Sample records for proposed algorithm requires

  1. A voting-based star identification algorithm utilizing local and global distribution

    NASA Astrophysics Data System (ADS)

    Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua

    2018-03-01

    A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less

  3. Automatic Boosted Flood Mapping from Satellite Data

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; McMichael, Scott; Smith, Trey; Fong, Terrence

    2016-01-01

    Numerous algorithms have been proposed to map floods from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, most require human input to succeed, either to specify a threshold value or to manually annotate training data. We introduce a new algorithm based on Adaboost which effectively maps floods without any human input, allowing for a truly rapid and automatic response. The Adaboost algorithm combines multiple thresholds to achieve results comparable to state-of-the-art algorithms which do require human input. We evaluate Adaboost, as well as numerous previously proposed flood mapping algorithms, on multiple MODIS flood images, as well as on hundreds of non-flood MODIS lake images, demonstrating its effectiveness across a wide variety of conditions.

  4. High-order hydrodynamic algorithms for exascale computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel Ray

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broadmore » range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.« less

  5. Multiobjective optimisation design for enterprise system operation in the case of scheduling problem with deteriorating jobs

    NASA Astrophysics Data System (ADS)

    Wang, Hongfeng; Fu, Yaping; Huang, Min; Wang, Junwei

    2016-03-01

    The operation process design is one of the key issues in the manufacturing and service sectors. As a typical operation process, the scheduling with consideration of the deteriorating effect has been widely studied; however, the current literature only studied single function requirement and rarely considered the multiple function requirements which are critical for a real-world scheduling process. In this article, two function requirements are involved in the design of a scheduling process with consideration of the deteriorating effect and then formulated into two objectives of a mathematical programming model. A novel multiobjective evolutionary algorithm is proposed to solve this model with combination of three strategies, i.e. a multiple population scheme, a rule-based local search method and an elitist preserve strategy. To validate the proposed model and algorithm, a series of randomly-generated instances are tested and the experimental results indicate that the model is effective and the proposed algorithm can achieve the satisfactory performance which outperforms the other state-of-the-art multiobjective evolutionary algorithms, such as nondominated sorting genetic algorithm II and multiobjective evolutionary algorithm based on decomposition, on all the test instances.

  6. Gas leak detection in infrared video with background modeling

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaoxia; Huang, Likun

    2018-03-01

    Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.

  7. Neural network for image compression

    NASA Astrophysics Data System (ADS)

    Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.

    1992-09-01

    In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.

  8. Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees

    PubMed Central

    Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng

    2015-01-01

    In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597

  9. Iterative algorithm for joint zero diagonalization with application in blind source separation.

    PubMed

    Zhang, Wei-Tao; Lou, Shun-Tian

    2011-07-01

    A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.

  10. Bounded-Degree Approximations of Stochastic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identifymore » the r-best approximations among these classes, enabling robust decision making.« less

  11. An Efficient Next Hop Selection Algorithm for Multi-Hop Body Area Networks

    PubMed Central

    Ayatollahitafti, Vahid; Ngadi, Md Asri; Mohamad Sharif, Johan bin; Abdullahi, Mohammed

    2016-01-01

    Body Area Networks (BANs) consist of various sensors which gather patient’s vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol. PMID:26771586

  12. On an adaptive preconditioned Crank-Nicolson MCMC algorithm for infinite dimensional Bayesian inference

    NASA Astrophysics Data System (ADS)

    Hu, Zixi; Yao, Zhewei; Li, Jinglai

    2017-03-01

    Many scientific and engineering problems require to perform Bayesian inference for unknowns of infinite dimension. In such problems, many standard Markov Chain Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which is referred to as being dimension dependent. To this end, a family of dimensional independent MCMC algorithms, known as the preconditioned Crank-Nicolson (pCN) methods, were proposed to sample the infinite dimensional parameters. In this work we develop an adaptive version of the pCN algorithm, where the covariance operator of the proposal distribution is adjusted based on sampling history to improve the simulation efficiency. We show that the proposed algorithm satisfies an important ergodicity condition under some mild assumptions. Finally we provide numerical examples to demonstrate the performance of the proposed method.

  13. [Formula: see text]-regularized recursive total least squares based sparse system identification for the error-in-variables.

    PubMed

    Lim, Jun-Seok; Pang, Hee-Suk

    2016-01-01

    In this paper an [Formula: see text]-regularized recursive total least squares (RTLS) algorithm is considered for the sparse system identification. Although recursive least squares (RLS) has been successfully applied in sparse system identification, the estimation performance in RLS based algorithms becomes worse, when both input and output are contaminated by noise (the error-in-variables problem). We proposed an algorithm to handle the error-in-variables problem. The proposed [Formula: see text]-RTLS algorithm is an RLS like iteration using the [Formula: see text] regularization. The proposed algorithm not only gives excellent performance but also reduces the required complexity through the effective inversion matrix handling. Simulations demonstrate the superiority of the proposed [Formula: see text]-regularized RTLS for the sparse system identification setting.

  14. An efficient group multicast routing for multimedia communication

    NASA Astrophysics Data System (ADS)

    Wang, Yanlin; Sun, Yugen; Yan, Xinfang

    2004-04-01

    Group multicasting is a kind of communication mechanism whereby each member of a group sends messages to all the other members of the same group. Group multicast routing algorithms capable of satisfying quality of service (QoS) requirements of multimedia applications are essential for high-speed networks. We present a heuristic algorithm for group multicast routing with end to end delay constraint. Source-specific routing trees for each member are generated in our algorithm, which satisfy member"s bandwidth and end to end delay requirements. Simulations over random network were carried out to compare proposed algorithm performance with Low and Song"s. The experimental results show that our proposed algorithm performs better in terms of network cost and ability in constructing feasible multicast trees for group members. Moreover, our algorithm achieves good performance in balancing traffic, which can avoid link blocking and enhance the network behavior efficiently.

  15. Increasing the object recognition distance of compact open air on board vision system

    NASA Astrophysics Data System (ADS)

    Kirillov, Sergey; Kostkin, Ivan; Strotov, Valery; Dmitriev, Vladimir; Berdnikov, Vadim; Akopov, Eduard; Elyutin, Aleksey

    2016-10-01

    The aim of this work was developing an algorithm eliminating the atmospheric distortion and improves image quality. The proposed algorithm is entirely software without using additional hardware photographic equipment. . This algorithm does not required preliminary calibration. It can work equally effectively with the images obtained at a distances from 1 to 500 meters. An algorithm for the open air images improve designed for Raspberry Pi model B on-board vision systems is proposed. The results of experimental examination are given.

  16. A modify ant colony optimization for the grid jobs scheduling problem with QoS requirements

    NASA Astrophysics Data System (ADS)

    Pu, Xun; Lu, XianLiang

    2011-10-01

    Job scheduling with customers' quality of service (QoS) requirement is challenging in grid environment. In this paper, we present a modify Ant colony optimization (MACO) for the Job scheduling problem in grid. Instead of using the conventional construction approach to construct feasible schedules, the proposed algorithm employs a decomposition method to satisfy the customer's deadline and cost requirements. Besides, a new mechanism of service instances state updating is embedded to improve the convergence of MACO. Experiments demonstrate the effectiveness of the proposed algorithm.

  17. A robust firearm identification algorithm of forensic ballistics specimens

    NASA Astrophysics Data System (ADS)

    Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.

    2017-09-01

    There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.

  18. Active impulsive noise control using maximum correntropy with adaptive kernel size

    NASA Astrophysics Data System (ADS)

    Lu, Lu; Zhao, Haiquan

    2017-03-01

    The active noise control (ANC) based on the principle of superposition is an attractive method to attenuate the noise signals. However, the impulsive noise in the ANC systems will degrade the performance of the controller. In this paper, a filtered-x recursive maximum correntropy (FxRMC) algorithm is proposed based on the maximum correntropy criterion (MCC) to reduce the effect of outliers. The proposed FxRMC algorithm does not requires any priori information of the noise characteristics and outperforms the filtered-x least mean square (FxLMS) algorithm for impulsive noise. Meanwhile, in order to adjust the kernel size of FxRMC algorithm online, a recursive approach is proposed through taking into account the past estimates of error signals over a sliding window. Simulation and experimental results in the context of active impulsive noise control demonstrate that the proposed algorithms achieve much better performance than the existing algorithms in various noise environments.

  19. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    PubMed

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Communication target object recognition for D2D connection with feature size limit

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Kim, Soochang; Kim, Young-hoon; Lee, Chulhee

    2015-03-01

    Recently, a new concept of device-to-device (D2D) communication, which is called "point-and-link communication" has attracted great attentions due to its intuitive and simple operation. This approach enables user to communicate with target devices without any pre-identification information such as SSIDs, MAC addresses by selecting the target image displayed on the user's own device. In this paper, we present an efficient object matching algorithm that can be applied to look(point)-and-link communications for mobile services. Due to the limited channel bandwidth and low computational power of mobile terminals, the matching algorithm should satisfy low-complexity, low-memory and realtime requirements. To meet these requirements, we propose fast and robust feature extraction by considering the descriptor size and processing time. The proposed algorithm utilizes a HSV color histogram, SIFT (Scale Invariant Feature Transform) features and object aspect ratios. To reduce the descriptor size under 300 bytes, a limited number of SIFT key points were chosen as feature points and histograms were binarized while maintaining required performance. Experimental results show the robustness and the efficiency of the proposed algorithm.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less

  2. A weighted information criterion for multiple minor components and its adaptive extraction algorithms.

    PubMed

    Gao, Yingbin; Kong, Xiangyu; Zhang, Huihui; Hou, Li'an

    2017-05-01

    Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  4. An online input force time history reconstruction algorithm using dynamic principal component analysis

    NASA Astrophysics Data System (ADS)

    Prawin, J.; Rama Mohan Rao, A.

    2018-01-01

    The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.

  5. A novel symbiotic organisms search algorithm for congestion management in deregulated environment

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Saha, Subhodip; Mukherjee, V.

    2017-01-01

    In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.

  6. A novel symbiotic organisms search algorithm for congestion management in deregulated environment

    NASA Astrophysics Data System (ADS)

    Verma, Sumit; Saha, Subhodip; Mukherjee, V.

    2017-01-01

    In today's competitive electricity market, managing transmission congestion in deregulated power system has created challenges for independent system operators to operate the transmission lines reliably within the limits. This paper proposes a new meta-heuristic algorithm, called as symbiotic organisms search (SOS) algorithm, for congestion management (CM) problem in pool-based electricity market by real power rescheduling of generators. Inspired by interactions among organisms in ecosystem, SOS algorithm is a recent population-based algorithm which does not require any algorithm specific control parameters unlike other algorithms. Various security constraints such as load bus voltage and line loading are taken into account while dealing with the CM problem. In this paper, the proposed SOS algorithm is applied on modified IEEE 30- and 57-bus test power system for the solution of CM problem. The results, thus, obtained are compared to those reported in the recent state-of-the-art literature. The efficacy of the proposed SOS algorithm for obtaining the higher quality solution is also established.

  7. FPGA-based coprocessor for matrix algorithms implementation

    NASA Astrophysics Data System (ADS)

    Amira, Abbes; Bensaali, Faycal

    2003-03-01

    Matrix algorithms are important in many types of applications including image and signal processing. These areas require enormous computing power. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix operations such as matrix multiplication which is of O (N3) on a sequential computer and O (N3/p) on a parallel system with p processors complexity. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using an FPGA based environment. Solutions for the problem of processing large matrices have been proposed. The proposed system architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

  8. Stokes space modulation format classification based on non-iterative clustering algorithm for coherent optical receivers.

    PubMed

    Mai, Xiaofeng; Liu, Jie; Wu, Xiong; Zhang, Qun; Guo, Changjian; Yang, Yanfu; Li, Zhaohui

    2017-02-06

    A Stokes-space modulation format classification (MFC) technique is proposed for coherent optical receivers by using a non-iterative clustering algorithm. In the clustering algorithm, two simple parameters are calculated to help find the density peaks of the data points in Stokes space and no iteration is required. Correct MFC can be realized in numerical simulations among PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-64QAM signals within practical optical signal-to-noise ratio (OSNR) ranges. The performance of the proposed MFC algorithm is also compared with those of other schemes based on clustering algorithms. The simulation results show that good classification performance can be achieved using the proposed MFC scheme with moderate time complexity. Proof-of-concept experiments are finally implemented to demonstrate MFC among PM-QPSK/16QAM/64QAM signals, which confirm the feasibility of our proposed MFC scheme.

  9. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  10. A modified dual-level algorithm for large-scale three-dimensional Laplace and Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Li, Junpu; Chen, Wen; Fu, Zhuojia

    2018-01-01

    A modified dual-level algorithm is proposed in the article. By the help of the dual level structure, the fully-populated interpolation matrix on the fine level is transformed to a local supported sparse matrix to solve the highly ill-conditioning and excessive storage requirement resulting from fully-populated interpolation matrix. The kernel-independent fast multipole method is adopted to expediting the solving process of the linear equations on the coarse level. Numerical experiments up to 2-million fine-level nodes have successfully been achieved. It is noted that the proposed algorithm merely needs to place 2-3 coarse-level nodes in each wavelength per direction to obtain the reasonable solution, which almost down to the minimum requirement allowed by the Shannon's sampling theorem. In the real human head model example, it is observed that the proposed algorithm can simulate well computationally very challenging exterior high-frequency harmonic acoustic wave propagation up to 20,000 Hz.

  11. Structural model constructing for optical handwritten character recognition

    NASA Astrophysics Data System (ADS)

    Khaustov, P. A.; Spitsyn, V. G.; Maksimova, E. I.

    2017-02-01

    The article is devoted to the development of the algorithms for optical handwritten character recognition based on the structural models constructing. The main advantage of these algorithms is the low requirement regarding the number of reference images. The one-pass approach to a thinning of the binary character representation has been proposed. This approach is based on the joint use of Zhang-Suen and Wu-Tsai algorithms. The effectiveness of the proposed approach is confirmed by the results of the experiments. The article includes the detailed description of the structural model constructing algorithm’s steps. The proposed algorithm has been implemented in character processing application and has been approved on MNIST handwriting characters database. Algorithms that could be used in case of limited reference images number were used for the comparison.

  12. Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Zheng, Yang; Chen, Xihao; Zhu, Rui

    2017-07-01

    Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.

  13. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  14. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  15. Numerical analysis of moving contact line with contact angle hysteresis using feedback deceleration technique

    NASA Astrophysics Data System (ADS)

    Park, Jun Kwon; Kang, Kwan Hyoung

    2012-04-01

    Contact angle (CA) hysteresis is important in many natural and engineering wetting processes, but predicting it numerically is difficult. We developed an algorithm that considers CA hysteresis when analyzing the motion of the contact line (CL). This algorithm employs feedback control of CA which decelerates CL speed to make the CL stationary in the hysteretic range of CA, and one control coefficient should be heuristically determined depending on characteristic time of the simulated system. The algorithm requires embedding only a simple additional routine with little modification of a code which considers the dynamic CA. The method is non-iterative and explicit, and also has less computational load than other algorithms. For a drop hanging on a wire, the proposed algorithm accurately predicts the theoretical equilibrium CA. For the drop impacting on a dry surface, the results of the proposed algorithm agree well with experimental results including the intermittent occurrence of the pinning of CL. The proposed algorithm is as accurate as other algorithms, but faster.

  16. Region of Interest Imaging for a General Trajectory with the Rebinned BPF Algorithm*

    PubMed Central

    Bian, Junguo; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2010-01-01

    The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting factor, which can result in the non-uniform noise levels in reconstructed images and increased computation time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise property, while retaining the advantages of the original BPF algorithm such as minimum data requirement. PMID:20617122

  17. Region of Interest Imaging for a General Trajectory with the Rebinned BPF Algorithm.

    PubMed

    Bian, Junguo; Xia, Dan; Sidky, Emil Y; Pan, Xiaochuan

    2010-02-01

    The back-projection-filtration (BPF) algorithm has been applied to image reconstruction for cone-beam configurations with general source trajectories. The BPF algorithm can reconstruct 3-D region-of-interest (ROI) images from data containing truncations. However, like many other existing algorithms for cone-beam configurations, the BPF algorithm involves a back-projection with a spatially varying weighting factor, which can result in the non-uniform noise levels in reconstructed images and increased computation time. In this work, we propose a BPF algorithm to eliminate the spatially varying weighting factor by using a rebinned geometry for a general scanning trajectory. This proposed BPF algorithm has an improved noise property, while retaining the advantages of the original BPF algorithm such as minimum data requirement.

  18. Admission Control Over Internet of Vehicles Attached With Medical Sensors for Ubiquitous Healthcare Applications.

    PubMed

    Lin, Di; Labeau, Fabrice; Yao, Yuanzhe; Vasilakos, Athanasios V; Tang, Yu

    2016-07-01

    Wireless technologies and vehicle-mounted or wearable medical sensors are pervasive to support ubiquitous healthcare applications. However, a critical issue of using wireless communications under a healthcare scenario rests at the electromagnetic interference (EMI) caused by radio frequency transmission. A high level of EMI may lead to a critical malfunction of medical sensors, and in such a scenario, a few users who are not transmitting emergency data could be required to reduce their transmit power or even temporarily disconnect from the network in order to guarantee the normal operation of medical sensors as well as the transmission of emergency data. In this paper, we propose a joint power and admission control algorithm to schedule the users' transmission of medical data. The objective of this algorithm is to minimize the number of users who are forced to disconnect from the network while keeping the EMI on medical sensors at an acceptable level. We show that a fixed point of proposed algorithm always exists, and at the fixed point, our proposed algorithm can minimize the number of low-priority users who are required to disconnect from the network. Numerical results illustrate that the proposed algorithm can achieve robust performance against the variations of mobile hospital environments.

  19. Gradient maintenance: A new algorithm for fast online replanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahunbay, Ergun E., E-mail: eahunbay@mcw.edu; Li, X. Allen

    2015-06-15

    Purpose: Clinical use of online adaptive replanning has been hampered by the unpractically long time required to delineate volumes based on the image of the day. The authors propose a new replanning algorithm, named gradient maintenance (GM), which does not require the delineation of organs at risk (OARs), and can enhance automation, drastically reducing planning time and improving consistency and throughput of online replanning. Methods: The proposed GM algorithm is based on the hypothesis that if the dose gradient toward each OAR in daily anatomy can be maintained the same as that in the original plan, the intended plan qualitymore » of the original plan would be preserved in the adaptive plan. The algorithm requires a series of partial concentric rings (PCRs) to be automatically generated around the target toward each OAR on the planning and the daily images. The PCRs are used in the daily optimization objective function. The PCR dose constraints are generated with dose–volume data extracted from the original plan. To demonstrate this idea, GM plans generated using daily images acquired using an in-room CT were compared to regular optimization and image guided radiation therapy repositioning plans for representative prostate and pancreatic cancer cases. Results: The adaptive replanning using the GM algorithm, requiring only the target contour from the CT of the day, can be completed within 5 min without using high-power hardware. The obtained adaptive plans were almost as good as the regular optimization plans and were better than the repositioning plans for the cases studied. Conclusions: The newly proposed GM replanning algorithm, requiring only target delineation, not full delineation of OARs, substantially increased planning speed for online adaptive replanning. The preliminary results indicate that the GM algorithm may be a solution to improve the ability for automation and may be especially suitable for sites with small-to-medium size targets surrounded by several critical structures.« less

  20. Key Generation for Fast Inversion of the Paillier Encryption Function

    NASA Astrophysics Data System (ADS)

    Hirano, Takato; Tanaka, Keisuke

    We study fast inversion of the Paillier encryption function. Especially, we focus only on key generation, and do not modify the Paillier encryption function. We propose three key generation algorithms based on the speeding-up techniques for the RSA encryption function. By using our algorithms, the size of the private CRT exponent is half of that of Paillier-CRT. The first algorithm employs the extended Euclidean algorithm. The second algorithm employs factoring algorithms, and can construct the private CRT exponent with low Hamming weight. The third algorithm is a variant of the second one, and has some advantage such as compression of the private CRT exponent and no requirement for factoring algorithms. We also propose the settings of the parameters for these algorithms and analyze the security of the Paillier encryption function by these algorithms against known attacks. Finally, we give experimental results of our algorithms.

  1. Seismic noise attenuation using an online subspace tracking algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  2. Epidemic failure detection and consensus for extreme parallelism

    DOE PAGES

    Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas; ...

    2017-02-01

    Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less

  3. A triangle voting algorithm based on double feature constraints for star sensors

    NASA Astrophysics Data System (ADS)

    Fan, Qiaoyun; Zhong, Xuyang

    2018-02-01

    A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.

  4. Parallel algorithm for computation of second-order sequential best rotations

    NASA Astrophysics Data System (ADS)

    Redif, Soydan; Kasap, Server

    2013-12-01

    Algorithms for computing an approximate polynomial matrix eigenvalue decomposition of para-Hermitian systems have emerged as a powerful, generic signal processing tool. A technique that has shown much success in this regard is the sequential best rotation (SBR2) algorithm. Proposed is a scheme for parallelising SBR2 with a view to exploiting the modern architectural features and inherent parallelism of field-programmable gate array (FPGA) technology. Experiments show that the proposed scheme can achieve low execution times while requiring minimal FPGA resources.

  5. Non-fragile consensus algorithms for a network of diffusion PDEs with boundary local interaction

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Li, Junmin

    2017-07-01

    In this study, non-fragile consensus algorithm is proposed to solve the average consensus problem of a network of diffusion PDEs, modelled by boundary controlled heat equations. The problem deals with the case where the Neumann-type boundary controllers are corrupted by additive persistent disturbances. To achieve consensus between agents, a linear local interaction rule addressing this requirement is given. The proposed local interaction rules are analysed by applying a Lyapunov-based approach. The multiplicative and additive non-fragile feedback control algorithms are designed and sufficient conditions for the consensus of the multi-agent systems are presented in terms of linear matrix inequalities, respectively. Simulation results are presented to support the effectiveness of the proposed algorithms.

  6. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    PubMed Central

    Yoo, Yoonjong; Im, Jaehyun; Paik, Joonki

    2015-01-01

    This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP). Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor. PMID:26121609

  7. Improved argument-FFT frequency offset estimation for QPSK coherent optical Systems

    NASA Astrophysics Data System (ADS)

    Han, Jilong; Li, Wei; Yuan, Zhilin; Li, Haitao; Huang, Liyan; Hu, Qianggao

    2016-02-01

    A frequency offset estimation (FOE) algorithm based on fast Fourier transform (FFT) of the signal's argument is investigated, which does not require removing the modulated data phase. In this paper, we analyze the flaw of the argument-FFT algorithm and propose a combined FOE algorithm, in which the absolute of frequency offset (FO) is accurately calculated by argument-FFT algorithm with a relatively large number of samples and the sign of FO is determined by FFT-based interpolation discrete Fourier transformation (DFT) algorithm with a relatively small number of samples. Compared with the previous algorithms based on argument-FFT, the proposed one has low complexity and can still effectively work with a relatively less number of samples.

  8. Improved Collaborative Filtering Algorithm via Information Transformation

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Wang, Bing-Hong; Guo, Qiang

    In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard collaborative filtering using the Pearson correlation. Furthermore, we introduce a free parameter β to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-N similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.

  9. Maximal Neighbor Similarity Reveals Real Communities in Networks

    PubMed Central

    Žalik, Krista Rizman

    2015-01-01

    An important problem in the analysis of network data is the detection of groups of densely interconnected nodes also called modules or communities. Community structure reveals functions and organizations of networks. Currently used algorithms for community detection in large-scale real-world networks are computationally expensive or require a priori information such as the number or sizes of communities or are not able to give the same resulting partition in multiple runs. In this paper we investigate a simple and fast algorithm that uses the network structure alone and requires neither optimization of pre-defined objective function nor information about number of communities. We propose a bottom up community detection algorithm in which starting from communities consisting of adjacent pairs of nodes and their maximal similar neighbors we find real communities. We show that the overall advantage of the proposed algorithm compared to the other community detection algorithms is its simple nature, low computational cost and its very high accuracy in detection communities of different sizes also in networks with blurred modularity structure consisting of poorly separated communities. All communities identified by the proposed method for facebook network and E-Coli transcriptional regulatory network have strong structural and functional coherence. PMID:26680448

  10. Firefly Mating Algorithm for Continuous Optimization Problems

    PubMed Central

    Ritthipakdee, Amarita; Premasathian, Nol; Jitkongchuen, Duangjai

    2017-01-01

    This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima. PMID:28808442

  11. Firefly Mating Algorithm for Continuous Optimization Problems.

    PubMed

    Ritthipakdee, Amarita; Thammano, Arit; Premasathian, Nol; Jitkongchuen, Duangjai

    2017-01-01

    This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.

  12. Self-Organized Link State Aware Routing for Multiple Mobile Agents in Wireless Network

    NASA Astrophysics Data System (ADS)

    Oda, Akihiro; Nishi, Hiroaki

    Recently, the importance of data sharing structures in autonomous distributed networks has been increasing. A wireless sensor network is used for managing distributed data. This type of distributed network requires effective information exchanging methods for data sharing. To reduce the traffic of broadcasted messages, reduction of the amount of redundant information is indispensable. In order to reduce packet loss in mobile ad-hoc networks, QoS-sensitive routing algorithm have been frequently discussed. The topology of a wireless network is likely to change frequently according to the movement of mobile nodes, radio disturbance, or fading due to the continuous changes in the environment. Therefore, a packet routing algorithm should guarantee QoS by using some quality indicators of the wireless network. In this paper, a novel information exchanging algorithm developed using a hash function and a Boolean operation is proposed. This algorithm achieves efficient information exchanges by reducing the overhead of broadcasting messages, and it can guarantee QoS in a wireless network environment. It can be applied to a routing algorithm in a mobile ad-hoc network. In the proposed routing algorithm, a routing table is constructed by using the received signal strength indicator (RSSI), and the neighborhood information is periodically broadcasted depending on this table. The proposed hash-based routing entry management by using an extended MAC address can eliminate the overhead of message flooding. An analysis of the collision of hash values contributes to the determination of the length of the hash values, which is minimally required. Based on the verification of a mathematical theory, an optimum hash function for determining the length of hash values can be given. Simulations are carried out to evaluate the effectiveness of the proposed algorithm and to validate the theory in a general wireless network routing algorithm.

  13. An Efficient Randomized Algorithm for Real-Time Process Scheduling in PicOS Operating System

    NASA Astrophysics Data System (ADS)

    Helmy*, Tarek; Fatai, Anifowose; Sallam, El-Sayed

    PicOS is an event-driven operating environment designed for use with embedded networked sensors. More specifically, it is designed to support the concurrency in intensive operations required by networked sensors with minimal hardware requirements. Existing process scheduling algorithms of PicOS; a commercial tiny, low-footprint, real-time operating system; have their associated drawbacks. An efficient, alternative algorithm, based on a randomized selection policy, has been proposed, demonstrated, confirmed for efficiency and fairness, on the average, and has been recommended for implementation in PicOS. Simulations were carried out and performance measures such as Average Waiting Time (AWT) and Average Turn-around Time (ATT) were used to assess the efficiency of the proposed randomized version over the existing ones. The results prove that Randomized algorithm is the best and most attractive for implementation in PicOS, since it is most fair and has the least AWT and ATT on average over the other non-preemptive scheduling algorithms implemented in this paper.

  14. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.

  15. Spatial detection of tv channel logos as outliers from the content

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Braspenning, Ralph

    2006-01-01

    This paper proposes a purely image-based TV channel logo detection algorithm that can detect logos independently from their motion and transparency features. The proposed algorithm can robustly detect any type of logos, such as transparent and animated, without requiring any temporal constraints whereas known methods have to wait for the occurrence of large motion in the scene and assume stationary logos. The algorithm models logo pixels as outliers from the actual scene content that is represented by multiple 3-D histograms in the YC BC R space. We use four scene histograms corresponding to each of the four corners because the content characteristics change from one image corner to another. A further novelty of the proposed algorithm is that we define image corners and the areas where we compute the scene histograms by a cinematic technique called Golden Section Rule that is used by professionals. The robustness of the proposed algorithm is demonstrated over a dataset of representative TV content.

  16. A distributed geo-routing algorithm for wireless sensor networks.

    PubMed

    Joshi, Gyanendra Prasad; Kim, Sung Won

    2009-01-01

    Geographic wireless sensor networks use position information for greedy routing. Greedy routing works well in dense networks, whereas in sparse networks it may fail and require a recovery algorithm. Recovery algorithms help the packet to get out of the communication void. However, these algorithms are generally costly for resource constrained position-based wireless sensor networks (WSNs). In this paper, we propose a void avoidance algorithm (VAA), a novel idea based on upgrading virtual distance. VAA allows wireless sensor nodes to remove all stuck nodes by transforming the routing graph and forwarding packets using only greedy routing. In VAA, the stuck node upgrades distance unless it finds a next hop node that is closer to the destination than it is. VAA guarantees packet delivery if there is a topologically valid path. Further, it is completely distributed, immediately responds to node failure or topology changes and does not require planarization of the network. NS-2 is used to evaluate the performance and correctness of VAA and we compare its performance to other protocols. Simulations show our proposed algorithm consumes less energy, has an efficient path and substantially less control overheads.

  17. Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives.

    PubMed

    Djerioui, Ali; Houari, Azeddine; Ait-Ahmed, Mourad; Benkhoris, Mohamed-Fouad; Chouder, Aissa; Machmoum, Mohamed

    2018-03-01

    Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  18. A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing

    PubMed Central

    Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian

    2016-01-01

    Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623

  19. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility.

    PubMed

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-04-19

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.

  20. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility

    PubMed Central

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-01-01

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms. PMID:28422084

  1. Image quality enhancement for skin cancer optical diagnostics

    NASA Astrophysics Data System (ADS)

    Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey

    2017-12-01

    The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.

  2. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    PubMed Central

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  3. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

    PubMed

    Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan

    2014-10-03

    One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

  4. A Hybrid Approach to Protect Palmprint Templates

    PubMed Central

    Sun, Dongmei; Xiong, Ke; Qiu, Zhengding

    2014-01-01

    Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach. PMID:24982977

  5. A hybrid approach to protect palmprint templates.

    PubMed

    Liu, Hailun; Sun, Dongmei; Xiong, Ke; Qiu, Zhengding

    2014-01-01

    Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.

  6. Low-complex energy-aware image communication in visual sensor networks

    NASA Astrophysics Data System (ADS)

    Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran

    2013-10-01

    A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.

  7. An adaptive inverse kinematics algorithm for robot manipulators

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.; Seraji, H.

    1990-01-01

    An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.

  8. An algorithm to track laboratory zebrafish shoals.

    PubMed

    Feijó, Gregory de Oliveira; Sangalli, Vicenzo Abichequer; da Silva, Isaac Newton Lima; Pinho, Márcio Sarroglia

    2018-05-01

    In this paper, a semi-automatic multi-object tracking method to track a group of unmarked zebrafish is proposed. This method can handle partial occlusion cases, maintaining the correct identity of each individual. For every object, we extracted a set of geometric features to be used in the two main stages of the algorithm. The first stage selected the best candidate, based both on the blobs identified in the image and the estimate generated by a Kalman Filter instance. In the second stage, if the same candidate-blob is selected by two or more instances, a blob-partitioning algorithm takes place in order to split this blob and reestablish the instances' identities. If the algorithm cannot determine the identity of a blob, a manual intervention is required. This procedure was compared against a manual labeled ground truth on four video sequences with different numbers of fish and spatial resolution. The performance of the proposed method is then compared against two well-known zebrafish tracking methods found in the literature: one that treats occlusion scenarios and one that only track fish that are not in occlusion. Based on the data set used, the proposed method outperforms the first method in correctly separating fish in occlusion, increasing its efficiency by at least 8.15% of the cases. As for the second, the proposed method's overall performance outperformed the second in some of the tested videos, especially those with lower image quality, because the second method requires high-spatial resolution images, which is not a requirement for the proposed method. Yet, the proposed method was able to separate fish involved in occlusion and correctly assign its identity in up to 87.85% of the cases, without accounting for user intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Water flow algorithm decision support tool for travelling salesman problem

    NASA Astrophysics Data System (ADS)

    Kamarudin, Anis Aklima; Othman, Zulaiha Ali; Sarim, Hafiz Mohd

    2016-08-01

    This paper discuss about the role of Decision Support Tool in Travelling Salesman Problem (TSP) for helping the researchers who doing research in same area will get the better result from the proposed algorithm. A study has been conducted and Rapid Application Development (RAD) model has been use as a methodology which includes requirement planning, user design, construction and cutover. Water Flow Algorithm (WFA) with initialization technique improvement is used as the proposed algorithm in this study for evaluating effectiveness against TSP cases. For DST evaluation will go through usability testing conducted on system use, quality of information, quality of interface and overall satisfaction. Evaluation is needed for determine whether this tool can assists user in making a decision to solve TSP problems with the proposed algorithm or not. Some statistical result shown the ability of this tool in term of helping researchers to conduct the experiments on the WFA with improvements TSP initialization.

  10. Subband Image Coding with Jointly Optimized Quantizers

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Chung, Wilson C.; Smith Mark J. T.

    1995-01-01

    An iterative design algorithm for the joint design of complexity- and entropy-constrained subband quantizers and associated entropy coders is proposed. Unlike conventional subband design algorithms, the proposed algorithm does not require the use of various bit allocation algorithms. Multistage residual quantizers are employed here because they provide greater control of the complexity-performance tradeoffs, and also because they allow efficient and effective high-order statistical modeling. The resulting subband coder exploits statistical dependencies within subbands, across subbands, and across stages, mainly through complexity-constrained high-order entropy coding. Experimental results demonstrate that the complexity-rate-distortion performance of the new subband coder is exceptional.

  11. A novel artificial immune clonal selection classification and rule mining with swarm learning model

    NASA Astrophysics Data System (ADS)

    Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.

    2013-06-01

    Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.

  12. A Modified Subpulse SAR Processing Procedure Based on the Range-Doppler Algorithm for Synthetic Wideband Waveforms

    PubMed Central

    Lim, Byoung-Gyun; Woo, Jea-Choon; Lee, Hee-Young; Kim, Young-Soo

    2008-01-01

    Synthetic wideband waveforms (SWW) combine a stepped frequency CW waveform and a chirp signal waveform to achieve high range resolution without requiring a large bandwidth or the consequent very high sampling rate. If an efficient algorithm like the range-Doppler algorithm (RDA) is used to acquire the SAR images for synthetic wideband signals, errors occur due to approximations, so the images may not show the best possible result. This paper proposes a modified subpulse SAR processing algorithm for synthetic wideband signals which is based on RDA. An experiment with an automobile-based SAR system showed that the proposed algorithm is quite accurate with a considerable improvement in resolution and quality of the obtained SAR image. PMID:27873984

  13. Mixed Criticality Scheduling for Industrial Wireless Sensor Networks

    PubMed Central

    Jin, Xi; Xia, Changqing; Xu, Huiting; Wang, Jintao; Zeng, Peng

    2016-01-01

    Wireless sensor networks (WSNs) have been widely used in industrial systems. Their real-time performance and reliability are fundamental to industrial production. Many works have studied the two aspects, but only focus on single criticality WSNs. Mixed criticality requirements exist in many advanced applications in which different data flows have different levels of importance (or criticality). In this paper, first, we propose a scheduling algorithm, which guarantees the real-time performance and reliability requirements of data flows with different levels of criticality. The algorithm supports centralized optimization and adaptive adjustment. It is able to improve both the scheduling performance and flexibility. Then, we provide the schedulability test through rigorous theoretical analysis. We conduct extensive simulations, and the results demonstrate that the proposed scheduling algorithm and analysis significantly outperform existing ones. PMID:27589741

  14. A method exploiting direct communication between phasor measurement units for power system wide-area protection and control algorithms.

    PubMed

    Almas, Muhammad Shoaib; Vanfretti, Luigi

    2017-01-01

    Synchrophasor measurements from Phasor Measurement Units (PMUs) are the primary sensors used to deploy Wide-Area Monitoring, Protection and Control (WAMPAC) systems. PMUs stream out synchrophasor measurements through the IEEE C37.118.2 protocol using TCP/IP or UDP/IP. The proposed method establishes a direct communication between two PMUs, thus eliminating the requirement of an intermediate phasor data concentrator, data mediator and/or protocol parser and thereby ensuring minimum communication latency without considering communication link delays. This method allows utilizing synchrophasor measurements internally in a PMU to deploy custom protection and control algorithms. These algorithms are deployed using protection logic equations which are supported by all the PMU vendors. Moreover, this method reduces overall equipment cost as the algorithms execute internally in a PMU and therefore does not require any additional controller for their deployment. The proposed method can be utilized for fast prototyping of wide-area measurements based protection and control applications. The proposed method is tested by coupling commercial PMUs as Hardware-in-the-Loop (HIL) with Opal-RT's eMEGAsim Real-Time Simulator (RTS). As illustrative example, anti-islanding protection application is deployed using proposed method and its performance is assessed. The essential points in the method are: •Bypassing intermediate phasor data concentrator or protocol parsers as the synchrophasors are communicated directly between the PMUs (minimizes communication delays).•Wide Area Protection and Control Algorithm is deployed using logic equations in the client PMU, therefore eliminating the requirement for an external hardware controller (cost curtailment)•Effortless means to exploit PMU measurements in an environment familiar to protection engineers.

  15. LTI system order reduction approach based on asymptotical equivalence and the Co-operation of biology-related algorithms

    NASA Astrophysics Data System (ADS)

    Ryzhikov, I. S.; Semenkin, E. S.; Akhmedova, Sh A.

    2017-02-01

    A novel order reduction method for linear time invariant systems is described. The method is based on reducing the initial problem to an optimization one, using the proposed model representation, and solving the problem with an efficient optimization algorithm. The proposed method of determining the model allows all the parameters of the model with lower order to be identified and by definition, provides the model with the required steady-state. As a powerful optimization tool, the meta-heuristic Co-Operation of Biology-Related Algorithms was used. Experimental results proved that the proposed approach outperforms other approaches and that the reduced order model achieves a high level of accuracy.

