demonstrated the robustness, suitability, accuracy, and speed of the proposed method. Nevertheless, studies concerning tumors of irregular shape and/or nonuniform distribution of the background activity are still in progress.
NASA Astrophysics Data System (ADS)
Suciu, B.
2016-09-01
In this work, a colloidal damper rendered controllable under variable magnetic fields is proposed and its controllability is experimentally evaluated. This absorber employs a water- based ferrofluid (FERROTEC MSGW10) in association with a liquid-repellent nanoporous solid matrix, consisted of particles of gamma alumina or/and silica gel. Control of the dynamic characteristics is obtained by moving permanent neodymium annular magnets, which are placed either on the piston head (axial magnetic field) or on the external surface of the cylinder (radial magnetic field). In order to properly select these magnets, flow visualizations inside of a transparent model damper were performed, and the quantity of the displaced liquid by the magnets through the damper's filter and through the nanoporous solid matrix was determined. Experimental data concerning variation of the magnetic flux density at the magnet surface versus the height of the magnet, and versus the target distance was collected. Based on such data, the suitable magnet geometry was decided. Then, the 3D structural model of the trial colloidal damper obtained by using Solidworks, and the excitation test rig are presented. From excitation tests on a ball-screw shaker, one confirmed larger damping abilities of the proposed absorber relative to the traditional colloidal damper, and also the possibility to adjust the damping coefficient according to the excitation type.
Analysis of the Influence of Construction Insulation Systems on Public Safety in China
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-01-01
With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies. PMID:27589774
Analysis of the Influence of Construction Insulation Systems on Public Safety in China.
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-08-30
With the Government of China's proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.
Space charge distributions in insulating polymers: A new non-contacting way of measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marty-Dessus, D., E-mail: marty@laplace.univ-tlse.fr; Ziani, A. C.; Berquez, L.
2015-04-15
A new technique for the determination of space charge profiles in insulating polymers is proposed. Based on the evolution of an existing thermal wave technique called Focused Laser Intensity Modulation Method ((F)LIMM), it allows non-contact measurements on thin films exhibiting an internal charge to be studied. An electrostatic model taking into account the new sample-cell geometry proposed was first developed. It has been shown, in particular, that it was theoretically possible to calculate the internal charge from experimental measurements while allowing an evaluation of the air layer appearing between the sample and the electrode when non-contact measurements are performed. Thesemore » predictions were confirmed by an experimental implementation for two thin polymer samples (25 μm-polyvinylidenefluoride and 50 μm-polytetrafluoroethylene (PTFE)) used as tests. In these cases, minimum air-layer thickness was determined with an accuracy of 3% and 20%, respectively, depending on the signal-to-noise ratio during the experimental procedure. In order to illustrate the reachable possibilities of this technique, 2D and 3D cartographies of a negative space charge implanted by electron beam within the PTFE test sample were depicted: like in conventional (F)LIMM, a multidimensional representation of a selectively implanted charge remains possible at a few microns depth, but using a non-contacting way of measurement.« less
Richard, F; Villars, M; Thibaud, S
2013-08-01
The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The objective of this study is to quantify this progression and to propose a viscoelastic model of articular cartilage taking into account the degree of osteoarthritis that which be easily used in predictive numerical simulations of the hip joint behavior. To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of the two states were quantified. Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal (instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the thermodynamic framework, a constitutive viscoelastic model taking into account the degree of osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological viscoelastic model including degradation provides an accurate prediction of the mechanical response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should be further validated for intermediate degrees of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Experimental Study of an Advanced Concept of Moderate-resolution Holographic Spectrographs
NASA Astrophysics Data System (ADS)
Muslimov, Eduard; Valyavin, Gennady; Fabrika, Sergei; Musaev, Faig; Galazutdinov, Gazinur; Pavlycheva, Nadezhda; Emelianov, Eduard
2018-07-01
We present the results of an experimental study of an advanced moderate-resolution spectrograph based on a cascade of narrow-band holographic gratings. The main goal of the project is to achieve a moderately high spectral resolution with R up to 5000 simultaneously in the 4300–6800 Å visible spectral range on a single standard CCD, together with an increased throughput. The experimental study consisted of (1) resolution and image quality tests performed using the solar spectrum, and (2) a total throughput test performed for a number of wavelengths using a calibrated lab monochromator. The measured spectral resolving power reaches values over R > 4000 while the experimental throughput is as high as 55%, which agrees well with the modeling results. Comparing the obtained characteristics of the spectrograph under consideration with the best existing spectrographs, we conclude that the used concept can be considered as a very competitive and cheap alternative to the existing spectrographs of the given class. We propose several astrophysical applications for the instrument and discuss the prospect of creating its full-scale version.
NASA Astrophysics Data System (ADS)
El-Etriby, Ahmed E.; Abdel-Meguid, Mohamed E.; Hatem, Tarek M.; Bahei-El-Din, Yehia A.
2014-03-01
Ambient vibrations are major source of wasted energy, exploiting properly such vibration can be converted to valuable energy and harvested to power up devices, i.e. electronic devices. Accordingly, energy harvesting using smart structures with active piezoelectric ceramics has gained wide interest over the past few years as a method for converting such wasted energy. This paper provides numerical and experimental analysis of piezoelectric fiber based composites for energy harvesting applications proposing a multi-scale modeling approach coupled with experimental verification. The multi-scale approach suggested to predict the behavior of piezoelectric fiber-based composites use micromechanical model based on Transformation Field Analysis (TFA) to calculate the overall material properties of electrically active composite structure. Capitalizing on the calculated properties, single-phase analysis of a homogeneous structure is conducted using finite element method. The experimental work approach involves running dynamic tests on piezoelectric fiber-based composites to simulate mechanical vibrations experienced by a subway train floor tiles. Experimental results agree well with the numerical results both for static and dynamic tests.
ERIC Educational Resources Information Center
Obrecht, Dean H.
This report contrasts the results of a rigidly specified, pattern-oriented approach to learning Spanish with an approach that emphasizes the origination of sentences by the learner in direct response to stimuli. Pretesting and posttesting statistics are presented and conclusions are discussed. The experimental method, which required the student to…
Relativity, anomalies and objectivity loophole in recent tests of local realism
NASA Astrophysics Data System (ADS)
Bednorz, Adam
2017-11-01
Local realism is in conflict with special quantum Bell-type models. Recently, several experiments have demonstrated violation of local realism if we trust their setup assuming special relativity valid. In this paper we question the assumption of relativity, point out not commented anomalies and show that the experiments have not closed objectivity loophole because clonability of the result has not been demonstrated. We propose several improvements in further experimental tests of local realism make the violation more convincing.
