A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems
NASA Astrophysics Data System (ADS)
Abtahi, Amir-Reza; Bijari, Afsane
2017-03-01
In this paper, a hybrid meta-heuristic algorithm, based on imperialistic competition algorithm (ICA), harmony search (HS), and simulated annealing (SA) is presented. The body of the proposed hybrid algorithm is based on ICA. The proposed hybrid algorithm inherits the advantages of the process of harmony creation in HS algorithm to improve the exploitation phase of the ICA algorithm. In addition, the proposed hybrid algorithm uses SA to make a balance between exploration and exploitation phases. The proposed hybrid algorithm is compared with several meta-heuristic methods, including genetic algorithm (GA), HS, and ICA on several well-known benchmark instances. The comprehensive experiments and statistical analysis on standard benchmark functions certify the superiority of the proposed method over the other algorithms. The efficacy of the proposed hybrid algorithm is promising and can be used in several real-life engineering and management problems.
Masciotra, Silvina; Smith, Amanda J; Youngpairoj, Ae S; Sprinkle, Patrick; Miles, Isa; Sionean, Catlainn; Paz-Bailey, Gabriela; Johnson, Jeffrey A; Owen, S Michele
2013-12-01
Until recently most testing algorithms in the United States (US) utilized Western blot (WB) as the supplemental test. CDC has proposed an algorithm for HIV diagnosis which includes an initial screen with a Combo Antigen/Antibody 4th generation-immunoassay (IA), followed by an HIV-1/2 discriminatory IA of initially reactive-IA specimens. Discordant results in the proposed algorithm are resolved by nucleic acid-amplification testing (NAAT). Evaluate the results obtained with the CDC proposed laboratory-based algorithm using specimens from men who have sex with men (MSM) obtained in five metropolitan statistical areas (MSAs). Specimens from 992 MSM from five MSAs participating in the CDC's National HIV Behavioral Surveillance System in 2011 were tested at local facilities and CDC. The five MSAs utilized algorithms of various screening assays and specimen types, and WB as the supplemental test. At the CDC, serum/plasma specimens were screened with 4th generation-IA and the Multispot HIV-1/HIV-2 discriminatory assay was used as the supplemental test. NAAT was used to resolve discordant results and to further identify acute HIV infections from all screened-non-reactive missed by the proposed algorithm. Performance of the proposed algorithm was compared to site-specific WB-based algorithms. The proposed algorithm detected 254 infections. The WB-based algorithms detected 19 fewer infections; 4 by oral fluid (OF) rapid testing and 15 by WB supplemental testing (12 OF and 3 blood). One acute infection was identified by NAAT from all screened-non-reactive specimens. The proposed algorithm identified more infections than the WB-based algorithms in a high-risk MSM population. OF testing was associated with most of the discordant results between algorithms. HIV testing with the proposed algorithm can increase diagnosis of infected individuals, including early infections. Published by Elsevier B.V.
Li, Jun-qing; Pan, Quan-ke; Mao, Kun
2014-01-01
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414
Development of a Tool for an Efficient Calibration of CORSIM Models
DOT National Transportation Integrated Search
2014-08-01
This project proposes a Memetic Algorithm (MA) for the calibration of microscopic traffic flow simulation models. The proposed MA includes a combination of genetic and simulated annealing algorithms. The genetic algorithm performs the exploration of ...
New Dandelion Algorithm Optimizes Extreme Learning Machine for Biomedical Classification Problems
Li, Xiguang; Zhao, Liang; Gong, Changqing; Liu, Xiaojing
2017-01-01
Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA), is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into two subpopulations, and different subpopulations will undergo different sowing behaviors. Moreover, another sowing method is designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced fireworks algorithm. Simulations show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be applied to optimize extreme learning machine (ELM) for biomedical classification problems, and the effect is considerable. At last, we use different fusion methods to form different fusion classifiers, and the fusion classifiers can achieve higher accuracy and better stability to some extent. PMID:29085425
Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon
2015-01-01
This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956
An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones.
Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han
2015-12-11
Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel "quasi-dynamic" Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the "process-level" fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move.
Community detection in complex networks by using membrane algorithm
NASA Astrophysics Data System (ADS)
Liu, Chuang; Fan, Linan; Liu, Zhou; Dai, Xiang; Xu, Jiamei; Chang, Baoren
Community detection in complex networks is a key problem of network analysis. In this paper, a new membrane algorithm is proposed to solve the community detection in complex networks. The proposed algorithm is based on membrane systems, which consists of objects, reaction rules, and a membrane structure. Each object represents a candidate partition of a complex network, and the quality of objects is evaluated according to network modularity. The reaction rules include evolutionary rules and communication rules. Evolutionary rules are responsible for improving the quality of objects, which employ the differential evolutionary algorithm to evolve objects. Communication rules implement the information exchanged among membranes. Finally, the proposed algorithm is evaluated on synthetic, real-world networks with real partitions known and the large-scaled networks with real partitions unknown. The experimental results indicate the superior performance of the proposed algorithm in comparison with other experimental algorithms.
Multi-frame knowledge based text enhancement for mobile phone captured videos
NASA Astrophysics Data System (ADS)
Ozarslan, Suleyman; Eren, P. Erhan
2014-02-01
In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.
An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones
Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han
2015-01-01
Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel “quasi-dynamic” Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the “process-level” fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move. PMID:26690447
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
Filtered-x generalized mixed norm (FXGMN) algorithm for active noise control
NASA Astrophysics Data System (ADS)
Song, Pucha; Zhao, Haiquan
2018-07-01
The standard adaptive filtering algorithm with a single error norm exhibits slow convergence rate and poor noise reduction performance under specific environments. To overcome this drawback, a filtered-x generalized mixed norm (FXGMN) algorithm for active noise control (ANC) system is proposed. The FXGMN algorithm is developed by using a convex mixture of lp and lq norms as the cost function that it can be viewed as a generalized version of the most existing adaptive filtering algorithms, and it will reduce to a specific algorithm by choosing certain parameters. Especially, it can be used to solve the ANC under Gaussian and non-Gaussian noise environments (including impulsive noise with symmetric α -stable (SαS) distribution). To further enhance the algorithm performance, namely convergence speed and noise reduction performance, a convex combination of the FXGMN algorithm (C-FXGMN) is presented. Moreover, the computational complexity of the proposed algorithms is analyzed, and a stability condition for the proposed algorithms is provided. Simulation results show that the proposed FXGMN and C-FXGMN algorithms can achieve better convergence speed and higher noise reduction as compared to other existing algorithms under various noise input conditions, and the C-FXGMN algorithm outperforms the FXGMN.
A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system
NASA Astrophysics Data System (ADS)
Wang, Zhen; Huang, Xia; Li, Yu-Xia; Song, Xiao-Na
2013-01-01
We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
A robust firearm identification algorithm of forensic ballistics specimens
NASA Astrophysics Data System (ADS)
Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.
2017-09-01
There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.
An improved conscan algorithm based on a Kalman filter
NASA Technical Reports Server (NTRS)
Eldred, D. B.
1994-01-01
Conscan is commonly used by DSN antennas to allow adaptive tracking of a target whose position is not precisely known. This article describes an algorithm that is based on a Kalman filter and is proposed to replace the existing fast Fourier transform based (FFT-based) algorithm for conscan. Advantages of this algorithm include better pointing accuracy, continuous update information, and accommodation of missing data. Additionally, a strategy for adaptive selection of the conscan radius is proposed. The performance of the algorithm is illustrated through computer simulations and compared to the FFT algorithm. The results show that the Kalman filter algorithm is consistently superior.
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
Lehe, Remi; Kirchen, Manuel; Andriyash, Igor A.; ...
2016-02-17
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.
A proximity algorithm accelerated by Gauss-Seidel iterations for L1/TV denoising models
NASA Astrophysics Data System (ADS)
Li, Qia; Micchelli, Charles A.; Shen, Lixin; Xu, Yuesheng
2012-09-01
Our goal in this paper is to improve the computational performance of the proximity algorithms for the L1/TV denoising model. This leads us to a new characterization of all solutions to the L1/TV model via fixed-point equations expressed in terms of the proximity operators. Based upon this observation we develop an algorithm for solving the model and establish its convergence. Furthermore, we demonstrate that the proposed algorithm can be accelerated through the use of the componentwise Gauss-Seidel iteration so that the CPU time consumed is significantly reduced. Numerical experiments using the proposed algorithm for impulsive noise removal are included, with a comparison to three recently developed algorithms. The numerical results show that while the proposed algorithm enjoys a high quality of the restored images, as the other three known algorithms do, it performs significantly better in terms of computational efficiency measured in the CPU time consumed.
Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A
2015-06-01
Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Text Extraction from Scene Images by Character Appearance and Structure Modeling
Yi, Chucai; Tian, Yingli
2012-01-01
In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene text classification and detection are still open research topics. Our proposed algorithm is able to model both character appearance and structure to generate representative and discriminative text descriptors. The contributions of this paper include three aspects: 1) a new character appearance model by a structure correlation algorithm which extracts discriminative appearance features from detected interest points of character samples; 2) a new text descriptor based on structons and correlatons, which model character structure by structure differences among character samples and structure component co-occurrence; and 3) a new text region localization method by combining color decomposition, character contour refinement, and string line alignment to localize character candidates and refine detected text regions. We perform three groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, text detection, and character identification. The evaluation results on benchmark datasets demonstrate that our algorithm achieves the state-of-the-art performance on scene text classification and detection, and significantly outperforms the existing algorithms for character identification. PMID:23316111
Cooperative Optimal Coordination for Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di; Ren, Wei
In this paper, we consider the optimal coordination problem for distributed energy resources (DERs) including distributed generators and energy storage devices. We propose an algorithm based on the push-sum and gradient method to optimally coordinate storage devices and distributed generators in a distributed manner. In the proposed algorithm, each DER only maintains a set of variables and updates them through information exchange with a few neighbors over a time-varying directed communication network. We show that the proposed distributed algorithm solves the optimal DER coordination problem if the time-varying directed communication network is uniformly jointly strongly connected, which is a mildmore » condition on the connectivity of communication topologies. The proposed distributed algorithm is illustrated and validated by numerical simulations.« less
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
Basic firefly algorithm for document clustering
NASA Astrophysics Data System (ADS)
Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza
2015-12-01
The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).
Distributed Coordination of Energy Storage with Distributed Generators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di; Stoorvogel, Antonie A.
2016-07-18
With a growing emphasis on energy efficiency and system flexibility, a great effort has been made recently in developing distributed energy resources (DER), including distributed generators and energy storage systems. This paper first formulates an optimal coordination problem considering constraints at both system and device levels, including power balance constraint, generator output limits, storage energy and power capacity and charging/discharging efficiencies. An algorithm is then proposed to dynamically and automatically coordinate DERs in a distributed manner. With the proposed algorithm, the agent at each DER only maintains a local incremental cost and updates it through information exchange with a fewmore » neighbors, without relying on any central decision maker. Simulation results are used to illustrate and validate the proposed algorithm.« less
An algorithm of improving speech emotional perception for hearing aid
NASA Astrophysics Data System (ADS)
Xi, Ji; Liang, Ruiyu; Fei, Xianju
2017-07-01
In this paper, a speech emotion recognition (SER) algorithm was proposed to improve the emotional perception of hearing-impaired people. The algorithm utilizes multiple kernel technology to overcome the drawback of SVM: slow training speed. Firstly, in order to improve the adaptive performance of Gaussian Radial Basis Function (RBF), the parameter determining the nonlinear mapping was optimized on the basis of Kernel target alignment. Then, the obtained Kernel Function was used as the basis kernel of Multiple Kernel Learning (MKL) with slack variable that could solve the over-fitting problem. However, the slack variable also brings the error into the result. Therefore, a soft-margin MKL was proposed to balance the margin against the error. Moreover, the relatively iterative algorithm was used to solve the combination coefficients and hyper-plane equations. Experimental results show that the proposed algorithm can acquire an accuracy of 90% for five kinds of emotions including happiness, sadness, anger, fear and neutral. Compared with KPCA+CCA and PIM-FSVM, the proposed algorithm has the highest accuracy.
Long-term surface EMG monitoring using K-means clustering and compressive sensing
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza; Krishnan, Sridhar
2015-05-01
In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.
NASA Astrophysics Data System (ADS)
Park, Jun Kwon; Kang, Kwan Hyoung
2012-04-01
Contact angle (CA) hysteresis is important in many natural and engineering wetting processes, but predicting it numerically is difficult. We developed an algorithm that considers CA hysteresis when analyzing the motion of the contact line (CL). This algorithm employs feedback control of CA which decelerates CL speed to make the CL stationary in the hysteretic range of CA, and one control coefficient should be heuristically determined depending on characteristic time of the simulated system. The algorithm requires embedding only a simple additional routine with little modification of a code which considers the dynamic CA. The method is non-iterative and explicit, and also has less computational load than other algorithms. For a drop hanging on a wire, the proposed algorithm accurately predicts the theoretical equilibrium CA. For the drop impacting on a dry surface, the results of the proposed algorithm agree well with experimental results including the intermittent occurrence of the pinning of CL. The proposed algorithm is as accurate as other algorithms, but faster.
New knowledge-based genetic algorithm for excavator boom structural optimization
NASA Astrophysics Data System (ADS)
Hua, Haiyan; Lin, Shuwen
2014-03-01
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the configurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, are taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem.
Seismic noise attenuation using an online subspace tracking algorithm
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang
2018-02-01
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.
A Novel Fast and Secure Approach for Voice Encryption Based on DNA Computing
NASA Astrophysics Data System (ADS)
Kakaei Kate, Hamidreza; Razmara, Jafar; Isazadeh, Ayaz
2018-06-01
Today, in the world of information communication, voice information has a particular importance. One way to preserve voice data from attacks is voice encryption. The encryption algorithms use various techniques such as hashing, chaotic, mixing, and many others. In this paper, an algorithm is proposed for voice encryption based on three different schemes to increase flexibility and strength of the algorithm. The proposed algorithm uses an innovative encoding scheme, the DNA encryption technique and a permutation function to provide a secure and fast solution for voice encryption. The algorithm is evaluated based on various measures including signal to noise ratio, peak signal to noise ratio, correlation coefficient, signal similarity and signal frequency content. The results demonstrate applicability of the proposed method in secure and fast encryption of voice files
Structural model constructing for optical handwritten character recognition
NASA Astrophysics Data System (ADS)
Khaustov, P. A.; Spitsyn, V. G.; Maksimova, E. I.
2017-02-01
The article is devoted to the development of the algorithms for optical handwritten character recognition based on the structural models constructing. The main advantage of these algorithms is the low requirement regarding the number of reference images. The one-pass approach to a thinning of the binary character representation has been proposed. This approach is based on the joint use of Zhang-Suen and Wu-Tsai algorithms. The effectiveness of the proposed approach is confirmed by the results of the experiments. The article includes the detailed description of the structural model constructing algorithm’s steps. The proposed algorithm has been implemented in character processing application and has been approved on MNIST handwriting characters database. Algorithms that could be used in case of limited reference images number were used for the comparison.
Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm.
Hardie, Russell C; Baxley, Frank; Brys, Brandon; Hytla, Patrick
2009-08-17
In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that the proposed method significantly reduces ghosting artifacts, but has a slightly longer convergence time. (c) 2009 Optical Society of America
Zhang, Yang; Wang, Yuan; He, Wenbo; Yang, Bin
2014-01-01
A novel Particle Tracking Velocimetry (PTV) algorithm based on Voronoi Diagram (VD) is proposed and briefed as VD-PTV. The robustness of VD-PTV for pulsatile flow is verified through a test that includes a widely used artificial flow and a classic reference algorithm. The proposed algorithm is then applied to visualize the flow in an artificial abdominal aortic aneurysm included in a pulsatile circulation system that simulates the aortic blood flow in human body. Results show that, large particles tend to gather at the upstream boundary because of the backflow eddies that follow the pulsation. This qualitative description, together with VD-PTV, has laid a foundation for future works that demand high-level quantification.
Apriori Versions Based on MapReduce for Mining Frequent Patterns on Big Data.
Luna, Jose Maria; Padillo, Francisco; Pechenizkiy, Mykola; Ventura, Sebastian
2017-09-27
Pattern mining is one of the most important tasks to extract meaningful and useful information from raw data. This task aims to extract item-sets that represent any type of homogeneity and regularity in data. Although many efficient algorithms have been developed in this regard, the growing interest in data has caused the performance of existing pattern mining techniques to be dropped. The goal of this paper is to propose new efficient pattern mining algorithms to work in big data. To this aim, a series of algorithms based on the MapReduce framework and the Hadoop open-source implementation have been proposed. The proposed algorithms can be divided into three main groups. First, two algorithms [Apriori MapReduce (AprioriMR) and iterative AprioriMR] with no pruning strategy are proposed, which extract any existing item-set in data. Second, two algorithms (space pruning AprioriMR and top AprioriMR) that prune the search space by means of the well-known anti-monotone property are proposed. Finally, a last algorithm (maximal AprioriMR) is also proposed for mining condensed representations of frequent patterns. To test the performance of the proposed algorithms, a varied collection of big data datasets have been considered, comprising up to 3 · 10#x00B9;⁸ transactions and more than 5 million of distinct single-items. The experimental stage includes comparisons against highly efficient and well-known pattern mining algorithms. Results reveal the interest of applying MapReduce versions when complex problems are considered, and also the unsuitability of this paradigm when dealing with small data.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Abd-Elhameed, W. M.; Bassuony, M. A.
2013-03-01
This paper is concerned with spectral Galerkin algorithms for solving high even-order two point boundary value problems in one dimension subject to homogeneous and nonhomogeneous boundary conditions. The proposed algorithms are extended to solve two-dimensional high even-order differential equations. The key to the efficiency of these algorithms is to construct compact combinations of Chebyshev polynomials of the third and fourth kinds as basis functions. The algorithms lead to linear systems with specially structured matrices that can be efficiently inverted. Numerical examples are included to demonstrate the validity and applicability of the proposed algorithms, and some comparisons with some other methods are made.
An enhanced fast scanning algorithm for image segmentation
NASA Astrophysics Data System (ADS)
Ismael, Ahmed Naser; Yusof, Yuhanis binti
2015-12-01
Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.
Implementation of a parallel protein structure alignment service on cloud.
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.
Implementation of a Parallel Protein Structure Alignment Service on Cloud
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842
NASA Astrophysics Data System (ADS)
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2017-02-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
Image restoration by minimizing zero norm of wavelet frame coefficients
NASA Astrophysics Data System (ADS)
Bao, Chenglong; Dong, Bin; Hou, Likun; Shen, Zuowei; Zhang, Xiaoqun; Zhang, Xue
2016-11-01
In this paper, we propose two algorithms, namely the extrapolated proximal iterative hard thresholding (EPIHT) algorithm and the EPIHT algorithm with line-search, for solving the {{\\ell }}0-norm regularized wavelet frame balanced approach for image restoration. Under the theoretical framework of Kurdyka-Łojasiewicz property, we show that the sequences generated by the two algorithms converge to a local minimizer with linear convergence rate. Moreover, extensive numerical experiments on sparse signal reconstruction and wavelet frame based image restoration problems including CT reconstruction, image deblur, demonstrate the improvement of {{\\ell }}0-norm based regularization models over some prevailing ones, as well as the computational efficiency of the proposed algorithms.
Jiang, Ailian; Zheng, Lihong
2018-03-29
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
2018-01-01
Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs). This paper investigates the existing ant colony optimization (ACO)-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime. PMID:29596336
NASA Astrophysics Data System (ADS)
Chu, Xiaowen; Li, Bo; Chlamtac, Imrich
2002-07-01
Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength conversion under the same RWA algorithm.
Information Clustering Based on Fuzzy Multisets.
ERIC Educational Resources Information Center
Miyamoto, Sadaaki
2003-01-01
Proposes a fuzzy multiset model for information clustering with application to information retrieval on the World Wide Web. Highlights include search engines; term clustering; document clustering; algorithms for calculating cluster centers; theoretical properties concerning clustering algorithms; and examples to show how the algorithms work.…
Theory and algorithms for image reconstruction on chords and within regions of interest
NASA Astrophysics Data System (ADS)
Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.
2005-11-01
We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.
A linear recurrent kernel online learning algorithm with sparse updates.
Fan, Haijin; Song, Qing
2014-02-01
In this paper, we propose a recurrent kernel algorithm with selectively sparse updates for online learning. The algorithm introduces a linear recurrent term in the estimation of the current output. This makes the past information reusable for updating of the algorithm in the form of a recurrent gradient term. To ensure that the reuse of this recurrent gradient indeed accelerates the convergence speed, a novel hybrid recurrent training is proposed to switch on or off learning the recurrent information according to the magnitude of the current training error. Furthermore, the algorithm includes a data-dependent adaptive learning rate which can provide guaranteed system weight convergence at each training iteration. The learning rate is set as zero when the training violates the derived convergence conditions, which makes the algorithm updating process sparse. Theoretical analyses of the weight convergence are presented and experimental results show the good performance of the proposed algorithm in terms of convergence speed and estimation accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira
Authors proposed the estimation method combining k-means algorithm and NN for evaluating massage. However, this estimation method has a problem that discrimination ratio is decreased to new user. There are two causes of this problem. One is that generalization of NN is bad. Another one is that clustering result by k-means algorithm has not high correlation coefficient in a class. Then, this research proposes k-means algorithm according to correlation coefficient and incremental learning for NN. The proposed k-means algorithm is method included evaluation function based on correlation coefficient. Incremental learning is method that NN is learned by new data and initialized weight based on the existing data. The effect of proposed methods are verified by estimation result using EEG data when testee is given massage.
An Automatic Registration Algorithm for 3D Maxillofacial Model
NASA Astrophysics Data System (ADS)
Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng
2016-09-01
3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.
A Novel Segment-Based Approach for Improving Classification Performance of Transport Mode Detection.
Guvensan, M Amac; Dusun, Burak; Can, Baris; Turkmen, H Irem
2017-12-30
Transportation planning and solutions have an enormous impact on city life. To minimize the transport duration, urban planners should understand and elaborate the mobility of a city. Thus, researchers look toward monitoring people's daily activities including transportation types and duration by taking advantage of individual's smartphones. This paper introduces a novel segment-based transport mode detection architecture in order to improve the results of traditional classification algorithms in the literature. The proposed post-processing algorithm, namely the Healing algorithm, aims to correct the misclassification results of machine learning-based solutions. Our real-life test results show that the Healing algorithm could achieve up to 40% improvement of the classification results. As a result, the implemented mobile application could predict eight classes including stationary, walking, car, bus, tram, train, metro and ferry with a success rate of 95% thanks to the proposed multi-tier architecture and Healing algorithm.
Unsupervised Learning of Overlapping Image Components Using Divisive Input Modulation
Spratling, M. W.; De Meyer, K.; Kompass, R.
2009-01-01
This paper demonstrates that nonnegative matrix factorisation is mathematically related to a class of neural networks that employ negative feedback as a mechanism of competition. This observation inspires a novel learning algorithm which we call Divisive Input Modulation (DIM). The proposed algorithm provides a mathematically simple and computationally efficient method for the unsupervised learning of image components, even in conditions where these elementary features overlap considerably. To test the proposed algorithm, a novel artificial task is introduced which is similar to the frequently-used bars problem but employs squares rather than bars to increase the degree of overlap between components. Using this task, we investigate how the proposed method performs on the parsing of artificial images composed of overlapping features, given the correct representation of the individual components; and secondly, we investigate how well it can learn the elementary components from artificial training images. We compare the performance of the proposed algorithm with its predecessors including variations on these algorithms that have produced state-of-the-art performance on the bars problem. The proposed algorithm is more successful than its predecessors in dealing with overlap and occlusion in the artificial task that has been used to assess performance. PMID:19424442
Guided filtering for solar image/video processing
NASA Astrophysics Data System (ADS)
Xu, Long; Yan, Yihua; Cheng, Jun
2017-06-01
A new image enhancement algorithm employing guided filtering is proposed in this work for the enhancement of solar images and videos so that users can easily figure out important fine structures embedded in the recorded images/movies for solar observation. The proposed algorithm can efficiently remove image noises, including Gaussian and impulse noises. Meanwhile, it can further highlight fibrous structures on/beyond the solar disk. These fibrous structures can clearly demonstrate the progress of solar flare, prominence coronal mass emission, magnetic field, and so on. The experimental results prove that the proposed algorithm gives significant enhancement of visual quality of solar images beyond original input and several classical image enhancement algorithms, thus facilitating easier determination of interesting solar burst activities from recorded images/movies.
Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm
Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang
2012-01-01
Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565
Yu, Xiaobing; Yu, Xianrui; Lu, Yiqun
2018-01-01
The evaluation of a meteorological disaster can be regarded as a multiple-criteria decision making problem because it involves many indexes. Firstly, a comprehensive indexing system for an agricultural meteorological disaster is proposed, which includes the disaster rate, the inundated rate, and the complete loss rate. Following this, the relative weights of the three criteria are acquired using a novel proposed evolutionary algorithm. The proposed algorithm consists of a differential evolution algorithm and an evolution strategy. Finally, a novel evaluation model, based on the proposed algorithm and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), is presented to estimate the agricultural meteorological disaster of 2008 in China. The geographic information system (GIS) technique is employed to depict the disaster. The experimental results demonstrated that the agricultural meteorological disaster of 2008 was very serious, especially in Hunan and Hubei provinces. Some useful suggestions are provided to relieve agriculture meteorological disasters. PMID:29597243
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-10-09
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-01-01
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200
Graph Based Models for Unsupervised High Dimensional Data Clustering and Network Analysis
2015-01-01
ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...algorithms we proposed improve the time e ciency signi cantly for large scale datasets. In the last chapter, we also propose an incremental reseeding...plume detection in hyper-spectral video data. These graph based clustering algorithms we proposed improve the time efficiency significantly for large
Lifetime Prediction of IGBT in a STATCOM Using Modified-Graphical Rainflow Counting Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopi Reddy, Lakshmi Reddy; Tolbert, Leon M; Ozpineci, Burak
Rainflow algorithms are one of the best counting methods used in fatigue and failure analysis [17]. There have been many approaches to the rainflow algorithm, some proposing modifications. Graphical Rainflow Method (GRM) was proposed recently with a claim of faster execution times [10]. However, the steps of the graphical method of rainflow algorithm, when implemented, do not generate the same output as the four-point or ASTM standard algorithm. A modified graphical method is presented and discussed in this paper to overcome the shortcomings of graphical rainflow algorithm. A fast rainflow algorithm based on four-point algorithm but considering point comparison thanmore » range comparison is also presented. A comparison between the performances of the common rainflow algorithms [6-10], including the proposed methods, in terms of execution time, memory used, and efficiency, complexity, and load sequences is presented. Finally, the rainflow algorithm is applied to temperature data of an IGBT in assessing the lifetime of a STATCOM operating for power factor correction of the load. From 5-minute data load profiles available, the lifetime is estimated to be at 3.4 years.« less
An Innovative Thinking-Based Intelligent Information Fusion Algorithm
Hu, Liang; Liu, Gang; Zhou, Jin
2013-01-01
This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information. PMID:23956699
An innovative thinking-based intelligent information fusion algorithm.
Lu, Huimin; Hu, Liang; Liu, Gang; Zhou, Jin
2013-01-01
This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.
Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian
2017-01-05
Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.
A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance
NASA Astrophysics Data System (ADS)
Nie, Shida; Zhuang, Ye; Liu, Weiping; Chen, Fan
2017-08-01
Comprehensive performance of the vehicle, including ride qualities and road-holding, is essentially of great value in practice. Many up-to-date semi-active control algorithms improve vehicle dynamics performance effectively. However, it is hard to improve comprehensive performance for the conflict between ride qualities and road-holding around the second-order resonance. Hence, a new control algorithm is proposed to achieve a good trade-off between ride qualities and road-holding. In this paper, the properties of the invariant points are analysed, which gives an insight into the performance conflicting around the second-order resonance. Based on it, a new control algorithm is proposed. The algorithm employs a novel frequency selector to balance suspension ride and handling performance by adopting a medium damping around the second-order resonance. The results of this study show that the proposed control algorithm could improve the performance of ride qualities and suspension working space up to 18.3% and 8.2%, respectively, with little loss of road-holding compared to the passive suspension. Consequently, the comprehensive performance can be improved by 6.6%. Hence, the proposed algorithm is of great potential to be implemented in practice.
Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou
2015-01-01
Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.
High-order hydrodynamic algorithms for exascale computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Nathaniel Ray
Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broadmore » range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.« less
Water flow algorithm decision support tool for travelling salesman problem
NASA Astrophysics Data System (ADS)
Kamarudin, Anis Aklima; Othman, Zulaiha Ali; Sarim, Hafiz Mohd
2016-08-01
This paper discuss about the role of Decision Support Tool in Travelling Salesman Problem (TSP) for helping the researchers who doing research in same area will get the better result from the proposed algorithm. A study has been conducted and Rapid Application Development (RAD) model has been use as a methodology which includes requirement planning, user design, construction and cutover. Water Flow Algorithm (WFA) with initialization technique improvement is used as the proposed algorithm in this study for evaluating effectiveness against TSP cases. For DST evaluation will go through usability testing conducted on system use, quality of information, quality of interface and overall satisfaction. Evaluation is needed for determine whether this tool can assists user in making a decision to solve TSP problems with the proposed algorithm or not. Some statistical result shown the ability of this tool in term of helping researchers to conduct the experiments on the WFA with improvements TSP initialization.
Novel probabilistic neuroclassifier
NASA Astrophysics Data System (ADS)
Hong, Jiang; Serpen, Gursel
2003-09-01
A novel probabilistic potential function neural network classifier algorithm to deal with classes which are multi-modally distributed and formed from sets of disjoint pattern clusters is proposed in this paper. The proposed classifier has a number of desirable properties which distinguish it from other neural network classifiers. A complete description of the algorithm in terms of its architecture and the pseudocode is presented. Simulation analysis of the newly proposed neuro-classifier algorithm on a set of benchmark problems is presented. Benchmark problems tested include IRIS, Sonar, Vowel Recognition, Two-Spiral, Wisconsin Breast Cancer, Cleveland Heart Disease and Thyroid Gland Disease. Simulation results indicate that the proposed neuro-classifier performs consistently better for a subset of problems for which other neural classifiers perform relatively poorly.
Choi, Jaewon; Jung, Hyung-Sup; Yun, Sang-Ho
2015-03-09
As the aerospace industry grows, images obtained from Earth observation satellites have been successfully used in various fields. Specifically, the demand for a high-resolution (HR) optical images is gradually increasing, and hence the generation of a high-quality mosaic image is being magnified as an interesting issue. In this paper, we have proposed an efficient mosaic algorithm for HR optical images that are significantly different due to seasonal change. The algorithm includes main steps such as: (1) seamline extraction from gradient magnitude and seam images; (2) histogram matching; and (3) image feathering. Eleven Kompsat-2 images characterized by seasonal variations are used for the performance validation of the proposed method. The results of the performance test show that the proposed method effectively mosaics Kompsat-2 adjacent images including severe seasonal changes. Moreover, the results reveal that the proposed method is applicable to HR optic images such as GeoEye, IKONOS, QuickBird, RapidEye, SPOT, WorldView, etc.
Correlation-coefficient-based fast template matching through partial elimination.
Mahmood, Arif; Khan, Sohaib
2012-04-01
Partial computation elimination techniques are often used for fast template matching. At a particular search location, computations are prematurely terminated as soon as it is found that this location cannot compete with an already known best match location. Due to the nonmonotonic growth pattern of the correlation-based similarity measures, partial computation elimination techniques have been traditionally considered inapplicable to speed up these measures. In this paper, we show that partial elimination techniques may be applied to a correlation coefficient by using a monotonic formulation, and we propose basic-mode and extended-mode partial correlation elimination algorithms for fast template matching. The basic-mode algorithm is more efficient on small template sizes, whereas the extended mode is faster on medium and larger templates. We also propose a strategy to decide which algorithm to use for a given data set. To achieve a high speedup, elimination algorithms require an initial guess of the peak correlation value. We propose two initialization schemes including a coarse-to-fine scheme for larger templates and a two-stage technique for small- and medium-sized templates. Our proposed algorithms are exact, i.e., having exhaustive equivalent accuracy, and are compared with the existing fast techniques using real image data sets on a wide variety of template sizes. While the actual speedups are data dependent, in most cases, our proposed algorithms have been found to be significantly faster than the other algorithms.
An annealed chaotic maximum neural network for bipartite subgraph problem.
Wang, Jiahai; Tang, Zheng; Wang, Ronglong
2004-04-01
In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.
Efficient RNA structure comparison algorithms.
Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason
2017-12-01
Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.
A hybrid algorithm for speckle noise reduction of ultrasound images.
Singh, Karamjeet; Ranade, Sukhjeet Kaur; Singh, Chandan
2017-09-01
Medical images are contaminated by multiplicative speckle noise which significantly reduce the contrast of ultrasound images and creates a negative effect on various image interpretation tasks. In this paper, we proposed a hybrid denoising approach which collaborate the both local and nonlocal information in an efficient manner. The proposed hybrid algorithm consist of three stages in which at first stage the use of local statistics in the form of guided filter is used to reduce the effect of speckle noise initially. Then, an improved speckle reducing bilateral filter (SRBF) is developed to further reduce the speckle noise from the medical images. Finally, to reconstruct the diffused edges we have used the efficient post-processing technique which jointly considered the advantages of both bilateral and nonlocal mean (NLM) filter for the attenuation of speckle noise efficiently. The performance of proposed hybrid algorithm is evaluated on synthetic, simulated and real ultrasound images. The experiments conducted on various test images demonstrate that our proposed hybrid approach outperforms the various traditional speckle reduction approaches included recently proposed NLM and optimized Bayesian-based NLM. The results of various quantitative, qualitative measures and by visual inspection of denoise synthetic and real ultrasound images demonstrate that the proposed hybrid algorithm have strong denoising capability and able to preserve the fine image details such as edge of a lesion better than previously developed methods for speckle noise reduction. The denoising and edge preserving capability of hybrid algorithm is far better than existing traditional and recently proposed speckle reduction (SR) filters. The success of proposed algorithm would help in building the lay foundation for inventing the hybrid algorithms for denoising of ultrasound images. Copyright © 2017 Elsevier B.V. All rights reserved.