  16. Task-based evaluation of segmentation algorithms for diffusion-weighted MRI without using a gold standard

    PubMed Central

    Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.

    2012-01-01

    In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231

  17. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant Time Series.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2016-07-01

    A new signal reconstruction algorithm for compressive sensing based on the minimization of a pseudonorm which promotes block-sparse structure on the first-order difference of the signal is proposed. Involved optimization is carried out by using a sequential version of Fletcher-Reeves' conjugate-gradient algorithm, and the line search is based on Banach's fixed-point theorem. The algorithm is suitable for the reconstruction of foot gait signals which admit block-sparse structure on the first-order difference. An additional algorithm for the estimation of stride-interval, swing-interval, and stance-interval time series from the reconstructed foot gait signals is also proposed. This algorithm is based on finding zero crossing indices of the foot gait signal and using the resulting indices for the computation of time series. Extensive simulation results demonstrate that the proposed signal reconstruction algorithm yields improved signal-to-noise ratio and requires significantly reduced computational effort relative to several competing algorithms over a wide range of compression ratio. For a compression ratio in the range from 88% to 94%, the proposed algorithm is found to offer improved accuracy for the estimation of clinically relevant time-series parameters, namely, the mean value, variance, and spectral index of stride-interval, stance-interval, and swing-interval time series, relative to its nearest competitor algorithm. The improvement in performance for compression ratio as high as 94% indicates that the proposed algorithms would be useful for designing compressive sensing-based systems for long-term telemonitoring of human gait signals.

  18. Correlation-coefficient-based fast template matching through partial elimination.

    PubMed

    Mahmood, Arif; Khan, Sohaib

    2012-04-01

    Partial computation elimination techniques are often used for fast template matching. At a particular search location, computations are prematurely terminated as soon as it is found that this location cannot compete with an already known best match location. Due to the nonmonotonic growth pattern of the correlation-based similarity measures, partial computation elimination techniques have been traditionally considered inapplicable to speed up these measures. In this paper, we show that partial elimination techniques may be applied to a correlation coefficient by using a monotonic formulation, and we propose basic-mode and extended-mode partial correlation elimination algorithms for fast template matching. The basic-mode algorithm is more efficient on small template sizes, whereas the extended mode is faster on medium and larger templates. We also propose a strategy to decide which algorithm to use for a given data set. To achieve a high speedup, elimination algorithms require an initial guess of the peak correlation value. We propose two initialization schemes including a coarse-to-fine scheme for larger templates and a two-stage technique for small- and medium-sized templates. Our proposed algorithms are exact, i.e., having exhaustive equivalent accuracy, and are compared with the existing fast techniques using real image data sets on a wide variety of template sizes. While the actual speedups are data dependent, in most cases, our proposed algorithms have been found to be significantly faster than the other algorithms.

  19. A Novel Control Strategy for Autonomous Operation of Isolated Microgrid with Prioritized Loads

    NASA Astrophysics Data System (ADS)

    Kumar, R. Hari; Ushakumari, S.

    2018-05-01

    Maintenance of power balance between generation and demand is one of the most critical requirements for the stable operation of a power system network. To mitigate the power imbalance during the occurrence of any disturbance in the system, fast acting algorithms are inevitable. This paper proposes a novel algorithm for load shedding and network reconfiguration in an isolated microgrid with prioritized loads and multiple islands, which will help to quickly restore the system in the event of a fault. The performance of the proposed algorithm is enhanced using genetic algorithm and its effectiveness is illustrated with simulation results on modified Consortium for Electric Reliability Technology Solutions (CERTS) microgrid.

  20. Increasing feasibility of the field-programmable gate array implementation of an iterative image registration using a kernel-warping algorithm

    NASA Astrophysics Data System (ADS)

    Nguyen, An Hung; Guillemette, Thomas; Lambert, Andrew J.; Pickering, Mark R.; Garratt, Matthew A.

    2017-09-01

    Image registration is a fundamental image processing technique. It is used to spatially align two or more images that have been captured at different times, from different sensors, or from different viewpoints. There have been many algorithms proposed for this task. The most common of these being the well-known Lucas-Kanade (LK) and Horn-Schunck approaches. However, the main limitation of these approaches is the computational complexity required to implement the large number of iterations necessary for successful alignment of the images. Previously, a multi-pass image interpolation algorithm (MP-I2A) was developed to considerably reduce the number of iterations required for successful registration compared with the LK algorithm. This paper develops a kernel-warping algorithm (KWA), a modified version of the MP-I2A, which requires fewer iterations to successfully register two images and less memory space for the field-programmable gate array (FPGA) implementation than the MP-I2A. These reductions increase feasibility of the implementation of the proposed algorithm on FPGAs with very limited memory space and other hardware resources. A two-FPGA system rather than single FPGA system is successfully developed to implement the KWA in order to compensate insufficiency of hardware resources supported by one FPGA, and increase parallel processing ability and scalability of the system.

  1. Skull removal in MR images using a modified artificial bee colony optimization algorithm.

    PubMed

    Taherdangkoo, Mohammad

    2014-01-01

    Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.

  2. Secured Hash Based Burst Header Authentication Design for Optical Burst Switched Networks

    NASA Astrophysics Data System (ADS)

    Balamurugan, A. M.; Sivasubramanian, A.; Parvathavarthini, B.

    2017-12-01

    The optical burst switching (OBS) is a promising technology that could meet the fast growing network demand. They are featured with the ability to meet the bandwidth requirement of applications that demand intensive bandwidth. OBS proves to be a satisfactory technology to tackle the huge bandwidth constraints, but suffers from security vulnerabilities. The objective of this proposed work is to design a faster and efficient burst header authentication algorithm for core nodes. There are two important key features in this work, viz., header encryption and authentication. Since the burst header is an important in optical burst switched network, it has to be encrypted; otherwise it is be prone to attack. The proposed MD5&RC4-4S based burst header authentication algorithm runs 20.75 ns faster than the conventional algorithms. The modification suggested in the proposed RC4-4S algorithm gives a better security and solves the correlation problems between the publicly known outputs during key generation phase. The modified MD5 recommended in this work provides 7.81 % better avalanche effect than the conventional algorithm. The device utilization result also shows the suitability of the proposed algorithm for header authentication in real time applications.

  3. The cascaded moving k-means and fuzzy c-means clustering algorithms for unsupervised segmentation of malaria images

    NASA Astrophysics Data System (ADS)

    Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida

    2015-05-01

    Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.

  4. Fast processing of microscopic images using object-based extended depth of field.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades

    2016-12-22

    Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.

  5. Contour-based object orientation estimation

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Babayan, Pavel

    2016-04-01

    Real-time object orientation estimation is an actual problem of computer vision nowadays. In this paper we propose an approach to estimate an orientation of objects lacking axial symmetry. Proposed algorithm is intended to estimate orientation of a specific known 3D object, so 3D model is required for learning. The proposed orientation estimation algorithm consists of 2 stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. It minimizes the training image set. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy (mean error value less than 6°) in all case studies. The real-time performance of the algorithm was also demonstrated.

  6. DOA estimation of noncircular signals for coprime linear array via locally reduced-dimensional Capon

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhang, Xiaofei; Zheng, Wang

    2018-05-01

    We investigate the issue of direction of arrival (DOA) estimation of noncircular signals for coprime linear array (CLA). The noncircular property enhances the degree of freedom and improves angle estimation performance, but it leads to a more complex angle ambiguity problem. To eliminate ambiguity, we theoretically prove that the actual DOAs of noncircular signals can be uniquely estimated by finding the coincide results from the two decomposed subarrays based on the coprimeness. We propose a locally reduced-dimensional (RD) Capon algorithm for DOA estimation of noncircular signals for CLA. The RD processing is used in the proposed algorithm to avoid two dimensional (2D) spectral peak search, and coprimeness is employed to avoid the global spectral peak search. The proposed algorithm requires one-dimensional locally spectral peak search, and it has very low computational complexity. Furthermore, the proposed algorithm needs no prior knowledge of the number of sources. We also derive the Crámer-Rao bound of DOA estimation of noncircular signals in CLA. Numerical simulation results demonstrate the effectiveness and superiority of the algorithm.

  7. Effective Online Bayesian Phylogenetics via Sequential Monte Carlo with Guided Proposals

    PubMed Central

    Fourment, Mathieu; Claywell, Brian C; Dinh, Vu; McCoy, Connor; Matsen IV, Frederick A; Darling, Aaron E

    2018-01-01

    Abstract Modern infectious disease outbreak surveillance produces continuous streams of sequence data which require phylogenetic analysis as data arrives. Current software packages for Bayesian phylogenetic inference are unable to quickly incorporate new sequences as they become available, making them less useful for dynamically unfolding evolutionary stories. This limitation can be addressed by applying a class of Bayesian statistical inference algorithms called sequential Monte Carlo (SMC) to conduct online inference, wherein new data can be continuously incorporated to update the estimate of the posterior probability distribution. In this article, we describe and evaluate several different online phylogenetic sequential Monte Carlo (OPSMC) algorithms. We show that proposing new phylogenies with a density similar to the Bayesian prior suffers from poor performance, and we develop “guided” proposals that better match the proposal density to the posterior. Furthermore, we show that the simplest guided proposals can exhibit pathological behavior in some situations, leading to poor results, and that the situation can be resolved by heating the proposal density. The results demonstrate that relative to the widely used MCMC-based algorithm implemented in MrBayes, the total time required to compute a series of phylogenetic posteriors as sequences arrive can be significantly reduced by the use of OPSMC, without incurring a significant loss in accuracy. PMID:29186587

  8. Adaptive bearing estimation and tracking of multiple targets in a realistic passive sonar scenario

    NASA Astrophysics Data System (ADS)

    Rajagopal, R.; Challa, Subhash; Faruqi, Farhan A.; Rao, P. R.

    1997-06-01

    In a realistic passive sonar environment, the received signal consists of multipath arrivals from closely separated moving targets. The signals are contaminated by spatially correlated noise. The differential MUSIC has been proposed to estimate the DOAs in such a scenario. This method estimates the 'noise subspace' in order to estimate the DOAs. However, the 'noise subspace' estimate has to be updated as and when new data become available. In order to save the computational costs, a new adaptive noise subspace estimation algorithm is proposed in this paper. The salient features of the proposed algorithm are: (1) Noise subspace estimation is done by QR decomposition of the difference matrix which is formed from the data covariance matrix. Thus, as compared to standard eigen-decomposition based methods which require O(N3) computations, the proposed method requires only O(N2) computations. (2) Noise subspace is updated by updating the QR decomposition. (3) The proposed algorithm works in a realistic sonar environment. In the second part of the paper, the estimated bearing values are used to track multiple targets. In order to achieve this, the nonlinear system/linear measurement extended Kalman filtering proposed is applied. Computer simulation results are also presented to support the theory.

  9. An Improved Aerial Target Localization Method with a Single Vector Sensor

    PubMed Central

    Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin

    2017-01-01

    This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956

  10. Optimizing Multiple QoS for Workflow Applications using PSO and Min-Max Strategy

    NASA Astrophysics Data System (ADS)

    Umar Ambursa, Faruku; Latip, Rohaya; Abdullah, Azizol; Subramaniam, Shamala

    2017-08-01

    Workflow scheduling under multiple QoS constraints is a complicated optimization problem. Metaheuristic techniques are excellent approaches used in dealing with such problem. Many metaheuristic based algorithms have been proposed, that considers various economic and trustworthy QoS dimensions. However, most of these approaches lead to high violation of user-defined QoS requirements in tight situation. Recently, a new Particle Swarm Optimization (PSO)-based QoS-aware workflow scheduling strategy (LAPSO) is proposed to improve performance in such situations. LAPSO algorithm is designed based on synergy between a violation handling method and a hybrid of PSO and min-max heuristic. Simulation results showed a great potential of LAPSO algorithm to handling user requirements even in tight situations. In this paper, the performance of the algorithm is anlysed further. Specifically, the impact of the min-max strategy on the performance of the algorithm is revealed. This is achieved by removing the violation handling from the operation of the algorithm. The results show that LAPSO based on only the min-max method still outperforms the benchmark, even though the LAPSO with the violation handling performs more significantly better.

  11. An algorithm of discovering signatures from DNA databases on a computer cluster.

    PubMed

    Lee, Hsiao Ping; Sheu, Tzu-Fang

    2014-10-05

    Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.

  12. Time-aware service-classified spectrum defragmentation algorithm for flex-grid optical networks

    NASA Astrophysics Data System (ADS)

    Qiu, Yang; Xu, Jing

    2018-01-01

    By employing sophisticated routing and spectrum assignment (RSA) algorithms together with a finer spectrum granularity (namely frequency slot) in resource allocation procedures, flex-grid optical networks can accommodate diverse kinds of services with high spectrum-allocation flexibility and resource-utilization efficiency. However, the continuity and the contiguity constraints in spectrum allocation procedures may always induce some isolated, small-sized, and unoccupied spectral blocks (known as spectrum fragments) in flex-grid optical networks. Although these spectrum fragments are left unoccupied, they can hardly be utilized by the subsequent service requests directly because of their spectral characteristics and the constraints in spectrum allocation. In this way, the existence of spectrum fragments may exhaust the available spectrum resources for a coming service request and thus worsens the networking performance. Therefore, many reactive defragmentation algorithms have been proposed to handle the fragmented spectrum resources via re-optimizing the routing paths and the spectrum resources for the existing services. But the routing-path and the spectrum-resource re-optimization in reactive defragmentation algorithms may possibly disrupt the traffic of the existing services and require extra components. By comparison, some proactive defragmentation algorithms (e.g. fragmentation-aware algorithms) were proposed to suppress spectrum fragments from their generation instead of handling the fragmented spectrum resources. Although these proactive defragmentation algorithms induced no traffic disruption and required no extra components, they always left the generated spectrum fragments unhandled, which greatly affected their efficiency in spectrum defragmentation. In this paper, by comprehensively considering the characteristics of both the reactive and the proactive defragmentation algorithms, we proposed a time-aware service-classified (TASC) spectrum defragmentation algorithm, which simultaneously employed proactive and reactive mechanisms in suppressing spectrum fragments with the awareness of services' types and their duration times. By dividing the spectrum resources into several flexible groups according to services' types and limiting both the spectrum allocation and the spectrum re-tuning for a certain service inside one specific spectrum group according to its type, the proposed TASC defragmentation algorithm cannot only suppress spectrum fragments from generation inside each spectrum group, but also handle the fragments generated between two adjacent groups. In this way, the proposed TASC algorithm gains higher efficiency in suppressing spectrum fragments than both the reactive and the proactive defragmentation algorithms. Additionally, as the generation of spectrum fragments is retrained between spectrum groups and the defragmentation procedure is limited inside each spectrum group, the induced traffic disruption for the existing services can be possibly reduced. Besides, the proposed TASC defragmentation algorithm always re-tunes the spectrum resources of the service with the maximum duration time first in spectrum defragmentation procedure, which can further reduce spectrum fragments because of the fact that the services with longer duration times always have higher possibility in inducing spectrum fragments than the services with shorter duration times. The simulation results show that the proposed TASC defragmentation algorithm can significantly reduce the number of the generated spectrum fragments while improving the service blocking performance.

  13. Indoor positioning algorithm combined with angular vibration compensation and the trust region technique based on received signal strength-visible light communication

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Li, Haoxu; Zhang, Xiaofeng; Wu, Rangzhong

    2017-05-01

    Indoor positioning using visible light communication has become a topic of intensive research in recent years. Because the normal of the receiver always deviates from that of the transmitter in application, the positioning systems which require that the normal of the receiver be aligned with that of the transmitter have large positioning errors. Some algorithms take the angular vibrations into account; nevertheless, these positioning algorithms cannot meet the requirement of high accuracy or low complexity. A visible light positioning algorithm combined with angular vibration compensation is proposed. The angle information from the accelerometer or other angle acquisition devices is used to calculate the angle of incidence even when the receiver is not horizontal. Meanwhile, a received signal strength technique with high accuracy is employed to determine the location. Moreover, an eight-light-emitting-diode (LED) system model is provided to improve the accuracy. The simulation results show that the proposed system can achieve a low positioning error with low complexity, and the eight-LED system exhibits improved performance. Furthermore, trust region-based positioning is proposed to determine three-dimensional locations and achieves high accuracy in both the horizontal and the vertical components.

  14. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  15. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  16. Garbage Collection in a Distributed Object-Oriented System

    NASA Technical Reports Server (NTRS)

    Gupta, Aloke; Fuchs, W. Kent

    1993-01-01

    An algorithm is described in this paper for garbage collection in distributed systems with object sharing across processor boundaries. The algorithm allows local garbage collection at each node in the system to proceed independently of local collection at the other nodes. It requires no global synchronization or knowledge of the global state of the system and exhibits the capability of graceful degradation. The concept of a specialized dump node is proposed to facilitate the collection of inaccessible circular structures. An experimental evaluation of the algorithm is also described. The algorithm is compared with a corresponding scheme that requires global synchronization. The results show that the algorithm works well in distributed processing environments even when the locality of object references is low.

  17. Flood inundation extent mapping based on block compressed tracing

    NASA Astrophysics Data System (ADS)

    Shen, Dingtao; Rui, Yikang; Wang, Jiechen; Zhang, Yu; Cheng, Liang

    2015-07-01

    Flood inundation extent, depth, and duration are important factors affecting flood hazard evaluation. At present, flood inundation analysis is based mainly on a seeded region-growing algorithm, which is an inefficient process because it requires excessive recursive computations and it is incapable of processing massive datasets. To address this problem, we propose a block compressed tracing algorithm for mapping the flood inundation extent, which reads the DEM data in blocks before transferring them to raster compression storage. This allows a smaller computer memory to process a larger amount of data, which solves the problem of the regular seeded region-growing algorithm. In addition, the use of a raster boundary tracing technique allows the algorithm to avoid the time-consuming computations required by the seeded region-growing. Finally, we conduct a comparative evaluation in the Chin-sha River basin, results show that the proposed method solves the problem of flood inundation extent mapping based on massive DEM datasets with higher computational efficiency than the original method, which makes it suitable for practical applications.

  18. An efficient dynamic load balancing algorithm

    NASA Astrophysics Data System (ADS)

    Lagaros, Nikos D.

    2014-01-01

    In engineering problems, randomness and uncertainties are inherent. Robust design procedures, formulated in the framework of multi-objective optimization, have been proposed in order to take into account sources of randomness and uncertainty. These design procedures require orders of magnitude more computational effort than conventional analysis or optimum design processes since a very large number of finite element analyses is required to be dealt. It is therefore an imperative need to exploit the capabilities of computing resources in order to deal with this kind of problems. In particular, parallel computing can be implemented at the level of metaheuristic optimization, by exploiting the physical parallelization feature of the nondominated sorting evolution strategies method, as well as at the level of repeated structural analyses required for assessing the behavioural constraints and for calculating the objective functions. In this study an efficient dynamic load balancing algorithm for optimum exploitation of available computing resources is proposed and, without loss of generality, is applied for computing the desired Pareto front. In such problems the computation of the complete Pareto front with feasible designs only, constitutes a very challenging task. The proposed algorithm achieves linear speedup factors and almost 100% speedup factor values with reference to the sequential procedure.

  19. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  20. Design of an FMCW radar baseband signal processing system for automotive application.

    PubMed

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung

    2016-01-01

    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.

  1. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  2. A new three-dimensional manufacturing service composition method under various structures using improved Flower Pollination Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Chen, Yong

    2018-05-01

    With the growing complexity of customer requirements and the increasing scale of manufacturing services, how to select and combine the single services to meet the complex demand of the customer has become a growing concern. This paper presents a new manufacturing service composition method to solve the multi-objective optimization problem based on quality of service (QoS). The proposed model not only presents different methods for calculating the transportation time and transportation cost under various structures but also solves the three-dimensional composition optimization problem, including service aggregation, service selection, and service scheduling simultaneously. Further, an improved Flower Pollination Algorithm (IFPA) is proposed to solve the three-dimensional composition optimization problem using a matrix-based representation scheme. The mutation operator and crossover operator of the Differential Evolution (DE) algorithm are also used to extend the basic Flower Pollination Algorithm (FPA) to improve its performance. Compared to Genetic Algorithm, DE, and basic FPA, the experimental results confirm that the proposed method demonstrates superior performance than other meta heuristic algorithms and can obtain better manufacturing service composition solutions.

  3. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  4. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  5. Local-search based prediction of medical image registration error

    NASA Astrophysics Data System (ADS)

    Saygili, Görkem

    2018-03-01

    Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.

  6. Application of Approximate Pattern Matching in Two Dimensional Spaces to Grid Layout for Biochemical Network Maps

    PubMed Central

    Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki

    2012-01-01

    Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html. PMID:22679486

  7. The optimal algorithm for Multi-source RS image fusion.

    PubMed

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  8. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    PubMed

    Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki

    2012-01-01

    For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  9. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical network

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Liu, Bo; Zhang, Lijia; Jin, Feifei; Zhang, Qi; Tian, Qinghua; Tian, Feng; Rao, Lan; Xin, Xiangjun

    2017-03-01

    The wavelength-division multiplexing passive optical network (WDM-PON) is a potential technology to carry multiple services in an optical access network. However, it has the disadvantages of high cost and an immature technique for users. A software-defined WDM/time-division multiplexing PON was proposed to meet the requirements of high bandwidth, high performance, and multiple services. A reasonable and effective uplink dynamic bandwidth allocation algorithm was proposed. A controller with dynamic wavelength and slot assignment was introduced, and a different optical dynamic bandwidth management strategy was formulated flexibly for services of different priorities according to the network loading. The simulation compares the proposed algorithm with the interleaved polling with adaptive cycle time algorithm. The algorithm shows better performance in average delay, throughput, and bandwidth utilization. The results show that the delay is reduced to 62% and the throughput is improved by 35%.

  10. Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism

    NASA Astrophysics Data System (ADS)

    Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad

    2018-01-01

    Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.

  11. Optimization of memory use of fragment extension-based protein-ligand docking with an original fast minimum cost flow algorithm.

    PubMed

    Yanagisawa, Keisuke; Komine, Shunta; Kubota, Rikuto; Ohue, Masahito; Akiyama, Yutaka

    2018-06-01

    The need to accelerate large-scale protein-ligand docking in virtual screening against a huge compound database led researchers to propose a strategy that entails memorizing the evaluation result of the partial structure of a compound and reusing it to evaluate other compounds. However, the previous method required frequent disk accesses, resulting in insufficient acceleration. Thus, more efficient memory usage can be expected to lead to further acceleration, and optimal memory usage could be achieved by solving the minimum cost flow problem. In this research, we propose a fast algorithm for the minimum cost flow problem utilizing the characteristics of the graph generated for this problem as constraints. The proposed algorithm, which optimized memory usage, was approximately seven times faster compared to existing minimum cost flow algorithms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. A novel downlink scheduling strategy for traffic communication system based on TD-LTE technology.

    PubMed

    Chen, Ting; Zhao, Xiangmo; Gao, Tao; Zhang, Licheng

    2016-01-01

    There are many existing classical scheduling algorithms which can obtain better system throughput and user equality, however, they are not designed for traffic transportation environment, which cannot consider whether the transmission performance of various information flows could meet comprehensive requirements of traffic safety and delay tolerance. This paper proposes a novel downlink scheduling strategy for traffic communication system based on TD-LTE technology, which can perform two classification mappings for various information flows in the eNodeB: firstly, associate every information flow packet with traffic safety importance weight according to its relevance to the traffic safety; secondly, associate every traffic information flow with service type importance weight according to its quality of service (QoS) requirements. Once the connection is established, at every scheduling moment, scheduler would decide the scheduling order of all buffers' head of line packets periodically according to the instant value of scheduling importance weight function, which calculated by the proposed algorithm. From different scenario simulations, it can be verified that the proposed algorithm can provide superior differentiated transmission service and reliable QoS guarantee to information flows with different traffic safety levels and service types, which is more suitable for traffic transportation environment compared with the existing popularity PF algorithm. With the limited wireless resource, information flow closed related to traffic safety will always obtain priority scheduling right timely, which can help the passengers' journey more safe. Moreover, the proposed algorithm cannot only obtain good flow throughput and user fairness which are almost equal to those of the PF algorithm without significant differences, but also provide better realtime transmission guarantee to realtime information flow.

  13. Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm

    PubMed Central

    Wang, Jie-Sheng; Han, Shuang

    2015-01-01

    For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034

  14. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms

    NASA Astrophysics Data System (ADS)

    Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr

    2017-12-01

    There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.

  15. Solving a class of generalized fractional programming problems using the feasibility of linear programs.

    PubMed

    Shen, Peiping; Zhang, Tongli; Wang, Chunfeng

    2017-01-01

    This article presents a new approximation algorithm for globally solving a class of generalized fractional programming problems (P) whose objective functions are defined as an appropriate composition of ratios of affine functions. To solve this problem, the algorithm solves an equivalent optimization problem (Q) via an exploration of a suitably defined nonuniform grid. The main work of the algorithm involves checking the feasibility of linear programs associated with the interesting grid points. It is proved that the proposed algorithm is a fully polynomial time approximation scheme as the ratio terms are fixed in the objective function to problem (P), based on the computational complexity result. In contrast to existing results in literature, the algorithm does not require the assumptions on quasi-concavity or low-rank of the objective function to problem (P). Numerical results are given to illustrate the feasibility and effectiveness of the proposed algorithm.

  16. Classification of physical activities based on body-segments coordination.

    PubMed

    Fradet, Laetitia; Marin, Frederic

    2016-09-01

    Numerous innovations based on connected objects and physical activity (PA) monitoring have been proposed. However, recognition of PAs requires robust algorithm and methodology. The current study presents an innovative approach for PA recognition. It is based on the heuristic definition of postures and the use of body-segments coordination obtained through external sensors. The first part of this study presents the methodology required to define the set of accelerations which is the most appropriate to represent the particular body-segments coordination involved in the chosen PAs (here walking, running, and cycling). For that purpose, subjects of different ages and heterogeneous physical conditions walked, ran, cycled, and performed daily activities at different paces. From the 3D motion capture, vertical and horizontal accelerations of 8 anatomical landmarks representative of the body were computed. Then, the 680 combinations from up to 3 accelerations were compared to identify the most appropriate set of acceleration to discriminate the PAs in terms of body segment coordinations. The discrimination was based on the maximal Hausdorff Distance obtained between the different set of accelerations. The vertical accelerations of both knees demonstrated the best PAs discrimination. The second step was the proof of concept, implementing the proposed algorithm to classify PAs of new group of subjects. The originality of the proposed algorithm is the possibility to use the subject's specific measures as reference data. With the proposed algorithm, 94% of the trials were correctly classified. In conclusion, our study proposed a flexible and extendable methodology. At the current stage, the algorithm has been shown to be valid for heterogeneous subjects, which suggests that it could be deployed in clinical or health-related applications regardless of the subjects' physical abilities or characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions

    NASA Astrophysics Data System (ADS)

    Song, Bongyong; Park, Justin C.; Song, William Y.

    2014-11-01

    The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires ‘at most one function evaluation’ in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a ‘smoothed TV’ or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for the head-and-neck patient with only 180 projections, in 131.7 s, further supporting its clinical applicability.

  18. A low-complexity 2-point step size gradient projection method with selective function evaluations for smoothed total variation based CBCT reconstructions.

    PubMed

    Song, Bongyong; Park, Justin C; Song, William Y

    2014-11-07

    The Barzilai-Borwein (BB) 2-point step size gradient method is receiving attention for accelerating Total Variation (TV) based CBCT reconstructions. In order to become truly viable for clinical applications, however, its convergence property needs to be properly addressed. We propose a novel fast converging gradient projection BB method that requires 'at most one function evaluation' in each iterative step. This Selective Function Evaluation method, referred to as GPBB-SFE in this paper, exhibits the desired convergence property when it is combined with a 'smoothed TV' or any other differentiable prior. This way, the proposed GPBB-SFE algorithm offers fast and guaranteed convergence to the desired 3DCBCT image with minimal computational complexity. We first applied this algorithm to a Shepp-Logan numerical phantom. We then applied to a CatPhan 600 physical phantom (The Phantom Laboratory, Salem, NY) and a clinically-treated head-and-neck patient, both acquired from the TrueBeam™ system (Varian Medical Systems, Palo Alto, CA). Furthermore, we accelerated the reconstruction by implementing the algorithm on NVIDIA GTX 480 GPU card. We first compared GPBB-SFE with three recently proposed BB-based CBCT reconstruction methods available in the literature using Shepp-Logan numerical phantom with 40 projections. It is found that GPBB-SFE shows either faster convergence speed/time or superior convergence property compared to existing BB-based algorithms. With the CatPhan 600 physical phantom, the GPBB-SFE algorithm requires only 3 function evaluations in 30 iterations and reconstructs the standard, 364-projection FDK reconstruction quality image using only 60 projections. We then applied the algorithm to a clinically-treated head-and-neck patient. It was observed that the GPBB-SFE algorithm requires only 18 function evaluations in 30 iterations. Compared with the FDK algorithm with 364 projections, the GPBB-SFE algorithm produces visibly equivalent quality CBCT image for the head-and-neck patient with only 180 projections, in 131.7 s, further supporting its clinical applicability.

  19. Parametric Loop Division for 3D Localization in Wireless Sensor Networks

    PubMed Central

    Ahmad, Tanveer

    2017-01-01

    Localization in Wireless Sensor Networks (WSNs) has been an active topic for more than two decades. A variety of algorithms were proposed to improve the localization accuracy. However, they are either limited to two-dimensional (2D) space, or require specific sensor deployment for proper operations. In this paper, we proposed a three-dimensional (3D) localization scheme for WSNs based on the well-known parametric Loop division (PLD) algorithm. The proposed scheme localizes a sensor node in a region bounded by a network of anchor nodes. By iteratively shrinking that region towards its center point, the proposed scheme provides better localization accuracy as compared to existing schemes. Furthermore, it is cost-effective and independent of environmental irregularity. We provide an analytical framework for the proposed scheme and find its lower bound accuracy. Simulation results shows that the proposed algorithm provides an average localization accuracy of 0.89 m with a standard deviation of 1.2 m. PMID:28737714

  20. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  1. Probabilistic location estimation of acoustic emission sources in isotropic plates with one sensor

    NASA Astrophysics Data System (ADS)

    Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    This paper presents a probabilistic acoustic emission (AE) source localization algorithm for isotropic plate structures. The proposed algorithm requires only one sensor and uniformly monitors the entire area of such plates without any blind zones. In addition, it takes a probabilistic approach and quantifies localization uncertainties. The algorithm combines a modal acoustic emission (MAE) and a reflection-based technique to obtain information pertaining to the location of AE sources. To estimate confidence contours for the location of sources, uncertainties are quantified and propagated through the two techniques. The approach was validated using standard pencil lead break (PLB) tests on an Aluminum plate. The results demonstrate that the proposed source localization algorithm successfully estimates confidence contours for the location of AE sources.

  2. Speeding up local correlation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kats, Daniel

    2014-12-28

    We present two techniques that can substantially speed up the local correlation methods. The first one allows one to avoid the expensive transformation of the electron-repulsion integrals from atomic orbitals to virtual space. The second one introduces an algorithm for the residual equations in the local perturbative treatment that, in contrast to the standard scheme, does not require holding the amplitudes or residuals in memory. It is shown that even an interpreter-based implementation of the proposed algorithm in the context of local MP2 method is faster and requires less memory than the highly optimized variants of conventional algorithms.

  3. Authentication in Reprogramming of Sensor Networks for Mote Class Adversaries

    DTIC Science & Technology

    2006-01-01

    based approach. In this paper, we propose a symmetric key-based protocol for authenticating the reprogramming process. Our protocol is based on the ... secret instantiation algorithm, which requires only O(log n) keys to be maintained at each sensor. We integrate this algorithm with the existing

  4. Wide-band array signal processing via spectral smoothing

    NASA Technical Reports Server (NTRS)

    Xu, Guanghan; Kailath, Thomas

    1989-01-01

    A novel algorithm for the estimation of direction-of-arrivals (DOA) of multiple wide-band sources via spectral smoothing is presented. The proposed algorithm does not require an initial DOA estimate or a specific signal model. The advantages of replacing the MUSIC search with an ESPRIT search are discussed.

  5. Multi Dimensional Honey Bee Foraging Algorithm Based on Optimal Energy Consumption

    NASA Astrophysics Data System (ADS)

    Saritha, R.; Vinod Chandra, S. S.

    2017-10-01

    In this paper a new nature inspired algorithm is proposed based on natural foraging behavior of multi-dimensional honey bee colonies. This method handles issues that arise when food is shared from multiple sources by multiple swarms at multiple destinations. The self organizing nature of natural honey bee swarms in multiple colonies is based on the principle of energy consumption. Swarms of multiple colonies select a food source to optimally fulfill the requirements of its colonies. This is based on the energy requirement for transporting food between a source and destination. Minimum use of energy leads to maximizing profit in each colony. The mathematical model proposed here is based on this principle. This has been successfully evaluated by applying it on multi-objective transportation problem for optimizing cost and time. The algorithm optimizes the needs at each destination in linear time.

  6. Exploration of depth modeling mode one lossless wedgelets storage strategies for 3D-high efficiency video coding

    NASA Astrophysics Data System (ADS)

    Sanchez, Gustavo; Marcon, César; Agostini, Luciano Volcan

    2018-01-01

    The 3D-high efficiency video coding has introduced tools to obtain higher efficiency in 3-D video coding, and most of them are related to the depth maps coding. Among these tools, the depth modeling mode-1 (DMM-1) focuses on better encoding edges regions of depth maps. The large memory required for storing all wedgelet patterns is one of the bottlenecks in the DMM-1 hardware design of both encoder and decoder since many patterns must be stored. Three algorithms to reduce the DMM-1 memory requirements and a hardware design targeting the most efficient among these algorithms are presented. Experimental results demonstrate that the proposed solutions surpass related works reducing up to 78.8% of the wedgelet memory, without degrading the encoding efficiency. Synthesis results demonstrate that the proposed algorithm reduces almost 75% of the power dissipation when compared to the standard approach.

  7. Online selective kernel-based temporal difference learning.

    PubMed

    Chen, Xingguo; Gao, Yang; Wang, Ruili

    2013-12-01

    In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.

  8. Low Cost Design of an Advanced Encryption Standard (AES) Processor Using a New Common-Subexpression-Elimination Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chih; Hsiao, Shen-Fu

    In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.

  9. The Speech multi features fusion perceptual hash algorithm based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Huang, Y. B.; Fan, M. H.; Zhang, Q. Y.

    2018-03-01

    With constant progress in modern speech communication technologies, the speech data is prone to be attacked by the noise or maliciously tampered. In order to make the speech perception hash algorithm has strong robustness and high efficiency, this paper put forward a speech perception hash algorithm based on the tensor decomposition and multi features is proposed. This algorithm analyses the speech perception feature acquires each speech component wavelet packet decomposition. LPCC, LSP and ISP feature of each speech component are extracted to constitute the speech feature tensor. Speech authentication is done by generating the hash values through feature matrix quantification which use mid-value. Experimental results showing that the proposed algorithm is robust for content to maintain operations compared with similar algorithms. It is able to resist the attack of the common background noise. Also, the algorithm is highly efficiency in terms of arithmetic, and is able to meet the real-time requirements of speech communication and complete the speech authentication quickly.

  10. Data association approaches in bearings-only multi-target tracking

    NASA Astrophysics Data System (ADS)

    Xu, Benlian; Wang, Zhiquan

    2008-03-01

    According to requirements of time computation complexity and correctness of data association of the multi-target tracking, two algorithms are suggested in this paper. The proposed Algorithm 1 is developed from the modified version of dual Simplex method, and it has the advantage of direct and explicit form of the optimal solution. The Algorithm 2 is based on the idea of Algorithm 1 and rotational sort method, it combines not only advantages of Algorithm 1, but also reduces the computational burden, whose complexity is only 1/ N times that of Algorithm 1. Finally, numerical analyses are carried out to evaluate the performance of the two data association algorithms.

  11. An Approach to a Comprehensive Test Framework for Analysis and Evaluation of Text Line Segmentation Algorithms

    PubMed Central

    Brodic, Darko; Milivojevic, Dragan R.; Milivojevic, Zoran N.

    2011-01-01

    The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures. PMID:22164106

  12. An approach to a comprehensive test framework for analysis and evaluation of text line segmentation algorithms.

    PubMed

    Brodic, Darko; Milivojevic, Dragan R; Milivojevic, Zoran N

    2011-01-01

    The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures.

  13. Efficient nonlinear equalizer for intra-channel nonlinearity compensation for next generation agile and dynamically reconfigurable optical networks.

    PubMed

    Malekiha, Mahdi; Tselniker, Igor; Plant, David V

    2016-02-22

    In this work, we propose and experimentally demonstrate a novel low-complexity technique for fiber nonlinearity compensation. We achieved a transmission distance of 2818 km for a 32-GBaud dual-polarization 16QAM signal. For efficient implantation, and to facilitate integration with conventional digital signal processing (DSP) approaches, we independently compensate fiber nonlinearities after linear impairment equalization. Therefore this algorithm can be easily implemented in currently deployed transmission systems after using linear DSP. The proposed equalizer operates at one sample per symbol and requires only one computation step. The structure of the algorithm is based on a first-order perturbation model with quantized perturbation coefficients. Also, it does not require any prior calculation or detailed knowledge of the transmission system. We identified common symmetries between perturbation coefficients to avoid duplicate and unnecessary operations. In addition, we use only a few adaptive filter coefficients by grouping multiple nonlinear terms and dedicating only one adaptive nonlinear filter coefficient to each group. Finally, the complexity of the proposed algorithm is lower than previously studied nonlinear equalizers by more than one order of magnitude.