A theoretical/experimental program to develop active optical pollution sensors
NASA Technical Reports Server (NTRS)
Mills, F. S.; Blais, R. N.; Kindle, E. C.
1977-01-01
Light detection and ranging (LIDAR) technology was applied to the assessment of air quality, and its usefulness was evaluated by actual field tests. Necessary hardware was successfully constructed and operated in the field. Measurements of necessary physical parameters, such as SO2 absorption coefficients were successfully completed and theoretical predictions of differential absorption performance were reported. Plume modeling improvements were proposed. A full scale field test of equipment, data analysis and auxiliary data support was conducted in Maryland during September 1976.
NASA Astrophysics Data System (ADS)
Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.
2016-08-01
Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented.
Correlating off-axis tension tests to shear modulus of wood-based panels
Edmond P. Saliklis; Robert H. Falk
2000-01-01
The weakness of existing relationships correlating off-axis modulus of elasticity E q to shear modulus G 12 for wood composite panels is demonstrated through presentation of extensive experimental data. A new relationship is proposed that performs better than existing equations found in the literature. This relationship can be manipulated to calculate the shear modulus...
2001-06-01
Setup and Initiation ........................................................ 83 2. Simulation 1 (19 Hz, Y-axis of Node 18, Piezo #2...175 INITIAL DISTRIBUTION LIST ................................................................................... 187 ix...system for the sake of testing and simplicity. The Adaptive Multi-Layered LMS Controller was developed one piece at a time. After initial experimental
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
...), filed an application for a successive preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Muskeget Channel Tidal Energy Project to be..., and one experimental turbine unit that would be used to test various open- bladed and helical tidal...
Vibration suppression of a piezo-equipped cylindrical shell in a broad-band frequency domain
NASA Astrophysics Data System (ADS)
Loghmani, Ali; Danesh, Mohammad; Kwak, Moon K.; Keshmiri, Mehdi
2017-12-01
This paper focuses on the dynamic modeling of a cylindrical shell equipped with piezoceramic sensors and actuators, as well as the design of a broad band multi-input and multi-output linear quadratic Gaussian controller for the suppression of vibrations. The optimal locations of actuators are derived by Genetic Algorithm (GA) to effectively control the specific structural modes of the cylinder. The dynamic model is derived based on the Sanders shell theory and the energy approach for both the cylinder and the piezoelectric transducers, all of which reflect the piezoelectric effect. The natural vibration characteristics of the cylindrical shell are investigated both theoretically and experimentally. The theoretical predictions are in good agreement with the experimental results. Then, the broad band multi-input and multi-output linear quadratic Gaussian controller was designed and applied to the test article. An active vibration control experiment is carried out on the cylindrical shell and the digital control system is used to implement the proposed control algorithm. The experimental results show that vibrations of the cylindrical shell can be suppressed by the piezoceramic sensors and actuators along with the proposed controller. The optimal location of the actuators makes the proposed control system more efficient than other configurations.
An evolutionary algorithm for large traveling salesman problems.
Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan
2004-08-01
This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.
NASA Astrophysics Data System (ADS)
Bankova, A.; Videkov, V.; Tzaneva, B.; Mitov, M.
2018-03-01
We report studies on the mechanical response and deformation behavior of heat-treated nanoporous anodic alumina using a micro-balance test and experimental test equipment especially designed for this purpose. AAO samples were characterized mechanically by a three-point bending test using a micro-analytical balance. The deformation behavior was studied by repetitive mechanical bending of the AAO membranes using an electronically controlled system. The nanoporous AAO structures were prepared electrochemically from Al sheet substrates using a two-step anodizing technique in oxalic acid followed by heat treatment at 700 °C in air. The morphological study of the aluminum oxide layer after the mechanical tests and mechanical deformation was conducted using scanning electron and optical microscopy, respectively. The experimental results showed that the techniques proposed are simple and accurate; they could, therefore, be combined to constitute a method for mechanical stability assessment of nanostructured AAO films, which are important structural components in the design of MEMS devices and sensors.
NASA Astrophysics Data System (ADS)
Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong
2016-06-01
The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.
NASA Astrophysics Data System (ADS)
Emary, Clive; Lambert, Neill; Nori, Franco
2014-01-01
In contrast to the spatial Bell's inequalities which probe entanglement between spatially separated systems, the Leggett-Garg inequalities test the correlations of a single system measured at different times. Violation of a genuine Leggett-Garg test implies either the absence of a realistic description of the system or the impossibility of measuring the system without disturbing it. Quantum mechanics violates the inequalities on both accounts and the original motivation for these inequalities was as a test for quantum coherence in macroscopic systems. The last few years has seen a number of experimental tests and violations of these inequalities in a variety of microscopic systems such as superconducting qubits, nuclear spins, and photons. In this article, we provide an introduction to the Leggett-Garg inequalities and review these latest experimental developments. We discuss important topics such as the significance of the non-invasive measurability assumption, the clumsiness loophole, and the role of weak measurements. Also covered are some recent theoretical proposals for the application of Leggett-Garg inequalities in quantum transport, quantum biology and nano-mechanical systems.
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.
1953-01-01
An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane in test setups representing the setup proposed for use in the first flight tests of the full-scale airplane in the Moffett Field airship hangar. The investigation was conducted in two parts: first, tests with the model flying freely in an enclosure simulating the hangar, and second, tests with the model partially restrained by an overhead line attached to the propeller spinner and ground lines attached to the wing and tail tips. The results of the tests indicated that the airplane can be flown without difficulty in the Moffett Field airship hangar if it does not approach too close to the hangar walls. If it does approach too close to the walls, the recirculation of the propeller slipstream might cause sudden trim changes which would make smooth flight difficult for the pilot to accomplish. It appeared that the tethering system proposed by Convair could provide generally satisfactory restraint of large-amplitude motions caused by control failure or pilot error without interfering with normal flying or causing any serious instability or violent jerking motions as the tethering lines restrained the model.
Selecting promising treatments in randomized Phase II cancer trials with an active control.