DNA algorithms of implementing biomolecular databases on a biological computer.
Chang, Weng-Long; Vasilakos, Athanasios V
2015-01-01
In this paper, DNA algorithms are proposed to perform eight operations of relational algebra (calculus), which include Cartesian product, union, set difference, selection, projection, intersection, join, and division, on biomolecular relational databases.
Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.
He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej
2011-12-01
Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.
Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios, E-mail: garab@math.uoc.gr; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003; Katsoulakis, Markos A., E-mail: markos@math.umass.edu
2014-03-28
In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that themore » new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.« less
A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.
Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe
2012-04-01
We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.
Chaotic particle swarm optimization with mutation for classification.
Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza
2015-01-01
In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.
Wang, Zhu; Shuangge, Ma; Wang, Ching-Yun
2017-01-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using an open-source R package mpath. PMID:26059498
Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo
2015-09-01
This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.
Minimalist ensemble algorithms for genome-wide protein localization prediction.
Lin, Jhih-Rong; Mondal, Ananda Mohan; Liu, Rong; Hu, Jianjun
2012-07-03
Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi.
Minimalist ensemble algorithms for genome-wide protein localization prediction
2012-01-01
Background Computational prediction of protein subcellular localization can greatly help to elucidate its functions. Despite the existence of dozens of protein localization prediction algorithms, the prediction accuracy and coverage are still low. Several ensemble algorithms have been proposed to improve the prediction performance, which usually include as many as 10 or more individual localization algorithms. However, their performance is still limited by the running complexity and redundancy among individual prediction algorithms. Results This paper proposed a novel method for rational design of minimalist ensemble algorithms for practical genome-wide protein subcellular localization prediction. The algorithm is based on combining a feature selection based filter and a logistic regression classifier. Using a novel concept of contribution scores, we analyzed issues of algorithm redundancy, consensus mistakes, and algorithm complementarity in designing ensemble algorithms. We applied the proposed minimalist logistic regression (LR) ensemble algorithm to two genome-wide datasets of Yeast and Human and compared its performance with current ensemble algorithms. Experimental results showed that the minimalist ensemble algorithm can achieve high prediction accuracy with only 1/3 to 1/2 of individual predictors of current ensemble algorithms, which greatly reduces computational complexity and running time. It was found that the high performance ensemble algorithms are usually composed of the predictors that together cover most of available features. Compared to the best individual predictor, our ensemble algorithm improved the prediction accuracy from AUC score of 0.558 to 0.707 for the Yeast dataset and from 0.628 to 0.646 for the Human dataset. Compared with popular weighted voting based ensemble algorithms, our classifier-based ensemble algorithms achieved much better performance without suffering from inclusion of too many individual predictors. Conclusions We proposed a method for rational design of minimalist ensemble algorithms using feature selection and classifiers. The proposed minimalist ensemble algorithm based on logistic regression can achieve equal or better prediction performance while using only half or one-third of individual predictors compared to other ensemble algorithms. The results also suggested that meta-predictors that take advantage of a variety of features by combining individual predictors tend to achieve the best performance. The LR ensemble server and related benchmark datasets are available at http://mleg.cse.sc.edu/LRensemble/cgi-bin/predict.cgi. PMID:22759391
On recursive least-squares filtering algorithms and implementations. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Hsieh, Shih-Fu
1990-01-01
In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application.
Online selective kernel-based temporal difference learning.
Chen, Xingguo; Gao, Yang; Wang, Ruili
2013-12-01
In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, John D.; Narayan, Akil; Zhou, Tao
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakeman, John D.; Narayan, Akil; Zhou, Tao
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
Jakeman, John D.; Narayan, Akil; Zhou, Tao
2017-06-22
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less
Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions.
Zhu, Lin; Chung, Fu-Lai; Wang, Shitong
2009-06-01
The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms, and it should not be forced to fix at the usual value m = 2. In view of its distinctive features in applications and its limitation in having m = 2 only, a recent advance of fuzzy clustering called fuzzy c-means clustering with improved fuzzy partitions (IFP-FCM) is extended in this paper, and a generalized algorithm called GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed, and furthermore, GIFP-FCM clustering is derived. Meanwhile, from the viewpoints of L(p) norm distance measure and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. Furthermore, the classical fuzzy c-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm. Several experimental results including its application to noisy image texture segmentation are presented to demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capabilities.
An Efficient Next Hop Selection Algorithm for Multi-Hop Body Area Networks
Ayatollahitafti, Vahid; Ngadi, Md Asri; Mohamad Sharif, Johan bin; Abdullahi, Mohammed
2016-01-01
Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol. PMID:26771586
NASA Astrophysics Data System (ADS)
Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Chen, Yong
2018-05-01
With the growing complexity of customer requirements and the increasing scale of manufacturing services, how to select and combine the single services to meet the complex demand of the customer has become a growing concern. This paper presents a new manufacturing service composition method to solve the multi-objective optimization problem based on quality of service (QoS). The proposed model not only presents different methods for calculating the transportation time and transportation cost under various structures but also solves the three-dimensional composition optimization problem, including service aggregation, service selection, and service scheduling simultaneously. Further, an improved Flower Pollination Algorithm (IFPA) is proposed to solve the three-dimensional composition optimization problem using a matrix-based representation scheme. The mutation operator and crossover operator of the Differential Evolution (DE) algorithm are also used to extend the basic Flower Pollination Algorithm (FPA) to improve its performance. Compared to Genetic Algorithm, DE, and basic FPA, the experimental results confirm that the proposed method demonstrates superior performance than other meta heuristic algorithms and can obtain better manufacturing service composition solutions.
NASA Astrophysics Data System (ADS)
Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying
2018-03-01
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.
Pugliese, Cara E; Kenworthy, Lauren; Bal, Vanessa Hus; Wallace, Gregory L; Yerys, Benjamin E; Maddox, Brenna B; White, Susan W; Popal, Haroon; Armour, Anna Chelsea; Miller, Judith; Herrington, John D; Schultz, Robert T; Martin, Alex; Anthony, Laura Gutermuth
2015-12-01
Recent updates have been proposed to the Autism Diagnostic Observation Schedule-2 Module 4 diagnostic algorithm. This new algorithm, however, has not yet been validated in an independent sample without intellectual disability (ID). This multi-site study compared the original and revised algorithms in individuals with ASD without ID. The revised algorithm demonstrated increased sensitivity, but lower specificity in the overall sample. Estimates were highest for females, individuals with a verbal IQ below 85 or above 115, and ages 16 and older. Best practice diagnostic procedures should include the Module 4 in conjunction with other assessment tools. Balancing needs for sensitivity and specificity depending on the purpose of assessment (e.g., clinical vs. research) and demographic characteristics mentioned above will enhance its utility.
PCA-LBG-based algorithms for VQ codebook generation
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Yang, Po-Yuan
2015-04-01
Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.
Sequential Dictionary Learning From Correlated Data: Application to fMRI Data Analysis.
Seghouane, Abd-Krim; Iqbal, Asif
2017-03-22
Sequential dictionary learning via the K-SVD algorithm has been revealed as a successful alternative to conventional data driven methods such as independent component analysis (ICA) for functional magnetic resonance imaging (fMRI) data analysis. fMRI datasets are however structured data matrices with notions of spatio-temporal correlation and temporal smoothness. This prior information has not been included in the K-SVD algorithm when applied to fMRI data analysis. In this paper we propose three variants of the K-SVD algorithm dedicated to fMRI data analysis by accounting for this prior information. The proposed algorithms differ from the K-SVD in their sparse coding and dictionary update stages. The first two algorithms account for the known correlation structure in the fMRI data by using the squared Q, R-norm instead of the Frobenius norm for matrix approximation. The third and last algorithm account for both the known correlation structure in the fMRI data and the temporal smoothness. The temporal smoothness is incorporated in the dictionary update stage via regularization of the dictionary atoms obtained with penalization. The performance of the proposed dictionary learning algorithms are illustrated through simulations and applications on real fMRI data.
Seghouane, Abd-Krim; Iqbal, Asif
2017-09-01
Sequential dictionary learning algorithms have been successfully applied to functional magnetic resonance imaging (fMRI) data analysis. fMRI data sets are, however, structured data matrices with the notions of temporal smoothness in the column direction. This prior information, which can be converted into a constraint of smoothness on the learned dictionary atoms, has seldomly been included in classical dictionary learning algorithms when applied to fMRI data analysis. In this paper, we tackle this problem by proposing two new sequential dictionary learning algorithms dedicated to fMRI data analysis by accounting for this prior information. These algorithms differ from the existing ones in their dictionary update stage. The steps of this stage are derived as a variant of the power method for computing the SVD. The proposed algorithms generate regularized dictionary atoms via the solution of a left regularized rank-one matrix approximation problem where temporal smoothness is enforced via regularization through basis expansion and sparse basis expansion in the dictionary update stage. Applications on synthetic data experiments and real fMRI data sets illustrating the performance of the proposed algorithms are provided.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Choi, Sunghoon; Kim, Hee-Joung
2018-03-01
When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
New Secure E-mail System Based on Bio-Chaos Key Generation and Modified AES Algorithm
NASA Astrophysics Data System (ADS)
Hoomod, Haider K.; Radi, A. M.
2018-05-01
The E-mail messages exchanged between sender’s Mailbox and recipient’s Mailbox over the open systems and insecure Networks. These messages may be vulnerable to eavesdropping and itself poses a real threat to the privacy and data integrity from unauthorized persons. The E-mail Security includes the following properties (Confidentiality, Authentication, Message integrity). We need a safe encryption algorithm to encrypt Email messages such as the algorithm Advanced Encryption Standard (AES) or Data Encryption Standard DES, as well as biometric recognition and chaotic system. The proposed E-mail system security uses modified AES algorithm and uses secret key-bio-chaos that consist of biometric (Fingerprint) and chaotic system (Lu and Lorenz). This modification makes the proposed system more sensitive and random. The execution time for both encryption and decryption of the proposed system is much less from original AES, in addition to being compatible with all Mail Servers.
Anastasiadou, Maria N; Christodoulakis, Manolis; Papathanasiou, Eleftherios S; Papacostas, Savvas S; Mitsis, Georgios D
2017-09-01
This paper proposes supervised and unsupervised algorithms for automatic muscle artifact detection and removal from long-term EEG recordings, which combine canonical correlation analysis (CCA) and wavelets with random forests (RF). The proposed algorithms first perform CCA and continuous wavelet transform of the canonical components to generate a number of features which include component autocorrelation values and wavelet coefficient magnitude values. A subset of the most important features is subsequently selected using RF and labelled observations (supervised case) or synthetic data constructed from the original observations (unsupervised case). The proposed algorithms are evaluated using realistic simulation data as well as 30min epochs of non-invasive EEG recordings obtained from ten patients with epilepsy. We assessed the performance of the proposed algorithms using classification performance and goodness-of-fit values for noisy and noise-free signal windows. In the simulation study, where the ground truth was known, the proposed algorithms yielded almost perfect performance. In the case of experimental data, where expert marking was performed, the results suggest that both the supervised and unsupervised algorithm versions were able to remove artifacts without affecting noise-free channels considerably, outperforming standard CCA, independent component analysis (ICA) and Lagged Auto-Mutual Information Clustering (LAMIC). The proposed algorithms achieved excellent performance for both simulation and experimental data. Importantly, for the first time to our knowledge, we were able to perform entirely unsupervised artifact removal, i.e. without using already marked noisy data segments, achieving performance that is comparable to the supervised case. Overall, the results suggest that the proposed algorithms yield significant future potential for improving EEG signal quality in research or clinical settings without the need for marking by expert neurophysiologists, EMG signal recording and user visual inspection. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Y. H.; Chiang, K. W.
2012-07-01
In this study, a 3D Map Matching (3D MM) algorithm is embedded to current INS/GPS fusion algorithm for enhancing the sustainability and accuracy of INS/GPS integration systems, especially the height component. In addition, this study propose an effective solutions to the limitation of current commercial vehicular navigation systems where they fail to distinguish whether the vehicle is moving on the elevated highway or the road under it because those systems don't have sufficient height resolution. To validate the performance of proposed 3D MM embedded INS/GPS integration algorithms, in the test area, two scenarios were considered, paths under the freeways and streets between tall buildings, where the GPS signal is obstacle or interfered easily. The test platform was mounted on the top of a land vehicle and also systems in the vehicle. The IMUs applied includes SPAN-LCI (0.1 deg/hr gyro bias) from NovAtel, which was used as the reference system, and two MEMS IMUs with different specifications for verifying the performance of proposed algorithm. The preliminary results indicate the proposed algorithms are able to improve the accuracy of positional components in GPS denied environments significantly with the use of INS/GPS integrated systems in SPP mode.
Chaotic Particle Swarm Optimization with Mutation for Classification
Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza
2015-01-01
In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms. PMID:25709937
Evaluation of the ADOS Revised Algorithm: The Applicability in 558 Dutch Children and Adolescents
ERIC Educational Resources Information Center
de Bildt, Annelies; Sytema, Sjoerd; van Lang, Natasja D. J.; Minderaa, Ruud B.; van Engeland, Herman; de Jonge, Maretha V.
2009-01-01
The revised ADOS algorithms, proposed by Gotham et al. (J Autism Dev Disord 37:613-627, 2007), were investigated in an independent sample of 558 Dutch children (modules 1, 2 and 3). The revised algorithms lead to better balanced sensitivity and specificity for modules 2 and 3, without losing efficiency of the classification. Including the…
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem
Akutsah, Francis; Olusanya, Micheal O.; Adewumi, Aderemi O.
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems. PMID:29554662
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.
Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.
Finding Frequent Closed Itemsets in Sliding Window in Linear Time
NASA Astrophysics Data System (ADS)
Chen, Junbo; Zhou, Bo; Chen, Lu; Wang, Xinyu; Ding, Yiqun
One of the most well-studied problems in data mining is computing the collection of frequent itemsets in large transactional databases. Since the introduction of the famous Apriori algorithm [14], many others have been proposed to find the frequent itemsets. Among such algorithms, the approach of mining closed itemsets has raised much interest in data mining community. The algorithms taking this approach include TITANIC [8], CLOSET+[6], DCI-Closed [4], FCI-Stream [3], GC-Tree [15], TGC-Tree [16] etc. Among these algorithms, FCI-Stream, GC-Tree and TGC-Tree are online algorithms work under sliding window environments. By the performance evaluation in [16], GC-Tree [15] is the fastest one. In this paper, an improved algorithm based on GC-Tree is proposed, the computational complexity of which is proved to be a linear combination of the average transaction size and the average closed itemset size. The algorithm is based on the essential theorem presented in Sect. 4.2. Empirically, the new algorithm is several orders of magnitude faster than the state of art algorithm, GC-Tree.
Hierarchical image segmentation via recursive superpixel with adaptive regularity
NASA Astrophysics Data System (ADS)
Nakamura, Kensuke; Hong, Byung-Woo
2017-11-01
A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.
Wang, Zhu; Ma, Shuangge; Wang, Ching-Yun
2015-09-01
In health services and outcome research, count outcomes are frequently encountered and often have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has important applications for this type of data. With many possible candidate risk factors, this paper proposes new variable selection methods for the ZINB model. We consider maximum likelihood function plus a penalty including the least absolute shrinkage and selection operator (LASSO), smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP). An EM (expectation-maximization) algorithm is proposed for estimating the model parameters and conducting variable selection simultaneously. This algorithm consists of estimating penalized weighted negative binomial models and penalized logistic models via the coordinated descent algorithm. Furthermore, statistical properties including the standard error formulae are provided. A simulation study shows that the new algorithm not only has more accurate or at least comparable estimation, but also is more robust than the traditional stepwise variable selection. The proposed methods are applied to analyze the health care demand in Germany using the open-source R package mpath. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pugliese, Cara E.; Kenworthy, Lauren; Bal, Vanessa Hus; Wallace, Gregory L; Yerys, Benjamin E; Maddox, Brenna B.; White, Susan W.; Popal, Haroon; Armour, Anna Chelsea; Miller, Judith; Herrington, John D.; Schultz, Robert T.; Martin, Alex; Anthony, Laura Gutermuth
2015-01-01
Recent updates have been proposed to the Autism Diagnostic Observation Schedule-2 Module 4 diagnostic algorithm. This new algorithm, however, has not yet been validated in an independent sample without intellectual disability (ID). This multi-site study compared the original and revised algorithms in individuals with ASD without ID. The revised algorithm demonstrated increased sensitivity, but lower specificity in the overall sample. Estimates were highest for females, individuals with a verbal IQ below 85 or above 115, and ages 16 and older. Best practice diagnostic procedures should include the Module 4 in conjunction with other assessment tools. Balancing needs for sensitivity and specificity depending on the purpose of assessment (e.g., clinical vs. research) and demographic characteristics mentioned above will enhance its utility. PMID:26385796
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
NASA Astrophysics Data System (ADS)
Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan
2010-12-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm.
Pandit, Diptangshu; Zhang, Li; Liu, Chengyu; Chattopadhyay, Samiran; Aslam, Nauman; Lim, Chee Peng
2017-06-01
Detection of the R-peak pertaining to the QRS complex of an ECG signal plays an important role for the diagnosis of a patient's heart condition. To accurately identify the QRS locations from the acquired raw ECG signals, we need to handle a number of challenges, which include noise, baseline wander, varying peak amplitudes, and signal abnormality. This research aims to address these challenges by developing an efficient lightweight algorithm for QRS (i.e., R-peak) detection from raw ECG signals. A lightweight real-time sliding window-based Max-Min Difference (MMD) algorithm for QRS detection from Lead II ECG signals is proposed. Targeting to achieve the best trade-off between computational efficiency and detection accuracy, the proposed algorithm consists of five key steps for QRS detection, namely, baseline correction, MMD curve generation, dynamic threshold computation, R-peak detection, and error correction. Five annotated databases from Physionet are used for evaluating the proposed algorithm in R-peak detection. Integrated with a feature extraction technique and a neural network classifier, the proposed ORS detection algorithm has also been extended to undertake normal and abnormal heartbeat detection from ECG signals. The proposed algorithm exhibits a high degree of robustness in QRS detection and achieves an average sensitivity of 99.62% and an average positive predictivity of 99.67%. Its performance compares favorably with those from the existing state-of-the-art models reported in the literature. In regards to normal and abnormal heartbeat detection, the proposed QRS detection algorithm in combination with the feature extraction technique and neural network classifier achieves an overall accuracy rate of 93.44% based on an empirical evaluation using the MIT-BIH Arrhythmia data set with 10-fold cross validation. In comparison with other related studies, the proposed algorithm offers a lightweight adaptive alternative for R-peak detection with good computational efficiency. The empirical results indicate that it not only yields a high accuracy rate in QRS detection, but also exhibits efficient computational complexity at the order of O(n), where n is the length of an ECG signal. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Qiong; Wang, Wen-xi; Zhu, Ke-ren; Zhang, Chao-yong; Rao, Yun-qing
2014-11-01
Mixed-model assembly line sequencing is significant in reducing the production time and overall cost of production. To improve production efficiency, a mathematical model aiming simultaneously to minimize overtime, idle time and total set-up costs is developed. To obtain high-quality and stable solutions, an advanced scatter search approach is proposed. In the proposed algorithm, a new diversification generation method based on a genetic algorithm is presented to generate a set of potentially diverse and high-quality initial solutions. Many methods, including reference set update, subset generation, solution combination and improvement methods, are designed to maintain the diversification of populations and to obtain high-quality ideal solutions. The proposed model and algorithm are applied and validated in a case company. The results indicate that the proposed advanced scatter search approach is significant for mixed-model assembly line sequencing in this company.
Resilient distributed control in the presence of misbehaving agents in networked control systems.
Zeng, Wente; Chow, Mo-Yuen
2014-11-01
In this paper, we study the problem of reaching a consensus among all the agents in the networked control systems (NCS) in the presence of misbehaving agents. A reputation-based resilient distributed control algorithm is first proposed for the leader-follower consensus network. The proposed algorithm embeds a resilience mechanism that includes four phases (detection, mitigation, identification, and update), into the control process in a distributed manner. At each phase, every agent only uses local and one-hop neighbors' information to identify and isolate the misbehaving agents, and even compensate their effect on the system. We then extend the proposed algorithm to the leaderless consensus network by introducing and adding two recovery schemes (rollback and excitation recovery) into the current framework to guarantee the accurate convergence of the well-behaving agents in NCS. The effectiveness of the proposed method is demonstrated through case studies in multirobot formation control and wireless sensor networks.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Global velocity constrained cloud motion prediction for short-term solar forecasting
NASA Astrophysics Data System (ADS)
Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping
2016-09-01
Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.
An adaptive tensor voting algorithm combined with texture spectrum
NASA Astrophysics Data System (ADS)
Wang, Gang; Su, Qing-tang; Lü, Gao-huan; Zhang, Xiao-feng; Liu, Yu-huan; He, An-zhi
2015-01-01
An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.
2010-01-01
Background Graph drawing is one of the important techniques for understanding biological regulations in a cell or among cells at the pathway level. Among many available layout algorithms, the spring embedder algorithm is widely used not only for pathway drawing but also for circuit placement and www visualization and so on because of the harmonized appearance of its results. For pathway drawing, location information is essential for its comprehension. However, complex shapes need to be taken into account when torus-shaped location information such as nuclear inner membrane, nuclear outer membrane, and plasma membrane is considered. Unfortunately, the spring embedder algorithm cannot easily handle such information. In addition, crossings between edges and nodes are usually not considered explicitly. Results We proposed a new grid-layout algorithm based on the spring embedder algorithm that can handle location information and provide layouts with harmonized appearance. In grid-layout algorithms, the mapping of nodes to grid points that minimizes a cost function is searched. By imposing positional constraints on grid points, location information including complex shapes can be easily considered. Our layout algorithm includes the spring embedder cost as a component of the cost function. We further extend the layout algorithm to enable dynamic update of the positions and sizes of compartments at each step. Conclusions The new spring embedder-based grid-layout algorithm and a spring embedder algorithm are applied to three biological pathways; endothelial cell model, Fas-induced apoptosis model, and C. elegans cell fate simulation model. From the positional constraints, all the results of our algorithm satisfy location information, and hence, more comprehensible layouts are obtained as compared to the spring embedder algorithm. From the comparison of the number of crossings, the results of the grid-layout-based algorithm tend to contain more crossings than those of the spring embedder algorithm due to the positional constraints. For a fair comparison, we also apply our proposed method without positional constraints. This comparison shows that these results contain less crossings than those of the spring embedder algorithm. We also compared layouts of the proposed algorithm with and without compartment update and verified that latter can reach better local optima. PMID:20565884
Orbit Clustering Based on Transfer Cost
NASA Technical Reports Server (NTRS)
Gustafson, Eric D.; Arrieta-Camacho, Juan J.; Petropoulos, Anastassios E.
2013-01-01
We propose using cluster analysis to perform quick screening for combinatorial global optimization problems. The key missing component currently preventing cluster analysis from use in this context is the lack of a useable metric function that defines the cost to transfer between two orbits. We study several proposed metrics and clustering algorithms, including k-means and the expectation maximization algorithm. We also show that proven heuristic methods such as the Q-law can be modified to work with cluster analysis.
Distributed Function Mining for Gene Expression Programming Based on Fast Reduction.
Deng, Song; Yue, Dong; Yang, Le-chan; Fu, Xiong; Feng, Ya-zhou
2016-01-01
For high-dimensional and massive data sets, traditional centralized gene expression programming (GEP) or improved algorithms lead to increased run-time and decreased prediction accuracy. To solve this problem, this paper proposes a new improved algorithm called distributed function mining for gene expression programming based on fast reduction (DFMGEP-FR). In DFMGEP-FR, fast attribution reduction in binary search algorithms (FAR-BSA) is proposed to quickly find the optimal attribution set, and the function consistency replacement algorithm is given to solve integration of the local function model. Thorough comparative experiments for DFMGEP-FR, centralized GEP and the parallel gene expression programming algorithm based on simulated annealing (parallel GEPSA) are included in this paper. For the waveform, mushroom, connect-4 and musk datasets, the comparative results show that the average time-consumption of DFMGEP-FR drops by 89.09%%, 88.85%, 85.79% and 93.06%, respectively, in contrast to centralized GEP and by 12.5%, 8.42%, 9.62% and 13.75%, respectively, compared with parallel GEPSA. Six well-studied UCI test data sets demonstrate the efficiency and capability of our proposed DFMGEP-FR algorithm for distributed function mining.
Channel estimation based on quantized MMP for FDD massive MIMO downlink
NASA Astrophysics Data System (ADS)
Guo, Yao-ting; Wang, Bing-he; Qu, Yi; Cai, Hua-jie
2016-10-01
In this paper, we consider channel estimation for Massive MIMO systems operating in frequency division duplexing mode. By exploiting the sparsity of propagation paths in Massive MIMO channel, we develop a compressed sensing(CS) based channel estimator which can reduce the pilot overhead. As compared with the conventional least squares (LS) and linear minimum mean square error(LMMSE) estimation, the proposed algorithm is based on the quantized multipath matching pursuit - MMP - reduced the pilot overhead and performs better than other CS algorithms. The simulation results demonstrate the advantage of the proposed algorithm over various existing methods including the LS, LMMSE, CoSaMP and conventional MMP estimators.
NASA Astrophysics Data System (ADS)
Gong, Weiwei; Zhou, Xu
2017-06-01
In Computer Science, the Boolean Satisfiability Problem(SAT) is the problem of determining if there exists an interpretation that satisfies a given Boolean formula. SAT is one of the first problems that was proven to be NP-complete, which is also fundamental to artificial intelligence, algorithm and hardware design. This paper reviews the main algorithms of the SAT solver in recent years, including serial SAT algorithms, parallel SAT algorithms, SAT algorithms based on GPU, and SAT algorithms based on FPGA. The development of SAT is analyzed comprehensively in this paper. Finally, several possible directions for the development of the SAT problem are proposed.
On accuracy, privacy, and complexity in the identification problem
NASA Astrophysics Data System (ADS)
Beekhof, F.; Voloshynovskiy, S.; Koval, O.; Holotyak, T.
2010-02-01
This paper presents recent advances in the identification problem taking into account the accuracy, complexity and privacy leak of different decoding algorithms. Using a model of different actors from literature, we show that it is possible to use more accurate decoding algorithms using reliability information without increasing the privacy leak relative to algorithms that only use binary information. Existing algorithms from literature have been modified to take advantage of reliability information, and we show that a proposed branch-and-bound algorithm can outperform existing work, including the enhanced variants.
NASA Astrophysics Data System (ADS)
Wang, Yan; Huang, Song; Ji, Zhicheng
2017-07-01
This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels
NASA Astrophysics Data System (ADS)
Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.
2018-05-01
Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.
Enhanced object-based tracking algorithm for convective rain storms and cells
NASA Astrophysics Data System (ADS)
Muñoz, Carlos; Wang, Li-Pen; Willems, Patrick
2018-03-01
This paper proposes a new object-based storm tracking algorithm, based upon TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting). TITAN is a widely-used convective storm tracking algorithm but has limitations in handling small-scale yet high-intensity storm entities due to its single-threshold identification approach. It also has difficulties to effectively track fast-moving storms because of the employed matching approach that largely relies on the overlapping areas between successive storm entities. To address these deficiencies, a number of modifications are proposed and tested in this paper. These include a two-stage multi-threshold storm identification, a new formulation for characterizing storm's physical features, and an enhanced matching technique in synergy with an optical-flow storm field tracker, as well as, according to these modifications, a more complex merging and splitting scheme. High-resolution (5-min and 529-m) radar reflectivity data for 18 storm events over Belgium are used to calibrate and evaluate the algorithm. The performance of the proposed algorithm is compared with that of the original TITAN. The results suggest that the proposed algorithm can better isolate and match convective rainfall entities, as well as to provide more reliable and detailed motion estimates. Furthermore, the improvement is found to be more significant for higher rainfall intensities. The new algorithm has the potential to serve as a basis for further applications, such as storm nowcasting and long-term stochastic spatial and temporal rainfall generation.
Le, Duc-Hau
2015-01-01
Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.
Jeyasingh, Suganthi; Veluchamy, Malathi
2017-05-01
Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License
Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining.
Cheng, Wenlong; Zhao, Mingbo; Xiong, Naixue; Chui, Kwok Tai
2017-07-15
Parsimony, including sparsity and low-rank, has shown great importance for data mining in social networks, particularly in tasks such as segmentation and recognition. Traditionally, such modeling approaches rely on an iterative algorithm that minimizes an objective function with convex l ₁-norm or nuclear norm constraints. However, the obtained results by convex optimization are usually suboptimal to solutions of original sparse or low-rank problems. In this paper, a novel robust subspace segmentation algorithm has been proposed by integrating l p -norm and Schatten p -norm constraints. Our so-obtained affinity graph can better capture local geometrical structure and the global information of the data. As a consequence, our algorithm is more generative, discriminative and robust. An efficient linearized alternating direction method is derived to realize our model. Extensive segmentation experiments are conducted on public datasets. The proposed algorithm is revealed to be more effective and robust compared to five existing algorithms.
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions.
Chen, Ke; Wang, Shihai
2011-01-01
Semi-supervised learning concerns the problem of learning in the presence of labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes all three semi-supervised assumptions, i.e., smoothness, cluster, and manifold assumptions, together into account during boosting learning. In this paper, we propose a novel cost functional consisting of the margin cost on labeled data and the regularization penalty on unlabeled data based on three fundamental semi-supervised assumptions. Thus, minimizing our proposed cost functional with a greedy yet stagewise functional optimization procedure leads to a generic boosting framework for semi-supervised learning. Extensive experiments demonstrate that our algorithm yields favorite results for benchmark and real-world classification tasks in comparison to state-of-the-art semi-supervised learning algorithms, including newly developed boosting algorithms. Finally, we discuss relevant issues and relate our algorithm to the previous work.
A grammar-based semantic similarity algorithm for natural language sentences.
Lee, Ming Che; Chang, Jia Wei; Hsieh, Tung Cheng
2014-01-01
This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to "artificial language", such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure.
FPGA-based coprocessor for matrix algorithms implementation
NASA Astrophysics Data System (ADS)
Amira, Abbes; Bensaali, Faycal
2003-03-01
Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.
Multipoint to multipoint routing and wavelength assignment in multi-domain optical networks
NASA Astrophysics Data System (ADS)
Qin, Panke; Wu, Jingru; Li, Xudong; Tang, Yongli
2018-01-01
In multi-point to multi-point (MP2MP) routing and wavelength assignment (RWA) problems, researchers usually assume the optical networks to be a single domain. However, the optical networks develop toward to multi-domain and larger scale in practice. In this context, multi-core shared tree (MST)-based MP2MP RWA are introduced problems including optimal multicast domain sequence selection, core nodes belonging in which domains and so on. In this letter, we focus on MST-based MP2MP RWA problems in multi-domain optical networks, mixed integer linear programming (MILP) formulations to optimally construct MP2MP multicast trees is presented. A heuristic algorithm base on network virtualization and weighted clustering algorithm (NV-WCA) is proposed. Simulation results show that, under different traffic patterns, the proposed algorithm achieves significant improvement on network resources occupation and multicast trees setup latency in contrast with the conventional algorithms which were proposed base on a single domain network environment.
A proposed study of multiple scattering through clouds up to 1 THz
NASA Technical Reports Server (NTRS)
Gerace, G. C.; Smith, E. K.
1992-01-01
A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations.
Detection of Coronal Mass Ejections Using Multiple Features and Space-Time Continuity
NASA Astrophysics Data System (ADS)
Zhang, Ling; Yin, Jian-qin; Lin, Jia-ben; Feng, Zhi-quan; Zhou, Jin
2017-07-01
Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space-time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space-time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.
NASA Astrophysics Data System (ADS)
Suja Priyadharsini, S.; Edward Rajan, S.; Femilin Sheniha, S.
2016-03-01
Electroencephalogram (EEG) is the recording of electrical activities of the brain. It is contaminated by other biological signals, such as cardiac signal (electrocardiogram), signals generated by eye movement/eye blinks (electrooculogram) and muscular artefact signal (electromyogram), called artefacts. Optimisation is an important tool for solving many real-world problems. In the proposed work, artefact removal, based on the adaptive neuro-fuzzy inference system (ANFIS) is employed, by optimising the parameters of ANFIS. Artificial Immune System (AIS) algorithm is used to optimise the parameters of ANFIS (ANFIS-AIS). Implementation results depict that ANFIS-AIS is effective in removing artefacts from EEG signal than ANFIS. Furthermore, in the proposed work, improved AIS (IAIS) is developed by including suitable selection processes in the AIS algorithm. The performance of the proposed method IAIS is compared with AIS and with genetic algorithm (GA). Measures such as signal-to-noise ratio, mean square error (MSE) value, correlation coefficient, power spectrum density plot and convergence time are used for analysing the performance of the proposed method. From the results, it is found that the IAIS algorithm converges faster than the AIS and performs better than the AIS and GA. Hence, IAIS tuned ANFIS (ANFIS-IAIS) is effective in removing artefacts from EEG signals.