  14. Isosurface Extraction in Time-Varying Fields Using a Temporal Hierarchical Index Tree

    NASA Technical Reports Server (NTRS)

    Shen, Han-Wei; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    Many high-performance isosurface extraction algorithms have been proposed in the past several years as a result of intensive research efforts. When applying these algorithms to large-scale time-varying fields, the storage overhead incurred from storing the search index often becomes overwhelming. this paper proposes an algorithm for locating isosurface cells in time-varying fields. We devise a new data structure, called Temporal Hierarchical Index Tree, which utilizes the temporal coherence that exists in a time-varying field and adoptively coalesces the cells' extreme values over time; the resulting extreme values are then used to create the isosurface cell search index. For a typical time-varying scalar data set, not only does this temporal hierarchical index tree require much less storage space, but also the amount of I/O required to access the indices from the disk at different time steps is substantially reduced. We illustrate the utility and speed of our algorithm with data from several large-scale time-varying CID simulations. Our algorithm can achieve more than 80% of disk-space savings when compared with the existing techniques, while the isosurface extraction time is nearly optimal.

  15. A soft decoding algorithm and hardware implementation for the visual prosthesis based on high order soft demodulation.

    PubMed

    Yang, Yuan; Quan, Nannan; Bu, Jingjing; Li, Xueping; Yu, Ningmei

    2016-09-26

    High order modulation and demodulation technology can solve the frequency requirement between the wireless energy transmission and data communication. In order to achieve reliable wireless data communication based on high order modulation technology for visual prosthesis, this work proposed a Reed-Solomon (RS) error correcting code (ECC) circuit on the basis of differential amplitude and phase shift keying (DAPSK) soft demodulation. Firstly, recognizing the weakness of the traditional DAPSK soft demodulation algorithm based on division that is complex for hardware implementation, an improved phase soft demodulation algorithm for visual prosthesis to reduce the hardware complexity is put forward. Based on this new algorithm, an improved RS soft decoding method is hence proposed. In this new decoding method, the combination of Chase algorithm and hard decoding algorithms is used to achieve soft decoding. In order to meet the requirements of implantable visual prosthesis, the method to calculate reliability of symbol-level based on multiplication of bit reliability is derived, which reduces the testing vectors number of Chase algorithm. The proposed algorithms are verified by MATLAB simulation and FPGA experimental results. During MATLAB simulation, the biological channel attenuation property model is added into the ECC circuit. The data rate is 8 Mbps in the MATLAB simulation and FPGA experiments. MATLAB simulation results show that the improved phase soft demodulation algorithm proposed in this paper saves hardware resources without losing bit error rate (BER) performance. Compared with the traditional demodulation circuit, the coding gain of the ECC circuit has been improved by about 3 dB under the same BER of [Formula: see text]. The FPGA experimental results show that under the condition of data demodulation error with wireless coils 3 cm away, the system can correct it. The greater the distance, the higher the BER. Then we use a bit error rate analyzer to measure BER of the demodulation circuit and the RS ECC circuit with different distance of two coils. And the experimental results show that the RS ECC circuit has about an order of magnitude lower BER than the demodulation circuit when under the same coils distance. Therefore, the RS ECC circuit has more higher reliability of the communication in the system. The improved phase soft demodulation algorithm and soft decoding algorithm proposed in this paper enables data communication that is more reliable than other demodulation system, which also provide a significant reference for further study to the visual prosthesis system.

  16. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm

    PubMed Central

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis. PMID:27959895

  17. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    PubMed

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  18. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    PubMed

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.

  19. High Precision Edge Detection Algorithm for Mechanical Parts

    NASA Astrophysics Data System (ADS)

    Duan, Zhenyun; Wang, Ning; Fu, Jingshun; Zhao, Wenhui; Duan, Boqiang; Zhao, Jungui

    2018-04-01

    High precision and high efficiency measurement is becoming an imperative requirement for a lot of mechanical parts. So in this study, a subpixel-level edge detection algorithm based on the Gaussian integral model is proposed. For this purpose, the step edge normal section line Gaussian integral model of the backlight image is constructed, combined with the point spread function and the single step model. Then gray value of discrete points on the normal section line of pixel edge is calculated by surface interpolation, and the coordinate as well as gray information affected by noise is fitted in accordance with the Gaussian integral model. Therefore, a precise location of a subpixel edge was determined by searching the mean point. Finally, a gear tooth was measured by M&M3525 gear measurement center to verify the proposed algorithm. The theoretical analysis and experimental results show that the local edge fluctuation is reduced effectively by the proposed method in comparison with the existing subpixel edge detection algorithms. The subpixel edge location accuracy and computation speed are improved. And the maximum error of gear tooth profile total deviation is 1.9 μm compared with measurement result with gear measurement center. It indicates that the method has high reliability to meet the requirement of high precision measurement.

  20. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks

    PubMed Central

    Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964

  1. Wavelet-based de-noising algorithm for images acquired with parallel magnetic resonance imaging (MRI).

    PubMed

    Delakis, Ioannis; Hammad, Omer; Kitney, Richard I

    2007-07-07

    Wavelet-based de-noising has been shown to improve image signal-to-noise ratio in magnetic resonance imaging (MRI) while maintaining spatial resolution. Wavelet-based de-noising techniques typically implemented in MRI require that noise displays uniform spatial distribution. However, images acquired with parallel MRI have spatially varying noise levels. In this work, a new algorithm for filtering images with parallel MRI is presented. The proposed algorithm extracts the edges from the original image and then generates a noise map from the wavelet coefficients at finer scales. The noise map is zeroed at locations where edges have been detected and directional analysis is also used to calculate noise in regions of low-contrast edges that may not have been detected. The new methodology was applied on phantom and brain images and compared with other applicable de-noising techniques. The performance of the proposed algorithm was shown to be comparable with other techniques in central areas of the images, where noise levels are high. In addition, finer details and edges were maintained in peripheral areas, where noise levels are low. The proposed methodology is fully automated and can be applied on final reconstructed images without requiring sensitivity profiles or noise matrices of the receiver coils, therefore making it suitable for implementation in a clinical MRI setting.

  2. Parallel algorithms for placement and routing in VLSI design. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Brouwer, Randall Jay

    1991-01-01

    The computational requirements for high quality synthesis, analysis, and verification of very large scale integration (VLSI) designs have rapidly increased with the fast growing complexity of these designs. Research in the past has focused on the development of heuristic algorithms, special purpose hardware accelerators, or parallel algorithms for the numerous design tasks to decrease the time required for solution. Two new parallel algorithms are proposed for two VLSI synthesis tasks, standard cell placement and global routing. The first algorithm, a parallel algorithm for global routing, uses hierarchical techniques to decompose the routing problem into independent routing subproblems that are solved in parallel. Results are then presented which compare the routing quality to the results of other published global routers and which evaluate the speedups attained. The second algorithm, a parallel algorithm for cell placement and global routing, hierarchically integrates a quadrisection placement algorithm, a bisection placement algorithm, and the previous global routing algorithm. Unique partitioning techniques are used to decompose the various stages of the algorithm into independent tasks which can be evaluated in parallel. Finally, results are presented which evaluate the various algorithm alternatives and compare the algorithm performance to other placement programs. Measurements are presented on the parallel speedups available.

  3. The routing, modulation level, and spectrum allocation algorithm in the virtual optical network mapping

    NASA Astrophysics Data System (ADS)

    Wang, Yunyun; Li, Hui; Liu, Yuze; Ji, Yuefeng; Li, Hongfa

    2017-10-01

    With the development of large video services and cloud computing, the network is increasingly in the form of services. In SDON, the SDN controller holds the underlying physical resource information, thus allocating the appropriate resources and bandwidth to the VON service. However, for some services that require extremely strict QoT (quality of transmission), the shortest distance path algorithm is often unable to meet the requirements because it does not take the link spectrum resources into account. And in accordance with the choice of the most unoccupied links, there may be more spectrum fragments. So here we propose a new RMLSA (the routing, modulation Level, and spectrum allocation) algorithm to reduce the blocking probability. The results show about 40% less blocking probability than the shortest-distance algorithm and the minimum usage of the spectrum priority algorithm. This algorithm is used to satisfy strict request of QoT for demands.

  4. Radar tracking with an interacting multiple model and probabilistic data association filter for civil aviation applications.

    PubMed

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-05-17

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.

  5. Radar Tracking with an Interacting Multiple Model and Probabilistic Data Association Filter for Civil Aviation Applications

    PubMed Central

    Jan, Shau-Shiun; Kao, Yu-Chun

    2013-01-01

    The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142

  6. New fast DCT algorithms based on Loeffler's factorization

    NASA Astrophysics Data System (ADS)

    Hong, Yoon Mi; Kim, Il-Koo; Lee, Tammy; Cheon, Min-Su; Alshina, Elena; Han, Woo-Jin; Park, Jeong-Hoon

    2012-10-01

    This paper proposes a new 32-point fast discrete cosine transform (DCT) algorithm based on the Loeffler's 16-point transform. Fast integer realizations of 16-point and 32-point transforms are also provided based on the proposed transform. For the recent development of High Efficiency Video Coding (HEVC), simplified quanti-zation and de-quantization process are proposed. Three different forms of implementation with the essentially same performance, namely matrix multiplication, partial butterfly, and full factorization can be chosen accord-ing to the given platform. In terms of the number of multiplications required for the realization, our proposed full-factorization is 3~4 times faster than a partial butterfly, and about 10 times faster than direct matrix multiplication.

  7. An Efficient Distributed Compressed Sensing Algorithm for Decentralized Sensor Network.

    PubMed

    Liu, Jing; Huang, Kaiyu; Zhang, Guoxian

    2017-04-20

    We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number of sensors are connected through a network and there is no fusion center. A novel algorithm, named distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational and communication capabilities of the sensor nodes. In contrast to the conventional distributed compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP algorithm can be divided into two independent parts, the common and innovation support set estimation processes. The goal of the common support set estimation process is to obtain an estimated common support set by fusing the candidate support set information from an individual node and its neighboring nodes. In the following innovation support set estimation process, the measurement vector is projected into a subspace that is perpendicular to the subspace spanned by the columns indexed by the estimated common support set, to remove the impact of the estimated common support set. We can then search the innovation support set using an orthogonal matching pursuit (OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the proposed DCSMP algorithm, the process of estimating the common component/support set is decoupled with that of estimating the innovation component/support set. Thus, the inaccurately estimated common support set will have no impact on estimating the innovation support set. It is proven that under the condition the estimated common support set contains the true common support set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation support set estimation process is independent of the common support set estimation process, there is no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown sparsity problem successfully.

  8. A shifted hyperbolic augmented Lagrangian-based artificial fish two-swarm algorithm with guaranteed convergence for constrained global optimization

    NASA Astrophysics Data System (ADS)

    Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.

    2016-12-01

    This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.

  9. Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target.

    PubMed

    Yin, Fang; Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song

    2018-03-28

    This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method.

  10. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    PubMed Central

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  11. Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target

    PubMed Central

    Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song

    2018-01-01

    This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method. PMID:29597323

  12. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    NASA Astrophysics Data System (ADS)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  13. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  14. The model of encryption algorithm based on non-positional polynomial notations and constructed on an SP-network

    NASA Astrophysics Data System (ADS)

    Kapalova, N.; Haumen, A.

    2018-05-01

    This paper addresses to structures and properties of the cryptographic information protection algorithm model based on NPNs and constructed on an SP-network. The main task of the research is to increase the cryptostrength of the algorithm. In the paper, the transformation resulting in the improvement of the cryptographic strength of the algorithm is described in detail. The proposed model is based on an SP-network. The reasons for using the SP-network in this model are the conversion properties used in these networks. In the encryption process, transformations based on S-boxes and P-boxes are used. It is known that these transformations can withstand cryptanalysis. In addition, in the proposed model, transformations that satisfy the requirements of the "avalanche effect" are used. As a result of this work, a computer program that implements an encryption algorithm model based on the SP-network has been developed.

  15. Joint Optimization of Receiver Placement and Illuminator Selection for a Multiband Passive Radar Network.

    PubMed

    Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin

    2017-06-14

    The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p -center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.

  16. Remote-sensing image encryption in hybrid domains

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqiang; Zhu, Guiliang; Ma, Shilong

    2012-04-01

    Remote-sensing technology plays an important role in military and industrial fields. Remote-sensing image is the main means of acquiring information from satellites, which always contain some confidential information. To securely transmit and store remote-sensing images, we propose a new image encryption algorithm in hybrid domains. This algorithm makes full use of the advantages of image encryption in both spatial domain and transform domain. First, the low-pass subband coefficients of image DWT (discrete wavelet transform) decomposition are sorted by a PWLCM system in transform domain. Second, the image after IDWT (inverse discrete wavelet transform) reconstruction is diffused with 2D (two-dimensional) Logistic map and XOR operation in spatial domain. The experiment results and algorithm analyses show that the new algorithm possesses a large key space and can resist brute-force, statistical and differential attacks. Meanwhile, the proposed algorithm has the desirable encryption efficiency to satisfy requirements in practice.

  17. Baseline correction combined partial least squares algorithm and its application in on-line Fourier transform infrared quantitative analysis.

    PubMed

    Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping

    2011-04-01

    In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Blind prediction of natural video quality.

    PubMed

    Saad, Michele A; Bovik, Alan C; Charrier, Christophe

    2014-03-01

    We propose a blind (no reference or NR) video quality evaluation model that is nondistortion specific. The approach relies on a spatio-temporal model of video scenes in the discrete cosine transform domain, and on a model that characterizes the type of motion occurring in the scenes, to predict video quality. We use the models to define video statistics and perceptual features that are the basis of a video quality assessment (VQA) algorithm that does not require the presence of a pristine video to compare against in order to predict a perceptual quality score. The contributions of this paper are threefold. 1) We propose a spatio-temporal natural scene statistics (NSS) model for videos. 2) We propose a motion model that quantifies motion coherency in video scenes. 3) We show that the proposed NSS and motion coherency models are appropriate for quality assessment of videos, and we utilize them to design a blind VQA algorithm that correlates highly with human judgments of quality. The proposed algorithm, called video BLIINDS, is tested on the LIVE VQA database and on the EPFL-PoliMi video database and shown to perform close to the level of top performing reduced and full reference VQA algorithms.

  19. A Node Linkage Approach for Sequential Pattern Mining

    PubMed Central

    Navarro, Osvaldo; Cumplido, René; Villaseñor-Pineda, Luis; Feregrino-Uribe, Claudia; Carrasco-Ochoa, Jesús Ariel

    2014-01-01

    Sequential Pattern Mining is a widely addressed problem in data mining, with applications such as analyzing Web usage, examining purchase behavior, and text mining, among others. Nevertheless, with the dramatic increase in data volume, the current approaches prove inefficient when dealing with large input datasets, a large number of different symbols and low minimum supports. In this paper, we propose a new sequential pattern mining algorithm, which follows a pattern-growth scheme to discover sequential patterns. Unlike most pattern growth algorithms, our approach does not build a data structure to represent the input dataset, but instead accesses the required sequences through pseudo-projection databases, achieving better runtime and reducing memory requirements. Our algorithm traverses the search space in a depth-first fashion and only preserves in memory a pattern node linkage and the pseudo-projections required for the branch being explored at the time. Experimental results show that our new approach, the Node Linkage Depth-First Traversal algorithm (NLDFT), has better performance and scalability in comparison with state of the art algorithms. PMID:24933123

  20. Differential-Evolution Control Parameter Optimization for Unmanned Aerial Vehicle Path Planning

    PubMed Central

    Kok, Kai Yit; Rajendran, Parvathy

    2016-01-01

    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost. PMID:26943630

  1. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

    PubMed

    Cheng, Jing; Xia, Linyuan

    2016-08-31

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

  2. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network

    PubMed Central

    Cheng, Jing; Xia, Linyuan

    2016-01-01

    Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756

  3. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  4. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  5. Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Huang, Shoudong; Dissanayake, Gamini

    2018-07-01

    This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM.

  6. Soil moisture mapping using Sentinel 1 images: the proposed approach and its preliminary validation carried out in view of an operational product

    NASA Astrophysics Data System (ADS)

    Paloscia, S.; Pettinato, S.; Santi, E.; Pierdicca, N.; Pulvirenti, L.; Notarnicola, C.; Pace, G.; Reppucci, A.

    2011-11-01

    The main objective of this research is to develop, test and validate a soil moisture (SMC)) algorithm for the GMES Sentinel-1 characteristics, within the framework of an ESA project. The SMC product, to be generated from Sentinel-1 data, requires an algorithm able to process operationally in near-real-time and deliver the product to the GMES services within 3 hours from observations. Two different complementary approaches have been proposed: an Artificial Neural Network (ANN), which represented the best compromise between retrieval accuracy and processing time, thus allowing compliance with the timeliness requirements and a Bayesian Multi-temporal approach, allowing an increase of the retrieval accuracy, especially in case where little ancillary data are available, at the cost of computational efficiency, taking advantage of the frequent revisit time achieved by Sentinel-1. The algorithm was validated in several test areas in Italy, US and Australia, and finally in Spain with a 'blind' validation. The Multi-temporal Bayesian algorithm was validated in Central Italy. The validation results are in all cases very much in line with the requirements. However, the blind validation results were penalized by the availability of only VV polarization SAR images and MODIS lowresolution NDVI, although the RMS is slightly > 4%.

  7. The introduction of capillary structures in 4D simulated vascular tree for ART 3.5D algorithm further validation

    NASA Astrophysics Data System (ADS)

    Barra, Beatrice; El Hadji, Sara; De Momi, Elena; Ferrigno, Giancarlo; Cardinale, Francesco; Baselli, Giuseppe

    2017-03-01

    Several neurosurgical procedures, such as Artero Venous Malformations (AVMs), aneurysm embolizations and StereoElectroEncephaloGraphy (SEEG) require accurate reconstruction of the cerebral vascular tree, as well as the classification of arteries and veins, in order to increase the safety of the intervention. Segmentation of arteries and veins from 4D CT perfusion scans has already been proposed in different studies. Nonetheless, such procedures require long acquisition protocols and the radiation dose given to the patient is not negligible. Hence, space is open to approaches attempting to recover the dynamic information from standard Contrast Enhanced Cone Beam Computed Tomography (CE-CBCT) scans. The algorithm proposed by our team is called ART 3.5 D. It is a novel algorithm based on the postprocessing of both the angiogram and the raw data of a standard Digital Subtraction Angiography from a CBCT (DSACBCT) allowing arteries and veins segmentation and labeling without requiring any additional radiation exposure for the patient and neither lowering the resolution. In addition, while in previous versions of the algorithm just the distinction of arteries and veins was considered, here the capillary phase simulation and identification is introduced, in order to increase further information useful for more precise vasculature segmentation.

  8. Design and experiment of vehicular charger AC/DC system based on predictive control algorithm

    NASA Astrophysics Data System (ADS)

    He, Guangbi; Quan, Shuhai; Lu, Yuzhang

    2018-06-01

    For the car charging stage rectifier uncontrollable system, this paper proposes a predictive control algorithm of DC/DC converter based on the prediction model, established by the state space average method and its prediction model, obtained by the optimal mathematical description of mathematical calculation, to analysis prediction algorithm by Simulink simulation. The design of the structure of the car charging, at the request of the rated output power and output voltage adjustable control circuit, the first stage is the three-phase uncontrolled rectifier DC voltage Ud through the filter capacitor, after by using double-phase interleaved buck-boost circuit with wide range output voltage required value, analyzing its working principle and the the parameters for the design and selection of components. The analysis of current ripple shows that the double staggered parallel connection has the advantages of reducing the output current ripple and reducing the loss. The simulation experiment of the whole charging circuit is carried out by software, and the result is in line with the design requirements of the system. Finally combining the soft with hardware circuit to achieve charging of the system according to the requirements, experimental platform proved the feasibility and effectiveness of the proposed predictive control algorithm based on the car charging of the system, which is consistent with the simulation results.

  9. A Collaborative Recommend Algorithm Based on Bipartite Community

    PubMed Central

    Fu, Yuchen; Liu, Quan; Cui, Zhiming

    2014-01-01

    The recommendation algorithm based on bipartite network is superior to traditional methods on accuracy and diversity, which proves that considering the network topology of recommendation systems could help us to improve recommendation results. However, existing algorithms mainly focus on the overall topology structure and those local characteristics could also play an important role in collaborative recommend processing. Therefore, on account of data characteristics and application requirements of collaborative recommend systems, we proposed a link community partitioning algorithm based on the label propagation and a collaborative recommendation algorithm based on the bipartite community. Then we designed numerical experiments to verify the algorithm validity under benchmark and real database. PMID:24955393

  10. Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering

    PubMed Central

    Tsanas, Athanasios; Zañartu, Matías; Little, Max A.; Fox, Cynthia; Ramig, Lorraine O.; Clifford, Gari D.

    2014-01-01

    There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F0) of speech signals. This study examines ten F0 estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F0 in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F0 estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F0 estimates, and the proposed KF approach resulted in a ∼16% improvement in accuracy over the best single F0 estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F0 estimation is required. PMID:24815269

  11. An efficient reliability algorithm for locating design point using the combination of importance sampling concepts and response surface method

    NASA Astrophysics Data System (ADS)

    Shayanfar, Mohsen Ali; Barkhordari, Mohammad Ali; Roudak, Mohammad Amin

    2017-06-01

    Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in reliability analysis. However, the large number of required random samples makes it time-consuming. Response surface method (RSM) is another common method in reliability analysis. Although RSM is widely used for its simplicity, it cannot be trusted in highly nonlinear problems due to its linear nature. In this paper, a new efficient algorithm, employing the combination of importance sampling, as a class of MCS, and RSM is proposed. In the proposed algorithm, analysis starts with importance sampling concepts and using a represented two-step updating rule of design point. This part finishes after a small number of samples are generated. Then RSM starts to work using Bucher experimental design, with the last design point and a represented effective length as the center point and radius of Bucher's approach, respectively. Through illustrative numerical examples, simplicity and efficiency of the proposed algorithm and the effectiveness of the represented rules are shown.

  12. On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models

    NASA Astrophysics Data System (ADS)

    Xu, S.; Wang, B.; Liu, J.

    2015-02-01

    In this article we propose two conformal mapping based grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithms are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the basic grid design problem of pole relocation, these new algorithms also address more advanced issues such as smoothed scaling factor, or the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling where complex land-ocean distribution is present.

  13. A Differential Evolution-Based Routing Algorithm for Environmental Monitoring Wireless Sensor Networks

    PubMed Central

    Li, Xiaofang; Xu, Lizhong; Wang, Huibin; Song, Jie; Yang, Simon X.

    2010-01-01

    The traditional Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol is a clustering-based protocol. The uneven selection of cluster heads results in premature death of cluster heads and premature blind nodes inside the clusters, thus reducing the overall lifetime of the network. With a full consideration of information on energy and distance distribution of neighboring nodes inside the clusters, this paper proposes a new routing algorithm based on differential evolution (DE) to improve the LEACH routing protocol. To meet the requirements of monitoring applications in outdoor environments such as the meteorological, hydrological and wetland ecological environments, the proposed algorithm uses the simple and fast search features of DE to optimize the multi-objective selection of cluster heads and prevent blind nodes for improved energy efficiency and system stability. Simulation results show that the proposed new LEACH routing algorithm has better performance, effectively extends the working lifetime of the system, and improves the quality of the wireless sensor networks. PMID:22219670

  14. A Collaborative Secure Localization Algorithm Based on Trust Model in Underwater Wireless Sensor Networks

    PubMed Central

    Han, Guangjie; Liu, Li; Jiang, Jinfang; Shu, Lei; Rodrigues, Joel J.P.C.

    2016-01-01

    Localization is one of the hottest research topics in Underwater Wireless Sensor Networks (UWSNs), since many important applications of UWSNs, e.g., event sensing, target tracking and monitoring, require location information of sensor nodes. Nowadays, a large number of localization algorithms have been proposed for UWSNs. How to improve location accuracy are well studied. However, few of them take location reliability or security into consideration. In this paper, we propose a Collaborative Secure Localization algorithm based on Trust model (CSLT) for UWSNs to ensure location security. Based on the trust model, the secure localization process can be divided into the following five sub-processes: trust evaluation of anchor nodes, initial localization of unknown nodes, trust evaluation of reference nodes, selection of reference node, and secondary localization of unknown node. Simulation results demonstrate that the proposed CSLT algorithm performs better than the compared related works in terms of location security, average localization accuracy and localization ratio. PMID:26891300

  15. Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm

    PubMed Central

    Wang, Hong-Hua

    2014-01-01

    A precise mathematical model plays a pivotal role in the simulation, evaluation, and optimization of photovoltaic (PV) power systems. Different from the traditional linear model, the model of PV module has the features of nonlinearity and multiparameters. Since conventional methods are incapable of identifying the parameters of PV module, an excellent optimization algorithm is required. Artificial fish swarm algorithm (AFSA), originally inspired by the simulation of collective behavior of real fish swarms, is proposed to fast and accurately extract the parameters of PV module. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated by various parameters of PV module under different environmental conditions, and the testing results are compared with other studied methods in terms of final solutions and computational time. The simulation results show that the proposed method is capable of obtaining higher parameters identification precision. PMID:25243233

  16. On the reduced-complexity of LDPC decoders for beyond 400 Gb/s serial optical transmission

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Xu, Lei; Wang, Ting

    2010-12-01

    Two reduced-complexity (RC) LDPC decoders are proposed, which can be used in combination with large-girth LDPC codes to enable beyond 400 Gb/s serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.45 dB worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further evaluate the proposed algorithms for use in beyond 400 Gb/s serial optical transmission in combination with PolMUX 32-IPQ-based signal constellation and show that low BERs can be achieved for medium optical SNRs, while achieving the net coding gain above 11.4 dB.

  17. Further investigation on "A multiplicative regularization for force reconstruction"

    NASA Astrophysics Data System (ADS)

    Aucejo, M.; De Smet, O.

    2018-05-01

    We have recently proposed a multiplicative regularization to reconstruct mechanical forces acting on a structure from vibration measurements. This method does not require any selection procedure for choosing the regularization parameter, since the amount of regularization is automatically adjusted throughout an iterative resolution process. The proposed iterative algorithm has been developed with performance and efficiency in mind, but it is actually a simplified version of a full iterative procedure not described in the original paper. The present paper aims at introducing the full resolution algorithm and comparing it with its simplified version in terms of computational efficiency and solution accuracy. In particular, it is shown that both algorithms lead to very similar identified solutions.

  18. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns

    PubMed Central

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191

  19. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    PubMed

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowik, Piotr, E-mail: pborow@poczta.onet.pl; Thobel, Jean-Luc, E-mail: jean-luc.thobel@iemn.univ-lille1.fr; Adamowicz, Leszek, E-mail: adamo@if.pw.edu.pl

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron–electron (e–e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport propertiesmore » of degenerate electrons in graphene with e–e interactions. This required adapting the treatment of e–e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.« less

  1. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features.

    PubMed

    He, Ying; Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin

    2017-08-11

    The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value.

  2. An Iterative Closest Points Algorithm for Registration of 3D Laser Scanner Point Clouds with Geometric Features

    PubMed Central

    Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin

    2017-01-01

    The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value. PMID:28800096

  3. A dynamic replication management strategy in distributed GIS

    NASA Astrophysics Data System (ADS)

    Pan, Shaoming; Xiong, Lian; Xu, Zhengquan; Chong, Yanwen; Meng, Qingxiang

    2018-03-01

    Replication strategy is one of effective solutions to meet the requirement of service response time by preparing data in advance to avoid the delay of reading data from disks. This paper presents a brand-new method to create copies considering the selection of replicas set, the number of copies for each replica and the placement strategy of all copies. First, the popularities of all data are computed considering both the historical access records and the timeliness of the records. Then, replica set can be selected based on their recent popularities. Also, an enhanced Q-value scheme is proposed to assign the number of copies for each replica. Finally, a reasonable copies placement strategy is designed to meet the requirement of load balance. In addition, we present several experiments that compare the proposed method with techniques that use other replication management strategies. The results show that the proposed model has better performance than other algorithms in all respects. Moreover, the experiments based on different parameters also demonstrated the effectiveness and adaptability of the proposed algorithm.

  4. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar

    PubMed Central

    Shin, Young Hoon; Seo, Jiwon

    2016-01-01

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker’s vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing. PMID:27801867

  5. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.

    PubMed

    Shin, Young Hoon; Seo, Jiwon

    2016-10-29

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker's vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing.

  6. Data Sufficiency Assessment and Pumping Test Design for Groundwater Prediction Using Decision Theory and Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    McPhee, J.; William, Y. W.

    2005-12-01

    This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system

  7. Dynamic Online Bandwidth Adjustment Scheme Based on Kalai-Smorodinsky Bargaining Solution

    NASA Astrophysics Data System (ADS)

    Kim, Sungwook

    Virtual Private Network (VPN) is a cost effective method to provide integrated multimedia services. Usually heterogeneous multimedia data can be categorized into different types according to the required Quality of Service (QoS). Therefore, VPN should support the prioritization among different services. In order to support multiple types of services with different QoS requirements, efficient bandwidth management algorithms are important issues. In this paper, I employ the Kalai-Smorodinsky Bargaining Solution (KSBS) for the development of an adaptive bandwidth adjustment algorithm. In addition, to effectively manage the bandwidth in VPNs, the proposed control paradigm is realized in a dynamic online approach, which is practical for real network operations. The simulations show that the proposed scheme can significantly improve the system performances.

  8. Hardware architecture for projective model calculation and false match refining using random sample consensus algorithm

    NASA Astrophysics Data System (ADS)

    Azimi, Ehsan; Behrad, Alireza; Ghaznavi-Ghoushchi, Mohammad Bagher; Shanbehzadeh, Jamshid

    2016-11-01

    The projective model is an important mapping function for the calculation of global transformation between two images. However, its hardware implementation is challenging because of a large number of coefficients with different required precisions for fixed point representation. A VLSI hardware architecture is proposed for the calculation of a global projective model between input and reference images and refining false matches using random sample consensus (RANSAC) algorithm. To make the hardware implementation feasible, it is proved that the calculation of the projective model can be divided into four submodels comprising two translations, an affine model and a simpler projective mapping. This approach makes the hardware implementation feasible and considerably reduces the required number of bits for fixed point representation of model coefficients and intermediate variables. The proposed hardware architecture for the calculation of a global projective model using the RANSAC algorithm was implemented using Verilog hardware description language and the functionality of the design was validated through several experiments. The proposed architecture was synthesized by using an application-specific integrated circuit digital design flow utilizing 180-nm CMOS technology as well as a Virtex-6 field programmable gate array. Experimental results confirm the efficiency of the proposed hardware architecture in comparison with software implementation.

  9. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  10. Simple Common Plane contact detection algorithm for FE/FD methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, O

    2006-07-19

    Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact detection algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles in the original CP method. The method does not require iterations. It is very robust and easy to implement both in 2D and 3D case.

  11. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  12. Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    PubMed

    Jeyasingh, Suganthi; Veluchamy, Malathi

    2017-05-01

    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License

  13. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar.

    PubMed

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun; Huang, Yuan-Hao

    2018-04-05

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256 × 13 real-time radar image display with a throughput of 28.2 frames per second.

  14. Determination of power system component parameters using nonlinear dead beat estimation method

    NASA Astrophysics Data System (ADS)

    Kolluru, Lakshmi

    Power systems are considered the most complex man-made wonders in existence today. In order to effectively supply the ever increasing demands of the consumers, power systems are required to remain stable at all times. Stability and monitoring of these complex systems are achieved by strategically placed computerized control centers. State and parameter estimation is an integral part of these facilities, as they deal with identifying the unknown states and/or parameters of the systems. Advancements in measurement technologies and the introduction of phasor measurement units (PMU) provide detailed and dynamic information of all measurements. Accurate availability of dynamic measurements provides engineers the opportunity to expand and explore various possibilities in power system dynamic analysis/control. This thesis discusses the development of a parameter determination algorithm for nonlinear power systems, using dynamic data obtained from local measurements. The proposed algorithm was developed by observing the dead beat estimator used in state space estimation of linear systems. The dead beat estimator is considered to be very effective as it is capable of obtaining the required results in a fixed number of steps. The number of steps required is related to the order of the system and the number of parameters to be estimated. The proposed algorithm uses the idea of dead beat estimator and nonlinear finite difference methods to create an algorithm which is user friendly and can determine the parameters fairly accurately and effectively. The proposed algorithm is based on a deterministic approach, which uses dynamic data and mathematical models of power system components to determine the unknown parameters. The effectiveness of the algorithm is tested by implementing it to identify the unknown parameters of a synchronous machine. MATLAB environment is used to create three test cases for dynamic analysis of the system with assumed known parameters. Faults are introduced in the virtual test systems and the dynamic data obtained in each case is analyzed and recorded. Ideally, actual measurements are to be provided to the algorithm. As the measurements are not readily available the data obtained from simulations is fed into the determination algorithm as inputs. The obtained results are then compared to the original (or assumed) values of the parameters. The results obtained suggest that the algorithm is able to determine the parameters of a synchronous machine when crisp data is available.

  15. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  16. An item-oriented recommendation algorithm on cold-start problem

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Chen, Guang; Zhang, Zi-Ke; Zhou, Tao

    2011-09-01

    Based on a hybrid algorithm incorporating the heat conduction and probability spreading processes (Proc. Natl. Acad. Sci. U.S.A., 107 (2010) 4511), in this letter, we propose an improved method by introducing an item-oriented function, focusing on solving the dilemma of the recommendation accuracy between the cold and popular items. Differently from previous works, the present algorithm does not require any additional information (e.g., tags). Further experimental results obtained in three real datasets, RYM, Netflix and MovieLens, show that, compared with the original hybrid method, the proposed algorithm significantly enhances the recommendation accuracy of the cold items, while it keeps the recommendation accuracy of the overall and the popular items. This work might shed some light on both understanding and designing effective methods for long-tailed online applications of recommender systems.

  17. SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction

    PubMed Central

    Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.

    2015-01-01

    Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831

  18. A cellular automata based FPGA realization of a new metaheuristic bat-inspired algorithm

    NASA Astrophysics Data System (ADS)

    Progias, Pavlos; Amanatiadis, Angelos A.; Spataro, William; Trunfio, Giuseppe A.; Sirakoulis, Georgios Ch.

    2016-10-01

    Optimization algorithms are often inspired by processes occuring in nature, such as animal behavioral patterns. The main concern with implementing such algorithms in software is the large amounts of processing power they require. In contrast to software code, that can only perform calculations in a serial manner, an implementation in hardware, exploiting the inherent parallelism of single-purpose processors, can prove to be much more efficient both in speed and energy consumption. Furthermore, the use of Cellular Automata (CA) in such an implementation would be efficient both as a model for natural processes, as well as a computational paradigm implemented well on hardware. In this paper, we propose a VHDL implementation of a metaheuristic algorithm inspired by the echolocation behavior of bats. More specifically, the CA model is inspired by the metaheuristic algorithm proposed earlier in the literature, which could be considered at least as efficient than other existing optimization algorithms. The function of the FPGA implementation of our algorithm is explained in full detail and results of our simulations are also demonstrated.

  19. An Improved Co-evolutionary Particle Swarm Optimization for Wireless Sensor Networks with Dynamic Deployment

    PubMed Central

    Wang, Xue; Wang, Sheng; Ma, Jun-Jie

    2007-01-01

    The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.

  20. Operational space trajectory tracking control of robot manipulators endowed with a primary controller of synthetic joint velocity.

    PubMed

    Moreno-Valenzuela, Javier; González-Hernández, Luis

    2011-01-01

    In this paper, a new control algorithm for operational space trajectory tracking control of robot arms is introduced. The new algorithm does not require velocity measurement and is based on (1) a primary controller which incorporates an algorithm to obtain synthesized velocity from joint position measurements and (2) a secondary controller which computes the desired joint acceleration and velocity required to achieve operational space motion control. The theory of singularly perturbed systems is crucial for the analysis of the closed-loop system trajectories. In addition, the practical viability of the proposed algorithm is explored through real-time experiments in a two degrees-of-freedom horizontal planar direct-drive arm. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Directly data processing algorithm for multi-wavelength pyrometer (MWP).

    PubMed

    Xing, Jian; Peng, Bo; Ma, Zhao; Guo, Xin; Dai, Li; Gu, Weihong; Song, Wenlong

    2017-11-27

    Data processing of multi-wavelength pyrometer (MWP) is a difficult problem because unknown emissivity. So far some solutions developed generally assumed particular mathematical relations for emissivity versus wavelength or emissivity versus temperature. Due to the deviation between the hypothesis and actual situation, the inversion results can be seriously affected. So directly data processing algorithm of MWP that does not need to assume the spectral emissivity model in advance is main aim of the study. Two new data processing algorithms of MWP, Gradient Projection (GP) algorithm and Internal Penalty Function (IPF) algorithm, each of which does not require to fix emissivity model in advance, are proposed. The novelty core idea is that data processing problem of MWP is transformed into constraint optimization problem, then it can be solved by GP or IPF algorithms. By comparison of simulation results for some typical spectral emissivity models, it is found that IPF algorithm is superior to GP algorithm in terms of accuracy and efficiency. Rocket nozzle temperature experiment results show that true temperature inversion results from IPF algorithm agree well with the theoretical design temperature as well. So the proposed combination IPF algorithm with MWP is expected to be a directly data processing algorithm to clear up the unknown emissivity obstacle for MWP.

  2. IDMA-Based MAC Protocol for Satellite Networks with Consideration on Channel Quality

    PubMed Central

    2014-01-01

    In order to overcome the shortcomings of existing medium access control (MAC) protocols based on TDMA or CDMA in satellite networks, interleave division multiple access (IDMA) technique is introduced into satellite communication networks. Therefore, a novel wide-band IDMA MAC protocol based on channel quality is proposed in this paper, consisting of a dynamic power allocation algorithm, a rate adaptation algorithm, and a call admission control (CAC) scheme. Firstly, the power allocation algorithm combining the technique of IDMA SINR-evolution and channel quality prediction is developed to guarantee high power efficiency even in terrible channel conditions. Secondly, the effective rate adaptation algorithm, based on accurate channel information per timeslot and by the means of rate degradation, can be realized. What is more, based on channel quality prediction, the CAC scheme, combining the new power allocation algorithm, rate scheduling, and buffering strategies together, is proposed for the emerging IDMA systems, which can support a variety of traffic types, and offering quality of service (QoS) requirements corresponding to different priority levels. Simulation results show that the new wide-band IDMA MAC protocol can make accurate estimation of available resource considering the effect of multiuser detection (MUD) and QoS requirements of multimedia traffic, leading to low outage probability as well as high overall system throughput. PMID:25126592

  3. GPS-Free Localization Algorithm for Wireless Sensor Networks

    PubMed Central

    Wang, Lei; Xu, Qingzheng

    2010-01-01

    Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time. PMID:22219694

  4. Efficient geometric rectification techniques for spectral analysis algorithm

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Pang, S. S.; Curlander, J. C.