Cheung, Ying Kuen
2009-01-01
The primary objective of Phase II cancer trials is to evaluate the potential efficacy of a new regimen in terms of its antitumor activity in a given type of cancer. Due to advances in oncology therapeutics and heterogeneity in the patient population, such evaluation can be interpreted objectively only in the presence of a prospective control group of an active standard treatment. This paper deals with the design problem of Phase II selection trials in which several experimental regimens are compared to an active control, with an objective to identify an experimental arm that is more effective than the control or to declare futility if no such treatment exists. Conducting a multi-arm randomized selection trial is a useful strategy to prioritize experimental treatments for further testing when many candidates are available, but the sample size required in such a trial with an active control could raise feasibility concerns. In this study, we extend the sequential probability ratio test for normal observations to the multi-arm selection setting. The proposed methods, allowing frequent interim monitoring, offer high likelihood of early trial termination, and as such enhance enrollment feasibility. The termination and selection criteria have closed form solutions and are easy to compute with respect to any given set of error constraints. The proposed methods are applied to design a selection trial in which combinations of sorafenib and erlotinib are compared to a control group in patients with non-small-cell lung cancer using a continuous endpoint of change in tumor size. The operating characteristics of the proposed methods are compared to that of a single-stage design via simulations: The sample size requirement is reduced substantially and is feasible at an early stage of drug development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonne, François; Bonnay, Patrick; Alamir, Mazen
2014-01-29
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsedmore » heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.« less
Evolutionary-based approaches for determining the deviatoric stress of calcareous sands
NASA Astrophysics Data System (ADS)
Shahnazari, Habib; Tutunchian, Mohammad A.; Rezvani, Reza; Valizadeh, Fatemeh
2013-01-01
Many hydrocarbon reservoirs are located near oceans which are covered by calcareous deposits. These sediments consist mainly of the remains of marine plants or animals, so calcareous soils can have a wide variety of engineering properties. Due to their local expansion and considerable differences from terrigenous soils, the evaluation of engineering behaviors of calcareous sediments has been a major concern for geotechnical engineers in recent years. Deviatoric stress is one of the most important parameters directly affecting important shearing characteristics of soils. In this study, a dataset of experimental triaxial tests was gathered from two sources. First, the data of previous experimental studies from the literature were gathered. Then, a series of triaxial tests was performed on calcareous sands of the Persian Gulf to develop the dataset. This work resulted in a large database of experimental results on the maximum deviatoric stress of different calcareous sands. To demonstrate the capabilities of evolutionary-based approaches in modeling the deviatoric stress of calcareous sands, two promising variants of genetic programming (GP), multigene genetic programming (MGP) and gene expression programming (GEP), were applied to propose new predictive models. The models' input parameters were the physical and in-situ condition properties of soil and the output was the maximum deviatoric stress (i.e., the axial-deviator stress). The results of statistical analyses indicated the robustness of these models, and a parametric study was also conducted for further verification of the models, in which the resulting trends were consistent with the results of the experimental study. Finally, the proposed models were further simplified by applying a practical geotechnical correlation.
NASA Astrophysics Data System (ADS)
Bonne, François; Alamir, Mazen; Bonnay, Patrick; Bradu, Benjamin
2014-01-01
In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix
Zhang, Min; Wang, Hai; Liu, Yan
2017-01-01
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time. PMID:28420121
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix.
Zhang, Min; Wang, Hai; Liu, Yan
2017-04-14
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time.
Han, Dahai; Gu, Yanjie; Zhang, Min
2017-08-10
An optimized scheme of pulse symmetrical position-orthogonal space-time block codes (PSP-OSTBC) is proposed and applied with m-pulse positions modulation (m-PPM) without the use of a complex decoding algorithm in an optical multi-input multi-output (MIMO) ultraviolet (UV) communication system. The proposed scheme breaks through the limitation of the traditional Alamouti code and is suitable for high-order m-PPM in a UV scattering channel, verified by both simulation experiments and field tests with specific parameters. The performances of 1×1, 2×1, and 2×2 PSP-OSTBC systems with 4-PPM are compared experimentally as the optimal tradeoff between modification and coding in practical application. Meanwhile, the feasibility of the proposed scheme for 8-PPM is examined by a simulation experiment as well. The results suggest that the proposed scheme makes the system insensitive to the influence of path loss with a larger channel capacity, and a higher diversity gain and coding gain with a simple decoding algorithm will be achieved by employing the orthogonality of m-PPM in an optical-MIMO-based ultraviolet scattering channel.
Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Krause, David L.; Kantzos, Pete T.
2006-01-01
For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.
Iodine Absorption Cells Purity Testing.
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-06
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions' spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches).
Iodine Absorption Cells Purity Testing
Hrabina, Jan; Zucco, Massimo; Philippe, Charles; Pham, Tuan Minh; Holá, Miroslava; Acef, Ouali; Lazar, Josef; Číp, Ondřej
2017-01-01
This article deals with the evaluation of the chemical purity of iodine-filled absorption cells and the optical frequency references used for the frequency locking of laser standards. We summarize the recent trends and progress in absorption cell technology and we focus on methods for iodine cell purity testing. We compare two independent experimental systems based on the laser-induced fluorescence method, showing an improvement of measurement uncertainty by introducing a compensation system reducing unwanted influences. We show the advantages of this technique, which is relatively simple and does not require extensive hardware equipment. As an alternative to the traditionally used methods we propose an approach of hyperfine transitions’ spectral linewidth measurement. The key characteristic of this method is demonstrated on a set of testing iodine cells. The relationship between laser-induced fluorescence and transition linewidth methods will be presented as well as a summary of the advantages and disadvantages of the proposed technique (in comparison with traditional measurement approaches). PMID:28067834
On the Mineral and Vegetal Oils Used as Electroinsulation in Transformers
NASA Astrophysics Data System (ADS)
Şerban, Mariana; Sângeorzan, Livia; Helerea, Elena
Due to the relatively large availability and reduced price, the mineral transformer oils are widely used as electrical insulating liquids. However, mineral oil drastically degrades over time in service. New efforts were made to improve mineral oils characteristics, and other types of liquids like vegetal oils are proposed. This paper deals with new comparative tests on mineral and vegetal oils using as indicator the electric strength. The samples of non-additive mineral oil type TR 30 and vegetal oils of rape, sunflower and corn have been tested with increasing voltage of 60 Hz using different electrodes. The obtained data have been statistical processed. The analyze shows different average values of electrical strength for the different type of sample. New method of testing through electrical breakdown is proposed. Experimental data confirms that it is possible to use as electroinsulation organic vegetal oils in power transformers.
Energy-based fatigue model for shape memory alloys including thermomechanical coupling
NASA Astrophysics Data System (ADS)
Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong
2016-03-01
This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.
Report on FY17 testing in support of integrated EPP-SMT design methods development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli .; Jetter, Robert I.; Sham, T. -L.