New Multi-objective Uncertainty-based Algorithm for Water Resource Models' Calibration
NASA Astrophysics Data System (ADS)
Keshavarz, Kasra; Alizadeh, Hossein
2017-04-01
Water resource models are powerful tools to support water management decision making process and are developed to deal with a broad range of issues including land use and climate change impacts analysis, water allocation, systems design and operation, waste load control and allocation, etc. These models are divided into two categories of simulation and optimization models whose calibration has been addressed in the literature where great relevant efforts in recent decades have led to two main categories of auto-calibration methods of uncertainty-based algorithms such as GLUE, MCMC and PEST and optimization-based algorithms including single-objective optimization such as SCE-UA and multi-objective optimization such as MOCOM-UA and MOSCEM-UA. Although algorithms which benefit from capabilities of both types, such as SUFI-2, were rather developed, this paper proposes a new auto-calibration algorithm which is capable of both finding optimal parameters values regarding multiple objectives like optimization-based algorithms and providing interval estimations of parameters like uncertainty-based algorithms. The algorithm is actually developed to improve quality of SUFI-2 results. Based on a single-objective, e.g. NSE and RMSE, SUFI-2 proposes a routine to find the best point and interval estimation of parameters and corresponding prediction intervals (95 PPU) of time series of interest. To assess the goodness of calibration, final results are presented using two uncertainty measures of p-factor quantifying percentage of observations covered by 95PPU and r-factor quantifying degree of uncertainty, and the analyst has to select the point and interval estimation of parameters which are actually non-dominated regarding both of the uncertainty measures. Based on the described properties of SUFI-2, two important questions are raised, answering of which are our research motivation: Given that in SUFI-2, final selection is based on the two measures or objectives and on the other hand, knowing that there is no multi-objective optimization mechanism in SUFI-2, are the final estimations Pareto-optimal? Can systematic methods be applied to select the final estimations? Dealing with these questions, a new auto-calibration algorithm was proposed where the uncertainty measures were considered as two objectives to find non-dominated interval estimations of parameters by means of coupling Monte Carlo simulation and Multi-Objective Particle Swarm Optimization. Both the proposed algorithm and SUFI-2 were applied to calibrate parameters of water resources planning model of Helleh river basin, Iran. The model is a comprehensive water quantity-quality model developed in the previous researches using WEAP software in order to analyze the impacts of different water resources management strategies including dam construction, increasing cultivation area, utilization of more efficient irrigation technologies, changing crop pattern, etc. Comparing the Pareto frontier resulted from the proposed auto-calibration algorithm with SUFI-2 results, it was revealed that the new algorithm leads to a better and also continuous Pareto frontier, even though it is more computationally expensive. Finally, Nash and Kalai-Smorodinsky bargaining methods were used to choose compromised interval estimation regarding Pareto frontier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowik, Piotr, E-mail: pborow@poczta.onet.pl; Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr; Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport propertiesmore » of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.« less
NASA Astrophysics Data System (ADS)
Vathsala, H.; Koolagudi, Shashidhar G.
2017-01-01
In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.
Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.
Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan
2015-07-17
To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.
Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing
Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan
2015-01-01
To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281
NASA Astrophysics Data System (ADS)
Oesterle, Jonathan; Lionel, Amodeo
2018-06-01
The current competitive situation increases the importance of realistically estimating product costs during the early phases of product and assembly line planning projects. In this article, several multi-objective algorithms using difference dominance rules are proposed to solve the problem associated with the selection of the most effective combination of product and assembly lines. The list of developed algorithms includes variants of ant colony algorithms, evolutionary algorithms and imperialist competitive algorithms. The performance of each algorithm and dominance rule is analysed by five multi-objective quality indicators and fifty problem instances. The algorithms and dominance rules are ranked using a non-parametric statistical test.
Constrained independent component analysis approach to nonobtrusive pulse rate measurements
NASA Astrophysics Data System (ADS)
Tsouri, Gill R.; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K.
2012-07-01
Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.
Constrained independent component analysis approach to nonobtrusive pulse rate measurements.
Tsouri, Gill R; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K
2012-07-01
Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.
Pourghassem, Hossein
2012-01-01
Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy.
Tracking and recognition face in videos with incremental local sparse representation model
NASA Astrophysics Data System (ADS)
Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang
2013-10-01
This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.
Ye, Yalan; He, Wenwen; Cheng, Yunfei; Huang, Wenxia; Zhang, Zhilin
2017-02-16
The estimation of heart rate (HR) based on wearable devices is of interest in fitness. Photoplethysmography (PPG) is a promising approach to estimate HR due to low cost; however, it is easily corrupted by motion artifacts (MA). In this work, a robust approach based on random forest is proposed for accurately estimating HR from the photoplethysmography signal contaminated by intense motion artifacts, consisting of two stages. Stage 1 proposes a hybrid method to effectively remove MA with a low computation complexity, where two MA removal algorithms are combined by an accurate binary decision algorithm whose aim is to decide whether or not to adopt the second MA removal algorithm. Stage 2 proposes a random forest-based spectral peak-tracking algorithm, whose aim is to locate the spectral peak corresponding to HR, formulating the problem of spectral peak tracking into a pattern classification problem. Experiments on the PPG datasets including 22 subjects used in the 2015 IEEE Signal Processing Cup showed that the proposed approach achieved the average absolute error of 1.65 beats per minute (BPM) on the 22 PPG datasets. Compared to state-of-the-art approaches, the proposed approach has better accuracy and robustness to intense motion artifacts, indicating its potential use in wearable sensors for health monitoring and fitness tracking.
Local linear discriminant analysis framework using sample neighbors.
Fan, Zizhu; Xu, Yong; Zhang, David
2011-07-01
The linear discriminant analysis (LDA) is a very popular linear feature extraction approach. The algorithms of LDA usually perform well under the following two assumptions. The first assumption is that the global data structure is consistent with the local data structure. The second assumption is that the input data classes are Gaussian distributions. However, in real-world applications, these assumptions are not always satisfied. In this paper, we propose an improved LDA framework, the local LDA (LLDA), which can perform well without needing to satisfy the above two assumptions. Our LLDA framework can effectively capture the local structure of samples. According to different types of local data structure, our LLDA framework incorporates several different forms of linear feature extraction approaches, such as the classical LDA and principal component analysis. The proposed framework includes two LLDA algorithms: a vector-based LLDA algorithm and a matrix-based LLDA (MLLDA) algorithm. MLLDA is directly applicable to image recognition, such as face recognition. Our algorithms need to train only a small portion of the whole training set before testing a sample. They are suitable for learning large-scale databases especially when the input data dimensions are very high and can achieve high classification accuracy. Extensive experiments show that the proposed algorithms can obtain good classification results.
An adaptive scale factor based MPPT algorithm for changing solar irradiation levels in outer space
NASA Astrophysics Data System (ADS)
Kwan, Trevor Hocksun; Wu, Xiaofeng
2017-03-01
Maximum power point tracking (MPPT) techniques are popularly used for maximizing the output of solar panels by continuously tracking the maximum power point (MPP) of their P-V curves, which depend both on the panel temperature and the input insolation. Various MPPT algorithms have been studied in literature, including perturb and observe (P&O), hill climbing, incremental conductance, fuzzy logic control and neural networks. This paper presents an algorithm which improves the MPP tracking performance by adaptively scaling the DC-DC converter duty cycle. The principle of the proposed algorithm is to detect the oscillation by checking the sign (ie. direction) of the duty cycle perturbation between the current and previous time steps. If there is a difference in the signs then it is clear an oscillation is present and the DC-DC converter duty cycle perturbation is subsequently scaled down by a constant factor. By repeating this process, the steady state oscillations become negligibly small which subsequently allows for a smooth steady state MPP response. To verify the proposed MPPT algorithm, a simulation involving irradiances levels that are typically encountered in outer space is conducted. Simulation and experimental results prove that the proposed algorithm is fast and stable in comparison to not only the conventional fixed step counterparts, but also to previous variable step size algorithms.
A Grammar-Based Semantic Similarity Algorithm for Natural Language Sentences
Chang, Jia Wei; Hsieh, Tung Cheng
2014-01-01
This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to “artificial language”, such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure. PMID:24982952
Three-dimensional volume containing multiple two-dimensional information patterns
NASA Astrophysics Data System (ADS)
Nakayama, Hirotaka; Shiraki, Atsushi; Hirayama, Ryuji; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Ito, Tomoyoshi
2013-06-01
We have developed an algorithm for recording multiple gradated two-dimensional projection patterns in a single three-dimensional object. When a single pattern is observed, information from the other patterns can be treated as background noise. The proposed algorithm has two important features: the number of patterns that can be recorded is theoretically infinite and no meaningful information can be seen outside of the projection directions. We confirmed the effectiveness of the proposed algorithm by performing numerical simulations of two laser crystals: an octagonal prism that contained four patterns in four projection directions and a dodecahedron that contained six patterns in six directions. We also fabricated and demonstrated an actual prototype laser crystal from a glass cube engraved by a laser beam. This algorithm has applications in various fields, including media art, digital signage, and encryption technology.
Consensus-based distributed estimation in multi-agent systems with time delay
NASA Astrophysics Data System (ADS)
Abdelmawgoud, Ahmed
During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
NASA Astrophysics Data System (ADS)
Khatibinia, M.; Salajegheh, E.; Salajegheh, J.; Fadaee, M. J.
2013-10-01
A new discrete gravitational search algorithm (DGSA) and a metamodelling framework are introduced for reliability-based design optimization (RBDO) of reinforced concrete structures. The RBDO of structures with soil-structure interaction (SSI) effects is investigated in accordance with performance-based design. The proposed DGSA is based on the standard gravitational search algorithm (GSA) to optimize the structural cost under deterministic and probabilistic constraints. The Monte-Carlo simulation (MCS) method is considered as the most reliable method for estimating the probabilities of reliability. In order to reduce the computational time of MCS, the proposed metamodelling framework is employed to predict the responses of the SSI system in the RBDO procedure. The metamodel consists of a weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, which is called WWLS-SVM. Numerical results demonstrate the efficiency and computational advantages of DGSA and the proposed metamodel for RBDO of reinforced concrete structures.
A graph decomposition-based approach for water distribution network optimization
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.; Deuerlein, Jochen W.
2013-04-01
A novel optimization approach for water distribution network design is proposed in this paper. Using graph theory algorithms, a full water network is first decomposed into different subnetworks based on the connectivity of the network's components. The original whole network is simplified to a directed augmented tree, in which the subnetworks are substituted by augmented nodes and directed links are created to connect them. Differential evolution (DE) is then employed to optimize each subnetwork based on the sequence specified by the assigned directed links in the augmented tree. Rather than optimizing the original network as a whole, the subnetworks are sequentially optimized by the DE algorithm. A solution choice table is established for each subnetwork (except for the subnetwork that includes a supply node) and the optimal solution of the original whole network is finally obtained by use of the solution choice tables. Furthermore, a preconditioning algorithm is applied to the subnetworks to produce an approximately optimal solution for the original whole network. This solution specifies promising regions for the final optimization algorithm to further optimize the subnetworks. Five water network case studies are used to demonstrate the effectiveness of the proposed optimization method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to each case study without network decomposition to enable a comparison with the proposed method. The results show that the proposed method consistently outperforms the SDE and GA (both with tuned parameters) in terms of both the solution quality and efficiency.
Surface registration technique for close-range mapping applications
NASA Astrophysics Data System (ADS)
Habib, Ayman F.; Cheng, Rita W. T.
2006-08-01
Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.
Extraction and classification of 3D objects from volumetric CT data
NASA Astrophysics Data System (ADS)
Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.
2016-05-01
We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.
Rastgarpour, Maryam; Shanbehzadeh, Jamshid
2014-01-01
Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.
A Modified MinMax k-Means Algorithm Based on PSO
2016-01-01
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201
Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI.
Hu, Changwei; Qu, Xiaobo; Guo, Di; Bao, Lijun; Chen, Zhong
2011-09-01
Undersampling k-space is an effective way to decrease acquisition time for MRI. However, aliasing artifacts introduced by undersampling may blur the edges of magnetic resonance images, which often contain important information for clinical diagnosis. Moreover, k-space data is often contaminated by the noise signals of unknown intensity. To better preserve the edge features while suppressing the aliasing artifacts and noises, we present a new wavelet-based algorithm for undersampled MRI reconstruction. The algorithm solves the image reconstruction as a standard optimization problem including a ℓ(2) data fidelity term and ℓ(1) sparsity regularization term. Rather than manually setting the regularization parameter for the ℓ(1) term, which is directly related to the threshold, an automatic estimated threshold adaptive to noise intensity is introduced in our proposed algorithm. In addition, a prior matrix based on edge correlation in wavelet domain is incorporated into the regularization term. Compared with nonlinear conjugate gradient descent algorithm, iterative shrinkage/thresholding algorithm, fast iterative soft-thresholding algorithm and the iterative thresholding algorithm using exponentially decreasing threshold, the proposed algorithm yields reconstructions with better edge recovery and noise suppression. Copyright © 2011 Elsevier Inc. All rights reserved.
Wang, Shuaiqun; Aorigele; Kong, Wei; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes.
Aorigele; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
Time series modeling by a regression approach based on a latent process.
Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice
2009-01-01
Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.
Vector Graph Assisted Pedestrian Dead Reckoning Using an Unconstrained Smartphone
Qian, Jiuchao; Pei, Ling; Ma, Jiabin; Ying, Rendong; Liu, Peilin
2015-01-01
The paper presents a hybrid indoor positioning solution based on a pedestrian dead reckoning (PDR) approach using built-in sensors on a smartphone. To address the challenges of flexible and complex contexts of carrying a phone while walking, a robust step detection algorithm based on motion-awareness has been proposed. Given the fact that step length is influenced by different motion states, an adaptive step length estimation algorithm based on motion recognition is developed. Heading estimation is carried out by an attitude acquisition algorithm, which contains a two-phase filter to mitigate the distortion of magnetic anomalies. In order to estimate the heading for an unconstrained smartphone, principal component analysis (PCA) of acceleration is applied to determine the offset between the orientation of smartphone and the actual heading of a pedestrian. Moreover, a particle filter with vector graph assisted particle weighting is introduced to correct the deviation in step length and heading estimation. Extensive field tests, including four contexts of carrying a phone, have been conducted in an office building to verify the performance of the proposed algorithm. Test results show that the proposed algorithm can achieve sub-meter mean error in all contexts. PMID:25738763
Fernández, Roemi; Salinas, Carlota; Montes, Héctor; Sarria, Javier
2014-01-01
The motivation of this research was to explore the feasibility of detecting and locating fruits from different kinds of crops in natural scenarios. To this end, a unique, modular and easily adaptable multisensory system and a set of associated pre-processing algorithms are proposed. The offered multisensory rig combines a high resolution colour camera and a multispectral system for the detection of fruits, as well as for the discrimination of the different elements of the plants, and a Time-Of-Flight (TOF) camera that provides fast acquisition of distances enabling the localisation of the targets in the coordinate space. A controlled lighting system completes the set-up, increasing its flexibility for being used in different working conditions. The pre-processing algorithms designed for the proposed multisensory system include a pixel-based classification algorithm that labels areas of interest that belong to fruits and a registration algorithm that combines the results of the aforementioned classification algorithm with the data provided by the TOF camera for the 3D reconstruction of the desired regions. Several experimental tests have been carried out in outdoors conditions in order to validate the capabilities of the proposed system. PMID:25615730
Capturing User Reading Behaviors for Personalized Document Summarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Songhua; Jiang, Hao; Lau, Francis
2011-01-01
We propose a new personalized document summarization method that observes a user's personal reading preferences. These preferences are inferred from the user's reading behaviors, including facial expressions, gaze positions, and reading durations that were captured during the user's past reading activities. We compare the performance of our algorithm with that of a few peer algorithms and software packages. The results of our comparative study show that our algorithm can produce more superior personalized document summaries than all the other methods in that the summaries generated by our algorithm can better satisfy a user's personal preferences.
Hybrid approach of selecting hyperparameters of support vector machine for regression.
Jeng, Jin-Tsong
2006-06-01
To select the hyperparameters of the support vector machine for regression (SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian kernel function and the epsilon value of Vapnik's epsilon-insensitive loss function. The proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm and a repeated SVR (RSVR) approach. Since the CA clustering algorithm is used to find the nearly "optimal" number of clusters and the centers of clusters in the clustering process, the CA clustering algorithm is applied to select the Gaussian kernel parameter. Additionally, an RSVR approach that relies on the standard deviation of a training error is proposed to obtain an epsilon in the loss function. Finally, two functions, one real data set (i.e., a time series of quarterly unemployment rate for West Germany) and an identification of nonlinear plant are used to verify the usefulness of the hybrid approach.
BgCut: automatic ship detection from UAV images.
Xu, Chao; Zhang, Dongping; Zhang, Zhengning; Feng, Zhiyong
2014-01-01
Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches.
NASA Astrophysics Data System (ADS)
Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek
2017-07-01
Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.
NASA Astrophysics Data System (ADS)
Lee, Nam-Jin; Kang, Chul-Goo
2016-10-01
In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.
BgCut: Automatic Ship Detection from UAV Images
Zhang, Zhengning; Feng, Zhiyong
2014-01-01
Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches. PMID:24977182
Testing the accuracy of redshift-space group-finding algorithms
NASA Astrophysics Data System (ADS)
Frederic, James J.
1995-04-01
Using simulated redshift surveys generated from a high-resolution N-body cosmological structure simulation, we study algorithms used to identify groups of galaxies in redshift space. Two algorithms are investigated; both are friends-of-friends schemes with variable linking lengths in the radial and transverse dimenisons. The chief difference between the algorithms is in the redshift linking length. The algorithm proposed by Huchra & Geller (1982) uses a generous linking length designed to find 'fingers of god,' while that of Nolthenius & White (1987) uses a smaller linking length to minimize contamination by projection. We find that neither of the algorithms studied is intrinsically superior to the other; rather, the ideal algorithm as well as the ideal algorithm parameters depends on the purpose for which groups are to be studied. The Huchra & Geller algorithm misses few real groups, at the cost of including some spurious groups and members, while the Nolthenius & White algorithm misses high velocity dispersion groups and members but is less likely to include interlopers in its group assignments. Adjusting the parameters of either algorithm results in a trade-off between group accuracy and completeness. In a companion paper we investigate the accuracy of virial mass estimates and clustering properties of groups identified using these algorithms.
Reinforcement learning algorithms for robotic navigation in dynamic environments.
Yen, Gary G; Hickey, Travis W
2004-04-01
The purpose of this study was to examine improvements to reinforcement learning (RL) algorithms in order to successfully interact within dynamic environments. The scope of the research was that of RL algorithms as applied to robotic navigation. Proposed improvements include: addition of a forgetting mechanism, use of feature based state inputs, and hierarchical structuring of an RL agent. Simulations were performed to evaluate the individual merits and flaws of each proposal, to compare proposed methods to prior established methods, and to compare proposed methods to theoretically optimal solutions. Incorporation of a forgetting mechanism did considerably improve the learning times of RL agents in a dynamic environment. However, direct implementation of a feature-based RL agent did not result in any performance enhancements, as pure feature-based navigation results in a lack of positional awareness, and the inability of the agent to determine the location of the goal state. Inclusion of a hierarchical structure in an RL agent resulted in significantly improved performance, specifically when one layer of the hierarchy included a feature-based agent for obstacle avoidance, and a standard RL agent for global navigation. In summary, the inclusion of a forgetting mechanism, and the use of a hierarchically structured RL agent offer substantially increased performance when compared to traditional RL agents navigating in a dynamic environment.
Automatic red eye correction and its quality metric
NASA Astrophysics Data System (ADS)
Safonov, Ilia V.; Rychagov, Michael N.; Kang, KiMin; Kim, Sang Ho
2008-01-01
The red eye artifacts are troublesome defect of amateur photos. Correction of red eyes during printing without user intervention and making photos more pleasant for an observer are important tasks. The novel efficient technique of automatic correction of red eyes aimed for photo printers is proposed. This algorithm is independent from face orientation and capable to detect paired red eyes as well as single red eyes. The approach is based on application of 3D tables with typicalness levels for red eyes and human skin tones and directional edge detection filters for processing of redness image. Machine learning is applied for feature selection. For classification of red eye regions a cascade of classifiers including Gentle AdaBoost committee from Classification and Regression Trees (CART) is applied. Retouching stage includes desaturation, darkening and blending with initial image. Several versions of approach implementation using trade-off between detection and correction quality, processing time, memory volume are possible. The numeric quality criterion of automatic red eye correction is proposed. This quality metric is constructed by applying Analytic Hierarchy Process (AHP) for consumer opinions about correction outcomes. Proposed numeric metric helped to choose algorithm parameters via optimization procedure. Experimental results demonstrate high accuracy and efficiency of the proposed algorithm in comparison with existing solutions.
Hardware-assisted software clock synchronization for homogeneous distributed systems
NASA Technical Reports Server (NTRS)
Ramanathan, P.; Kandlur, Dilip D.; Shin, Kang G.
1990-01-01
A clock synchronization scheme that strikes a balance between hardware and software solutions is proposed. The proposed is a software algorithm that uses minimal additional hardware to achieve reasonably tight synchronization. Unlike other software solutions, the guaranteed worst-case skews can be made insensitive to the maximum variation of message transit delay in the system. The scheme is particularly suitable for large partially connected distributed systems with topologies that support simple point-to-point broadcast algorithms. Examples of such topologies include the hypercube and the mesh interconnection structures.
A novel iterative scheme and its application to differential equations.
Khan, Yasir; Naeem, F; Šmarda, Zdeněk
2014-01-01
The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.
Huang, Hsuan-Ming; Hsiao, Ing-Tsung
2017-01-01
Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.
Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions
Maruthapillai, Vasanthan; Murugappan, Murugappan
2016-01-01
In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject’s face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject’s face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network. PMID:26859884
Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions.
Maruthapillai, Vasanthan; Murugappan, Murugappan
2016-01-01
In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.
Resolution-Adaptive Hybrid MIMO Architectures for Millimeter Wave Communications
NASA Astrophysics Data System (ADS)
Choi, Jinseok; Evans, Brian L.; Gatherer, Alan
2017-12-01
In this paper, we propose a hybrid analog-digital beamforming architecture with resolution-adaptive ADCs for millimeter wave (mmWave) receivers with large antenna arrays. We adopt array response vectors for the analog combiners and derive ADC bit-allocation (BA) solutions in closed form. The BA solutions reveal that the optimal number of ADC bits is logarithmically proportional to the RF chain's signal-to-noise ratio raised to the 1/3 power. Using the solutions, two proposed BA algorithms minimize the mean square quantization error of received analog signals under a total ADC power constraint. Contributions of this paper include 1) ADC bit-allocation algorithms to improve communication performance of a hybrid MIMO receiver, 2) approximation of the capacity with the BA algorithm as a function of channels, and 3) a worst-case analysis of the ergodic rate of the proposed MIMO receiver that quantifies system tradeoffs and serves as the lower bound. Simulation results demonstrate that the BA algorithms outperform a fixed-ADC approach in both spectral and energy efficiency, and validate the capacity and ergodic rate formula. For a power constraint equivalent to that of fixed 4-bit ADCs, the revised BA algorithm makes the quantization error negligible while achieving 22% better energy efficiency. Having negligible quantization error allows existing state-of-the-art digital beamformers to be readily applied to the proposed system.
Russian guidelines for the management of COPD: algorithm of pharmacologic treatment
Aisanov, Zaurbek; Avdeev, Sergey; Arkhipov, Vladimir; Belevskiy, Andrey; Chuchalin, Alexander; Leshchenko, Igor; Ovcharenko, Svetlana; Shmelev, Evgeny; Miravitlles, Marc
2018-01-01
The high prevalence of COPD together with its high level of misdiagnosis and late diagnosis dictate the necessity for the development and implementation of clinical practice guidelines (CPGs) in order to improve the management of this disease. High-quality, evidence-based international CPGs need to be adapted to the particular situation of each country or region. A new version of the Russian Respiratory Society guidelines released at the end of 2016 was based on the proposal by Global Initiative for Obstructive Lung Disease but adapted to the characteristics of the Russian health system and included an algorithm of pharmacologic treatment of COPD. The proposed algorithm had to comply with the requirements of the Russian Ministry of Health to be included into the unified electronic rubricator, which required a balance between the level of information and the simplicity of the graphic design. This was achieved by: exclusion of the initial diagnostic process, grouping together the common pharmacologic and nonpharmacologic measures for all patients, and the decision not to use the letters A–D for simplicity and clarity. At all stages of the treatment algorithm, efficacy and safety have to be carefully assessed. Escalation and de-escalation is possible in the case of lack of or insufficient efficacy or safety issues. Bronchodilators should not be discontinued except in the case of significant side effects. At the same time, inhaled corticosteroid (ICS) withdrawal is not represented in the algorithm, because it was agreed that there is insufficient evidence to establish clear criteria for ICSs discontinuation. Finally, based on the Global Initiative for Obstructive Lung Disease statement, the proposed algorithm reflects and summarizes different approaches to the pharmacological treatment of COPD taking into account the reality of health care in the Russian Federation. PMID:29386887
Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model.
Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai
2017-02-08
Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences.
Novel Hierarchical Fall Detection Algorithm Using a Multiphase Fall Model
Hsieh, Chia-Yeh; Liu, Kai-Chun; Huang, Chih-Ning; Chu, Woei-Chyn; Chan, Chia-Tai
2017-01-01
Falls are the primary cause of accidents for the elderly in the living environment. Reducing hazards in the living environment and performing exercises for training balance and muscles are the common strategies for fall prevention. However, falls cannot be avoided completely; fall detection provides an alarm that can decrease injuries or death caused by the lack of rescue. The automatic fall detection system has opportunities to provide real-time emergency alarms for improving the safety and quality of home healthcare services. Two common technical challenges are also tackled in order to provide a reliable fall detection algorithm, including variability and ambiguity. We propose a novel hierarchical fall detection algorithm involving threshold-based and knowledge-based approaches to detect a fall event. The threshold-based approach efficiently supports the detection and identification of fall events from continuous sensor data. A multiphase fall model is utilized, including free fall, impact, and rest phases for the knowledge-based approach, which identifies fall events and has the potential to deal with the aforementioned technical challenges of a fall detection system. Seven kinds of falls and seven types of daily activities arranged in an experiment are used to explore the performance of the proposed fall detection algorithm. The overall performances of the sensitivity, specificity, precision, and accuracy using a knowledge-based algorithm are 99.79%, 98.74%, 99.05% and 99.33%, respectively. The results show that the proposed novel hierarchical fall detection algorithm can cope with the variability and ambiguity of the technical challenges and fulfill the reliability, adaptability, and flexibility requirements of an automatic fall detection system with respect to the individual differences. PMID:28208694
Russian guidelines for the management of COPD: algorithm of pharmacologic treatment.
Aisanov, Zaurbek; Avdeev, Sergey; Arkhipov, Vladimir; Belevskiy, Andrey; Chuchalin, Alexander; Leshchenko, Igor; Ovcharenko, Svetlana; Shmelev, Evgeny; Miravitlles, Marc
2018-01-01
The high prevalence of COPD together with its high level of misdiagnosis and late diagnosis dictate the necessity for the development and implementation of clinical practice guidelines (CPGs) in order to improve the management of this disease. High-quality, evidence-based international CPGs need to be adapted to the particular situation of each country or region. A new version of the Russian Respiratory Society guidelines released at the end of 2016 was based on the proposal by Global Initiative for Obstructive Lung Disease but adapted to the characteristics of the Russian health system and included an algorithm of pharmacologic treatment of COPD. The proposed algorithm had to comply with the requirements of the Russian Ministry of Health to be included into the unified electronic rubricator, which required a balance between the level of information and the simplicity of the graphic design. This was achieved by: exclusion of the initial diagnostic process, grouping together the common pharmacologic and nonpharmacologic measures for all patients, and the decision not to use the letters A-D for simplicity and clarity. At all stages of the treatment algorithm, efficacy and safety have to be carefully assessed. Escalation and de-escalation is possible in the case of lack of or insufficient efficacy or safety issues. Bronchodilators should not be discontinued except in the case of significant side effects. At the same time, inhaled corticosteroid (ICS) withdrawal is not represented in the algorithm, because it was agreed that there is insufficient evidence to establish clear criteria for ICSs discontinuation. Finally, based on the Global Initiative for Obstructive Lung Disease statement, the proposed algorithm reflects and summarizes different approaches to the pharmacological treatment of COPD taking into account the reality of health care in the Russian Federation.
An EEG blind source separation algorithm based on a weak exclusion principle.
Lan Ma; Blu, Thierry; Wang, William S-Y
2016-08-01
The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.
A voting-based star identification algorithm utilizing local and global distribution
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua
2018-03-01
A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.
Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M
2014-05-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.
Mohamed, Ahmed F.; Elarini, Mahdi M.; Othman, Ahmed M.
2013-01-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt. PMID:25685507
An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation
NASA Astrophysics Data System (ADS)
Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi
A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.
Multichannel blind iterative image restoration.
Sroubek, Filip; Flusser, Jan
2003-01-01
Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks.
Savalia, Shalin; Emamian, Vahid
2018-05-04
The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.
An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters
NASA Astrophysics Data System (ADS)
Sheng, L.; Qian, S. Q.; Ye, Y. Q.; Wu, Y. H.
2017-09-01
In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-01-01
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices’ service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes’ life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN. PMID:26703619
Service-Aware Clustering: An Energy-Efficient Model for the Internet-of-Things.
Bagula, Antoine; Abidoye, Ademola Philip; Zodi, Guy-Alain Lusilao
2015-12-23
Current generation wireless sensor routing algorithms and protocols have been designed based on a myopic routing approach, where the motes are assumed to have the same sensing and communication capabilities. Myopic routing is not a natural fit for the IoT, as it may lead to energy imbalance and subsequent short-lived sensor networks, routing the sensor readings over the most service-intensive sensor nodes, while leaving the least active nodes idle. This paper revisits the issue of energy efficiency in sensor networks to propose a clustering model where sensor devices' service delivery is mapped into an energy awareness model, used to design a clustering algorithm that finds service-aware clustering (SAC) configurations in IoT settings. The performance evaluation reveals the relative energy efficiency of the proposed SAC algorithm compared to related routing algorithms in terms of energy consumption, the sensor nodes' life span and its traffic engineering efficiency in terms of throughput and delay. These include the well-known low energy adaptive clustering hierarchy (LEACH) and LEACH-centralized (LEACH-C) algorithms, as well as the most recent algorithms, such as DECSA and MOCRN.
On securing wireless sensor network--novel authentication scheme against DOS attacks.
Raja, K Nirmal; Beno, M Marsaline
2014-10-01
Wireless sensor networks are generally deployed for collecting data from various environments. Several applications specific sensor network cryptography algorithms have been proposed in research. However WSN's has many constrictions, including low computation capability, less memory, limited energy resources, vulnerability to physical capture, which enforce unique security challenges needs to make a lot of improvements. This paper presents a novel security mechanism and algorithm for wireless sensor network security and also an application of this algorithm. The proposed scheme is given to strong authentication against Denial of Service Attacks (DOS). The scheme is simulated using network simulator2 (NS2). Then this scheme is analyzed based on the network packet delivery ratio and found that throughput has improved.
NASA Astrophysics Data System (ADS)
Zhang, Tianzhen; Wang, Xiumei; Gao, Xinbo
2018-04-01
Nowadays, several datasets are demonstrated by multi-view, which usually include shared and complementary information. Multi-view clustering methods integrate the information of multi-view to obtain better clustering results. Nonnegative matrix factorization has become an essential and popular tool in clustering methods because of its interpretation. However, existing nonnegative matrix factorization based multi-view clustering algorithms do not consider the disagreement between views and neglects the fact that different views will have different contributions to the data distribution. In this paper, we propose a new multi-view clustering method, named adaptive multi-view clustering based on nonnegative matrix factorization and pairwise co-regularization. The proposed algorithm can obtain the parts-based representation of multi-view data by nonnegative matrix factorization. Then, pairwise co-regularization is used to measure the disagreement between views. There is only one parameter to auto learning the weight values according to the contribution of each view to data distribution. Experimental results show that the proposed algorithm outperforms several state-of-the-arts algorithms for multi-view clustering.
Online feature selection with streaming features.
Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan
2013-05-01
We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.
Data Reduction Algorithm Using Nonnegative Matrix Factorization with Nonlinear Constraints
NASA Astrophysics Data System (ADS)
Sembiring, Pasukat
2017-12-01
Processing ofdata with very large dimensions has been a hot topic in recent decades. Various techniques have been proposed in order to execute the desired information or structure. Non- Negative Matrix Factorization (NMF) based on non-negatives data has become one of the popular methods for shrinking dimensions. The main strength of this method is non-negative object, the object model by a combination of some basic non-negative parts, so as to provide a physical interpretation of the object construction. The NMF is a dimension reduction method thathasbeen used widely for numerous applications including computer vision,text mining, pattern recognitions,and bioinformatics. Mathematical formulation for NMF did not appear as a convex optimization problem and various types of algorithms have been proposed to solve the problem. The Framework of Alternative Nonnegative Least Square(ANLS) are the coordinates of the block formulation approaches that have been proven reliable theoretically and empirically efficient. This paper proposes a new algorithm to solve NMF problem based on the framework of ANLS.This algorithm inherits the convergenceproperty of the ANLS framework to nonlinear constraints NMF formulations.