    1992-01-01

    The spectral analysis algorithm is a viable technique for processing synthetic aperture radar (SAR) data in near real time throughput rates by trading the image resolution. One major challenge of the spectral analysis algorithm is that the output image, often referred to as the range-Doppler image, is represented in the iso-range and iso-Doppler lines, a curved grid format. This phenomenon is known to be the fanshape effect. Therefore, resampling is required to convert the range-Doppler image into a rectangular grid format before the individual images can be overlaid together to form seamless multi-look strip imagery. An efficient algorithm for geometric rectification of the range-Doppler image is presented. The proposed algorithm, realized in two one-dimensional resampling steps, takes into consideration the fanshape phenomenon of the range-Doppler image as well as the high squint angle and updates of the cross-track and along-track Doppler parameters. No ground reference points are required.

  5. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment

    PubMed Central

    Aisanov, Zaurbek; Avdeev, Sergey; Arkhipov, Vladimir; Belevskiy, Andrey; Chuchalin, Alexander; Leshchenko, Igor; Ovcharenko, Svetlana; Shmelev, Evgeny; Miravitlles, Marc

    2018-01-01

    The high prevalence of COPD together with its high level of misdiagnosis and late diagnosis dictate the necessity for the development and implementation of clinical practice guidelines (CPGs) in order to improve the management of this disease. High-quality, evidence-based international CPGs need to be adapted to the particular situation of each country or region. A new version of the Russian Respiratory Society guidelines released at the end of 2016 was based on the proposal by Global Initiative for Obstructive Lung Disease but adapted to the characteristics of the Russian health system and included an algorithm of pharmacologic treatment of COPD. The proposed algorithm had to comply with the requirements of the Russian Ministry of Health to be included into the unified electronic rubricator, which required a balance between the level of information and the simplicity of the graphic design. This was achieved by: exclusion of the initial diagnostic process, grouping together the common pharmacologic and nonpharmacologic measures for all patients, and the decision not to use the letters A–D for simplicity and clarity. At all stages of the treatment algorithm, efficacy and safety have to be carefully assessed. Escalation and de-escalation is possible in the case of lack of or insufficient efficacy or safety issues. Bronchodilators should not be discontinued except in the case of significant side effects. At the same time, inhaled corticosteroid (ICS) withdrawal is not represented in the algorithm, because it was agreed that there is insufficient evidence to establish clear criteria for ICSs discontinuation. Finally, based on the Global Initiative for Obstructive Lung Disease statement, the proposed algorithm reflects and summarizes different approaches to the pharmacological treatment of COPD taking into account the reality of health care in the Russian Federation. PMID:29386887

  6. Russian guidelines for the management of COPD: algorithm of pharmacologic treatment.

    PubMed

    Aisanov, Zaurbek; Avdeev, Sergey; Arkhipov, Vladimir; Belevskiy, Andrey; Chuchalin, Alexander; Leshchenko, Igor; Ovcharenko, Svetlana; Shmelev, Evgeny; Miravitlles, Marc

    2018-01-01

    The high prevalence of COPD together with its high level of misdiagnosis and late diagnosis dictate the necessity for the development and implementation of clinical practice guidelines (CPGs) in order to improve the management of this disease. High-quality, evidence-based international CPGs need to be adapted to the particular situation of each country or region. A new version of the Russian Respiratory Society guidelines released at the end of 2016 was based on the proposal by Global Initiative for Obstructive Lung Disease but adapted to the characteristics of the Russian health system and included an algorithm of pharmacologic treatment of COPD. The proposed algorithm had to comply with the requirements of the Russian Ministry of Health to be included into the unified electronic rubricator, which required a balance between the level of information and the simplicity of the graphic design. This was achieved by: exclusion of the initial diagnostic process, grouping together the common pharmacologic and nonpharmacologic measures for all patients, and the decision not to use the letters A-D for simplicity and clarity. At all stages of the treatment algorithm, efficacy and safety have to be carefully assessed. Escalation and de-escalation is possible in the case of lack of or insufficient efficacy or safety issues. Bronchodilators should not be discontinued except in the case of significant side effects. At the same time, inhaled corticosteroid (ICS) withdrawal is not represented in the algorithm, because it was agreed that there is insufficient evidence to establish clear criteria for ICSs discontinuation. Finally, based on the Global Initiative for Obstructive Lung Disease statement, the proposed algorithm reflects and summarizes different approaches to the pharmacological treatment of COPD taking into account the reality of health care in the Russian Federation.

  7. Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment

    NASA Astrophysics Data System (ADS)

    Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin

    2017-10-01

    Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.

  8. Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver.

    PubMed

    Lu, Jianing; Li, Xiang; Fu, Songnian; Luo, Ming; Xiang, Meng; Zhou, Huibin; Tang, Ming; Liu, Deming

    2017-03-06

    We present dual-polarization complex-weighted, decision-aided, maximum-likelihood algorithm with superscalar parallelization (SSP-DP-CW-DA-ML) for joint carrier phase and frequency-offset estimation (FOE) in coherent optical receivers. By pre-compensation of the phase offset between signals in dual polarizations, the performance can be substantially improved. Meanwhile, with the help of modified SSP-based parallel implementation, the acquisition time of FO and the required number of training symbols are reduced by transferring the complex weights of the filters between adjacent buffers, where differential coding/decoding is not required. Simulation results show that the laser linewidth tolerance of our proposed algorithm is comparable to traditional blind phase search (BPS), while a complete FOE range of ± symbol rate/2 can be achieved. Finally, performance of our proposed algorithm is experimentally verified under the scenario of back-to-back (B2B) transmission using 10 Gbaud DP-16/32-QAM formats.

  9. An Improved Algorithm to Generate a Wi-Fi Fingerprint Database for Indoor Positioning

    PubMed Central

    Chen, Lina; Li, Binghao; Zhao, Kai; Rizos, Chris; Zheng, Zhengqi

    2013-01-01

    The major problem of Wi-Fi fingerprint-based positioning technology is the signal strength fingerprint database creation and maintenance. The significant temporal variation of received signal strength (RSS) is the main factor responsible for the positioning error. A probabilistic approach can be used, but the RSS distribution is required. The Gaussian distribution or an empirically-derived distribution (histogram) is typically used. However, these distributions are either not always correct or require a large amount of data for each reference point. Double peaks of the RSS distribution have been observed in experiments at some reference points. In this paper a new algorithm based on an improved double-peak Gaussian distribution is proposed. Kurtosis testing is used to decide if this new distribution, or the normal Gaussian distribution, should be applied. Test results show that the proposed algorithm can significantly improve the positioning accuracy, as well as reduce the workload of the off-line data training phase. PMID:23966197

  10. An improved algorithm to generate a Wi-Fi fingerprint database for indoor positioning.

    PubMed

    Chen, Lina; Li, Binghao; Zhao, Kai; Rizos, Chris; Zheng, Zhengqi

    2013-08-21

    The major problem of Wi-Fi fingerprint-based positioning technology is the signal strength fingerprint database creation and maintenance. The significant temporal variation of received signal strength (RSS) is the main factor responsible for the positioning error. A probabilistic approach can be used, but the RSS distribution is required. The Gaussian distribution or an empirically-derived distribution (histogram) is typically used. However, these distributions are either not always correct or require a large amount of data for each reference point. Double peaks of the RSS distribution have been observed in experiments at some reference points. In this paper a new algorithm based on an improved double-peak Gaussian distribution is proposed. Kurtosis testing is used to decide if this new distribution, or the normal Gaussian distribution, should be applied. Test results show that the proposed algorithm can significantly improve the positioning accuracy, as well as reduce the workload of the off-line data training phase.

  11. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; A Recursive Maximum Likelihood Decoding

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.

  12. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    PubMed

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  13. Call Admission Control on Single Node Networks under Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) Scheduler

    NASA Astrophysics Data System (ADS)

    Hanada, Masaki; Nakazato, Hidenori; Watanabe, Hitoshi

    Multimedia applications such as music or video streaming, video teleconferencing and IP telephony are flourishing in packet-switched networks. Applications that generate such real-time data can have very diverse quality-of-service (QoS) requirements. In order to guarantee diverse QoS requirements, the combined use of a packet scheduling algorithm based on Generalized Processor Sharing (GPS) and leaky bucket traffic regulator is the most successful QoS mechanism. GPS can provide a minimum guaranteed service rate for each session and tight delay bounds for leaky bucket constrained sessions. However, the delay bounds for leaky bucket constrained sessions under GPS are unnecessarily large because each session is served according to its associated constant weight until the session buffer is empty. In order to solve this problem, a scheduling policy called Output Rate-Controlled Generalized Processor Sharing (ORC-GPS) was proposed in [17]. ORC-GPS is a rate-based scheduling like GPS, and controls the service rate in order to lower the delay bounds for leaky bucket constrained sessions. In this paper, we propose a call admission control (CAC) algorithm for ORC-GPS, for leaky-bucket constrained sessions with deterministic delay requirements. This CAC algorithm for ORC-GPS determines the optimal values of parameters of ORC-GPS from the deterministic delay requirements of the sessions. In numerical experiments, we compare the CAC algorithm for ORC-GPS with one for GPS in terms of schedulable region and computational complexity.

  14. Edge-directed inference for microaneurysms detection in digital fundus images

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Yan, Michelle; Aviyente, Selin

    2007-03-01

    Microaneurysms (MAs) detection is a critical step in diabetic retinopathy screening, since MAs are the earliest visible warning of potential future problems. A variety of algorithms have been proposed for MAs detection in mass screening. Different methods have been proposed for MAs detection. The core technology for most of existing methods is based on a directional mathematical morphological operation called "Top-Hat" filter that requires multiple filtering operations at each pixel. Background structure, uneven illumination and noise often cause confusion between MAs and some non-MA structures and limits the applicability of the filter. In this paper, a novel detection framework based on edge directed inference is proposed for MAs detection. The candidate MA regions are first delineated from the edge map of a fundus image. Features measuring shape, brightness and contrast are extracted for each candidate MA region to better exclude false detection from true MAs. Algorithmic analysis and empirical evaluation reveal that the proposed edge directed inference outperforms the "Top-Hat" based algorithm in both detection accuracy and computational speed.

  15. Prediction-Correction Algorithms for Time-Varying Constrained Optimization

    DOE PAGES

    Simonetto, Andrea; Dall'Anese, Emiliano

    2017-07-26

    This article develops online algorithms to track solutions of time-varying constrained optimization problems. Particularly, resembling workhorse Kalman filtering-based approaches for dynamical systems, the proposed methods involve prediction-correction steps to provably track the trajectory of the optimal solutions of time-varying convex problems. The merits of existing prediction-correction methods have been shown for unconstrained problems and for setups where computing the inverse of the Hessian of the cost function is computationally affordable. This paper addresses the limitations of existing methods by tackling constrained problems and by designing first-order prediction steps that rely on the Hessian of the cost function (and do notmore » require the computation of its inverse). In addition, the proposed methods are shown to improve the convergence speed of existing prediction-correction methods when applied to unconstrained problems. Numerical simulations corroborate the analytical results and showcase performance and benefits of the proposed algorithms. A realistic application of the proposed method to real-time control of energy resources is presented.« less

  16. Bidirectional reflectance correction model for coastal water and its application to minimization of uncertainties in satellite and in-situ water leaving radiances at Long Island Sound Coastal Observatory site

    NASA Astrophysics Data System (ADS)

    Hlaing, Soe Min

    Ocean Color data validation is the absolute requirement to provide the steady and reliable Ocean Color data stream. In the validation of Ocean Color data, water-leaving radiances, retrieved from in situ or satellite measurements, need to be compared in very accurate manner. Both in-situ and satellite data to be used in the comparisons are required to be the representative of the typical water and environmental condition at the site without being affected by the unexpected natural and environmental perturbation. As the result, assessments of the uncertainties in the water leaving radiance data must be carried out in the measurement and the every step of data processing procedure. With the hyper- and multi-spectral water leaving radiance data retrieved for the different viewing geometries of the instruments at the Long Island Sound Coastal Observatory (LISCO), uncertainties in the water leaving radiance data and processing procedures have been assessed and quantified. Recommendations and algorithm improvements have been also made to reduce the uncertainties in the processing and validation of Ocean Color data. Particularly, remote sensing reflectance model to correct the bidirectional angular dependencies in both in-situ and satellite data have been proposed. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multi- and hyper-spectral radiometers which have different viewing geometries installed at LISCO. Match-ups and inter-comparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with spectral average improvement of 2.4%. LISCO's time series data has also been used to evaluate improvements in the match-up comparisons of MODIS satellite data when the proposed Bidirectional Reflectance Distribution Function (BRDF) correction is used in lieu of the current algorithm. It has been shown that the discrepancies between coincident in-situ sea-based and satellite data were decreased by 3.15% with the use of the proposed algorithm. Possibility of the application of the developed BRDF algorithm for the open ocean conditions is also considered.

  17. A Demons algorithm for image registration with locally adaptive regularization.

    PubMed

    Cahill, Nathan D; Noble, J Alison; Hawkes, David J

    2009-01-01

    Thirion's Demons is a popular algorithm for nonrigid image registration because of its linear computational complexity and ease of implementation. It approximately solves the diffusion registration problem by successively estimating force vectors that drive the deformation toward alignment and smoothing the force vectors by Gaussian convolution. In this article, we show how the Demons algorithm can be generalized to allow image-driven locally adaptive regularization in a manner that preserves both the linear complexity and ease of implementation of the original Demons algorithm. We show that the proposed algorithm exhibits lower target registration error and requires less computational effort than the original Demons algorithm on the registration of serial chest CT scans of patients with lung nodules.

  18. Simple-random-sampling-based multiclass text classification algorithm.

    PubMed

    Liu, Wuying; Wang, Lin; Yi, Mianzhu

    2014-01-01

    Multiclass text classification (MTC) is a challenging issue and the corresponding MTC algorithms can be used in many applications. The space-time overhead of the algorithms must be concerned about the era of big data. Through the investigation of the token frequency distribution in a Chinese web document collection, this paper reexamines the power law and proposes a simple-random-sampling-based MTC (SRSMTC) algorithm. Supported by a token level memory to store labeled documents, the SRSMTC algorithm uses a text retrieval approach to solve text classification problems. The experimental results on the TanCorp data set show that SRSMTC algorithm can achieve the state-of-the-art performance at greatly reduced space-time requirements.

  19. Modified Monte Carlo method for study of electron transport in degenerate electron gas in the presence of electron-electron interactions, application to graphene

    NASA Astrophysics Data System (ADS)

    Borowik, Piotr; Thobel, Jean-Luc; Adamowicz, Leszek

    2017-07-01

    Standard computational methods used to take account of the Pauli Exclusion Principle into Monte Carlo (MC) simulations of electron transport in semiconductors may give unphysical results in low field regime, where obtained electron distribution function takes values exceeding unity. Modified algorithms were already proposed and allow to correctly account for electron scattering on phonons or impurities. Present paper extends this approach and proposes improved simulation scheme allowing including Pauli exclusion principle for electron-electron (e-e) scattering into MC simulations. Simulations with significantly reduced computational cost recreate correct values of the electron distribution function. Proposed algorithm is applied to study transport properties of degenerate electrons in graphene with e-e interactions. This required adapting the treatment of e-e scattering in the case of linear band dispersion relation. Hence, this part of the simulation algorithm is described in details.

  20. Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models

    NASA Astrophysics Data System (ADS)

    Xu, Shiming

    2015-04-01

    We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.

  1. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  2. Low complexity pixel-based halftone detection

    NASA Astrophysics Data System (ADS)

    Ok, Jiheon; Han, Seong Wook; Jarno, Mielikainen; Lee, Chulhee

    2011-10-01

    With the rapid advances of the internet and other multimedia technologies, the digital document market has been growing steadily. Since most digital images use halftone technologies, quality degradation occurs when one tries to scan and reprint them. Therefore, it is necessary to extract the halftone areas to produce high quality printing. In this paper, we propose a low complexity pixel-based halftone detection algorithm. For each pixel, we considered a surrounding block. If the block contained any flat background regions, text, thin lines, or continuous or non-homogeneous regions, the pixel was classified as a non-halftone pixel. After excluding those non-halftone pixels, the remaining pixels were considered to be halftone pixels. Finally, documents were classified as pictures or photo documents by calculating the halftone pixel ratio. The proposed algorithm proved to be memory-efficient and required low computation costs. The proposed algorithm was easily implemented using GPU.

  3. Mitigate the impact of transmitter finite extinction ratio using K-means clustering algorithm for 16QAM signal

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Li, Yan; Shu, Tong; Zhang, Yifan; Hong, Xiaobin; Qiu, Jifang; Zuo, Yong; Guo, Hongxiang; Li, Wei; Wu, Jian

    2018-02-01

    A method of recognizing 16QAM signal based on k-means clustering algorithm is proposed to mitigate the impact of transmitter finite extinction ratio. There are pilot symbols with 0.39% overhead assigned to be regarded as initial centroids of k-means clustering algorithm. Simulation result in 10 GBaud 16QAM system shows that the proposed method obtains higher precision of identification compared with traditional decision method for finite ER and IQ mismatch. Specially, the proposed method improves the required OSNR by 5.5 dB, 4.5 dB, 4 dB and 3 dB at FEC limit with ER= 12 dB, 16 dB, 20 dB and 24 dB, respectively, and the acceptable bias error and IQ mismatch range is widened by 767% and 360% with ER =16 dB, respectively.

  4. Video-based depression detection using local Curvelet binary patterns in pairwise orthogonal planes.

    PubMed

    Pampouchidou, Anastasia; Marias, Kostas; Tsiknakis, Manolis; Simos, Panagiotis; Fan Yang; Lemaitre, Guillaume; Meriaudeau, Fabrice

    2016-08-01

    Depression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Orthogonal-Planes. Performance of the algorithms was tested on the benchmark dataset provided by the Audio/Visual Emotion Challenge 2014, with the person-specific system achieving 97.6% classification accuracy, and the person-independed one yielding promising preliminary results of 74.5% accuracy. The paper concludes with open issues, proposed solutions, and future plans.

  5. Algorithms for Lightweight Key Exchange.

    PubMed

    Alvarez, Rafael; Caballero-Gil, Cándido; Santonja, Juan; Zamora, Antonio

    2017-06-27

    Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks.

  6. Statistical simplex approach to primary and secondary color correction in thick lens assemblies

    NASA Astrophysics Data System (ADS)

    Ament, Shelby D. V.; Pfisterer, Richard

    2017-11-01

    A glass selection optimization algorithm is developed for primary and secondary color correction in thick lens systems. The approach is based on the downhill simplex method, and requires manipulation of the surface color equations to obtain a single glass-dependent parameter for each lens element. Linear correlation is used to relate this parameter to all other glass-dependent variables. The algorithm provides a statistical distribution of Abbe numbers for each element in the system. Examples of several lenses, from 2-element to 6-element systems, are performed to verify this approach. The optimization algorithm proposed is capable of finding glass solutions with high color correction without requiring an exhaustive search of the glass catalog.

  7. Past, present and future of spike sorting techniques

    PubMed Central

    Rey, Hernan Gonzalo; Pedreira, Carlos; Quian Quiroga, Rodrigo

    2015-01-01

    Spike sorting is a crucial step to extract information from extracellular recordings. With new recording opportunities provided by the development of new electrodes that allow monitoring hundreds of neurons simultaneously, the scenario for the new generation of algorithms is both exciting and challenging. However, this will require a new approach to the problem and the development of a common reference framework to quickly assess the performance of new algorithms. In this work, we review the basic concepts of spike sorting, including the requirements for different applications, together with the problems faced by presently available algorithms. We conclude by proposing a roadmap stressing the crucial points to be addressed to support the neuroscientific research of the near future. PMID:25931392

  8. Automated analysis of plethysmograms for functional studies of hemodynamics

    NASA Astrophysics Data System (ADS)

    Zatrudina, R. Sh.; Isupov, I. B.; Gribkov, V. Yu.

    2018-04-01

    The most promising method for the quantitative determination of cardiovascular tone indicators and of cerebral hemodynamics indicators is the method of impedance plethysmography. The accurate determination of these indicators requires the correct identification of the characteristic points in the thoracic impedance plethysmogram and the cranial impedance plethysmogram respectively. An algorithm for automatic analysis of these plethysmogram is presented. The algorithm is based on the hard temporal relationships between the phases of the cardiac cycle and the characteristic points of the plethysmogram. The proposed algorithm does not require estimation of initial data and selection of processing parameters. Use of the method on healthy subjects showed a very low detection error of characteristic points.

  9. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol.

    PubMed

    Zeng, Ping; Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on-all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications.

  10. A multi-pattern hash-binary hybrid algorithm for URL matching in the HTTP protocol

    PubMed Central

    Tan, Qingping; Meng, Xiankai; Shao, Zeming; Xie, Qinzheng; Yan, Ying; Cao, Wei; Xu, Jianjun

    2017-01-01

    In this paper, based on our previous multi-pattern uniform resource locator (URL) binary-matching algorithm called HEM, we propose an improved multi-pattern matching algorithm called MH that is based on hash tables and binary tables. The MH algorithm can be applied to the fields of network security, data analysis, load balancing, cloud robotic communications, and so on—all of which require string matching from a fixed starting position. Our approach effectively solves the performance problems of the classical multi-pattern matching algorithms. This paper explores ways to improve string matching performance under the HTTP protocol by using a hash method combined with a binary method that transforms the symbol-space matching problem into a digital-space numerical-size comparison and hashing problem. The MH approach has a fast matching speed, requires little memory, performs better than both the classical algorithms and HEM for matching fields in an HTTP stream, and it has great promise for use in real-world applications. PMID:28399157

  11. A fast and automatic fusion algorithm for unregistered multi-exposure image sequence

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Feihong

    2014-09-01

    Human visual system (HVS) can visualize all the brightness levels of the scene through visual adaptation. However, the dynamic range of most commercial digital cameras and display devices are smaller than the dynamic range of human eye. This implies low dynamic range (LDR) images captured by normal digital camera may lose image details. We propose an efficient approach to high dynamic (HDR) image fusion that copes with image displacement and image blur degradation in a computationally efficient manner, which is suitable for implementation on mobile devices. The various image registration algorithms proposed in the previous literatures are unable to meet the efficiency and performance requirements in the application of mobile devices. In this paper, we selected Oriented Brief (ORB) detector to extract local image structures. The descriptor selected in multi-exposure image fusion algorithm has to be fast and robust to illumination variations and geometric deformations. ORB descriptor is the best candidate in our algorithm. Further, we perform an improved RANdom Sample Consensus (RANSAC) algorithm to reject incorrect matches. For the fusion of images, a new approach based on Stationary Wavelet Transform (SWT) is used. The experimental results demonstrate that the proposed algorithm generates high quality images at low computational cost. Comparisons with a number of other feature matching methods show that our method gets better performance.

  12. An Example-Based Super-Resolution Algorithm for Selfie Images

    PubMed Central

    William, Jino Hans; Venkateswaran, N.; Narayanan, Srinath; Ramachandran, Sandeep

    2016-01-01

    A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details. PMID:27064500

  13. Partial fingerprint identification algorithm based on the modified generalized Hough transform on mobile device

    NASA Astrophysics Data System (ADS)

    Qin, Jin; Tang, Siqi; Han, Congying; Guo, Tiande

    2018-04-01

    Partial fingerprint identification technology which is mainly used in device with small sensor area like cellphone, U disk and computer, has taken more attention in recent years with its unique advantages. However, owing to the lack of sufficient minutiae points, the conventional method do not perform well in the above situation. We propose a new fingerprint matching technique which utilizes ridges as features to deal with partial fingerprint images and combines the modified generalized Hough transform and scoring strategy based on machine learning. The algorithm can effectively meet the real-time and space-saving requirements of the resource constrained devices. Experiments on in-house database indicate that the proposed algorithm have an excellent performance.

  14. An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-06-01

    Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.

  15. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  16. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems.

    PubMed

    Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei

    2017-03-01

    There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  17. Mosaicing of airborne LiDAR bathymetry strips based on Monte Carlo matching

    NASA Astrophysics Data System (ADS)

    Yang, Fanlin; Su, Dianpeng; Zhang, Kai; Ma, Yue; Wang, Mingwei; Yang, Anxiu

    2017-09-01

    This study proposes a new methodology for mosaicing airborne light detection and ranging (LiDAR) bathymetry (ALB) data based on Monte Carlo matching. Various errors occur in ALB data due to imperfect system integration and other interference factors. To account for these errors, a Monte Carlo matching algorithm based on a nonlinear least-squares adjustment model is proposed. First, the raw data of strip overlap areas were filtered according to their relative drift of depths. Second, a Monte Carlo model and nonlinear least-squares adjustment model were combined to obtain seven transformation parameters. Then, the multibeam bathymetric data were used to correct the initial strip during strip mosaicing. Finally, to evaluate the proposed method, the experimental results were compared with the results of the Iterative Closest Points (ICP) and three-dimensional Normal Distributions Transform (3D-NDT) algorithms. The results demonstrate that the algorithm proposed in this study is more robust and effective. When the quality of the raw data is poor, the Monte Carlo matching algorithm can still achieve centimeter-level accuracy for overlapping areas, which meets the accuracy of bathymetry required by IHO Standards for Hydrographic Surveys Special Publication No.44.

  18. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  19. Sparse subspace clustering for data with missing entries and high-rank matrix completion.

    PubMed

    Fan, Jicong; Chow, Tommy W S

    2017-09-01

    Many methods have recently been proposed for subspace clustering, but they are often unable to handle incomplete data because of missing entries. Using matrix completion methods to recover missing entries is a common way to solve the problem. Conventional matrix completion methods require that the matrix should be of low-rank intrinsically, but most matrices are of high-rank or even full-rank in practice, especially when the number of subspaces is large. In this paper, a new method called Sparse Representation with Missing Entries and Matrix Completion is proposed to solve the problems of incomplete-data subspace clustering and high-rank matrix completion. The proposed algorithm alternately computes the matrix of sparse representation coefficients and recovers the missing entries of a data matrix. The proposed algorithm recovers missing entries through minimizing the representation coefficients, representation errors, and matrix rank. Thorough experimental study and comparative analysis based on synthetic data and natural images were conducted. The presented results demonstrate that the proposed algorithm is more effective in subspace clustering and matrix completion compared with other existing methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Parallel conjugate gradient algorithms for manipulator dynamic simulation

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheld, Robert E.

    1989-01-01

    Parallel conjugate gradient algorithms for the computation of multibody dynamics are developed for the specialized case of a robot manipulator. For an n-dimensional positive-definite linear system, the Classical Conjugate Gradient (CCG) algorithms are guaranteed to converge in n iterations, each with a computation cost of O(n); this leads to a total computational cost of O(n sq) on a serial processor. A conjugate gradient algorithms is presented that provide greater efficiency using a preconditioner, which reduces the number of iterations required, and by exploiting parallelism, which reduces the cost of each iteration. Two Preconditioned Conjugate Gradient (PCG) algorithms are proposed which respectively use a diagonal and a tridiagonal matrix, composed of the diagonal and tridiagonal elements of the mass matrix, as preconditioners. Parallel algorithms are developed to compute the preconditioners and their inversions in O(log sub 2 n) steps using n processors. A parallel algorithm is also presented which, on the same architecture, achieves the computational time of O(log sub 2 n) for each iteration. Simulation results for a seven degree-of-freedom manipulator are presented. Variants of the proposed algorithms are also developed which can be efficiently implemented on the Robot Mathematics Processor (RMP).

  1. Scheduling for energy and reliability management on multiprocessor real-time systems

    NASA Astrophysics Data System (ADS)

    Qi, Xuan

    Scheduling algorithms for multiprocessor real-time systems have been studied for years with many well-recognized algorithms proposed. However, it is still an evolving research area and many problems remain open due to their intrinsic complexities. With the emergence of multicore processors, it is necessary to re-investigate the scheduling problems and design/develop efficient algorithms for better system utilization, low scheduling overhead, high energy efficiency, and better system reliability. Focusing cluster schedulings with optimal global schedulers, we study the utilization bound and scheduling overhead for a class of cluster-optimal schedulers. Then, taking energy/power consumption into consideration, we developed energy-efficient scheduling algorithms for real-time systems, especially for the proliferating embedded systems with limited energy budget. As the commonly deployed energy-saving technique (e.g. dynamic voltage frequency scaling (DVFS)) will significantly affect system reliability, we study schedulers that have intelligent mechanisms to recuperate system reliability to satisfy the quality assurance requirements. Extensive simulation is conducted to evaluate the performance of the proposed algorithms on reduction of scheduling overhead, energy saving, and reliability improvement. The simulation results show that the proposed reliability-aware power management schemes could preserve the system reliability while still achieving substantial energy saving.

  2. A Distributed Parallel Genetic Algorithm of Placement Strategy for Virtual Machines Deployment on Cloud Platform

    PubMed Central

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform. PMID:25097872

  3. A distributed parallel genetic algorithm of placement strategy for virtual machines deployment on cloud platform.

    PubMed

    Dong, Yu-Shuang; Xu, Gao-Chao; Fu, Xiao-Dong

    2014-01-01

    The cloud platform provides various services to users. More and more cloud centers provide infrastructure as the main way of operating. To improve the utilization rate of the cloud center and to decrease the operating cost, the cloud center provides services according to requirements of users by sharding the resources with virtualization. Considering both QoS for users and cost saving for cloud computing providers, we try to maximize performance and minimize energy cost as well. In this paper, we propose a distributed parallel genetic algorithm (DPGA) of placement strategy for virtual machines deployment on cloud platform. It executes the genetic algorithm parallelly and distributedly on several selected physical hosts in the first stage. Then it continues to execute the genetic algorithm of the second stage with solutions obtained from the first stage as the initial population. The solution calculated by the genetic algorithm of the second stage is the optimal one of the proposed approach. The experimental results show that the proposed placement strategy of VM deployment can ensure QoS for users and it is more effective and more energy efficient than other placement strategies on the cloud platform.

  4. Efficient Classical Algorithm for Boson Sampling with Partially Distinguishable Photons

    NASA Astrophysics Data System (ADS)

    Renema, J. J.; Menssen, A.; Clements, W. R.; Triginer, G.; Kolthammer, W. S.; Walmsley, I. A.

    2018-06-01

    We demonstrate how boson sampling with photons of partial distinguishability can be expressed in terms of interference of fewer photons. We use this observation to propose a classical algorithm to simulate the output of a boson sampler fed with photons of partial distinguishability. We find conditions for which this algorithm is efficient, which gives a lower limit on the required indistinguishability to demonstrate a quantum advantage. Under these conditions, adding more photons only polynomially increases the computational cost to simulate a boson sampling experiment.

  5. A novel iris localization algorithm using correlation filtering

    NASA Astrophysics Data System (ADS)

    Pohit, Mausumi; Sharma, Jitu

    2015-06-01

    Fast and efficient segmentation of iris from the eye images is a primary requirement for robust database independent iris recognition. In this paper we have presented a new algorithm for computing the inner and outer boundaries of the iris and locating the pupil centre. Pupil-iris boundary computation is based on correlation filtering approach, whereas iris-sclera boundary is determined through one dimensional intensity mapping. The proposed approach is computationally less extensive when compared with the existing algorithms like Hough transform.

  6. OPC for curved designs in application to photonics on silicon

    NASA Astrophysics Data System (ADS)

    Orlando, Bastien; Farys, Vincent; Schneider, Loïc.; Cremer, Sébastien; Postnikov, Sergei V.; Millequant, Matthieu; Dirrenberger, Mathieu; Tiphine, Charles; Bayle, Sébastian; Tranquillin, Céline; Schiavone, Patrick

    2016-03-01

    Today's design for photonics devices on silicon relies on non-Manhattan features such as curves and a wide variety of angles with minimum feature size below 100nm. Industrial manufacturing of such devices requires optimized process window with 193nm lithography. Therefore, Resolution Enhancement Techniques (RET) that are commonly used for CMOS manufacturing are required. However, most RET algorithms are based on Manhattan fragmentation (0°, 45° and 90°) which can generate large CD dispersion on masks for photonic designs. Industrial implementation of RET solutions to photonic designs is challenging as most currently available OPC tools are CMOS-oriented. Discrepancy from design to final results induced by RET techniques can lead to lower photonic device performance. We propose a novel sizing algorithm allowing adjustment of design edge fragments while preserving the topology of the original structures. The results of the algorithm implementation in the rule based sizing, SRAF placement and model based correction will be discussed in this paper. Corrections based on this novel algorithm were applied and characterized on real photonics devices. The obtained results demonstrate the validity of the proposed correction method integrated in Inscale software of Aselta Nanographics.

  7. PWFQ: a priority-based weighted fair queueing algorithm for the downstream transmission of EPON

    NASA Astrophysics Data System (ADS)

    Xu, Sunjuan; Ye, Jiajun; Zou, Junni

    2005-11-01

    In the downstream direction of EPON, all ethernet frames share one downlink channel from the OLT to destination ONUs. To guarantee differentiated services, a scheduling algorithm is needed to solve the link-sharing issue. In this paper, we first review the classical WFQ algorithm and point out the shortcomings existing in the fair queueing principle of WFQ algorithm for EPON. Then we propose a novel scheduling algorithm called Priority-based WFQ (PWFQ) algorithm which distributes bandwidth based on priority. PWFQ algorithm can guarantee the quality of real-time services whether under light load or under heavy load. Simulation results also show that PWFQ algorithm not only can improve delay performance of real-time services, but can also meet the worst-case delay bound requirements.

  8. Single step optimization of manipulator maneuvers with variable structure control

    NASA Technical Reports Server (NTRS)

    Chen, N.; Dwyer, T. A. W., III

    1987-01-01

    One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.

  9. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    PubMed Central

    Ehsan, Shoaib; Clark, Adrian F.; ur Rehman, Naveed; McDonald-Maier, Klaus D.

    2015-01-01

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems. PMID:26184211

  10. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    PubMed

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  11. A Computationally Efficient Visual Saliency Algorithm Suitable for an Analog CMOS Implementation.

    PubMed

    D'Angelo, Robert; Wood, Richard; Lowry, Nathan; Freifeld, Geremy; Huang, Haiyao; Salthouse, Christopher D; Hollosi, Brent; Muresan, Matthew; Uy, Wes; Tran, Nhut; Chery, Armand; Poppe, Dorothy C; Sonkusale, Sameer

    2018-06-27

    Computer vision algorithms are often limited in their application by the large amount of data that must be processed. Mammalian vision systems mitigate this high bandwidth requirement by prioritizing certain regions of the visual field with neural circuits that select the most salient regions. This work introduces a novel and computationally efficient visual saliency algorithm for performing this neuromorphic attention-based data reduction. The proposed algorithm has the added advantage that it is compatible with an analog CMOS design while still achieving comparable performance to existing state-of-the-art saliency algorithms. This compatibility allows for direct integration with the analog-to-digital conversion circuitry present in CMOS image sensors. This integration leads to power savings in the converter by quantizing only the salient pixels. Further system-level power savings are gained by reducing the amount of data that must be transmitted and processed in the digital domain. The analog CMOS compatible formulation relies on a pulse width (i.e., time mode) encoding of the pixel data that is compatible with pulse-mode imagers and slope based converters often used in imager designs. This letter begins by discussing this time-mode encoding for implementing neuromorphic architectures. Next, the proposed algorithm is derived. Hardware-oriented optimizations and modifications to this algorithm are proposed and discussed. Next, a metric for quantifying saliency accuracy is proposed, and simulation results of this metric are presented. Finally, an analog synthesis approach for a time-mode architecture is outlined, and postsynthesis transistor-level simulations that demonstrate functionality of an implementation in a modern CMOS process are discussed.

  12. A physics-based algorithm for the estimation of bearing spall width using vibrations

    NASA Astrophysics Data System (ADS)

    Kogan, G.; Klein, R.; Bortman, J.

    2018-05-01

    Evaluation of the damage severity in a mechanical system is required for the assessment of its remaining useful life. In rotating machines, bearings are crucial components. Hence, the estimation of the size of spalls in bearings is important for prognostics of the remaining useful life. Recently, this topic has been extensively studied and many of the methods used for the estimation of spall size are based on the analysis of vibrations. A new tool is proposed in the current study for the estimation of the spall width on the outer ring raceway of a rolling element bearing. The understanding and analysis of the dynamics of the rolling element-spall interaction enabled the development of a generic and autonomous algorithm. The algorithm is generic in the sense that it does not require any human interference to make adjustments for each case. All of the algorithm's parameters are defined by analytical expressions describing the dynamics of the system. The required conditions, such as sampling rate, spall width and depth, defining the feasible region of such algorithms, are analyzed in the paper. The algorithm performance was demonstrated with experimental data for different spall widths.

  13. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors

    PubMed Central

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-01-01

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction. PMID:27399722

  14. An Adaptive Reputation-Based Algorithm for Grid Virtual Organization Formation

    NASA Astrophysics Data System (ADS)

    Cui, Yongrui; Li, Mingchu; Ren, Yizhi; Sakurai, Kouichi

    A novel adaptive reputation-based virtual organization formation is proposed. It restrains the bad performers effectively based on the consideration of the global experience of the evaluator and evaluates the direct trust relation between two grid nodes accurately by consulting the previous trust value rationally. It also consults and improves the reputation evaluation process in PathTrust model by taking account of the inter-organizational trust relationship and combines it with direct and recommended trust in a weighted way, which makes the algorithm more robust against collusion attacks. Additionally, the proposed algorithm considers the perspective of the VO creator and takes required VO services as one of the most important fine-grained evaluation criterion, which makes the algorithm more suitable for constructing VOs in grid environments that include autonomous organizations. Simulation results show that our algorithm restrains the bad performers and resists against fake transaction attacks and badmouth attacks effectively. It provides a clear advantage in the design of a VO infrastructure.