The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The purpose of this methodology is to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, thermomechanical tests continued in FY17. Thismore » report presents the recent test results for Type 1 SMT specimens on Alloy 617 with long hold times, pressurization SMT on Alloy 617, and two-bar thermal ratcheting test results on SS316H at the temperature range of 405 °C to 705 °C. Preliminary EPP strain range analysis on the two-bar tests are critically evaluated and compared with the experimental results.« less
NASA Astrophysics Data System (ADS)
Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.
2012-07-01
The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.
A Cancer Gene Selection Algorithm Based on the K-S Test and CFS.
Su, Qiang; Wang, Yina; Jiang, Xiaobing; Chen, Fuxue; Lu, Wen-Cong
2017-01-01
To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test. We adopted support vector machines (SVM) as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR), and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms. The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... notice solicits comments on research entitled ``Experimental Study: Disease Information in Branded Promotional Material.'' The proposed research will explore the nature of including information about a disease...] Agency Information Collection Activities; Proposed Collection; Comment Request; Experimental Study...
Linear programming phase unwrapping for dual-wavelength digital holography.
Wang, Zhaomin; Jiao, Jiannan; Qu, Weijuan; Yang, Fang; Li, Hongru; Tian, Ailing; Asundi, Anand
2017-01-20
A linear programming phase unwrapping method in dual-wavelength digital holography is proposed and verified experimentally. The proposed method uses the square of height difference as a convergence standard and theoretically gives the boundary condition in a searching process. A simulation was performed by unwrapping step structures at different levels of Gaussian noise. As a result, our method is capable of recovering the discontinuities accurately. It is robust and straightforward. In the experiment, a microelectromechanical systems sample and a cylindrical lens were measured separately. The testing results were in good agreement with true values. Moreover, the proposed method is applicable not only in digital holography but also in other dual-wavelength interferometric techniques.
Alternative analytical forms to model diatomic systems based on the deformed exponential function.
da Fonsêca, José Erinaldo; de Oliveira, Heibbe Cristhian B; da Cunha, Wiliam Ferreira; Gargano, Ricardo
2014-07-01
Using a deformed exponential function and the molecular-orbital theory for the simplest molecular ion, two new analytical functions are proposed to represent the potential energy of ground-state diatomic systems. The quality of these new forms was tested by fitting the ab initio electronic energies of the system LiH, LiNa, NaH, RbH, KH, H2, Li2, K2, H 2 (+) , BeH(+) and Li 2 (+) . From these fits, it was verified that these new proposals are able to adequately describe homonuclear, heteronuclear and cationic diatomic systems with good accuracy. Vibrational spectroscopic constant results obtained from these two proposals are in good agreement with experimental data.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
Relative hardness measurement of soft objects by a new fiber optic sensor
NASA Astrophysics Data System (ADS)
Ahmadi, Roozbeh; Ashtaputre, Pranav; Abou Ziki, Jana; Dargahi, Javad; Packirisamy, Muthukumaran
2010-06-01
The measurement of relative hardness of soft objects enables replication of human finger tactile perception capabilities. This ability has many applications not only in automation and robotics industry but also in many other areas such as aerospace and robotic surgery where a robotic tool interacts with a soft contact object. One of the practical examples of interaction between a solid robotic instrument and a soft contact object occurs during robotically-assisted minimally invasive surgery. Measuring the relative hardness of bio-tissue, while contacting the robotic instrument, helps the surgeons to perform this type of surgery more reliably. In the present work, a new optical sensor is proposed to measure the relative hardness of contact objects. In order to measure the hardness of a contact object, like a human finger, it is required to apply a small force/deformation to the object by a tactile sensor. Then, the applied force and resulting deformation should be recorded at certain points to enable the relative hardness measurement. In this work, force/deformation data for a contact object is recorded at certain points by the proposed optical sensor. Recorded data is used to measure the relative hardness of soft objects. Based on the proposed design, an experimental setup was developed and experimental tests were performed to measure the relative hardness of elastomeric materials. Experimental results verify the ability of the proposed optical sensor to measure the relative hardness of elastomeric samples.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)
2000-01-01
In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.
NASA Technical Reports Server (NTRS)
Cameron, B. W.; Ritschel, A. J.
1973-01-01
Experimental aerodynamic investigations were conducted in a low speed wind tunnel from May 21 through June 4 and from June 18 through June 25, 1973 on a 0.0405 scale -139B model Space Shuttle Vehicle (SSV) orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional subsonic aerodynamic characteristics of the proposed PRR Space Shuttle orbiter. Emphasis was placed on component buildup effects, elevon, rudder, body flaps, rudder flare effectiveness, and canard and speed brake development. Angles of attack from -4 deg. to 24 deg. and angles of sideslip of -10 deg. to 10 deg. were tested. Static pressures were recorded on the base. The aerodynamic force balance results are presented in plotted and tabular form.
A numerical identifiability test for state-space models--application to optimal experimental design.
Hidalgo, M E; Ayesa, E
2001-01-01
This paper describes a mathematical tool for identifiability analysis, easily applicable to high order non-linear systems modelled in state-space and implementable in simulators with a time-discrete approach. This procedure also permits a rigorous analysis of the expected estimation errors (average and maximum) in calibration experiments. The methodology is based on the recursive numerical evaluation of the information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of the utility of the proposed test, the paper presents its application to an optimal experimental design of ASM Model No. 1 calibration, in order to estimate the maximum specific growth rate microH and the concentration of heterotrophic biomass XBH.
Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests
Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong
2016-01-01
A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10−3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533
Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.
He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong
2016-01-01
A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h.
Highly Loaded Composite Strut Test Development
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.
2011-01-01
Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.
HIFiRE-5 Flight Vehicle Design
NASA Technical Reports Server (NTRS)
Kimmel, Roger L.; Adamczak, David; Berger, Karen; Choudhari, Meelan
2010-01-01
The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratories (AFRL) and Australian Defence Science and Technology Organization (DSTO). HIFiRE flight 5 is devoted to measuring transition on a three-dimensional body. This paper summarizes payload configuration, trajectory, vehicle stability limits and roughness tolerances. Results show that the proposed configuration is suitable for testing transition on a three-dimensional body. Transition is predicted to occur within the test window, and a design has been developed that will allow the vehicle to be manufactured within prescribed roughness tolerances
Expansion tube test time predictions
NASA Technical Reports Server (NTRS)
Gourlay, Christopher M.
1988-01-01
The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.
A software framework for developing measurement applications under variable requirements.