NASA Astrophysics Data System (ADS)
Wang, Qingjie; Xin, Jingmin; Wu, Jiayi; Zheng, Nanning
2017-03-01
Microaneurysms are the earliest clinic signs of diabetic retinopathy, and many algorithms were developed for the automatic classification of these specific pathology. However, the imbalanced class distribution of dataset usually causes the classification accuracy of true microaneurysms be low. Therefore, by combining the borderline synthetic minority over-sampling technique (BSMOTE) with the data cleaning techniques such as Tomek links and Wilson's edited nearest neighbor rule (ENN) to resample the imbalanced dataset, we propose two new support vector machine (SVM) classification algorithms for the microaneurysms. The proposed BSMOTE-Tomek and BSMOTE-ENN algorithms consist of: 1) the adaptive synthesis of the minority samples in the neighborhood of the borderline, and 2) the remove of redundant training samples for improving the efficiency of data utilization. Moreover, the modified SVM classifier with probabilistic outputs is used to divide the microaneurysm candidates into two groups: true microaneurysms and false microaneurysms. The experiments with a public microaneurysms database shows that the proposed algorithms have better classification performance including the receiver operating characteristic (ROC) curve and the free-response receiver operating characteristic (FROC) curve.
Hyperspectral feature mapping classification based on mathematical morphology
NASA Astrophysics Data System (ADS)
Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli
2016-03-01
This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.
Novel cooperative neural fusion algorithms for image restoration and image fusion.
Xia, Youshen; Kamel, Mohamed S
2007-02-01
To deal with the problem of restoring degraded images with non-Gaussian noise, this paper proposes a novel cooperative neural fusion regularization (CNFR) algorithm for image restoration. Compared with conventional regularization algorithms for image restoration, the proposed CNFR algorithm can relax need of the optimal regularization parameter to be estimated. Furthermore, to enhance the quality of restored images, this paper presents a cooperative neural fusion (CNF) algorithm for image fusion. Compared with existing signal-level image fusion algorithms, the proposed CNF algorithm can greatly reduce the loss of contrast information under blind Gaussian noise environments. The performance analysis shows that the proposed two neural fusion algorithms can converge globally to the robust and optimal image estimate. Simulation results confirm that in different noise environments, the proposed two neural fusion algorithms can obtain a better image estimate than several well known image restoration and image fusion methods.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL.
Zhang, Tao; Chen, Liping; Li, Yao
2015-12-30
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV.
A hybrid algorithm for clustering of time series data based on affinity search technique.
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
A Hybrid Algorithm for Clustering of Time Series Data Based on Affinity Search Technique
Aghabozorgi, Saeed; Ying Wah, Teh; Herawan, Tutut; Jalab, Hamid A.; Shaygan, Mohammad Amin; Jalali, Alireza
2014-01-01
Time series clustering is an important solution to various problems in numerous fields of research, including business, medical science, and finance. However, conventional clustering algorithms are not practical for time series data because they are essentially designed for static data. This impracticality results in poor clustering accuracy in several systems. In this paper, a new hybrid clustering algorithm is proposed based on the similarity in shape of time series data. Time series data are first grouped as subclusters based on similarity in time. The subclusters are then merged using the k-Medoids algorithm based on similarity in shape. This model has two contributions: (1) it is more accurate than other conventional and hybrid approaches and (2) it determines the similarity in shape among time series data with a low complexity. To evaluate the accuracy of the proposed model, the model is tested extensively using syntactic and real-world time series datasets. PMID:24982966
A novel orthoimage mosaic method using the weighted A* algorithm for UAV imagery
NASA Astrophysics Data System (ADS)
Zheng, Maoteng; Zhou, Shunping; Xiong, Xiaodong; Zhu, Junfeng
2017-12-01
A weighted A* algorithm is proposed to select optimal seam-lines in orthoimage mosaic for UAV (Unmanned Aircraft Vehicle) imagery. The whole workflow includes four steps: the initial seam-line network is firstly generated by standard Voronoi Diagram algorithm; an edge diagram is then detected based on DSM (Digital Surface Model) data; the vertices (conjunction nodes) of initial network are relocated since some of them are on the high objects (buildings, trees and other artificial structures); and, the initial seam-lines are finally refined using the weighted A* algorithm based on the edge diagram and the relocated vertices. The method was tested with two real UAV datasets. Preliminary results show that the proposed method produces acceptable mosaic images in both the urban and mountainous areas, and is better than the result of the state-of-the-art methods on the datasets.
Filtering Airborne LIDAR Data by AN Improved Morphological Method Based on Multi-Gradient Analysis
NASA Astrophysics Data System (ADS)
Li, Y.
2013-05-01
The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR point clouds of complex landscapes, a novel morphological filtering algorithm is proposed based on multi-gradient analysis in terms of the characteristic of LIDAR data distribution in this paper. Firstly, point clouds are organized by an index mesh. Then, the multigradient of each point is calculated using the morphological method. And, objects are removed gradually by choosing some points to carry on an improved opening operation constrained by multi-gradient iteratively. 15 sample data provided by ISPRS Working Group III/3 are employed to test the filtering algorithm proposed. These sample data include those environments that may lead to filtering difficulty. Experimental results show that filtering algorithm proposed by this paper is of high adaptability to various scenes including urban and rural areas. Omission error, commission error and total error can be simultaneously controlled in a relatively small interval. This algorithm can efficiently remove object points while preserves ground points to a great degree.
A Hardware-Supported Algorithm for Self-Managed and Choreographed Task Execution in Sensor Networks.
Bordel, Borja; Miguel, Carlos; Alcarria, Ramón; Robles, Tomás
2018-03-07
Nowadays, sensor networks are composed of a great number of tiny resource-constraint nodes, whose management is increasingly more complex. In fact, although collaborative or choreographic task execution schemes are which fit in the most perfect way with the nature of sensor networks, they are rarely implemented because of the high resource consumption of these algorithms (especially if networks include many resource-constrained devices). On the contrary, hierarchical networks are usually designed, in whose cusp it is included a heavy orchestrator with a remarkable processing power, being able to implement any necessary management solution. However, although this orchestration approach solves most practical management problems of sensor networks, a great amount of the operation time is wasted while nodes request the orchestrator to address a conflict and they obtain the required instructions to operate. Therefore, in this paper it is proposed a new mechanism for self-managed and choreographed task execution in sensor networks. The proposed solution considers only a lightweight gateway instead of traditional heavy orchestrators and a hardware-supported algorithm, which consume a negligible amount of resources in sensor nodes. The gateway avoids the congestion of the entire sensor network and the hardware-supported algorithm enables a choreographed task execution scheme, so no particular node is overloaded. The performance of the proposed solution is evaluated through numerical and electronic ModelSim-based simulations.
A Hardware-Supported Algorithm for Self-Managed and Choreographed Task Execution in Sensor Networks
2018-01-01
Nowadays, sensor networks are composed of a great number of tiny resource-constraint nodes, whose management is increasingly more complex. In fact, although collaborative or choreographic task execution schemes are which fit in the most perfect way with the nature of sensor networks, they are rarely implemented because of the high resource consumption of these algorithms (especially if networks include many resource-constrained devices). On the contrary, hierarchical networks are usually designed, in whose cusp it is included a heavy orchestrator with a remarkable processing power, being able to implement any necessary management solution. However, although this orchestration approach solves most practical management problems of sensor networks, a great amount of the operation time is wasted while nodes request the orchestrator to address a conflict and they obtain the required instructions to operate. Therefore, in this paper it is proposed a new mechanism for self-managed and choreographed task execution in sensor networks. The proposed solution considers only a lightweight gateway instead of traditional heavy orchestrators and a hardware-supported algorithm, which consume a negligible amount of resources in sensor nodes. The gateway avoids the congestion of the entire sensor network and the hardware-supported algorithm enables a choreographed task execution scheme, so no particular node is overloaded. The performance of the proposed solution is evaluated through numerical and electronic ModelSim-based simulations. PMID:29518986
NASA Astrophysics Data System (ADS)
Ekin, Ahmet; Jasinschi, Radu; van der Grond, Jeroen; van Buchem, Mark A.; van Muiswinkel, Arianne
2006-03-01
This paper introduces image processing methods to automatically detect the 3D volume-of-interest (VOI) and 2D region-of-interest (ROI) for deep gray matter organs (thalamus, globus pallidus, putamen, and caudate nucleus) of patients with suspected iron deposition from MR dual echo images. Prior to the VOI and ROI detection, cerebrospinal fluid (CSF) region is segmented by a clustering algorithm. For the segmentation, we automatically determine the cluster centers with the mean shift algorithm that can quickly identify the modes of a distribution. After the identification of the modes, we employ the K-Harmonic means clustering algorithm to segment the volumetric MR data into CSF and non-CSF. Having the CSF mask and observing that the frontal lobe of the lateral ventricle has more consistent shape accross age and pathological abnormalities, we propose a shape-directed landmark detection algorithm to detect the VOI in a speedy manner. The proposed landmark detection algorithm utilizes a novel shape model of the front lobe of the lateral ventricle for the slices where thalamus, globus pallidus, putamen, and caudate nucleus are expected to appear. After this step, for each slice in the VOI, we use horizontal and vertical projections of the CSF map to detect the approximate locations of the relevant organs to define the ROI. We demonstrate the robustness of the proposed VOI and ROI localization algorithms to pathologies, including severe amounts of iron accumulation as well as white matter lesions, and anatomical variations. The proposed algorithms achieved very high detection accuracy, 100% in the VOI detection , over a large set of a challenging MR dataset.
Machine Learning Toolkit for Extreme Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-03-31
Support Vector Machines (SVM) is a popular machine learning technique, which has been applied to a wide range of domains such as science, finance, and social networks for supervised learning. MaTEx undertakes the challenge of designing a scalable parallel SVM training algorithm for large scale systems, which includes commodity multi-core machines, tightly connected supercomputers and cloud computing systems. Several techniques are proposed for improved speed and memory space usage including adaptive and aggressive elimination of samples for faster convergence , and sparse format representation of data samples. Several heuristics for earliest possible to lazy elimination of non-contributing samples are consideredmore » in MaTEx. In many cases, where an early sample elimination might result in a false positive, low overhead mechanisms for reconstruction of key data structures are proposed. The proposed algorithm and heuristics are implemented and evaluated on various publicly available datasets« less
Spherical gyroscopic moment stabilizer for attitude control of microsatellites
NASA Astrophysics Data System (ADS)
Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke
2018-02-01
This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.
Multifeature-based high-resolution palmprint recognition.
Dai, Jifeng; Zhou, Jie
2011-05-01
Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion
Dou, Qingxu; Wei, Lijun; Magee, Derek R.; Atkins, Phil R.; Chapman, David N.; Curioni, Giulio; Goddard, Kevin F.; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R.; Rustighi, Emiliano; Swingler, Steven G.; Rogers, Christopher D. F.; Cohn, Anthony G.
2016-01-01
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation. PMID:27827836
3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-Sensor Data Fusion.
Dou, Qingxu; Wei, Lijun; Magee, Derek R; Atkins, Phil R; Chapman, David N; Curioni, Giulio; Goddard, Kevin F; Hayati, Farzad; Jenks, Hugo; Metje, Nicole; Muggleton, Jennifer; Pennock, Steve R; Rustighi, Emiliano; Swingler, Steven G; Rogers, Christopher D F; Cohn, Anthony G
2016-11-02
We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post- and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed "multi-utility multi-sensor" system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.
Lane marking detection based on waveform analysis and CNN
NASA Astrophysics Data System (ADS)
Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li
2017-06-01
Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.
Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao
2017-01-01
Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858
NASA Astrophysics Data System (ADS)
Cha, J.; Ryu, J.; Lee, M.; Song, C.; Cho, Y.; Schumacher, P.; Mah, M.; Kim, D.
Conjunction prediction is one of the critical operations in space situational awareness (SSA). For geospace objects, common algorithms for conjunction prediction are usually based on all-pairwise check, spatial hash, or kd-tree. Computational load is usually reduced through some filters. However, there exists a good chance of missing potential collisions between space objects. We present a novel algorithm which both guarantees no missing conjunction and is efficient to answer to a variety of spatial queries including pairwise conjunction prediction. The algorithm takes only O(k log N) time for N objects in the worst case to answer conjunctions where k is a constant which is linear to prediction time length. The proposed algorithm, named DVD-COOP (Dynamic Voronoi Diagram-based Conjunctive Orbital Object Predictor), is based on the dynamic Voronoi diagram of moving spherical balls in 3D space. The algorithm has a preprocessing which consists of two steps: The construction of an initial Voronoi diagram (taking O(N) time on average) and the construction of a priority queue for the events of topology changes in the Voronoi diagram (taking O(N log N) time in the worst case). The scalability of the proposed algorithm is also discussed. We hope that the proposed Voronoi-approach will change the computational paradigm in spatial reasoning among space objects.
Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression
NASA Astrophysics Data System (ADS)
Cornejo-Bueno, L.; Casanova-Mateo, C.; Sanz-Justo, J.; Cerro-Prada, E.; Salcedo-Sanz, S.
2017-11-01
We address the prediction of low-visibility events at airports using machine-learning regression. The proposed model successfully forecasts low-visibility events in terms of the runway visual range at the airport, with the use of support-vector regression, neural networks (multi-layer perceptrons and extreme-learning machines) and Gaussian-process algorithms. We assess the performance of these algorithms based on real data collected at the Valladolid airport, Spain. We also propose a study of the atmospheric variables measured at a nearby tower related to low-visibility atmospheric conditions, since they are considered as the inputs of the different regressors. A pre-processing procedure of these input variables with wavelet transforms is also described. The results show that the proposed machine-learning algorithms are able to predict low-visibility events well. The Gaussian process is the best algorithm among those analyzed, obtaining over 98% of the correct classification rate in low-visibility events when the runway visual range is {>}1000 m, and about 80% under this threshold. The performance of all the machine-learning algorithms tested is clearly affected in extreme low-visibility conditions ({<}500 m). However, we show improved results of all the methods when data from a neighbouring meteorological tower are included, and also with a pre-processing scheme using a wavelet transform. Also presented are results of the algorithm performance in daytime and nighttime conditions, and for different prediction time horizons.
Efficient terrestrial laser scan segmentation exploiting data structure
NASA Astrophysics Data System (ADS)
Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa
2016-09-01
New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.
Model-based sphere localization (MBSL) in x-ray projections
NASA Astrophysics Data System (ADS)
Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc
2017-08-01
The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.
NASA Astrophysics Data System (ADS)
Ham, Woonchul; Song, Chulgyu
2017-05-01
In this paper, we propose a new three-dimensional stereo image reconstruction algorithm for a photoacoustic medical imaging system. We also introduce and discuss a new theoretical algorithm by using the physical concept of Radon transform. The main key concept of proposed theoretical algorithm is to evaluate the existence possibility of the acoustic source within a searching region by using the geometric distance between each sensor element of acoustic detector and the corresponding searching region denoted by grid. We derive the mathematical equation for the magnitude of the existence possibility which can be used for implementing a new proposed algorithm. We handle and derive mathematical equations of proposed algorithm for the one-dimensional sensing array case as well as two dimensional sensing array case too. A mathematical k-wave simulation data are used for comparing the image quality of the proposed algorithm with that of general conventional algorithm in which the FFT should be necessarily used. From the k-wave Matlab simulation results, we can prove the effectiveness of the proposed reconstruction algorithm.
ITO-based evolutionary algorithm to solve traveling salesman problem
NASA Astrophysics Data System (ADS)
Dong, Wenyong; Sheng, Kang; Yang, Chuanhua; Yi, Yunfei
2014-03-01
In this paper, a ITO algorithm inspired by ITO stochastic process is proposed for Traveling Salesmen Problems (TSP), so far, many meta-heuristic methods have been successfully applied to TSP, however, as a member of them, ITO needs further demonstration for TSP. So starting from designing the key operators, which include the move operator, wave operator, etc, the method based on ITO for TSP is presented, and moreover, the ITO algorithm performance under different parameter sets and the maintenance of population diversity information are also studied.
Ion flux through membrane channels--an enhanced algorithm for the Poisson-Nernst-Planck model.
Dyrka, Witold; Augousti, Andy T; Kotulska, Malgorzata
2008-09-01
A novel algorithmic scheme for numerical solution of the 3D Poisson-Nernst-Planck model is proposed. The algorithmic improvements are universal and independent of the detailed physical model. They include three major steps: an adjustable gradient-based step value, an adjustable relaxation coefficient, and an optimized segmentation of the modeled space. The enhanced algorithm significantly accelerates the speed of computation and reduces the computational demands. The theoretical model was tested on a regular artificial channel and validated on a real protein channel-alpha-hemolysin, proving its efficiency. (c) 2008 Wiley Periodicals, Inc.
An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations
NASA Astrophysics Data System (ADS)
Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan
2017-11-01
Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.
Interior search algorithm (ISA): a novel approach for global optimization.
Gandomi, Amir H
2014-07-01
This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Cryptanalysis of "an improvement over an image encryption method based on total shuffling"
NASA Astrophysics Data System (ADS)
Akhavan, A.; Samsudin, A.; Akhshani, A.
2015-09-01
In the past two decades, several image encryption algorithms based on chaotic systems had been proposed. Many of the proposed algorithms are meant to improve other chaos based and conventional cryptographic algorithms. Whereas, many of the proposed improvement methods suffer from serious security problems. In this paper, the security of the recently proposed improvement method for a chaos-based image encryption algorithm is analyzed. The results indicate the weakness of the analyzed algorithm against chosen plain-text.
A New Automated Design Method Based on Machine Learning for CMOS Analog Circuits
NASA Astrophysics Data System (ADS)
Moradi, Behzad; Mirzaei, Abdolreza
2016-11-01
A new simulation based automated CMOS analog circuit design method which applies a multi-objective non-Darwinian-type evolutionary algorithm based on Learnable Evolution Model (LEM) is proposed in this article. The multi-objective property of this automated design of CMOS analog circuits is governed by a modified Strength Pareto Evolutionary Algorithm (SPEA) incorporated in the LEM algorithm presented here. LEM includes a machine learning method such as the decision trees that makes a distinction between high- and low-fitness areas in the design space. The learning process can detect the right directions of the evolution and lead to high steps in the evolution of the individuals. The learning phase shortens the evolution process and makes remarkable reduction in the number of individual evaluations. The expert designer's knowledge on circuit is applied in the design process in order to reduce the design space as well as the design time. The circuit evaluation is made by HSPICE simulator. In order to improve the design accuracy, bsim3v3 CMOS transistor model is adopted in this proposed design method. This proposed design method is tested on three different operational amplifier circuits. The performance of this proposed design method is verified by comparing it with the evolutionary strategy algorithm and other similar methods.
Side-information-dependent correlation channel estimation in hash-based distributed video coding.
Deligiannis, Nikos; Barbarien, Joeri; Jacobs, Marc; Munteanu, Adrian; Skodras, Athanassios; Schelkens, Peter
2012-04-01
In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.
Accelerating k-NN Algorithm with Hybrid MPI and OpenSHMEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Hamidouche, Khaled; Zheng, Jie
2015-08-05
Machine Learning algorithms are benefiting from the continuous improvement of programming models, including MPI, MapReduce and PGAS. k-Nearest Neighbors (k-NN) algorithm is a widely used machine learning algorithm, applied to supervised learning tasks such as classification. Several parallel implementations of k-NN have been proposed in the literature and practice. However, on high-performance computing systems with high-speed interconnects, it is important to further accelerate existing designs of the k-NN algorithm through taking advantage of scalable programming models. To improve the performance of k-NN on large-scale environment with InfiniBand network, this paper proposes several alternative hybrid MPI+OpenSHMEM designs and performs a systemicmore » evaluation and analysis on typical workloads. The hybrid designs leverage the one-sided memory access to better overlap communication with computation than the existing pure MPI design, and propose better schemes for efficient buffer management. The implementation based on k-NN program from MaTEx with MVAPICH2-X (Unified MPI+PGAS Communication Runtime over InfiniBand) shows up to 9.0% time reduction for training KDD Cup 2010 workload over 512 cores, and 27.6% time reduction for small workload with balanced communication and computation. Experiments of running with varied number of cores show that our design can maintain good scalability.« less
Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm
NASA Astrophysics Data System (ADS)
Sun, Haisheng; Xu, Rui; Chen, Huaping
2018-04-01
To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.
NASA Astrophysics Data System (ADS)
Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun
2018-03-01
In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.
A modified genetic algorithm with fuzzy roulette wheel selection for job-shop scheduling problems
NASA Astrophysics Data System (ADS)
Thammano, Arit; Teekeng, Wannaporn
2015-05-01
The job-shop scheduling problem is one of the most difficult production planning problems. Since it is in the NP-hard class, a recent trend in solving the job-shop scheduling problem is shifting towards the use of heuristic and metaheuristic algorithms. This paper proposes a novel metaheuristic algorithm, which is a modification of the genetic algorithm. This proposed algorithm introduces two new concepts to the standard genetic algorithm: (1) fuzzy roulette wheel selection and (2) the mutation operation with tabu list. The proposed algorithm has been evaluated and compared with several state-of-the-art algorithms in the literature. The experimental results on 53 JSSPs show that the proposed algorithm is very effective in solving the combinatorial optimization problems. It outperforms all state-of-the-art algorithms on all benchmark problems in terms of the ability to achieve the optimal solution and the computational time.
An improved VSS NLMS algorithm for active noise cancellation
NASA Astrophysics Data System (ADS)
Sun, Yunzhuo; Wang, Mingjiang; Han, Yufei; Zhang, Congyan
2017-08-01
In this paper, an improved variable step size NLMS algorithm is proposed. NLMS has fast convergence rate and low steady state error compared to other traditional adaptive filtering algorithm. But there is a contradiction between the convergence speed and steady state error that affect the performance of the NLMS algorithm. Now, we propose a new variable step size NLMS algorithm. It dynamically changes the step size according to current error and iteration times. The proposed algorithm has simple formulation and easily setting parameters, and effectively solves the contradiction in NLMS. The simulation results show that the proposed algorithm has a good tracking ability, fast convergence rate and low steady state error simultaneously.
AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL
Zhang, Tao; Chen, Liping; Li, Yao
2015-01-01
This paper studies an underwater positioning algorithm based on the interactive assistance of a strapdown inertial navigation system (SINS) and LBL, and this algorithm mainly includes an optimal correlation algorithm with aided tracking of an SINS/Doppler velocity log (DVL)/magnetic compass pilot (MCP), a three-dimensional TDOA positioning algorithm of Taylor series expansion and a multi-sensor information fusion algorithm. The final simulation results show that compared to traditional underwater positioning algorithms, this scheme can not only directly correct accumulative errors caused by a dead reckoning algorithm, but also solves the problem of ambiguous correlation peaks caused by multipath transmission of underwater acoustic signals. The proposed method can calibrate the accumulative error of the AUV position more directly and effectively, which prolongs the underwater operating duration of the AUV. PMID:26729120
Skeletal maturity determination from hand radiograph by model-based analysis
NASA Astrophysics Data System (ADS)
Vogelsang, Frank; Kohnen, Michael; Schneider, Hansgerd; Weiler, Frank; Kilbinger, Markus W.; Wein, Berthold B.; Guenther, Rolf W.
2000-06-01
Derived from a model based segmentation algorithm for hand radiographs proposed in our former work we now present a method to determine skeletal maturity by an automated analysis of regions of interest (ROI). These ROIs including the epiphyseal and carpal bones, which are most important for skeletal maturity determination, can be extracted out of the radiograph by knowledge based algorithms.
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Deng, Xiao-Long
2016-04-01
In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.
Cellular neural networks, the Navier-Stokes equation, and microarray image reconstruction.
Zineddin, Bachar; Wang, Zidong; Liu, Xiaohui
2011-11-01
Although the last decade has witnessed a great deal of improvements achieved for the microarray technology, many major developments in all the main stages of this technology, including image processing, are still needed. Some hardware implementations of microarray image processing have been proposed in the literature and proved to be promising alternatives to the currently available software systems. However, the main drawback of those proposed approaches is the unsuitable addressing of the quantification of the gene spot in a realistic way without any assumption about the image surface. Our aim in this paper is to present a new image-reconstruction algorithm using the cellular neural network that solves the Navier-Stokes equation. This algorithm offers a robust method for estimating the background signal within the gene-spot region. The MATCNN toolbox for Matlab is used to test the proposed method. Quantitative comparisons are carried out, i.e., in terms of objective criteria, between our approach and some other available methods. It is shown that the proposed algorithm gives highly accurate and realistic measurements in a fully automated manner within a remarkably efficient time.
NASA Astrophysics Data System (ADS)
Le-Duc, Thang; Ho-Huu, Vinh; Nguyen-Thoi, Trung; Nguyen-Quoc, Hung
2016-12-01
In recent years, various types of magnetorheological brakes (MRBs) have been proposed and optimized by different optimization algorithms that are integrated in commercial software such as ANSYS and Comsol Multiphysics. However, many of these optimization algorithms often possess some noteworthy shortcomings such as the trap of solutions at local extremes, or the limited number of design variables or the difficulty of dealing with discrete design variables. Thus, to overcome these limitations and develop an efficient computation tool for optimal design of the MRBs, an optimization procedure that combines differential evolution (DE), a gradient-free global optimization method with finite element analysis (FEA) is proposed in this paper. The proposed approach is then applied to the optimal design of MRBs with different configurations including conventional MRBs and MRBs with coils placed on the side housings. Moreover, to approach a real-life design, some necessary design variables of MRBs are considered as discrete variables in the optimization process. The obtained optimal design results are compared with those of available optimal designs in the literature. The results reveal that the proposed method outperforms some traditional approaches.
Discovering the influential users oriented to viral marketing based on online social networks
NASA Astrophysics Data System (ADS)
Zhu, Zhiguo
2013-08-01
The target of viral marketing on the platform of popular online social networks is to rapidly propagate marketing information at lower cost and increase sales, in which a key problem is how to precisely discover the most influential users in the process of information diffusion. A novel method is proposed in this paper for helping companies to identify such users as seeds to maximize information diffusion in the viral marketing. Firstly, the user trust network oriented to viral marketing and users’ combined interest degree in the network including isolated users are extensively defined. Next, we construct a model considering the time factor to simulate the process of information diffusion in viral marketing and propose a dynamic algorithm description. Finally, experiments are conducted with a real dataset extracted from the famous SNS website Epinions. The experimental results indicate that the proposed algorithm has better scalability and is less time-consuming. Compared with the classical model, the proposed algorithm achieved a better performance than does the classical method on the two aspects of network coverage rate and time-consumption in our four sub-datasets.
Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence
Jaworek-Korjakowska, Joanna; Kłeczek, Paweł
2016-01-01
Background. Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. Method. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. Results. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. Conclusions. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision. PMID:26885520
Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.
Jaworek-Korjakowska, Joanna; Kłeczek, Paweł
2016-01-01
Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2012-01-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
A genetic algorithm for replica server placement
NASA Astrophysics Data System (ADS)
Eslami, Ghazaleh; Toroghi Haghighat, Abolfazl
2011-12-01
Modern distribution systems use replication to improve communication delay experienced by their clients. Some techniques have been developed for web server replica placement. One of the previous studies was Greedy algorithm proposed by Qiu et al, that needs knowledge about network topology. In This paper, first we introduce a genetic algorithm for web server replica placement. Second, we compare our algorithm with Greedy algorithm proposed by Qiu et al, and Optimum algorithm. We found that our approach can achieve better results than Greedy algorithm proposed by Qiu et al but it's computational time is more than Greedy algorithm.
Blind adaptive equalization of polarization-switched QPSK modulation.
Millar, David S; Savory, Seb J
2011-04-25
Coherent detection in combination with digital signal processing has recently enabled significant progress in the capacity of optical communications systems. This improvement has enabled detection of optimum constellations for optical signals in four dimensions. In this paper, we propose and investigate an algorithm for the blind adaptive equalization of one such modulation format: polarization-switched quaternary phase shift keying (PS-QPSK). The proposed algorithm, which includes both blind initialization and adaptation of the equalizer, is found to be insensitive to the input polarization state and demonstrates highly robust convergence in the presence of PDL, DGD and polarization rotation.
Benchmarking for Bayesian Reinforcement Learning
Ernst, Damien; Couëtoux, Adrien
2016-01-01
In the Bayesian Reinforcement Learning (BRL) setting, agents try to maximise the collected rewards while interacting with their environment while using some prior knowledge that is accessed beforehand. Many BRL algorithms have already been proposed, but the benchmarks used to compare them are only relevant for specific cases. The paper addresses this problem, and provides a new BRL comparison methodology along with the corresponding open source library. In this methodology, a comparison criterion that measures the performance of algorithms on large sets of Markov Decision Processes (MDPs) drawn from some probability distributions is defined. In order to enable the comparison of non-anytime algorithms, our methodology also includes a detailed analysis of the computation time requirement of each algorithm. Our library is released with all source code and documentation: it includes three test problems, each of which has two different prior distributions, and seven state-of-the-art RL algorithms. Finally, our library is illustrated by comparing all the available algorithms and the results are discussed. PMID:27304891
Benchmarking for Bayesian Reinforcement Learning.
Castronovo, Michael; Ernst, Damien; Couëtoux, Adrien; Fonteneau, Raphael
2016-01-01
In the Bayesian Reinforcement Learning (BRL) setting, agents try to maximise the collected rewards while interacting with their environment while using some prior knowledge that is accessed beforehand. Many BRL algorithms have already been proposed, but the benchmarks used to compare them are only relevant for specific cases. The paper addresses this problem, and provides a new BRL comparison methodology along with the corresponding open source library. In this methodology, a comparison criterion that measures the performance of algorithms on large sets of Markov Decision Processes (MDPs) drawn from some probability distributions is defined. In order to enable the comparison of non-anytime algorithms, our methodology also includes a detailed analysis of the computation time requirement of each algorithm. Our library is released with all source code and documentation: it includes three test problems, each of which has two different prior distributions, and seven state-of-the-art RL algorithms. Finally, our library is illustrated by comparing all the available algorithms and the results are discussed.
Segmentation of financial seals and its implementation on a DSP-based system
NASA Astrophysics Data System (ADS)
He, Jin; Liu, Tiegen; Guo, Jingjing; Zhang, Hao
2009-11-01
Automatic seal imprint identification is an important part of modern financial security. Accurate segmentation is the basis of correct identification. In this paper, a DSP (digital signal processor) based identification system was designed, and an adaptive algorithm was proposed to extract binary seal images from financial instruments. As the kernel of the identification system, a DSP chip of TMS320DM642 was used to implement image processing, controlling and coordinating works of each system module. The proposed algorithm consisted of three stages, including extraction of grayscale seal image, denoising and binarization. A grayscale seal image was extracted by color transform from a financial instrument image. Adaptive morphological operations were used to highlight details of the extracted grayscale seal image and smooth the background. After median filter for noise elimination, the filtered seal image was binarized by Otsu's method. The algorithm was developed based on the DSP development environment CCS and real-time operation system DSP/BIOS. To simplify the implementation of the proposed algorithm, the calibration of white balance and the coarse positioning of the seal imprint were implemented by TMS320DM642 controlling image acquisition. IMGLIB of TMS320DM642 was used for the efficiency improvement. The experiment result showed that financial seal imprints, even with intricate and dense strokes can be correctly segmented by the proposed algorithm. Adhesion and incompleteness distortions in the segmentation results were reduced, even when the original seal imprint had a poor quality.
Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-01-01
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100
Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-11-08
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.
Huang, Chengqiang; Yang, Youchang; Wu, Bo; Yu, Weize
2018-06-01
The sub-pixel arrangement of the RGBG panel and the image with RGB format are different and the algorithm that converts RGB to RGBG is urgently needed to display an image with RGB arrangement on the RGBG panel. However, the information loss is still large although color fringing artifacts are weakened in the published papers that study this conversion. In this paper, an RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error (EDMSE) is proposed. The main points of innovation include the following: (1) the edge detection is first proposed to distinguish image details with serious color fringing artifacts and image details which are prone to be lost in the process of RGB-RGBG conversion; (2) for image details with serious color fringing artifacts, the weighting factor 0.5 is applied to weaken the color fringing artifacts; and (3) for image details that are prone to be lost in the process of RGB-RGBG conversion, a special mechanism to minimize square error is proposed. The experiment shows that the color fringing artifacts are slightly improved by EDMSE, and the values of MSE of the image processed are 19.6% and 7% smaller than those of the image processed by the direct assignment and weighting factor algorithm, respectively. The proposed algorithm is implemented on a field programmable gate array to enable the image display on the RGBG panel.
NASA Astrophysics Data System (ADS)
Abdulghafoor, O. B.; Shaat, M. M. R.; Ismail, M.; Nordin, R.; Yuwono, T.; Alwahedy, O. N. A.
2017-05-01
In this paper, the problem of resource allocation in OFDM-based downlink cognitive radio (CR) networks has been proposed. The purpose of this research is to decrease the computational complexity of the resource allocation algorithm for downlink CR network while concerning the interference constraint of primary network. The objective has been secured by adopting pricing scheme to develop power allocation algorithm with the following concerns: (i) reducing the complexity of the proposed algorithm and (ii) providing firm power control to the interference introduced to primary users (PUs). The performance of the proposed algorithm is tested for OFDM- CRNs. The simulation results show that the performance of the proposed algorithm approached the performance of the optimal algorithm at a lower computational complexity, i.e., O(NlogN), which makes the proposed algorithm suitable for more practical applications.
NASA Astrophysics Data System (ADS)
Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.
2017-12-01
In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.
NASA Astrophysics Data System (ADS)
Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Cortesi, Marco
2018-02-01
The three-dimensional reconstruction of particle tracks in a time projection chamber is a challenging task that requires advanced classification and fitting algorithms. In this work, we have developed and implemented a novel algorithm based on the Random Sample Consensus Model (RANSAC). The RANSAC is used to classify tracks including pile-up, to remove uncorrelated noise hits, as well as to reconstruct the vertex of the reaction. The algorithm, developed within the Active Target Time Projection Chamber (AT-TPC) framework, was tested and validated by analyzing the 4He+4He reaction. Results, performance and quality of the proposed algorithm are presented and discussed in detail.