  15. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

    PubMed

    Hong, Xia

    2006-07-01

    In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

  16. Design and implementation of intelligent electronic warfare decision making algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun

    2017-05-01

    Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.

  17. Decentralized indirect methods for learning automata games.

    PubMed

    Tilak, Omkar; Martin, Ryan; Mukhopadhyay, Snehasis

    2011-10-01

    We discuss the application of indirect learning methods in zero-sum and identical payoff learning automata games. We propose a novel decentralized version of the well-known pursuit learning algorithm. Such a decentralized algorithm has significant computational advantages over its centralized counterpart. The theoretical study of such a decentralized algorithm requires the analysis to be carried out in a nonstationary environment. We use a novel bootstrapping argument to prove the convergence of the algorithm. To our knowledge, this is the first time that such analysis has been carried out for zero-sum and identical payoff games. Extensive simulation studies are reported, which demonstrate the proposed algorithm's fast and accurate convergence in a variety of game scenarios. We also introduce the framework of partial communication in the context of identical payoff games of learning automata. In such games, the automata may not communicate with each other or may communicate selectively. This comprehensive framework has the capability to model both centralized and decentralized games discussed in this paper.

  18. Design and realization of a new agorithm of calculating the absolute positon angle based on the incremental encoder

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Yang, Yong-qing; Li, Zhi-guo; Han, Jun-feng; Wei, Yu; Jing, Feng

    2018-02-01

    Aiming at the shortage of the incremental encoder with simple process to change along the count "in the presence of repeatability and anti disturbance ability, combined with its application in a large project in the country, designed an electromechanical switch for generating zero, zero crossing signal. A mechanical zero electric and zero coordinate transformation model is given to meet the path optimality, single, fast and accurate requirements of adaptive fast change algorithm, the proposed algorithm can effectively solve the contradiction between the accuracy and the change of the time change. A test platform is built to verify the effectiveness and robustness of the proposed algorithm. The experimental data show that the effect of the algorithm accuracy is not influenced by the change of the speed of change, change the error of only 0.0013. Meet too fast, the change of system accuracy, and repeated experiments show that this algorithm has high robustness.

  19. Text image authenticating algorithm based on MD5-hash function and Henon map

    NASA Astrophysics Data System (ADS)

    Wei, Jinqiao; Wang, Ying; Ma, Xiaoxue

    2017-07-01

    In order to cater to the evidentiary requirements of the text image, this paper proposes a fragile watermarking algorithm based on Hash function and Henon map. The algorithm is to divide a text image into parts, get flippable pixels and nonflippable pixels of every lump according to PSD, generate watermark of non-flippable pixels with MD5-Hash, encrypt watermark with Henon map and select embedded blocks. The simulation results show that the algorithm with a good ability in tampering localization can be used to authenticate and forensics the authenticity and integrity of text images

  20. Study on improved Ip-iq APF control algorithm and its application in micro grid

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Deng, Haiyingv

    2018-01-01

    In order to enhance the tracking velocity and accuracy of harmonic detection by ip-iq algorithm, a novel ip-iq control algorithm based on the Instantaneous reactive power theory is presented, the improved algorithm adds the lead correction link to adjust the zero point of the detection system, the Fuzzy Self-Tuning Adaptive PI control is introduced to dynamically adjust the DC-link Voltage, which meets the requirement of the harmonic compensation of the micro grid. Simulation and experimental results verify the proposed method is feasible and effective in micro grid.

  1. Simple Common Plane contact algorithm for explicit FE/FD methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorobiev, O

    2006-12-18

    Common-plane (CP) algorithm is widely used in Discrete Element Method (DEM) to model contact forces between interacting particles or blocks. A new simple contact algorithm is proposed to model contacts in FE/FD methods which is similar to the CP algorithm. The CP is defined as a plane separating interacting faces of FE/FD mesh instead of blocks or particles used in the original CP method. The new method does not require iterations even for very stiff contacts. It is very robust and easy to implement both in 2D and 3D parallel codes.

  2. Surface registration technique for close-range mapping applications

    NASA Astrophysics Data System (ADS)

    Habib, Ayman F.; Cheng, Rita W. T.

    2006-08-01

    Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.

  3. Film grain synthesis and its application to re-graining

    NASA Astrophysics Data System (ADS)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  4. A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus

    NASA Astrophysics Data System (ADS)

    Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir

    2016-07-01

    This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.

  5. Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.

    PubMed

    Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho

    2011-01-01

    The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of <3% and estimate the remaining medication volume with an accuracy of >98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. A Novel Speed Compensation Method for ISAR Imaging with Low SNR

    PubMed Central

    Liu, Yongxiang; Zhang, Shuanghui; Zhu, Dekang; Li, Xiang

    2015-01-01

    In this paper, two novel speed compensation algorithms for ISAR imaging under a low signal-to-noise ratio (SNR) condition have been proposed, which are based on the cubic phase function (CPF) and the integrated cubic phase function (ICPF), respectively. These two algorithms can estimate the speed of the target from the wideband radar echo directly, which breaks the limitation of speed measuring in a radar system. With the utilization of non-coherent accumulation, the ICPF-based speed compensation algorithm is robust to noise and can meet the requirement of speed compensation for ISAR imaging under a low SNR condition. Moreover, a fast searching implementation strategy, which consists of coarse search and precise search, has been introduced to decrease the computational burden of speed compensation based on CPF and ICPF. Experimental results based on radar data validate the effectiveness of the proposed algorithms. PMID:26225980

  7. Differential sampling for fast frequency acquisition via adaptive extended least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1987-01-01

    This paper presents a differential signal model along with appropriate sampling techinques for least squares estimation of the frequency and frequency derivatives and possibly the phase and amplitude of a sinusoid received in the presence of noise. The proposed algorithm is recursive in mesurements and thus the computational requirement increases only linearly with the number of measurements. The dimension of the state vector in the proposed algorithm does not depend upon the number of measurements and is quite small, typically around four. This is an advantage when compared to previous algorithms wherein the dimension of the state vector increases monotonically with the product of the frequency uncertainty and the observation period. Such a computational simplification may possibly result in some loss of optimality. However, by applying the sampling techniques of the paper such a possible loss in optimality can made small.

  8. Image restoration for three-dimensional fluorescence microscopy using an orthonormal basis for efficient representation of depth-variant point-spread functions

    PubMed Central

    Patwary, Nurmohammed; Preza, Chrysanthe

    2015-01-01

    A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634

  9. The production route selection algorithm in virtual manufacturing networks

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2017-08-01

    The increasing requirements and competition in the global market are challenges for the companies profitability in production and supply chain management. This situation became the basis for construction of virtual organizations, which are created in response to temporary needs. The problem of the production flow planning in virtual manufacturing networks is considered. In the paper the algorithm of the production route selection from the set of admissible routes, which meets the technology and resource requirements and in the context of the criterion of minimum cost is proposed.

  10. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    PubMed

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  11. A Two-Stage Reconstruction Processor for Human Detection in Compressive Sensing CMOS Radar

    PubMed Central

    Tsao, Kuei-Chi; Lee, Ling; Chu, Ta-Shun

    2018-01-01

    Complementary metal-oxide-semiconductor (CMOS) radar has recently gained much research attraction because small and low-power CMOS devices are very suitable for deploying sensing nodes in a low-power wireless sensing system. This study focuses on the signal processing of a wireless CMOS impulse radar system that can detect humans and objects in the home-care internet-of-things sensing system. The challenges of low-power CMOS radar systems are the weakness of human signals and the high computational complexity of the target detection algorithm. The compressive sensing-based detection algorithm can relax the computational costs by avoiding the utilization of matched filters and reducing the analog-to-digital converter bandwidth requirement. The orthogonal matching pursuit (OMP) is one of the popular signal reconstruction algorithms for compressive sensing radar; however, the complexity is still very high because the high resolution of human respiration leads to high-dimension signal reconstruction. Thus, this paper proposes a two-stage reconstruction algorithm for compressive sensing radar. The proposed algorithm not only has lower complexity than the OMP algorithm by 75% but also achieves better positioning performance than the OMP algorithm especially in noisy environments. This study also designed and implemented the algorithm by using Vertex-7 FPGA chip (Xilinx, San Jose, CA, USA). The proposed reconstruction processor can support the 256×13 real-time radar image display with a throughput of 28.2 frames per second. PMID:29621170

  12. An algorithm for selecting the most accurate protocol for contact angle measurement by drop shape analysis.

    PubMed

    Xu, Z N

    2014-12-01

    In this study, an error analysis is performed to study real water drop images and the corresponding numerically generated water drop profiles for three widely used static contact angle algorithms: the circle- and ellipse-fitting algorithms and the axisymmetric drop shape analysis-profile (ADSA-P) algorithm. The results demonstrate the accuracy of the numerically generated drop profiles based on the Laplace equation. A significant number of water drop profiles with different volumes, contact angles, and noise levels are generated, and the influences of the three factors on the accuracies of the three algorithms are systematically investigated. The results reveal that the above-mentioned three algorithms are complementary. In fact, the circle- and ellipse-fitting algorithms show low errors and are highly resistant to noise for water drops with small/medium volumes and contact angles, while for water drop with large volumes and contact angles just the ADSA-P algorithm can meet accuracy requirement. However, this algorithm introduces significant errors in the case of small volumes and contact angles because of its high sensitivity to noise. The critical water drop volumes of the circle- and ellipse-fitting algorithms corresponding to a certain contact angle error are obtained through a significant amount of computation. To improve the precision of the static contact angle measurement, a more accurate algorithm based on a combination of the three algorithms is proposed. Following a systematic investigation, the algorithm selection rule is described in detail, while maintaining the advantages of the three algorithms and overcoming their deficiencies. In general, static contact angles over the entire hydrophobicity range can be accurately evaluated using the proposed algorithm. The ease of erroneous judgment in static contact angle measurements is avoided. The proposed algorithm is validated by a static contact angle evaluation of real and numerically generated water drop images with different hydrophobicity values and volumes.

  13. A Hybrid DV-Hop Algorithm Using RSSI for Localization in Large-Scale Wireless Sensor Networks.

    PubMed

    Cheikhrouhou, Omar; M Bhatti, Ghulam; Alroobaea, Roobaea

    2018-05-08

    With the increasing realization of the Internet-of-Things (IoT) and rapid proliferation of wireless sensor networks (WSN), estimating the location of wireless sensor nodes is emerging as an important issue. Traditional ranging based localization algorithms use triangulation for estimating the physical location of only those wireless nodes that are within one-hop distance from the anchor nodes. Multi-hop localization algorithms, on the other hand, aim at localizing the wireless nodes that can physically be residing at multiple hops away from anchor nodes. These latter algorithms have attracted a growing interest from research community due to the smaller number of required anchor nodes. One such algorithm, known as DV-Hop (Distance Vector Hop), has gained popularity due to its simplicity and lower cost. However, DV-Hop suffers from reduced accuracy due to the fact that it exploits only the network topology (i.e., number of hops to anchors) rather than the distances between pairs of nodes. In this paper, we propose an enhanced DV-Hop localization algorithm that also uses the RSSI values associated with links between one-hop neighbors. Moreover, we exploit already localized nodes by promoting them to become additional anchor nodes. Our simulations have shown that the proposed algorithm significantly outperforms the original DV-Hop localization algorithm and two of its recently published variants, namely RSSI Auxiliary Ranging and the Selective 3-Anchor DV-hop algorithm. More precisely, in some scenarios, the proposed algorithm improves the localization accuracy by almost 95%, 90% and 70% as compared to the basic DV-Hop, Selective 3-Anchor, and RSSI DV-Hop algorithms, respectively.

  14. Comparison of algorithms to generate event times conditional on time-dependent covariates.

    PubMed

    Sylvestre, Marie-Pierre; Abrahamowicz, Michal

    2008-06-30

    The Cox proportional hazards model with time-dependent covariates (TDC) is now a part of the standard statistical analysis toolbox in medical research. As new methods involving more complex modeling of time-dependent variables are developed, simulations could often be used to systematically assess the performance of these models. Yet, generating event times conditional on TDC requires well-designed and efficient algorithms. We compare two classes of such algorithms: permutational algorithms (PAs) and algorithms based on a binomial model. We also propose a modification of the PA to incorporate a rejection sampler. We performed a simulation study to assess the accuracy, stability, and speed of these algorithms in several scenarios. Both classes of algorithms generated data sets that, once analyzed, provided virtually unbiased estimates with comparable variances. In terms of computational efficiency, the PA with the rejection sampler reduced the time necessary to generate data by more than 50 per cent relative to alternative methods. The PAs also allowed more flexibility in the specification of the marginal distributions of event times and required less calibration.

  15. Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.

    PubMed

    Muruganantham, Arrchana; Tan, Kay Chen; Vadakkepat, Prahlad

    2016-12-01

    Evolutionary algorithms are effective in solving static multiobjective optimization problems resulting in the emergence of a number of state-of-the-art multiobjective evolutionary algorithms (MOEAs). Nevertheless, the interest in applying them to solve dynamic multiobjective optimization problems has only been tepid. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are required to further the research in this field. One or more objectives may change with time in dynamic optimization problems. The optimization algorithm must be able to track the moving optima efficiently. A prediction model can learn the patterns from past experience and predict future changes. In this paper, a new dynamic MOEA using Kalman filter (KF) predictions in decision space is proposed to solve the aforementioned problems. The predictions help to guide the search toward the changed optima, thereby accelerating convergence. A scoring scheme is devised to hybridize the KF prediction with a random reinitialization method. Experimental results and performance comparisons with other state-of-the-art algorithms demonstrate that the proposed algorithm is capable of significantly improving the dynamic optimization performance.

  16. Design and optimization of all-optical networks

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoxi

    1999-10-01

    In this thesis, we present our research results on the design and optimization of all-optical networks. We divide our results into the following four parts: 1.In the first part, we consider broadcast-and-select networks. In our research, we propose an alternative and cheaper network configuration to hide the tuning time. In addition, we derive lower bounds on the optimal schedule lengths and prove that they are tighter than the best existing bounds. 2.In the second part, we consider all-optical wide area networks. We propose a set of algorithms for allocating a given number of WCs to the nodes. We adopt a simulation-based optimization approach, in which we collect utilization statistics of WCs from computer simulation and then perform optimization to allocate the WCs. Therefore, our algorithms are widely applicable and they are not restricted to any particular model and assumption. We have conducted extensive computer simulation on regular and irregular networks under both uniform and non-uniform traffic. We see that our method can get nearly the same performance as that of full wavelength conversion by using a much smaller number of WCs. Compared with the best existing method, the results show that our algorithms can significantly reduce (1)the overall blocking probability (i.e., better mean quality of service) and (2)the maximum of the blocking probabilities experienced at all the source nodes (i.e., better fairness). Equivalently, for a given performance requirement on blocking probability, our algorithms can significantly reduce the number of WCs required. 3.In the third part, we design and optimize the physical topology of all-optical wide area networks. We show that the design problem is NP-complete and we propose a heuristic algorithm called two-stage cut saturation algorithm for this problem. Simulation results show that (1)the proposed algorithm can efficiently design networks with low cost and high utilization, and (2)if wavelength converters are available to support full wavelength conversion, the cost of the links can be significantly reduced. 4.In the fourth part, we consider all-optical wide area networks with multiple fibers per link. We design a node configuration for all-optical networks. We exploit the flexibility that, to establish a lightpath across a node, we can select any one of the available channels in the incoming link and any one of the available channels in the outgoing link. As a result, the proposed node configuration requires a small number of small optical switches while it can achieve nearly the same performance as the existing one. And there is no additional crosstalk other than the intrinsic crosstalk within each single-chip optical switch.* (Abstract shortened by UMI.) *Originally published in DAI Vol. 60, No. 2. Reprinted here with corrected author name.

  17. End-point detection in potentiometric titration by continuous wavelet transform.

    PubMed

    Jakubowska, Małgorzata; Baś, Bogusław; Kubiak, Władysław W

    2009-10-15

    The aim of this work was construction of the new wavelet function and verification that a continuous wavelet transform with a specially defined dedicated mother wavelet is a useful tool for precise detection of end-point in a potentiometric titration. The proposed algorithm does not require any initial information about the nature or the type of analyte and/or the shape of the titration curve. The signal imperfection, as well as random noise or spikes has no influence on the operation of the procedure. The optimization of the new algorithm was done using simulated curves and next experimental data were considered. In the case of well-shaped and noise-free titration data, the proposed method gives the same accuracy and precision as commonly used algorithms. But, in the case of noisy or badly shaped curves, the presented approach works good (relative error mainly below 2% and coefficients of variability below 5%) while traditional procedures fail. Therefore, the proposed algorithm may be useful in interpretation of the experimental data and also in automation of the typical titration analysis, specially in the case when random noise interfere with analytical signal.

  18. Scene-based nonuniformity correction technique that exploits knowledge of the focal-plane array readout architecture.

    PubMed

    Narayanan, Balaji; Hardie, Russell C; Muse, Robert A

    2005-06-10

    Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.

  19. Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters

    NASA Astrophysics Data System (ADS)

    Vasumathi, B.; Moorthi, S.

    2011-11-01

    In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.

  20. A fast algorithm for vertex-frequency representations of signals on graphs

    PubMed Central

    Jestrović, Iva; Coyle, James L.; Sejdić, Ervin

    2016-01-01

    The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645

  1. A Car Transportation System in Cooperation by Multiple Mobile Robots for Each Wheel: iCART II

    NASA Astrophysics Data System (ADS)

    Kashiwazaki, Koshi; Yonezawa, Naoaki; Kosuge, Kazuhiro; Sugahara, Yusuke; Hirata, Yasuhisa; Endo, Mitsuru; Kanbayashi, Takashi; Shinozuka, Hiroyuki; Suzuki, Koki; Ono, Yuki

    The authors proposed a car transportation system, iCART (intelligent Cooperative Autonomous Robot Transporters), for automation of mechanical parking systems by two mobile robots. However, it was difficult to downsize the mobile robot because the length of it requires at least the wheelbase of a car. This paper proposes a new car transportation system, iCART II (iCART - type II), based on “a-robot-for-a-wheel” concept. A prototype system, MRWheel (a Mobile Robot for a Wheel), is designed and downsized less than half the conventional robot. First, a method for lifting up a wheel by MRWheel is described. In general, it is very difficult for mobile robots such as MRWheel to move to desired positions without motion errors caused by slipping, etc. Therefore, we propose a follower's motion error estimation algorithm based on the internal force applied to each follower by extending a conventional leader-follower type decentralized control algorithm for cooperative object transportation. The proposed algorithm enables followers to estimate their motion errors and enables the robots to transport a car to a desired position. In addition, we analyze and prove the stability and convergence of the resultant system with the proposed algorithm. In order to extract only the internal force from the force applied to each robot, we also propose a model-based external force compensation method. Finally, proposed methods are applied to the car transportation system, the experimental results confirm their validity.

  2. Highly Scalable Matching Pursuit Signal Decomposition Algorithm

    NASA Technical Reports Server (NTRS)

    Christensen, Daniel; Das, Santanu; Srivastava, Ashok N.

    2009-01-01

    Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposition and feature extraction. MPD decomposes any signal into linear combinations of its dictionary elements or atoms . A best fit atom from an arbitrarily defined dictionary is determined through cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary is required for an accurate reconstruction; this in return increases the computational burden of the algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to improve the scalability and performance of the classical MPD algorithm. Correlation thresholds were defined to prune insignificant atoms from the dictionary. The Coarse-Fine Grids and Multiple Atom Extraction techniques were proposed to decrease the computational burden of the algorithm. The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effectiveness and efficiency of each iteration. These improvements were implemented to produce an improved Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition applications may require a particular emphasis of accuracy or computational efficiency. The prominence of the key signal features required for the proper signal classification dictates the level of accuracy necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the imposed requirements. Certain feature extraction applications may require rapid signal decomposition. The full potential of MPD++ may be utilized to produce incredible performance gains while extracting only slightly less energy than the standard algorithm. When the utmost accuracy must be achieved, the modified algorithm extracts atoms more conservatively but still exhibits computational gains over classical MPD. The MPD++ algorithm was demonstrated using an over-complete dictionary on real life data. Computational times were reduced by factors of 1.9 and 44 for the emphases of accuracy and performance, respectively. The modified algorithm extracted similar amounts of energy compared to classical MPD. The degree of the improvement in computational time depends on the complexity of the data, the initialization parameters, and the breadth of the dictionary. The results of the research confirm that the three modifications successfully improved the scalability and computational efficiency of the MPD algorithm. Correlation Thresholding decreased the time complexity by reducing the dictionary size. Multiple Atom Extraction also reduced the time complexity by decreasing the number of iterations required for a stopping criterion to be reached. The Course-Fine Grids technique enabled complicated atoms with numerous variable parameters to be effectively represented in the dictionary. Due to the nature of the three proposed modifications, they are capable of being stacked and have cumulative effects on the reduction of the time complexity.

  3. Least square neural network model of the crude oil blending process.

    PubMed

    Rubio, José de Jesús

    2016-06-01

    In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Combining Acceleration Techniques for Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction.

    PubMed

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2017-01-01

    Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.

  5. Hardware friendly probabilistic spiking neural network with long-term and short-term plasticity.

    PubMed

    Hsieh, Hung-Yi; Tang, Kea-Tiong

    2013-12-01

    This paper proposes a probabilistic spiking neural network (PSNN) with unimodal weight distribution, possessing long- and short-term plasticity. The proposed algorithm is derived by both the arithmetic gradient decent calculation and bioinspired algorithms. The algorithm is benchmarked by the Iris and Wisconsin breast cancer (WBC) data sets. The network features fast convergence speed and high accuracy. In the experiment, the PSNN took not more than 40 epochs for convergence. The average testing accuracy for Iris and WBC data is 96.7% and 97.2%, respectively. To test the usefulness of the PSNN to real world application, the PSNN was also tested with the odor data, which was collected by our self-developed electronic nose (e-nose). Compared with the algorithm (K-nearest neighbor) that has the highest classification accuracy in the e-nose for the same odor data, the classification accuracy of the PSNN is only 1.3% less but the memory requirement can be reduced at least 40%. All the experiments suggest that the PSNN is hardware friendly. First, it requires only nine-bits weight resolution for training and testing. Second, the PSNN can learn complex data sets with a little number of neurons that in turn reduce the cost of VLSI implementation. In addition, the algorithm is insensitive to synaptic noise and the parameter variation induced by the VLSI fabrication. Therefore, the algorithm can be implemented by either software or hardware, making it suitable for wider application.

  6. Soft-output decoding algorithms in iterative decoding of turbo codes

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.

    1996-01-01

    In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.

  7. Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng

    2010-01-01

    The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.

  8. An evaluation of talker localization based on direction of arrival estimation and statistical sound source identification

    NASA Astrophysics Data System (ADS)

    Nishiura, Takanobu; Nakamura, Satoshi

    2002-11-01

    It is very important to capture distant-talking speech for a hands-free speech interface with high quality. A microphone array is an ideal candidate for this purpose. However, this approach requires localizing the target talker. Conventional talker localization algorithms in multiple sound source environments not only have difficulty localizing the multiple sound sources accurately, but also have difficulty localizing the target talker among known multiple sound source positions. To cope with these problems, we propose a new talker localization algorithm consisting of two algorithms. One is DOA (direction of arrival) estimation algorithm for multiple sound source localization based on CSP (cross-power spectrum phase) coefficient addition method. The other is statistical sound source identification algorithm based on GMM (Gaussian mixture model) for localizing the target talker position among localized multiple sound sources. In this paper, we particularly focus on the talker localization performance based on the combination of these two algorithms with a microphone array. We conducted evaluation experiments in real noisy reverberant environments. As a result, we confirmed that multiple sound signals can be identified accurately between ''speech'' or ''non-speech'' by the proposed algorithm. [Work supported by ATR, and MEXT of Japan.

  9. DEMON-type algorithms for determination of hydro-acoustic signatures of surface ships and of divers

    NASA Astrophysics Data System (ADS)

    Slamnoiu, G.; Radu, O.; Rosca, V.; Pascu, C.; Damian, R.; Surdu, G.; Curca, E.; Radulescu, A.

    2016-08-01

    With the project “System for detection, localization, tracking and identification of risk factors for strategic importance in littoral areas”, developed in the National Programme II, the members of the research consortium intend to develop a functional model for a hydroacoustic passive subsystem for determination of acoustic signatures of targets such as fast boats and autonomous divers. This paper presents some of the results obtained in the area of hydroacoustic signal processing by using DEMON-type algorithms (Detection of Envelope Modulation On Noise). For evaluation of the performance of various algorithm variations we have used both audio recordings of the underwater noise generated by ships and divers in real situations and also simulated noises. We have analysed the results of processing these signals using four DEMON algorithm structures as presented in the reference literature and a fifth DEMON algorithm structure proposed by the authors of this paper. The algorithm proposed by the authors generates similar results to those obtained by applying the traditional algorithms but requires less computing resources than those and at the same time it has proven to be more resilient to random noise influence.

  10. Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements

    NASA Astrophysics Data System (ADS)

    Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.

    2016-06-01

    Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.

  11. Novel particle tracking algorithm based on the Random Sample Consensus Model for the Active Target Time Projection Chamber (AT-TPC)

    NASA Astrophysics Data System (ADS)

    Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Beceiro-Novo, Saul; Cortesi, Marco

    2018-02-01

    The three-dimensional reconstruction of particle tracks in a time projection chamber is a challenging task that requires advanced classification and fitting algorithms. In this work, we have developed and implemented a novel algorithm based on the Random Sample Consensus Model (RANSAC). The RANSAC is used to classify tracks including pile-up, to remove uncorrelated noise hits, as well as to reconstruct the vertex of the reaction. The algorithm, developed within the Active Target Time Projection Chamber (AT-TPC) framework, was tested and validated by analyzing the 4He+4He reaction. Results, performance and quality of the proposed algorithm are presented and discussed in detail.

  12. A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.

    PubMed

    Wang, Lujia; Liu, Ming; Meng, Max Q-H

    2017-02-01

    Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.

  13. Learning in fully recurrent neural networks by approaching tangent planes to constraint surfaces.

    PubMed

    May, P; Zhou, E; Lee, C W

    2012-10-01

    In this paper we present a new variant of the online real time recurrent learning algorithm proposed by Williams and Zipser (1989). Whilst the original algorithm utilises gradient information to guide the search towards the minimum training error, it is very slow in most applications and often gets stuck in local minima of the search space. It is also sensitive to the choice of learning rate and requires careful tuning. The new variant adjusts weights by moving to the tangent planes to constraint surfaces. It is simple to implement and requires no parameters to be set manually. Experimental results show that this new algorithm gives significantly faster convergence whilst avoiding problems like local minima. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Algorithms for Lightweight Key Exchange †

    PubMed Central

    Santonja, Juan; Zamora, Antonio

    2017-01-01

    Public-key cryptography is too slow for general purpose encryption, with most applications limiting its use as much as possible. Some secure protocols, especially those that enable forward secrecy, make a much heavier use of public-key cryptography, increasing the demand for lightweight cryptosystems that can be implemented in low powered or mobile devices. This performance requirements are even more significant in critical infrastructure and emergency scenarios where peer-to-peer networks are deployed for increased availability and resiliency. We benchmark several public-key key-exchange algorithms, determining those that are better for the requirements of critical infrastructure and emergency applications and propose a security framework based on these algorithms and study its application to decentralized node or sensor networks. PMID:28654006

  15. An analytical fuzzy-based approach to ?-gain optimal control of input-affine nonlinear systems using Newton-type algorithm

    NASA Astrophysics Data System (ADS)

    Milic, Vladimir; Kasac, Josip; Novakovic, Branko

    2015-10-01

    This paper is concerned with ?-gain optimisation of input-affine nonlinear systems controlled by analytic fuzzy logic system. Unlike the conventional fuzzy-based strategies, the non-conventional analytic fuzzy control method does not require an explicit fuzzy rule base. As the first contribution of this paper, we prove, by using the Stone-Weierstrass theorem, that the proposed fuzzy system without rule base is universal approximator. The second contribution of this paper is an algorithm for solving a finite-horizon minimax problem for ?-gain optimisation. The proposed algorithm consists of recursive chain rule for first- and second-order derivatives, Newton's method, multi-step Adams method and automatic differentiation. Finally, the results of this paper are evaluated on a second-order nonlinear system.

  16. Optimal line drop compensation parameters under multi-operating conditions

    NASA Astrophysics Data System (ADS)

    Wan, Yuan; Li, Hang; Wang, Kai; He, Zhe

    2017-01-01

    Line Drop Compensation (LDC) is a main function of Reactive Current Compensation (RCC) which is developed to improve voltage stability. While LDC has benefit to voltage, it may deteriorate the small-disturbance rotor angle stability of power system. In present paper, an intelligent algorithm which is combined by Genetic Algorithm (GA) and Backpropagation Neural Network (BPNN) is proposed to optimize parameters of LDC. The objective function proposed in present paper takes consideration of voltage deviation and power system oscillation minimal damping ratio under multi-operating conditions. A simulation based on middle area of Jiangxi province power system is used to demonstrate the intelligent algorithm. The optimization result shows that coordinate optimized parameters can meet the multioperating conditions requirement and improve voltage stability as much as possible while guaranteeing enough damping ratio.

  17. One-way quantum computing in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.

    2018-03-01

    We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.

  18. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    NASA Astrophysics Data System (ADS)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  19. Stream-based Hebbian eigenfilter for real-time neuronal spike discrimination

    PubMed Central

    2012-01-01

    Background Principal component analysis (PCA) has been widely employed for automatic neuronal spike sorting. Calculating principal components (PCs) is computationally expensive, and requires complex numerical operations and large memory resources. Substantial hardware resources are therefore needed for hardware implementations of PCA. General Hebbian algorithm (GHA) has been proposed for calculating PCs of neuronal spikes in our previous work, which eliminates the needs of computationally expensive covariance analysis and eigenvalue decomposition in conventional PCA algorithms. However, large memory resources are still inherently required for storing a large volume of aligned spikes for training PCs. The large size memory will consume large hardware resources and contribute significant power dissipation, which make GHA difficult to be implemented in portable or implantable multi-channel recording micro-systems. Method In this paper, we present a new algorithm for PCA-based spike sorting based on GHA, namely stream-based Hebbian eigenfilter, which eliminates the inherent memory requirements of GHA while keeping the accuracy of spike sorting by utilizing the pseudo-stationarity of neuronal spikes. Because of the reduction of large hardware storage requirements, the proposed algorithm can lead to ultra-low hardware resources and power consumption of hardware implementations, which is critical for the future multi-channel micro-systems. Both clinical and synthetic neural recording data sets were employed for evaluating the accuracy of the stream-based Hebbian eigenfilter. The performance of spike sorting using stream-based eigenfilter and the computational complexity of the eigenfilter were rigorously evaluated and compared with conventional PCA algorithms. Field programmable logic arrays (FPGAs) were employed to implement the proposed algorithm, evaluate the hardware implementations and demonstrate the reduction in both power consumption and hardware memories achieved by the streaming computing Results and discussion Results demonstrate that the stream-based eigenfilter can achieve the same accuracy and is 10 times more computationally efficient when compared with conventional PCA algorithms. Hardware evaluations show that 90.3% logic resources, 95.1% power consumption and 86.8% computing latency can be reduced by the stream-based eigenfilter when compared with PCA hardware. By utilizing the streaming method, 92% memory resources and 67% power consumption can be saved when compared with the direct implementation of GHA. Conclusion Stream-based Hebbian eigenfilter presents a novel approach to enable real-time spike sorting with reduced computational complexity and hardware costs. This new design can be further utilized for multi-channel neuro-physiological experiments or chronic implants. PMID:22490725

  20. Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles

    PubMed Central

    Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen

    2013-01-01

    In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717

  1. Gaussian mixture model based identification of arterial wall movement for computation of distension waveform.

    PubMed

    Patil, Ravindra B; Krishnamoorthy, P; Sethuraman, Shriram

    2015-01-01

    This work proposes a novel Gaussian Mixture Model (GMM) based approach for accurate tracking of the arterial wall and subsequent computation of the distension waveform using Radio Frequency (RF) ultrasound signal. The approach was evaluated on ultrasound RF data acquired using a prototype ultrasound system from an artery mimicking flow phantom. The effectiveness of the proposed algorithm is demonstrated by comparing with existing wall tracking algorithms. The experimental results show that the proposed method provides 20% reduction in the error margin compared to the existing approaches in tracking the arterial wall movement. This approach coupled with ultrasound system can be used to estimate the arterial compliance parameters required for screening of cardiovascular related disorders.

  2. Low-complexity camera digital signal imaging for video document projection system

    NASA Astrophysics Data System (ADS)

    Hsia, Shih-Chang; Tsai, Po-Shien

    2011-04-01

    We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.

  3. Adaptive PID formation control of nonholonomic robots without leader's velocity information.

    PubMed

    Shen, Dongbin; Sun, Weijie; Sun, Zhendong

    2014-03-01

    This paper proposes an adaptive proportional integral derivative (PID) algorithm to solve a formation control problem in the leader-follower framework where the leader robot's velocities are unknown for the follower robots. The main idea is first to design some proper ideal control law for the formation system to obtain a required performance, and then to propose the adaptive PID methodology to approach the ideal controller. As a result, the formation is achieved with much more enhanced robust formation performance. The stability of the closed-loop system is theoretically proved by Lyapunov method. Both numerical simulations and physical vehicle experiments are presented to verify the effectiveness of the proposed adaptive PID algorithm. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Figure-ground segmentation based on class-independent shape priors

    NASA Astrophysics Data System (ADS)

    Li, Yang; Liu, Yang; Liu, Guojun; Guo, Maozu

    2018-01-01

    We propose a method to generate figure-ground segmentation by incorporating shape priors into the graph-cuts algorithm. Given an image, we first obtain a linear representation of an image and then apply directional chamfer matching to generate class-independent, nonparametric shape priors, which provide shape clues for the graph-cuts algorithm. We then enforce shape priors in a graph-cuts energy function to produce object segmentation. In contrast to previous segmentation methods, the proposed method shares shape knowledge for different semantic classes and does not require class-specific model training. Therefore, the approach obtains high-quality segmentation for objects. We experimentally validate that the proposed method outperforms previous approaches using the challenging PASCAL VOC 2010/2012 and Berkeley (BSD300) segmentation datasets.

  5. Improved Bat Algorithm Applied to Multilevel Image Thresholding

    PubMed Central

    2014-01-01

    Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733

  6. Limitations and requirements of content-based multimedia authentication systems

    NASA Astrophysics Data System (ADS)

    Wu, Chai W.

    2001-08-01

    Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.

  7. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    PubMed Central

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  8. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    PubMed

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  9. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    NASA Astrophysics Data System (ADS)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  10. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less

  11. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    DOE PAGES

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; ...

    2017-02-27

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is oftenmore » unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. Lastly, the results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.« less

  12. Inverse halftoning via robust nonlinear filtering

    NASA Astrophysics Data System (ADS)

    Shen, Mei-Yin; Kuo, C.-C. Jay

    1999-10-01

    A new blind inverse halftoning algorithm based on a nonlinear filtering technique of low computational complexity and low memory requirement is proposed in this research. It is called blind since we do not require the knowledge of the halftone kernel. The proposed scheme performs nonlinear filtering in conjunction with edge enhancement to improve the quality of an inverse halftoned image. Distinct features of the proposed approach include: efficiently smoothing halftone patterns in large homogeneous areas, additional edge enhancement capability to recover the edge quality and an excellent PSNR performance with only local integer operations and a small memory buffer.

  13. Parallel heterogeneous architectures for efficient OMP compressive sensing reconstruction

    NASA Astrophysics Data System (ADS)

    Kulkarni, Amey; Stanislaus, Jerome L.; Mohsenin, Tinoosh

    2014-05-01

    Compressive Sensing (CS) is a novel scheme, in which a signal that is sparse in a known transform domain can be reconstructed using fewer samples. The signal reconstruction techniques are computationally intensive and have sluggish performance, which make them impractical for real-time processing applications . The paper presents novel architectures for Orthogonal Matching Pursuit algorithm, one of the popular CS reconstruction algorithms. We show the implementation results of proposed architectures on FPGA, ASIC and on a custom many-core platform. For FPGA and ASIC implementation, a novel thresholding method is used to reduce the processing time for the optimization problem by at least 25%. Whereas, for the custom many-core platform, efficient parallelization techniques are applied, to reconstruct signals with variant signal lengths of N and sparsity of m. The algorithm is divided into three kernels. Each kernel is parallelized to reduce execution time, whereas efficient reuse of the matrix operators allows us to reduce area. Matrix operations are efficiently paralellized by taking advantage of blocked algorithms. For demonstration purpose, all architectures reconstruct a 256-length signal with maximum sparsity of 8 using 64 measurements. Implementation on Xilinx Virtex-5 FPGA, requires 27.14 μs to reconstruct the signal using basic OMP. Whereas, with thresholding method it requires 18 μs. ASIC implementation reconstructs the signal in 13 μs. However, our custom many-core, operating at 1.18 GHz, takes 18.28 μs to complete. Our results show that compared to the previous published work of the same algorithm and matrix size, proposed architectures for FPGA and ASIC implementations perform 1.3x and 1.8x respectively faster. Also, the proposed many-core implementation performs 3000x faster than the CPU and 2000x faster than the GPU.

  14. Performance evaluation of firefly algorithm with variation in sorting for non-linear benchmark problems

    NASA Astrophysics Data System (ADS)

    Umbarkar, A. J.; Balande, U. T.; Seth, P. D.

    2017-06-01

    The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.

  15. Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds

    NASA Astrophysics Data System (ADS)

    Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni

    2012-09-01

    Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.

  16. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  17. A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding

    NASA Astrophysics Data System (ADS)

    Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae

    2017-12-01

    High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.