Arpaia, Pasquale; Buzio, Marco; Fiscarelli, Lucio; Inglese, Vitaliano
2012-11-01
A framework for easily developing software for measurement and test applications under highly and fast-varying requirements is proposed. The framework allows the software quality, in terms of flexibility, usability, and maintainability, to be maximized. Furthermore, the development effort is reduced and finalized, by relieving the test engineer of development details. The framework can be configured for satisfying a large set of measurement applications in a generic field for an industrial test division, a test laboratory, or a research center. As an experimental case study, the design, the implementation, and the assessment inside the application to a measurement scenario of magnet testing at the European Organization for Nuclear Research is reported.
Analysis of household refrigerators for different testing standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, P.K.; McGill, I.
This study highlights the salient differences among various testing standards for household refrigerator-freezers and proposes a methodology for predicting the performance of a single evaporator-based vapor-compression refrigeration system (either refrigerator or freezer) from one test standard (where the test data are available-the reference case) to another (the alternative case). The standards studied during this investigation include the Australian-New Zealand Standard (ANZS), the International Standard (ISO), the American National Standard (ANSI), the Japanese Industrial Standard (JIS), and the Chinese National Standard (CNS). A simple analysis in conjunction with the BICYCLE model (Bansal and Rice 1993) is used to calculate the energymore » consumption of two refrigerator cabinets from the reference case to the alternative cases. The proposed analysis includes the effect of door openings (as required by the JIS) as well as defrost heaters. The analytical results are found to agree reasonably well with the experimental observations for translating energy consumption information from one standard to another.« less
Prediction of residual shear strength of corroded reinforced concrete beams
NASA Astrophysics Data System (ADS)
Imam, Ashhad; Azad, Abul Kalam
2016-09-01
With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.
Electrical characterization of a Mapham inverter using pulse testing techniques
NASA Technical Reports Server (NTRS)
Baumann, E. D.; Myers, I. T.; Hammond, A. N.
1990-01-01
Electric power requirements for aerospace missions have reached megawatt power levels. Within the next few decades, it is anticipated that a manned lunar base, interplanetary travel, and surface exploration of the Martian surface will become reality. Several research and development projects aimed at demonstrating megawatt power level converters for space applications are currently underway at the NASA Lewis Research Center. Innovative testing techniques will be required to evaluate the components and converters, when developed, at their rated power in the absence of costly power sources, loads, and cooling systems. Facilities capable of testing these components and systems at full power are available, but their use may be cost prohibitive. The use of a multiple pulse testing technique is proposed to determine the electrical characteristics of large megawatt level power systems. Characterization of a Mapham inverter is made using the proposed technique and conclusions are drawn concerning its suitability as an experimental tool to evaluate megawatt level power systems.
A reduced order, test verified component mode synthesis approach for system modeling applications
NASA Astrophysics Data System (ADS)
Butland, Adam; Avitabile, Peter
2010-05-01
Component mode synthesis (CMS) is a very common approach used for the generation of large system models. In general, these modeling techniques can be separated into two categories: those utilizing a combination of constraint modes and fixed interface normal modes and those based on a combination of free interface normal modes and residual flexibility terms. The major limitation of the methods utilizing constraint modes and fixed interface normal modes is the inability to easily obtain the required information from testing; the result of this limitation is that constraint mode-based techniques are primarily used with numerical models. An alternate approach is proposed which utilizes frequency and shape information acquired from modal testing to update reduced order finite element models using exact analytical model improvement techniques. The connection degrees of freedom are then rigidly constrained in the test verified, reduced order model to provide the boundary conditions necessary for constraint modes and fixed interface normal modes. The CMS approach is then used with this test verified, reduced order model to generate the system model for further analysis. A laboratory structure is used to show the application of the technique with both numerical and simulated experimental components to describe the system and validate the proposed approach. Actual test data is then used in the approach proposed. Due to typical measurement data contaminants that are always included in any test, the measured data is further processed to remove contaminants and is then used in the proposed approach. The final case using improved data with the reduced order, test verified components is shown to produce very acceptable results from the Craig-Bampton component mode synthesis approach. Use of the technique with its strengths and weaknesses are discussed.
X-38 Experimental Aeroheating at Mach 10
NASA Technical Reports Server (NTRS)
Berry, Scott A.; Horvath, Thomas J.; Weilmuenster, K. James; Alter, Stephan J.; Merski, N. Ronald
2001-01-01
This report provides an update of the hypersonic aerothermodynamic wind tunnel test program conducted at the NASA Langley Research Center in support of the X-38 program. Global surface heat transfer distributions were measured on 0.0177 and 0.0236 scale models of the proposed X-38 configuration at Mach 10 in air. The parametrics that were investigated primarily include freestream unit Reynolds numbers of 0.6 to 2.2 million per foot and body flap deflections of 15, 20, and 25 deg for an angle-of-attack of 40 deg. The model-scale variance was tested to obtain laminar, transitional, and turbulent heating levels on the defected bodyflaps. In addition, a limited investigation of forced boundary layer transition through the use of discrete roughness elements was performed. Comparisons of the present experimental results to computational predictions and previous experimental data were conducted Laminar, transitional, and turbulent heating levels were observed on the deflected body flap, which compared favorably to the computational results and to the predicted heating based on the flight aerothermodynamic database.
NASA Astrophysics Data System (ADS)
Guo, Limin; Liu, Youqiang; Huang, Rui; Wang, Zhiyong
2017-06-01
High concentrating PV systems rely on large Fresnel lens that must be precisely oriented in the direction of the Sun to maintain high concentration ratio. We propose a new Fresnel lens design method combining equal-width and equal-height of grooves in this paper based on the principle of focused spot maximum energy. In the ring band near the center of Fresnel lens, the design with equal-width grooves is applied, and when the given condition is reached, the design with equal-height grooves is introduced near the edges of the Fresnel lens, which ensures all the lens grooves are planar. In this paper, we establish a Fresnel lens design example model by Solidworks, and simulate it with the software ZEMAX. An experimental test platform is built to test, and the simulation correctness is proved by experiments. Experimental result shows the concentrating efficiency of this example is 69.3%, slightly lower than the simulation result 75.1%.
An experimental study of the mechanism of failure of rocks under borehole jack loading
NASA Technical Reports Server (NTRS)
Van, T. K.; Goodman, R. E.
1971-01-01
Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.