NASA Astrophysics Data System (ADS)
Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin
2017-04-01
An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.
2012-01-01
Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742
A learning approach to the bandwidth multicolouring problem
NASA Astrophysics Data System (ADS)
Akbari Torkestani, Javad
2016-05-01
In this article, a generalisation of the vertex colouring problem known as bandwidth multicolouring problem (BMCP), in which a set of colours is assigned to each vertex such that the difference between the colours, assigned to each vertex and its neighbours, is by no means less than a predefined threshold, is considered. It is shown that the proposed method can be applied to solve the bandwidth colouring problem (BCP) as well. BMCP is known to be NP-hard in graph theory, and so a large number of approximation solutions, as well as exact algorithms, have been proposed to solve it. In this article, two learning automata-based approximation algorithms are proposed for estimating a near-optimal solution to the BMCP. We show, for the first proposed algorithm, that by choosing a proper learning rate, the algorithm finds the optimal solution with a probability close enough to unity. Moreover, we compute the worst-case time complexity of the first algorithm for finding a 1/(1-ɛ) optimal solution to the given problem. The main advantage of this method is that a trade-off between the running time of algorithm and the colour set size (colouring optimality) can be made, by a proper choice of the learning rate also. Finally, it is shown that the running time of the proposed algorithm is independent of the graph size, and so it is a scalable algorithm for large graphs. The second proposed algorithm is compared with some well-known colouring algorithms and the results show the efficiency of the proposed algorithm in terms of the colour set size and running time of algorithm.
Multi-Excitation Magnetoacoustic Tomography with Magnetic Induction for Bioimpedance Imaging
Li, Xu; He, Bin
2011-01-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging approach proposed to conduct non-invasive electrical conductivity imaging of biological tissue with high spatial resolution. In the present study, based on the analysis of the relationship between the conductivity distribution and the generated MAT-MI acoustic source, we propose a new multi-excitation MAT-MI approach and the corresponding reconstruction algorithms. In the proposed method, multiple magnetic excitations using different coil configurations are employed and ultrasound measurements corresponding to each excitation are collected to derive the conductivity distribution inside the sample. A modified reconstruction algorithm is also proposed for the multi-excitation MAT-MI imaging approach when only limited bandwidth acoustic measurements are available. Computer simulation and phantom experiment studies have been done to demonstrate the merits of the proposed method. It is shown that if unlimited bandwidth acoustic data is available, we can accurately reconstruct the internal conductivity contrast of an object using the proposed method. With limited bandwidth data and the use of the modified algorithm we can reconstruct the relative conductivity contrast of an object instead of only boundaries at the conductivity heterogeneity. Benefits that come with this new method include better differentiation of tissue types with conductivity contrast using the MAT-MI approach, specifically for potential breast cancer screening application in the future. PMID:20529729
NASA Astrophysics Data System (ADS)
Sandhu, Amit
A sequential quadratic programming method is proposed for solving nonlinear optimal control problems subject to general path constraints including mixed state-control and state only constraints. The proposed algorithm further develops on the approach proposed in [1] with objective to eliminate the use of a high number of time intervals for arriving at an optimal solution. This is done by introducing an adaptive time discretization to allow formation of a desirable control profile without utilizing a lot of intervals. The use of fewer time intervals reduces the computation time considerably. This algorithm is further used in this thesis to solve a trajectory planning problem for higher elevation Mars landing.
An improved non-uniformity correction algorithm and its hardware implementation on FPGA
NASA Astrophysics Data System (ADS)
Rong, Shenghui; Zhou, Huixin; Wen, Zhigang; Qin, Hanlin; Qian, Kun; Cheng, Kuanhong
2017-09-01
The Non-uniformity of Infrared Focal Plane Arrays (IRFPA) severely degrades the infrared image quality. An effective non-uniformity correction (NUC) algorithm is necessary for an IRFPA imaging and application system. However traditional scene-based NUC algorithm suffers the image blurring and artificial ghosting. In addition, few effective hardware platforms have been proposed to implement corresponding NUC algorithms. Thus, this paper proposed an improved neural-network based NUC algorithm by the guided image filter and the projection-based motion detection algorithm. First, the guided image filter is utilized to achieve the accurate desired image to decrease the artificial ghosting. Then a projection-based moving detection algorithm is utilized to determine whether the correction coefficients should be updated or not. In this way the problem of image blurring can be overcome. At last, an FPGA-based hardware design is introduced to realize the proposed NUC algorithm. A real and a simulated infrared image sequences are utilized to verify the performance of the proposed algorithm. Experimental results indicated that the proposed NUC algorithm can effectively eliminate the fix pattern noise with less image blurring and artificial ghosting. The proposed hardware design takes less logic elements in FPGA and spends less clock cycles to process one frame of image.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Limitations and requirements of content-based multimedia authentication systems
NASA Astrophysics Data System (ADS)
Wu, Chai W.
2001-08-01
Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.
Statistics based sampling for controller and estimator design
NASA Astrophysics Data System (ADS)
Tenne, Dirk
The purpose of this research is the development of statistical design tools for robust feed-forward/feedback controllers and nonlinear estimators. This dissertation is threefold and addresses the aforementioned topics nonlinear estimation, target tracking and robust control. To develop statistically robust controllers and nonlinear estimation algorithms, research has been performed to extend existing techniques, which propagate the statistics of the state, to achieve higher order accuracy. The so-called unscented transformation has been extended to capture higher order moments. Furthermore, higher order moment update algorithms based on a truncated power series have been developed. The proposed techniques are tested on various benchmark examples. Furthermore, the unscented transformation has been utilized to develop a three dimensional geometrically constrained target tracker. The proposed planar circular prediction algorithm has been developed in a local coordinate framework, which is amenable to extension of the tracking algorithm to three dimensional space. This tracker combines the predictions of a circular prediction algorithm and a constant velocity filter by utilizing the Covariance Intersection. This combined prediction can be updated with the subsequent measurement using a linear estimator. The proposed technique is illustrated on a 3D benchmark trajectory, which includes coordinated turns and straight line maneuvers. The third part of this dissertation addresses the design of controller which include knowledge of parametric uncertainties and their distributions. The parameter distributions are approximated by a finite set of points which are calculated by the unscented transformation. This set of points is used to design robust controllers which minimize a statistical performance of the plant over the domain of uncertainty consisting of a combination of the mean and variance. The proposed technique is illustrated on three benchmark problems. The first relates to the design of prefilters for a linear and nonlinear spring-mass-dashpot system and the second applies a feedback controller to a hovering helicopter. Lastly, the statistical robust controller design is devoted to a concurrent feed-forward/feedback controller structure for a high-speed low tension tape drive.
Modified artificial bee colony algorithm for reactive power optimization
NASA Astrophysics Data System (ADS)
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Applications of modern statistical methods to analysis of data in physical science
NASA Astrophysics Data System (ADS)
Wicker, James Eric
Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.
Chen, Yung-Yue
2018-05-08
Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.
Chen, C P; Wan, J Z
1999-01-01
A fast learning algorithm is proposed to find an optimal weights of the flat neural networks (especially, the functional-link network). Although the flat networks are used for nonlinear function approximation, they can be formulated as linear systems. Thus, the weights of the networks can be solved easily using a linear least-square method. This formulation makes it easier to update the weights instantly for both a new added pattern and a new added enhancement node. A dynamic stepwise updating algorithm is proposed to update the weights of the system on-the-fly. The model is tested on several time-series data including an infrared laser data set, a chaotic time-series, a monthly flour price data set, and a nonlinear system identification problem. The simulation results are compared to existing models in which more complex architectures and more costly training are needed. The results indicate that the proposed model is very attractive to real-time processes.
A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances
NASA Astrophysics Data System (ADS)
Xian, Bin; Zhang, Yao
2016-06-01
In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.
Development of a Guide-Dog Robot: Leading and Recognizing a Visually-Handicapped Person using a LRF
NASA Astrophysics Data System (ADS)
Saegusa, Shozo; Yasuda, Yuya; Uratani, Yoshitaka; Tanaka, Eiichirou; Makino, Toshiaki; Chang, Jen-Yuan (James
A conceptual Guide-Dog Robot prototype to lead and to recognize a visually-handicapped person is developed and discussed in this paper. Key design features of the robot include a movable platform, human-machine interface, and capability of avoiding obstacles. A novel algorithm enabling the robot to recognize its follower's locomotion as well to detect the center of corridor is proposed and implemented in the robot's human-machine interface. It is demonstrated that using the proposed novel leading and detecting algorithm along with a rapid scanning laser range finder (LRF) sensor, the robot is able to successfully and effectively lead a human walking in corridor without running into obstacles such as trash boxes or adjacent walking persons. Position and trajectory of the robot leading a human maneuvering in common corridor environment are measured by an independent LRF observer. The measured data suggest that the proposed algorithms are effective to enable the robot to detect center of the corridor and position of its follower correctly.
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
Robust crop and weed segmentation under uncontrolled outdoor illumination.
Jeon, Hong Y; Tian, Lei F; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA).
NASA Astrophysics Data System (ADS)
Dash, Rajashree
2017-11-01
Forecasting purchasing power of one currency with respect to another currency is always an interesting topic in the field of financial time series prediction. Despite the existence of several traditional and computational models for currency exchange rate forecasting, there is always a need for developing simpler and more efficient model, which will produce better prediction capability. In this paper, an evolutionary framework is proposed by using an improved shuffled frog leaping (ISFL) algorithm with a computationally efficient functional link artificial neural network (CEFLANN) for prediction of currency exchange rate. The model is validated by observing the monthly prediction measures obtained for three currency exchange data sets such as USD/CAD, USD/CHF, and USD/JPY accumulated within same period of time. The model performance is also compared with two other evolutionary learning techniques such as Shuffled frog leaping algorithm and Particle Swarm optimization algorithm. Practical analysis of results suggest that, the proposed model developed using the ISFL algorithm with CEFLANN network is a promising predictor model for currency exchange rate prediction compared to other models included in the study.
Chin, Wei-Chien-Benny; Wen, Tzai-Hung
2015-01-01
A network approach, which simplifies geographic settings as a form of nodes and links, emphasizes the connectivity and relationships of spatial features. Topological networks of spatial features are used to explore geographical connectivity and structures. The PageRank algorithm, a network metric, is often used to help identify important locations where people or automobiles concentrate in the geographical literature. However, geographic considerations, including proximity and location attractiveness, are ignored in most network metrics. The objective of the present study is to propose two geographically modified PageRank algorithms-Distance-Decay PageRank (DDPR) and Geographical PageRank (GPR)-that incorporate geographic considerations into PageRank algorithms to identify the spatial concentration of human movement in a geospatial network. Our findings indicate that in both intercity and within-city settings the proposed algorithms more effectively capture the spatial locations where people reside than traditional commonly-used network metrics. In comparing location attractiveness and distance decay, we conclude that the concentration of human movement is largely determined by the distance decay. This implies that geographic proximity remains a key factor in human mobility.
Medical retirement from sport after concussions
Davis-Hayes, Cecilia; Baker, David R.; Bottiglieri, Thomas S.; Levine, William N.; Desai, Natasha; Gossett, James D.
2018-01-01
Purpose of review In patients with a considerable history of sports-related concussion, the decision of when to discontinue participation in sports due to medical concerns including neurologic disorders has potentially life-altering consequences, especially for young athletes, and merits a comprehensive evaluation involving nuanced discussion. Few resources exist to aid the sports medicine provider. Recent findings In this narrative review, we describe 10 prototypical vignettes based upon the authors' collective experience in concussion management and propose an algorithm to help clinicians navigate retirement discussions. Issues for consideration include absolute and relative contraindications to return to sport, ranging from clinical or radiographic evidence of lasting neurologic injury to prolonged concussion recovery periods or reduced injury threshold to patient-centered factors including personal identity through sport, financial motivations, and navigating uncertainty in the context of long-term risks. Summary The authors propose a novel treatment algorithm based on real patient cases to guide medical retirement decisions after concussion in sport. PMID:29517059
NASA Astrophysics Data System (ADS)
Bae, Kyung-hoon; Park, Changhan; Kim, Eun-soo
2008-03-01
In this paper, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (ASDA) is for realtime 3-dimensional (3D) processing proposed. The proposed algorithm can reduce processing time of disparity estimation by selecting adaptive disparity search range. Also, the proposed algorithm can increase the quality of the 3D imaging. That is, by adaptively predicting the mutual correlation between stereo images pair using the proposed algorithm, the bandwidth of stereo input images pair can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and disparity vectors. From some experiments, stereo sequences of 'Pot Plant' and 'IVO', it is shown that the proposed algorithm improves the PSNRs of a reconstructed image to about 4.8 dB by comparing with that of conventional algorithms, and reduces the Synthesizing time of a reconstructed image to about 7.02 sec by comparing with that of conventional algorithms.
Iterative Nonlocal Total Variation Regularization Method for Image Restoration
Xu, Huanyu; Sun, Quansen; Luo, Nan; Cao, Guo; Xia, Deshen
2013-01-01
In this paper, a Bregman iteration based total variation image restoration algorithm is proposed. Based on the Bregman iteration, the algorithm splits the original total variation problem into sub-problems that are easy to solve. Moreover, non-local regularization is introduced into the proposed algorithm, and a method to choose the non-local filter parameter locally and adaptively is proposed. Experiment results show that the proposed algorithms outperform some other regularization methods. PMID:23776560
Fast clustering using adaptive density peak detection.
Wang, Xiao-Feng; Xu, Yifan
2017-12-01
Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.
A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots.
Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il Dan
2016-03-01
This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%.
NASA Astrophysics Data System (ADS)
Roozegar, M.; Angeles, J.
2018-05-01
In light of the current low energy-storage capacity of electric batteries, multi-speed transmissions (MSTs) are being considered for applications in electric vehicles (EVs), since MSTs decrease the energy consumption of the EV via gear-shifting. Nonetheless, swiftness and seamlessness are the major concerns in gear-shifting. This study focuses on developing a gear-shifting control scheme for a novel MST designed for EVs. The main advantages of the proposed MST are simplicity and modularity. Firstly, the dynamics model of the transmission is formulated. Then, a two-phase algorithm is proposed for shifting between each two gear ratios, which guarantees a smooth and swift shift. In other words, a separate control set is applied for shifting between each gear pair, which includes two independent PID controllers, tuned using trial-and-error and a genetic algorithm (GA), for the two steps of the algorithm and a switch. A supervisory controller is also employed to choose the proper PID gains, called PID gain-scheduling. Simulation results for various controllers and conditions are reported and compared, indicating that the proposed scheme is highly promising for a desired gear-shifting even in the presence of an unknown external disturbance.
Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita
2016-04-01
Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.
A noniterative greedy algorithm for multiframe point correspondence.
Shafique, Khurram; Shah, Mubarak
2005-01-01
This paper presents a framework for finding point correspondences in monocular image sequences over multiple frames. The general problem of multiframe point correspondence is NP-hard for three or more frames. A polynomial time algorithm for a restriction of this problem is presented and is used as the basis of the proposed greedy algorithm for the general problem. The greedy nature of the proposed algorithm allows it to be used in real-time systems for tracking and surveillance, etc. In addition, the proposed algorithm deals with the problems of occlusion, missed detections, and false positives by using a single noniterative greedy optimization scheme and, hence, reduces the complexity of the overall algorithm as compared to most existing approaches where multiple heuristics are used for the same purpose. While most greedy algorithms for point tracking do not allow for entry and exit of the points from the scene, this is not a limitation for the proposed algorithm. Experiments with real and synthetic data over a wide range of scenarios and system parameters are presented to validate the claims about the performance of the proposed algorithm.
Simultaneous and semi-alternating projection algorithms for solving split equality problems.
Dong, Qiao-Li; Jiang, Dan
2018-01-01
In this article, we first introduce two simultaneous projection algorithms for solving the split equality problem by using a new choice of the stepsize, and then propose two semi-alternating projection algorithms. The weak convergence of the proposed algorithms is analyzed under standard conditions. As applications, we extend the results to solve the split feasibility problem. Finally, a numerical example is presented to illustrate the efficiency and advantage of the proposed algorithms.
An image compression survey and algorithm switching based on scene activity
NASA Technical Reports Server (NTRS)
Hart, M. M.
1985-01-01
Data compression techniques are presented. A description of these techniques is provided along with a performance evaluation. The complexity of the hardware resulting from their implementation is also addressed. The compression effect on channel distortion and the applicability of these algorithms to real-time processing are presented. Also included is a proposed new direction for an adaptive compression technique for real-time processing.
Optimization Techniques for Clustering,Connectivity, and Flow Problems in Complex Networks
2012-10-01
discrete optimization and for analysis of performance of algorithm portfolios; introducing a metaheuristic framework of variable objective search that...The results of empirical evaluation of the proposed algorithm are also included. 1.3 Theoretical analysis of heuristics and designing new metaheuristic ...analysis of heuristics for inapproximable problems and designing new metaheuristic approaches for the problems of interest; (IV) Developing new models
Runtime support for parallelizing data mining algorithms
NASA Astrophysics Data System (ADS)
Jin, Ruoming; Agrawal, Gagan
2002-03-01
With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement
Hao, Yansong; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-01-01
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency. PMID:29597280
A Sparsity-Promoted Method Based on Majorization-Minimization for Weak Fault Feature Enhancement.
Ren, Bangyue; Hao, Yansong; Wang, Huaqing; Song, Liuyang; Tang, Gang; Yuan, Hongfang
2018-03-28
Fault transient impulses induced by faulty components in rotating machinery usually contain substantial interference. Fault features are comparatively weak in the initial fault stage, which renders fault diagnosis more difficult. In this case, a sparse representation method based on the Majorzation-Minimization (MM) algorithm is proposed to enhance weak fault features and extract the features from strong background noise. However, the traditional MM algorithm suffers from two issues, which are the choice of sparse basis and complicated calculations. To address these challenges, a modified MM algorithm is proposed in which a sparse optimization objective function is designed firstly. Inspired by the Basis Pursuit (BP) model, the optimization function integrates an impulsive feature-preserving factor and a penalty function factor. Second, a modified Majorization iterative method is applied to address the convex optimization problem of the designed function. A series of sparse coefficients can be achieved through iterating, which only contain transient components. It is noteworthy that there is no need to select the sparse basis in the proposed iterative method because it is fixed as a unit matrix. Then the reconstruction step is omitted, which can significantly increase detection efficiency. Eventually, envelope analysis of the sparse coefficients is performed to extract weak fault features. Simulated and experimental signals including bearings and gearboxes are employed to validate the effectiveness of the proposed method. In addition, comparisons are made to prove that the proposed method outperforms the traditional MM algorithm in terms of detection results and efficiency.
Computation of nonparametric convex hazard estimators via profile methods.
Jankowski, Hanna K; Wellner, Jon A
2009-05-01
This paper proposes a profile likelihood algorithm to compute the nonparametric maximum likelihood estimator of a convex hazard function. The maximisation is performed in two steps: First the support reduction algorithm is used to maximise the likelihood over all hazard functions with a given point of minimum (or antimode). Then it is shown that the profile (or partially maximised) likelihood is quasi-concave as a function of the antimode, so that a bisection algorithm can be applied to find the maximum of the profile likelihood, and hence also the global maximum. The new algorithm is illustrated using both artificial and real data, including lifetime data for Canadian males and females.
Pant, Jeevan K; Krishnan, Sridhar
2014-04-01
A new algorithm for the reconstruction of electrocardiogram (ECG) signals and a dictionary learning algorithm for the enhancement of its reconstruction performance for a class of signals are proposed. The signal reconstruction algorithm is based on minimizing the lp pseudo-norm of the second-order difference, called as the lp(2d) pseudo-norm, of the signal. The optimization involved is carried out using a sequential conjugate-gradient algorithm. The dictionary learning algorithm uses an iterative procedure wherein a signal reconstruction and a dictionary update steps are repeated until a convergence criterion is satisfied. The signal reconstruction step is implemented by using the proposed signal reconstruction algorithm and the dictionary update step is implemented by using the linear least-squares method. Extensive simulation results demonstrate that the proposed algorithm yields improved reconstruction performance for temporally correlated ECG signals relative to the state-of-the-art lp(1d)-regularized least-squares and Bayesian learning based algorithms. Also for a known class of signals, the reconstruction performance of the proposed algorithm can be improved by applying it in conjunction with a dictionary obtained using the proposed dictionary learning algorithm.
Automated mammographic breast density estimation using a fully convolutional network.
Lee, Juhun; Nishikawa, Robert M
2018-03-01
The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.
Design optimisation of powers-of-two FIR filter using self-organising random immigrants GA
NASA Astrophysics Data System (ADS)
Chandra, Abhijit; Chattopadhyay, Sudipta
2015-01-01
In this communication, we propose a novel design strategy of multiplier-less low-pass finite impulse response (FIR) filter with the aid of a recent evolutionary optimisation technique, known as the self-organising random immigrants genetic algorithm. Individual impulse response coefficients of the proposed filter have been encoded as sum of signed powers-of-two. During the formulation of the cost function for the optimisation algorithm, both the frequency response characteristic and the hardware cost of the discrete coefficient FIR filter have been considered. The role of crossover probability of the optimisation technique has been evaluated on the overall performance of the proposed strategy. For this purpose, the convergence characteristic of the optimisation technique has been included in the simulation results. In our analysis, two design examples of different specifications have been taken into account. In order to substantiate the efficiency of our proposed structure, a number of state-of-the-art design strategies of multiplier-less FIR filter have also been included in this article for the purpose of comparison. Critical analysis of the result unambiguously establishes the usefulness of our proposed approach for the hardware efficient design of digital filter.
Efficient FFT Algorithm for Psychoacoustic Model of the MPEG-4 AAC
NASA Astrophysics Data System (ADS)
Lee, Jae-Seong; Lee, Chang-Joon; Park, Young-Cheol; Youn, Dae-Hee
This paper proposes an efficient FFT algorithm for the Psycho-Acoustic Model (PAM) of MPEG-4 AAC. The proposed algorithm synthesizes FFT coefficients using MDCT and MDST coefficients through circular convolution. The complexity of the MDCT and MDST coefficients is approximately half of the original FFT. We also design a new PAM based on the proposed FFT algorithm, which has 15% lower computational complexity than the original PAM without degradation of sound quality. Subjective as well as objective test results are presented to confirm the efficiency of the proposed FFT computation algorithm and the PAM.
Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.
Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen
2015-04-01
In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.
Sinha, S K; Karray, F
2002-01-01
Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.
A contourlet transform based algorithm for real-time video encoding
NASA Astrophysics Data System (ADS)
Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris
2012-06-01
In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.
Rashno, Abdolreza; Koozekanani, Dara D; Drayna, Paul M; Nazari, Behzad; Sadri, Saeed; Rabbani, Hossein; Parhi, Keshab K
2018-05-01
This paper presents a fully automated algorithm to segment fluid-associated (fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based shortest path method. In neutrosophic domain, an image is transformed into three sets: (true), (indeterminate) that represents noise, and (false). This paper makes four key contributions. First, a new method is introduced to compute the indeterminacy set , and a new -correction operation is introduced to compute the set in neutrosophic domain. Second, a graph shortest-path method is applied in neutrosophic domain to segment the inner limiting membrane and the retinal pigment epithelium as regions of interest (ROI) and outer plexiform layer and inner segment myeloid as middle layers using a novel definition of the edge weights . Third, a new cost function for cluster-based fluid/cyst segmentation in ROI is presented which also includes a novel approach in estimating the number of clusters in an automated manner. Fourth, the final fluid regions are achieved by ignoring very small regions and the regions between middle layers. The proposed method is evaluated using two publicly available datasets: Duke, Optima, and a third local dataset from the UMN clinic which is available online. The proposed algorithm outperforms the previously proposed Duke algorithm by 8% with respect to the dice coefficient and by 5% with respect to precision on the Duke dataset, while achieving about the same sensitivity. Also, the proposed algorithm outperforms a prior method for Optima dataset by 6%, 22%, and 23% with respect to the dice coefficient, sensitivity, and precision, respectively. Finally, the proposed algorithm also achieves sensitivity of 67.3%, 88.8%, and 76.7%, for the Duke, Optima, and the university of minnesota (UMN) datasets, respectively.
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659
Mixed raster content (MRC) model for compound image compression
NASA Astrophysics Data System (ADS)
de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming
1998-12-01
This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyer, M. D.; Andre, R.; Gates, D. A.
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, amore » flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.« less
NASA Astrophysics Data System (ADS)
Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.
2017-09-01
Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.
NASA Astrophysics Data System (ADS)
Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.
2015-05-01
The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.
Multi-sensor image fusion algorithm based on multi-objective particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Xie, Xia-zhu; Xu, Ya-wei
2017-11-01
On the basis of DT-CWT (Dual-Tree Complex Wavelet Transform - DT-CWT) theory, an approach based on MOPSO (Multi-objective Particle Swarm Optimization Algorithm) was proposed to objectively choose the fused weights of low frequency sub-bands. High and low frequency sub-bands were produced by DT-CWT. Absolute value of coefficients was adopted as fusion rule to fuse high frequency sub-bands. Fusion weights in low frequency sub-bands were used as particles in MOPSO. Spatial Frequency and Average Gradient were adopted as two kinds of fitness functions in MOPSO. The experimental result shows that the proposed approach performances better than Average Fusion and fusion methods based on local variance and local energy respectively in brightness, clarity and quantitative evaluation which includes Entropy, Spatial Frequency, Average Gradient and QAB/F.
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
2014-01-01
Background Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage. Methods A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm’s robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods. Results Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage. Conclusions Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues. PMID:24521154
Automatic detection of ECG cable interchange by analyzing both morphology and interlead relations.
Han, Chengzong; Gregg, Richard E; Feild, Dirk Q; Babaeizadeh, Saeed
2014-01-01
ECG cable interchange can generate erroneous diagnoses. For algorithms detecting ECG cable interchange, high specificity is required to maintain a low total false positive rate because the prevalence of interchange is low. In this study, we propose and evaluate an improved algorithm for automatic detection and classification of ECG cable interchange. The algorithm was developed by using both ECG morphology information and redundancy information. ECG morphology features included QRS-T and P-wave amplitude, frontal axis and clockwise vector loop rotation. The redundancy features were derived based on the EASI™ lead system transformation. The classification was implemented using linear support vector machine. The development database came from multiple sources including both normal subjects and cardiac patients. An independent database was used to test the algorithm performance. Common cable interchanges were simulated by swapping either limb cables or precordial cables. For the whole validation database, the overall sensitivity and specificity for detecting precordial cable interchange were 56.5% and 99.9%, and the sensitivity and specificity for detecting limb cable interchange (excluding left arm-left leg interchange) were 93.8% and 99.9%. Defining precordial cable interchange or limb cable interchange as a single positive event, the total false positive rate was 0.7%. When the algorithm was designed for higher sensitivity, the sensitivity for detecting precordial cable interchange increased to 74.6% and the total false positive rate increased to 2.7%, while the sensitivity for detecting limb cable interchange was maintained at 93.8%. The low total false positive rate was maintained at 0.6% for the more abnormal subset of the validation database including only hypertrophy and infarction patients. The proposed algorithm can detect and classify ECG cable interchanges with high specificity and low total false positive rate, at the cost of decreased sensitivity for certain precordial cable interchanges. The algorithm could also be configured for higher sensitivity for different applications where a lower specificity can be tolerated. Copyright © 2014 Elsevier Inc. All rights reserved.
Two-level structural sparsity regularization for identifying lattices and defects in noisy images
Li, Xin; Belianinov, Alex; Dyck, Ondrej E.; ...
2018-03-09
Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less
Two-level structural sparsity regularization for identifying lattices and defects in noisy images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Belianinov, Alex; Dyck, Ondrej E.
Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less
NASA Astrophysics Data System (ADS)
Yu, Jian; Yin, Qian; Guo, Ping; Luo, A.-li
2014-09-01
This paper presents an efficient method for the extraction of astronomical spectra from two-dimensional (2D) multifibre spectrographs based on the regularized least-squares QR-factorization (LSQR) algorithm. We address two issues: we propose a modified Gaussian point spread function (PSF) for modelling the 2D PSF from multi-emission-line gas-discharge lamp images (arc images), and we develop an efficient deconvolution method to extract spectra in real circumstances. The proposed modified 2D Gaussian PSF model can fit various types of 2D PSFs, including different radial distortion angles and ellipticities. We adopt the regularized LSQR algorithm to solve the sparse linear equations constructed from the sparse convolution matrix, which we designate the deconvolution spectrum extraction method. Furthermore, we implement a parallelized LSQR algorithm based on graphics processing unit programming in the Compute Unified Device Architecture to accelerate the computational processing. Experimental results illustrate that the proposed extraction method can greatly reduce the computational cost and memory use of the deconvolution method and, consequently, increase its efficiency and practicability. In addition, the proposed extraction method has a stronger noise tolerance than other methods, such as the boxcar (aperture) extraction and profile extraction methods. Finally, we present an analysis of the sensitivity of the extraction results to the radius and full width at half-maximum of the 2D PSF.
An improved least cost routing approach for WDM optical network without wavelength converters
NASA Astrophysics Data System (ADS)
Bonani, Luiz H.; Forghani-elahabad, Majid
2016-12-01
Routing and wavelength assignment (RWA) problem has been an attractive problem in optical networks, and consequently several algorithms have been proposed in the literature to solve this problem. The most known techniques for the dynamic routing subproblem are fixed routing, fixed-alternate routing, and adaptive routing methods. The first one leads to a high blocking probability (BP) and the last one includes a high computational complexity and requires immense backing from the control and management protocols. The second one suggests a trade-off between performance and complexity, and hence we consider it to improve in our work. In fact, considering the RWA problem in a wavelength routed optical network with no wavelength converter, an improved technique is proposed for the routing subproblem in order to decrease the BP of the network. Based on fixed-alternate approach, the first k shortest paths (SPs) between each node pair is determined. We then rearrange the SPs according to a newly defined cost for the links and paths. Upon arriving a connection request, the sorted paths are consecutively checked for an available wavelength according to the most-used technique. We implement our proposed algorithm and the least-hop fixed-alternate algorithm to show how the rearrangement of SPs contributes to a lower BP in the network. The numerical results demonstrate the efficiency of our proposed algorithm in comparison with the others, considering different number of available wavelengths.
A constrained joint source/channel coder design and vector quantization of nonstationary sources
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.
1993-01-01
The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
NASA Astrophysics Data System (ADS)
Wang, Fu; Liu, Bo; Zhang, Lijia; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun
2017-07-01
Elastic software-defined optical networks greatly improve the flexibility of the optical switching network while it has brought challenges to the routing and spectrum assignment (RSA). A multilayer virtual topology model is proposed to solve RSA problems. Two RSA algorithms based on the virtual topology are proposed, which are the ant colony optimization (ACO) algorithm of minimum consecutiveness loss and the ACO algorithm of maximum spectrum consecutiveness. Due to the computing power of the control layer in the software-defined network, the routing algorithm avoids the frequent link-state information between routers. Based on the effect of the spectrum consecutiveness loss on the pheromone in the ACO, the path and spectrum of the minimal impact on the network are selected for the service request. The proposed algorithms have been compared with other algorithms. The results show that the proposed algorithms can reduce the blocking rate by at least 5% and perform better in spectrum efficiency. Moreover, the proposed algorithms can effectively decrease spectrum fragmentation and enhance available spectrum consecutiveness.
An Improved Perturb and Observe Algorithm for Photovoltaic Motion Carriers
NASA Astrophysics Data System (ADS)
Peng, Lele; Xu, Wei; Li, Liming; Zheng, Shubin
2018-03-01
An improved perturbation and observation algorithm for photovoltaic motion carriers is proposed in this paper. The model of the proposed algorithm is given by using Lambert W function and tangent error method. Moreover, by using matlab and experiment of photovoltaic system, the tracking performance of the proposed algorithm is tested. And the results demonstrate that the improved algorithm has fast tracking speed and high efficiency. Furthermore, the energy conversion efficiency by the improved method has increased by nearly 8.2%.
Detection of dominant flow and abnormal events in surveillance video
NASA Astrophysics Data System (ADS)
Kwak, Sooyeong; Byun, Hyeran
2011-02-01
We propose an algorithm for abnormal event detection in surveillance video. The proposed algorithm is based on a semi-unsupervised learning method, a kind of feature-based approach so that it does not detect the moving object individually. The proposed algorithm identifies dominant flow without individual object tracking using a latent Dirichlet allocation model in crowded environments. It can also automatically detect and localize an abnormally moving object in real-life video. The performance tests are taken with several real-life databases, and their results show that the proposed algorithm can efficiently detect abnormally moving objects in real time. The proposed algorithm can be applied to any situation in which abnormal directions or abnormal speeds are detected regardless of direction.
Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing
2016-03-03
This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.
NASA Astrophysics Data System (ADS)
Bagherzadeh, Seyed Amin; Asadi, Davood
2017-05-01
In search of a precise method for analyzing nonlinear and non-stationary flight data of an aircraft in the icing condition, an Empirical Mode Decomposition (EMD) algorithm enhanced by multi-objective optimization is introduced. In the proposed method, dissimilar IMF definitions are considered by the Genetic Algorithm (GA) in order to find the best decision parameters of the signal trend. To resolve disadvantages of the classical algorithm caused by the envelope concept, the signal trend is estimated directly in the proposed method. Furthermore, in order to simplify the performance and understanding of the EMD algorithm, the proposed method obviates the need for a repeated sifting process. The proposed enhanced EMD algorithm is verified by some benchmark signals. Afterwards, the enhanced algorithm is applied to simulated flight data in the icing condition in order to detect the ice assertion on the aircraft. The results demonstrate the effectiveness of the proposed EMD algorithm in aircraft ice detection by providing a figure of merit for the icing severity.