  18. Bidirectional extreme learning machine for regression problem and its learning effectiveness.

    PubMed

    Yang, Yimin; Wang, Yaonan; Yuan, Xiaofang

    2012-09-01

    It is clear that the learning effectiveness and learning speed of neural networks are in general far slower than required, which has been a major bottleneck for many applications. Recently, a simple and efficient learning method, referred to as extreme learning machine (ELM), was proposed by Huang , which has shown that, compared to some conventional methods, the training time of neural networks can be reduced by a thousand times. However, one of the open problems in ELM research is whether the number of hidden nodes can be further reduced without affecting learning effectiveness. This brief proposes a new learning algorithm, called bidirectional extreme learning machine (B-ELM), in which some hidden nodes are not randomly selected. In theory, this algorithm tends to reduce network output error to 0 at an extremely early learning stage. Furthermore, we find a relationship between the network output error and the network output weights in the proposed B-ELM. Simulation results demonstrate that the proposed method can be tens to hundreds of times faster than other incremental ELM algorithms.

  19. Phase retrieval and 3D imaging in gold nanoparticles based fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev

    2017-02-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.

  20. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jason Wright

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less

  1. Indoor-Outdoor Detection Using a Smart Phone Sensor.

    PubMed

    Wang, Weiping; Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei

    2016-09-22

    In the era of mobile internet, Location Based Services (LBS) have developed dramatically. Seamless Indoor and Outdoor Navigation and Localization (SNAL) has attracted a lot of attention. No single positioning technology was capable of meeting the various positioning requirements in different environments. Selecting different positioning techniques for different environments is an alternative method. Detecting the users' current environment is crucial for this technique. In this paper, we proposed to detect the indoor/outdoor environment automatically without high energy consumption. The basic idea was simple: we applied a machine learning algorithm to classify the neighboring Global System for Mobile (GSM) communication cellular base station's signal strength in different environments, and identified the users' current context by signal pattern recognition. We tested the algorithm in four different environments. The results showed that the proposed algorithm was capable of identifying open outdoors, semi-outdoors, light indoors and deep indoors environments with 100% accuracy using the signal strength of four nearby GSM stations. The required hardware and signal are widely available in our daily lives, implying its high compatibility and availability.

  2. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE PAGES

    Li, Weixuan; Lin, Guang

    2015-03-21

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes’ rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  3. An adaptive importance sampling algorithm for Bayesian inversion with multimodal distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan; Lin, Guang, E-mail: guanglin@purdue.edu

    2015-08-01

    Parametric uncertainties are encountered in the simulations of many physical systems, and may be reduced by an inverse modeling procedure that calibrates the simulation results to observations on the real system being simulated. Following Bayes' rule, a general approach for inverse modeling problems is to sample from the posterior distribution of the uncertain model parameters given the observations. However, the large number of repetitive forward simulations required in the sampling process could pose a prohibitive computational burden. This difficulty is particularly challenging when the posterior is multimodal. We present in this paper an adaptive importance sampling algorithm to tackle thesemore » challenges. Two essential ingredients of the algorithm are: 1) a Gaussian mixture (GM) model adaptively constructed as the proposal distribution to approximate the possibly multimodal target posterior, and 2) a mixture of polynomial chaos (PC) expansions, built according to the GM proposal, as a surrogate model to alleviate the computational burden caused by computational-demanding forward model evaluations. In three illustrative examples, the proposed adaptive importance sampling algorithm demonstrates its capabilities of automatically finding a GM proposal with an appropriate number of modes for the specific problem under study, and obtaining a sample accurately and efficiently representing the posterior with limited number of forward simulations.« less

  4. Block clustering based on difference of convex functions (DC) programming and DC algorithms.

    PubMed

    Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai

    2013-10-01

    We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.

  5. On the reduced-complexity of LDPC decoders for ultra-high-speed optical transmission.

    PubMed

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2010-10-25

    We propose two reduced-complexity (RC) LDPC decoders, which can be used in combination with large-girth LDPC codes to enable ultra-high-speed serial optical transmission. We show that optimally attenuated RC min-sum sum algorithm performs only 0.46 dB (at BER of 10(-9)) worse than conventional sum-product algorithm, while having lower storage memory requirements and much lower latency. We further study the use of RC LDPC decoding algorithms in multilevel coded modulation with coherent detection and show that with RC decoding algorithms we can achieve the net coding gain larger than 11 dB at BERs below 10(-9).

  6. Research on improved edge extraction algorithm of rectangular piece

    NASA Astrophysics Data System (ADS)

    He, Yi-Bin; Zeng, Ya-Jun; Chen, Han-Xin; Xiao, San-Xia; Wang, Yan-Wei; Huang, Si-Yu

    Traditional edge detection operators such as Prewitt operator, LOG operator and Canny operator, etc. cannot meet the requirements of the modern industrial measurement. This paper proposes a kind of image edge detection algorithm based on improved morphological gradient. It can be detect the image using structural elements, which deals with the characteristic information of the image directly. Choosing different shapes and sizes of structural elements to use together, the ideal image edge information can be detected. The experimental result shows that the algorithm can well extract image edge with noise, which is clearer, and has more detailed edges compared with the previous edge detection algorithm.

  7. A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation

    NASA Astrophysics Data System (ADS)

    Wang, Haichao; Yue, Weirui; Song, Qiang; Liu, Jingdan; Situ, Guohai

    2017-02-01

    The Gerchberg-Saxton (GS) algorithm is widely used in various disciplines of modern sciences and technologies where phase retrieval is required. However, this legendary algorithm most likely stagnates after a few iterations. Many efforts have been taken to improve this situation. Here we propose to introduce the strategy of gradient descent and weighting technique to the GS algorithm, and demonstrate it using two examples: design of a diffractive optical element (DOE) to achieve off-axis illumination in lithographic tools, and design of a computer generated hologram (CGH) for holographic display. Both numerical simulation and optical experiments are carried out for demonstration.

  8. Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems.

    PubMed

    Wang, Handing; Jin, Yaochu; Doherty, John

    2017-09-01

    Function evaluations (FEs) of many real-world optimization problems are time or resource consuming, posing a serious challenge to the application of evolutionary algorithms (EAs) to solve these problems. To address this challenge, the research on surrogate-assisted EAs has attracted increasing attention from both academia and industry over the past decades. However, most existing surrogate-assisted EAs (SAEAs) either still require thousands of expensive FEs to obtain acceptable solutions, or are only applied to very low-dimensional problems. In this paper, a novel surrogate-assisted particle swarm optimization (PSO) inspired from committee-based active learning (CAL) is proposed. In the proposed algorithm, a global model management strategy inspired from CAL is developed, which searches for the best and most uncertain solutions according to a surrogate ensemble using a PSO algorithm and evaluates these solutions using the expensive objective function. In addition, a local surrogate model is built around the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate to find its optimum and evaluates it. The evolutionary search using the global model management strategy switches to the local search once no further improvement can be observed, and vice versa. This iterative search process continues until the computational budget is exhausted. Experimental results comparing the proposed algorithm with a few state-of-the-art SAEAs on both benchmark problems up to 30 decision variables as well as an airfoil design problem demonstrate that the proposed algorithm is able to achieve better or competitive solutions with a limited budget of hundreds of exact FEs.

  9. A floor-map-aided WiFi/pseudo-odometry integration algorithm for an indoor positioning system.

    PubMed

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-03-24

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The "go and back" phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The "cross-wall" problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning.

  10. Mission planning optimization of video satellite for ground multi-object staring imaging

    NASA Astrophysics Data System (ADS)

    Cui, Kaikai; Xiang, Junhua; Zhang, Yulin

    2018-03-01

    This study investigates the emergency scheduling problem of ground multi-object staring imaging for a single video satellite. In the proposed mission scenario, the ground objects require a specified duration of staring imaging by the video satellite. The planning horizon is not long, i.e., it is usually shorter than one orbit period. A binary decision variable and the imaging order are used as the design variables, and the total observation revenue combined with the influence of the total attitude maneuvering time is regarded as the optimization objective. Based on the constraints of the observation time windows, satellite attitude adjustment time, and satellite maneuverability, a constraint satisfaction mission planning model is established for ground object staring imaging by a single video satellite. Further, a modified ant colony optimization algorithm with tabu lists (Tabu-ACO) is designed to solve this problem. The proposed algorithm can fully exploit the intelligence and local search ability of ACO. Based on full consideration of the mission characteristics, the design of the tabu lists can reduce the search range of ACO and improve the algorithm efficiency significantly. The simulation results show that the proposed algorithm outperforms the conventional algorithm in terms of optimization performance, and it can obtain satisfactory scheduling results for the mission planning problem.

  11. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  12. A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search.

    PubMed

    Chang, Yuan-Jyun; Hwang, Wen-Jyi; Chen, Chih-Chang

    2016-12-07

    The goal of this paper is to present a novel VLSI architecture for spike sorting with high classification accuracy, low area costs and low power consumption. A novel feature extraction algorithm with low computational complexities is proposed for the design of the architecture. In the feature extraction algorithm, a spike is separated into two portions based on its peak value. The area of each portion is then used as a feature. The algorithm is simple to implement and less susceptible to noise interference. Based on the algorithm, a novel architecture capable of identifying peak values and computing spike areas concurrently is proposed. To further accelerate the computation, a spike can be divided into a number of segments for the local feature computation. The local features are subsequently merged with the global ones by a simple hardware circuit. The architecture can also be easily operated in conjunction with the circuits for commonly-used spike detection algorithms, such as the Non-linear Energy Operator (NEO). The architecture has been implemented by an Application-Specific Integrated Circuit (ASIC) with 90-nm technology. Comparisons to the existing works show that the proposed architecture is well suited for real-time multi-channel spike detection and feature extraction requiring low hardware area costs, low power consumption and high classification accuracy.

  13. Adaptive infinite impulse response system identification using modified-interior search algorithm with Lèvy flight.

    PubMed

    Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva

    2017-03-01

    In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Closed-loop control of artificial pancreatic Beta -cell in type 1 diabetes mellitus using model predictive iterative learning control.

    PubMed

    Wang, Youqing; Dassau, Eyal; Doyle, Francis J

    2010-02-01

    A novel combination of iterative learning control (ILC) and model predictive control (MPC), referred to here as model predictive iterative learning control (MPILC), is proposed for glycemic control in type 1 diabetes mellitus. MPILC exploits two key factors: frequent glucose readings made possible by continuous glucose monitoring technology; and the repetitive nature of glucose-meal-insulin dynamics with a 24-h cycle. The proposed algorithm can learn from an individual's lifestyle, allowing the control performance to be improved from day to day. After less than 10 days, the blood glucose concentrations can be kept within a range of 90-170 mg/dL. Generally, control performance under MPILC is better than that under MPC. The proposed methodology is robust to random variations in meal timings within +/-60 min or meal amounts within +/-75% of the nominal value, which validates MPILC's superior robustness compared to run-to-run control. Moreover, to further improve the algorithm's robustness, an automatic scheme for setpoint update that ensures safe convergence is proposed. Furthermore, the proposed method does not require user intervention; hence, the algorithm should be of particular interest for glycemic control in children and adolescents.

  15. Dynamic Appliances Scheduling in Collaborative MicroGrids System

    PubMed Central

    Bilil, Hasnae; Aniba, Ghassane; Gharavi, Hamid

    2017-01-01

    In this paper a new approach which is based on a collaborative system of MicroGrids (MG’s), is proposed to enable household appliance scheduling. To achieve this, appliances are categorized into flexible and non-flexible Deferrable Loads (DL’s), according to their electrical components. We propose a dynamic scheduling algorithm where users can systematically manage the operation of their electric appliances. The main challenge is to develop a flattening function calculus (reshaping) for both flexible and non-flexible DL’s. In addition, implementation of the proposed algorithm would require dynamically analyzing two successive multi-objective optimization (MOO) problems. The first targets the activation schedule of non-flexible DL’s and the second deals with the power profiles of flexible DL’s. The MOO problems are resolved by using a fast and elitist multi-objective genetic algorithm (NSGA-II). Finally, in order to show the efficiency of the proposed approach, a case study of a collaborative system that consists of 40 MG’s registered in the load curve for the flattening program has been developed. The results verify that the load curve can indeed become very flat by applying the proposed scheduling approach. PMID:28824226

  16. Artificial evolution by viability rather than competition.

    PubMed

    Maesani, Andrea; Fernando, Pradeep Ruben; Floreano, Dario

    2014-01-01

    Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.

  17. Recurrent procedure for constructing nonisotropic matrix elements of the collision integral of the nonlinear Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Ender, I. A.; Bakaleinikov, L. A.; Flegontova, E. Yu.; Gerasimenko, A. B.

    2017-08-01

    We have proposed an algorithm for the sequential construction of nonisotropic matrix elements of the collision integral, which are required to solve the nonlinear Boltzmann equation using the moments method. The starting elements of the matrix are isotropic and assumed to be known. The algorithm can be used for an arbitrary law of interactions for any ratio of the masses of colliding particles.

  18. A novel approach for incremental uncertainty rule generation from databases with missing values handling: application to dynamic medical databases.

    PubMed

    Konias, Sokratis; Chouvarda, Ioanna; Vlahavas, Ioannis; Maglaveras, Nicos

    2005-09-01

    Current approaches for mining association rules usually assume that the mining is performed in a static database, where the problem of missing attribute values does not practically exist. However, these assumptions are not preserved in some medical databases, like in a home care system. In this paper, a novel uncertainty rule algorithm is illustrated, namely URG-2 (Uncertainty Rule Generator), which addresses the problem of mining dynamic databases containing missing values. This algorithm requires only one pass from the initial dataset in order to generate the item set, while new metrics corresponding to the notion of Support and Confidence are used. URG-2 was evaluated over two medical databases, introducing randomly multiple missing values for each record's attribute (rate: 5-20% by 5% increments) in the initial dataset. Compared with the classical approach (records with missing values are ignored), the proposed algorithm was more robust in mining rules from datasets containing missing values. In all cases, the difference in preserving the initial rules ranged between 30% and 60% in favour of URG-2. Moreover, due to its incremental nature, URG-2 saved over 90% of the time required for thorough re-mining. Thus, the proposed algorithm can offer a preferable solution for mining in dynamic relational databases.

  19. Diverse task scheduling for individualized requirements in cloud manufacturing

    NASA Astrophysics Data System (ADS)

    Zhou, Longfei; Zhang, Lin; Zhao, Chun; Laili, Yuanjun; Xu, Lida

    2018-03-01

    Cloud manufacturing (CMfg) has emerged as a new manufacturing paradigm that provides ubiquitous, on-demand manufacturing services to customers through network and CMfg platforms. In CMfg system, task scheduling as an important means of finding suitable services for specific manufacturing tasks plays a key role in enhancing the system performance. Customers' requirements in CMfg are highly individualized, which leads to diverse manufacturing tasks in terms of execution flows and users' preferences. We focus on diverse manufacturing tasks and aim to address their scheduling issue in CMfg. First of all, a mathematical model of task scheduling is built based on analysis of the scheduling process in CMfg. To solve this scheduling problem, we propose a scheduling method aiming for diverse tasks, which enables each service demander to obtain desired manufacturing services. The candidate service sets are generated according to subtask directed graphs. An improved genetic algorithm is applied to searching for optimal task scheduling solutions. The effectiveness of the scheduling method proposed is verified by a case study with individualized customers' requirements. The results indicate that the proposed task scheduling method is able to achieve better performance than some usual algorithms such as simulated annealing and pattern search.

  20. Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudheer, C. D.; Krishnan, S.; Srinivasan, A.

    Diffusion Monte Carlo is the most accurate widely used Quantum Monte Carlo method for the electronic structure of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency and avoid accumulation of systematic errors on parallel machines. The load balancing step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receivingmore » at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL showing up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that requires load balancing.« less

  1. a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight

    NASA Astrophysics Data System (ADS)

    Yao, C.; Peng, G.; Song, Y.; Duan, M.

    2017-09-01

    The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.

  2. Generalized SMO algorithm for SVM-based multitask learning.

    PubMed

    Cai, Feng; Cherkassky, Vladimir

    2012-06-01

    Exploiting additional information to improve traditional inductive learning is an active research area in machine learning. In many supervised-learning applications, training data can be naturally separated into several groups, and incorporating this group information into learning may improve generalization. Recently, Vapnik proposed a general approach to formalizing such problems, known as "learning with structured data" and its support vector machine (SVM) based optimization formulation called SVM+. Liang and Cherkassky showed the connection between SVM+ and multitask learning (MTL) approaches in machine learning, and proposed an SVM-based formulation for MTL called SVM+MTL for classification. Training the SVM+MTL classifier requires the solution of a large quadratic programming optimization problem which scales as O(n(3)) with sample size n. So there is a need to develop computationally efficient algorithms for implementing SVM+MTL. This brief generalizes Platt's sequential minimal optimization (SMO) algorithm to the SVM+MTL setting. Empirical results show that, for typical SVM+MTL problems, the proposed generalized SMO achieves over 100 times speed-up, in comparison with general-purpose optimization routines.

  3. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    PubMed

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  4. Kidney-inspired algorithm for optimization problems

    NASA Astrophysics Data System (ADS)

    Jaddi, Najmeh Sadat; Alvankarian, Jafar; Abdullah, Salwani

    2017-01-01

    In this paper, a population-based algorithm inspired by the kidney process in the human body is proposed. In this algorithm the solutions are filtered in a rate that is calculated based on the mean of objective functions of all solutions in the current population of each iteration. The filtered solutions as the better solutions are moved to filtered blood and the rest are transferred to waste representing the worse solutions. This is a simulation of the glomerular filtration process in the kidney. The waste solutions are reconsidered in the iterations if after applying a defined movement operator they satisfy the filtration rate, otherwise it is expelled from the waste solutions, simulating the reabsorption and excretion functions of the kidney. In addition, a solution assigned as better solution is secreted if it is not better than the worst solutions simulating the secreting process of blood in the kidney. After placement of all the solutions in the population, the best of them is ranked, the waste and filtered blood are merged to become a new population and the filtration rate is updated. Filtration provides the required exploitation while generating a new solution and reabsorption gives the necessary exploration for the algorithm. The algorithm is assessed by applying it on eight well-known benchmark test functions and compares the results with other algorithms in the literature. The performance of the proposed algorithm is better on seven out of eight test functions when it is compared with the most recent researches in literature. The proposed kidney-inspired algorithm is able to find the global optimum with less function evaluations on six out of eight test functions. A statistical analysis further confirms the ability of this algorithm to produce good-quality results.

  5. Fuzzy Naive Bayesian model for medical diagnostic decision support.

    PubMed

    Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W

    2009-01-01

    This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.

  6. Study on the Algorithm of Judgment Matrix in Analytic Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyong; Qin, Futong; Jin, Yican

    2017-10-01

    A new algorithm is proposed for the non-consistent judgment matrix in AHP. A primary judgment matrix is generated firstly through pre-ordering the targeted factor set, and a compared matrix is built through the top integral function. Then a relative error matrix is created by comparing the compared matrix with the primary judgment matrix which is regulated under the control of the relative error matrix and the dissimilar degree of the matrix step by step. Lastly, the targeted judgment matrix is generated to satisfy the requirement of consistence and the least dissimilar degree. The feasibility and validity of the proposed method are verified by simulation results.

  7. A Selfish Constraint Satisfaction Genetic Algorithms for Planning a Long-Distance Transportation Network

    NASA Astrophysics Data System (ADS)

    Onoyama, Takashi; Maekawa, Takuya; Kubota, Sen; Tsuruta, Setuso; Komoda, Norihisa

    To build a cooperative logistics network covering multiple enterprises, a planning method that can build a long-distance transportation network is required. Many strict constraints are imposed on this type of problem. To solve these strict-constraint problems, a selfish constraint satisfaction genetic algorithm (GA) is proposed. In this GA, each gene of an individual satisfies only its constraint selfishly, disregarding the constraints of other genes in the same individuals. Moreover, a constraint pre-checking method is also applied to improve the GA convergence speed. The experimental result shows the proposed method can obtain an accurate solution in a practical response time.

  8. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations

    PubMed Central

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J. Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types. PMID:27472383

  9. A highly accurate symmetric optical flow based high-dimensional nonlinear spatial normalization of brain images.

    PubMed

    Wen, Ying; Hou, Lili; He, Lianghua; Peterson, Bradley S; Xu, Dongrong

    2015-05-01

    Spatial normalization plays a key role in voxel-based analyses of brain images. We propose a highly accurate algorithm for high-dimensional spatial normalization of brain images based on the technique of symmetric optical flow. We first construct a three dimension optical model with the consistency assumption of intensity and consistency of the gradient of intensity under a constraint of discontinuity-preserving spatio-temporal smoothness. Then, an efficient inverse consistency optical flow is proposed with aims of higher registration accuracy, where the flow is naturally symmetric. By employing a hierarchical strategy ranging from coarse to fine scales of resolution and a method of Euler-Lagrange numerical analysis, our algorithm is capable of registering brain images data. Experiments using both simulated and real datasets demonstrated that the accuracy of our algorithm is not only better than that of those traditional optical flow algorithms, but also comparable to other registration methods used extensively in the medical imaging community. Moreover, our registration algorithm is fully automated, requiring a very limited number of parameters and no manual intervention. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method

    PubMed Central

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-01-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity. PMID:28468308

  11. An Incremental High-Utility Mining Algorithm with Transaction Insertion

    PubMed Central

    Gan, Wensheng; Zhang, Binbin

    2015-01-01

    Association-rule mining is commonly used to discover useful and meaningful patterns from a very large database. It only considers the occurrence frequencies of items to reveal the relationships among itemsets. Traditional association-rule mining is, however, not suitable in real-world applications since the purchased items from a customer may have various factors, such as profit or quantity. High-utility mining was designed to solve the limitations of association-rule mining by considering both the quantity and profit measures. Most algorithms of high-utility mining are designed to handle the static database. Fewer researches handle the dynamic high-utility mining with transaction insertion, thus requiring the computations of database rescan and combination explosion of pattern-growth mechanism. In this paper, an efficient incremental algorithm with transaction insertion is designed to reduce computations without candidate generation based on the utility-list structures. The enumeration tree and the relationships between 2-itemsets are also adopted in the proposed algorithm to speed up the computations. Several experiments are conducted to show the performance of the proposed algorithm in terms of runtime, memory consumption, and number of generated patterns. PMID:25811038

  12. Designing Waveform Sets with Good Correlation and Stopband Properties for MIMO Radar via the Gradient-Based Method.

    PubMed

    Tang, Liang; Zhu, Yongfeng; Fu, Qiang

    2017-05-01

    Waveform sets with good correlation and/or stopband properties have received extensive attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim at designing unimodular waveform sets with good correlation and stopband properties. To formulate the problem, we construct two criteria to measure the correlation and stopband properties and then establish an unconstrained problem in the frequency domain. After deducing the phase gradient and the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the objective function directly. For the design problem without considering the correlation weights, we develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations and is more efficient. Because both of the algorithms can be implemented via the FFT operations and the Hadamard product, they are computationally efficient and can be used to design waveform sets with a large waveform number and waveform length. Numerical experiments show that the proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of the computational complexity.

  13. Application-oriented offloading in heterogeneous networks for mobile cloud computing

    NASA Astrophysics Data System (ADS)

    Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.

    2018-04-01

    Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.

  14. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations.

    PubMed

    Feng, Fei; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Chen, Jiquan; Zhao, Xiang; Jia, Kun; Pintér, Krisztina; McCaughey, J Harry

    2016-01-01

    Accurate estimation of latent heat flux (LE) based on remote sensing data is critical in characterizing terrestrial ecosystems and modeling land surface processes. Many LE products were released during the past few decades, but their quality might not meet the requirements in terms of data consistency and estimation accuracy. Merging multiple algorithms could be an effective way to improve the quality of existing LE products. In this paper, we present a data integration method based on modified empirical orthogonal function (EOF) analysis to integrate the Moderate Resolution Imaging Spectroradiometer (MODIS) LE product (MOD16) and the Priestley-Taylor LE algorithm of Jet Propulsion Laboratory (PT-JPL) estimate. Twenty-two eddy covariance (EC) sites with LE observation were chosen to evaluate our algorithm, showing that the proposed EOF fusion method was capable of integrating the two satellite data sets with improved consistency and reduced uncertainties. Further efforts were needed to evaluate and improve the proposed algorithm at larger spatial scales and time periods, and over different land cover types.

  15. Angle Statistics Reconstruction: a robust reconstruction algorithm for Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Stapleton, M.; Burns, J.; Quillin, S.; Steer, C.

    2014-11-01

    Muon Scattering Tomography (MST) is a technique for using the scattering of cosmic ray muons to probe the contents of enclosed volumes. As a muon passes through material it undergoes multiple Coulomb scattering, where the amount of scattering is dependent on the density and atomic number of the material as well as the path length. Hence, MST has been proposed as a means of imaging dense materials, for instance to detect special nuclear material in cargo containers. Algorithms are required to generate an accurate reconstruction of the material density inside the volume from the muon scattering information and some have already been proposed, most notably the Point of Closest Approach (PoCA) and Maximum Likelihood/Expectation Maximisation (MLEM) algorithms. However, whilst PoCA-based algorithms are easy to implement, they perform rather poorly in practice. Conversely, MLEM is a complicated algorithm to implement and computationally intensive and there is currently no published, fast and easily-implementable algorithm that performs well in practice. In this paper, we first provide a detailed analysis of the source of inaccuracy in PoCA-based algorithms. We then motivate an alternative method, based on ideas first laid out by Morris et al, presenting and fully specifying an algorithm that performs well against simulations of realistic scenarios. We argue this new algorithm should be adopted by developers of Muon Scattering Tomography as an alternative to PoCA.

  16. Speedup of minimum discontinuity phase unwrapping algorithm with a reference phase distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yihang; Han, Yu; Li, Fengjiao; Zhang, Qican

    2018-06-01

    In three-dimensional (3D) shape measurement based on phase analysis, the phase analysis process usually produces a wrapped phase map ranging from - π to π with some 2 π discontinuities, and thus a phase unwrapping algorithm is necessary to recover the continuous and nature phase map from which 3D height distribution can be restored. Usually, the minimum discontinuity phase unwrapping algorithm can be used to solve many different kinds of phase unwrapping problems, but its main drawback is that it requires a large amount of computations and has low efficiency in searching for the improving loop within the phase's discontinuity area. To overcome this drawback, an improvement to speedup of the minimum discontinuity phase unwrapping algorithm by using the phase distribution on reference plane is proposed. In this improved algorithm, before the minimum discontinuity phase unwrapping algorithm is carried out to unwrap phase, an integer number K was calculated from the ratio of the wrapped phase to the nature phase on a reference plane. And then the jump counts of the unwrapped phase can be reduced by adding 2K π, so the efficiency of the minimum discontinuity phase unwrapping algorithm is significantly improved. Both simulated and experimental data results verify the feasibility of the proposed improved algorithm, and both of them clearly show that the algorithm works very well and has high efficiency.

  17. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  18. Memory Management of Multimedia Services in Smart Homes

    NASA Astrophysics Data System (ADS)

    Kamel, Ibrahim; Muhaureq, Sanaa A.

    Nowadays there is a wide spectrum of applications that run in smart home environments. Consequently, home gateway, which is a central component in the smart home, must manage many applications despite limited memory resources. OSGi is a middleware standard for home gateways. OSGi models services as dependent components. Moreover, these applications might differ in their importance. Services collaborate and complement each other to achieve the required results. This paper addresses the following problem: given a home gateway that hosts several applications with different priorities and arbitrary dependencies among them. When the gateway runs out of memory, which application or service will be stopped or kicked out of memory to start a new service. Note that stopping a given service means that all the services that depend on it will be stopped too. Because of the service dependencies, traditional memory management techniques, in the operating system literatures might not be efficient. Our goal is to stop the least important and the least number of services. The paper presents a novel algorithm for home gateway memory management. The proposed algorithm takes into consideration the priority of the application and dependencies between different services, in addition to the amount of memory occupied by each service. We implement the proposed algorithm and performed many experiments to evaluate its performance and execution time. The proposed algorithm is implemented as a part of the OSGi framework (Open Service Gateway initiative). We used best fit and worst fit as yardstick to show the effectiveness of the proposed algorithm.

  19. A set-covering based heuristic algorithm for the periodic vehicle routing problem.

    PubMed

    Cacchiani, V; Hemmelmayr, V C; Tricoire, F

    2014-01-30

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems.

  20. A set-covering based heuristic algorithm for the periodic vehicle routing problem

    PubMed Central

    Cacchiani, V.; Hemmelmayr, V.C.; Tricoire, F.

    2014-01-01

    We present a hybrid optimization algorithm for mixed-integer linear programming, embedding both heuristic and exact components. In order to validate it we use the periodic vehicle routing problem (PVRP) as a case study. This problem consists of determining a set of minimum cost routes for each day of a given planning horizon, with the constraints that each customer must be visited a required number of times (chosen among a set of valid day combinations), must receive every time the required quantity of product, and that the number of routes per day (each respecting the capacity of the vehicle) does not exceed the total number of available vehicles. This is a generalization of the well-known vehicle routing problem (VRP). Our algorithm is based on the linear programming (LP) relaxation of a set-covering-like integer linear programming formulation of the problem, with additional constraints. The LP-relaxation is solved by column generation, where columns are generated heuristically by an iterated local search algorithm. The whole solution method takes advantage of the LP-solution and applies techniques of fixing and releasing of the columns as a local search, making use of a tabu list to avoid cycling. We show the results of the proposed algorithm on benchmark instances from the literature and compare them to the state-of-the-art algorithms, showing the effectiveness of our approach in producing good quality solutions. In addition, we report the results on realistic instances of the PVRP introduced in Pacheco et al. (2011)  [24] and on benchmark instances of the periodic traveling salesman problem (PTSP), showing the efficacy of the proposed algorithm on these as well. Finally, we report the new best known solutions found for all the tested problems. PMID:24748696

  1. Evolutionary Approach for Relative Gene Expression Algorithms

    PubMed Central

    Czajkowski, Marcin

    2014-01-01

    A Relative Expression Analysis (RXA) uses ordering relationships in a small collection of genes and is successfully applied to classiffication using microarray data. As checking all possible subsets of genes is computationally infeasible, the RXA algorithms require feature selection and multiple restrictive assumptions. Our main contribution is a specialized evolutionary algorithm (EA) for top-scoring pairs called EvoTSP which allows finding more advanced gene relations. We managed to unify the major variants of relative expression algorithms through EA and introduce weights to the top-scoring pairs. Experimental validation of EvoTSP on public available microarray datasets showed that the proposed solution significantly outperforms in terms of accuracy other relative expression algorithms and allows exploring much larger solution space. PMID:24790574

  2. System engineering approach to GPM retrieval algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, C. R.; Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Groundmore » validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do calculated at each bin, the rain rate can then be calculated based on a suitable rain-rate model. This paper develops a system engineering interface to the retrieval algorithms while remaining cognizant of system engineering issues so that it can be used to bridge the divide between algorithm physics an d overall mission requirements. Additionally, in line with the systems approach, a methodology is developed such that the measurement requirements pass through the retrieval model and other subsystems and manifest themselves as measurement and other system constraints. A systems model has been developed for the retrieval algorithm that can be evaluated through system-analysis tools such as MATLAB/Simulink.« less

  3. Fast parallel MR image reconstruction via B1-based, adaptive restart, iterative soft thresholding algorithms (BARISTA).

    PubMed

    Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A

    2015-02-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.

  4. Fast Parallel MR Image Reconstruction via B1-based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA)

    PubMed Central

    Noll, Douglas C.; Fessler, Jeffrey A.

    2014-01-01

    Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484

  5. Forward collision warning based on kernelized correlation filters

    NASA Astrophysics Data System (ADS)

    Pu, Jinchuan; Liu, Jun; Zhao, Yong

    2017-07-01

    A vehicle detection and tracking system is one of the indispensable methods to reduce the occurrence of traffic accidents. The nearest vehicle is the most likely to cause harm to us. So, this paper will do more research on about the nearest vehicle in the region of interest (ROI). For this system, high accuracy, real-time and intelligence are the basic requirement. In this paper, we set up a system that combines the advanced KCF tracking algorithm with the HaarAdaBoost detection algorithm. The KCF algorithm reduces computation time and increase the speed through the cyclic shift and diagonalization. This algorithm satisfies the real-time requirement. At the same time, Haar features also have the same advantage of simple operation and high speed for detection. The combination of this two algorithm contribute to an obvious improvement of the system running rate comparing with previous works. The detection result of the HaarAdaBoost classifier provides the initial value for the KCF algorithm. This fact optimizes KCF algorithm flaws that manual car marking in the initial phase, which is more scientific and more intelligent. Haar detection and KCF tracking with Histogram of Oriented Gradient (HOG) ensures the accuracy of the system. We evaluate the performance of framework on dataset that were self-collected. The experimental results demonstrate that the proposed method is robust and real-time. The algorithm can effectively adapt to illumination variation, even in the night it can meet the detection and tracking requirements, which is an improvement compared with the previous work.

  6. Pattern optimization of compound optical film for uniformity improvement in liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Huang, Bing-Le; Lin, Jin-tang; Ye, Yun; Xu, Sheng; Chen, En-guo; Guo, Tai-Liang

    2017-12-01

    The density dynamic adjustment algorithm (DDAA) is designed to efficiently promote the uniformity of the integrated backlight module (IBLM) by adjusting the microstructures' distribution on the compound optical film (COF), in which the COF is constructed in the SolidWorks and simulated in the TracePro. In order to demonstrate the universality of the proposed algorithm, the initial distribution is allocated by the Bezier curve instead of an empirical value. Simulation results maintains that the uniformity of the IBLM reaches over 90% only after four rounds. Moreover, the vertical and horizontal full width at half maximum of angular intensity are collimated to 24 deg and 14 deg, respectively. Compared with the current industry requirement, the IBLM has an 85% higher luminance uniformity of the emerging light, which demonstrate the feasibility and universality of the proposed algorithm.

  7. Path Planning Algorithms for Autonomous Border Patrol Vehicles

    NASA Astrophysics Data System (ADS)

    Lau, George Tin Lam

    This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.

  8. Multidimensional Optimization of Signal Space Distance Parameters in WLAN Positioning

    PubMed Central

    Brković, Milenko; Simić, Mirjana

    2014-01-01

    Accurate indoor localization of mobile users is one of the challenging problems of the last decade. Besides delivering high speed Internet, Wireless Local Area Network (WLAN) can be used as an effective indoor positioning system, being competitive both in terms of accuracy and cost. Among the localization algorithms, nearest neighbor fingerprinting algorithms based on Received Signal Strength (RSS) parameter have been extensively studied as an inexpensive solution for delivering indoor Location Based Services (LBS). In this paper, we propose the optimization of the signal space distance parameters in order to improve precision of WLAN indoor positioning, based on nearest neighbor fingerprinting algorithms. Experiments in a real WLAN environment indicate that proposed optimization leads to substantial improvements of the localization accuracy. Our approach is conceptually simple, is easy to implement, and does not require any additional hardware. PMID:24757443

  9. Harmony search optimization algorithm for a novel transportation problem in a consolidation network

    NASA Astrophysics Data System (ADS)

    Davod Hosseini, Seyed; Akbarpour Shirazi, Mohsen; Taghi Fatemi Ghomi, Seyed Mohammad

    2014-11-01

    This article presents a new harmony search optimization algorithm to solve a novel integer programming model developed for a consolidation network. In this network, a set of vehicles is used to transport goods from suppliers to their corresponding customers via two transportation systems: direct shipment and milk run logistics. The objective of this problem is to minimize the total shipping cost in the network, so it tries to reduce the number of required vehicles using an efficient vehicle routing strategy in the solution approach. Solving several numerical examples confirms that the proposed solution approach based on the harmony search algorithm performs much better than CPLEX in reducing both the shipping cost in the network and computational time requirement, especially for realistic size problem instances.

  10. Past, present and future of spike sorting techniques.

    PubMed

    Rey, Hernan Gonzalo; Pedreira, Carlos; Quian Quiroga, Rodrigo

    2015-10-01

    Spike sorting is a crucial step to extract information from extracellular recordings. With new recording opportunities provided by the development of new electrodes that allow monitoring hundreds of neurons simultaneously, the scenario for the new generation of algorithms is both exciting and challenging. However, this will require a new approach to the problem and the development of a common reference framework to quickly assess the performance of new algorithms. In this work, we review the basic concepts of spike sorting, including the requirements for different applications, together with the problems faced by presently available algorithms. We conclude by proposing a roadmap stressing the crucial points to be addressed to support the neuroscientific research of the near future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Gradient Evolution-based Support Vector Machine Algorithm for Classification

    NASA Astrophysics Data System (ADS)

    Zulvia, Ferani E.; Kuo, R. J.

    2018-03-01

    This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.

  12. A Subcarrier-Pair Based Resource Allocation Scheme Using Proportional Fairness for Cooperative OFDM-Based Cognitive Radio Networks

    PubMed Central

    Ma, Yongtao; Zhou, Liuji; Liu, Kaihua

    2013-01-01

    The paper presents a joint subcarrier-pair based resource allocation algorithm in order to improve the efficiency and fairness of cooperative multiuser orthogonal frequency division multiplexing (MU-OFDM) cognitive radio (CR) systems. A communication model where one source node communicates with one destination node assisted by one half-duplex decode-and-forward (DF) relay is considered in the paper. An interference-limited environment is considered, with the constraint of transmitted sum-power over all channels and aggregate average interference towards multiple primary users (PUs). The proposed resource allocation algorithm is capable of maximizing both the system transmission efficiency and fairness among secondary users (SUs). Besides, the proposed algorithm can also keep the interference introduced to the PU bands below a threshold. A proportional fairness constraint is used to assure that each SU can achieve a required data rate, with quality of service guarantees. Moreover, we extend the analysis to the scenario where each cooperative SU has no channel state information (CSI) about non-adjacent links. We analyzed the throughput and fairness tradeoff in CR system. A detailed analysis of the performance of the proposed algorithm is presented with the simulation results. PMID:23939586

  13. A Novel Wide-Area Backup Protection Based on Fault Component Current Distribution and Improved Evidence Theory

    PubMed Central

    Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun

    2014-01-01

    In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance. PMID:25050399

  14. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.