Integrating uniform design and response surface methodology to optimize thiacloprid suspension
Li, Bei-xing; Wang, Wei-chang; Zhang, Xian-peng; Zhang, Da-xia; Mu, Wei; Liu, Feng
2017-01-01
A model 25% suspension concentrate (SC) of thiacloprid was adopted to evaluate an integrative approach of uniform design and response surface methodology. Tersperse2700, PE1601, xanthan gum and veegum were the four experimental factors, and the aqueous separation ratio and viscosity were the two dependent variables. Linear and quadratic polynomial models of stepwise regression and partial least squares were adopted to test the fit of the experimental data. Verification tests revealed satisfactory agreement between the experimental and predicted data. The measured values for the aqueous separation ratio and viscosity were 3.45% and 278.8 mPa·s, respectively, and the relative errors of the predicted values were 9.57% and 2.65%, respectively (prepared under the proposed conditions). Comprehensive benefits could also be obtained by appropriately adjusting the amount of certain adjuvants based on practical requirements. Integrating uniform design and response surface methodology is an effective strategy for optimizing SC formulas. PMID:28383036
NASA Astrophysics Data System (ADS)
Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong
2017-12-01
As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.
NASA Astrophysics Data System (ADS)
Cao, Liang; Liu, Jiepeng; Li, Jiang; Zhang, Ruizhi
2018-04-01
An extensive experimental and theoretical research study was undertaken to study the vibration serviceability of a long-span prestressed concrete floor system to be used in the lounge of a major airport. Specifically, jumping impact tests were carried out to obtain the floor's modal parameters, followed by an analysis of the distribution of peak accelerations. Running tests were also performed to capture the acceleration responses. The prestressed concrete floor was found to have a low fundamental natural frequency (≈ 8.86 Hz) corresponding to the average modal damping ratio of ≈ 2.17%. A coefficients β rp is proposed for convenient calculation of the maximum root-mean-square acceleration for running. In the theoretical analysis, the prestressed concrete floor under running excitation is treated as a two-span continuous anisotropic rectangular plate with simply-supported edges. The calculated analytical results (natural frequencies and root-mean-square acceleration) agree well with the experimental ones. The analytical approach is thus validated.
NASA Astrophysics Data System (ADS)
Lu, Zheng; Chen, Xiaoyi; Zhou, Ying
2018-04-01
A particle tuned mass damper (PTMD) is a creative combination of a widely used tuned mass damper (TMD) and an efficient particle damper (PD) in the vibration control area. The performance of a one-storey steel frame attached with a PTMD is investigated through free vibration and shaking table tests. The influence of some key parameters (filling ratio of particles, auxiliary mass ratio, and particle density) on the vibration control effects is investigated, and it is shown that the attenuation level significantly depends on the filling ratio of particles. According to the experimental parametric study, some guidelines for optimization of the PTMD that mainly consider the filling ratio are proposed. Furthermore, an approximate analytical solution based on the concept of an equivalent single-particle damper is proposed, and it shows satisfied agreement between the simulation and experimental results. This simplified method is then used for the preliminary optimal design of a PTMD system, and a case study of a PTMD system attached to a five-storey steel structure following this optimization process is presented.
NASA Astrophysics Data System (ADS)
Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping
2016-07-01
Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, J.; Xue, X.
A comprehensive 3D CFD model is developed for a bi-electrode supported cell (BSC) SOFC. The model includes complicated transport phenomena of mass/heat transfer, charge (electron and ion) migration, and electrochemical reaction. The uniqueness of the modeling study is that functionally graded porous electrode property is taken into account, including not only linear but nonlinear porosity distributions. Extensive numerical analysis is performed to elucidate the effects of both porous microstructure distributions and operating condition on cell performance. Results indicate that cell performance is strongly dependent on both operating conditions and porous microstructure distributions of electrodes. Using the proposed fuel/gas feeding design,more » the uniform hydrogen distribution within porous anode is achieved; the oxygen distribution within the cathode is dependent on porous microstructure distributions as well as pressure loss conditions. Simulation results show that fairly uniform temperature distribution can be obtained with the proposed fuel/gas feeding design. The modeling results can be employed to guide experimental design of BSC test and provide pre-experimental analysis, as a result, to circumvent high cost associated with try-and-error experimental design and setup.« less
Geant4 hadronic physics for space radiation environment.
Ivantchenko, Anton V; Ivanchenko, Vladimir N; Molina, Jose-Manuel Quesada; Incerti, Sebastien L
2012-01-01
To test and to develop Geant4 (Geometry And Tracking version 4) Monte Carlo hadronic models with focus on applications in a space radiation environment. The Monte Carlo simulations have been performed using the Geant4 toolkit. Binary (BIC), its extension for incident light ions (BIC-ion) and Bertini (BERT) cascades were used as main Monte Carlo generators. For comparisons purposes, some other models were tested too. The hadronic testing suite has been used as a primary tool for model development and validation against experimental data. The Geant4 pre-compound (PRECO) and de-excitation (DEE) models were revised and improved. Proton, neutron, pion, and ion nuclear interactions were simulated with the recent version of Geant4 9.4 and were compared with experimental data from thin and thick target experiments. The Geant4 toolkit offers a large set of models allowing effective simulation of interactions of particles with matter. We have tested different Monte Carlo generators with our hadronic testing suite and accordingly we can propose an optimal configuration of Geant4 models for the simulation of the space radiation environment.
Jiang, Joe-Air; Chuang, Cheng-Long; Lin, Tzu-Shiang; Chen, Chia-Pang; Hung, Chih-Hung; Wang, Jiing-Yi; Liu, Chang-Wang; Lai, Tzu-Yun
2010-01-01
In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments.
Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin
2007-10-20
We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.
Hasani, E; Parravicini, J; Tartara, L; Tomaselli, A; Tomassini, D
2018-05-01
We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Alesso, Magdalena; Escudero, Luis A; Talio, María Carolina; Fernández, Liliana P
2016-11-01
A new simple methodology is proposed for chlorsufuron (CS) traces quantification based upon enhancement of rhodamine B (RhB) fluorescent signal. Experimental variables that influence fluorimetric sensitivity have been studied and optimized. The zeroth order regression calibration was linear from 0.866 to 35.800µgL(-1) CS, with a correlation coefficient of 0.99. At optimal experimental conditions, a limit of detection of 0.259µgL(-1) and a limit of quantification of 0.866µgL(-1) were obtained. The method showed good sensitivity and adequate selectivity and was applied to the determination of trace amounts of CS in plasma, serum and water samples with satisfactory results analyzed by ANOVA test. The proposed methodology represents an alternative to traditional chromatographic techniques for CS monitoring in complex samples, using an accessible instrument in control laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.