Noisy image magnification with total variation regularization and order-changed dictionary learning
NASA Astrophysics Data System (ADS)
Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi
2015-12-01
Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.
NASA Astrophysics Data System (ADS)
Zhou, Yali; Zhang, Qizhi; Yin, Yixin
2015-05-01
In this paper, active control of impulsive noise with symmetric α-stable (SαS) distribution is studied. A general step-size normalized filtered-x Least Mean Square (FxLMS) algorithm is developed based on the analysis of existing algorithms, and the Gaussian distribution function is used to normalize the step size. Compared with existing algorithms, the proposed algorithm needs neither the parameter selection and thresholds estimation nor the process of cost function selection and complex gradient computation. Computer simulations have been carried out to suggest that the proposed algorithm is effective for attenuating SαS impulsive noise, and then the proposed algorithm has been implemented in an experimental ANC system. Experimental results show that the proposed scheme has good performance for SαS impulsive noise attenuation.
Classification-Based Spatial Error Concealment for Visual Communications
NASA Astrophysics Data System (ADS)
Chen, Meng; Zheng, Yefeng; Wu, Min
2006-12-01
In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.
Efficient fractal-based mutation in evolutionary algorithms from iterated function systems
NASA Astrophysics Data System (ADS)
Salcedo-Sanz, S.; Aybar-Ruíz, A.; Camacho-Gómez, C.; Pereira, E.
2018-03-01
In this paper we present a new mutation procedure for Evolutionary Programming (EP) approaches, based on Iterated Function Systems (IFSs). The new mutation procedure proposed consists of considering a set of IFS which are able to generate fractal structures in a two-dimensional phase space, and use them to modify a current individual of the EP algorithm, instead of using random numbers from different probability density functions. We test this new proposal in a set of benchmark functions for continuous optimization problems. In this case, we compare the proposed mutation against classical Evolutionary Programming approaches, with mutations based on Gaussian, Cauchy and chaotic maps. We also include a discussion on the IFS-based mutation in a real application of Tuned Mass Dumper (TMD) location and optimization for vibration cancellation in buildings. In both practical cases, the proposed EP with the IFS-based mutation obtained extremely competitive results compared to alternative classical mutation operators.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng
2018-01-01
Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Fuzzy logic-based approach to detecting a passive RFID tag in an outpatient clinic.
Min, Daiki; Yih, Yuehwern
2011-06-01
This study is motivated by the observations on the data collected by radio frequency identification (RFID) readers in a pilot study, which was used to investigate the feasibility of implementing an RFID-based monitoring system in an outpatient eye clinic. The raw RFID data collected from RFID readers contain noise and missing reads, which prevent us from determining the tag location. In this paper, fuzzy logic-based algorithms are proposed to interpret the raw RFID data to extract accurate information. The proposed algorithms determine the location of an RFID tag by evaluating its possibility of presence and absence. To evaluate the performance of the proposed algorithms, numerical experiments are conducted using the data observed in the outpatient eye clinic. Experiments results showed that the proposed algorithms outperform existing static smoothing method in terms of minimizing both false positives and false negatives. Furthermore, the proposed algorithms are applied to a set of simulated data to show the robustness of the proposed algorithms at various levels of RFID reader reliability.
2007-09-17
been proposed; these include a combination of variable fidelity models, parallelisation strategies and hybridisation techniques (Coello, Veldhuizen et...Coello et al (Coello, Veldhuizen et al. 2002). 4.4.2 HIERARCHICAL POPULATION TOPOLOGY A hierarchical population topology, when integrated into...to hybrid parallel Multi-Objective Evolutionary Algorithms (pMOEA) (Cantu-Paz 2000; Veldhuizen , Zydallis et al. 2003); it uses a master slave
Fast Algorithms for Mining Co-evolving Time Series
2011-09-01
Keogh et al., 2001, 2004] and (b) forecasting, like an autoregressive integrated moving average model ( ARIMA ) and related meth- ods [Box et al., 1994...computing hardware? We develop models to mine time series with missing values, to extract compact representation from time sequences, to segment the...sequences, and to do forecasting. For large scale data, we propose algorithms for learning time series models , in particular, including Linear Dynamical
Locomotion with loads: practical techniques for predicting performance outcomes
including load), speed, and grade algorithms proposed will allow walking metabolic rates to be predicted to within 6.0 and 12.0 in laboratory and field...speeds to be predicted to within6.0 in both laboratory and field settings. Respective load-carriage algorithms for walking energy expenditure and...running speed will be developed and tested( Technical Objectives 1.0 and 2.0) in the laboratory and the field.
Experiences with serial and parallel algorithms for channel routing using simulated annealing
NASA Technical Reports Server (NTRS)
Brouwer, Randall Jay
1988-01-01
Two algorithms for channel routing using simulated annealing are presented. Simulated annealing is an optimization methodology which allows the solution process to back up out of local minima that may be encountered by inappropriate selections. By properly controlling the annealing process, it is very likely that the optimal solution to an NP-complete problem such as channel routing may be found. The algorithm presented proposes very relaxed restrictions on the types of allowable transformations, including overlapping nets. By freeing that restriction and controlling overlap situations with an appropriate cost function, the algorithm becomes very flexible and can be applied to many extensions of channel routing. The selection of the transformation utilizes a number of heuristics, still retaining the pseudorandom nature of simulated annealing. The algorithm was implemented as a serial program for a workstation, and a parallel program designed for a hypercube computer. The details of the serial implementation are presented, including many of the heuristics used and some of the resulting solutions.
Removal of impulse noise clusters from color images with local order statistics
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima. PMID:28634487
Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search.
Huang, Xingwang; Zeng, Xuewen; Han, Rui
2017-01-01
Binary bat algorithm (BBA) is a binary version of the bat algorithm (BA). It has been proven that BBA is competitive compared to other binary heuristic algorithms. Since the update processes of velocity in the algorithm are consistent with BA, in some cases, this algorithm also faces the premature convergence problem. This paper proposes an improved binary bat algorithm (IBBA) to solve this problem. To evaluate the performance of IBBA, standard benchmark functions and zero-one knapsack problems have been employed. The numeric results obtained by benchmark functions experiment prove that the proposed approach greatly outperforms the original BBA and binary particle swarm optimization (BPSO). Compared with several other heuristic algorithms on zero-one knapsack problems, it also verifies that the proposed algorithm is more able to avoid local minima.
Shading correction assisted iterative cone-beam CT reconstruction
NASA Astrophysics Data System (ADS)
Yang, Chunlin; Wu, Pengwei; Gong, Shutao; Wang, Jing; Lyu, Qihui; Tang, Xiangyang; Niu, Tianye
2017-11-01
Recent advances in total variation (TV) technology enable accurate CT image reconstruction from highly under-sampled and noisy projection data. The standard iterative reconstruction algorithms, which work well in conventional CT imaging, fail to perform as expected in cone beam CT (CBCT) applications, wherein the non-ideal physics issues, including scatter and beam hardening, are more severe. These physics issues result in large areas of shading artifacts and cause deterioration to the piecewise constant property assumed in reconstructed images. To overcome this obstacle, we incorporate a shading correction scheme into low-dose CBCT reconstruction and propose a clinically acceptable and stable three-dimensional iterative reconstruction method that is referred to as the shading correction assisted iterative reconstruction. In the proposed method, we modify the TV regularization term by adding a shading compensation image to the reconstructed image to compensate for the shading artifacts while leaving the data fidelity term intact. This compensation image is generated empirically, using image segmentation and low-pass filtering, and updated in the iterative process whenever necessary. When the compensation image is determined, the objective function is minimized using the fast iterative shrinkage-thresholding algorithm accelerated on a graphic processing unit. The proposed method is evaluated using CBCT projection data of the Catphan© 600 phantom and two pelvis patients. Compared with the iterative reconstruction without shading correction, the proposed method reduces the overall CT number error from around 200 HU to be around 25 HU and increases the spatial uniformity by a factor of 20 percent, given the same number of sparsely sampled projections. A clinically acceptable and stable iterative reconstruction algorithm for CBCT is proposed in this paper. Differing from the existing algorithms, this algorithm incorporates a shading correction scheme into the low-dose CBCT reconstruction and achieves more stable optimization path and more clinically acceptable reconstructed image. The method proposed by us does not rely on prior information and thus is practically attractive to the applications of low-dose CBCT imaging in the clinic.
Registration algorithm of point clouds based on multiscale normal features
NASA Astrophysics Data System (ADS)
Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua
2015-01-01
The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.
Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking.
Xiao, Ruoxiu; Yang, Jian; Goyal, Mahima; Liu, Yue; Wang, Yongtian
2013-01-01
As the uneven distribution of contrast agents and the perspective projection principle of X-ray, the vasculatures in angiographic image are with low contrast and are generally superposed with other organic tissues; therefore, it is very difficult to identify the vasculature and quantitatively estimate the blood flow directly from angiographic images. In this paper, we propose a fully automatic algorithm named adaptive geometrical vessel tracking (AGVT) for coronary artery identification in X-ray angiograms. Initially, the ridge enhancement (RE) image is obtained utilizing multiscale Hessian information. Then, automatic initialization procedures including seed points detection, and initial directions determination are performed on the RE image. The extracted ridge points can be adjusted to the geometrical centerline points adaptively through diameter estimation. Bifurcations are identified by discriminating connecting relationship of the tracked ridge points. Finally, all the tracked centerlines are merged and smoothed by classifying the connecting components on the vascular structures. Synthetic angiographic images and clinical angiograms are used to evaluate the performance of the proposed algorithm. The proposed algorithm is compared with other two vascular tracking techniques in terms of the efficiency and accuracy, which demonstrate successful applications of the proposed segmentation and extraction scheme in vasculature identification.
Poisson image reconstruction with Hessian Schatten-norm regularization.
Lefkimmiatis, Stamatios; Unser, Michael
2013-11-01
Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.
An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.
Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin
2016-12-01
Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.
Feature Screening in Ultrahigh Dimensional Cox's Model.
Yang, Guangren; Yu, Ye; Li, Runze; Buu, Anne
Survival data with ultrahigh dimensional covariates such as genetic markers have been collected in medical studies and other fields. In this work, we propose a feature screening procedure for the Cox model with ultrahigh dimensional covariates. The proposed procedure is distinguished from the existing sure independence screening (SIS) procedures (Fan, Feng and Wu, 2010, Zhao and Li, 2012) in that the proposed procedure is based on joint likelihood of potential active predictors, and therefore is not a marginal screening procedure. The proposed procedure can effectively identify active predictors that are jointly dependent but marginally independent of the response without performing an iterative procedure. We develop a computationally effective algorithm to carry out the proposed procedure and establish the ascent property of the proposed algorithm. We further prove that the proposed procedure possesses the sure screening property. That is, with the probability tending to one, the selected variable set includes the actual active predictors. We conduct Monte Carlo simulation to evaluate the finite sample performance of the proposed procedure and further compare the proposed procedure and existing SIS procedures. The proposed methodology is also demonstrated through an empirical analysis of a real data example.
Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.
Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height
NASA Astrophysics Data System (ADS)
Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang
2018-02-01
This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.
Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.
Borbély, Bence J; Szolgay, Péter
2017-01-17
Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.
An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.
K, Manasa; Channappayya, Sumohana S
2016-06-01
We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.
Cooperative optimization and their application in LDPC codes
NASA Astrophysics Data System (ADS)
Chen, Ke; Rong, Jian; Zhong, Xiaochun
2008-10-01
Cooperative optimization is a new way for finding global optima of complicated functions of many variables. The proposed algorithm is a class of message passing algorithms and has solid theory foundations. It can achieve good coding gains over the sum-product algorithm for LDPC codes. For (6561, 4096) LDPC codes, the proposed algorithm can achieve 2.0 dB gains over the sum-product algorithm at BER of 4×10-7. The decoding complexity of the proposed algorithm is lower than the sum-product algorithm can do; furthermore, the former can achieve much lower error floor than the latter can do after the Eb / No is higher than 1.8 dB.
NASA Astrophysics Data System (ADS)
Wei, Jun; Jiang, Guo-Qing; Liu, Xin
2017-09-01
This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.
Schoenberg, Mike R; Lange, Rael T; Saklofske, Donald H
2007-11-01
Establishing a comparison standard in neuropsychological assessment is crucial to determining change in function. There is no available method to estimate premorbid intellectual functioning for the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). The WISC-IV provided normative data for both American and Canadian children aged 6 to 16 years old. This study developed regression algorithms as a proposed method to estimate full-scale intelligence quotient (FSIQ) for the Canadian WISC-IV. Participants were the Canadian WISC-IV standardization sample (n = 1,100). The sample was randomly divided into two groups (development and validation groups). The development group was used to generate regression algorithms; 1 algorithm only included demographics, and 11 combined demographic variables with WISC-IV subtest raw scores. The algorithms accounted for 18% to 70% of the variance in FSIQ (standard error of estimate, SEE = 8.6 to 14.2). Estimated FSIQ significantly correlated with actual FSIQ (r = .30 to .80), and the majority of individual FSIQ estimates were within +/-10 points of actual FSIQ. The demographic-only algorithm was less accurate than algorithms combining demographic variables with subtest raw scores. The current algorithms yielded accurate estimates of current FSIQ for Canadian individuals aged 6-16 years old. The potential application of the algorithms to estimate premorbid FSIQ is reviewed. While promising, clinical validation of the algorithms in a sample of children and/or adolescents with known neurological dysfunction is needed to establish these algorithms as a premorbid estimation procedure.
NASA Technical Reports Server (NTRS)
Schultz, Howard
1990-01-01
The retrieval algorithm for spaceborne scatterometry proposed by Schultz (1985) is extended. A circular median filter (CMF) method is presented, which operates on wind directions independently of wind speed, removing any implicit wind speed dependence. A cell weighting scheme is included in the algorithm, permitting greater weights to be assigned to more reliable data. The mathematical properties of the ambiguous solutions to the wind retrieval problem are reviewed. The CMF algorithm is tested on twelve simulated data sets. The effects of spatially correlated likelihood assignment errors on the performance of the CMF algorithm are examined. Also, consideration is given to a wind field smoothing technique that uses a CMF.
Document localization algorithms based on feature points and straight lines
NASA Astrophysics Data System (ADS)
Skoryukina, Natalya; Shemiakina, Julia; Arlazarov, Vladimir L.; Faradjev, Igor
2018-04-01
The important part of the system of a planar rectangular object analysis is the localization: the estimation of projective transform from template image of an object to its photograph. The system also includes such subsystems as the selection and recognition of text fields, the usage of contexts etc. In this paper three localization algorithms are described. All algorithms use feature points and two of them also analyze near-horizontal and near- vertical lines on the photograph. The algorithms and their combinations are tested on a dataset of real document photographs. Also the method of localization quality estimation is proposed that allows configuring the localization subsystem independently of the other subsystems quality.
Ho, ThienLuan; Oh, Seung-Rohk
2017-01-01
Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700
Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination
Jeon, Hong Y.; Tian, Lei F.; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA). PMID:22163954
Bouc-Wen hysteresis model identification using Modified Firefly Algorithm
NASA Astrophysics Data System (ADS)
Zaman, Mohammad Asif; Sikder, Urmita
2015-12-01
The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.
Adaptive kernel regression for freehand 3D ultrasound reconstruction
NASA Astrophysics Data System (ADS)
Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen
2017-03-01
Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.
Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Zhao, Xiaohui; Liang, Cong; Ding, Xu
2017-01-01
In cognitive radio (CR) systems, reasonable power allocation can increase transmission rate of CR users or secondary users (SUs) as much as possible and at the same time insure normal communication among primary users (PUs). This study proposes an optimal power allocation scheme for the OFDM-based CR system with one SU influenced by multiple PU interference constraints. This scheme is based on an improved artificial fish swarm (IAFS) algorithm in combination with the advantage of conventional artificial fish swarm (ASF) algorithm and particle swarm optimisation (PSO) algorithm. In performance comparison of IAFS algorithm with other intelligent algorithms by simulations, the superiority of the IAFS algorithm is illustrated; this superiority results in better performance of our proposed scheme than that of the power allocation algorithms proposed by the previous studies in the same scenario. Furthermore, our proposed scheme can obtain higher transmission data rate under the multiple PU interference constraints and the total power constraint of SU than that of the other mentioned works.
FIVQ algorithm for interference hyper-spectral image compression
NASA Astrophysics Data System (ADS)
Wen, Jia; Ma, Caiwen; Zhao, Junsuo
2014-07-01
Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.
Novel and efficient tag SNPs selection algorithms.
Chen, Wen-Pei; Hung, Che-Lun; Tsai, Suh-Jen Jane; Lin, Yaw-Ling
2014-01-01
SNPs are the most abundant forms of genetic variations amongst species; the association studies between complex diseases and SNPs or haplotypes have received great attention. However, these studies are restricted by the cost of genotyping all SNPs; thus, it is necessary to find smaller subsets, or tag SNPs, representing the rest of the SNPs. In fact, the existing tag SNP selection algorithms are notoriously time-consuming. An efficient algorithm for tag SNP selection was presented, which was applied to analyze the HapMap YRI data. The experimental results show that the proposed algorithm can achieve better performance than the existing tag SNP selection algorithms; in most cases, this proposed algorithm is at least ten times faster than the existing methods. In many cases, when the redundant ratio of the block is high, the proposed algorithm can even be thousands times faster than the previously known methods. Tools and web services for haplotype block analysis integrated by hadoop MapReduce framework are also developed using the proposed algorithm as computation kernels.
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.
Range image registration based on hash map and moth-flame optimization
NASA Astrophysics Data System (ADS)
Zou, Li; Ge, Baozhen; Chen, Lei
2018-03-01
Over the past decade, evolutionary algorithms (EAs) have been introduced to solve range image registration problems because of their robustness and high precision. However, EA-based range image registration algorithms are time-consuming. To reduce the computational time, an EA-based range image registration algorithm using hash map and moth-flame optimization is proposed. In this registration algorithm, a hash map is used to avoid over-exploitation in registration process. Additionally, we present a search equation that is better at exploration and a restart mechanism to avoid being trapped in local minima. We compare the proposed registration algorithm with the registration algorithms using moth-flame optimization and several state-of-the-art EA-based registration algorithms. The experimental results show that the proposed algorithm has a lower computational cost than other algorithms and achieves similar registration precision.
The global Minmax k-means algorithm.
Wang, Xiaoyan; Bai, Yanping
2016-01-01
The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter
NASA Astrophysics Data System (ADS)
Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.
2018-04-01
Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.
Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng
2015-01-01
The non-sugar solids (NSS) content is one of the most important nutrition indicators of Chinese rice wine. This study proposed a rapid method for the measurement of NSS content in Chinese rice wine using near infrared (NIR) spectroscopy. We also systemically studied the efficient spectral variables selection algorithms that have to go through modeling. A new algorithm of synergy interval partial least square with competitive adaptive reweighted sampling (Si-CARS-PLS) was proposed for modeling. The performance of the final model was back-evaluated using root mean square error of calibration (RMSEC) and correlation coefficient (Rc) in calibration set and similarly tested by mean square error of prediction (RMSEP) and correlation coefficient (Rp) in prediction set. The optimum model by Si-CARS-PLS algorithm was achieved when 7 PLS factors and 18 variables were included, and the results were as follows: Rc=0.95 and RMSEC=1.12 in the calibration set, Rp=0.95 and RMSEP=1.22 in the prediction set. In addition, Si-CARS-PLS algorithm showed its superiority when compared with the commonly used algorithms in multivariate calibration. This work demonstrated that NIR spectroscopy technique combined with a suitable multivariate calibration algorithm has a high potential in rapid measurement of NSS content in Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.
Becker, H; Albera, L; Comon, P; Nunes, J-C; Gribonval, R; Fleureau, J; Guillotel, P; Merlet, I
2017-08-15
Over the past decades, a multitude of different brain source imaging algorithms have been developed to identify the neural generators underlying the surface electroencephalography measurements. While most of these techniques focus on determining the source positions, only a small number of recently developed algorithms provides an indication of the spatial extent of the distributed sources. In a recent comparison of brain source imaging approaches, the VB-SCCD algorithm has been shown to be one of the most promising algorithms among these methods. However, this technique suffers from several problems: it leads to amplitude-biased source estimates, it has difficulties in separating close sources, and it has a high computational complexity due to its implementation using second order cone programming. To overcome these problems, we propose to include an additional regularization term that imposes sparsity in the original source domain and to solve the resulting optimization problem using the alternating direction method of multipliers. Furthermore, we show that the algorithm yields more robust solutions by taking into account the temporal structure of the data. We also propose a new method to automatically threshold the estimated source distribution, which permits to delineate the active brain regions. The new algorithm, called Source Imaging based on Structured Sparsity (SISSY), is analyzed by means of realistic computer simulations and is validated on the clinical data of four patients. Copyright © 2017 Elsevier Inc. All rights reserved.
On-line estimation of nonlinear physical systems
Christakos, G.
1988-01-01
Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.
Zhang, Guoqing; Zhang, Xianku; Pang, Hongshuai
2015-09-01
This research is concerned with the problem of 4 degrees of freedom (DOF) ship manoeuvring identification modelling with the full-scale trial data. To avoid the multi-innovation matrix inversion in the conventional multi-innovation least squares (MILS) algorithm, a new transformed multi-innovation least squares (TMILS) algorithm is first developed by virtue of the coupling identification concept. And much effort is made to guarantee the uniformly ultimate convergence. Furthermore, the auto-constructed TMILS scheme is derived for the ship manoeuvring motion identification by combination with a statistic index. Comparing with the existing results, the proposed scheme has the significant computational advantage and is able to estimate the model structure. The illustrative examples demonstrate the effectiveness of the proposed algorithm, especially including the identification application with full-scale trial data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, A.; Quan, C.
2018-04-01
The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.
Ye, Huimin; Chen, Elizabeth S.
2011-01-01
In order to support the increasing need to share electronic health data for research purposes, various methods have been proposed for privacy preservation including k-anonymity. Many k-anonymity models provide the same level of anoymization regardless of practical need, which may decrease the utility of the dataset for a particular research study. In this study, we explore extensions to the k-anonymity algorithm that aim to satisfy the heterogeneous needs of different researchers while preserving privacy as well as utility of the dataset. The proposed algorithm, Attribute Utility Motivated k-anonymization (AUM), involves analyzing the characteristics of attributes and utilizing them to minimize information loss during the anonymization process. Through comparison with two existing algorithms, Mondrian and Incognito, preliminary results indicate that AUM may preserve more information from original datasets thus providing higher quality results with lower distortion. PMID:22195223
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
FBCOT: a fast block coding option for JPEG 2000
NASA Astrophysics Data System (ADS)
Taubman, David; Naman, Aous; Mathew, Reji
2017-09-01
Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).
Distributed convex optimisation with event-triggered communication in networked systems
NASA Astrophysics Data System (ADS)
Liu, Jiayun; Chen, Weisheng
2016-12-01
This paper studies the distributed convex optimisation problem over directed networks. Motivated by practical considerations, we propose a novel distributed zero-gradient-sum optimisation algorithm with event-triggered communication. Therefore, communication and control updates just occur at discrete instants when some predefined condition satisfies. Thus, compared with the time-driven distributed optimisation algorithms, the proposed algorithm has the advantages of less energy consumption and less communication cost. Based on Lyapunov approaches, we show that the proposed algorithm makes the system states asymptotically converge to the solution of the problem exponentially fast and the Zeno behaviour is excluded. Finally, simulation example is given to illustrate the effectiveness of the proposed algorithm.
High performance genetic algorithm for VLSI circuit partitioning
NASA Astrophysics Data System (ADS)
Dinu, Simona
2016-12-01
Partitioning is one of the biggest challenges in computer-aided design for VLSI circuits (very large-scale integrated circuits). This work address the min-cut balanced circuit partitioning problem- dividing the graph that models the circuit into almost equal sized k sub-graphs while minimizing the number of edges cut i.e. minimizing the number of edges connecting the sub-graphs. The problem may be formulated as a combinatorial optimization problem. Experimental studies in the literature have shown the problem to be NP-hard and thus it is important to design an efficient heuristic algorithm to solve it. The approach proposed in this study is a parallel implementation of a genetic algorithm, namely an island model. The information exchange between the evolving subpopulations is modeled using a fuzzy controller, which determines an optimal balance between exploration and exploitation of the solution space. The results of simulations show that the proposed algorithm outperforms the standard sequential genetic algorithm both in terms of solution quality and convergence speed. As a direction for future study, this research can be further extended to incorporate local search operators which should include problem-specific knowledge. In addition, the adaptive configuration of mutation and crossover rates is another guidance for future research.
Fast, Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy-Wiltshire-Hill Dynamics
NASA Technical Reports Server (NTRS)
Starek, Joseph A.; Schmerling, Edward; Maher, Gabriel D.; Barbee, Brent W.; Pavone, Marco
2016-01-01
This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant- optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill dynamics model. The approach calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-06-15
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.
A diabetic retinopathy detection method using an improved pillar K-means algorithm.
Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa
2014-01-01
The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.
Huynh, Phat; Do, Trong-Hop; Yoo, Myungsik
2017-02-10
This paper proposes a probability-based algorithm to track the LED in vehicle visible light communication systems using a camera. In this system, the transmitters are the vehicles' front and rear LED lights. The receivers are high speed cameras that take a series of images of the LEDs. ThedataembeddedinthelightisextractedbyfirstdetectingthepositionoftheLEDsintheseimages. Traditionally, LEDs are detected according to pixel intensity. However, when the vehicle is moving, motion blur occurs in the LED images, making it difficult to detect the LEDs. Particularly at high speeds, some frames are blurred at a high degree, which makes it impossible to detect the LED as well as extract the information embedded in these frames. The proposed algorithm relies not only on the pixel intensity, but also on the optical flow of the LEDs and on statistical information obtained from previous frames. Based on this information, the conditional probability that a pixel belongs to a LED is calculated. Then, the position of LED is determined based on this probability. To verify the suitability of the proposed algorithm, simulations are conducted by considering the incidents that can happen in a real-world situation, including a change in the position of the LEDs at each frame, as well as motion blur due to the vehicle speed.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-01-01
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP’s position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice. PMID:28617338
A Monocular Vision Sensor-Based Obstacle Detection Algorithm for Autonomous Robots
Lee, Tae-Jae; Yi, Dong-Hoon; Cho, Dong-Il “Dan”
2016-01-01
This paper presents a monocular vision sensor-based obstacle detection algorithm for autonomous robots. Each individual image pixel at the bottom region of interest is labeled as belonging either to an obstacle or the floor. While conventional methods depend on point tracking for geometric cues for obstacle detection, the proposed algorithm uses the inverse perspective mapping (IPM) method. This method is much more advantageous when the camera is not high off the floor, which makes point tracking near the floor difficult. Markov random field-based obstacle segmentation is then performed using the IPM results and a floor appearance model. Next, the shortest distance between the robot and the obstacle is calculated. The algorithm is tested by applying it to 70 datasets, 20 of which include nonobstacle images where considerable changes in floor appearance occur. The obstacle segmentation accuracies and the distance estimation error are quantitatively analyzed. For obstacle datasets, the segmentation precision and the average distance estimation error of the proposed method are 81.4% and 1.6 cm, respectively, whereas those for a conventional method are 57.5% and 9.9 cm, respectively. For nonobstacle datasets, the proposed method gives 0.0% false positive rates, while the conventional method gives 17.6%. PMID:26938540
An improved NAS-RIF algorithm for image restoration
NASA Astrophysics Data System (ADS)
Gao, Weizhe; Zou, Jianhua; Xu, Rong; Liu, Changhai; Li, Hengnian
2016-10-01
Space optical images are inevitably degraded by atmospheric turbulence, error of the optical system and motion. In order to get the true image, a novel nonnegativity and support constants recursive inverse filtering (NAS-RIF) algorithm is proposed to restore the degraded image. Firstly the image noise is weaken by Contourlet denoising algorithm. Secondly, the reliable object support region estimation is used to accelerate the algorithm convergence. We introduce the optimal threshold segmentation technology to improve the object support region. Finally, an object construction limit and the logarithm function are added to enhance algorithm stability. Experimental results demonstrate that, the proposed algorithm can increase the PSNR, and improve the quality of the restored images. The convergence speed of the proposed algorithm is faster than that of the original NAS-RIF algorithm.
A Novel Color Image Encryption Algorithm Based on Quantum Chaos Sequence
NASA Astrophysics Data System (ADS)
Liu, Hui; Jin, Cong
2017-03-01
In this paper, a novel algorithm of image encryption based on quantum chaotic is proposed. The keystreams are generated by the two-dimensional logistic map as initial conditions and parameters. And then general Arnold scrambling algorithm with keys is exploited to permute the pixels of color components. In diffusion process, a novel encryption algorithm, folding algorithm, is proposed to modify the value of diffused pixels. In order to get the high randomness and complexity, the two-dimensional logistic map and quantum chaotic map are coupled with nearest-neighboring coupled-map lattices. Theoretical analyses and computer simulations confirm that the proposed algorithm has high level of security.
An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization
NASA Astrophysics Data System (ADS)
Chen, Li; Weng, Zhiqiang; Goh, LaiYoong; Garland, Marc
2002-09-01
A new algorithm for automatic phase correction of NMR spectra based on entropy minimization is proposed. The optimal zero-order and first-order phase corrections for a NMR spectrum are determined by minimizing entropy. The objective function is constructed using a Shannon-type information entropy measure. Entropy is defined as the normalized derivative of the NMR spectral data. The algorithm has been successfully applied to experimental 1H NMR spectra. The results of automatic phase correction are found to be comparable to, or perhaps better than, manual phase correction. The advantages of this automatic phase correction algorithm include its simple mathematical basis and the straightforward, reproducible, and efficient optimization procedure. The algorithm is implemented in the Matlab program ACME—Automated phase Correction based on Minimization of Entropy.
NASA Astrophysics Data System (ADS)
Tutschku, Kurt; Nakao, Akihiro
This paper introduces a methodology for engineering best-effort P2P algorithms into dependable P2P-based network control mechanism. The proposed method is built upon an iterative approach consisting of improving the original P2P algorithm by appropriate mechanisms and of thorough performance assessment with respect to dependability measures. The potential of the methodology is outlined by the example of timely routing control for vertical handover in B3G wireless networks. In detail, the well-known Pastry and CAN algorithms are enhanced to include locality. By showing how to combine algorithmic enhancements with performance indicators, this case study paves the way for future engineering of dependable network control mechanisms through P2P algorithms.
A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains
NASA Astrophysics Data System (ADS)
Gan, Tingyue; Cameron, Maria
2017-06-01
Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.
Multimodality imaging of ovarian cystic lesions: Review with an imaging based algorithmic approach
Wasnik, Ashish P; Menias, Christine O; Platt, Joel F; Lalchandani, Usha R; Bedi, Deepak G; Elsayes, Khaled M
2013-01-01
Ovarian cystic masses include a spectrum of benign, borderline and high grade malignant neoplasms. Imaging plays a crucial role in characterization and pretreatment planning of incidentally detected or suspected adnexal masses, as diagnosis of ovarian malignancy at an early stage is correlated with a better prognosis. Knowledge of differential diagnosis, imaging features, management trends and an algorithmic approach of such lesions is important for optimal clinical management. This article illustrates a multi-modality approach in the diagnosis of a spectrum of ovarian cystic masses and also proposes an algorithmic approach for the diagnosis of these lesions. PMID:23671748
A gradient based algorithm to solve inverse plane bimodular problems of identification
NASA Astrophysics Data System (ADS)
Ran, Chunjiang; Yang, Haitian; Zhang, Guoqing
2018-02-01
This paper presents a gradient based algorithm to solve inverse plane bimodular problems of identifying constitutive parameters, including tensile/compressive moduli and tensile/compressive Poisson's ratios. For the forward bimodular problem, a FE tangent stiffness matrix is derived facilitating the implementation of gradient based algorithms, for the inverse bimodular problem of identification, a two-level sensitivity analysis based strategy is proposed. Numerical verification in term of accuracy and efficiency is provided, and the impacts of initial guess, number of measurement points, regional inhomogeneity, and noisy data on the identification are taken into accounts.
Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.
Tang, Jing; Kuwabara, Hiroto; Wong, Dean F; Rahmim, Arman
2010-08-07
We developed an anatomy-guided 4D closed-form algorithm to directly reconstruct parametric images from projection data for (nearly) irreversible tracers. Conventional methods consist of individually reconstructing 2D/3D PET data, followed by graphical analysis on the sequence of reconstructed image frames. The proposed direct reconstruction approach maintains the simplicity and accuracy of the expectation-maximization (EM) algorithm by extending the system matrix to include the relation between the parametric images and the measured data. A closed-form solution was achieved using a different hidden complete-data formulation within the EM framework. Furthermore, the proposed method was extended to maximum a posterior reconstruction via incorporation of MR image information, taking the joint entropy between MR and parametric PET features as the prior. Using realistic simulated noisy [(11)C]-naltrindole PET and MR brain images/data, the quantitative performance of the proposed methods was investigated. Significant improvements in terms of noise versus bias performance were demonstrated when performing direct parametric reconstruction, and additionally upon extending the algorithm to its Bayesian counterpart using the MR-PET joint entropy measure.
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian
2017-04-01
This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.
How many sleep stages do we need for an efficient automatic insomnia diagnosis?
Hamida, Sana Tmar-Ben; Glos, Martin; Penzel, Thomas; Ahmed, Beena
2016-08-01
Tools used by clinicians to diagnose and treat insomnia typically include sleep diaries and questionnaires. Overnight polysomnography (PSG) recordings are used when the initial diagnosis is uncertain due to the presence of other sleep disorders or when the treatment, either behavioral or pharmacologic, is unsuccessful. However, the analysis and the scoring of PSG data are time-consuming. To simplify the diagnosis process, in this paper we have proposed an efficient insomnia detection algorithm based on a central single electroencephalographic (EEG) channel (C3) using only deep sleep. We also analyzed several spectral and statistical EEG features of good sleeper controls and subjects suffering from insomnia in different sleep stages to identify the features that offered the best discrimination between the two groups. Our proposed algorithm was evaluated using EEG recordings from 19 patients diagnosed with primary insomnia (11 females, 8 males) and 16 matched control subjects (11 females, 5 males). The sensitivity of our algorithm is 92%, the specificity is 89.9%, the Cohen's kappa is 0.81 and the agreement is 91%, indicating the effectiveness of our proposed method.
Distributed Unmixing of Hyperspectral Datawith Sparsity Constraint
NASA Astrophysics Data System (ADS)
Khoshsokhan, S.; Rajabi, R.; Zayyani, H.
2017-09-01
Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which was added to NMF is sparsity constraint that was regularized by L1/2 norm. In this paper, a new algorithm based on distributed optimization has been used for spectral unmixing. In the proposed algorithm, a network including single-node clusters has been employed. Each pixel in hyperspectral images considered as a node in this network. The distributed unmixing with sparsity constraint has been optimized with diffusion LMS strategy, and then the update equations for fractional abundance and signature matrices are obtained. Simulation results based on defined performance metrics, illustrate advantage of the proposed algorithm in spectral unmixing of hyperspectral data compared with other methods. The results show that the AAD and SAD of the proposed approach are improved respectively about 6 and 27 percent toward distributed unmixing in SNR=25dB.
An Improved Image Matching Method Based on Surf Algorithm
NASA Astrophysics Data System (ADS)
Chen, S. J.; Zheng, S. Z.; Xu, Z. G.; Guo, C. C.; Ma, X. L.
2018-04-01
Many state-of-the-art image matching methods, based on the feature matching, have been widely studied in the remote sensing field. These methods of feature matching which get highly operating efficiency, have a disadvantage of low accuracy and robustness. This paper proposes an improved image matching method which based on the SURF algorithm. The proposed method introduces color invariant transformation, information entropy theory and a series of constraint conditions to increase feature points detection and matching accuracy. First, the model of color invariant transformation is introduced for two matching images aiming at obtaining more color information during the matching process and information entropy theory is used to obtain the most information of two matching images. Then SURF algorithm is applied to detect and describe points from the images. Finally, constraint conditions which including Delaunay triangulation construction, similarity function and projective invariant are employed to eliminate the mismatches so as to improve matching precision. The proposed method has been validated on the remote sensing images and the result benefits from its high precision and robustness.
Analog Delta-Back-Propagation Neural-Network Circuitry
NASA Technical Reports Server (NTRS)
Eberhart, Silvio
1990-01-01
Changes in synapse weights due to circuit drifts suppressed. Proposed fully parallel analog version of electronic neural-network processor based on delta-back-propagation algorithm. Processor able to "learn" when provided with suitable combinations of inputs and enforced outputs. Includes programmable resistive memory elements (corresponding to synapses), conductances (synapse weights) adjusted during learning. Buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in layers of electronic neurons in accordance with delta-back-propagation algorithm.
Yu, Yi; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.
Gao, Yingbin; Kong, Xiangyu; Zhang, Huihui; Hou, Li'an
2017-05-01
Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure.
Chen, Xinjian; Tian, Jie; Yang, Xin
2006-03-01
Coping with nonlinear distortions in fingerprint matching is a challenging task. This paper proposes a novel algorithm, normalized fuzzy similarity measure (NFSM), to deal with the nonlinear distortions. The proposed algorithm has two main steps. First, the template and input fingerprints were aligned. In this process, the local topological structure matching was introduced to improve the robustness of global alignment. Second, the method NFSM was introduced to compute the similarity between the template and input fingerprints. The proposed algorithm was evaluated on fingerprints databases of FVC2004. Experimental results confirm that NFSM is a reliable and effective algorithm for fingerprint matching with nonliner distortions. The algorithm gives considerably higher matching scores compared to conventional matching algorithms for the deformed fingerprints.
SDIA: A dynamic situation driven information fusion algorithm for cloud environment
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Tong; Wang, Jian
2017-09-01
Information fusion is an important issue in information integration domain. In order to form an extensive information fusion technology under the complex and diverse situations, a new information fusion algorithm is proposed. Firstly, a fuzzy evaluation model of tag utility was proposed that can be used to count the tag entropy. Secondly, a ubiquitous situation tag tree model is proposed to define multidimensional structure of information situation. Thirdly, the similarity matching between the situation models is classified into three types: the tree inclusion, the tree embedding, and the tree compatibility. Next, in order to reduce the time complexity of the tree compatible matching algorithm, a fast and ordered tree matching algorithm is proposed based on the node entropy, which is used to support the information fusion by ubiquitous situation. Since the algorithm revolve from the graph theory of disordered tree matching algorithm, it can improve the information fusion present recall rate and precision rate in the situation. The information fusion algorithm is compared with the star and the random tree matching algorithm, and the difference between the three algorithms is analyzed in the view of isomorphism, which proves the innovation and applicability of the algorithm.
A new effective operator for the hybrid algorithm for solving global optimisation problems
NASA Astrophysics Data System (ADS)
Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac
2018-04-01
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.
A chaos wolf optimization algorithm with self-adaptive variable step-size
NASA Astrophysics Data System (ADS)
Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun
2017-10-01
To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.
Adaptive cockroach swarm algorithm
NASA Astrophysics Data System (ADS)
Obagbuwa, Ibidun C.; Abidoye, Ademola P.
2017-07-01
An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.
Novel angle estimation for bistatic MIMO radar using an improved MUSIC
NASA Astrophysics Data System (ADS)
Li, Jianfeng; Zhang, Xiaofei; Chen, Han
2014-09-01
In this article, we study the problem of angle estimation for bistatic multiple-input multiple-output (MIMO) radar and propose an improved multiple signal classification (MUSIC) algorithm for joint direction of departure (DOD) and direction of arrival (DOA) estimation. The proposed algorithm obtains initial estimations of angles obtained from the signal subspace and uses the local one-dimensional peak searches to achieve the joint estimations of DOD and DOA. The angle estimation performance of the proposed algorithm is better than that of estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, and is almost the same as that of two-dimensional MUSIC. Furthermore, the proposed algorithm can be suitable for irregular array geometry, obtain automatically paired DOD and DOA estimations, and avoid two-dimensional peak searching. The simulation results verify the effectiveness and improvement of the algorithm.
A quasi-likelihood approach to non-negative matrix factorization
Devarajan, Karthik; Cheung, Vincent C.K.
2017-01-01
A unified approach to non-negative matrix factorization based on the theory of generalized linear models is proposed. This approach embeds a variety of statistical models, including the exponential family, within a single theoretical framework and provides a unified view of such factorizations from the perspective of quasi-likelihood. Using this framework, a family of algorithms for handling signal-dependent noise is developed and its convergence proven using the Expectation-Maximization algorithm. In addition, a measure to evaluate the goodness-of-fit of the resulting factorization is described. The proposed methods allow modeling of non-linear effects via appropriate link functions and are illustrated using an application in biomedical signal processing. PMID:27348511
Initialization Method for Grammar-Guided Genetic Programming
NASA Astrophysics Data System (ADS)
García-Arnau, M.; Manrique, D.; Ríos, J.; Rodríguez-Patón, A.
This paper proposes a new tree-generation algorithm for grammarguided genetic programming that includes a parameter to control the maximum size of the trees to be generated. An important feature of this algorithm is that the initial populations generated are adequately distributed in terms of tree size and distribution within the search space. Consequently, genetic programming systems starting from the initial populations generated by the proposed method have a higher convergence speed. Two different problems have been chosen to carry out the experiments: a laboratory test involving searching for arithmetical equalities and the real-world task of breast cancer prognosis. In both problems, comparisons have been made to another five important initialization methods.
A Grammatical Approach to RNA-RNA Interaction Prediction
NASA Astrophysics Data System (ADS)
Kato, Yuki; Akutsu, Tatsuya; Seki, Hiroyuki
2007-11-01
Much attention has been paid to two interacting RNA molecules involved in post-transcriptional control of gene expression. Although there have been a few studies on RNA-RNA interaction prediction based on dynamic programming algorithm, no grammar-based approach has been proposed. The purpose of this paper is to provide a new modeling for RNA-RNA interaction based on multiple context-free grammar (MCFG). We present a polynomial time parsing algorithm for finding the most likely derivation tree for the stochastic version of MCFG, which is applicable to RNA joint secondary structure prediction including kissing hairpin loops. Also, elementary tests on RNA-RNA interaction prediction have shown that the proposed method is comparable to Alkan et al.'s method.
The Wide-Field Imaging Interferometry Testbed: Recent Results
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2006-01-01
We present recent results from the Wide-Field Imaging Interferometry Testbed (WIIT). The data acquired with the WIIT is "double Fourier" data, including both spatial and spectral information within each data cube. We have been working with this data, and starting to develop algorithms, implementations, and techniques for reducing this data. Such algorithms and tools are of great importance for a number of proposed future missions, including the Space Infrared Interferometric Telescope (SPIRIT), the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS), and the Terrestrial Planet Finder Interferometer (TPF-I)/Darwin. Recent results are discussed and future study directions are described.
Managed traffic evacuation using distributed sensor processing
NASA Astrophysics Data System (ADS)
Ramuhalli, Pradeep; Biswas, Subir
2005-05-01
This paper presents an integrated sensor network and distributed event processing architecture for managed in-building traffic evacuation during natural and human-caused disasters, including earthquakes, fire and biological/chemical terrorist attacks. The proposed wireless sensor network protocols and distributed event processing mechanisms offer a new distributed paradigm for improving reliability in building evacuation and disaster management. The networking component of the system is constructed using distributed wireless sensors for measuring environmental parameters such as temperature, humidity, and detecting unusual events such as smoke, structural failures, vibration, biological/chemical or nuclear agents. Distributed event processing algorithms will be executed by these sensor nodes to detect the propagation pattern of the disaster and to measure the concentration and activity of human traffic in different parts of the building. Based on this information, dynamic evacuation decisions are taken for maximizing the evacuation speed and minimizing unwanted incidents such as human exposure to harmful agents and stampedes near exits. A set of audio-visual indicators and actuators are used for aiding the automated evacuation process. In this paper we develop integrated protocols, algorithms and their simulation models for the proposed sensor networking and the distributed event processing framework. Also, efficient harnessing of the individually low, but collectively massive, processing abilities of the sensor nodes is a powerful concept behind our proposed distributed event processing algorithms. Results obtained through simulation in this paper are used for a detailed characterization of the proposed evacuation management system and its associated algorithmic components.
An enhanced velocity-based algorithm for safe implementations of gain-scheduled controllers
NASA Astrophysics Data System (ADS)
Lhachemi, H.; Saussié, D.; Zhu, G.
2017-09-01
This paper presents an enhanced velocity-based algorithm to implement gain-scheduled controllers for nonlinear and parameter-dependent systems. A new scheme including pre- and post-filtering is proposed with the assumption that the time-derivative of the controller inputs is not available for feedback control. It is shown that the proposed control structure can preserve the input-output properties of the linearised closed-loop system in the neighbourhood of each equilibrium point, avoiding the emergence of the so-called hidden coupling terms. Moreover, it is guaranteed that this implementation will not introduce unobservable or uncontrollable unstable modes, and hence the internal stability will not be affected. A case study dealing with the design of a pitch-axis missile autopilot is carried out and the numerical simulation results confirm the validity of the proposed approach.
Automatic choroid cells segmentation and counting in fluorescence microscopic image
NASA Astrophysics Data System (ADS)
Fei, Jianjun; Zhu, Weifang; Shi, Fei; Xiang, Dehui; Lin, Xiao; Yang, Lei; Chen, Xinjian
2016-03-01
In this paper, we proposed a method to automatically segment and count the rhesus choroid-retinal vascular endothelial cells (RF/6A) in fluorescence microscopic images which is based on shape classification, bottleneck detection and accelerated Dijkstra algorithm. The proposed method includes four main steps. First, a thresholding filter and morphological operations are applied to reduce the noise. Second, a shape classifier is used to decide whether a connected component is needed to be segmented. In this step, the AdaBoost classifier is applied with a set of shape features. Third, the bottleneck positions are found based on the contours of the connected components. Finally, the cells segmentation and counting are completed based on the accelerated Dijkstra algorithm with the gradient information between the bottleneck positions. The results show the feasibility and efficiency of the proposed method.
Single shot multi-wavelength phase retrieval with coherent modulation imaging.
Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-04-15
A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Fast template matching with polynomials.
Omachi, Shinichiro; Omachi, Masako
2007-08-01
Template matching is widely used for many applications in image and signal processing. This paper proposes a novel template matching algorithm, called algebraic template matching. Given a template and an input image, algebraic template matching efficiently calculates similarities between the template and the partial images of the input image, for various widths and heights. The partial image most similar to the template image is detected from the input image for any location, width, and height. In the proposed algorithm, a polynomial that approximates the template image is used to match the input image instead of the template image. The proposed algorithm is effective especially when the width and height of the template image differ from the partial image to be matched. An algorithm using the Legendre polynomial is proposed for efficient approximation of the template image. This algorithm not only reduces computational costs, but also improves the quality of the approximated image. It is shown theoretically and experimentally that the computational cost of the proposed algorithm is much smaller than the existing methods.
Hue-preserving and saturation-improved color histogram equalization algorithm.
Song, Ki Sun; Kang, Hee; Kang, Moon Gi
2016-06-01
In this paper, an algorithm is proposed to improve contrast and saturation without color degradation. The local histogram equalization (HE) method offers better performance than the global HE method, whereas the local HE method sometimes produces undesirable results due to the block-based processing. The proposed contrast-enhancement (CE) algorithm reflects the characteristics of the global HE method in the local HE method to avoid the artifacts, while global and local contrasts are enhanced. There are two ways to apply the proposed CE algorithm to color images. One is luminance processing methods, and the other one is each channel processing methods. However, these ways incur excessive or reduced saturation and color degradation problems. The proposed algorithm solves these problems by using channel adaptive equalization and similarity of ratios between the channels. Experimental results show that the proposed algorithm enhances contrast and saturation while preserving the hue and producing better performance than existing methods in terms of objective evaluation metrics.
Array signal recovery algorithm for a single-RF-channel DBF array
NASA Astrophysics Data System (ADS)
Zhang, Duo; Wu, Wen; Fang, Da Gang
2016-12-01
An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.
Evolutionary Fuzzy Block-Matching-Based Camera Raw Image Denoising.
Yang, Chin-Chang; Guo, Shu-Mei; Tsai, Jason Sheng-Hong
2017-09-01
An evolutionary fuzzy block-matching-based image denoising algorithm is proposed to remove noise from a camera raw image. Recently, a variance stabilization transform is widely used to stabilize the noise variance, so that a Gaussian denoising algorithm can be used to remove the signal-dependent noise in camera sensors. However, in the stabilized domain, the existed denoising algorithm may blur too much detail. To provide a better estimate of the noise-free signal, a new block-matching approach is proposed to find similar blocks by the use of a type-2 fuzzy logic system (FLS). Then, these similar blocks are averaged with the weightings which are determined by the FLS. Finally, an efficient differential evolution is used to further improve the performance of the proposed denoising algorithm. The experimental results show that the proposed denoising algorithm effectively improves the performance of image denoising. Furthermore, the average performance of the proposed method is better than those of two state-of-the-art image denoising algorithms in subjective and objective measures.
Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G
2007-05-24
The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.
Vision technology/algorithms for space robotics applications
NASA Technical Reports Server (NTRS)
Krishen, Kumar; Defigueiredo, Rui J. P.
1987-01-01
The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed.
NASA Astrophysics Data System (ADS)
Liu, Hua-Long; Liu, Hua-Dong
2014-10-01
Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And localization results based on the SQP-GA are compared with some algorithms such as the GA, some other intelligent and non-intelligent algorithms. The results of calculating examples both stimulated and spot experiments demonstrate that the localization method based on the SQP-GA can effectively prevent the results from getting trapped into the local optimum values, and the localization method is of great feasibility and very suitable for the field applications, and the precision of localization is enhanced, and the effectiveness of localization is ideal and satisfactory.
NASA Technical Reports Server (NTRS)
Kweon, In SO; Hebert, Martial; Kanade, Takeo
1989-01-01
A three-dimensional perception system for building a geometrical description of rugged terrain environments from range image data is presented with reference to the exploration of the rugged terrain of Mars. An intermediate representation consisting of an elevation map that includes an explicit representation of uncertainty and labeling of the occluded regions is proposed. The locus method used to convert range image to an elevation map is introduced, along with an uncertainty model based on this algorithm. Both the elevation map and the locus method are the basis of a terrain matching algorithm which does not assume any correspondences between range images. The two-stage algorithm consists of a feature-based matching algorithm to compute an initial transform and an iconic terrain matching algorithm to merge multiple range images into a uniform representation. Terrain modeling results on real range images of rugged terrain are presented. The algorithms considered are a fundamental part of the perception system for the Ambler, a legged locomotor.
Research on target tracking algorithm based on spatio-temporal context
NASA Astrophysics Data System (ADS)
Li, Baiping; Xu, Sanmei; Kang, Hongjuan
2017-07-01
In this paper, a novel target tracking algorithm based on spatio-temporal context is proposed. During the tracking process, the camera shaking or occlusion may lead to the failure of tracking. The proposed algorithm can solve this problem effectively. The method use the spatio-temporal context algorithm as the main research object. We get the first frame's target region via mouse. Then the spatio-temporal context algorithm is used to get the tracking targets of the sequence of frames. During this process a similarity measure function based on perceptual hash algorithm is used to judge the tracking results. If tracking failed, reset the initial value of Mean Shift algorithm for the subsequent target tracking. Experiment results show that the proposed algorithm can achieve real-time and stable tracking when camera shaking or target occlusion.
An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.
Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu
2017-01-01
R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.
An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm
Qin, Qin
2017-01-01
R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method. PMID:29104745
Directional Histogram Ratio at Random Probes: A Local Thresholding Criterion for Capillary Images
Lu, Na; Silva, Jharon; Gu, Yu; Gerber, Scott; Wu, Hulin; Gelbard, Harris; Dewhurst, Stephen; Miao, Hongyu
2013-01-01
With the development of micron-scale imaging techniques, capillaries can be conveniently visualized using methods such as two-photon and whole mount microscopy. However, the presence of background staining, leaky vessels and the diffusion of small fluorescent molecules can lead to significant complexity in image analysis and loss of information necessary to accurately quantify vascular metrics. One solution to this problem is the development of accurate thresholding algorithms that reliably distinguish blood vessels from surrounding tissue. Although various thresholding algorithms have been proposed, our results suggest that without appropriate pre- or post-processing, the existing approaches may fail to obtain satisfactory results for capillary images that include areas of contamination. In this study, we propose a novel local thresholding algorithm, called directional histogram ratio at random probes (DHR-RP). This method explicitly considers the geometric features of tube-like objects in conducting image binarization, and has a reliable performance in distinguishing small vessels from either clean or contaminated background. Experimental and simulation studies suggest that our DHR-RP algorithm is superior over existing thresholding methods. PMID:23525856
Incoherent beam combining based on the momentum SPGD algorithm
NASA Astrophysics Data System (ADS)
Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng
2018-05-01
Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.
Approximated affine projection algorithm for feedback cancellation in hearing aids.
Lee, Sangmin; Kim, In-Young; Park, Young-Cheol
2007-09-01
We propose an approximated affine projection (AP) algorithm for feedback cancellation in hearing aids. It is based on the conventional approach using the Gauss-Seidel (GS) iteration, but provides more stable convergence behaviour even with small step sizes. In the proposed algorithm, a residue of the weighted error vector, instead of the current error sample, is used to provide stable convergence. A new learning rate control scheme is also applied to the proposed algorithm to prevent signal cancellation and system instability. The new scheme determines step size in proportion to the prediction factor of the input, so that adaptation is inhibited whenever tone-like signals are present in the input. Simulation results verified the efficiency of the proposed algorithm.
Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang
2016-11-16
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
A scalable and practical one-pass clustering algorithm for recommender system
NASA Astrophysics Data System (ADS)
Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali
2015-12-01
KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.
Fast perceptual image hash based on cascade algorithm
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly; Yavtushenko, Evgeniya
2017-09-01
In this paper, we propose a perceptual image hash algorithm based on cascade algorithm, which can be applied in image authentication, retrieval, and indexing. Image perceptual hash uses for image retrieval in sense of human perception against distortions caused by compression, noise, common signal processing and geometrical modifications. The main disadvantage of perceptual hash is high time expenses. In the proposed cascade algorithm of image retrieval initializes with short hashes, and then a full hash is applied to the processed results. Computer simulation results show that the proposed hash algorithm yields a good performance in terms of robustness, discriminability, and time expenses.
A Self Adaptive Differential Evolution Algorithm for Global Optimization
NASA Astrophysics Data System (ADS)
Kumar, Pravesh; Pant, Millie
This paper presents a new Differential Evolution algorithm based on hybridization of adaptive control parameters and trigonometric mutation. First we propose a self adaptive DE named ADE where choice of control parameter F and Cr is not fixed at some constant value but is taken iteratively. The proposed algorithm is further modified by applying trigonometric mutation in it and the corresponding algorithm is named as ATDE. The performance of ATDE is evaluated on the set of 8 benchmark functions and the results are compared with the classical DE algorithm in terms of average fitness function value, number of function evaluations, convergence time and success rate. The numerical result shows the competence of the proposed algorithm.
Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery
Kim, Daeun; Haldar, Justin P.
2016-01-01
This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368
Fast ℓ1-regularized space-time adaptive processing using alternating direction method of multipliers
NASA Astrophysics Data System (ADS)
Qin, Lilong; Wu, Manqing; Wang, Xuan; Dong, Zhen
2017-04-01
Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-to-clutter-noise ratio performance than other algorithms.
Operation of Power Grids with High Penetration of Wind Power
NASA Astrophysics Data System (ADS)
Al-Awami, Ali Taleb
The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.
Analysis and simulation tools for solar array power systems
NASA Astrophysics Data System (ADS)
Pongratananukul, Nattorn
This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This "virtual plant" allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented.
Comparing EQ-5D valuation studies: a systematic review and methodological reporting checklist.
Xie, Feng; Gaebel, Kathryn; Perampaladas, Kuhan; Doble, Brett; Pullenayegum, Eleanor
2014-01-01
There has been a growing interest around the world in developing country-specific scoring algorithms for the EQ-5D. This study systematically reviews all existing EQ-5D valuation studies to highlight their strengths and limitations, explores heterogeneity in observed utilities using meta-regression, and proposes a methodological checklist for reporting EQ-5D valuation studies. . We searched Medline, EMBASE, the National Health Service Economic Evaluation Database (NHS EED) via Wiley's Cochrane Library, and Wiley's Health Economic Evaluation Database from inception through November 2012, as well as bibliographies of key papers and the EuroQol Plenary Meeting Proceedings from 1991 to 2012 for English-language reports of EQ-5D valuation studies. Two reviewers independently screened the titles and abstracts for relevance. Three reviewers performed data extraction and compared the characteristics and scoring algorithms developed in the included valuation studies. . Of the 31 studies included in the review, 19 used the time trade-off (TTO) technique, 10 used the visual analogue scale (VAS) technique, and 2 used both TTO and VAS. Most studies included respondents from the general population selected by random or quota sampling and used face-to-face interviews or postal surveys. Studies valued between 7 and 198 total states, with 1-23 states valued per respondent. Different model specifications have been proposed for scoring. Some sample or demographic factors, including gender, education, percentage urban population, and national health care expenditure, were associated with differences in observed utilities for moderate or severe health states. . EQ-5D valuation studies conducted to date have varied widely in their design and in the resulting scoring algorithms. Therefore, we propose the Checklist for Reporting Valuation Studies of the EQ-5D (CREATE) for those conducting valuation studies.
Fang, Chen; Li, Chunfei; Cabrerizo, Mercedes; Barreto, Armando; Andrian, Jean; Rishe, Naphtali; Loewenstein, David; Duara, Ranjan; Adjouadi, Malek
2018-04-12
Over the past few years, several approaches have been proposed to assist in the early diagnosis of Alzheimer's disease (AD) and its prodromal stage of mild cognitive impairment (MCI). Using multimodal biomarkers for this high-dimensional classification problem, the widely used algorithms include Support Vector Machines (SVM), Sparse Representation-based classification (SRC), Deep Belief Networks (DBN) and Random Forest (RF). These widely used algorithms continue to yield unsatisfactory performance for delineating the MCI participants from the cognitively normal control (CN) group. A novel Gaussian discriminant analysis-based algorithm is thus introduced to achieve a more effective and accurate classification performance than the aforementioned state-of-the-art algorithms. This study makes use of magnetic resonance imaging (MRI) data uniquely as input to two separate high-dimensional decision spaces that reflect the structural measures of the two brain hemispheres. The data used include 190 CN, 305 MCI and 133 AD subjects as part of the AD Big Data DREAM Challenge #1. Using 80% data for a 10-fold cross-validation, the proposed algorithm achieved an average F1 score of 95.89% and an accuracy of 96.54% for discriminating AD from CN; and more importantly, an average F1 score of 92.08% and an accuracy of 90.26% for discriminating MCI from CN. Then, a true test was implemented on the remaining 20% held-out test data. For discriminating MCI from CN, an accuracy of 80.61%, a sensitivity of 81.97% and a specificity of 78.38% were obtained. These results show significant improvement over existing algorithms for discriminating the subtle differences between MCI participants and the CN group.
2013-01-01
Introduction Pulmonary arterial hypertension (PAH) is a major cause of mortality in systemic sclerosis (SSc). Screening guidelines for PAH recommend multiple investigations, including annual echocardiography, which together have low specificity and may not be cost-effective. We sought to evaluate the predictive accuracy of serum N-terminal pro-brain natriuretic peptide (NT-proBNP) in combination with pulmonary function tests (PFT) (‘proposed’ algorithm) in a screening algorithm for SSc-PAH. Methods We evaluated our proposed algorithm (PFT with NT-proBNP) on 49 consecutive SSc patients with suspected pulmonary hypertension undergoing right heart catherisation (RHC). The predictive accuracy of the proposed algorithm was compared with existing screening recommendations, and is presented as sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Results Overall, 27 patients were found to have pulmonary hypertension (PH) at RHC, while 22 had no PH. The sensitivity, specificity, PPV and NPV of the proposed algorithm for PAH was 94.1%, 54.5%, 61.5% and 92.3%, respectively; current European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines achieved a sensitivity, specificity, PPV and NPV of 94.1%, 31.8%, 51.6% and 87.5%, respectively. In an alternate case scenario analysis, estimating a PAH prevalence of 10%, the proposed algorithm achieved a sensitivity, specificity, PPV and NPV for PAH of 94.1%, 54.5%, 18.7% and 98.8%, respectively. Conclusions The combination of NT-proBNP with PFT is a sensitive, yet simple and non-invasive, screening strategy for SSc-PAH. Patients with a positive screening result can be referred for echocardiography, and further confirmatory testing for PAH. In this way, it may be possible to shift the burden of routine screening away from echocardiography. The findings of this study should be confirmed in larger studies. PMID:24246100
Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.
Alshawaqfeh, Mustafa; Serpedin, Erchin; Younes, Ahmad Bani
2017-03-27
Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies. Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main drawbacks of these models include the fact that these models only consider the measurement noise without taking into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation techniques are needed to address these challenges. This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN. Performance analysis demonstrates that the proposed SgLV-EKF algorithm represents a powerful and reliable tool to infer MINs and track their dynamics.
Resolution recovery for Compton camera using origin ensemble algorithm.
Andreyev, A; Celler, A; Ozsahin, I; Sitek, A
2016-08-01
Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. To validate the proposed algorithm we used Monte Carlo simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2-3 orders of magnitude per iteration. The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.
Visual saliency-based fast intracoding algorithm for high efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin
2017-01-01
Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.
Zheng, Wei; Yan, Xiaoyong; Zhao, Wei; Qian, Chengshan
2017-12-20
A novel large-scale multi-hop localization algorithm based on regularized extreme learning is proposed in this paper. The large-scale multi-hop localization problem is formulated as a learning problem. Unlike other similar localization algorithms, the proposed algorithm overcomes the shortcoming of the traditional algorithms which are only applicable to an isotropic network, therefore has a strong adaptability to the complex deployment environment. The proposed algorithm is composed of three stages: data acquisition, modeling and location estimation. In data acquisition stage, the training information between nodes of the given network is collected. In modeling stage, the model among the hop-counts and the physical distances between nodes is constructed using regularized extreme learning. In location estimation stage, each node finds its specific location in a distributed manner. Theoretical analysis and several experiments show that the proposed algorithm can adapt to the different topological environments with low computational cost. Furthermore, high accuracy can be achieved by this method without setting complex parameters.
Computationally efficient algorithm for high sampling-frequency operation of active noise control
NASA Astrophysics Data System (ADS)
Rout, Nirmal Kumar; Das, Debi Prasad; Panda, Ganapati
2015-05-01
In high sampling-frequency operation of active noise control (ANC) system the length of the secondary path estimate and the ANC filter are very long. This increases the computational complexity of the conventional filtered-x least mean square (FXLMS) algorithm. To reduce the computational complexity of long order ANC system using FXLMS algorithm, frequency domain block ANC algorithms have been proposed in past. These full block frequency domain ANC algorithms are associated with some disadvantages such as large block delay, quantization error due to computation of large size transforms and implementation difficulties in existing low-end DSP hardware. To overcome these shortcomings, the partitioned block ANC algorithm is newly proposed where the long length filters in ANC are divided into a number of equal partitions and suitably assembled to perform the FXLMS algorithm in the frequency domain. The complexity of this proposed frequency domain partitioned block FXLMS (FPBFXLMS) algorithm is quite reduced compared to the conventional FXLMS algorithm. It is further reduced by merging one fast Fourier transform (FFT)-inverse fast Fourier transform (IFFT) combination to derive the reduced structure FPBFXLMS (RFPBFXLMS) algorithm. Computational complexity analysis for different orders of filter and partition size are presented. Systematic computer simulations are carried out for both the proposed partitioned block ANC algorithms to show its accuracy compared to the time domain FXLMS algorithm.
Iterative algorithm for joint zero diagonalization with application in blind source separation.
Zhang, Wei-Tao; Lou, Shun-Tian
2011-07-01
A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.
Personalized recommendation via unbalance full-connectivity inference
NASA Astrophysics Data System (ADS)
Ma, Wenping; Ren, Chen; Wu, Yue; Wang, Shanfeng; Feng, Xiang
2017-10-01
Recommender systems play an important role to help us to find useful information. They are widely used by most e-commerce web sites to push the potential items to individual user according to purchase history. Network-based recommendation algorithms are popular and effective in recommendation, which use two types of elements to represent users and items respectively. In this paper, based on consistence-based inference (CBI) algorithm, we propose a novel network-based algorithm, in which users and items are recognized with no difference. The proposed algorithm also uses information diffusion to find the relationship between users and items. Different from traditional network-based recommendation algorithms, information diffusion initializes from users and items, respectively. Experiments show that the proposed algorithm is effective compared with traditional network-based recommendation algorithms.
Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi
2017-07-04
BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.
Temperature - Emissivity Separation Assessment in a Sub-Urban Scenario
NASA Astrophysics Data System (ADS)
Moscadelli, M.; Diani, M.; Corsini, G.
2017-10-01
In this paper, a methodology that aims at evaluating the effectiveness of different TES strategies is presented. The methodology takes into account the specific material of interest in the monitored scenario, sensor characteristics, and errors in the atmospheric compensation step. The methodology is proposed in order to predict and analyse algorithms performances during the planning of a remote sensing mission, aimed to discover specific materials of interest in the monitored scenario. As case study, the proposed methodology is applied to a real airborne data set of a suburban scenario. In order to perform the TES problem, three state-of-the-art algorithms, and a recently proposed one, are investigated: Temperature-Emissivity Separation '98 (TES-98) algorithm, Stepwise Refining TES (SRTES) algorithm, Linear piecewise TES (LTES) algorithm, and Optimized Smoothing TES (OSTES) algorithm. At the end, the accuracy obtained with real data, and the ones predicted by means of the proposed methodology are compared and discussed.
Active impulsive noise control using maximum correntropy with adaptive kernel size
NASA Astrophysics Data System (ADS)
Lu, Lu; Zhao, Haiquan
2017-03-01
The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.
Maneuver Algorithm for Bearings-Only Target Tracking with Acceleration and Field of View Constraints
NASA Astrophysics Data System (ADS)
Roh, Heekun; Shim, Sang-Wook; Tahk, Min-Jea
2018-05-01
This paper proposes a maneuver algorithm for the agent performing target tracking with bearing angle information only. The goal of the agent is to estimate the target position and velocity based only on the bearing angle data. The methods of bearings-only target state estimation are outlined. The nature of bearings-only target tracking problem is then addressed. Based on the insight from above-mentioned properties, the maneuver algorithm for the agent is suggested. The proposed algorithm is composed of a nonlinear, hysteresis guidance law and the estimation accuracy assessment criteria based on the theory of Cramer-Rao bound. The proposed guidance law generates lateral acceleration command based on current field of view angle. The accuracy criteria supply the expected estimation variance, which acts as a terminal criterion for the proposed algorithm. The aforementioned algorithm is verified with a two-dimensional simulation.
Short-term Power Load Forecasting Based on Balanced KNN
NASA Astrophysics Data System (ADS)
Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei
2018-03-01
To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.
Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks
NASA Astrophysics Data System (ADS)
Cui, Yaozu; Wang, Xingyuan; Eustace, Justine
2014-12-01
Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.
An Efficient Conflict Detection Algorithm for Packet Filters
NASA Astrophysics Data System (ADS)
Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung
Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.
NASA Astrophysics Data System (ADS)
Healy, John J.
2018-01-01
The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.
Automatic computation of 2D cardiac measurements from B-mode echocardiography
NASA Astrophysics Data System (ADS)
Park, JinHyeong; Feng, Shaolei; Zhou, S. Kevin
2012-03-01
We propose a robust and fully automatic algorithm which computes the 2D echocardiography measurements recommended by America Society of Echocardiography. The algorithm employs knowledge-based imaging technologies which can learn the expert's knowledge from the training images and expert's annotation. Based on the models constructed from the learning stage, the algorithm searches initial location of the landmark points for the measurements by utilizing heart structure of left ventricle including mitral valve aortic valve. It employs the pseudo anatomic M-mode image generated by accumulating the line images in 2D parasternal long axis view along the time to refine the measurement landmark points. The experiment results with large volume of data show that the algorithm runs fast and is robust comparable to expert.
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
Heterogeneous Tensor Decomposition for Clustering via Manifold Optimization.
Sun, Yanfeng; Gao, Junbin; Hong, Xia; Mishra, Bamdev; Yin, Baocai
2016-03-01
Tensor clustering is an important tool that exploits intrinsically rich structures in real-world multiarray or Tensor datasets. Often in dealing with those datasets, standard practice is to use subspace clustering that is based on vectorizing multiarray data. However, vectorization of tensorial data does not exploit complete structure information. In this paper, we propose a subspace clustering algorithm without adopting any vectorization process. Our approach is based on a novel heterogeneous Tucker decomposition model taking into account cluster membership information. We propose a new clustering algorithm that alternates between different modes of the proposed heterogeneous tensor model. All but the last mode have closed-form updates. Updating the last mode reduces to optimizing over the multinomial manifold for which we investigate second order Riemannian geometry and propose a trust-region algorithm. Numerical experiments show that our proposed algorithm compete effectively with state-of-the-art clustering algorithms that are based on tensor factorization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Sánchez, Tania; Gómez-Lázaro, Emilio; Muljadi, E.
An alternative approach to characterise real voltage dips is proposed and evaluated in this study. The proposed methodology is based on voltage-space vector solutions, identifying parameters for ellipses trajectories by using the least-squares algorithm applied on a sliding window along the disturbance. The most likely patterns are then estimated through a clustering process based on the k-means algorithm. The objective is to offer an efficient and easily implemented alternative to characterise faults and visualise the most likely instantaneous phase-voltage evolution during events through their corresponding voltage-space vector trajectories. This novel solution minimises the data to be stored but maintains extensivemore » information about the dips including starting and ending transients. The proposed methodology has been applied satisfactorily to real voltage dips obtained from intensive field-measurement campaigns carried out in a Spanish wind power plant up to a time period of several years. A comparison to traditional minimum root mean square-voltage and time-duration classifications is also included in this study.« less
QPSO-Based Adaptive DNA Computing Algorithm
Karakose, Mehmet; Cigdem, Ugur
2013-01-01
DNA (deoxyribonucleic acid) computing that is a new computation model based on DNA molecules for information storage has been increasingly used for optimization and data analysis in recent years. However, DNA computing algorithm has some limitations in terms of convergence speed, adaptability, and effectiveness. In this paper, a new approach for improvement of DNA computing is proposed. This new approach aims to perform DNA computing algorithm with adaptive parameters towards the desired goal using quantum-behaved particle swarm optimization (QPSO). Some contributions provided by the proposed QPSO based on adaptive DNA computing algorithm are as follows: (1) parameters of population size, crossover rate, maximum number of operations, enzyme and virus mutation rate, and fitness function of DNA computing algorithm are simultaneously tuned for adaptive process, (2) adaptive algorithm is performed using QPSO algorithm for goal-driven progress, faster operation, and flexibility in data, and (3) numerical realization of DNA computing algorithm with proposed approach is implemented in system identification. Two experiments with different systems were carried out to evaluate the performance of the proposed approach with comparative results. Experimental results obtained with Matlab and FPGA demonstrate ability to provide effective optimization, considerable convergence speed, and high accuracy according to DNA computing algorithm. PMID:23935409
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects.
Kim, Jinkwon; Min, Se Dong; Lee, Myoungho
2011-06-27
Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.
An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects
2011-01-01
Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians. PMID:21707989
NASA Astrophysics Data System (ADS)
Kim, Juhye; Nam, Haewon; Lee, Rena
2015-07-01
CT (computed tomography) images, metal materials such as tooth supplements or surgical clips can cause metal artifact and degrade image quality. In severe cases, this may lead to misdiagnosis. In this research, we developed a new MAR (metal artifact reduction) algorithm by using an edge preserving filter and the MATLAB program (Mathworks, version R2012a). The proposed algorithm consists of 6 steps: image reconstruction from projection data, metal segmentation, forward projection, interpolation, applied edge preserving smoothing filter, and new image reconstruction. For an evaluation of the proposed algorithm, we obtained both numerical simulation data and data for a Rando phantom. In the numerical simulation data, four metal regions were added into the Shepp Logan phantom for metal artifacts. The projection data of the metal-inserted Rando phantom were obtained by using a prototype CBCT scanner manufactured by medical engineering and medical physics (MEMP) laboratory research group in medical science at Ewha Womans University. After these had been adopted the proposed algorithm was performed, and the result were compared with the original image (with metal artifact without correction) and with a corrected image based on linear interpolation. Both visual and quantitative evaluations were done. Compared with the original image with metal artifacts and with the image corrected by using linear interpolation, both the numerical and the experimental phantom data demonstrated that the proposed algorithm reduced the metal artifact. In conclusion, the evaluation in this research showed that the proposed algorithm outperformed the interpolation based MAR algorithm. If an optimization and a stability evaluation of the proposed algorithm can be performed, the developed algorithm is expected to be an effective tool for eliminating metal artifacts even in commercial CT systems.
A novel artificial immune clonal selection classification and rule mining with swarm learning model
NASA Astrophysics Data System (ADS)
Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.
2013-06-01
Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.
Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N
2011-08-01
In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.
Improving clustering with metabolic pathway data.
Milone, Diego H; Stegmayer, Georgina; López, Mariana; Kamenetzky, Laura; Carrari, Fernando
2014-04-10
It is a common practice in bioinformatics to validate each group returned by a clustering algorithm through manual analysis, according to a-priori biological knowledge. This procedure helps finding functionally related patterns to propose hypotheses for their behavior and the biological processes involved. Therefore, this knowledge is used only as a second step, after data are just clustered according to their expression patterns. Thus, it could be very useful to be able to improve the clustering of biological data by incorporating prior knowledge into the cluster formation itself, in order to enhance the biological value of the clusters. A novel training algorithm for clustering is presented, which evaluates the biological internal connections of the data points while the clusters are being formed. Within this training algorithm, the calculation of distances among data points and neurons centroids includes a new term based on information from well-known metabolic pathways. The standard self-organizing map (SOM) training versus the biologically-inspired SOM (bSOM) training were tested with two real data sets of transcripts and metabolites from Solanum lycopersicum and Arabidopsis thaliana species. Classical data mining validation measures were used to evaluate the clustering solutions obtained by both algorithms. Moreover, a new measure that takes into account the biological connectivity of the clusters was applied. The results of bSOM show important improvements in the convergence and performance for the proposed clustering method in comparison to standard SOM training, in particular, from the application point of view. Analyses of the clusters obtained with bSOM indicate that including biological information during training can certainly increase the biological value of the clusters found with the proposed method. It is worth to highlight that this fact has effectively improved the results, which can simplify their further analysis.The algorithm is available as a web-demo at http://fich.unl.edu.ar/sinc/web-demo/bsom-lite/. The source code and the data sets supporting the results of this article are available at http://sourceforge.net/projects/sourcesinc/files/bsom.
The serial message-passing schedule for LDPC decoding algorithms
NASA Astrophysics Data System (ADS)
Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue
2015-12-01
The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.
Ma, Li; Fan, Suohai
2017-03-14
The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.
Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform
Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong
2018-01-01
Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm. PMID:29438317
Liu, Zhenqiu; Sun, Fengzhu; McGovern, Dermot P
2017-01-01
Feature selection and prediction are the most important tasks for big data mining. The common strategies for feature selection in big data mining are L 1 , SCAD and MC+. However, none of the existing algorithms optimizes L 0 , which penalizes the number of nonzero features directly. In this paper, we develop a novel sparse generalized linear model (GLM) with L 0 approximation for feature selection and prediction with big omics data. The proposed approach approximate the L 0 optimization directly. Even though the original L 0 problem is non-convex, the problem is approximated by sequential convex optimizations with the proposed algorithm. The proposed method is easy to implement with only several lines of code. Novel adaptive ridge algorithms ( L 0 ADRIDGE) for L 0 penalized GLM with ultra high dimensional big data are developed. The proposed approach outperforms the other cutting edge regularization methods including SCAD and MC+ in simulations. When it is applied to integrated analysis of mRNA, microRNA, and methylation data from TCGA ovarian cancer, multilevel gene signatures associated with suboptimal debulking are identified simultaneously. The biological significance and potential clinical importance of those genes are further explored. The developed Software L 0 ADRIDGE in MATLAB is available at https://github.com/liuzqx/L0adridge.
Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.
Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong
2018-02-13
Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.
Data reduction using cubic rational B-splines
NASA Technical Reports Server (NTRS)
Chou, Jin J.; Piegl, Les A.
1992-01-01
A geometric method is proposed for fitting rational cubic B-spline curves to data that represent smooth curves including intersection or silhouette lines. The algorithm is based on the convex hull and the variation diminishing properties of Bezier/B-spline curves. The algorithm has the following structure: it tries to fit one Bezier segment to the entire data set and if it is impossible it subdivides the data set and reconsiders the subset. After accepting the subset the algorithm tries to find the longest run of points within a tolerance and then approximates this set with a Bezier cubic segment. The algorithm uses this procedure repeatedly to the rest of the data points until all points are fitted. It is concluded that the algorithm delivers fitting curves which approximate the data with high accuracy even in cases with large tolerances.
Hardware architecture design of image restoration based on time-frequency domain computation
NASA Astrophysics Data System (ADS)
Wen, Bo; Zhang, Jing; Jiao, Zipeng
2013-10-01
The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.
Development of a Novel Locomotion Algorithm for Snake Robot
NASA Astrophysics Data System (ADS)
Khan, Raisuddin; Masum Billah, Md; Watanabe, Mitsuru; Shafie, A. A.
2013-12-01
A novel algorithm for snake robot locomotion is developed and analyzed in this paper. Serpentine is one of the renowned locomotion for snake robot in disaster recovery mission to overcome narrow space navigation. Several locomotion for snake navigation, such as concertina or rectilinear may be suitable for narrow spaces, but is highly inefficient if the same type of locomotion is used even in open spaces resulting friction reduction which make difficulties for snake movement. A novel locomotion algorithm has been proposed based on the modification of the multi-link snake robot, the modifications include alterations to the snake segments as well elements that mimic scales on the underside of the snake body. Snake robot can be able to navigate in the narrow space using this developed locomotion algorithm. The developed algorithm surmount the others locomotion limitation in narrow space navigation.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared. PMID:29462217
NASA Astrophysics Data System (ADS)
Zhou, Peng; Zhang, Xi; Sun, Weifeng; Dai, Yongshou; Wan, Yong
2018-01-01
An algorithm based on time-frequency analysis is proposed to select an imaging time window for the inverse synthetic aperture radar imaging of ships. An appropriate range bin is selected to perform the time-frequency analysis after radial motion compensation. The selected range bin is that with the maximum mean amplitude among the range bins whose echoes are confirmed to be contributed by a dominant scatter. The criterion for judging whether the echoes of a range bin are contributed by a dominant scatter is key to the proposed algorithm and is therefore described in detail. When the first range bin that satisfies the judgment criterion is found, a sequence composed of the frequencies that have the largest amplitudes in every moment's time-frequency spectrum corresponding to this range bin is employed to calculate the length and the center moment of the optimal imaging time window. Experiments performed with simulation data and real data show the effectiveness of the proposed algorithm, and comparisons between the proposed algorithm and the image contrast-based algorithm (ICBA) are provided. Similar image contrast and lower entropy are acquired using the proposed algorithm as compared with those values when using the ICBA.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
Sharifahmadian, Ershad
2006-01-01
The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.
Synchronization Algorithms for Co-Simulation of Power Grid and Communication Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciraci, Selim; Daily, Jeffrey A.; Agarwal, Khushbu
2014-09-11
The ongoing modernization of power grids consists of integrating them with communication networks in order to achieve robust and resilient control of grid operations. To understand the operation of the new smart grid, one approach is to use simulation software. Unfortunately, current power grid simulators at best utilize inadequate approximations to simulate communication networks, if at all. Cooperative simulation of specialized power grid and communication network simulators promises to more accurately reproduce the interactions of real smart grid deployments. However, co-simulation is a challenging problem. A co-simulation must manage the exchange of informa- tion, including the synchronization of simulator clocks,more » between all simulators while maintaining adequate computational perfor- mance. This paper describes two new conservative algorithms for reducing the overhead of time synchronization, namely Active Set Conservative and Reactive Conservative. We provide a detailed analysis of their performance characteristics with respect to the current state of the art including both conservative and optimistic synchronization algorithms. In addition, we provide guidelines for selecting the appropriate synchronization algorithm based on the requirements of the co-simulation. The newly proposed algorithms are shown to achieve as much as 14% and 63% im- provement, respectively, over the existing conservative algorithm.« less
Marginal Consistency: Upper-Bounding Partition Functions over Commutative Semirings.
Werner, Tomás
2015-07-01
Many inference tasks in pattern recognition and artificial intelligence lead to partition functions in which addition and multiplication are abstract binary operations forming a commutative semiring. By generalizing max-sum diffusion (one of convergent message passing algorithms for approximate MAP inference in graphical models), we propose an iterative algorithm to upper bound such partition functions over commutative semirings. The iteration of the algorithm is remarkably simple: change any two factors of the partition function such that their product remains the same and their overlapping marginals become equal. In many commutative semirings, repeating this iteration for different pairs of factors converges to a fixed point when the overlapping marginals of every pair of factors coincide. We call this state marginal consistency. During that, an upper bound on the partition function monotonically decreases. This abstract algorithm unifies several existing algorithms, including max-sum diffusion and basic constraint propagation (or local consistency) algorithms in constraint programming. We further construct a hierarchy of marginal consistencies of increasingly higher levels and show than any such level can be enforced by adding identity factors of higher arity (order). Finally, we discuss instances of the framework for several semirings, including the distributive lattice and the max-sum and sum-product semirings.
Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K; Cai, Chang; Nagarajan, Srikantan S
2018-06-01
Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.
NASA Astrophysics Data System (ADS)
Sekihara, Kensuke; Adachi, Yoshiaki; Kubota, Hiroshi K.; Cai, Chang; Nagarajan, Srikantan S.
2018-06-01
Objective. Magnetoencephalography (MEG) has a well-recognized weakness at detecting deeper brain activities. This paper proposes a novel algorithm for selective detection of deep sources by suppressing interference signals from superficial sources in MEG measurements. Approach. The proposed algorithm combines the beamspace preprocessing method with the dual signal space projection (DSSP) interference suppression method. A prerequisite of the proposed algorithm is prior knowledge of the location of the deep sources. The proposed algorithm first derives the basis vectors that span a local region just covering the locations of the deep sources. It then estimates the time-domain signal subspace of the superficial sources by using the projector composed of these basis vectors. Signals from the deep sources are extracted by projecting the row space of the data matrix onto the direction orthogonal to the signal subspace of the superficial sources. Main results. Compared with the previously proposed beamspace signal space separation (SSS) method, the proposed algorithm is capable of suppressing much stronger interference from superficial sources. This capability is demonstrated in our computer simulation as well as experiments using phantom data. Significance. The proposed bDSSP algorithm can be a powerful tool in studies of physiological functions of midbrain and deep brain structures.
Minimizing embedding impact in steganography using trellis-coded quantization
NASA Astrophysics Data System (ADS)
Filler, Tomáš; Judas, Jan; Fridrich, Jessica
2010-01-01
In this paper, we propose a practical approach to minimizing embedding impact in steganography based on syndrome coding and trellis-coded quantization and contrast its performance with bounds derived from appropriate rate-distortion bounds. We assume that each cover element can be assigned a positive scalar expressing the impact of making an embedding change at that element (single-letter distortion). The problem is to embed a given payload with minimal possible average embedding impact. This task, which can be viewed as a generalization of matrix embedding or writing on wet paper, has been approached using heuristic and suboptimal tools in the past. Here, we propose a fast and very versatile solution to this problem that can theoretically achieve performance arbitrarily close to the bound. It is based on syndrome coding using linear convolutional codes with the optimal binary quantizer implemented using the Viterbi algorithm run in the dual domain. The complexity and memory requirements of the embedding algorithm are linear w.r.t. the number of cover elements. For practitioners, we include detailed algorithms for finding good codes and their implementation. Finally, we report extensive experimental results for a large set of relative payloads and for different distortion profiles, including the wet paper channel.
Fine-grained parallel RNAalifold algorithm for RNA secondary structure prediction on FPGA
Xia, Fei; Dou, Yong; Zhou, Xingming; Yang, Xuejun; Xu, Jiaqing; Zhang, Yang
2009-01-01
Background In the field of RNA secondary structure prediction, the RNAalifold algorithm is one of the most popular methods using free energy minimization. However, general-purpose computers including parallel computers or multi-core computers exhibit parallel efficiency of no more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to accelerate RNAalifold by exploiting fine-grained custom design. Results RNAalifold shows complicated data dependences, in which the dependence distance is variable, and the dependence direction is also across two dimensions. We propose a systolic array structure including one master Processing Element (PE) and multiple slave PEs for fine grain hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load energy matrices from external memory. We also propose several methods to reduce energy table parameter size by 80%. Conclusion To our knowledge, our implementation with 16 PEs is the only FPGA accelerator implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2 speedup over the RNAalifold (ViennaPackage – 1.6.5) software for a group of aligned RNA sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6 GHz CPU. PMID:19208138
NASA Astrophysics Data System (ADS)
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU-based algorithms based on existing parallelization strategies.
A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-01-01
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system. PMID:25856331
An improved approach for the segmentation of starch granules in microscopic images
2010-01-01
Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380
A Kinect-based real-time compressive tracking prototype system for amphibious spherical robots.
Pan, Shaowu; Shi, Liwei; Guo, Shuxiang
2015-04-08
A visual tracking system is essential as a basis for visual servoing, autonomous navigation, path planning, robot-human interaction and other robotic functions. To execute various tasks in diverse and ever-changing environments, a mobile robot requires high levels of robustness, precision, environmental adaptability and real-time performance of the visual tracking system. In keeping with the application characteristics of our amphibious spherical robot, which was proposed for flexible and economical underwater exploration in 2012, an improved RGB-D visual tracking algorithm is proposed and implemented. Given the limited power source and computational capabilities of mobile robots, compressive tracking (CT), which is the effective and efficient algorithm that was proposed in 2012, was selected as the basis of the proposed algorithm to process colour images. A Kalman filter with a second-order motion model was implemented to predict the state of the target and select candidate patches or samples for the CT tracker. In addition, a variance ratio features shift (VR-V) tracker with a Kalman estimation mechanism was used to process depth images. Using a feedback strategy, the depth tracking results were used to assist the CT tracker in updating classifier parameters at an adaptive rate. In this way, most of the deficiencies of CT, including drift and poor robustness to occlusion and high-speed target motion, were partly solved. To evaluate the proposed algorithm, a Microsoft Kinect sensor, which combines colour and infrared depth cameras, was adopted for use in a prototype of the robotic tracking system. The experimental results with various image sequences demonstrated the effectiveness, robustness and real-time performance of the tracking system.
NASA Astrophysics Data System (ADS)
Hu, Zixi; Yao, Zhewei; Li, Jinglai
2017-03-01
Many scientific and engineering problems require to perform Bayesian inference for unknowns of infinite dimension. In such problems, many standard Markov Chain Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which is referred to as being dimension dependent. To this end, a family of dimensional independent MCMC algorithms, known as the preconditioned Crank-Nicolson (pCN) methods, were proposed to sample the infinite dimensional parameters. In this work we develop an adaptive version of the pCN algorithm, where the covariance operator of the proposal distribution is adjusted based on sampling history to improve the simulation efficiency. We show that the proposed algorithm satisfies an important ergodicity condition under some mild assumptions. Finally we provide numerical examples to demonstrate the performance of the proposed method.
Lim, Jun-Seok; Pang, Hee-Suk
2016-01-01
In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.
Integrating image quality in 2nu-SVM biometric match score fusion.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2007-10-01
This paper proposes an intelligent 2nu-support vector machine based match score fusion algorithm to improve the performance of face and iris recognition by integrating the quality of images. The proposed algorithm applies redundant discrete wavelet transform to evaluate the underlying linear and non-linear features present in the image. A composite quality score is computed to determine the extent of smoothness, sharpness, noise, and other pertinent features present in each subband of the image. The match score and the corresponding quality score of an image are fused using 2nu-support vector machine to improve the verification performance. The proposed algorithm is experimentally validated using the FERET face database and the CASIA iris database. The verification performance and statistical evaluation show that the proposed algorithm outperforms existing fusion algorithms.
Autofocus algorithm using one-dimensional Fourier transform and Pearson correlation
NASA Astrophysics Data System (ADS)
Bueno Mario, A.; Alvarez-Borrego, Josue; Acho, L.
2004-10-01
A new autofocus algorithm based on one-dimensional Fourier transform and Pearson correlation for Z automatized microscope is proposed. Our goal is to determine in fast response time and accuracy, the best focused plane through an algorithm. We capture in bright and dark field several images set at different Z distances from biological organism sample. The algorithm uses the one-dimensional Fourier transform to obtain the image frequency content of a vectors pattern previously defined comparing the Pearson correlation of these frequency vectors versus the reference image frequency vector, the most out of focus image, we find the best focusing. Experimental results showed the algorithm has fast response time and accuracy in getting the best focus plane from captured images. In conclusions, the algorithm can be implemented in real time systems due fast response time, accuracy and robustness. The algorithm can be used to get focused images in bright and dark field and it can be extended to include fusion techniques to construct multifocus final images beyond of this paper.
NASA Astrophysics Data System (ADS)
Hui, Z.; Cheng, P.; Ziggah, Y. Y.; Nie, Y.
2018-04-01
Filtering is a key step for most applications of airborne LiDAR point clouds. Although lots of filtering algorithms have been put forward in recent years, most of them suffer from parameters setting or thresholds adjusting, which will be time-consuming and reduce the degree of automation of the algorithm. To overcome this problem, this paper proposed a threshold-free filtering algorithm based on expectation-maximization. The proposed algorithm is developed based on an assumption that point clouds are seen as a mixture of Gaussian models. The separation of ground points and non-ground points from point clouds can be replaced as a separation of a mixed Gaussian model. Expectation-maximization (EM) is applied for realizing the separation. EM is used to calculate maximum likelihood estimates of the mixture parameters. Using the estimated parameters, the likelihoods of each point belonging to ground or object can be computed. After several iterations, point clouds can be labelled as the component with a larger likelihood. Furthermore, intensity information was also utilized to optimize the filtering results acquired using the EM method. The proposed algorithm was tested using two different datasets used in practice. Experimental results showed that the proposed method can filter non-ground points effectively. To quantitatively evaluate the proposed method, this paper adopted the dataset provided by the ISPRS for the test. The proposed algorithm can obtain a 4.48 % total error which is much lower than most of the eight classical filtering algorithms reported by the ISPRS.
A joint equalization algorithm in high speed communication systems
NASA Astrophysics Data System (ADS)
Hao, Xin; Lin, Changxing; Wang, Zhaohui; Cheng, Binbin; Deng, Xianjin
2018-02-01
This paper presents a joint equalization algorithm in high speed communication systems. This algorithm takes the advantages of traditional equalization algorithms to use pre-equalization and post-equalization. The pre-equalization algorithm takes the advantage of CMA algorithm, which is not sensitive to the frequency offset. Pre-equalization is located before the carrier recovery loop in order to make the carrier recovery loop a better performance and overcome most of the frequency offset. The post-equalization takes the advantage of MMA algorithm in order to overcome the residual frequency offset. This paper analyzes the advantages and disadvantages of several equalization algorithms in the first place, and then simulates the proposed joint equalization algorithm in Matlab platform. The simulation results shows the constellation diagrams and the bit error rate curve, both these results show that the proposed joint equalization algorithm is better than the traditional algorithms. The residual frequency offset is shown directly in the constellation diagrams. When SNR is 14dB, the bit error rate of the simulated system with the proposed joint equalization algorithm is 103 times better than CMA algorithm, 77 times better than MMA equalization, and 9 times better than CMA-MMA equalization.
Cost-efficient scheduling of FAST observations
NASA Astrophysics Data System (ADS)
Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi
2018-03-01
A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.
Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396
Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.
NASA Astrophysics Data System (ADS)
Jia, Xiaodong; Jin, Chao; Buzza, Matt; Di, Yuan; Siegel, David; Lee, Jay
2018-01-01
Successful applications of Diffusion Map (DM) in machine failure detection and diagnosis have been reported in several recent studies. DM provides an efficient way to visualize the high-dimensional, complex and nonlinear machine data, and thus suggests more knowledge about the machine under monitoring. In this paper, a DM based methodology named as DM-EVD is proposed for machine degradation assessment, abnormality detection and diagnosis in an online fashion. Several limitations and challenges of using DM for machine health monitoring have been analyzed and addressed. Based on the proposed DM-EVD, a deviation based methodology is then proposed to include more dimension reduction methods. In this work, the incorporation of Laplacian Eigen-map and Principal Component Analysis (PCA) are explored, and the latter algorithm is named as PCA-Dev and is validated in the case study. To show the successful application of the proposed methodology, case studies from diverse fields are presented and investigated in this work. Improved results are reported by benchmarking with other machine learning algorithms.
Corner detection and sorting method based on improved Harris algorithm in camera calibration
NASA Astrophysics Data System (ADS)
Xiao, Ying; Wang, Yonghong; Dan, Xizuo; Huang, Anqi; Hu, Yue; Yang, Lianxiang
2016-11-01
In traditional Harris corner detection algorithm, the appropriate threshold which is used to eliminate false corners is selected manually. In order to detect corners automatically, an improved algorithm which combines Harris and circular boundary theory of corners is proposed in this paper. After detecting accurate corner coordinates by using Harris algorithm and Forstner algorithm, false corners within chessboard pattern of the calibration plate can be eliminated automatically by using circular boundary theory. Moreover, a corner sorting method based on an improved calibration plate is proposed to eliminate false background corners and sort remaining corners in order. Experiment results show that the proposed algorithms can eliminate all false corners and sort remaining corners correctly and automatically.
An effective and efficient compression algorithm for ECG signals with irregular periods.
Chou, Hsiao-Hsuan; Chen, Ying-Jui; Shiau, Yu-Chien; Kuo, Te-Son
2006-06-01
This paper presents an effective and efficient preprocessing algorithm for two-dimensional (2-D) electrocardiogram (ECG) compression to better compress irregular ECG signals by exploiting their inter- and intra-beat correlations. To better reveal the correlation structure, we first convert the ECG signal into a proper 2-D representation, or image. This involves a few steps including QRS detection and alignment, period sorting, and length equalization. The resulting 2-D ECG representation is then ready to be compressed by an appropriate image compression algorithm. We choose the state-of-the-art JPEG2000 for its high efficiency and flexibility. In this way, the proposed algorithm is shown to outperform some existing arts in the literature by simultaneously achieving high compression ratio (CR), low percent root mean squared difference (PRD), low maximum error (MaxErr), and low standard derivation of errors (StdErr). In particular, because the proposed period sorting method rearranges the detected heartbeats into a smoother image that is easier to compress, this algorithm is insensitive to irregular ECG periods. Thus either the irregular ECG signals or the QRS false-detection cases can be better compressed. This is a significant improvement over existing 2-D ECG compression methods. Moreover, this algorithm is not tied exclusively to JPEG2000. It can also be combined with other 2-D preprocessing methods or appropriate codecs to enhance the compression performance in irregular ECG cases.
Bouridane, Ahmed; Ling, Bingo Wing-Kuen
2018-01-01
This paper presents an unsupervised learning algorithm for sparse nonnegative matrix factor time–frequency deconvolution with optimized fractional β-divergence. The β-divergence is a group of cost functions parametrized by a single parameter β. The Itakura–Saito divergence, Kullback–Leibler divergence and Least Square distance are special cases that correspond to β=0, 1, 2, respectively. This paper presents a generalized algorithm that uses a flexible range of β that includes fractional values. It describes a maximization–minimization (MM) algorithm leading to the development of a fast convergence multiplicative update algorithm with guaranteed convergence. The proposed model operates in the time–frequency domain and decomposes an information-bearing matrix into two-dimensional deconvolution of factor matrices that represent the spectral dictionary and temporal codes. The deconvolution process has been optimized to yield sparse temporal codes through maximizing the likelihood of the observations. The paper also presents a method to estimate the fractional β value. The method is demonstrated on separating audio mixtures recorded from a single channel. The paper shows that the extraction of the spectral dictionary and temporal codes is significantly more efficient by using the proposed algorithm and subsequently leads to better source separation performance. Experimental tests and comparisons with other factorization methods have been conducted to verify its efficacy. PMID:29702629
Two novel motion-based algorithms for surveillance video analysis on embedded platforms
NASA Astrophysics Data System (ADS)
Vijverberg, Julien A.; Loomans, Marijn J. H.; Koeleman, Cornelis J.; de With, Peter H. N.
2010-05-01
This paper proposes two novel motion-vector based techniques for target detection and target tracking in surveillance videos. The algorithms are designed to operate on a resource-constrained device, such as a surveillance camera, and to reuse the motion vectors generated by the video encoder. The first novel algorithm for target detection uses motion vectors to construct a consistent motion mask, which is combined with a simple background segmentation technique to obtain a segmentation mask. The second proposed algorithm aims at multi-target tracking and uses motion vectors to assign blocks to targets employing five features. The weights of these features are adapted based on the interaction between targets. These algorithms are combined in one complete analysis application. The performance of this application for target detection has been evaluated for the i-LIDS sterile zone dataset and achieves an F1-score of 0.40-0.69. The performance of the analysis algorithm for multi-target tracking has been evaluated using the CAVIAR dataset and achieves an MOTP of around 9.7 and MOTA of 0.17-0.25. On a selection of targets in videos from other datasets, the achieved MOTP and MOTA are 8.8-10.5 and 0.32-0.49 respectively. The execution time on a PC-based platform is 36 ms. This includes the 20 ms for generating motion vectors, which are also required by the video encoder.
NASA Astrophysics Data System (ADS)
Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk
2016-05-01
In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.
A Gradient Taguchi Method for Engineering Optimization
NASA Astrophysics Data System (ADS)
Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song
2017-10-01
To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.
Dynamic association rules for gene expression data analysis.
Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung
2015-10-14
The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed DAR algorithm not only was able to identify a set of differentially expressed genes that largely agreed with that of other methods, but also provided an efficient and accurate way to find influential genes of a disease. In the paper, the well-established association rule mining technique from marketing has been successfully modified to determine the minimum support and minimum confidence based on the concept of confidence interval and hypothesis testing. It can be applied to gene expression data to mine significant association rules between gene regulation and phenotype. The proposed DAR algorithm provides an efficient way to find influential genes that underlie the phenotypic variance.
A novel feature extraction approach for microarray data based on multi-algorithm fusion
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions. PMID:25780277
A novel feature extraction approach for microarray data based on multi-algorithm fusion.
Jiang, Zhu; Xu, Rong
2015-01-01
Feature extraction is one of the most important and effective method to reduce dimension in data mining, with emerging of high dimensional data such as microarray gene expression data. Feature extraction for gene selection, mainly serves two purposes. One is to identify certain disease-related genes. The other is to find a compact set of discriminative genes to build a pattern classifier with reduced complexity and improved generalization capabilities. Depending on the purpose of gene selection, two types of feature extraction algorithms including ranking-based feature extraction and set-based feature extraction are employed in microarray gene expression data analysis. In ranking-based feature extraction, features are evaluated on an individual basis, without considering inter-relationship between features in general, while set-based feature extraction evaluates features based on their role in a feature set by taking into account dependency between features. Just as learning methods, feature extraction has a problem in its generalization ability, which is robustness. However, the issue of robustness is often overlooked in feature extraction. In order to improve the accuracy and robustness of feature extraction for microarray data, a novel approach based on multi-algorithm fusion is proposed. By fusing different types of feature extraction algorithms to select the feature from the samples set, the proposed approach is able to improve feature extraction performance. The new approach is tested against gene expression dataset including Colon cancer data, CNS data, DLBCL data, and Leukemia data. The testing results show that the performance of this algorithm is better than existing solutions.
Evaluation of Moving Object Detection Based on Various Input Noise Using Fixed Camera
NASA Astrophysics Data System (ADS)
Kiaee, N.; Hashemizadeh, E.; Zarrinpanjeh, N.
2017-09-01
Detecting and tracking objects in video has been as a research area of interest in the field of image processing and computer vision. This paper evaluates the performance of a novel method for object detection algorithm in video sequences. This process helps us to know the advantage of this method which is being used. The proposed framework compares the correct and wrong detection percentage of this algorithm. This method was evaluated with the collected data in the field of urban transport which include car and pedestrian in fixed camera situation. The results show that the accuracy of the algorithm will decreases because of image resolution reduction.