    PubMed

    Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.

  15. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.

    PubMed

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-05-28

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  16. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem

    PubMed Central

    Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849

  17. Sparse array angle estimation using reduced-dimension ESPRIT-MUSIC in MIMO radar.

    PubMed

    Zhang, Chaozhu; Pang, Yucai

    2013-01-01

    Sparse linear arrays provide better performance than the filled linear arrays in terms of angle estimation and resolution with reduced size and low cost. However, they are subject to manifold ambiguity. In this paper, both the transmit array and receive array are sparse linear arrays in the bistatic MIMO radar. Firstly, we present an ESPRIT-MUSIC method in which ESPRIT algorithm is used to obtain ambiguous angle estimates. The disambiguation algorithm uses MUSIC-based procedure to identify the true direction cosine estimate from a set of ambiguous candidate estimates. The paired transmit angle and receive angle can be estimated and the manifold ambiguity can be solved. However, the proposed algorithm has high computational complexity due to the requirement of two-dimension search. Further, the Reduced-Dimension ESPRIT-MUSIC (RD-ESPRIT-MUSIC) is proposed to reduce the complexity of the algorithm. And the RD-ESPRIT-MUSIC only demands one-dimension search. Simulation results demonstrate the effectiveness of the method.

  18. A combined finite element-boundary integral formulation for solution of two-dimensional scattering problems via CGFFT. [Conjugate Gradient Fast Fourier Transformation

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming

    1990-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  19. A combined finite element and boundary integral formulation for solution via CGFFT of 2-dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Collins, Jeffery D.; Volakis, John L.

    1989-01-01

    A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principle advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.

  20. Cache and energy efficient algorithms for Nussinov's RNA Folding.

    PubMed

    Zhao, Chunchun; Sahni, Sartaj

    2017-12-06

    An RNA folding/RNA secondary structure prediction algorithm determines the non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the energy. Several implementations of Nussinov's classical RNA folding algorithm have been proposed. Our focus is to obtain run time and energy efficiency by reducing the number of cache misses. Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov's RNA folding are developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this order). Extensive experiments conducted on four computational platforms-Xeon E5, AMD Athlon 64 X2, Intel I7 and PowerPC A2-using two programming languages-C and Java-show that our cache efficient algorithms are also efficient in terms of run time and energy. Our benchmarking shows that, depending on the computational platform and programming language, either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and 57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems up to 40% larger than those solvable by Transpose.

  1. Majorana-Based Fermionic Quantum Computation.

    PubMed

    O'Brien, T E; Rożek, P; Akhmerov, A R

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  2. Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding

    NASA Astrophysics Data System (ADS)

    Dung, Lan-Rong; Lin, Meng-Chun

    This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.

  3. Majorana-Based Fermionic Quantum Computation

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  4. Distributed Task Offloading in Heterogeneous Vehicular Crowd Sensing

    PubMed Central

    Liu, Yazhi; Wang, Wendong; Ma, Yuekun; Yang, Zhigang; Yu, Fuxing

    2016-01-01

    The ability of road vehicles to efficiently execute different sensing tasks varies because of the heterogeneity in their sensing ability and trajectories. Therefore, the data collection sensing task, which requires tempo-spatial sensing data, becomes a serious problem in vehicular sensing systems, particularly those with limited sensing capabilities. A utility-based sensing task decomposition and offloading algorithm is proposed in this paper. The utility function for a task executed by a certain vehicle is built according to the mobility traces and sensing interfaces of the vehicle, as well as the sensing data type and tempo-spatial coverage requirements of the sensing task. Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities of the neighboring vehicles to the decomposed sensing tasks. Real trace-driven simulation shows that the proposed task offloading is able to collect much more comprehensive and uniformly distributed sensing data than other algorithms. PMID:27428967

  5. Near-Field Source Localization by Using Focusing Technique

    NASA Astrophysics Data System (ADS)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  6. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  7. Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms.

    PubMed

    Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza

    2012-05-01

    Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

    NASA Astrophysics Data System (ADS)

    Zerari, Abd El Mouméne; Babahenini, Mohamed Chaouki

    2018-03-01

    We propose a new approximation technique for accelerating the Global Illumination algorithm for real-time rendering. The proposed approach is based on the Screen-Space Ambient Occlusion (SSAO) method, which approximates the global illumination for large, fully dynamic scenes at interactive frame rates. Current algorithms that are based on the SSAO method suffer from difficulties due to the large number of samples that are required. In this paper, we propose an improvement to the SSAO technique by integrating it with a Multiple Importance Sampling technique that combines a stratified sampling method with an importance sampling method, with the objective of reducing the number of samples. Experimental evaluation demonstrates that our technique can produce high-quality images in real time and is significantly faster than traditional techniques.

  9. Limited angle CT reconstruction by simultaneous spatial and Radon domain regularization based on TV and data-driven tight frame

    NASA Astrophysics Data System (ADS)

    Zhang, Wenkun; Zhang, Hanming; Wang, Linyuan; Cai, Ailong; Li, Lei; Yan, Bin

    2018-02-01

    Limited angle computed tomography (CT) reconstruction is widely performed in medical diagnosis and industrial testing because of the size of objects, engine/armor inspection requirements, and limited scan flexibility. Limited angle reconstruction necessitates usage of optimization-based methods that utilize additional sparse priors. However, most of conventional methods solely exploit sparsity priors of spatial domains. When CT projection suffers from serious data deficiency or various noises, obtaining reconstruction images that meet the requirement of quality becomes difficult and challenging. To solve this problem, this paper developed an adaptive reconstruction method for limited angle CT problem. The proposed method simultaneously uses spatial and Radon domain regularization model based on total variation (TV) and data-driven tight frame. Data-driven tight frame being derived from wavelet transformation aims at exploiting sparsity priors of sinogram in Radon domain. Unlike existing works that utilize pre-constructed sparse transformation, the framelets of the data-driven regularization model can be adaptively learned from the latest projection data in the process of iterative reconstruction to provide optimal sparse approximations for given sinogram. At the same time, an effective alternating direction method is designed to solve the simultaneous spatial and Radon domain regularization model. The experiments for both simulation and real data demonstrate that the proposed algorithm shows better performance in artifacts depression and details preservation than the algorithms solely using regularization model of spatial domain. Quantitative evaluations for the results also indicate that the proposed algorithm applying learning strategy performs better than the dual domains algorithms without learning regularization model

  10. What does fault tolerant Deep Learning need from MPI?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amatya, Vinay C.; Vishnu, Abhinav; Siegel, Charles M.

    Deep Learning (DL) algorithms have become the {\\em de facto} Machine Learning (ML) algorithm for large scale data analysis. DL algorithms are computationally expensive -- even distributed DL implementations which use MPI require days of training (model learning) time on commonly studied datasets. Long running DL applications become susceptible to faults -- requiring development of a fault tolerant system infrastructure, in addition to fault tolerant DL algorithms. This raises an important question: {\\em What is needed from MPI for designing fault tolerant DL implementations?} In this paper, we address this problem for permanent faults. We motivate the need for amore » fault tolerant MPI specification by an in-depth consideration of recent innovations in DL algorithms and their properties, which drive the need for specific fault tolerance features. We present an in-depth discussion on the suitability of different parallelism types (model, data and hybrid); a need (or lack thereof) for check-pointing of any critical data structures; and most importantly, consideration for several fault tolerance proposals (user-level fault mitigation (ULFM), Reinit) in MPI and their applicability to fault tolerant DL implementations. We leverage a distributed memory implementation of Caffe, currently available under the Machine Learning Toolkit for Extreme Scale (MaTEx). We implement our approaches by extending MaTEx-Caffe for using ULFM-based implementation. Our evaluation using the ImageNet dataset and AlexNet neural network topology demonstrates the effectiveness of the proposed fault tolerant DL implementation using OpenMPI based ULFM.« less

  11. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems

    PubMed Central

    Idris, Hajara; Junaidu, Sahalu B.; Adewumi, Aderemi O.

    2017-01-01

    The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user’s Quality of Service (QoS) requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO) algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user’s QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time. PMID:28545075

  12. Wireless Relay Selection in Pocket Switched Networks Based on Spatial Regularity of Human Mobility †

    PubMed Central

    Huang, Jianhui; Cheng, Xiuzhen; Bi, Jingping; Chen, Biao

    2016-01-01

    Pocket switched networks (PSNs) take advantage of human mobility to deliver data. Investigations on real-world trace data indicate that human mobility shows an obvious spatial regularity: a human being usually visits a few places at high frequencies. These most frequently visited places form the home of a node, which is exploited in this paper to design two HomE based Relay selectiOn (HERO) algorithms. Both algorithms input single data copy into the network at any time. In the basic HERO, only the first node encountered by the source and whose home overlaps a destination’s home is selected as a relay while the enhanced HERO keeps finding more optimal relay that visits the destination’s home with higher probability. The two proposed algorithms only require the relays to exchange the information of their home and/or the visiting frequencies to their home when two nodes meet. As a result, the information update is reduced and there is no global status information that needs to be maintained. This causes light loads on relays because of the low communication cost and storage requirements. Additionally, only simple operations are needed in the two proposed algorithms, resulting in little computation overhead at relays. At last, a theoretical analysis is performed on some key metrics and then the real-world based simulations indicate that the two HERO algorithms are efficient and effective through employing only one or a few relays. PMID:26797609

  13. Coverage Extension and Balancing the Transmitted Power of the Moving Relay Node at LTE-A Cellular Network

    PubMed Central

    Aldhaibani, Jaafar A.; Yahya, Abid; Ahmad, R. Badlishah

    2014-01-01

    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain. PMID:24672378

  14. Coverage extension and balancing the transmitted power of the moving relay node at LTE-A cellular network.

    PubMed

    Aldhaibani, Jaafar A; Yahya, Abid; Ahmad, R Badlishah

    2014-01-01

    The poor capacity at cell boundaries is not enough to meet the growing demand and stringent design which required high capacity and throughput irrespective of user's location in the cellular network. In this paper, we propose new schemes for an optimum fixed relay node (RN) placement in LTE-A cellular network to enhance throughput and coverage extension at cell edge region. The proposed approach mitigates interferences between all nodes and ensures optimum utilization with the optimization of transmitted power. Moreover, we proposed a new algorithm to balance the transmitted power of moving relay node (MR) over cell size and providing required SNR and throughput at the users inside vehicle along with reducing the transmitted power consumption by MR. The numerical analysis along with the simulation results indicates that an improvement in capacity for users is 40% increment at downlink transmission from cell capacity. Furthermore, the results revealed that there is saving nearly 75% from transmitted power in MR after using proposed balancing algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.

  15. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm

    PubMed Central

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-01-01

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974

  16. Distributed Synchronization Technique for OFDMA-Based Wireless Mesh Networks Using a Bio-Inspired Algorithm.

    PubMed

    Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo

    2015-07-28

    In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.

  17. A new modulated Hebbian learning rule--biologically plausible method for local computation of a principal subspace.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2003-08-01

    This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too.

  18. A novel hybrid meta-heuristic technique applied to the well-known benchmark optimization problems

    NASA Astrophysics Data System (ADS)

    Abtahi, Amir-Reza; Bijari, Afsane

    2017-03-01

    In this paper, a hybrid meta-heuristic algorithm, based on imperialistic competition algorithm (ICA), harmony search (HS), and simulated annealing (SA) is presented. The body of the proposed hybrid algorithm is based on ICA. The proposed hybrid algorithm inherits the advantages of the process of harmony creation in HS algorithm to improve the exploitation phase of the ICA algorithm. In addition, the proposed hybrid algorithm uses SA to make a balance between exploration and exploitation phases. The proposed hybrid algorithm is compared with several meta-heuristic methods, including genetic algorithm (GA), HS, and ICA on several well-known benchmark instances. The comprehensive experiments and statistical analysis on standard benchmark functions certify the superiority of the proposed method over the other algorithms. The efficacy of the proposed hybrid algorithm is promising and can be used in several real-life engineering and management problems.

  19. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    PubMed

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  20. A new precoding scheme for spectral efficient optical OFDM systems

    NASA Astrophysics Data System (ADS)

    Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah

    2018-07-01

    Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.

  1. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Gutknecht, Martin H.; Nachtigal, Noel M.

    1991-01-01

    The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. An implementation is presented of a look-ahead version of the Lanczos algorithm that, except for the very special situation of an incurable breakdown, overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector products and inner products as the standard Lanczos process without look-ahead.

  2. Pervasive access to MRI bias artifact suppression service on a grid.

    PubMed

    Ardizzone, Edoardo; Gambino, Orazio; Genco, Alessandro; Pirrone, Roberto; Sorce, Salvatore

    2009-01-01

    Bias artifact corrupts MRIs in such a way that the image is afflicted by illumination variations. Some of the authors proposed the exponential entropy-driven homomorphic unsharp masking ( E(2)D-HUM) algorithm that corrects this artifact without any a priori hypothesis about the tissues or the MRI modality. Moreover, E(2)D-HUM does not care about the body part under examination and does not require any particular training task. People who want to use this algorithm, which is Matlab-based, have to set their own computers in order to execute it. Furthermore, they have to be Matlab-skilled to exploit all the features of the algorithm. In this paper, we propose to make such algorithm available as a service on a grid infrastructure, so that people can use it almost from everywhere, in a pervasive fashion, by means of a suitable user interface running on smartphones. The proposed solution allows physicians to use the E(2)D-HUM algorithm (or any other kind of algorithm, given that it is available as a service on the grid), being it remotely executed somewhere in the grid, and the results are sent back to the user's device. This way, physicians do not need to be aware of how to use Matlab to process their images. The pervasive service provision for medical image enhancement is presented, along with some experimental results obtained using smartphones connected to an existing Globus-based grid infrastructure.

  3. Blind color isolation for color-channel-based fringe pattern profilometry using digital projection

    NASA Astrophysics Data System (ADS)

    Hu, Yingsong; Xi, Jiangtao; Chicharo, Joe; Yang, Zongkai

    2007-08-01

    We present an algorithm for estimating the color demixing matrix based on the color fringe patterns captured from the reference plane or the surface of the object. The advantage of this algorithm is that it is a blind approach to calculating the demixing matrix in the sense that no extra images are required for color calibration before performing profile measurement. Simulation and experimental results convince us that the proposed algorithm can significantly reduce the influence of the color cross talk and at the same time improve the measurement accuracy of the color-channel-based phase-shifting profilometry.

  4. Investigation of the optimum location of external markers for patient setup accuracy enhancement at external beam radiotherapy

    PubMed Central

    Torshabi, Ahmad Esmaili; Nankali, Saber

    2016-01-01

    In external beam radiotherapy, one of the most common and reliable methods for patient geometrical setup and/or predicting the tumor location is use of external markers. In this study, the main challenging issue is increasing the accuracy of patient setup by investigating external markers location. Since the location of each external marker may yield different patient setup accuracy, it is important to assess different locations of external markers using appropriate selective algorithms. To do this, two commercially available algorithms entitled a) canonical correlation analysis (CCA) and b) principal component analysis (PCA) were proposed as input selection algorithms. They work on the basis of maximum correlation coefficient and minimum variance between given datasets. The proposed input selection algorithms work in combination with an adaptive neuro‐fuzzy inference system (ANFIS) as a correlation model to give patient positioning information as output. Our proposed algorithms provide input file of ANFIS correlation model accurately. The required dataset for this study was prepared by means of a NURBS‐based 4D XCAT anthropomorphic phantom that can model the shape and structure of complex organs in human body along with motion information of dynamic organs. Moreover, a database of four real patients undergoing radiation therapy for lung cancers was utilized in this study for validation of proposed strategy. Final analyzed results demonstrate that input selection algorithms can reasonably select specific external markers from those areas of the thorax region where root mean square error (RMSE) of ANFIS model has minimum values at that given area. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation. PACS number(s): 87.55.km, 87.55.N PMID:27929479

  5. On adaptive learning rate that guarantees convergence in feedforward networks.

    PubMed

    Behera, Laxmidhar; Kumar, Swagat; Patnaik, Awhan

    2006-09-01

    This paper investigates new learning algorithms (LF I and LF II) based on Lyapunov function for the training of feedforward neural networks. It is observed that such algorithms have interesting parallel with the popular backpropagation (BP) algorithm where the fixed learning rate is replaced by an adaptive learning rate computed using convergence theorem based on Lyapunov stability theory. LF II, a modified version of LF I, has been introduced with an aim to avoid local minima. This modification also helps in improving the convergence speed in some cases. Conditions for achieving global minimum for these kind of algorithms have been studied in detail. The performances of the proposed algorithms are compared with BP algorithm and extended Kalman filtering (EKF) on three bench-mark function approximation problems: XOR, 3-bit parity, and 8-3 encoder. The comparisons are made in terms of number of learning iterations and computational time required for convergence. It is found that the proposed algorithms (LF I and II) are much faster in convergence than other two algorithms to attain same accuracy. Finally, the comparison is made on a complex two-dimensional (2-D) Gabor function and effect of adaptive learning rate for faster convergence is verified. In a nutshell, the investigations made in this paper help us better understand the learning procedure of feedforward neural networks in terms of adaptive learning rate, convergence speed, and local minima.

  6. Scheduling multimedia services in cloud computing environment

    NASA Astrophysics Data System (ADS)

    Liu, Yunchang; Li, Chunlin; Luo, Youlong; Shao, Yanling; Zhang, Jing

    2018-02-01

    Currently, security is a critical factor for multimedia services running in the cloud computing environment. As an effective mechanism, trust can improve security level and mitigate attacks within cloud computing environments. Unfortunately, existing scheduling strategy for multimedia service in the cloud computing environment do not integrate trust mechanism when making scheduling decisions. In this paper, we propose a scheduling scheme for multimedia services in multi clouds. At first, a novel scheduling architecture is presented. Then, We build a trust model including both subjective trust and objective trust to evaluate the trust degree of multimedia service providers. By employing Bayesian theory, the subjective trust degree between multimedia service providers and users is obtained. According to the attributes of QoS, the objective trust degree of multimedia service providers is calculated. Finally, a scheduling algorithm integrating trust of entities is proposed by considering the deadline, cost and trust requirements of multimedia services. The scheduling algorithm heuristically hunts for reasonable resource allocations and satisfies the requirement of trust and meets deadlines for the multimedia services. Detailed simulated experiments demonstrate the effectiveness and feasibility of the proposed trust scheduling scheme.

  7. An improved least cost routing approach for WDM optical network without wavelength converters

    NASA Astrophysics Data System (ADS)

    Bonani, Luiz H.; Forghani-elahabad, Majid

    2016-12-01

    Routing and wavelength assignment (RWA) problem has been an attractive problem in optical networks, and consequently several algorithms have been proposed in the literature to solve this problem. The most known techniques for the dynamic routing subproblem are fixed routing, fixed-alternate routing, and adaptive routing methods. The first one leads to a high blocking probability (BP) and the last one includes a high computational complexity and requires immense backing from the control and management protocols. The second one suggests a trade-off between performance and complexity, and hence we consider it to improve in our work. In fact, considering the RWA problem in a wavelength routed optical network with no wavelength converter, an improved technique is proposed for the routing subproblem in order to decrease the BP of the network. Based on fixed-alternate approach, the first k shortest paths (SPs) between each node pair is determined. We then rearrange the SPs according to a newly defined cost for the links and paths. Upon arriving a connection request, the sorted paths are consecutively checked for an available wavelength according to the most-used technique. We implement our proposed algorithm and the least-hop fixed-alternate algorithm to show how the rearrangement of SPs contributes to a lower BP in the network. The numerical results demonstrate the efficiency of our proposed algorithm in comparison with the others, considering different number of available wavelengths.

  8. A constrained joint source/channel coder design and vector quantization of nonstationary sources

    NASA Technical Reports Server (NTRS)

    Sayood, Khalid; Chen, Y. C.; Nori, S.; Araj, A.

    1993-01-01

    The emergence of broadband ISDN as the network for the future brings with it the promise of integration of all proposed services in a flexible environment. In order to achieve this flexibility, asynchronous transfer mode (ATM) has been proposed as the transfer technique. During this period a study was conducted on the bridging of network transmission performance and video coding. The successful transmission of variable bit rate video over ATM networks relies on the interaction between the video coding algorithm and the ATM networks. Two aspects of networks that determine the efficiency of video transmission are the resource allocation algorithm and the congestion control algorithm. These are explained in this report. Vector quantization (VQ) is one of the more popular compression techniques to appear in the last twenty years. Numerous compression techniques, which incorporate VQ, have been proposed. While the LBG VQ provides excellent compression, there are also several drawbacks to the use of the LBG quantizers including search complexity and memory requirements, and a mismatch between the codebook and the inputs. The latter mainly stems from the fact that the VQ is generally designed for a specific rate and a specific class of inputs. In this work, an adaptive technique is proposed for vector quantization of images and video sequences. This technique is an extension of the recursively indexed scalar quantization (RISQ) algorithm.

  9. NOTE: A BPF-type algorithm for CT with a curved PI detector

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Zhang, Li; Chen, Zhiqiang; Xing, Yuxiang; Cheng, Jianping

    2006-08-01

    Helical cone-beam CT is used widely nowadays because of its rapid scan speed and efficient utilization of x-ray dose. Recently, an exact reconstruction algorithm for helical cone-beam CT was proposed (Zou and Pan 2004a Phys. Med. Biol. 49 941 59). The algorithm is referred to as a backprojection-filtering (BPF) algorithm. This BPF algorithm for a helical cone-beam CT with a flat-panel detector (FPD-HCBCT) requires minimum data within the Tam Danielsson window and can naturally address the problem of ROI reconstruction from data truncated in both longitudinal and transversal directions. In practical CT systems, detectors are expensive and always take a very important position in the total cost. Hence, we work on an exact reconstruction algorithm for a CT system with a detector of the smallest size, i.e., a curved PI detector fitting the Tam Danielsson window. The reconstruction algorithm is derived following the framework of the BPF algorithm. Numerical simulations are done to validate our algorithm in this study.

  10. A BPF-type algorithm for CT with a curved PI detector.

    PubMed

    Tang, Jie; Zhang, Li; Chen, Zhiqiang; Xing, Yuxiang; Cheng, Jianping

    2006-08-21

    Helical cone-beam CT is used widely nowadays because of its rapid scan speed and efficient utilization of x-ray dose. Recently, an exact reconstruction algorithm for helical cone-beam CT was proposed (Zou and Pan 2004a Phys. Med. Biol. 49 941-59). The algorithm is referred to as a backprojection-filtering (BPF) algorithm. This BPF algorithm for a helical cone-beam CT with a flat-panel detector (FPD-HCBCT) requires minimum data within the Tam-Danielsson window and can naturally address the problem of ROI reconstruction from data truncated in both longitudinal and transversal directions. In practical CT systems, detectors are expensive and always take a very important position in the total cost. Hence, we work on an exact reconstruction algorithm for a CT system with a detector of the smallest size, i.e., a curved PI detector fitting the Tam-Danielsson window. The reconstruction algorithm is derived following the framework of the BPF algorithm. Numerical simulations are done to validate our algorithm in this study.

  11. A Floor-Map-Aided WiFi/Pseudo-Odometry Integration Algorithm for an Indoor Positioning System

    PubMed Central

    Wang, Jian; Hu, Andong; Liu, Chunyan; Li, Xin

    2015-01-01

    This paper proposes a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data to provide meter-level positioning without additional infrastructure. A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of further improving the positioning accuracy is to use a more effective multi-threshold step detection algorithm, as proposed by the authors. The “go and back” phenomenon caused by incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning coordinates, P-O measurements and fused heading angles as observations. The “cross-wall” problem is solved based on the development of a floor-map-aided particle filter algorithm by weighting the particles, thereby also eliminating the gross-error effects originating from WiFi or P-O measurements. The performance observed in a field experiment performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirms that the proposed scheme can reliably achieve meter-level positioning. PMID:25811224

  12. An approximate dynamic programming approach to resource management in multi-cloud scenarios

    NASA Astrophysics Data System (ADS)

    Pietrabissa, Antonio; Priscoli, Francesco Delli; Di Giorgio, Alessandro; Giuseppi, Alessandro; Panfili, Martina; Suraci, Vincenzo

    2017-03-01

    The programmability and the virtualisation of network resources are crucial to deploy scalable Information and Communications Technology (ICT) services. The increasing demand of cloud services, mainly devoted to the storage and computing, requires a new functional element, the Cloud Management Broker (CMB), aimed at managing multiple cloud resources to meet the customers' requirements and, simultaneously, to optimise their usage. This paper proposes a multi-cloud resource allocation algorithm that manages the resource requests with the aim of maximising the CMB revenue over time. The algorithm is based on Markov decision process modelling and relies on reinforcement learning techniques to find online an approximate solution.

  13. Delaunay based algorithm for finding polygonal voids in planar point sets

    NASA Astrophysics Data System (ADS)

    Alonso, R.; Ojeda, J.; Hitschfeld, N.; Hervías, C.; Campusano, L. E.

    2018-01-01

    This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the largest possible low density terminal-edge regions around them. A terminal-edge region can represent either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated. Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D cosmological voids the evaluation of the joining criteria considers this context. However, the design of the algorithm permits its adaption to the requirements of any similar application.

  14. A Genetic Algorithm Tool (splicer) for Complex Scheduling Problems and the Space Station Freedom Resupply Problem

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Valenzuela-Rendon, Manuel

    1993-01-01

    The Space Station Freedom will require the supply of items in a regular fashion. A schedule for the delivery of these items is not easy to design due to the large span of time involved and the possibility of cancellations and changes in shuttle flights. This paper presents the basic concepts of a genetic algorithm model, and also presents the results of an effort to apply genetic algorithms to the design of propellant resupply schedules. As part of this effort, a simple simulator and an encoding by which a genetic algorithm can find near optimal schedules have been developed. Additionally, this paper proposes ways in which robust schedules, i.e., schedules that can tolerate small changes, can be found using genetic algorithms.

  15. A network coding based routing protocol for underwater sensor networks.

    PubMed

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  16. Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images.

    PubMed

    Mane, Vijay Mahadeo; Jadhav, D V

    2017-05-24

    Diabetic retinopathy (DR) is the most common diabetic eye disease. Doctors are using various test methods to detect DR. But, the availability of test methods and requirements of domain experts pose a new challenge in the automatic detection of DR. In order to fulfill this objective, a variety of algorithms has been developed in the literature. In this paper, we propose a system consisting of a novel sparking process and a holoentropy-based decision tree for automatic classification of DR images to further improve the effectiveness. The sparking process algorithm is developed for automatic segmentation of blood vessels through the estimation of optimal threshold. The holoentropy enabled decision tree is newly developed for automatic classification of retinal images into normal or abnormal using hybrid features which preserve the disease-level patterns even more than the signal level of the feature. The effectiveness of the proposed system is analyzed using standard fundus image databases DIARETDB0 and DIARETDB1 for sensitivity, specificity and accuracy. The proposed system yields sensitivity, specificity and accuracy values of 96.72%, 97.01% and 96.45%, respectively. The experimental result reveals that the proposed technique outperforms the existing algorithms.

  17. A novel framework for feature extraction in multi-sensor action potential sorting.

    PubMed

    Wu, Shun-Chi; Swindlehurst, A Lee; Nenadic, Zoran

    2015-09-30

    Extracellular recordings of multi-unit neural activity have become indispensable in neuroscience research. The analysis of the recordings begins with the detection of the action potentials (APs), followed by a classification step where each AP is associated with a given neural source. A feature extraction step is required prior to classification in order to reduce the dimensionality of the data and the impact of noise, allowing source clustering algorithms to work more efficiently. In this paper, we propose a novel framework for multi-sensor AP feature extraction based on the so-called Matched Subspace Detector (MSD), which is shown to be a natural generalization of standard single-sensor algorithms. Clustering using both simulated data and real AP recordings taken in the locust antennal lobe demonstrates that the proposed approach yields features that are discriminatory and lead to promising results. Unlike existing methods, the proposed algorithm finds joint spatio-temporal feature vectors that match the dominant subspace observed in the two-dimensional data without needs for a forward propagation model and AP templates. The proposed MSD approach provides more discriminatory features for unsupervised AP sorting applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    PubMed Central

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045

  19. Mathematical analysis and coordinated current allocation control in battery power module systems

    NASA Astrophysics Data System (ADS)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  20. Parallel Clustering Algorithm for Large-Scale Biological Data Sets

    PubMed Central

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Backgrounds Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Methods Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. Result A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies. PMID:24705246

  1. On-line estimation of nonlinear physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.

  2. Encoding Schemes For A Digital Optical Multiplier Using The Modified Signed-Digit Number Representation

    NASA Astrophysics Data System (ADS)

    Lasher, Mark E.; Henderson, Thomas B.; Drake, Barry L.; Bocker, Richard P.

    1986-09-01

    The modified signed-digit (MSD) number representation offers full parallel, carry-free addition. A MSD adder has been described by the authors. This paper describes how the adder can be used in a tree structure to implement an optical multiply algorithm. Three different optical schemes, involving position, polarization, and intensity encoding, are proposed for realizing the trinary logic system. When configured in the generic multiplier architecture, these schemes yield the combinatorial logic necessary to carry out the multiplication algorithm. The optical systems are essentially three dimensional arrangements composed of modular units. Of course, this modularity is important for design considerations, while the parallelism and noninterfering communication channels of optical systems are important from the standpoint of reduced complexity. The authors have also designed electronic hardware to demonstrate and model the combinatorial logic required to carry out the algorithm. The electronic and proposed optical systems will be compared in terms of complexity and speed.

  3. General simulation algorithm for autocorrelated binary processes.

    PubMed

    Serinaldi, Francesco; Lombardo, Federico

    2017-02-01

    The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.

  4. Solution procedure of dynamical contact problems with friction

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2017-07-01

    Dynamical contact is one of the common research topics because of its wide applications in the engineering field. The main goal of this work is to develop a time-stepping algorithm for dynamic contact problems. We propose a finite element approach for elastodynamics contact problems [1]. Sticking, sliding and frictional contact can be taken into account. Lagrange multipliers are used to enforce non-penetration condition. For the time discretization, we propose a scheme equivalent to the explicit Newmark scheme. Each time step requires solving a nonlinear problem similar to a static friction problem. The nonlinearity of the system of equation needs an iterative solution procedure based on Uzawa's algorithm [2][3]. The applicability of the algorithm is illustrated by selected sample numerical solutions to static and dynamic contact problems. Results obtained with the model have been compared and verified with results from an independent numerical method.

  5. Optimal Decentralized Protocol for Electric Vehicle Charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, LW; Topcu, U; Low, SH

    We propose a decentralized algorithm to optimally schedule electric vehicle (EV) charging. The algorithm exploits the elasticity of electric vehicle loads to fill the valleys in electric load profiles. We first formulate the EV charging scheduling problem as an optimal control problem, whose objective is to impose a generalized notion of valley-filling, and study properties of optimal charging profiles. We then give a decentralized algorithm to iteratively solve the optimal control problem. In each iteration, EVs update their charging profiles according to the control signal broadcast by the utility company, and the utility company alters the control signal to guidemore » their updates. The algorithm converges to optimal charging profiles (that are as "flat" as they can possibly be) irrespective of the specifications (e.g., maximum charging rate and deadline) of EVs, even if EVs do not necessarily update their charging profiles in every iteration, and use potentially outdated control signal when they update. Moreover, the algorithm only requires each EV solving its local problem, hence its implementation requires low computation capability. We also extend the algorithm to track a given load profile and to real-time implementation.« less

  6. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge.

    PubMed

    Najeeb, Najeeb W; Detweiler, Carrick

    2017-07-17

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes' power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values.

  7. Extending Wireless Rechargeable Sensor Network Life without Full Knowledge

    PubMed Central

    Najeeb, Najeeb W.; Detweiler, Carrick

    2017-01-01

    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN. We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values. PMID:28714936

  8. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.

  9. A Lightweight White-Box Symmetric Encryption Algorithm against Node Capture for WSNs †

    PubMed Central

    Shi, Yang; Wei, Wujing; He, Zongjian

    2015-01-01

    Wireless Sensor Networks (WSNs) are often deployed in hostile environments and, thus, nodes can be potentially captured by an adversary. This is a typical white-box attack context, i.e., the adversary may have total visibility of the implementation of the build-in cryptosystem and full control over its execution platform. Handling white-box attacks in a WSN scenario is a challenging task. Existing encryption algorithms for white-box attack contexts require large memory footprint and, hence, are not applicable for wireless sensor networks scenarios. As a countermeasure against the threat in this context, in this paper, we propose a class of lightweight secure implementations of the symmetric encryption algorithm SMS4. The basic idea of our approach is to merge several steps of the round function of SMS4 into table lookups, blended by randomly generated mixing bijections. Therefore, the size of the implementations are significantly reduced while keeping the same security efficiency. The security and efficiency of the proposed solutions are theoretically analyzed. Evaluation shows our solutions satisfy the requirement of sensor nodes in terms of limited memory size and low computational costs. PMID:26007737

  10. Proposed algorithm to improve job shop production scheduling using ant colony optimization method

    NASA Astrophysics Data System (ADS)

    Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari

    2017-12-01

    This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.

  11. Efficient Fingercode Classification

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  12. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce

    PubMed Central

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987

  13. Sleep Quality Estimation based on Chaos Analysis for Heart Rate Variability

    NASA Astrophysics Data System (ADS)

    Fukuda, Toshio; Wakuda, Yuki; Hasegawa, Yasuhisa; Arai, Fumihito; Kawaguchi, Mitsuo; Noda, Akiko

    In this paper, we propose an algorithm to estimate sleep quality based on a heart rate variability using chaos analysis. Polysomnography(PSG) is a conventional and reliable system to diagnose sleep disorder and to evaluate its severity and therapeatic effect, by estimating sleep quality based on multiple channels. However, a recording process requires a lot of time and a controlled environment for measurement and then an analyzing process of PSG data is hard work because the huge sensed data should be manually evaluated. On the other hand, it is focused that some people make a mistake or cause an accident due to lost of regular sleep and of homeostasis these days. Therefore a simple home system for checking own sleep is required and then the estimation algorithm for the system should be developed. Therefore we propose an algorithm to estimate sleep quality based only on a heart rate variability which can be measured by a simple sensor such as a pressure sensor and an infrared sensor in an uncontrolled environment, by experimentally finding the relationship between chaos indices and sleep quality. The system including the estimation algorithm can inform patterns and quality of own daily sleep to a user, and then the user can previously arranges his life schedule, pays more attention based on sleep results and consult with a doctor.

  14. Quantized Average Consensus on Gossip Digraphs with Reduced Computation

    NASA Astrophysics Data System (ADS)

    Cai, Kai; Ishii, Hideaki

    The authors have recently proposed a class of randomized gossip algorithms which solve the distributed averaging problem on directed graphs, with the constraint that each node has an integer-valued state. The essence of this algorithm is to maintain local records, called “surplus”, of individual state updates, thereby achieving quantized average consensus even though the state sum of all nodes is not preserved. In this paper we study a modified version of this algorithm, whose feature is primarily in reducing both computation and communication effort. Concretely, each node needs to update fewer local variables, and can transmit surplus by requiring only one bit. Under this modified algorithm we prove that reaching the average is ensured for arbitrary strongly connected graphs. The condition of arbitrary strong connection is less restrictive than those known in the literature for either real-valued or quantized states; in particular, it does not require the special structure on the network called balanced. Finally, we provide numerical examples to illustrate the convergence result, with emphasis on convergence time analysis.

  15. Viking lander camera radiometry calibration report, volume 2

    NASA Technical Reports Server (NTRS)

    Wolf, M. R.; Atwood, D. L.; Morrill, M. E.

    1977-01-01

    The requirements the performance validation, and interfaces for the RADCAM program, to convert Viking lander camera image data to radiometric units were established. A proposed algorithm is described, and an appendix summarizing the planned reduction of camera test data was included.

  16. An unsupervised classification scheme for improving predictions of prokaryotic TIS.

    PubMed

    Tech, Maike; Meinicke, Peter

    2006-03-09

    Although it is not difficult for state-of-the-art gene finders to identify coding regions in prokaryotic genomes, exact prediction of the corresponding translation initiation sites (TIS) is still a challenging problem. Recently a number of post-processing tools have been proposed for improving the annotation of prokaryotic TIS. However, inherent difficulties of these approaches arise from the considerable variation of TIS characteristics across different species. Therefore prior assumptions about the properties of prokaryotic gene starts may cause suboptimal predictions for newly sequenced genomes with TIS signals differing from those of well-investigated genomes. We introduce a clustering algorithm for completely unsupervised scoring of potential TIS, based on positionally smoothed probability matrices. The algorithm requires an initial gene prediction and the genomic sequence of the organism to perform the reannotation. As compared with other methods for improving predictions of gene starts in bacterial genomes, our approach is not based on any specific assumptions about prokaryotic TIS. Despite the generality of the underlying algorithm, the prediction rate of our method is competitive on experimentally verified test data from E. coli and B. subtilis. Regarding genomes with high G+C content, in contrast to some previously proposed methods, our algorithm also provides good performance on P. aeruginosa, B. pseudomallei and R. solanacearum. On reliable test data we showed that our method provides good results in post-processing the predictions of the widely-used program GLIMMER. The underlying clustering algorithm is robust with respect to variations in the initial TIS annotation and does not require specific assumptions about prokaryotic gene starts. These features are particularly useful on genomes with high G+C content. The algorithm has been implemented in the tool "TICO" (TIs COrrector) which is publicly available from our web site.

  17. Evaluation of noise and blur effects with SIRT-FISTA-TV reconstruction algorithm: Application to fast environmental transmission electron tomography.