A combined-slip predictive control of vehicle stability with experimental verification
NASA Astrophysics Data System (ADS)
Jalali, Milad; Hashemi, Ehsan; Khajepour, Amir; Chen, Shih-ken; Litkouhi, Bakhtiar
2018-02-01
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.
NASA Astrophysics Data System (ADS)
Wang, Hao; Zhang, Fengge; Guan, Tao; Yu, Siyang
2017-09-01
A brushless electrically excited synchronous generator (BEESG) with a hybrid rotor is a novel electrically excited synchronous generator. The BEESG proposed in this paper is composed of a conventional stator with two different sets of windings with different pole numbers, and a hybrid rotor with powerful coupling capacity. The pole number of the rotor is different from those of the stator windings. Thus, an analysis method different from that applied to conventional generators should be applied to the BEESG. In view of this problem, the equivalent circuit and electromagnetic torque expression of the BEESG are derived on the basis of electromagnetic relation of the proposed generator. The generator is simulated and tested experimentally using the established equivalent circuit model. The experimental and simulation data are then analyzed and compared. Results show the validity of the equivalent circuit model.
NASA Technical Reports Server (NTRS)
Gelder, Thomas F.; Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.
1987-01-01
Two turning vane designs were experimentally evaluated for the fan-drive corner (corner 2) coupled to an upstream diffuser and the high-speed corner (corner 1) of the 0.1 scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. For corner 2 both a controlled-diffusion vane design (vane A4) and a circular-arc vane design (vane B) were studied. The corner 2 total pressure loss coefficient was about 0.12 with either vane design. This was about 25 percent less loss than when corner 2 was tested alone. Although the vane A4 design has the advantage of 20 percent fewer vanes than the vane B design, its vane shape is more complex. The effects of simulated inlet flow distortion on the overall losses for corner 1 or 2 were small.
Lashkari, Negin; Poshtan, Javad; Azgomi, Hamid Fekri
2015-11-01
The three-phase shift between line current and phase voltage of induction motors can be used as an efficient fault indicator to detect and locate inter-turn stator short-circuit (ITSC) fault. However, unbalanced supply voltage is one of the contributing factors that inevitably affect stator currents and therefore the three-phase shift. Thus, it is necessary to propose a method that is able to identify whether the unbalance of three currents is caused by ITSC or supply voltage fault. This paper presents a feedforward multilayer-perceptron Neural Network (NN) trained by back propagation, based on monitoring negative sequence voltage and the three-phase shift. The data which are required for training and test NN are generated using simulated model of stator. The experimental results are presented to verify the superior accuracy of the proposed method. Copyright © 2015. Published by Elsevier Ltd.
A new pneumatic suspension system with independent stiffness and ride height tuning capabilities
NASA Astrophysics Data System (ADS)
Yin, Zhihong; Khajepour, Amir; Cao, Dongpu; Ebrahimi, Babak; Guo, Konghui
2012-12-01
This paper introduces a new pneumatic spring for vehicle suspension systems, allowing independent tuning of stiffness and ride height according to different vehicle operating conditions and driver preferences. The proposed pneumatic spring comprises a double-acting pneumatic cylinder, two accumulators and a tuning subsystem. This paper presents a detailed description of the pneumatic spring and its working principle. The mathematical model is established based on principles of thermo and fluid dynamics. An experimental setup has been designed and fabricated for testing and evaluating the proposed pneumatic spring. The analytical and experimental results confirm the capability of the new pneumatic spring system for independent tuning of stiffness and ride height. The mathematical model is verified and the capabilities of the pneumatic spring are further proved. It is concluded that this new pneumatic spring provides a more flexible suspension design alternative for meeting various conflicting suspension requirements for ride comfort and performance.
NASA Astrophysics Data System (ADS)
Picot, D.; Metkemeijer, R.; Bezian, J. J.; Rouveyre, L.
In this paper, experimental water and thermal balances with three proton exchange membrane fuel cells (PEMFC) are proposed. On the test facility of Ecole des Mines de Paris, three De Nora SPA fuel cell stacks have been successfully studied: An 1 kW e prototype using Nafion® 117, a 5 and a 10 kW e module using Nafion® 115. The averaged water symmetry factor determines strategies to avoid drying membrane. So, we propose analytical solutions to find compromises between humidification and cooling conditions, which determines outlet temperatures of gases. For transport applications, the space occupied by the power module must be reduced. One of the main efforts consists in decreasing the operative pressure. Thus, if adequate cooling power is applied, we show experimentally and theoretically the possibility to use De Nora PEM fuel cells with low pressure, without specific external humidification.
Lemonaki, Elena; Manstead, Antony S R; Maio, Gregory R
2015-09-01
In the present research, we examine the ways in which exposure to hostile sexism influences women's competitive collective action intentions. Prior to testing our main model, our first study experimentally induced high versus low levels of security-comfort with the aim of providing experimental evidence for the proposed causal link between these emotions and intentions to engage in social competition. Results showed that lower levels of security-comfort reduced women's readiness to compete socially with men. Experiment 2 investigated the effect of hostile sexism on women's emotional reactions and readiness to engage in social competition. Consistent with the proposed model, results showed that exposure to hostile beliefs about women (1) increased anger-frustration and (2) decreased security-comfort. More specifically, exposure to hostile sexism had a positive indirect effect on social competition intentions through anger-frustration, and a negative indirect effect through security-comfort. © 2015 The British Psychological Society.
Adiabatic quantum-flux-parametron cell library adopting minimalist design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, Naoki, E-mail: takeuchi-naoki-kx@ynu.jp; Yamanashi, Yuki; Yoshikawa, Nobuyuki
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells inmore » the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.« less
Adiabatic quantum-flux-parametron cell library adopting minimalist design
NASA Astrophysics Data System (ADS)
Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki
2015-05-01
We herein build an adiabatic quantum-flux-parametron (AQFP) cell library adopting minimalist design and a symmetric layout. In the proposed minimalist design, every logic cell is designed by arraying four types of building block cells: buffer, NOT, constant, and branch cells. Therefore, minimalist design enables us to effectively build and customize an AQFP cell library. The symmetric layout reduces unwanted parasitic magnetic coupling and ensures a large mutual inductance in an output transformer, which enables very long wiring between logic cells. We design and fabricate several logic circuits using the minimal AQFP cell library so as to test logic cells in the library. Moreover, we experimentally investigate the maximum wiring length between logic cells. Finally, we present an experimental demonstration of an 8-bit carry look-ahead adder designed using the minimal AQFP cell library and demonstrate that the proposed cell library is sufficiently robust to realize large-scale digital circuits.