    PubMed

    Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita

    2018-06-01

    Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Sniffer Channel Selection for Monitoring Wireless LANs

    NASA Astrophysics Data System (ADS)

    Song, Yuan; Chen, Xian; Kim, Yoo-Ah; Wang, Bing; Chen, Guanling

    Wireless sniffers are often used to monitor APs in wireless LANs (WLANs) for network management, fault detection, traffic characterization, and optimizing deployment. It is cost effective to deploy single-radio sniffers that can monitor multiple nearby APs. However, since nearby APs often operate on orthogonal channels, a sniffer needs to switch among multiple channels to monitor its nearby APs. In this paper, we formulate and solve two optimization problems on sniffer channel selection. Both problems require that each AP be monitored by at least one sniffer. In addition, one optimization problem requires minimizing the maximum number of channels that a sniffer listens to, and the other requires minimizing the total number of channels that the sniffers listen to. We propose a novel LP-relaxation based algorithm, and two simple greedy heuristics for the above two optimization problems. Through simulation, we demonstrate that all the algorithms are effective in achieving their optimization goals, and the LP-based algorithm outperforms the greedy heuristics.

  19. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A., E-mail: anastasio@wustl.edu

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that ismore » solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.« less

  20. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.

    PubMed

    Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A

    2016-04-01

    The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.

  1. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

    PubMed Central

    Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.

    2016-01-01

    Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets. PMID:27036582

  2. A Distributed Transmission Rate Adjustment Algorithm in Heterogeneous CSMA/CA Networks

    PubMed Central

    Xie, Shuanglong; Low, Kay Soon; Gunawan, Erry

    2015-01-01

    Distributed transmission rate tuning is important for a wide variety of IEEE 802.15.4 network applications such as industrial network control systems. Such systems often require each node to sustain certain throughput demand in order to guarantee the system performance. It is thus essential to determine a proper transmission rate that can meet the application requirement and compensate for network imperfections (e.g., packet loss). Such a tuning in a heterogeneous network is difficult due to the lack of modeling techniques that can deal with the heterogeneity of the network as well as the network traffic changes. In this paper, a distributed transmission rate tuning algorithm in a heterogeneous IEEE 802.15.4 CSMA/CA network is proposed. Each node uses the results of clear channel assessment (CCA) to estimate the busy channel probability. Then a mathematical framework is developed to estimate the on-going heterogeneous traffics using the busy channel probability at runtime. Finally a distributed algorithm is derived to tune the transmission rate of each node to accurately meet the throughput requirement. The algorithm does not require modifications on IEEE 802.15.4 MAC layer and it has been experimentally implemented and extensively tested using TelosB nodes with the TinyOS protocol stack. The results reveal that the algorithm is accurate and can satisfy the throughput demand. Compared with existing techniques, the algorithm is fully distributed and thus does not require any central coordination. With this property, it is able to adapt to traffic changes and re-adjust the transmission rate to the desired level, which cannot be achieved using the traditional modeling techniques. PMID:25822140

  3. Design of minimum multiplier fractional order differentiator based on lattice wave digital filter.

    PubMed

    Barsainya, Richa; Rawat, Tarun Kumar; Kumar, Manjeet

    2017-01-01

    In this paper, a novel design of fractional order differentiator (FOD) based on lattice wave digital filter (LWDF) is proposed which requires minimum number of multiplier for its structural realization. Firstly, the FOD design problem is formulated as an optimization problem using the transfer function of lattice wave digital filter. Then, three optimization algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO) and cuckoo search algorithm (CSA) are applied to determine the optimal LWDF coefficients. The realization of FOD using LWD structure increases the design accuracy, as only N number of coefficients are to be optimized for Nth order FOD. Finally, two design examples of 3rd and 5th order lattice wave digital fractional order differentiator (LWDFOD) are demonstrated to justify the design accuracy. The performance analysis of the proposed design is carried out based on magnitude response, absolute magnitude error (dB), root mean square (RMS) magnitude error, arithmetic complexity, convergence profile and computation time. Simulation results are attained to show the comparison of the proposed LWDFOD with the published works and it is observed that an improvement of 29% is obtained in the proposed design. The proposed LWDFOD approximates the ideal FOD and surpasses the existing ones reasonably well in mid and high frequency range, thereby making the proposed LWDFOD a promising technique for the design of digital FODs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Non-Cartesian MRI Reconstruction With Automatic Regularization Via Monte-Carlo SURE

    PubMed Central

    Weller, Daniel S.; Nielsen, Jon-Fredrik; Fessler, Jeffrey A.

    2013-01-01

    Magnetic resonance image (MRI) reconstruction from undersampled k-space data requires regularization to reduce noise and aliasing artifacts. Proper application of regularization however requires appropriate selection of associated regularization parameters. In this work, we develop a data-driven regularization parameter adjustment scheme that minimizes an estimate (based on the principle of Stein’s unbiased risk estimate—SURE) of a suitable weighted squared-error measure in k-space. To compute this SURE-type estimate, we propose a Monte-Carlo scheme that extends our previous approach to inverse problems (e.g., MRI reconstruction) involving complex-valued images. Our approach depends only on the output of a given reconstruction algorithm and does not require knowledge of its internal workings, so it is capable of tackling a wide variety of reconstruction algorithms and nonquadratic regularizers including total variation and those based on the ℓ1-norm. Experiments with simulated and real MR data indicate that the proposed approach is capable of providing near mean squared-error (MSE) optimal regularization parameters for single-coil undersampled non-Cartesian MRI reconstruction. PMID:23591478

  5. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    NASA Astrophysics Data System (ADS)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  6. Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada

    PubMed Central

    Battista, Jerry J.; Patterson, Michael S.; Beaulieu, Luc; Sharpe, Michael B.; Schreiner, L. John; MacPherson, Miller S.; Van Dyk, Jacob

    2012-01-01

    The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center‐specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per‐case staffing ratios were also determined for larger‐scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center‐specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full‐time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively. PACS numbers: 87.55.N‐, 87.55.Qr PMID:22231223

  7. Medical physics staffing for radiation oncology: a decade of experience in Ontario, Canada.

    PubMed

    Battista, Jerry J; Clark, Brenda G; Patterson, Michael S; Beaulieu, Luc; Sharpe, Michael B; Schreiner, L John; MacPherson, Miller S; Van Dyk, Jacob

    2012-01-05

    The January 2010 articles in The New York Times generated intense focus on patient safety in radiation treatment, with physics staffing identified frequently as a critical factor for consistent quality assurance. The purpose of this work is to review our experience with medical physics staffing, and to propose a transparent and flexible staffing algorithm for general use. Guided by documented times required per routine procedure, we have developed a robust algorithm to estimate physics staffing needs according to center-specific workload for medical physicists and associated support staff, in a manner we believe is adaptable to an evolving radiotherapy practice. We calculate requirements for each staffing type based on caseload, equipment inventory, quality assurance, educational programs, and administration. Average per-case staffing ratios were also determined for larger-scale human resource planning and used to model staffing needs for Ontario, Canada over the next 10 years. The workload specific algorithm was tested through a survey of Canadian cancer centers. For center-specific human resource planning, we propose a grid of coefficients addressing specific workload factors for each staff group. For larger scale forecasting of human resource requirements, values of 260, 700, 300, 600, 1200, and 2000 treated cases per full-time equivalent (FTE) were determined for medical physicists, physics assistants, dosimetrists, electronics technologists, mechanical technologists, and information technology specialists, respectively.

  8. Constrained independent component analysis approach to nonobtrusive pulse rate measurements

    NASA Astrophysics Data System (ADS)

    Tsouri, Gill R.; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K.

    2012-07-01

    Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.

  9. Constrained independent component analysis approach to nonobtrusive pulse rate measurements.

    PubMed

    Tsouri, Gill R; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K

    2012-07-01

    Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.

  10. Left ventricle segmentation via graph cut distribution matching.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Li, Shuo; Islam, Ali; Chong, Jaron

    2009-01-01

    We present a discrete kernel density matching energy for segmenting the left ventricle cavity in cardiac magnetic resonance sequences. The energy and its graph cut optimization based on an original first-order approximation of the Bhattacharyya measure have not been proposed previously, and yield competitive results in nearly real-time. The algorithm seeks a region within each frame by optimization of two priors, one geometric (distance-based) and the other photometric, each measuring a distribution similarity between the region and a model learned from the first frame. Based on global rather than pixelwise information, the proposed algorithm does not require complex training and optimization with respect to geometric transformations. Unlike related active contour methods, it does not compute iterative updates of computationally expensive kernel densities. Furthermore, the proposed first-order analysis can be used for other intractable energies and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of graph cuts. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert.

  11. Design of bearings for rotor systems based on stability

    NASA Technical Reports Server (NTRS)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  12. Optimised analytical models of the dielectric properties of biological tissue.

    PubMed

    Salahuddin, Saqib; Porter, Emily; Krewer, Finn; O' Halloran, Martin

    2017-05-01

    The interaction of electromagnetic fields with the human body is quantified by the dielectric properties of biological tissues. These properties are incorporated into complex numerical simulations using parametric models such as Debye and Cole-Cole, for the computational investigation of electromagnetic wave propagation within the body. These parameters can be acquired through a variety of optimisation algorithms to achieve an accurate fit to measured data sets. A number of different optimisation techniques have been proposed, but these are often limited by the requirement for initial value estimations or by the large overall error (often up to several percentage points). In this work, a novel two-stage genetic algorithm proposed by the authors is applied to optimise the multi-pole Debye parameters for 54 types of human tissues. The performance of the two-stage genetic algorithm has been examined through a comparison with five other existing algorithms. The experimental results demonstrate that the two-stage genetic algorithm produces an accurate fit to a range of experimental data and efficiently out-performs all other optimisation algorithms under consideration. Accurate values of the three-pole Debye models for 54 types of human tissues, over 500 MHz to 20 GHz, are also presented for reference. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. An RFID Indoor Positioning Algorithm Based on Bayesian Probability and K-Nearest Neighbor.

    PubMed

    Xu, He; Ding, Ye; Li, Peng; Wang, Ruchuan; Li, Yizhu

    2017-08-05

    The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K -Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.

  14. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  15. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  16. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less

  17. Fingerprint Identification Using SIFT-Based Minutia Descriptors and Improved All Descriptor-Pair Matching

    PubMed Central

    Zhou, Ru; Zhong, Dexing; Han, Jiuqiang

    2013-01-01

    The performance of conventional minutiae-based fingerprint authentication algorithms degrades significantly when dealing with low quality fingerprints with lots of cuts or scratches. A similar degradation of the minutiae-based algorithms is observed when small overlapping areas appear because of the quite narrow width of the sensors. Based on the detection of minutiae, Scale Invariant Feature Transformation (SIFT) descriptors are employed to fulfill verification tasks in the above difficult scenarios. However, the original SIFT algorithm is not suitable for fingerprint because of: (1) the similar patterns of parallel ridges; and (2) high computational resource consumption. To enhance the efficiency and effectiveness of the algorithm for fingerprint verification, we propose a SIFT-based Minutia Descriptor (SMD) to improve the SIFT algorithm through image processing, descriptor extraction and matcher. A two-step fast matcher, named improved All Descriptor-Pair Matching (iADM), is also proposed to implement the 1:N verifications in real-time. Fingerprint Identification using SMD and iADM (FISiA) achieved a significant improvement with respect to accuracy in representative databases compared with the conventional minutiae-based method. The speed of FISiA also can meet real-time requirements. PMID:23467056

  18. Human Movement Recognition Based on the Stochastic Characterisation of Acceleration Data

    PubMed Central

    Munoz-Organero, Mario; Lotfi, Ahmad

    2016-01-01

    Human activity recognition algorithms based on information obtained from wearable sensors are successfully applied in detecting many basic activities. Identified activities with time-stationary features are characterised inside a predefined temporal window by using different machine learning algorithms on extracted features from the measured data. Better accuracy, precision and recall levels could be achieved by combining the information from different sensors. However, detecting short and sporadic human movements, gestures and actions is still a challenging task. In this paper, a novel algorithm to detect human basic movements from wearable measured data is proposed and evaluated. The proposed algorithm is designed to minimise computational requirements while achieving acceptable accuracy levels based on characterising some particular points in the temporal series obtained from a single sensor. The underlying idea is that this algorithm would be implemented in the sensor device in order to pre-process the sensed data stream before sending the information to a central point combining the information from different sensors to improve accuracy levels. Intra- and inter-person validation is used for two particular cases: single step detection and fall detection and classification using a single tri-axial accelerometer. Relevant results for the above cases and pertinent conclusions are also presented. PMID:27618063

  19. Realization and optimization of AES algorithm on the TMS320DM6446 based on DaVinci technology

    NASA Astrophysics Data System (ADS)

    Jia, Wen-bin; Xiao, Fu-hai

    2013-03-01

    The application of AES algorithm in the digital cinema system avoids video data to be illegal theft or malicious tampering, and solves its security problems. At the same time, in order to meet the requirements of the real-time, scene and transparent encryption of high-speed data streams of audio and video in the information security field, through the in-depth analysis of AES algorithm principle, based on the hardware platform of TMS320DM6446, with the software framework structure of DaVinci, this paper proposes the specific realization methods of AES algorithm in digital video system and its optimization solutions. The test results show digital movies encrypted by AES128 can not play normally, which ensures the security of digital movies. Through the comparison of the performance of AES128 algorithm before optimization and after, the correctness and validity of improved algorithm is verified.

  20. SKL algorithm based fabric image matching and retrieval

    NASA Astrophysics Data System (ADS)

    Cao, Yichen; Zhang, Xueqin; Ma, Guojian; Sun, Rongqing; Dong, Deping

    2017-07-01

    Intelligent computer image processing technology provides convenience and possibility for designers to carry out designs. Shape analysis can be achieved by extracting SURF feature. However, high dimension of SURF feature causes to lower matching speed. To solve this problem, this paper proposed a fast fabric image matching algorithm based on SURF K-means and LSH algorithm. By constructing the bag of visual words on K-Means algorithm, and forming feature histogram of each image, the dimension of SURF feature is reduced at the first step. Then with the help of LSH algorithm, the features are encoded and the dimension is further reduced. In addition, the indexes of each image and each class of image are created, and the number of matching images is decreased by LSH hash bucket. Experiments on fabric image database show that this algorithm can speed up the matching and retrieval process, the result can satisfy the requirement of dress designers with accuracy and speed.

  1. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data

    NASA Astrophysics Data System (ADS)

    Wang, Tai-Han; Huang, Da-Nian; Ma, Guo-Qing; Meng, Zhao-Hai; Li, Ye

    2017-06-01

    With the continuous development of full tensor gradiometer (FTG) measurement techniques, three-dimensional (3D) inversion of FTG data is becoming increasingly used in oil and gas exploration. In the fast processing and interpretation of large-scale high-precision data, the use of the graphics processing unit process unit (GPU) and preconditioning methods are very important in the data inversion. In this paper, an improved preconditioned conjugate gradient algorithm is proposed by combining the symmetric successive over-relaxation (SSOR) technique and the incomplete Choleksy decomposition conjugate gradient algorithm (ICCG). Since preparing the preconditioner requires extra time, a parallel implement based on GPU is proposed. The improved method is then applied in the inversion of noisecontaminated synthetic data to prove its adaptability in the inversion of 3D FTG data. Results show that the parallel SSOR-ICCG algorithm based on NVIDIA Tesla C2050 GPU achieves a speedup of approximately 25 times that of a serial program using a 2.0 GHz Central Processing Unit (CPU). Real airborne gravity-gradiometry data from Vinton salt dome (southwest Louisiana, USA) are also considered. Good results are obtained, which verifies the efficiency and feasibility of the proposed parallel method in fast inversion of 3D FTG data.

  2. Synchronization of Chaotic Systems without Direct Connections Using Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Sato, Norihisa; Adachi, Masaharu

    In this paper, we propose a control method for the synchronization of chaotic systems that does not require the systems to be connected, unlike existing methods such as that proposed by Pecora and Carroll in 1990. The method is based on the reinforcement learning algorithm. We apply our method to two discrete-time chaotic systems with mismatched parameters and achieve M step delay synchronization. Moreover, we extend the proposed method to the synchronization of continuous-time chaotic systems.

  3. Simulating first order optical systems—algorithms for and composition of discrete linear canonical transforms

    NASA Astrophysics Data System (ADS)

    Healy, John J.

    2018-01-01

    The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.

  4. A novel time-domain signal processing algorithm for real time ventricular fibrillation detection

    NASA Astrophysics Data System (ADS)

    Monte, G. E.; Scarone, N. C.; Liscovsky, P. O.; Rotter S/N, P.

    2011-12-01

    This paper presents an application of a novel algorithm for real time detection of ECG pathologies, especially ventricular fibrillation. It is based on segmentation and labeling process of an oversampled signal. After this treatment, analyzing sequence of segments, global signal behaviours are obtained in the same way like a human being does. The entire process can be seen as a morphological filtering after a smart data sampling. The algorithm does not require any ECG digital signal pre-processing, and the computational cost is low, so it can be embedded into the sensors for wearable and permanent applications. The proposed algorithms could be the input signal description to expert systems or to artificial intelligence software in order to detect other pathologies.

  5. Image compression using quad-tree coding with morphological dilation

    NASA Astrophysics Data System (ADS)

    Wu, Jiaji; Jiang, Weiwei; Jiao, Licheng; Wang, Lei

    2007-11-01

    In this paper, we propose a new algorithm which integrates morphological dilation operation to quad-tree coding, the purpose of doing this is to compensate each other's drawback by using quad-tree coding and morphological dilation operation respectively. New algorithm can not only quickly find the seed significant coefficient of dilation but also break the limit of block boundary of quad-tree coding. We also make a full use of both within-subband and cross-subband correlation to avoid the expensive cost of representing insignificant coefficients. Experimental results show that our algorithm outperforms SPECK and SPIHT. Without using any arithmetic coding, our algorithm can achieve good performance with low computational cost and it's more suitable to mobile devices or scenarios with a strict real-time requirement.

  6. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, part 1

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Gutknecht, Martin H.; Nachtigal, Noel M.

    1990-01-01

    The nonsymmetric Lanczos method can be used to compute eigenvalues of large sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. We present an implementation of a look-ahead version of the Lanczos algorithm which overcomes these problems by skipping over those steps in which a breakdown or near-breakdown would occur in the standard process. The proposed algorithm can handle look-ahead steps of any length and is not restricted to steps of length 2, as earlier implementations are. Also, our implementation has the feature that it requires roughly the same number of inner products as the standard Lanczos process without look-ahead.

  7. Autonomous reinforcement learning with experience replay.

    PubMed

    Wawrzyński, Paweł; Tanwani, Ajay Kumar

    2013-05-01

    This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Using the Detectability Index to Predict P300 Speller Performance

    PubMed Central

    Mainsah, B.O.; Collins, L.M.; Throckmorton, C.S.

    2017-01-01

    Objective The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping algorithms and other stimulus paradigms is desirable. Approach We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian dynamic stopping (DS) algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance The proposed method could serve as a useful tool to initially asses BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level. PMID:27705956

  9. Using the detectability index to predict P300 speller performance

    NASA Astrophysics Data System (ADS)

    Mainsah, B. O.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. The P300 speller is a popular brain-computer interface (BCI) system that has been investigated as a potential communication alternative for individuals with severe neuromuscular limitations. To achieve acceptable accuracy levels for communication, the system requires repeated data measurements in a given signal condition to enhance the signal-to-noise ratio of elicited brain responses. These elicited brain responses, which are used as control signals, are embedded in noisy electroencephalography (EEG) data. The discriminability between target and non-target EEG responses defines a user’s performance with the system. A previous P300 speller model has been proposed to estimate system accuracy given a certain amount of data collection. However, the approach was limited to a static stopping algorithm, i.e. averaging over a fixed number of measurements, and the row-column paradigm. A generalized method that is also applicable to dynamic stopping (DS) algorithms and other stimulus paradigms is desirable. Approach. We developed a new probabilistic model-based approach to predicting BCI performance, where performance functions can be derived analytically or via Monte Carlo methods. Within this framework, we introduce a new model for the P300 speller with the Bayesian DS algorithm, by simplifying a multi-hypothesis to a binary hypothesis problem using the likelihood ratio test. Under a normality assumption, the performance functions for the Bayesian algorithm can be parameterized with the detectability index, a measure which quantifies the discriminability between target and non-target EEG responses. Main results. Simulations with synthetic and empirical data provided initial verification of the proposed method of estimating performance with Bayesian DS using the detectability index. Analysis of results from previous online studies validated the proposed method. Significance. The proposed method could serve as a useful tool to initially assess BCI performance without extensive online testing, in order to estimate the amount of data required to achieve a desired accuracy level.

  10. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Development of a new time domain-based algorithm for train detection and axle counting

    NASA Astrophysics Data System (ADS)

    Allotta, B.; D'Adamio, P.; Meli, E.; Pugi, L.

    2015-12-01

    This paper presents an innovative train detection algorithm, able to perform the train localisation and, at the same time, to estimate its speed, the crossing times on a fixed point of the track and the axle number. The proposed solution uses the same approach to evaluate all these quantities, starting from the knowledge of generic track inputs directly measured on the track (for example, the vertical forces on the sleepers, the rail deformation and the rail stress). More particularly, all the inputs are processed through cross-correlation operations to extract the required information in terms of speed, crossing time instants and axle counter. This approach has the advantage to be simple and less invasive than the standard ones (it requires less equipment) and represents a more reliable and robust solution against numerical noise because it exploits the whole shape of the input signal and not only the peak values. A suitable and accurate multibody model of railway vehicle and flexible track has also been developed by the authors to test the algorithm when experimental data are not available and in general, under any operating conditions (fundamental to verify the algorithm accuracy and robustness). The railway vehicle chosen as benchmark is the Manchester Wagon, modelled in the Adams VI-Rail environment. The physical model of the flexible track has been implemented in the Matlab and Comsol Multiphysics environments. A simulation campaign has been performed to verify the performance and the robustness of the proposed algorithm, and the results are quite promising. The research has been carried out in cooperation with Ansaldo STS and ECM Spa.

  12. Generalization of mixed multiscale finite element methods with applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C S

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less

  13. Optical Method For Monitoring Tool Control For Green Burnishing With Using Of Algorithms With Adaptive Settings

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. A.; Grigoriev, S. N.; Bobrovskij, I. N.; Melnikov, P. A.; Bobrovskij, N. M.

    2017-05-01

    With regard to the complexity of the new technology and increase its reliability requirements laboriousness of control operations in industrial quality control systems increases significantly. The importance of quality management control due to the fact that its promotes the correct use of production conditions, the relevant requirements are required. Digital image processing allows to reach a new technological level of production (new technological way). The most complicated automated interpretation of information is the basis for decision-making in the management of production processes. In the case of surface analysis of tools used for processing with the using of metalworking fluids (MWF) it is more complicated. The authors suggest new algorithm for optical inspection of the wear of the cylinder tool for burnishing, which used in surface plastic deformation without using of MWF. The main advantage of proposed algorithm is the possibility of automatic recognition of images of burnisher tool with the subsequent allocation of its boundaries, finding a working surface and automatically allocating the defects and wear area. Software that implements the algorithm was developed by the authors in Matlab programming environment, but can be implemented using other programming languages.

  14. An innovative localisation algorithm for railway vehicles

    NASA Astrophysics Data System (ADS)

    Allotta, B.; D'Adamio, P.; Malvezzi, M.; Pugi, L.; Ridolfi, A.; Rindi, A.; Vettori, G.

    2014-11-01

    In modern railway automatic train protection and automatic train control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. The aim of this work has been developing an innovative localisation algorithm for railway vehicles able to enhance the performances, in terms of speed and position estimation accuracy, of the classical odometry algorithms, such as the Italian Sistema Controllo Marcia Treno (SCMT). The proposed strategy consists of a sensor fusion between the information coming from a tachometer and an Inertial Measurements Unit (IMU). The sensor outputs have been simulated through a 3D multibody model of a railway vehicle. The work has provided the development of a custom IMU, designed by ECM S.p.a, in order to meet their industrial and business requirements. The industrial requirements have to be compliant with the European Train Control System (ETCS) standards: the European Rail Traffic Management System (ERTMS), a project developed by the European Union to improve the interoperability among different countries, in particular as regards the train control and command systems, fixes some standard values for the odometric (ODO) performance, in terms of speed and travelled distance estimation. The reliability of the ODO estimation has to be taken into account basing on the allowed speed profiles. The results of the currently used ODO algorithms can be improved, especially in case of degraded adhesion conditions; it has been verified in the simulation environment that the results of the proposed localisation algorithm are always compliant with the ERTMS requirements. The estimation strategy has good performance also under degraded adhesion conditions and could be put on board of high-speed railway vehicles; it represents an accurate and reliable solution. The IMU board is tested via a dedicated Hardware in the Loop (HIL) test rig: it includes an industrial robot able to replicate the motion of the railway vehicle. Through the generated experimental outputs the performances of the innovative localisation algorithm have been evaluated: the HIL test rig permitted to test the proposed algorithm, avoiding expensive (in terms of time and cost) on-track tests, obtaining encouraging results. In fact, the preliminary results show a significant improvement of the position and speed estimation performances compared to those obtained with SCMT algorithms, currently in use on the Italian railway network.

  15. An accelerated non-Gaussianity based multichannel predictive deconvolution method with the limited supporting region of filters

    NASA Astrophysics Data System (ADS)

    Li, Zhong-xiao; Li, Zhen-chun

    2016-09-01

    The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.

  16. Breast surface estimation for radar-based breast imaging systems.

    PubMed

    Williams, Trevor C; Sill, Jeff M; Fear, Elise C

    2008-06-01

    Radar-based microwave breast-imaging techniques typically require the antennas to be placed at a certain distance from or on the breast surface. This requires prior knowledge of the breast location, shape, and size. The method proposed in this paper for obtaining this information is based on a modified tissue sensing adaptive radar algorithm. First, a breast surface detection scan is performed. Data from this scan are used to localize the breast by creating an estimate of the breast surface. If required, the antennas may then be placed at specified distances from the breast surface for a second tumor-sensing scan. This paper introduces the breast surface estimation and antenna placement algorithms. Surface estimation and antenna placement results are demonstrated on three-dimensional breast models derived from magnetic resonance images.

  17. Domain Decomposition Algorithms for First-Order System Least Squares Methods

    NASA Technical Reports Server (NTRS)

    Pavarino, Luca F.

    1996-01-01

    Least squares methods based on first-order systems have been recently proposed and analyzed for second-order elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard finite element spaces, which are not required to satisfy the inf-sup condition. In this paper, several domain decomposition algorithms for these first-order least squares methods are studied. Some representative overlapping and substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin discretizations are also valid for least squares methods.

  18. An adaptive interpolation scheme for molecular potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  19. Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.

    PubMed

    Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J

    2012-09-01

    Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Computationally efficient method for Fourier transform of highly chirped pulses for laser and parametric amplifier modeling.

    PubMed

    Andrianov, Alexey; Szabo, Aron; Sergeev, Alexander; Kim, Arkady; Chvykov, Vladimir; Kalashnikov, Mikhail

    2016-11-14

    We developed an improved approach to calculate the Fourier transform of signals with arbitrary large quadratic phase which can be efficiently implemented in numerical simulations utilizing Fast Fourier transform. The proposed algorithm significantly reduces the computational cost of Fourier transform of a highly chirped and stretched pulse by splitting it into two separate transforms of almost transform limited pulses, thereby reducing the required grid size roughly by a factor of the pulse stretching. The application of our improved Fourier transform algorithm in the split-step method for numerical modeling of CPA and OPCPA shows excellent agreement with standard algorithms.

  1. Mobile transporter path planning

    NASA Technical Reports Server (NTRS)

    Baffes, Paul; Wang, Lui

    1990-01-01

    The use of a genetic algorithm (GA) for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the space station which must be able to reach any point of the structure autonomously. Elements of the genetic algorithm are explored in both a theoretical and experimental sense. Specifically, double crossover, greedy crossover, and tournament selection techniques are examined. Additionally, the use of local optimization techniques working in concert with the GA are also explored. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research.

  2. Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics.

    PubMed

    Nagahama, Yuki; Shimobaba, Tomoyoshi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-05-01

    A holographic projector utilizes holography techniques. However, there are several barriers to realizing holographic projections. One is deterioration of hologram image quality caused by speckle noise and ringing artifacts. The combination of the random phase-free method and the Gerchberg-Saxton (GS) algorithm has improved the image quality of holograms. However, the GS algorithm requires significant computation time. We propose faster methods for image quality improvement of random phase-free holograms using the characteristics of ringing artifacts.

  3. A targeted change-detection procedure by combining change vector analysis and post-classification approach

    NASA Astrophysics Data System (ADS)

    Ye, Su; Chen, Dongmei; Yu, Jie

    2016-04-01

    In remote sensing, conventional supervised change-detection methods usually require effective training data for multiple change types. This paper introduces a more flexible and efficient procedure that seeks to identify only the changes that users are interested in, here after referred to as "targeted change detection". Based on a one-class classifier "Support Vector Domain Description (SVDD)", a novel algorithm named "Three-layer SVDD Fusion (TLSF)" is developed specially for targeted change detection. The proposed algorithm combines one-class classification generated from change vector maps, as well as before- and after-change images in order to get a more reliable detecting result. In addition, this paper introduces a detailed workflow for implementing this algorithm. This workflow has been applied to two case studies with different practical monitoring objectives: urban expansion and forest fire assessment. The experiment results of these two case studies show that the overall accuracy of our proposed algorithm is superior (Kappa statistics are 86.3% and 87.8% for Case 1 and 2, respectively), compared to applying SVDD to change vector analysis and post-classification comparison.

  4. Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks.

    PubMed

    Aadil, Farhan; Raza, Ali; Khan, Muhammad Fahad; Maqsood, Muazzam; Mehmood, Irfan; Rho, Seungmin

    2018-05-03

    Flying ad-hoc networks (FANETs) are a very vibrant research area nowadays. They have many military and civil applications. Limited battery energy and the high mobility of micro unmanned aerial vehicles (UAVs) represent their two main problems, i.e., short flight time and inefficient routing. In this paper, we try to address both of these problems by means of efficient clustering. First, we adjust the transmission power of the UAVs by anticipating their operational requirements. Optimal transmission range will have minimum packet loss ratio (PLR) and better link quality, which ultimately save the energy consumed during communication. Second, we use a variant of the K-Means Density clustering algorithm for selection of cluster heads. Optimal cluster heads enhance the cluster lifetime and reduce the routing overhead. The proposed model outperforms the state of the art artificial intelligence techniques such as Ant Colony Optimization-based clustering algorithm and Grey Wolf Optimization-based clustering algorithm. The performance of the proposed algorithm is evaluated in term of number of clusters, cluster building time, cluster lifetime and energy consumption.

  5. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    PubMed Central

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-01-01

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms. PMID:27240382

  6. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  7. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  8. Non-intrusive practitioner pupil detection for unmodified microscope oculars.

    PubMed

    Fuhl, Wolfgang; Santini, Thiago; Reichert, Carsten; Claus, Daniel; Herkommer, Alois; Bahmani, Hamed; Rifai, Katharina; Wahl, Siegfried; Kasneci, Enkelejda

    2016-12-01

    Modern microsurgery is a long and complex task requiring the surgeon to handle multiple microscope controls while performing the surgery. Eye tracking provides an additional means of interaction for the surgeon that could be used to alleviate this situation, diminishing surgeon fatigue and surgery time, thus decreasing risks of infection and human error. In this paper, we introduce a novel algorithm for pupil detection tailored for eye images acquired through an unmodified microscope ocular. The proposed approach, the Hough transform, and six state-of-the-art pupil detection algorithms were evaluated on over 4000 hand-labeled images acquired from a digital operating microscope with a non-intrusive monitoring system for the surgeon eyes integrated. Our results show that the proposed method reaches detection rates up to 71% for an error of ≈3% w.r.t the input image diagonal; none of the state-of-the-art pupil detection algorithms performed satisfactorily. The algorithm and hand-labeled data set can be downloaded at:: www.ti.uni-tuebingen.de/perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  10. Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data

    NASA Astrophysics Data System (ADS)

    Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho

    2018-05-01

    We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.

  11. A Novel Online Data-Driven Algorithm for Detecting UAV Navigation Sensor Faults.

    PubMed

    Sun, Rui; Cheng, Qi; Wang, Guanyu; Ochieng, Washington Yotto

    2017-09-29

    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate.

  12. A gossip based information fusion protocol for distributed frequent itemset mining

    NASA Astrophysics Data System (ADS)

    Sohrabi, Mohammad Karim

    2018-07-01

    The computational complexity, huge memory space requirement, and time-consuming nature of frequent pattern mining process are the most important motivations for distribution and parallelization of this mining process. On the other hand, the emergence of distributed computational and operational environments, which causes the production and maintenance of data on different distributed data sources, makes the parallelization and distribution of the knowledge discovery process inevitable. In this paper, a gossip based distributed itemset mining (GDIM) algorithm is proposed to extract frequent itemsets, which are special types of frequent patterns, in a wireless sensor network environment. In this algorithm, local frequent itemsets of each sensor are extracted using a bit-wise horizontal approach (LHPM) from the nodes which are clustered using a leach-based protocol. Heads of clusters exploit a gossip based protocol in order to communicate each other to find the patterns which their global support is equal to or more than the specified support threshold. Experimental results show that the proposed algorithm outperforms the best existing gossip based algorithm in term of execution time.

  13. The convergence analysis of SpikeProp algorithm with smoothing L1∕2 regularization.

    PubMed

    Zhao, Junhong; Zurada, Jacek M; Yang, Jie; Wu, Wei

    2018-07-01

    Unlike the first and the second generation artificial neural networks, spiking neural networks (SNNs) model the human brain by incorporating not only synaptic state but also a temporal component into their operating model. However, their intrinsic properties require expensive computation during training. This paper presents a novel algorithm to SpikeProp for SNN by introducing smoothing L 1∕2 regularization term into the error function. This algorithm makes the network structure sparse, with some smaller weights that can be eventually removed. Meanwhile, the convergence of this algorithm is proved under some reasonable conditions. The proposed algorithms have been tested for the convergence speed, the convergence rate and the generalization on the classical XOR-problem, Iris problem and Wisconsin Breast Cancer classification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Hardware architecture design of image restoration based on time-frequency domain computation

    NASA Astrophysics Data System (ADS)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  15. Active Learning Using Hint Information.

    PubMed

    Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien

    2015-08-01

    The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.

  16. Guidance control of small UAV with energy and maneuverability limitations for a search and coverage mission

    NASA Astrophysics Data System (ADS)

    Gramajo, German G.

    This thesis presents an algorithm for a search and coverage mission that has increased autonomy in generating an ideal trajectory while explicitly considering the available energy in the optimization. Further, current algorithms used to generate trajectories depend on the operator providing a discrete set of turning rate requirements to obtain an optimal solution. This work proposes an additional modification to the algorithm so that it optimizes the trajectory for a range of turning rates instead of a discrete set of turning rates. This thesis conducts an evaluation of the algorithm with variation in turn duration, entry-heading angle, and entry point. Comparative studies of the algorithm with existing method indicates improved autonomy in choosing the optimization parameters while producing trajectories with better coverage area and closer final distance to the desired terminal point.

  17. Significant Change Spotting for Periodic Human Motion Segmentation of Cleaning Tasks Using Wearable Sensors

    PubMed Central

    Liu, Kai-Chun; Chan, Chia-Tai

    2017-01-01

    The proportion of the aging population is rapidly increasing around the world, which will cause stress on society and healthcare systems. In recent years, advances in technology have created new opportunities for automatic activities of daily living (ADL) monitoring to improve the quality of life and provide adequate medical service for the elderly. Such automatic ADL monitoring requires reliable ADL information on a fine-grained level, especially for the status of interaction between body gestures and the environment in the real-world. In this work, we propose a significant change spotting mechanism for periodic human motion segmentation during cleaning task performance. A novel approach is proposed based on the search for a significant change of gestures, which can manage critical technical issues in activity recognition, such as continuous data segmentation, individual variance, and category ambiguity. Three typical machine learning classification algorithms are utilized for the identification of the significant change candidate, including a Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Naive Bayesian (NB) algorithm. Overall, the proposed approach achieves 96.41% in the F1-score by using the SVM classifier. The results show that the proposed approach can fulfill the requirement of fine-grained human motion segmentation for automatic ADL monitoring. PMID:28106853

  18. Distributed Peer-to-Peer Target Tracking in Wireless Sensor Networks

    PubMed Central

    Wang, Xue; Wang, Sheng; Bi, Dao-Wei; Ma, Jun-Jie

    2007-01-01

    Target tracking is usually a challenging application for wireless sensor networks (WSNs) because it is always computation-intensive and requires real-time processing. This paper proposes a practical target tracking system based on the auto regressive moving average (ARMA) model in a distributed peer-to-peer (P2P) signal processing framework. In the proposed framework, wireless sensor nodes act as peers that perform target detection, feature extraction, classification and tracking, whereas target localization requires the collaboration between wireless sensor nodes for improving the accuracy and robustness. For carrying out target tracking under the constraints imposed by the limited capabilities of the wireless sensor nodes, some practically feasible algorithms, such as the ARMA model and the 2-D integer lifting wavelet transform, are adopted in single wireless sensor nodes due to their outstanding performance and light computational burden. Furthermore, a progressive multi-view localization algorithm is proposed in distributed P2P signal processing framework considering the tradeoff between the accuracy and energy consumption. Finally, a real world target tracking experiment is illustrated. Results from experimental implementations have demonstrated that the proposed target tracking system based on a distributed P2P signal processing framework can make efficient use of scarce energy and communication resources and achieve target tracking successfully.

  19. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation

    PubMed Central

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David

    2017-01-01

    Background As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. Objective The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. Methods According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. Results There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. Conclusions The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. PMID:28213343

  20. Checking Questionable Entry of Personally Identifiable Information Encrypted by One-Way Hash Transformation.

    PubMed

    Chen, Xianlai; Fann, Yang C; McAuliffe, Matthew; Vismer, David; Yang, Rong

    2017-02-17

    As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields. ©Xianlai Chen, Yang C Fann, Matthew McAuliffe, David Vismer, Rong Yang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.02.2017.

Top