Econo-ESA in semantic text similarity.
Rahutomo, Faisal; Aritsugi, Masayoshi
2014-01-01
Explicit semantic analysis (ESA) utilizes an immense Wikipedia index matrix in its interpreter part. This part of the analysis multiplies a large matrix by a term vector to produce a high-dimensional concept vector. A similarity measurement between two texts is performed between two concept vectors with numerous dimensions. The cost is expensive in both interpretation and similarity measurement steps. This paper proposes an economic scheme of ESA, named econo-ESA. We investigate two aspects of this proposal: dimensional reduction and experiments with various data. We use eight recycling test collections in semantic text similarity. The experimental results show that both the dimensional reduction and test collection characteristics can influence the results. They also show that an appropriate concept reduction of econo-ESA can decrease the cost with minor differences in the results from the original ESA.
Lai, Rui; Yang, Yin-tang; Zhou, Duan; Li, Yue-jin
2008-08-20
An improved scene-adaptive nonuniformity correction (NUC) algorithm for infrared focal plane arrays (IRFPAs) is proposed. This method simultaneously estimates the infrared detectors' parameters and eliminates the nonuniformity causing fixed pattern noise (FPN) by using a neural network (NN) approach. In the learning process of neuron parameter estimation, the traditional LMS algorithm is substituted with the newly presented variable step size (VSS) normalized least-mean square (NLMS) based adaptive filtering algorithm, which yields faster convergence, smaller misadjustment, and lower computational cost. In addition, a new NN structure is designed to estimate the desired target value, which promotes the calibration precision considerably. The proposed NUC method reaches high correction performance, which is validated by the experimental results quantitatively tested with a simulative testing sequence and a real infrared image sequence.
NASA Technical Reports Server (NTRS)
Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira
2008-01-01
This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.
Cascade heterogeneous face sketch-photo synthesis via dual-scale Markov Network
NASA Astrophysics Data System (ADS)
Yao, Saisai; Chen, Zhenxue; Jia, Yunyi; Liu, Chengyun
2018-03-01
Heterogeneous face sketch-photo synthesis is an important and challenging task in computer vision, which has widely applied in law enforcement and digital entertainment. According to the different synthesis results based on different scales, this paper proposes a cascade sketch-photo synthesis method via dual-scale Markov Network. Firstly, Markov Network with larger scale is used to synthesise the initial sketches and the local vertical and horizontal neighbour search (LVHNS) method is used to search for the neighbour patches of test patches in training set. Then, the initial sketches and test photos are jointly entered into smaller scale Markov Network. Finally, the fine sketches are obtained after cascade synthesis process. Extensive experimental results on various databases demonstrate the superiority of the proposed method compared with several state-of-the-art methods.
Stringent and efficient assessment of boson-sampling devices.
Tichy, Malte C; Mayer, Klaus; Buchleitner, Andreas; Mølmer, Klaus
2014-07-11
Boson sampling holds the potential to experimentally falsify the extended Church-Turing thesis. The computational hardness of boson sampling, however, complicates the certification that an experimental device yields correct results in the regime in which it outmatches classical computers. To certify a boson sampler, one needs to verify quantum predictions and rule out models that yield these predictions without true many-boson interference. We show that a semiclassical model for many-boson propagation reproduces coarse-grained observables that are proposed as witnesses of boson sampling. A test based on Fourier matrices is demonstrated to falsify physically plausible alternatives to coherent many-boson propagation.
Nuclear Reactions in Micro/Nano-Scale Metal Particles
NASA Astrophysics Data System (ADS)
Kim, Y. E.
2013-03-01
Low-energy nuclear reactions in micro/nano-scale metal particles are described based on the theory of Bose-Einstein condensation nuclear fusion (BECNF). The BECNF theory is based on a single basic assumption capable of explaining the observed LENR phenomena; deuterons in metals undergo Bose-Einstein condensation. The BECNF theory is also a quantitative predictive physical theory. Experimental tests of the basic assumption and theoretical predictions are proposed. Potential application to energy generation by ignition at low temperatures is described. Generalized theory of BECNF is used to carry out theoretical analyses of recently reported experimental results for hydrogen-nickel system.
Artifact removal from EEG data with empirical mode decomposition
NASA Astrophysics Data System (ADS)
Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.
2017-03-01
In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.
Peña, Estefania; Calvo, B; Martínez, M A; Martins, P; Mascarenhas, T; Jorge, R M N; Ferreira, A; Doblaré, M
2010-02-01
In this paper, the viscoelastic mechanical properties of vaginal tissue are investigated. Using previous results of the authors on the mechanical properties of biological soft tissues and newly experimental data from uniaxial tension tests, a new model for the viscoelastic mechanical properties of the human vaginal tissue is proposed. The structural model seems to be sufficiently accurate to guarantee its application to prediction of reliable stress distributions, and is suitable for finite element computations. The obtained results may be helpful in the design of surgical procedures with autologous tissue or prostheses.
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
A new approach to the calibration of the force fields is proposed, in which the force-field parameters are obtained by maximum-likelihood fitting of the calculated conformational ensembles to the experimental ensembles of training system(s). The maximum-likelihood function is composed of logarithms of the Boltzmann probabilities of the experimental conformations, calculated with the current energy function. Because the theoretical distribution is given in the form of the simulated conformations only, the contributions from all of the simulated conformations, with Gaussian weights in the distances from a given experimental conformation, are added to give the contribution to the target function from this conformation. In contrast to earlier methods for force-field calibration, the approach does not suffer from the arbitrariness of dividing the decoy set into native-like and non-native structures; however, if such a division is made instead of using Gaussian weights, application of the maximum-likelihood method results in the well-known energy-gap maximization. The computational procedure consists of cycles of decoy generation and maximum-likelihood-function optimization, which are iterated until convergence is reached. The method was tested with Gaussian distributions and then applied to the physics-based coarse-grained UNRES force field for proteins. The NMR structures of the tryptophan cage, a small α-helical protein, determined at three temperatures (T = 280, 305, and 313 K) by Hałabis et al. ( J. Phys. Chem. B 2012 , 116 , 6898 - 6907 ), were used. Multiplexed replica-exchange molecular dynamics was used to generate the decoys. The iterative procedure exhibited steady convergence. Three variants of optimization were tried: optimization of the energy-term weights alone and use of the experimental ensemble of the folded protein only at T = 280 K (run 1); optimization of the energy-term weights and use of experimental ensembles at all three temperatures (run 2); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions.