Sample records for proposed calculation method

  1. Proposal on Calculation of Ventilation Threshold Using Non-contact Respiration Measurement with Pattern Light Projection

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Ichimura, Shiro; Fujiwara, Toyoki; Kiyooka, Satoru; Koshiji, Kohji; Tsuzuki, Keishi; Nakamura, Hidetoshi; Fujimoto, Hideo

    We proposed a calculation method of the ventilation threshold using the non-contact respiration measurement with dot-matrix pattern light projection under pedaling exercise. The validity and effectiveness of our proposed method is examined by simultaneous measurement with the expiration gas analyzer. The experimental result showed that the correlation existed between the quasi ventilation thresholds calculated by our proposed method and the ventilation thresholds calculated by the expiration gas analyzer. This result indicates the possibility of the non-contact measurement of the ventilation threshold by the proposed method.

  2. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform

    NASA Astrophysics Data System (ADS)

    Arai, Daisuke; Shimobaba, Tomoyoshi; Nishitsuji, Takashi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-06-01

    Fast hologram calculation methods are critical in real-time holography applications such as three-dimensional (3D) displays. We recently proposed a wavelet transform-based hologram calculation called WASABI. Even though WASABI can decrease the calculation time of a hologram from a point cloud, it increases the calculation time with increasing propagation distance. We also proposed a wavefront recoding plane (WRP) method. This is a two-step fast hologram calculation in which the first step calculates the superposition of light waves emitted from a point cloud in a virtual plane, and the second step performs a diffraction calculation from the virtual plane to the hologram plane. A drawback of the WRP method is in the first step when the point cloud has a large number of object points and/or a long distribution in the depth direction. In this paper, we propose a method combining WASABI and the WRP method in which the drawbacks of each can be complementarily solved. Using a consumer CPU, the proposed method succeeded in performing a hologram calculation with 2048 × 2048 pixels from a 3D object with one million points in approximately 0.4 s.

  3. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  4. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  5. Proposed method to calculate FRMAC intervention levels for the assessment of radiologically contaminated food and comparison of the proposed method to the U.S. FDA's method to calculate derived intervention levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Terrence D.; Hunt, Brian D.

    This report reviews the method recommended by the U.S. Food and Drug Administration for calculating Derived Intervention Levels (DILs) and identifies potential improvements to the DIL calculation method to support more accurate ingestion pathway analyses and protective action decisions. Further, this report proposes an alternate method for use by the Federal Emergency Radiological Assessment Center (FRMAC) to calculate FRMAC Intervention Levels (FILs). The default approach of the FRMAC during an emergency response is to use the FDA recommended methods. However, FRMAC recommends implementing the FIL method because we believe it to be more technically accurate. FRMAC will only implement themore » FIL method when approved by the FDA representative on the Federal Advisory Team for Environment, Food, and Health.« less

  6. Critical Analysis of Existing Recyclability Assessment Methods for New Products in Order to Define a Reference Method

    NASA Astrophysics Data System (ADS)

    Maris, E.; Froelich, D.

    The designers of products subject to the European regulations on waste have an obligation to improve the recyclability of their products from the very first design stages. The statutory texts refer to ISO standard 22 628, which proposes a method to calculate vehicle recyclability. There are several scientific studies that propose other calculation methods as well. Yet the feedback from the CREER club, a group of manufacturers and suppliers expert in ecodesign and recycling, is that the product recyclability calculation method proposed in this standard is not satisfactory, since only a mass indicator is used, the calculation scope is not clearly defined, and common data on the recycling industry does not exist to allow comparable calculations to be made for different products. For these reasons, it is difficult for manufacturers to have access to a method and common data for calculation purposes.

  7. Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication

    PubMed Central

    Chen, Chien-Sheng

    2015-01-01

    To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP) is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS), wireless sensor networks (WSN) and cellular communication systems. PMID:25569755

  8. Accurate Energy Transaction Allocation using Path Integration and Interpolation

    NASA Astrophysics Data System (ADS)

    Bhide, Mandar Mohan

    This thesis investigates many of the popular cost allocation methods which are based on actual usage of the transmission network. The Energy Transaction Allocation (ETA) method originally proposed by A.Fradi, S.Brigonne and B.Wollenberg which gives unique advantage of accurately allocating the transmission network usage is discussed subsequently. Modified calculation of ETA based on simple interpolation technique is then proposed. The proposed methodology not only increase the accuracy of calculation but also decreases number of calculations to less than half of the number of calculations required in original ETAs.

  9. Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Mori, Hiroyuki

    This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.

  10. An Novel Continuation Power Flow Method Based on Line Voltage Stability Index

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfang; He, Yuqing; He, Hongbin; Jiang, Zhuohan

    2018-01-01

    An novel continuation power flow method based on line voltage stability index is proposed in this paper. Line voltage stability index is used to determine the selection of parameterized lines, and constantly updated with the change of load parameterized lines. The calculation stages of the continuation power flow decided by the angle changes of the prediction of development trend equation direction vector are proposed in this paper. And, an adaptive step length control strategy is used to calculate the next prediction direction and value according to different calculation stages. The proposed method is applied clear physical concept, and the high computing speed, also considering the local characteristics of voltage instability which can reflect the weak nodes and weak area in a power system. Due to more fully to calculate the PV curves, the proposed method has certain advantages on analysing the voltage stability margin to large-scale power grid.

  11. Structural reliability calculation method based on the dual neural network and direct integration method.

    PubMed

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  12. Volume calculation of CT lung lesions based on Halton low-discrepancy sequences

    NASA Astrophysics Data System (ADS)

    Li, Shusheng; Wang, Liansheng; Li, Shuo

    2017-03-01

    Volume calculation from the Computed Tomography (CT) lung lesions data is a significant parameter for clinical diagnosis. The volume is widely used to assess the severity of the lung nodules and track its progression, however, the accuracy and efficiency of previous studies are not well achieved for clinical uses. It remains to be a challenging task due to its tight attachment to the lung wall, inhomogeneous background noises and large variations in sizes and shape. In this paper, we employ Halton low-discrepancy sequences to calculate the volume of the lung lesions. The proposed method directly compute the volume without the procedure of three-dimension (3D) model reconstruction and surface triangulation, which significantly improves the efficiency and reduces the complexity. The main steps of the proposed method are: (1) generate a certain number of random points in each slice using Halton low-discrepancy sequences and calculate the lesion area of each slice through the proportion; (2) obtain the volume by integrating the areas in the sagittal direction. In order to evaluate our proposed method, the experiments were conducted on the sufficient data sets with different size of lung lesions. With the uniform distribution of random points, our proposed method achieves more accurate results compared with other methods, which demonstrates the robustness and accuracy for the volume calculation of CT lung lesions. In addition, our proposed method is easy to follow and can be extensively applied to other applications, e.g., volume calculation of liver tumor, atrial wall aneurysm, etc.

  13. Equivalent Circuit Parameter Calculation of Interior Permanent Magnet Motor Involving Iron Loss Resistance Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsumi

    In this paper, we propose a method to calculate the equivalent circuit parameters of interior permanent magnet motors including iron loss resistance using the finite element method. First, the finite element analysis considering harmonics and magnetic saturation is carried out to obtain time variations of magnetic fields in the stator and the rotor core. Second, the iron losses of the stator and the rotor are calculated from the results of the finite element analysis with the considerations of harmonic eddy current losses and the minor hysteresis losses of the core. As a result, we obtain the equivalent circuit parameters i.e. the d-q axis inductance and the iron loss resistance as functions of operating condition of the motor. The proposed method is applied to an interior permanent magnet motor to calculate the characteristics based on the equivalent circuit obtained by the proposed method. The calculated results are compared with the experimental results to verify the accuracy.

  14. Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.

    2017-12-01

    An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.

  15. On the use of the fourier modal method for calculation of localized eigenmodes of integrated optical resonators O пpineнeнii neToдa фypьe-noд k pacчёTy лokaлiзoвaнныx noд iнTegpaльныx oпTiчeckix peзoнaTopoв</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bykov, D. A.; Doskolovich, L. L.</p> <p>2015-12-01</p> <p>We propose the generalization of the Fourier modal method aimed at calculating localized eigenmodes of integrated optical resonators. The method is based on constructing the analytic continuation of the structure's scattering matrix and calculating its poles. The method allows one to calculate the complex frequency of the localized mode and the corresponding field distribution. We use the proposed method to calculate the eigenmodes of rectangular dielectric block located on metal surface. We show that excitation of these modes by surface plasmon-polariton (SPP) results in resonant features in the SPP transmission spectrum. The proposed method can be used to design and investigate optical properties of integrated and plasmonic optical devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptCo.401...11W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptCo.401...11W"><span>Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Hui; Gong, Guanghong; Li, Ni</p> <p>2017-10-01</p> <p>Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EnOp...50..749M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EnOp...50..749M"><span>An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo</p> <p>2018-05-01</p> <p>The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JARS...12a6033S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JARS...12a6033S"><span>Target deception jamming method against spaceborne synthetic aperture radar using electromagnetic scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Qingyang; Shu, Ting; Tang, Bin; Yu, Wenxian</p> <p>2018-01-01</p> <p>A method is proposed to perform target deception jamming against spaceborne synthetic aperture radar. Compared with the traditional jamming methods using deception templates to cover the target or region of interest, the proposed method aims to generate a verisimilar deceptive target in various attitude with high fidelity using the electromagnetic (EM) scattering. Based on the geometrical model for target deception jamming, the EM scattering data from the deceptive target was first simulated by applying an EM calculation software. Then, the proposed jamming frequency response (JFR) is calculated offline by further processing. Finally, the deception jamming is achieved in real time by a multiplication between the proposed JFR and the spectrum of intercepted radar signals. The practical implementation is presented. The simulation results prove the validity of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JOpt...18g5609P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JOpt...18g5609P"><span>Fast calculation of the line-spread-function by transversal directions decoupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parravicini, Jacopo; Tartara, Luca; Hasani, Elton; Tomaselli, Alessandra</p> <p>2016-07-01</p> <p>We propose a simplified method to calculate the optical spread function of a paradigmatic system constituted by a pupil-lens with a line-shaped illumination (‘line-spread-function’). Our approach is based on decoupling the two transversal directions of the beam and treating the propagation by means of the Fourier optics formalism. This requires simpler calculations with respect to the more usual Bessel-function-based method. The model is discussed and compared with standard calculation methods by carrying out computer simulations. The proposed approach is found to be much faster than the Bessel-function-based one (CPU time ≲ 5% of the standard method), while the results of the two methods present a very good mutual agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAG...111..211J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAG...111..211J"><span>The mutual inductance calculation between circular and quadrilateral coils at arbitrary attitudes using a rotation matrix for airborne transient electromagnetic systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Yanju; Wang, Hongyuan; Lin, Jun; Guan, Shanshan; Feng, Xue; Li, Suyi</p> <p>2014-12-01</p> <p>Performance testing and calibration of airborne transient electromagnetic (ATEM) systems are conducted to obtain the electromagnetic response of ground loops. It is necessary to accurately calculate the mutual inductance between transmitting coils, receiving coils and ground loops to compute the electromagnetic responses. Therefore, based on Neumann's formula and the measured attitudes of the coils, this study deduces the formula for the mutual inductance calculation between circular and quadrilateral coils, circular and circular coils, and quadrilateral and quadrilateral coils using a rotation matrix, and then proposes a method to calculate the mutual inductance between two coils at arbitrary attitudes (roll, pitch, and yaw). Using coil attitude simulated data of an ATEM system, we calculate the mutual inductance of transmitting coils and ground loops at different attitudes, analyze the impact of coil attitudes on mutual inductance, and compare the computational accuracy and speed of the proposed method with those of other methods using the same data. The results show that the relative error of the calculation is smaller and that the speed-up is significant compared to other methods. Moreover, the proposed method is also applicable to the mutual inductance calculation of polygonal and circular coils at arbitrary attitudes and is highly expandable.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8d5118T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8d5118T"><span>A new method for calculating ecological flow: Distribution flow method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, Guangming; Yi, Ran; Chang, Jianbo; Shu, Caiwen; Yin, Zhi; Han, Shasha; Feng, Zhiyong; Lyu, Yiwei</p> <p>2018-04-01</p> <p>A distribution flow method (DFM) and its ecological flow index and evaluation grade standard are proposed to study the ecological flow of rivers based on broadening kernel density estimation. The proposed DFM and its ecological flow index and evaluation grade standard are applied into the calculation of ecological flow in the middle reaches of the Yangtze River and compared with traditional calculation method of hydrological ecological flow, method of flow evaluation, and calculation result of fish ecological flow. Results show that the DFM considers the intra- and inter-annual variations in natural runoff, thereby reducing the influence of extreme flow and uneven flow distributions during the year. This method also satisfies the actual runoff demand of river ecosystems, demonstrates superiority over the traditional hydrological methods, and shows a high space-time applicability and application value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015VSD....53.1455S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015VSD....53.1455S"><span>Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing</p> <p>2015-10-01</p> <p>Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4891529','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4891529"><span>Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ishikawa, Masahiro; Murakami, Yuri; Ahi, Sercan Taha; Yamaguchi, Masahiro; Kobayashi, Naoki; Kiyuna, Tomoharu; Yamashita, Yoshiko; Saito, Akira; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie</p> <p>2016-01-01</p> <p>Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear–cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade. PMID:27335894</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12952087','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12952087"><span>Identification of material constants for piezoelectric transformers by three-dimensional, finite-element method and a design-sensitivity method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo</p> <p>2003-08-01</p> <p>In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22334129-su-alternative-analytic-solution-paralyzable-detector-model-calculate-deadtime-deadtime-loss','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22334129-su-alternative-analytic-solution-paralyzable-detector-model-calculate-deadtime-deadtime-loss"><span>SU-C-9A-04: Alternative Analytic Solution to the Paralyzable Detector Model to Calculate Deadtime and Deadtime Loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Siman, W; Kappadath, S</p> <p>2014-06-01</p> <p>Purpose: Some common methods to solve for deadtime are (1) dual-source method, which assumes two equal activities; (2) model fitting, which requires multiple acquisitions as source decays; and (3) lossless model, which assumes no deadtime loss at low count rates. We propose a new analytic alternative solution to calculate deadtime for paralyzable gamma camera. Methods: Deadtime T can be calculated analytically from two distinct observed count rates M1 and M2 when the ratio of the true count rates alpha=N2/N1 is known. Alpha can be measured as a ratio of two measured activities using dose calibrators or via radioactive decay. Knowledgemore » of alpha creates a system with 2 equations and 2 unknowns, i.e., T and N1. To verify the validity of the proposed method, projections of a non-uniform phantom (4GBq 99mTc) were acquired in using Siemens SymbiaS multiple times over 48 hours. Each projection has >100kcts. The deadtime for each projection was calculated by fitting the data to a paralyzable model and also by using the proposed 2-acquisition method. The two estimates of deadtime were compared using the Bland-Altmann method. In addition, the dependency of uncertainty in T on uncertainty in alpha was investigated for several imaging conditions. Results: The results strongly suggest that the 2-acquisition method is equivalent to the fitting method. The Bland-Altman analysis yielded mean difference in deadtime estimate of ∼0.076us (95%CI: -0.049us, 0.103us) between the 2-acquisition and model fitting methods. The 95% limits of agreement were calculated to be -0.104 to 0.256us. The uncertainty in deadtime calculated using the proposed method is highly dependent on the uncertainty in the ratio alpha. Conclusion: The 2-acquisition method was found to be equivalent to the parameter fitting method. The proposed method offers a simpler and more practical way to analytically solve for a paralyzable detector deadtime, especially during physics testing.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22548285-su-correction-standard-model-based-dose-calculator-using-measurement-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22548285-su-correction-standard-model-based-dose-calculator-using-measurement-data"><span>SU-E-T-226: Correction of a Standard Model-Based Dose Calculator Using Measurement Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, M; Jiang, S; Lu, W</p> <p></p> <p>Purpose: To propose a hybrid method that combines advantages of the model-based and measurement-based method for independent dose calculation. Modeled-based dose calculation, such as collapsed-cone-convolution/superposition (CCCS) or the Monte-Carlo method, models dose deposition in the patient body accurately; however, due to lack of detail knowledge about the linear accelerator (LINAC) head, commissioning for an arbitrary machine is tedious and challenging in case of hardware changes. On the contrary, the measurement-based method characterizes the beam property accurately but lacks the capability of dose disposition modeling in heterogeneous media. Methods: We used a standard CCCS calculator, which is commissioned by published data,more » as the standard model calculator. For a given machine, water phantom measurements were acquired. A set of dose distributions were also calculated using the CCCS for the same setup. The difference between the measurements and the CCCS results were tabulated and used as the commissioning data for a measurement based calculator. Here we used a direct-ray-tracing calculator (ΔDRT). The proposed independent dose calculation consists of the following steps: 1. calculate D-model using CCCS. 2. calculate D-ΔDRT using ΔDRT. 3. combine Results: D=D-model+D-ΔDRT. Results: The hybrid dose calculation was tested on digital phantoms and patient CT data for standard fields and IMRT plan. The results were compared to dose calculated by the treatment planning system (TPS). The agreement of the hybrid and the TPS was within 3%, 3 mm for over 98% of the volume for phantom studies and lung patients. Conclusion: The proposed hybrid method uses the same commissioning data as those for the measurement-based method and can be easily extended to any non-standard LINAC. The results met the accuracy, independence, and simple commissioning criteria for an independent dose calculator.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29716009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29716009"><span>Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro</p> <p>2018-04-16</p> <p>In the calculation of large-scale computer-generated holograms, an approach called "tiling," which divides the hologram plane into small rectangles, is often employed due to limitations on computational memory. However, the total amount of computational complexity severely increases with the number of divisions. In this paper, we propose an efficient method for calculating tiled large-scale holograms using ray-wavefront conversion. In experiments, the effectiveness of the proposed method was verified by comparing its calculation cost with that using the previous method. Additionally, a hologram of 128K × 128K pixels was calculated and fabricated by a laser-lithography system, and a high-quality 105 mm × 105 mm 3D image including complicated reflection and translucency was optically reconstructed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=originals&id=EJ1021072','ERIC'); return false;" href="https://eric.ed.gov/?q=originals&id=EJ1021072"><span>Critical Values for Lawshe's Content Validity Ratio: Revisiting the Original Methods of Calculation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ayre, Colin; Scally, Andrew John</p> <p>2014-01-01</p> <p>The content validity ratio originally proposed by Lawshe is widely used to quantify content validity and yet methods used to calculate the original critical values were never reported. Methods for original calculation of critical values are suggested along with tables of exact binomial probabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..113a2137M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..113a2137M"><span>Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, J.; Liu, Q.</p> <p>2018-02-01</p> <p>This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24790819','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24790819"><span>Perceptual video quality assessment in H.264 video coding standard using objective modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karthikeyan, Ramasamy; Sainarayanan, Gopalakrishnan; Deepa, Subramaniam Nachimuthu</p> <p>2014-01-01</p> <p>Since usage of digital video is wide spread nowadays, quality considerations have become essential, and industry demand for video quality measurement is rising. This proposal provides a method of perceptual quality assessment in H.264 standard encoder using objective modeling. For this purpose, quality impairments are calculated and a model is developed to compute the perceptual video quality metric based on no reference method. Because of the shuttle difference between the original video and the encoded video the quality of the encoded picture gets degraded, this quality difference is introduced by the encoding process like Intra and Inter prediction. The proposed model takes into account of the artifacts introduced by these spatial and temporal activities in the hybrid block based coding methods and an objective modeling of these artifacts into subjective quality estimation is proposed. The proposed model calculates the objective quality metric using subjective impairments; blockiness, blur and jerkiness compared to the existing bitrate only calculation defined in the ITU G 1070 model. The accuracy of the proposed perceptual video quality metrics is compared against popular full reference objective methods as defined by VQEG.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006cosp...36.2755T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006cosp...36.2755T"><span>Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takemine, S.; Rikimaru, A.; Takahashi, K.</p> <p></p> <p>The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CPL...649...68S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CPL...649...68S"><span>Low cost estimation of the contribution of post-CCSD excitations to the total atomization energy using density functional theory calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sánchez, H. R.; Pis Diez, R.</p> <p>2016-04-01</p> <p>Based on the Aλ diagnostic for multireference effects recently proposed [U.R. Fogueri, S. Kozuch, A. Karton, J.M. Martin, Theor. Chem. Acc. 132 (2013) 1], a simple method for improving total atomization energies and reaction energies calculated at the CCSD level of theory is proposed. The method requires a CCSD calculation and two additional density functional theory calculations for the molecule. Two sets containing 139 and 51 molecules are used as training and validation sets, respectively, for total atomization energies. An appreciable decrease in the mean absolute error from 7-10 kcal mol-1 for CCSD to about 2 kcal mol-1 for the present method is observed. The present method provides atomization energies and reaction energies that compare favorably with relatively recent scaled CCSD methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23126865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23126865"><span>Examinations of electron temperature calculation methods in Thomson scattering diagnostics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oh, Seungtae; Lee, Jong Ha; Wi, Hanmin</p> <p>2012-10-01</p> <p>Electron temperature from Thomson scattering diagnostic is derived through indirect calculation based on theoretical model. χ-square test is commonly used in the calculation, and the reliability of the calculation method highly depends on the noise level of input signals. In the simulations, noise effects of the χ-square test are examined and scale factor test is proposed as an alternative method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1391740-nonlinear-model-reduction-power-systems-balancing-empirical-controllability-observability-covariances','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1391740-nonlinear-model-reduction-power-systems-balancing-empirical-controllability-observability-covariances"><span>Nonlinear Model Reduction in Power Systems by Balancing of Empirical Controllability and Observability Covariances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qi, Junjian; Wang, Jianhui; Liu, Hui</p> <p></p> <p>Abstract: In this paper, nonlinear model reduction for power systems is performed by the balancing of empirical controllability and observability covariances that are calculated around the operating region. Unlike existing model reduction methods, the external system does not need to be linearized but is directly dealt with as a nonlinear system. A transformation is found to balance the controllability and observability covariances in order to determine which states have the greatest contribution to the input-output behavior. The original system model is then reduced by Galerkin projection based on this transformation. The proposed method is tested and validated on a systemmore » comprised of a 16-machine 68-bus system and an IEEE 50-machine 145-bus system. The results show that by using the proposed model reduction the calculation efficiency can be greatly improved; at the same time, the obtained state trajectories are close to those for directly simulating the whole system or partitioning the system while not performing reduction. Compared with the balanced truncation method based on a linearized model, the proposed nonlinear model reduction method can guarantee higher accuracy and similar calculation efficiency. It is shown that the proposed method is not sensitive to the choice of the matrices for calculating the empirical covariances.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25133202','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25133202"><span>Malware analysis using visualized image matrices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu</p> <p>2014-01-01</p> <p>This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24693921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24693921"><span>Robust sleep quality quantification method for a personal handheld device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shin, Hangsik; Choi, Byunghun; Kim, Doyoon; Cho, Jaegeol</p> <p>2014-06-01</p> <p>The purpose of this study was to develop and validate a novel method for sleep quality quantification using personal handheld devices. The proposed method used 3- or 6-axes signals, including acceleration and angular velocity, obtained from built-in sensors in a smartphone and applied a real-time wavelet denoising technique to minimize the nonstationary noise. Sleep or wake status was decided on each axis, and the totals were finally summed to calculate sleep efficiency (SE), regarded as sleep quality in general. The sleep experiment was carried out for performance evaluation of the proposed method, and 14 subjects participated. An experimental protocol was designed for comparative analysis. The activity during sleep was recorded not only by the proposed method but also by well-known commercial applications simultaneously; moreover, activity was recorded on different mattresses and locations to verify the reliability in practical use. Every calculated SE was compared with the SE of a clinically certified medical device, the Philips (Amsterdam, The Netherlands) Actiwatch. In these experiments, the proposed method proved its reliability in quantifying sleep quality. Compared with the Actiwatch, accuracy and average bias error of SE calculated by the proposed method were 96.50% and -1.91%, respectively. The proposed method was vastly superior to other comparative applications with at least 11.41% in average accuracy and at least 6.10% in average bias; average accuracy and average absolute bias error of comparative applications were 76.33% and 17.52%, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ITEIS.130.1061H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ITEIS.130.1061H"><span>Development of Quadratic Programming Algorithm Based on Interior Point Method with Estimation Mechanism of Active Constraints</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka</p> <p></p> <p>Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134532','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134532"><span>A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang</p> <p>2016-01-01</p> <p>A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Fract..2350022Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Fract..2350022Z"><span>a New Method for Calculating the Fractal Dimension of Surface Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zuo, Xue; Zhu, Hua; Zhou, Yuankai; Li, Yan</p> <p>2015-06-01</p> <p>A new method termed as three-dimensional root-mean-square (3D-RMS) method, is proposed to calculate the fractal dimension (FD) of machined surfaces. The measure of this method is the root-mean-square value of surface data, and the scale is the side length of square in the projection plane. In order to evaluate the calculation accuracy of the proposed method, the isotropic surfaces with deterministic FD are generated based on the fractional Brownian function and Weierstrass-Mandelbrot (WM) fractal function, and two kinds of anisotropic surfaces are generated by stretching or rotating a WM fractal curve. Their FDs are estimated by the proposed method, as well as differential boxing-counting (DBC) method, triangular prism surface area (TPSA) method and variation method (VM). The results show that the 3D-RMS method performs better than the other methods with a lower relative error for both isotropic and anisotropic surfaces, especially for the surfaces with dimensions higher than 2.5, since the relative error between the estimated value and its theoretical value decreases with theoretical FD. Finally, the electrodeposited surface, end-turning surface and grinding surface are chosen as examples to illustrate the application of 3D-RMS method on the real machined surfaces. This method gives a new way to accurately calculate the FD from the surface topographic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5876689','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5876689"><span>Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cao, Juliang; Wu, Meiping; Lian, Junxiang; Cai, Shaokun; Wang, Lin</p> <p>2018-01-01</p> <p>Horizontal gravity disturbances are an important factor that affects the accuracy of inertial navigation systems in long-duration ship navigation. In this paper, from the perspective of the coordinate system and vector calculation, the effects of horizontal gravity disturbance on the initial alignment and navigation calculation are simultaneously analyzed. Horizontal gravity disturbances cause the navigation coordinate frame built in initial alignment to not be consistent with the navigation coordinate frame in which the navigation calculation is implemented. The mismatching of coordinate frame violates the vector calculation law, which will have an adverse effect on the precision of the inertial navigation system. To address this issue, two compensation methods suitable for two different navigation coordinate frames are proposed, one of the methods implements the compensation in velocity calculation, and the other does the compensation in attitude calculation. Finally, simulations and ship navigation experiments confirm the effectiveness of the proposed methods. PMID:29562653</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2254A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2254A"><span>Turbine blade profile design method based on Bezier curves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexeev, R. A.; Tishchenko, V. A.; Gribin, V. G.; Gavrilov, I. Yu.</p> <p>2017-11-01</p> <p>In this paper, the technique of two-dimensional parametric blade profile design is presented. Bezier curves are used to create the profile geometry. The main feature of the proposed method is an adaptive approach of curve fitting to given geometric conditions. Calculation of the profile shape is produced by multi-dimensional minimization method with a number of restrictions imposed on the blade geometry.The proposed method has been used to describe parametric geometry of known blade profile. Then the baseline geometry was modified by varying some parameters of the blade. The numerical calculation of obtained designs has been carried out. The results of calculations have shown the efficiency of chosen approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptCo.411..166Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptCo.411..166Z"><span>Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam</p> <p>2018-03-01</p> <p>We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28085516','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28085516"><span>Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang</p> <p>2017-01-01</p> <p>Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26428798','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26428798"><span>An integral equation method for calculating sound field diffracted by a rigid barrier on an impedance ground.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Sipei; Qiu, Xiaojun; Cheng, Jianchun</p> <p>2015-09-01</p> <p>This paper proposes a different method for calculating a sound field diffracted by a rigid barrier based on the integral equation method, where a virtual boundary is assumed above the rigid barrier to divide the whole space into two subspaces. Based on the Kirchhoff-Helmholtz equation, the sound field in each subspace is determined with the source inside and the boundary conditions on the surface, and then the diffracted sound field is obtained by using the continuation conditions on the virtual boundary. Simulations are carried out to verify the feasibility of the proposed method. Compared to the MacDonald method and other existing methods, the proposed method is a rigorous solution for whole space and is also much easier to understand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1002a2007D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1002a2007D"><span>Variational method for calculating the binding energy of the base state of an impurity D- centered on a quantum dot of GaAs-Ga1-xAlxAs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durán-Flórez, F.; Caicedo, L. C.; Gonzalez, J. E.</p> <p>2018-04-01</p> <p>In quantum mechanics it is very difficult to obtain exact solutions, therefore, it is necessary to resort to tools and methods that facilitate the calculations of the solutions of these systems, one of these methods is the variational method that consists in proposing a wave function that depend on several parameters that are adjusted to get close to the exact solution. Authors in the past have performed calculations applying this method using exponential and Gaussian orbital functions with linear and quadratic correlation factors. In this paper, a Gaussian function with a linear correlation factor is proposed, for the calculation of the binding energy of an impurity D ‑ centered on a quantum dot of radius r, the Gaussian function is dependent on the radius of the quantum dot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24784367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24784367"><span>Fast dose kernel interpolation using Fourier transform with application to permanent prostate brachytherapy dosimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Derek; Sloboda, Ron S</p> <p>2014-05-01</p> <p>Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JARS...11b6004Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JARS...11b6004Q"><span>Fast ℓ1-regularized space-time adaptive processing using alternating direction method of multipliers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Lilong; Wu, Manqing; Wang, Xuan; Dong, Zhen</p> <p>2017-04-01</p> <p>Motivated by the sparsity of filter coefficients in full-dimension space-time adaptive processing (STAP) algorithms, this paper proposes a fast ℓ1-regularized STAP algorithm based on the alternating direction method of multipliers to accelerate the convergence and reduce the calculations. The proposed algorithm uses a splitting variable to obtain an equivalent optimization formulation, which is addressed with an augmented Lagrangian method. Using the alternating recursive algorithm, the method can rapidly result in a low minimum mean-square error without a large number of calculations. Through theoretical analysis and experimental verification, we demonstrate that the proposed algorithm provides a better output signal-to-clutter-noise ratio performance than other algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4883421','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4883421"><span>A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhu, Jianliang; Wu, Panlong; Bo, Yuming</p> <p>2016-01-01</p> <p>Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance. PMID:27213389</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..207a2071Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..207a2071Y"><span>A weight modification sequential method for VSC-MTDC power system state estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiaonan; Zhang, Hao; Li, Qiang; Guo, Ziming; Zhao, Kun; Li, Xinpeng; Han, Feng</p> <p>2017-06-01</p> <p>This paper presents an effective sequential approach based on weight modification for VSC-MTDC power system state estimation, called weight modification sequential method. The proposed approach simplifies the AC/DC system state estimation algorithm through modifying the weight of state quantity to keep the matrix dimension constant. The weight modification sequential method can also make the VSC-MTDC system state estimation calculation results more ccurate and increase the speed of calculation. The effectiveness of the proposed weight modification sequential method is demonstrated and validated in modified IEEE 14 bus system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24757427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24757427"><span>A novel iterative scheme and its application to differential equations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khan, Yasir; Naeem, F; Šmarda, Zdeněk</p> <p>2014-01-01</p> <p>The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24148784','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24148784"><span>Level set method with automatic selective local statistics for brain tumor segmentation in MR images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thapaliya, Kiran; Pyun, Jae-Young; Park, Chun-Su; Kwon, Goo-Rak</p> <p>2013-01-01</p> <p>The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780016256&hterms=rate+interest&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drate%2Binterest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780016256&hterms=rate+interest&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drate%2Binterest"><span>The role of interest and inflation rates in life-cycle cost analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eisenberger, I.; Remer, D. S.; Lorden, G.</p> <p>1978-01-01</p> <p>The effect of projected interest and inflation rates on life cycle cost calculations is discussed and a method is proposed for making such calculations which replaces these rates by a single parameter. Besides simplifying the analysis, the method clarifies the roles of these rates. An analysis of historical interest and inflation rates from 1950 to 1976 shows that the proposed method can be expected to yield very good projections of life cycle cost even if the rates themselves fluctuate considerably.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MPLB...3250355C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MPLB...3250355C"><span>Atomistic full-quantum transport model for zigzag graphene nanoribbon-based structures: Complex energy-band method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Chun-Nan; Luo, Win-Jet; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying</p> <p>2018-01-01</p> <p>Using a non-equilibrium Green’s function framework in combination with the complex energy-band method, an atomistic full-quantum model for solving quantum transport problems for a zigzag-edge graphene nanoribbon (zGNR) structure is proposed. For transport calculations, the mathematical expressions from the theory for zGNR-based device structures are derived in detail. The transport properties of zGNR-based devices are calculated and studied in detail using the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3172302','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3172302"><span>Higuchi Dimension of Digital Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ahammer, Helmut</p> <p>2011-01-01</p> <p>There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied. PMID:21931854</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23366118','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23366118"><span>A coupling method for a cardiovascular simulation model which includes the Kalman filter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya</p> <p>2012-01-01</p> <p>Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014NIMPA.736...40Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014NIMPA.736...40Z"><span>Development of a software package for solid-angle calculations using the Monte Carlo method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai</p> <p>2014-02-01</p> <p>Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JHyd..287...49C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JHyd..287...49C"><span>Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chou, Tien-Yin; Lin, Wen-Tzu; Lin, Chao-Yuan; Chou, Wen-Chieh; Huang, Pi-Hui</p> <p>2004-02-01</p> <p>With the fast growing progress of computer technologies, spatial information on watersheds such as flow direction, watershed boundaries and the drainage network can be automatically calculated or extracted from a digital elevation model (DEM). The stubborn problem that depressions exist in DEMs has been frequently encountered while extracting the spatial information of terrain. Several filling-up methods have been proposed for solving depressions. However, their suitability for large-scale flat areas is inadequate. This study proposes a depression watershed method coupled with the Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEEs) theory to determine the optimal outlet and calculate the flow direction in depressions. Three processing procedures are used to derive the depressionless flow direction: (1) calculating the incipient flow direction; (2) establishing the depression watershed by tracing the upstream drainage area and determining the depression outlet using PROMETHEE theory; (3) calculating the depressionless flow direction. The developed method was used to delineate the Shihmen Reservoir watershed located in Northern Taiwan. The results show that the depression watershed method can effectively solve the shortcomings such as depression outlet differentiating and looped flow direction between depressions. The suitability of the proposed approach was verified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770063601&hterms=poe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpoe','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770063601&hterms=poe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpoe"><span>Two- and three-photon ionization of hydrogen and lithium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, T. N.; Poe, R. T.</p> <p>1977-01-01</p> <p>We present the detailed result of a calculation on two- and three-photon ionization of hydrogen and lithium based on a recently proposed calculational method. Our calculation has demonstrated that this method is capable of retaining the numerical advantages enjoyed by most of the existing calculational methods and, at the same time, circumventing their limitations. In particular, we have concentrated our discussion on the relative contribution from the resonant and nonresonant intermediate states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27833840','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27833840"><span>Calculation of recovery plasticity in multistage hot forging under isothermal conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhbankov, Iaroslav G; Perig, Alexander V; Aliieva, Leila I</p> <p>2016-01-01</p> <p>A widely used method for hot forming steels and alloys, especially heavy forging, is the process of multistage forging with pauses between stages. The well-known effect which accompanies multistage hot forging is metal plasticity recovery in comparison with monotonic deformation. A method which takes into consideration the recovery of plasticity in pauses between hot deformations of a billet under isothermal conditions is proposed. This method allows the prediction of billet forming limits as a function of deformation during the forging stage and the duration of the pause between the stages. This method takes into account the duration of pauses between deformations and the magnitude of subdivided deformations. A hot isothermal upsetting process with pauses was calculated by the proposed method. Results of the calculations have been confirmed with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4124712','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4124712"><span>Malware Analysis Using Visualized Image Matrices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Im, Eul Gyu</p> <p>2014-01-01</p> <p>This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLE.106..111X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLE.106..111X"><span>A holistic calibration method with iterative distortion compensation for stereo deflectometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian</p> <p>2018-07-01</p> <p>This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23231309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23231309"><span>Efficient implementation of the 3D-DDA ray traversal algorithm on GPU and its application in radiation dose calculation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiao, Kai; Chen, Danny Z; Hu, X Sharon; Zhou, Bo</p> <p>2012-12-01</p> <p>The three-dimensional digital differential analyzer (3D-DDA) algorithm is a widely used ray traversal method, which is also at the core of many convolution∕superposition (C∕S) dose calculation approaches. However, porting existing C∕S dose calculation methods onto graphics processing unit (GPU) has brought challenges to retaining the efficiency of this algorithm. In particular, straightforward implementation of the original 3D-DDA algorithm inflicts a lot of branch divergence which conflicts with the GPU programming model and leads to suboptimal performance. In this paper, an efficient GPU implementation of the 3D-DDA algorithm is proposed, which effectively reduces such branch divergence and improves performance of the C∕S dose calculation programs running on GPU. The main idea of the proposed method is to convert a number of conditional statements in the original 3D-DDA algorithm into a set of simple operations (e.g., arithmetic, comparison, and logic) which are better supported by the GPU architecture. To verify and demonstrate the performance improvement, this ray traversal method was integrated into a GPU-based collapsed cone convolution∕superposition (CCCS) dose calculation program. The proposed method has been tested using a water phantom and various clinical cases on an NVIDIA GTX570 GPU. The CCCS dose calculation program based on the efficient 3D-DDA ray traversal implementation runs 1.42 ∼ 2.67× faster than the one based on the original 3D-DDA implementation, without losing any accuracy. The results show that the proposed method can effectively reduce branch divergence in the original 3D-DDA ray traversal algorithm and improve the performance of the CCCS program running on GPU. Considering the wide utilization of the 3D-DDA algorithm, various applications can benefit from this implementation method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004IJTPE.124.1400A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004IJTPE.124.1400A"><span>A Novel TRM Calculation Method by Probabilistic Concept</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audomvongseree, Kulyos; Yokoyama, Akihiko; Verma, Suresh Chand; Nakachi, Yoshiki</p> <p></p> <p>In a new competitive environment, it becomes possible for the third party to access a transmission facility. From this structure, to efficiently manage the utilization of the transmission network, a new definition about Available Transfer Capability (ATC) has been proposed. According to the North American ElectricReliability Council (NERC)’s definition, ATC depends on several parameters, i. e. Total Transfer Capability (TTC), Transmission Reliability Margin (TRM), and Capacity Benefit Margin (CBM). This paper is focused on the calculation of TRM which is one of the security margin reserved for any uncertainty of system conditions. The TRM calculation by probabilistic method is proposed in this paper. Based on the modeling of load forecast error and error in transmission line limitation, various cases of transmission transfer capability and its related probabilistic nature can be calculated. By consideration of the proposed concept of risk analysis, the appropriate required amount of TRM can be obtained. The objective of this research is to provide realistic information on the actual ability of the network which may be an alternative choice for system operators to make an appropriate decision in the competitive market. The advantages of the proposed method are illustrated by application to the IEEJ-WEST10 model system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MeScT..29e5001H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MeScT..29e5001H"><span>Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin</p> <p>2018-05-01</p> <p>Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7510E..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7510E..08L"><span>Optimal algorithm to improve the calculation accuracy of energy deposition for betavoltaic MEMS batteries design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Sui-xian; Chen, Haiyang; Sun, Min; Cheng, Zaijun</p> <p>2009-11-01</p> <p>Aimed at improving the calculation accuracy when calculating the energy deposition of electrons traveling in solids, a method we call optimal subdivision number searching algorithm is proposed. When treating the energy deposition of electrons traveling in solids, large calculation errors are found, we are conscious of that it is the result of dividing and summing when calculating the integral. Based on the results of former research, we propose a further subdividing and summing method. For β particles with the energy in the entire spectrum span, the energy data is set only to be the integral multiple of keV, and the subdivision number is set to be from 1 to 30, then the energy deposition calculation error collections are obtained. Searching for the minimum error in the collections, we can obtain the corresponding energy and subdivision number pairs, as well as the optimal subdivision number. The method is carried out in four kinds of solid materials, Al, Si, Ni and Au to calculate energy deposition. The result shows that the calculation error is reduced by one order with the improved algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27814675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27814675"><span>SGFSC: speeding the gene functional similarity calculation based on hash tables.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tian, Zhen; Wang, Chunyu; Guo, Maozu; Liu, Xiaoyan; Teng, Zhixia</p> <p>2016-11-04</p> <p>In recent years, many measures of gene functional similarity have been proposed and widely used in all kinds of essential research. These methods are mainly divided into two categories: pairwise approaches and group-wise approaches. However, a common problem with these methods is their time consumption, especially when measuring the gene functional similarities of a large number of gene pairs. The problem of computational efficiency for pairwise approaches is even more prominent because they are dependent on the combination of semantic similarity. Therefore, the efficient measurement of gene functional similarity remains a challenging problem. To speed current gene functional similarity calculation methods, a novel two-step computing strategy is proposed: (1) establish a hash table for each method to store essential information obtained from the Gene Ontology (GO) graph and (2) measure gene functional similarity based on the corresponding hash table. There is no need to traverse the GO graph repeatedly for each method with the help of the hash table. The analysis of time complexity shows that the computational efficiency of these methods is significantly improved. We also implement a novel Speeding Gene Functional Similarity Calculation tool, namely SGFSC, which is bundled with seven typical measures using our proposed strategy. Further experiments show the great advantage of SGFSC in measuring gene functional similarity on the whole genomic scale. The proposed strategy is successful in speeding current gene functional similarity calculation methods. SGFSC is an efficient tool that is freely available at http://nclab.hit.edu.cn/SGFSC . The source code of SGFSC can be downloaded from http://pan.baidu.com/s/1dFFmvpZ .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97s5449I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97s5449I"><span>Contour integral method for obtaining the self-energy matrices of electrodes in electron transport calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwase, Shigeru; Futamura, Yasunori; Imakura, Akira; Sakurai, Tetsuya; Tsukamoto, Shigeru; Ono, Tomoya</p> <p>2018-05-01</p> <p>We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve an exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite-difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the freestanding silicene with the line defect originating from the reversed buckled phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJASS.tmp...16O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJASS.tmp...16O"><span>Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Omagari, Hiroki; Higashino, Shin-Ichiro</p> <p>2018-04-01</p> <p>In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21499274-hybrid-method-jm-ecs-combining-matrix-exterior-complex-scaling-methods-scattering-calculations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21499274-hybrid-method-jm-ecs-combining-matrix-exterior-complex-scaling-methods-scattering-calculations"><span>Hybrid method (JM-ECS) combining the J-matrix and exterior complex scaling methods for scattering calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vanroose, W.; Broeckhove, J.; Arickx, F.</p> <p></p> <p>The paper proposes a hybrid method for calculating scattering processes. It combines the J-matrix method with exterior complex scaling and an absorbing boundary condition. The wave function is represented as a finite sum of oscillator eigenstates in the inner region, and it is discretized on a grid in the outer region. The method is validated for a one- and a two-dimensional model with partial wave equations and a calculation of p-shell nuclear scattering with semirealistic interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6143..712N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6143..712N"><span>Real-time deformations of organ based on structural mechanics for surgical simulators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakaguchi, Toshiya; Tagaya, Masashi; Tamura, Nobuhiko; Tsumura, Norimichi; Miyake, Yoichi</p> <p>2006-03-01</p> <p>This research proposes the deformation model of organs for the development of the medical training system using Virtual Reality (VR) technology. First, the proposed model calculates the strains of coordinate axis. Secondly, the deformation is obtained by mapping the coordinate of the object to the strained coordinate. We assume the beams in the coordinate space to calculate the strain of the coordinate axis. The forces acting on the object are converted to the forces applied to the beams. The bend and the twist of the beams are calculated based on the theory of structural mechanics. The bend is derived by the finite element method. We propose two deformation methods which differ in the position of the beams in the coordinate space. One method locates the beams along the three orthogonal axes (x, y, z). Another method locates the beam in the area where the deformation is large. In addition, the strain of the coordinate axis is attenuated in proportion to the distance from the point of action to consider the attenuation of the stress which is a viscoelastic feature of the organs. The proposed model needs less computational cost compared to the conventional deformation method since our model does not need to divide the object into the elasticity element. The proposed model was implemented in the laparoscopic surgery training system, and a real-time deformation can be realized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920051717&hterms=millwater&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dmillwater','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920051717&hterms=millwater&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3Dmillwater"><span>Structural system reliability calculation using a probabilistic fault tree analysis method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.</p> <p>1992-01-01</p> <p>The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApGeo..14..407C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApGeo..14..407C"><span>Reflection full-waveform inversion using a modified phase misfit function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Chao; Huang, Jian-Ping; Li, Zhen-Chun; Liao, Wen-Yuan; Guan, Zhe</p> <p>2017-09-01</p> <p>Reflection full-waveform inversion (RFWI) updates the low- and highwavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..262a2095S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..262a2095S"><span>Increase in the Accuracy of Calculating Length of Horizontal Cable SCS in Civil Engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenov, A.</p> <p>2017-11-01</p> <p>A modification of the method for calculating the horizontal cable consumption of SCS established at civil engineering facilities is proposed. The proposed procedure preserves the prototype simplicity and provides a 5 percent accuracy increase. The values of the achieved accuracy are justified, their compliance with the practice of real projects is proved. The method is brought to the level of the engineering algorithm and formalized in the form of 12/70 rule.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26643079','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26643079"><span>FPGA Implementation of Heart Rate Monitoring System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Panigrahy, D; Rakshit, M; Sahu, P K</p> <p>2016-03-01</p> <p>This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84%, the sensitivity of 99.94% and the positive predictive value of 99.89%. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChOE...32...62Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChOE...32...62Z"><span>An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Peng-yuan; Huang, Xiao-ping</p> <p>2018-03-01</p> <p>Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10615E..4UL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10615E..4UL"><span>Robust digital image watermarking using distortion-compensated dither modulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Mianjie; Yuan, Xiaochen</p> <p>2018-04-01</p> <p>In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4865658','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4865658"><span>Visualizing Similarity of Appearance by Arrangement of Cards</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nakatsuji, Nao; Ihara, Hisayasu; Seno, Takeharu; Ito, Hiroshi</p> <p>2016-01-01</p> <p>This study proposes a novel method to extract the configuration of the psychological space by directly measuring subjects' similarity rating without computational work. Although multidimensional scaling (MDS) is well-known as a conventional method for extracting the psychological space, the method requires many pairwise evaluations. The times taken for evaluations increase in proportion to the square of the number of objects in MDS. The proposed method asks subjects to arrange cards on a poster sheet according to the degree of similarity of the objects. To compare the performance of the proposed method with the conventional one, we developed similarity maps of typefaces through the proposed method and through non-metric MDS. We calculated the trace correlation coefficient among all combinations of the configuration for both methods to evaluate the degree of similarity in the obtained configurations. The threshold value of trace correlation coefficient for statistically discriminating similar configuration was decided based on random data. The ratio of the trace correlation coefficient exceeding the threshold value was 62.0% so that the configurations of the typefaces obtained by the proposed method closely resembled those obtained by non-metric MDS. The required duration for the proposed method was approximately one third of the non-metric MDS's duration. In addition, all distances between objects in all the data for both methods were calculated. The frequency for the short distance in the proposed method was lower than that of the non-metric MDS so that a relatively small difference was likely to be emphasized among objects in the configuration by the proposed method. The card arrangement method we here propose, thus serves as a easier and time-saving tool to obtain psychological structures in the fields related to similarity of appearance. PMID:27242611</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7651E..1YX','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7651E..1YX"><span>A 3D model retrieval approach based on Bayesian networks lightfield descriptor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Qinhan; Li, Yanjun</p> <p>2009-12-01</p> <p>A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25602643','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25602643"><span>Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon</p> <p>2015-02-03</p> <p>Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.801a2081J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.801a2081J"><span>Distributed Factorization Computation on Multiple Volunteered Mobile Resource to Break RSA Key</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaya, I.; Hardi, S. M.; Tarigan, J. T.; Zamzami, E. M.; Sihombing, P.</p> <p>2017-01-01</p> <p>Similar to common asymmeric encryption, RSA can be cracked by usmg a series mathematical calculation. The private key used to decrypt the massage can be computed using the public key. However, finding the private key may require a massive amount of calculation. In this paper, we propose a method to perform a distributed computing to calculate RSA’s private key. The proposed method uses multiple volunteered mobile devices to contribute during the calculation process. Our objective is to demonstrate how the use of volunteered computing on mobile devices may be a feasible option to reduce the time required to break a weak RSA encryption and observe the behavior and running time of the application on mobile devices.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29848948','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29848948"><span>Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G</p> <p>2018-05-30</p> <p>Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApGeo..14..258F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApGeo..14..258F"><span>Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang</p> <p>2017-06-01</p> <p>Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/5729','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/5729"><span>Innovative methods for calculation of freeway travel time using limited data : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2008-01-01</p> <p>Description: Travel time estimations created by processing of simulated freeway loop detector data using proposed method have been compared with travel times reported from VISSIM model. An improved methodology was proposed to estimate freeway corrido...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.818a2001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.818a2001S"><span>Development of methods for analysis of knee articular cartilage degeneration by magnetic resonance imaging data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suponenkovs, Artjoms; Glazs, Aleksandrs; Platkajis, Ardis</p> <p>2017-03-01</p> <p>The aim of this paper is to describe the new methods for analyzing knee articular cartilage degeneration. The most important aspects regarding research about magnetic resonance imaging, knee joint anatomy, stages of knee osteoarthritis, medical image segmentation and relaxation times calculation. This paper proposes new methods for relaxation times calculation and medical image segmentation. The experimental part describes the most important aspect regarding analysing of articular cartilage relaxation times changing. This part contains experimental results, which show the codependence between relaxation times and organic structure. These experimental results and proposed methods can be helpful for early osteoarthritis diagnostics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1408801','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1408801"><span>High-Density Signal Interface Electromagnetic Radiation Prediction for Electromagnetic Compatibility Evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Halligan, Matthew</p> <p></p> <p>Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...87i2002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...87i2002A"><span>Improvement of calculation method for electrical parameters of short network of ore-thermal furnaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aliferov, A. I.; Bikeev, R. A.; Goreva, L. P.</p> <p>2017-10-01</p> <p>The paper describes a new calculation method for active and inductive resistance of split interleaved current leads packages in ore-thermal electric furnaces. The method is developed on basis of regression analysis of dependencies of active and inductive resistances of the packages on their geometrical parameters, mutual disposition and interleaving pattern. These multi-parametric calculations have been performed with ANSYS software. The proposed method allows solving split current lead electrical parameters minimization and balancing problems for ore-thermal furnaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SenIm..17...19Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SenIm..17...19Z"><span>A Method of Time-Intensity Curve Calculation for Vascular Perfusion of Uterine Fibroids Based on Subtraction Imaging with Motion Correction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Xinjian; Wu, Ruoyu; Li, Tao; Zhao, Dawei; Shan, Xin; Wang, Puling; Peng, Song; Li, Faqi; Wu, Baoming</p> <p>2016-12-01</p> <p>The time-intensity curve (TIC) from contrast-enhanced ultrasound (CEUS) image sequence of uterine fibroids provides important parameter information for qualitative and quantitative evaluation of efficacy of treatment such as high-intensity focused ultrasound surgery. However, respiration and other physiological movements inevitably affect the process of CEUS imaging, and this reduces the accuracy of TIC calculation. In this study, a method of TIC calculation for vascular perfusion of uterine fibroids based on subtraction imaging with motion correction is proposed. First, the fibroid CEUS recording video was decoded into frame images based on the record frame rate. Next, the Brox optical flow algorithm was used to estimate the displacement field and correct the motion between two frames based on warp technique. Then, subtraction imaging was performed to extract the positional distribution of vascular perfusion (PDOVP). Finally, the average gray of all pixels in the PDOVP from each image was determined, and this was considered the TIC of CEUS image sequence. Both the correlation coefficient and mutual information of the results with proposed method were larger than those determined using the original method. PDOVP extraction results have been improved significantly after motion correction. The variance reduction rates were all positive, indicating that the fluctuations of TIC had become less pronounced, and the calculation accuracy has been improved after motion correction. This proposed method can effectively overcome the influence of motion mainly caused by respiration and allows precise calculation of TIC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPJWC..9301051M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPJWC..9301051M"><span>Isospin symmetry breaking and large-scale shell-model calculations with the Sakurai-Sugiura method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mizusaki, Takahiro; Kaneko, Kazunari; Sun, Yang; Tazaki, Shigeru</p> <p>2015-05-01</p> <p>Recently isospin symmetry breaking for mass 60-70 region has been investigated based on large-scale shell-model calculations in terms of mirror energy differences (MED), Coulomb energy differences (CED) and triplet energy differences (TED). Behind these investigations, we have encountered a subtle problem in numerical calculations for odd-odd N = Z nuclei with large-scale shell-model calculations. Here we focus on how to solve this subtle problem by the Sakurai-Sugiura (SS) method, which has been recently proposed as a new diagonalization method and has been successfully applied to nuclear shell-model calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/218510-new-self-shielding-method-based-detailed-cross-section-representation-resolved-energy-domain','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/218510-new-self-shielding-method-based-detailed-cross-section-representation-resolved-energy-domain"><span>A new self-shielding method based on a detailed cross-section representation in the resolved energy domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saygin, H.; Hebert, A.</p> <p></p> <p>The calculation of a dilution cross section {bar {sigma}}{sub e} is the most important step in the self-shielding formalism based on the equivalence principle. If a dilution cross section that accurately characterizes the physical situation can be calculated, it can then be used for calculating the effective resonance integrals and obtaining accurate self-shielded cross sections. A new technique for the calculation of equivalent cross sections based on the formalism of Riemann integration in the resolved energy domain is proposed. This new method is compared to the generalized Stamm`ler method, which is also based on an equivalence principle, for a two-regionmore » cylindrical cell and for a small pressurized water reactor assembly in two dimensions. The accuracy of each computing approach is obtained using reference results obtained from a fine-group slowing-down code named CESCOL. It is shown that the proposed method leads to slightly better performance than the generalized Stamm`ler approach.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJTJE..35...35D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJTJE..35...35D"><span>A Generalized Method for the Comparable and Rigorous Calculation of the Polytropic Efficiencies of Turbocompressors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dimitrakopoulos, Panagiotis</p> <p>2018-03-01</p> <p>The calculation of polytropic efficiencies is a very important task, especially during the development of new compression units, like compressor impellers, stages and stage groups. Such calculations are also crucial for the determination of the performance of a whole compressor. As processors and computational capacities have substantially been improved in the last years, the need for a new, rigorous, robust, accurate and at the same time standardized method merged, regarding the computation of the polytropic efficiencies, especially based on thermodynamics of real gases. The proposed method is based on the rigorous definition of the polytropic efficiency. The input consists of pressure and temperature values at the end points of the compression path (suction and discharge), for a given working fluid. The average relative error for the studied cases was 0.536 %. Thus, this high-accuracy method is proposed for efficiency calculations related with turbocompressors and their compression units, especially when they are operating at high power levels, for example in jet engines and high-power plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptCo.412...80S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptCo.412...80S"><span>Fast, large-scale hologram calculation in wavelet domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi</p> <p>2018-04-01</p> <p>We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10448E..1ZW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10448E..1ZW"><span>An optimized method to calculate error correction capability of tool influence function in frequency domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan</p> <p>2017-10-01</p> <p>An optimized method to calculate error correction capability of tool influence function (TIF) in certain polishing conditions will be proposed based on smoothing spectral function. The basic mathematical model for this method will be established in theory. A set of polishing experimental data with rigid conformal tool is used to validate the optimized method. The calculated results can quantitatively indicate error correction capability of TIF for different spatial frequency errors in certain polishing conditions. The comparative analysis with previous method shows that the optimized method is simpler in form and can get the same accuracy results with less calculating time in contrast to previous method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21149051-calculation-method-lateral-strengths-ductility-factors-constructions-shear-walls-different-ductility','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21149051-calculation-method-lateral-strengths-ductility-factors-constructions-shear-walls-different-ductility"><span>Calculation Method of Lateral Strengths and Ductility Factors of Constructions with Shear Walls of Different Ductility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yamaguchi, Nobuyoshi; Nakao, Masato; Murakami, Masahide</p> <p>2008-07-08</p> <p>For seismic design, ductility-related force modification factors are named R factor in Uniform Building Code of U.S, q factor in Euro Code 8 and Ds (inverse of R) factor in Japanese Building Code. These ductility-related force modification factors for each type of shear elements are appeared in those codes. Some constructions use various types of shear walls that have different ductility, especially for their retrofit or re-strengthening. In these cases, engineers puzzle the decision of force modification factors of the constructions. Solving this problem, new method to calculate lateral strengths of stories for simple shear wall systems is proposed andmore » named 'Stiffness--Potential Energy Addition Method' in this paper. This method uses two design lateral strengths for each type of shear walls in damage limit state and safety limit state. Two lateral strengths of stories in both limit states are calculated from these two design lateral strengths for each type of shear walls in both limit states. Calculated strengths have the same quality as values obtained by strength addition method using many steps of load-deformation data of shear walls. The new method to calculate ductility factors is also proposed in this paper. This method is based on the new method to calculate lateral strengths of stories. This method can solve the problem to obtain ductility factors of stories with shear walls of different ductility.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212.2159S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212.2159S"><span>Finite-element solution to multidimensional multisource electromagnetic problems in the frequency domain using non-conforming meshes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloveichik, Yury G.; Persova, Marina G.; Domnikov, Petr A.; Koshkina, Yulia I.; Vagin, Denis V.</p> <p>2018-03-01</p> <p>We propose an approach to solving multisource induction logging problems in multidimensional media. According to the type of induction logging tools, the measurements are performed in the frequency range of 10 kHz to 14 MHz, transmitter-receiver offsets vary in the range of 0.5-8 m or more, and the trajectory length is up to 1 km. For calculating the total field, the primary-secondary field approach is used. The secondary field is calculated with the use of the finite-element method (FEM), irregular non-conforming meshes with local refinements and a direct solver. The approach to constructing basis functions with the continuous tangential components (from Hcurl(Ω)) on the non-conforming meshes from the standard shape vector functions is developed. On the basis of this method, the algorithm of generating global matrices and a vector of the finite-element equation system is proposed. We also propose the method of grouping the logging tool positions, which makes it possible to significantly increase the computational effectiveness. This is achieved due to the compromise between the possibility of using the 1-D background medium, which is very similar to the investigated multidimensional medium for a small group, and the decrease in the number of the finite-element matrix factorizations with the increasing number of tool positions in one group. For calculating the primary field, we propose the method based on the use of FEM. This method is highly effective when the 1-D field is required to be calculated at a great number of points. The use of this method significantly increases the effectiveness of the primary-secondary field approach. The proposed approach makes it possible to perform modelling both in the 2.5-D case (i.e. without taking into account a borehole and/or invasion zone effect) and the 3-D case (i.e. for models with a borehole and invasion zone). The accuracy of numerical results obtained with the use of the proposed approach is compared with the one obtained by other codes for 1-D and 3-D anisotropic models. The results of this comparison lend support to the validity of our code. We also present the numerical results proving greater effectiveness of the finite-element approach proposed for calculating the 1-D field in comparison with the known codes implementing the semi-analytical methods for the case in which the field is calculated at a large number of points. Additionally, we present the numerical results which confirm the accuracy advantages of the automatic choice of a background medium for calculating the 1-D field as well as the results of 2.5-D modelling for a geoelectrical model with anisotropic layers, a fault and long tool-movement trajectory with the varying dip angle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.345..475S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.345..475S"><span>Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua</p> <p>2017-09-01</p> <p>In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29761990','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29761990"><span>[A computer tomography assisted method for the automatic detection of region of interest in dynamic kidney images].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jing, Xueping; Zheng, Xiujuan; Song, Shaoli; Liu, Kai</p> <p>2017-12-01</p> <p>Glomerular filtration rate (GFR), which can be estimated by Gates method with dynamic kidney single photon emission computed tomography (SPECT) imaging, is a key indicator of renal function. In this paper, an automatic computer tomography (CT)-assisted detection method of kidney region of interest (ROI) is proposed to achieve the objective and accurate GFR calculation. In this method, the CT coronal projection image and the enhanced SPECT synthetic image are firstly generated and registered together. Then, the kidney ROIs are delineated using a modified level set algorithm. Meanwhile, the background ROIs are also obtained based on the kidney ROIs. Finally, the value of GFR is calculated via Gates method. Comparing with the clinical data, the GFR values estimated by the proposed method were consistent with the clinical reports. This automatic method can improve the accuracy and stability of kidney ROI detection for GFR calculation, especially when the kidney function has been severely damaged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375076','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5375076"><span>An Adaptive Nonlinear Basal-Bolus Calculator for Patients With Type 1 Diabetes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Boiroux, Dimitri; Aradóttir, Tinna Björk; Nørgaard, Kirsten; Poulsen, Niels Kjølstad; Madsen, Henrik; Jørgensen, John Bagterp</p> <p>2016-01-01</p> <p>Background: Bolus calculators help patients with type 1 diabetes to mitigate the effect of meals on their blood glucose by administering a large amount of insulin at mealtime. Intraindividual changes in patients physiology and nonlinearity in insulin-glucose dynamics pose a challenge to the accuracy of such calculators. Method: We propose a method based on a continuous-discrete unscented Kalman filter to continuously track the postprandial glucose dynamics and the insulin sensitivity. We augment the Medtronic Virtual Patient (MVP) model to simulate noise-corrupted data from a continuous glucose monitor (CGM). The basal rate is determined by calculating the steady state of the model and is adjusted once a day before breakfast. The bolus size is determined by optimizing the postprandial glucose values based on an estimate of the insulin sensitivity and states, as well as the announced meal size. Following meal announcements, the meal compartment and the meal time constant are estimated, otherwise insulin sensitivity is estimated. Results: We compare the performance of a conventional linear bolus calculator with the proposed bolus calculator. The proposed basal-bolus calculator significantly improves the time spent in glucose target (P < .01) compared to the conventional bolus calculator. Conclusion: An adaptive nonlinear basal-bolus calculator can efficiently compensate for physiological changes. Further clinical studies will be needed to validate the results. PMID:27613658</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=80575&keyword=Language+AND+Development&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=80575&keyword=Language+AND+Development&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CRYPTOSPORIDIUM LOG INACTIVATION CALCULATION METHODS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Appendix O of the Surface Water Treatment Rule (SWTR) Guidance Manual introduces the CeffT10 (i.e., reaction zone outlet C value and T10 time) method for calculating ozone CT value and Giardia and virus log inactivation. The LT2ESWTR Pre-proposal Draft Regulatory Language for St...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26287203','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26287203"><span>Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan</p> <p>2015-08-14</p> <p>High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4570409','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4570409"><span>Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan</p> <p>2015-01-01</p> <p>High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms. PMID:26287203</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29743010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29743010"><span>An automatic method to calculate heart rate from zebrafish larval cardiac videos.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kang, Chia-Pin; Tu, Hung-Chi; Fu, Tzu-Fun; Wu, Jhe-Ming; Chu, Po-Hsun; Chang, Darby Tien-Hao</p> <p>2018-05-09</p> <p>Zebrafish is a widely used model organism for studying heart development and cardiac-related pathogenesis. With the ability of surviving without a functional circulation at larval stages, strong genetic similarity between zebrafish and mammals, prolific reproduction and optically transparent embryos, zebrafish is powerful in modeling mammalian cardiac physiology and pathology as well as in large-scale high throughput screening. However, an economical and convenient tool for rapid evaluation of fish cardiac function is still in need. There have been several image analysis methods to assess cardiac functions in zebrafish embryos/larvae, but they are still improvable to reduce manual intervention in the entire process. This work developed a fully automatic method to calculate heart rate, an important parameter to analyze cardiac function, from videos. It contains several filters to identify the heart region, to reduce video noise and to calculate heart rates. The proposed method was evaluated with 32 zebrafish larval cardiac videos that were recording at three-day post-fertilization. The heart rate measured by the proposed method was comparable to that determined by manual counting. The experimental results show that the proposed method does not lose accuracy while largely reducing the labor cost and uncertainty of manual counting. With the proposed method, researchers do not have to manually select a region of interest before analyzing videos. Moreover, filters designed to reduce video noise can alleviate background fluctuations during the video recording stage (e.g. shifting), which makes recorders generate usable videos easily and therefore reduce manual efforts while recording.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21596245','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21596245"><span>Spherotoric bag-in-the-lens intraocular lens: power calculation and predictive misalignment nomogram.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gobin, Laure; Tassignon, Marie-José; Mathysen, Danny</p> <p>2011-06-01</p> <p>To propose a method of calculating the power of the 1-sided posterior chamber toric bag-in-the-lens (BIL) intraocular lens (IOL) and propose a misalignment nomogram to calculate the postoperative rotational misalignment or predict the effect of preoperative existing irregular corneal astigmatism. Antwerp University Hospital, Department of Ophthalmology, Antwerp, Belgium. Cohort study. The new IOL calculation formula uses the steepest corneal meridian and flattest corneal meridian separately (regular spherical IOL formula) followed by a customized A-constant approach based on the changes in the IOL principal plane depending on the spherical and cylindrical powers (thickness) of the IOL. The calculation of the remaining astigmatism (power and axis) in cases of postoperative rotational misalignment resulted in a nomogram that can also be used to predict the degree of tolerance for irregular corneal astigmatism correction at the lenticular plane. The calculation is performed using a worksheet. Because 10 degrees of misalignment would result in 35% refractive inaccuracy, it is the maximum acceptable corneal astigmatic irregularity for correction at the lenticular plane. Calculation of spherocylindrical power is specific to each toric IOL. Because the surgeon must fully understand the optical properties of the toric IOL that is going to be implanted, a comprehensive outline of a new calculation method specific to the toric BIL IOL is proposed. Primary rotational misalignment of the toric BIL IOL can be fine tuned postoperatively. Drs. Gobin and Mathysen have no financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ITEIS.126.1441Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ITEIS.126.1441Y"><span>Real-time Continuous Assessment Method for Mental and Physiological Condition using Heart Rate Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro</p> <p></p> <p>It is necessary to monitor the daily health condition for preventing stress syndrome. In this study, it was proposed the method assessing the mental and physiological condition, such as the work stress or the relaxation, using heart rate variability at real time and continuously. The instantanuous heart rate (HR), and the ratio of the number of extreme points (NEP) and the number of heart beats were calculated for assessing mental and physiological condition. In this method, 20 beats heart rate were used to calculate these indexes. These were calculated in one beat interval. Three conditions, which are sitting rest, performing mental arithmetic and watching relaxation movie, were assessed using our proposed algorithm. The assessment accuracies were 71.9% and 55.8%, when performing mental arithmetic and watching relaxation movie respectively. In this method, the mental and physiological condition was assessed using only 20 regressive heart beats, so this method is considered as the real time assessment method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22156593-shafarevich-paper-general-reciprocity-law','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22156593-shafarevich-paper-general-reciprocity-law"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vostokov, S V</p> <p></p> <p>A new method for calculating an explicit form of the Hilbert pairing is proposed. It is used to calculate the Hilbert pairing in a classical local field and in a complete higher-dimensional field. Bibliography: 25 titles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16623473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16623473"><span>Zero-point energy constraint in quasi-classical trajectory calculations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Zhen; Bowman, Joel M</p> <p>2006-04-27</p> <p>A method to constrain the zero-point energy in quasi-classical trajectory calculations is proposed and applied to the Henon-Heiles system. The main idea of this method is to smoothly eliminate the coupling terms in the Hamiltonian as the energy of any mode falls below a specified value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-01-09/pdf/2012-112.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-01-09/pdf/2012-112.pdf"><span>77 FR 1107 - Self-Regulatory Organizations; Options Clearing Corporation; Notice of Filing of Proposed Rule...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-01-09</p> <p>..., (4) exercise price, (5) American or European exercise style, and (6) method of calculating settlement...) expiration date; (5) American or European exercise style; and (6) method of calculating exercise settlement... management for these OTC options present any difficult challenges. Nevertheless, as discussed further below...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....109..149C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....109..149C"><span>Automatic extraction of blocks from 3D point clouds of fractured rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Na; Kemeny, John; Jiang, Qinghui; Pan, Zhiwen</p> <p>2017-12-01</p> <p>This paper presents a new method for extracting blocks and calculating block size automatically from rock surface 3D point clouds. Block size is an important rock mass characteristic and forms the basis for several rock mass classification schemes. The proposed method consists of four steps: 1) the automatic extraction of discontinuities using an improved Ransac Shape Detection method, 2) the calculation of discontinuity intersections based on plane geometry, 3) the extraction of block candidates based on three discontinuities intersecting one another to form corners, and 4) the identification of "true" blocks using an improved Floodfill algorithm. The calculated block sizes were compared with manual measurements in two case studies, one with fabricated cardboard blocks and the other from an actual rock mass outcrop. The results demonstrate that the proposed method is accurate and overcomes the inaccuracies, safety hazards, and biases of traditional techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JChPh.141p4109O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JChPh.141p4109O"><span>Exact stochastic unraveling of an optical coherence dynamics by cumulant expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olšina, Jan; Kramer, Tobias; Kreisbeck, Christoph; Mančal, Tomáš</p> <p>2014-10-01</p> <p>A numerically exact Monte Carlo scheme for calculation of open quantum system dynamics is proposed and implemented. The method consists of a Monte Carlo summation of a perturbation expansion in terms of trajectories in Liouville phase-space with respect to the coupling between the excited states of the molecule. The trajectories are weighted by a complex decoherence factor based on the second-order cumulant expansion of the environmental evolution. The method can be used with an arbitrary environment characterized by a general correlation function and arbitrary coupling strength. It is formally exact for harmonic environments, and it can be used with arbitrary temperature. Time evolution of an optically excited Frenkel exciton dimer representing a molecular exciton interacting with a charge transfer state is calculated by the proposed method. We calculate the evolution of the optical coherence elements of the density matrix and linear absorption spectrum, and compare them with the predictions of standard simulation methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5328968','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5328968"><span>Cross-Cultural Adaptation and Validation of the MPAM-R to Brazilian Portuguese and Proposal of a New Method to Calculate Factor Scores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Albuquerque, Maicon R.; Lopes, Mariana C.; de Paula, Jonas J.; Faria, Larissa O.; Pereira, Eveline T.; da Costa, Varley T.</p> <p>2017-01-01</p> <p>In order to understand the reasons that lead individuals to practice physical activity, researchers developed the Motives for Physical Activity Measure-Revised (MPAM-R) scale. In 2010, a translation of MPAM-R to Portuguese and its validation was performed. However, psychometric measures were not acceptable. In addition, factor scores in some sports psychology scales are calculated by the mean of scores by items of the factor. Nevertheless, it seems appropriate that items with higher factor loadings, extracted by Factor Analysis, have greater weight in the factor score, as items with lower factor loadings have less weight in the factor score. The aims of the present study are to translate, validate the MPAM-R for Portuguese versions, and investigate agreement between two methods used to calculate factor scores. Three hundred volunteers who were involved in physical activity programs for at least 6 months were collected. Confirmatory Factor Analysis of the 30 items indicated that the version did not fit the model. After excluding four items, the final model with 26 items showed acceptable model fit measures by Exploratory Factor Analysis, as well as it conceptually supports the five factors as the original proposal. When two methods are compared to calculate factors scores, our results showed that only “Enjoyment” and “Appearance” factors showed agreement between methods to calculate factor scores. So, the Portuguese version of the MPAM-R can be used in a Brazilian context, and a new proposal for the calculation of the factor score seems to be promising. PMID:28293203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.784a2050E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.784a2050E"><span>The methods of optical physics as a mean of the objects’ molecular structure identification (on the base of the research of dophamine and adrenaline molecules)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elkin, M. D.; Alykova, O. M.; Smirnov, V. V.; Stefanova, G. P.</p> <p>2017-01-01</p> <p>Structural and dynamic models of dopamine and adrenaline are proposed on the basis of ab initio quantum calculations of the geometric and electronic structure. The parameters of the adiabatic potential are determined, a vibrational states interpretation of the test compound is proposed in this work. The analysis of the molecules conformational structure of the substance is made. A method for calculating the shifts of vibrational excitation frequencies in 1,2,4-threesubstituted of benzole is presented. It is based on second order perturbation theory. A choice of method and basis for calculation of a fundamental vibrations frequencies and intensities of the bands in the IR and Raman spectra is justified. The technique for evaluation of anharmonicity with cubic and quartic force constants is described. The paper presents the results of numerical experiments, geometric parameters of molecules, such as the valence bond lengths and angles between them. We obtain the frequency of the vibrational states and values of their integrated intensities. The interpretation of vibration of conformers is given. The results are in good agreement with experimental values. Proposed frequency can be used to identify the compounds of the vibrational spectra of molecules. The calculation was performed quantum density functional method DFT/B3LYP. It is shown that this method can be used to modeling the geometrical parameters molecular and electronic structure of various substituted of benzole. It allows us to construct the structural-dynamic models of this class of compounds by numerical calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28211014','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28211014"><span>Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J Valentine, Stephen</p> <p>2017-05-01</p> <p>Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed. Graphical Abstract ᅟ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASMS..28..947G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASMS..28..947G"><span>Comprehensive Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 1. An Advanced Protocol for Molecular Dynamics Simulations and Collision Cross-Section Calculation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghassabi Kondalaji, Samaneh; Khakinejad, Mahdiar; Tafreshian, Amirmahdi; J. Valentine, Stephen</p> <p>2017-05-01</p> <p>Collision cross-section (CCS) measurements with a linear drift tube have been utilized to study the gas-phase conformers of a model peptide (acetyl-PAAAAKAAAAKAAAAKAAAAK). Extensive molecular dynamics (MD) simulations have been conducted to derive an advanced protocol for the generation of a comprehensive pool of in-silico structures; both higher energy and more thermodynamically stable structures are included to provide an unbiased sampling of conformational space. MD simulations at 300 K are applied to the in-silico structures to more accurately describe the gas-phase transport properties of the ion conformers including their dynamics. Different methods used previously for trajectory method (TM) CCS calculation employing the Mobcal software [1] are evaluated. A new method for accurate CCS calculation is proposed based on clustering and data mining techniques. CCS values are calculated for all in-silico structures, and those with matching CCS values are chosen as candidate structures. With this approach, more than 300 candidate structures with significant structural variation are produced; although no final gas-phase structure is proposed here, in a second installment of this work, gas-phase hydrogen deuterium exchange data will be utilized as a second criterion to select among these structures as well as to propose relative populations for these ion conformers. Here the need to increase conformer diversity and accurate CCS calculation is demonstrated and the advanced methods are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28852979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28852979"><span>Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher</p> <p>2017-09-01</p> <p>Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29604690','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29604690"><span>Evaluation of radiation loading on finite cylindrical shells using the fast Fourier transform: A comparison with direct numerical integration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, S X; Zou, M S</p> <p>2018-03-01</p> <p>The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040075666&hterms=nucleation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnucleation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040075666&hterms=nucleation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnucleation"><span>Verification of an Analytical Method for Measuring Crystal Nucleation Rates in Glasses from DTA Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ranasinghe, K. S.; Wei, P. F.; Kelton, K. F.; Ray, C. S.; Day, D. E.</p> <p>2004-01-01</p> <p>A recently proposed analytical (DTA) method for estimating the nucleation rates in glasses has been evaluated by comparing experimental data with numerically computed nucleation rates for a model lithium disilicate glass. The time and temperature dependent nucleation rates were predicted using the model and compared with those values from an analysis of numerically calculated DTA curves. The validity of the numerical approach was demonstrated earlier by a comparison with experimental data. The excellent agreement between the nucleation rates from the model calculations and fiom the computer generated DTA data demonstrates the validity of the proposed analytical DTA method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26754057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26754057"><span>Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suk, Heejun</p> <p>2016-07-01</p> <p>MT3DMS, a modular three-dimensional multispecies transport model, has long been a popular model in the groundwater field for simulating solute transport in the saturated zone. However, the method of characteristics (MOC), modified MOC (MMOC), and hybrid MOC (HMOC) included in MT3DMS did not treat Cauchy boundary conditions in a straightforward or rigorous manner, from a mathematical point of view. The MOC, MMOC, and HMOC regard the Cauchy boundary as a source condition. For the source, MOC, MMOC, and HMOC calculate the Lagrangian concentration by setting it equal to the cell concentration at an old time level. However, the above calculation is an approximate method because it does not involve backward tracking in MMOC and HMOC or allow performing forward tracking at the source cell in MOC. To circumvent this problem, a new scheme is proposed that avoids direct calculation of the Lagrangian concentration on the Cauchy boundary. The proposed method combines the numerical formulations of two different schemes, the finite element method (FEM) and the Eulerian-Lagrangian method (ELM), into one global matrix equation. This study demonstrates the limitation of all MT3DMS schemes, including MOC, MMOC, HMOC, and a third-order total-variation-diminishing (TVD) scheme under Cauchy boundary conditions. By contrast, the proposed method always shows good agreement with the exact solution, regardless of the flow conditions. Finally, the successful application of the proposed method sheds light on the possible flexibility and capability of the MT3DMS to deal with the mass transport problems of all flow regimes. © 2016, National Ground Water Association.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJAEO..61...46R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJAEO..61...46R"><span>Experimental tests and radiometric calculations for the feasibility of fluorescence LIDAR-based discrimination of oil spills from UAV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raimondi, Valentina; Palombi, Lorenzo; Lognoli, David; Masini, Andrea; Simeone, Emilio</p> <p>2017-09-01</p> <p>This paper presents experimental tests and radiometric calculations for the feasibility of an ultra-compact fluorescence LIDAR from an Unmanned Air Vehicle (UAV) for the characterisation of oil spills in natural waters. The first step of this study was to define the experimental conditions for a LIDAR and its budget constraints on the basis of the specifications of small UAVs already available on the market. The second step consisted of a set of fluorescence LIDAR measurements on oil spills in the laboratory in order to propose a simplified discrimination method and to calculate the oil fluorescence conversion efficiency. Lastly, the main technical specifications of the payload were defined and radiometric calculations carried out to evaluate the performances of both the payload and the proposed discrimination method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..322e2011W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..322e2011W"><span>Thai Language Sentence Similarity Computation Based on Syntactic Structure and Semantic Vector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Hongbin; Feng, Yinhan; Cheng, Liang</p> <p>2018-03-01</p> <p>Sentence similarity computation plays an increasingly important role in text mining, Web page retrieval, machine translation, speech recognition and question answering systems. Thai language as a kind of resources scarce language, it is not like Chinese language with HowNet and CiLin resources. So the Thai sentence similarity research faces some challenges. In order to solve this problem of the Thai language sentence similarity computation. This paper proposes a novel method to compute the similarity of Thai language sentence based on syntactic structure and semantic vector. This method firstly uses the Part-of-Speech (POS) dependency to calculate two sentences syntactic structure similarity, and then through the word vector to calculate two sentences semantic similarity. Finally, we combine the two methods to calculate two Thai language sentences similarity. The proposed method not only considers semantic, but also considers the sentence syntactic structure. The experiment result shows that this method in Thai language sentence similarity computation is feasible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3825052','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3825052"><span>Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Watanabe, Takashi</p> <p>2013-01-01</p> <p>The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20692696-carcass-functions-variational-calculations-few-body-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20692696-carcass-functions-variational-calculations-few-body-systems"><span>Carcass Functions in Variational Calculations for Few-Body Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Donchev, A.G.; Kalachev, S.A.; Kolesnikov, N.N.</p> <p></p> <p>For variational calculations of molecular and nuclear systems involving a few particles, it is proposed to use carcass basis functions that generalize exponential and Gaussian trial functions. It is shown that the matrix elements of the Hamiltonian are expressed in a closed form for a Coulomb potential, as well as for other popular particle-interaction potentials. The use of such carcass functions in two-center Coulomb problems reduces, in relation to other methods, the number of terms in a variational expansion by a few orders of magnitude at a commensurate or even higher accuracy. The efficiency of the method is illustrated bymore » calculations of the three-particle Coulomb systems {mu}{mu}e, ppe, dde, and tte and the four-particle molecular systems H{sub 2} and HeH{sup +} of various isotopic composition. By considering the example of the {sub {lambda}}{sup 9}Be hypernucleus, it is shown that the proposed method can be used in calculating nuclear systems as well.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23A0201F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23A0201F"><span>Proposal of a method for evaluating tsunami risk using response-surface methodology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukutani, Y.</p> <p>2017-12-01</p> <p>Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface and Monte Carlo simulation without conducting multiple tsunami numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.1199L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.1199L"><span>Accurately Calculating the Solar Orientation of the TIANGONG-2 Ultraviolet Forward Spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z.; Li, S.</p> <p>2018-04-01</p> <p>The Ultraviolet Forward Spectrometer is a new type of spectrometer for monitoring the vertical distribution of atmospheric trace gases in the global middle atmosphere. It is on the TianGong-2 space laboratory, which was launched on 15 September 2016. The spectrometer uses a solar calibration mode to modify its irradiance. Accurately calculating the solar orientation is a prerequisite of spectral calibration for the Ultraviolet Forward Spectrometer. In this paper, a method of calculating the solar orientation is proposed according to the imaging geometric characteristics of the spectrometer. Firstly, the solar orientation in the horizontal rectangular coordinate system is calculated based on the solar declination angle algorithm proposed by Bourges and the solar hour angle algorithm proposed by Lamm. Then, the solar orientation in the sensor coordinate system is achieved through several coordinate system transforms. Finally, we calculate the solar orientation in the sensor coordinate system and evaluate its calculation accuracy using actual orbital data of TianGong-2. The results show that the accuracy is close to the simulation method with STK (Satellite Tool Kit), and the error is not more than 2 %. The algorithm we present does not need a lot of astronomical knowledge, but only needs some observation parameters provided by TianGong-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..232a2039G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..232a2039G"><span>An alternative method for centrifugal compressor loading factor modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.</p> <p>2017-08-01</p> <p>The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5786922','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5786922"><span>Effects of disease severity distribution on the performance of quantitative diagnostic methods and proposal of a novel ‘V-plot’ methodology to display accuracy values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dehbi, Hakim-Moulay; Howard, James P; Shun-Shin, Matthew J; Sen, Sayan; Nijjer, Sukhjinder S; Mayet, Jamil; Davies, Justin E; Francis, Darrel P</p> <p>2018-01-01</p> <p>Background Diagnostic accuracy is widely accepted by researchers and clinicians as an optimal expression of a test’s performance. The aim of this study was to evaluate the effects of disease severity distribution on values of diagnostic accuracy as well as propose a sample-independent methodology to calculate and display accuracy of diagnostic tests. Methods and findings We evaluated the diagnostic relationship between two hypothetical methods to measure serum cholesterol (Cholrapid and Cholgold) by generating samples with statistical software and (1) keeping the numerical relationship between methods unchanged and (2) changing the distribution of cholesterol values. Metrics of categorical agreement were calculated (accuracy, sensitivity and specificity). Finally, a novel methodology to display and calculate accuracy values was presented (the V-plot of accuracies). Conclusion No single value of diagnostic accuracy can be used to describe the relationship between tests, as accuracy is a metric heavily affected by the underlying sample distribution. Our novel proposed methodology, the V-plot of accuracies, can be used as a sample-independent measure of a test performance against a reference gold standard. PMID:29387424</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992QuEle..22..840A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992QuEle..22..840A"><span>FIBER OPTICS: Method of calculation of the propagation constant for guided modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardasheva, L. I.; Sadykov, Nail R.; Chernyakov, V. E.</p> <p>1992-09-01</p> <p>A new method of calculating the propagation constants and wave eigenfunctions of guided modes is proposed for axisymmetric translationally invariant fiber-optic waveguides with arbitrary refractive index profiles. The method is based on solving a parabolic scalar wave equation. A comparison is made between the numerical solution under steady-state conditions and the eigenfunctions of single-mode and multimode waveguides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999ITNS...46.2197S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999ITNS...46.2197S"><span>A new method for photon transport in Monte Carlo simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, T.; Ogawa, K.</p> <p>1999-12-01</p> <p>Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JQSRT.115...78T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JQSRT.115...78T"><span>Retrieval of spheroid particle size distribution from spectral extinction data in the independent mode using PCA approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Hong; Lin, Jian-Zhong</p> <p>2013-01-01</p> <p>An improved anomalous diffraction approximation (ADA) method is presented for calculating the extinction efficiency of spheroids firstly. In this approach, the extinction efficiency of spheroid particles can be calculated with good accuracy and high efficiency in a wider size range by combining the Latimer method and the ADA theory, and this method can present a more general expression for calculating the extinction efficiency of spheroid particles with various complex refractive indices and aspect ratios. Meanwhile, the visible spectral extinction with varied spheroid particle size distributions and complex refractive indices is surveyed. Furthermore, a selection principle about the spectral extinction data is developed based on PCA (principle component analysis) of first derivative spectral extinction. By calculating the contribution rate of first derivative spectral extinction, the spectral extinction with more significant features can be selected as the input data, and those with less features is removed from the inversion data. In addition, we propose an improved Tikhonov iteration method to retrieve the spheroid particle size distributions in the independent mode. Simulation experiments indicate that the spheroid particle size distributions obtained with the proposed method coincide fairly well with the given distributions, and this inversion method provides a simple, reliable and efficient method to retrieve the spheroid particle size distributions from the spectral extinction data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810037630&hterms=least+squares+matrix&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dleast%2Bsquares%2Bmatrix','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810037630&hterms=least+squares+matrix&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dleast%2Bsquares%2Bmatrix"><span>On the method of least squares. II. [for calculation of covariance matrices and optimization algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jefferys, W. H.</p> <p>1981-01-01</p> <p>A least squares method proposed previously for solving a general class of problems is expanded in two ways. First, covariance matrices related to the solution are calculated and their interpretation is given. Second, improved methods of solving the normal equations related to those of Marquardt (1963) and Fletcher and Powell (1963) are developed for this approach. These methods may converge in cases where Newton's method diverges or converges slowly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29387424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29387424"><span>Effects of disease severity distribution on the performance of quantitative diagnostic methods and proposal of a novel 'V-plot' methodology to display accuracy values.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Petraco, Ricardo; Dehbi, Hakim-Moulay; Howard, James P; Shun-Shin, Matthew J; Sen, Sayan; Nijjer, Sukhjinder S; Mayet, Jamil; Davies, Justin E; Francis, Darrel P</p> <p>2018-01-01</p> <p>Diagnostic accuracy is widely accepted by researchers and clinicians as an optimal expression of a test's performance. The aim of this study was to evaluate the effects of disease severity distribution on values of diagnostic accuracy as well as propose a sample-independent methodology to calculate and display accuracy of diagnostic tests. We evaluated the diagnostic relationship between two hypothetical methods to measure serum cholesterol (Chol rapid and Chol gold ) by generating samples with statistical software and (1) keeping the numerical relationship between methods unchanged and (2) changing the distribution of cholesterol values. Metrics of categorical agreement were calculated (accuracy, sensitivity and specificity). Finally, a novel methodology to display and calculate accuracy values was presented (the V-plot of accuracies). No single value of diagnostic accuracy can be used to describe the relationship between tests, as accuracy is a metric heavily affected by the underlying sample distribution. Our novel proposed methodology, the V-plot of accuracies, can be used as a sample-independent measure of a test performance against a reference gold standard.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.843a2034P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.843a2034P"><span>Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Plekhov, O. A.; Kostina, A. A.</p> <p>2017-05-01</p> <p>The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...426..278Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...426..278Q"><span>A method for estimating mount isolations of powertrain mounting systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Wu; Shangguan, Wen-Bin; Luo, Guohai; Xie, Zhengchao</p> <p>2018-07-01</p> <p>A method for calculating isolation ratios of mounts at a powertrain mounting systems (PMS) is proposed assuming a powertrain as a rigid body and using the identified powertrain excitation forces and the measured IPI (input point inertance) of mounting points at the body side. With measured accelerations of mounts at powertrain and body sides of one Vehicle (Vehicle A), the excitation forces of a powertrain are identified using conversational method firstly. Another Vehicle (Vehicle B) has the same powertrain as that of Vehicle A, but with different body and mount configuration. The accelerations of mounts at powertrain side of a PMS on Vehicle B are calculated using the powertrain excitation forces identified from Vehicle A. The identified forces of the powertrain are validated by comparing the calculated and the measured accelerations of mounts at the powertrain side of the powertrain on Vehicle B. A method for calculating acceleration of mounting point at body side for Vehicle B is presented using the identified powertrain excitation forces and the measured IPI at a connecting point between car body and mount. Using the calculated accelerations of mounts at powertrain side and body side at different directions, the isolation ratios of a mount are then estimated. The isolation ratios are validated using the experiment, which verified the proposed methods for estimating isolation ratios of mounts. The developed method is beneficial for optimizing mount stiffness to meet mount isolation requirements before prototype.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1706t0003E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1706t0003E"><span>Structural health monitoring ultrasonic thickness measurement accuracy and reliability of various time-of-flight calculation methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.</p> <p>2016-02-01</p> <p>The accuracy, precision, and reliability of ultrasonic thickness structural health monitoring systems are discussed in-cluding the influence of systematic and environmental factors. To quantify some of these factors, a compression wave ultrasonic thickness structural health monitoring experiment is conducted on a flat calibration block at ambient temperature with forty four thin-film sol-gel transducers and various time-of-flight thickness calculation methods. As an initial calibration, the voltage response signals from each sensor are used to determine the common material velocity as well as the signal offset unique to each calculation method. Next, the measurement precision of the thickness error of each method is determined with a proposed weighted censored relative maximum likelihood analysis technique incorporating the propagation of asymmetric measurement uncertainty. The results are presented as upper and lower confidence limits analogous to the a90/95 terminology used in industry recognized Probability-of-Detection assessments. Future work is proposed to apply the statistical analysis technique to quantify measurement precision of various thickness calculation methods under different environmental conditions such as high temperature, rough back-wall surface, and system degradation with an intended application to monitor naphthenic acid corrosion in oil refineries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790023862','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790023862"><span>Concerning an application of the method of least squares with a variable weight matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sukhanov, A. A.</p> <p>1979-01-01</p> <p>An estimate of a state vector for a physical system when the weight matrix in the method of least squares is a function of this vector is considered. An iterative procedure is proposed for calculating the desired estimate. Conditions for the existence and uniqueness of the limit of this procedure are obtained, and a domain is found which contains the limit estimate. A second method for calculating the desired estimate which reduces to the solution of a system of algebraic equations is proposed. The question of applying Newton's method of tangents to solving the given system of algebraic equations is considered and conditions for the convergence of the modified Newton's method are obtained. Certain properties of the estimate obtained are presented together with an example.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22261121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22261121"><span>Thermal noise calculation method for precise estimation of the signal-to-noise ratio of ultra-low-field MRI with an atomic magnetometer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamashita, Tatsuya; Oida, Takenori; Hamada, Shoji; Kobayashi, Tetsuo</p> <p>2012-02-01</p> <p>In recent years, there has been considerable interest in developing an ultra-low-field magnetic resonance imaging (ULF-MRI) system using an optically pumped atomic magnetometer (OPAM). However, a precise estimation of the signal-to-noise ratio (SNR) of ULF-MRI has not been carried out. Conventionally, to calculate the SNR of an MR image, thermal noise, also called Nyquist noise, has been estimated by considering a resistor that is electrically equivalent to a biological-conductive sample and is connected in series to a pickup coil. However, this method has major limitations in that the receiver has to be a coil and that it cannot be applied directly to a system using OPAM. In this paper, we propose a method to estimate the thermal noise of an MRI system using OPAM. We calculate the thermal noise from the variance of the magnetic sensor output produced by current-dipole moments that simulate thermally fluctuating current sources in a biological sample. We assume that the random magnitude of the current dipole in each volume element of the biological sample is described by the Maxwell-Boltzmann distribution. The sensor output produced by each current-dipole moment is calculated either by an analytical formula or a numerical method based on the boundary element method. We validate the proposed method by comparing our results with those obtained by conventional methods that consider resistors connected in series to a pickup coil using single-layered sphere, multi-layered sphere, and realistic head models. Finally, we apply the proposed method to the ULF-MRI model using OPAM as the receiver with multi-layered sphere and realistic head models and estimate their SNR. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MeScT..29c5601Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MeScT..29c5601Z"><span>Quantitative evaluation for small surface damage based on iterative difference and triangulation of 3D point cloud</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yuyan; Guo, Quanli; Wang, Zhenchun; Yang, Degong</p> <p>2018-03-01</p> <p>This paper proposes a non-contact, non-destructive evaluation method for the surface damage of high-speed sliding electrical contact rails. The proposed method establishes a model of damage identification and calculation. A laser scanning system is built to obtain the 3D point cloud data of the rail surface. In order to extract the damage region of the rail surface, the 3D point cloud data are processed using iterative difference, nearest neighbours search and a data registration algorithm. The curvature of the point cloud data in the damage region is mapped to RGB color information, which can directly reflect the change trend of the curvature of the point cloud data in the damage region. The extracted damage region is divided into three prism elements by a method of triangulation. The volume and mass of a single element are calculated by the method of geometric segmentation. Finally, the total volume and mass of the damage region are obtained by the principle of superposition. The proposed method is applied to several typical injuries and the results are discussed. The experimental results show that the algorithm can identify damage shapes and calculate damage mass with milligram precision, which are useful for evaluating the damage in a further research stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJEEP..17..385H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJEEP..17..385H"><span>A New Method for Setting Calculation Sequence of Directional Relay Protection in Multi-Loop Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haijun, Xiong; Qi, Zhang</p> <p>2016-08-01</p> <p>Workload of relay protection setting calculation in multi-loop networks may be reduced effectively by optimization setting calculation sequences. A new method of setting calculation sequences of directional distance relay protection in multi-loop networks based on minimum broken nodes cost vector (MBNCV) was proposed to solve the problem experienced in current methods. Existing methods based on minimum breakpoint set (MBPS) lead to more break edges when untying the loops in dependent relationships of relays leading to possibly more iterative calculation workloads in setting calculations. A model driven approach based on behavior trees (BT) was presented to improve adaptability of similar problems. After extending the BT model by adding real-time system characters, timed BT was derived and the dependency relationship in multi-loop networks was then modeled. The model was translated into communication sequence process (CSP) models and an optimization setting calculation sequence in multi-loop networks was finally calculated by tools. A 5-nodes multi-loop network was applied as an example to demonstrate effectiveness of the modeling and calculation method. Several examples were then calculated with results indicating the method effectively reduces the number of forced broken edges for protection setting calculation in multi-loop networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27605171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27605171"><span>Detection of glucose in the human brain with 1 H MRS at 7 Tesla.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaiser, Lana G; Hirokazu, Kawaguchi; Fukunaga, Masaki; B Matson, Gerald</p> <p>2016-12-01</p> <p>A new method is proposed for noninvasive detection of glucose in vivo using proton MR spectroscopy at 7 Tesla. The proposed method utilizes J-difference editing to uncover the resonance of beta-glucose (β-glc) at 3.23 ppm, which is strongly overlapped with choline. Calculations using the density matrix formalism are used to maximize the signal-to-noise ratio of the β-glc resonance at 3.23 ppm. The calculations are verified using phantom and in vivo data collected at 7 Tesla. The proposed method allows observation of the glucose signal at 3.23 ppm in the human brain spectrum. Additional co-edited resonances of N-acetylaspartylglutamatate and glutathione are also detected in the same experiment. The proposed method does not require carbon ( 13 C)- labeled glucose injections and 13 C hardware; as such, it has a potential to provide valuable information on intrinsic glucose concentration in the human brain in vivo. Magn Reson Med 76:1653-1660, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..557..265L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..557..265L"><span>Stochastic optimal operation of reservoirs based on copula functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, Xiao-hui; Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wen, Xin; Wang, Chao; Zhang, Jing-wen</p> <p>2018-02-01</p> <p>Stochastic dynamic programming (SDP) has been widely used to derive operating policies for reservoirs considering streamflow uncertainties. In SDP, there is a need to calculate the transition probability matrix more accurately and efficiently in order to improve the economic benefit of reservoir operation. In this study, we proposed a stochastic optimization model for hydropower generation reservoirs, in which 1) the transition probability matrix was calculated based on copula functions; and 2) the value function of the last period was calculated by stepwise iteration. Firstly, the marginal distribution of stochastic inflow in each period was built and the joint distributions of adjacent periods were obtained using the three members of the Archimedean copulas, based on which the conditional probability formula was derived. Then, the value in the last period was calculated by a simple recursive equation with the proposed stepwise iteration method and the value function was fitted with a linear regression model. These improvements were incorporated into the classic SDP and applied to the case study in Ertan reservoir, China. The results show that the transition probability matrix can be more easily and accurately obtained by the proposed copula function based method than conventional methods based on the observed or synthetic streamflow series, and the reservoir operation benefit can also be increased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptRv..23..730S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptRv..23..730S"><span>Methods for calculating the vergence of an astigmatic ray bundle in an optical system that contains a freeform surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shirayanagi, Moriyasu</p> <p>2016-10-01</p> <p>A method using the generalized Coddington equations enables calculating the vergence of an astigmatic ray bundle in the vicinity of a skew ray in an optical system containing a freeform surface. Because this method requires time-consuming calculations, however, there is still room for increasing the calculation speed. In addition, this method cannot be applied to optical systems containing a medium with a gradient index. Therefore, we propose two new calculation methods in this paper. The first method, using differential ray tracing, enables us to shorten computation time by using simpler algorithms than those used by conventional methods. The second method, using proximate rays, employs only the ray data obtained from the rays exiting an optical system. Therefore, this method can be applied to an optical system that contains a medium with a gradient index. We show some sample applications of these methods in the field of ophthalmic optics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4997504','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4997504"><span>Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Hong; Pei, Yun</p> <p>2016-01-01</p> <p>Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions. PMID:27529266</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070031771','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070031771"><span>Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, Chau-lyan</p> <p>2007-01-01</p> <p>The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27529266','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27529266"><span>Simulation-Based Prediction of Equivalent Continuous Noises during Construction Processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Hong; Pei, Yun</p> <p>2016-08-12</p> <p>Quantitative prediction of construction noise is crucial to evaluate construction plans to help make decisions to address noise levels. Considering limitations of existing methods for measuring or predicting the construction noise and particularly the equivalent continuous noise level over a period of time, this paper presents a discrete-event simulation method for predicting the construction noise in terms of equivalent continuous level. The noise-calculating models regarding synchronization, propagation and equivalent continuous level are presented. The simulation framework for modeling the noise-affected factors and calculating the equivalent continuous noise by incorporating the noise-calculating models into simulation strategy is proposed. An application study is presented to demonstrate and justify the proposed simulation method in predicting the equivalent continuous noise during construction. The study contributes to provision of a simulation methodology to quantitatively predict the equivalent continuous noise of construction by considering the relevant uncertainties, dynamics and interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017QuIP...16..181T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017QuIP...16..181T"><span>Accurate calculation of the geometric measure of entanglement for multipartite quantum states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Teng, Peiyuan</p> <p>2017-07-01</p> <p>This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5795716','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5795716"><span>Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Qu, Yufu; Huang, Jianyu; Zhang, Xuan</p> <p>2018-01-01</p> <p>In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles’ camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth–map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable. PMID:29342908</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29342908','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29342908"><span>Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qu, Yufu; Huang, Jianyu; Zhang, Xuan</p> <p>2018-01-14</p> <p>In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles' camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth-map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010LNCS.6124..103D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010LNCS.6124..103D"><span>A VaR Algorithm for Warrants Portfolio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, Jun; Ni, Liyun; Wang, Xiangrong; Chen, Weizhong</p> <p></p> <p>Based on Gamma Vega-Cornish Fish methodology, this paper propose the algorithm for calculating VaR via adjusting the quantile under the given confidence level using the four moments (e.g. mean, variance, skewness and kurtosis) of the warrants portfolio return and estimating the variance of portfolio by EWMA methodology. Meanwhile, the proposed algorithm considers the attenuation of the effect of history return on portfolio return of future days. Empirical study shows that, comparing with Gamma-Cornish Fish method and standard normal method, the VaR calculated by Gamma Vega-Cornish Fish can improve the effectiveness of forecasting the portfolio risk by virture of considering the Gamma risk and the Vega risk of the warrants. The significance test is conducted on the calculation results by employing two-tailed test developed by Kupiec. Test results show that the calculated VaRs of the warrants portfolio all pass the significance test under the significance level of 5%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.944a2001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.944a2001A"><span>Complex method to calculate objective assessments of information systems protection to improve expert assessments reliability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abdenov, A. Zh; Trushin, V. A.; Abdenova, G. A.</p> <p>2018-01-01</p> <p>The paper considers the questions of filling the relevant SIEM nodes based on calculations of objective assessments in order to improve the reliability of subjective expert assessments. The proposed methodology is necessary for the most accurate security risk assessment of information systems. This technique is also intended for the purpose of establishing real-time operational information protection in the enterprise information systems. Risk calculations are based on objective estimates of the adverse events implementation probabilities, predictions of the damage magnitude from information security violations. Calculations of objective assessments are necessary to increase the reliability of the proposed expert assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600149-modified-finite-difference-method-obtain-electron-energy-distribution-functions-langmuir-probes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600149-modified-finite-difference-method-obtain-electron-energy-distribution-functions-langmuir-probes"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kang, Hyun-Ju; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr; Choi, Hyeok</p> <p></p> <p>A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the samemore » number of points are used to calculate of the second derivative.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-10-04/pdf/2011-25143.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-10-04/pdf/2011-25143.pdf"><span>76 FR 61360 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-10-04</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential... Activities: Proposed Collection; Comment Request; Generic Clearance for the Collection of Qualitative... Collection of Qualitative Feedback on Agency Service Delivery'' to OMB for approval under the Paperwork...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-30/pdf/2012-21445.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-30/pdf/2012-21445.pdf"><span>77 FR 52708 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-30</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential...: Proposed Collection; Comment Request; Generic Clearance for the Collection of Qualitative Feedback on... Information Collection request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988QuEle..18.1372A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988QuEle..18.1372A"><span>INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Method for calculation of electrical and optical properties of laser active media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aleksandrov, D. G.; Filipov, F. I.</p> <p>1988-11-01</p> <p>A method is proposed for calculation of the electron band structure of multicomponent semiconductor solid solutions. Use is made of virtual atomic orbitals formed from real orbitals. The method represents essentially an approximation of a multicomponent solid solution by a binary one. The matrix elements of the Hamiltonian are obtained in the methods of linear combinations of atomic and bound orbitals. Some approximations used in these methods are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TRACE..26..185M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TRACE..26..185M"><span>Prediction of Quality Change During Thawing of Frozen Tuna Meat by Numerical Calculation I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Murakami, Natsumi; Watanabe, Manabu; Suzuki, Toru</p> <p></p> <p>A numerical calculation method has been developed to determine the optimum thawing method for minimizing the increase of metmyoglobin content (metMb%) as an indicator of color changes in frozen tuna meat during thawing. The calculation method is configured the following two steps: a) calculation of temperature history in each part of frozen tuna meat during thawing by control volume method under the assumption of one-dimensional heat transfer, and b) calculation of metMb% based on the combination of calculated temperature history, Arrenius equation and the first-order reaction equation for the increase rate of metMb%. Thawing experiments for measuring temperature history of frozen tuna meat were carried out under the conditions of rapid thawing and slow thawing to compare the experimental data with calculated temperature history as well as the increase of metMb%. The results were coincident with the experimental data. The proposed simulation method would be useful for predicting the optimum thawing conditions in terms of metMb%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29118966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29118966"><span>Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roy, Vandana; Shukla, Shailja; Shukla, Piyush Kumar; Rawat, Paresh</p> <p>2017-01-01</p> <p>The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda ( λ ), root mean square error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhyA..436..216L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhyA..436..216L"><span>Predicting missing links via correlation between nodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liao, Hao; Zeng, An; Zhang, Yi-Cheng</p> <p>2015-10-01</p> <p>As a fundamental problem in many different fields, link prediction aims to estimate the likelihood of an existing link between two nodes based on the observed information. Since this problem is related to many applications ranging from uncovering missing data to predicting the evolution of networks, link prediction has been intensively investigated recently and many methods have been proposed so far. The essential challenge of link prediction is to estimate the similarity between nodes. Most of the existing methods are based on the common neighbor index and its variants. In this paper, we propose to calculate the similarity between nodes by the Pearson correlation coefficient. This method is found to be very effective when applied to calculate similarity based on high order paths. We finally fuse the correlation-based method with the resource allocation method, and find that the combined method can substantially outperform the existing methods, especially in sparse networks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..262a2089M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..262a2089M"><span>Development of Water Softening Method of Intake in Magnitogorsk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meshcherova, E. A.; Novoselova, J. N.; Moreva, J. A.</p> <p>2017-11-01</p> <p>This article contains an appraisal of the drinking water quality of Magnitogorsk intake. A water analysis was made which led to the conclusion that the standard for general water hardness was exceeded. As a result, it became necessary to develop a number of measures to reduce water hardness. To solve this problem all the necessary studies of the factors affecting the value of increased water hardness were carried out and the water softening method by using an ion exchange filter was proposed. The calculation of the cation-exchanger filling volume of the proposed filter is given in the article, its overall dimensions are chosen. The obtained calculations were confirmed by the results of laboratory studies by using the test installation. The research and laboratory tests results make the authors conclude that the proposed method should be used to obtain softened water for the requirements of SanPin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3821367','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3821367"><span>Video-Based Fingerprint Verification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Qin, Wei; Yin, Yilong; Liu, Lili</p> <p>2013-01-01</p> <p>Conventional fingerprint verification systems use only static information. In this paper, fingerprint videos, which contain dynamic information, are utilized for verification. Fingerprint videos are acquired by the same capture device that acquires conventional fingerprint images, and the user experience of providing a fingerprint video is the same as that of providing a single impression. After preprocessing and aligning processes, “inside similarity” and “outside similarity” are defined and calculated to take advantage of both dynamic and static information contained in fingerprint videos. Match scores between two matching fingerprint videos are then calculated by combining the two kinds of similarity. Experimental results show that the proposed video-based method leads to a relative reduction of 60 percent in the equal error rate (EER) in comparison to the conventional single impression-based method. We also analyze the time complexity of our method when different combinations of strategies are used. Our method still outperforms the conventional method, even if both methods have the same time complexity. Finally, experimental results demonstrate that the proposed video-based method can lead to better accuracy than the multiple impressions fusion method, and the proposed method has a much lower false acceptance rate (FAR) when the false rejection rate (FRR) is quite low. PMID:24008283</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5359812','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5359812"><span>More on approximations of Poisson probabilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kao, C</p> <p>1980-05-01</p> <p>Calculation of Poisson probabilities frequently involves calculating high factorials, which becomes tedious and time-consuming with regular calculators. The usual way to overcome this difficulty has been to find approximations by making use of the table of the standard normal distribution. A new transformation proposed by Kao in 1978 appears to perform better for this purpose than traditional transformations. In the present paper several approximation methods are stated and compared numerically, including an approximation method that utilizes a modified version of Kao's transformation. An approximation based on a power transformation was found to outperform those based on the square-root type transformationsmore » as proposed in literature. The traditional Wilson-Hilferty approximation and Makabe-Morimura approximation are extremely poor compared with this approximation. 4 tables. (RWR)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...425...53C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...425...53C"><span>Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Yao; Zhou, Ning; Zhang, Weihua; Wang, Zhiwei</p> <p>2018-07-01</p> <p>Minimum entropy deconvolution is a widely-used tool in machinery fault diagnosis, because it enhances the impulse component of the signal. The filter coefficients that greatly influence the performance of the minimum entropy deconvolution are calculated by an iterative procedure. This paper proposes an improved deconvolution method for the fault detection of rolling element bearings. The proposed method solves the filter coefficients by the standard particle swarm optimization algorithm, assisted by a generalized spherical coordinate transformation. When optimizing the filters performance for enhancing the impulses in fault diagnosis (namely, faulty rolling element bearings), the proposed method outperformed the classical minimum entropy deconvolution method. The proposed method was validated in simulation and experimental signals from railway bearings. In both simulation and experimental studies, the proposed method delivered better deconvolution performance than the classical minimum entropy deconvolution method, especially in the case of low signal-to-noise ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1959d0001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1959d0001A"><span>Adaptive identification of vessel's added moments of inertia with program motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alyshev, A. S.; Melnikov, V. G.</p> <p>2018-05-01</p> <p>In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApGeo..12..378Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApGeo..12..378Z"><span>Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Li, Kun; Zhao, Dong-Dong; Huang, Xing-Xing</p> <p>2015-09-01</p> <p>We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4456943','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4456943"><span>Mutual Information between Discrete Variables with Many Categories using Recursive Adaptive Partitioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Seok, Junhee; Seon Kang, Yeong</p> <p>2015-01-01</p> <p>Mutual information, a general measure of the relatedness between two random variables, has been actively used in the analysis of biomedical data. The mutual information between two discrete variables is conventionally calculated by their joint probabilities estimated from the frequency of observed samples in each combination of variable categories. However, this conventional approach is no longer efficient for discrete variables with many categories, which can be easily found in large-scale biomedical data such as diagnosis codes, drug compounds, and genotypes. Here, we propose a method to provide stable estimations for the mutual information between discrete variables with many categories. Simulation studies showed that the proposed method reduced the estimation errors by 45 folds and improved the correlation coefficients with true values by 99 folds, compared with the conventional calculation of mutual information. The proposed method was also demonstrated through a case study for diagnostic data in electronic health records. This method is expected to be useful in the analysis of various biomedical data with discrete variables. PMID:26046461</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSemi..37l5001Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSemi..37l5001Z"><span>Efficient SRAM yield optimization with mixture surrogate modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhongjian, Jiang; Zuochang, Ye; Yan, Wang</p> <p>2016-12-01</p> <p>Largely repeated cells such as SRAM cells usually require extremely low failure-rate to ensure a moderate chi yield. Though fast Monte Carlo methods such as importance sampling and its variants can be used for yield estimation, they are still very expensive if one needs to perform optimization based on such estimations. Typically the process of yield calculation requires a lot of SPICE simulation. The circuit SPICE simulation analysis accounted for the largest proportion of time in the process yield calculation. In the paper, a new method is proposed to address this issue. The key idea is to establish an efficient mixture surrogate model. The surrogate model is based on the design variables and process variables. This model construction method is based on the SPICE simulation to get a certain amount of sample points, these points are trained for mixture surrogate model by the lasso algorithm. Experimental results show that the proposed model is able to calculate accurate yield successfully and it brings significant speed ups to the calculation of failure rate. Based on the model, we made a further accelerated algorithm to further enhance the speed of the yield calculation. It is suitable for high-dimensional process variables and multi-performance applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18693426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18693426"><span>[A research in speech endpoint detection based on boxes-coupling generalization dimension].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zimei; Yang, Cuirong; Wu, Wei; Fan, Yingle</p> <p>2008-06-01</p> <p>In this paper, a new calculating method of generalized dimension, based on boxes-coupling principle, is proposed to overcome the edge effects and to improve the capability of the speech endpoint detection which is based on the original calculating method of generalized dimension. This new method has been applied to speech endpoint detection. Firstly, the length of overlapping border was determined, and through calculating the generalized dimension by covering the speech signal with overlapped boxes, three-dimension feature vectors including the box dimension, the information dimension and the correlation dimension were obtained. Secondly, in the light of the relation between feature distance and similarity degree, feature extraction was conducted by use of common distance. Lastly, bi-threshold method was used to classify the speech signals. The results of experiment indicated that, by comparison with the original generalized dimension (OGD) and the spectral entropy (SE) algorithm, the proposed method is more robust and effective for detecting the speech signals which contain different kinds of noise in different signal noise ratio (SNR), especially in low SNR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ResPh...8..716Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ResPh...8..716Z"><span>Method to determine the optimal constitutive model from spherical indentation tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Tairui; Wang, Shang; Wang, Weiqiang</p> <p>2018-03-01</p> <p>The limitation of current indentation theories was investigated and a method to determine the optimal constitutive model through spherical indentation tests was proposed. Two constitutive models, the Power-law and the Linear-law, were used in Finite Element (FE) calculations, and then a set of indentation governing equations was established for each model. The load-depth data from the normal indentation depth was used to fit the best parameters in each constitutive model while the data from the further loading part was compared with those from FE calculations, and the model that better predicted the further deformation was considered the optimal one. Moreover, a Yang's modulus calculation model which took the previous plastic deformation and the phenomenon of pile-up (or sink-in) into consideration was also proposed to revise the original Sneddon-Pharr-Oliver model. The indentation results on six materials, 304, 321, SA508, SA533, 15CrMoR, and Fv520B, were compared with tensile ones, which validated the reliability of the revised E calculation model and the optimal constitutive model determination method in this study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJE...105..659J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJE...105..659J"><span>Reference voltage calculation method based on zero-sequence component optimisation for a regional compensation DVR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jian, Le; Cao, Wang; Jintao, Yang; Yinge, Wang</p> <p>2018-04-01</p> <p>This paper describes the design of a dynamic voltage restorer (DVR) that can simultaneously protect several sensitive loads from voltage sags in a region of an MV distribution network. A novel reference voltage calculation method based on zero-sequence voltage optimisation is proposed for this DVR to optimise cost-effectiveness in compensation of voltage sags with different characteristics in an ungrounded neutral system. Based on a detailed analysis of the characteristics of voltage sags caused by different types of faults and the effect of the wiring mode of the transformer on these characteristics, the optimisation target of the reference voltage calculation is presented with several constraints. The reference voltages under all types of voltage sags are calculated by optimising the zero-sequence component, which can reduce the degree of swell in the phase-to-ground voltage after compensation to the maximum extent and can improve the symmetry degree of the output voltages of the DVR, thereby effectively increasing the compensation ability. The validity and effectiveness of the proposed method are verified by simulation and experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988cssc.rept.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988cssc.rept.....B"><span>Electronic structure calculation by nonlinear optimization: Application to metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benedek, R.; Min, B. I.; Woodward, C.; Garner, J.</p> <p>1988-04-01</p> <p>There is considerable interest in the development of novel algorithms for the calculation of electronic structure (e.g., at the level of the local-density approximation of density-functional theory). In this paper we consider a first-order equation-of-motion method. Two methods of solution are described, one proposed by Williams and Soler, and the other base on a Born-Dyson series expansion. The extension of the approach to metallic systems is outlined and preliminary numerical calculations for Zintl-phase NaTl are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1398508','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1398508"><span>Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kohler, Christian; Shukla, Yash; Rawal, Rajan</p> <p></p> <p>Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040046917','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040046917"><span>Constitutive Modeling of Piezoelectric Polymer Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Odegard, Gregory M.; Gates, Tom (Technical Monitor)</p> <p>2003-01-01</p> <p>A new modeling approach is proposed for predicting the bulk electromechanical properties of piezoelectric composites. The proposed model offers the same level of convenience as the well-known Mori-Tanaka method. In addition, it is shown to yield predicted properties that are, in most cases, more accurate or equally as accurate as the Mori-Tanaka scheme. In particular, the proposed method is used to determine the electromechanical properties of four piezoelectric polymer composite materials as a function of inclusion volume fraction. The predicted properties are compared to those calculated using the Mori-Tanaka and finite element methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26724050','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26724050"><span>Reflection measurement of waveguide-injected high-power microwave antennas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong</p> <p>2015-12-01</p> <p>A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23670014','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23670014"><span>Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo</p> <p>2013-05-06</p> <p>A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..105a2009T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..105a2009T"><span>Inventory Management for Irregular Shipment of Goods in Distribution Centre</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takeda, Hitoshi; Kitaoka, Masatoshi; Usuki, Jun</p> <p>2016-01-01</p> <p>The shipping amount of commodity goods (Foods, confectionery, dairy products, such as public cosmetic pharmaceutical products) changes irregularly at the distribution center dealing with the general consumer goods. Because the shipment time and the amount of the shipment are irregular, the demand forecast becomes very difficult. For this, the inventory control becomes difficult, too. It cannot be applied to the shipment of the commodity by the conventional inventory control methods. This paper proposes the method for inventory control by cumulative flow curve method. It proposed the method of deciding the order quantity of the inventory control by the cumulative flow curve. Here, it proposes three methods. 1) Power method,2) Polynomial method and 3)Revised Holt's linear method that forecasts data with trends that is a kind of exponential smoothing method. This paper compares the economics of the conventional method, which is managed by the experienced and three new proposed methods. And, the effectiveness of the proposal method is verified from the numerical calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMPSo.108...49G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMPSo.108...49G"><span>Implementation of the nudged elastic band method in a dislocation dynamics formalism: Application to dislocation nucleation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geslin, Pierre-Antoine; Gatti, Riccardo; Devincre, Benoit; Rodney, David</p> <p>2017-11-01</p> <p>We propose a framework to study thermally-activated processes in dislocation glide. This approach is based on an implementation of the nudged elastic band method in a nodal mesoscale dislocation dynamics formalism. Special care is paid to develop a variational formulation to ensure convergence to well-defined minimum energy paths. We also propose a methodology to rigorously parametrize the model on atomistic data, including elastic, core and stacking fault contributions. To assess the validity of the model, we investigate the homogeneous nucleation of partial dislocation loops in aluminum, recovering the activation energies and loop shapes obtained with atomistic calculations and extending these calculations to lower applied stresses. The present method is also applied to heterogeneous nucleation on spherical inclusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8002E..0RS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8002E..0RS"><span>A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Junying</p> <p>2011-11-01</p> <p>A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLT.101..223S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLT.101..223S"><span>New method for calculating the coupling coefficient in graded index optical fibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savović, Svetislav; Djordjevich, Alexandar</p> <p>2018-05-01</p> <p>A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7024589','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7024589"><span>Periodicity of microfilariae of human filariasis analysed by a trigonometric method (Aikat and Das).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tanaka, H</p> <p>1981-04-01</p> <p>The microfilarial periodicity of human filariae was characterized statistically by fitting the observed change of microfilaria (mf) counts to the formula of a simple harmonic wave using two parameters, the peak hour (K) and periodicity index (D) (Sasa & Tanaka, 1972, 1974). Later Aikat and Das (1976) proposed a simple calculation method using trigonometry (A-D method) to determine the peak hour (K) and periodicity index (P). All data of microfilarial periodicity analysed previously by the method of Sasa and Tanaka (S-T method) were calculated again by the A-D method in the present study to evaluate the latter method. The results of calculations showed that P was not proportional to D and the ratios of P/D were mostly smaller than expected, especially when P or D was small in less periodic forms. The peak hour calculated by the A-D method did not differ much from that calculated by the S-T method. Goodness of fit was improved slightly by the A-K method in two thirds of analysed data. The classification of human filariae in respect of the type of periodicity was, however, changed little by the results calculated by the A-D method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1015c2092K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1015c2092K"><span>Use of derivatives to assess preservation of hydrocarbon deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koshkin, K. A.; Melkishev, O. A.</p> <p>2018-05-01</p> <p>The paper considers the calculation of derivatives along the surface of a modern and paleostructure map of a Tl2-b formation top used to forecast the preservation of oil and gas deposits in traps according to 3D seismic survey via statistical methods. It also suggests a method to evaluate morphological changes of the formation top by calculating the difference between derivatives. The proposed method allows analyzing structural changes of the formation top in time towards primary migration of hydrocarbons. The comprehensive use of calculated indicators allowed ranking the prepared structures in terms of preservation of hydrocarbon deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJB...91...37T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJB...91...37T"><span>Calculation method of spin accumulations and spin signals in nanostructures using spin resistors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres, Williams Savero; Marty, Alain; Laczkowski, Piotr; Jamet, Matthieu; Vila, Laurent; Attané, Jean-Philippe</p> <p>2018-02-01</p> <p>Determination of spin accumulations and spin currents is essential for a deep understanding of spin transport in nanostructures and further optimization of spintronic devices. So far, they are easily obtained using different approaches in nanostructures composed of few elements; however their calculation becomes complicated as the number of elements increases. Here, we propose a 1-D spin resistor approach to calculate analytically spin accumulations, spin currents and magneto-resistances in heterostructures. Our method, particularly applied to multi-terminal metallic nanostructures, provides a fast and systematic mean to determine such spin properties in structures where conventional methods remain complex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29383567','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29383567"><span>Risk Factors Analysis and Death Prediction in Some Life-Threatening Ailments Using Chi-Square Case-Based Reasoning (χ2 CBR) Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adeniyi, D A; Wei, Z; Yang, Y</p> <p>2018-01-30</p> <p>A wealth of data are available within the health care system, however, effective analysis tools for exploring the hidden patterns in these datasets are lacking. To alleviate this limitation, this paper proposes a simple but promising hybrid predictive model by suitably combining the Chi-square distance measurement with case-based reasoning technique. The study presents the realization of an automated risk calculator and death prediction in some life-threatening ailments using Chi-square case-based reasoning (χ 2 CBR) model. The proposed predictive engine is capable of reducing runtime and speeds up execution process through the use of critical χ 2 distribution value. This work also showcases the development of a novel feature selection method referred to as frequent item based rule (FIBR) method. This FIBR method is used for selecting the best feature for the proposed χ 2 CBR model at the preprocessing stage of the predictive procedures. The implementation of the proposed risk calculator is achieved through the use of an in-house developed PHP program experimented with XAMP/Apache HTTP server as hosting server. The process of data acquisition and case-based development is implemented using the MySQL application. Performance comparison between our system, the NBY, the ED-KNN, the ANN, the SVM, the Random Forest and the traditional CBR techniques shows that the quality of predictions produced by our system outperformed the baseline methods studied. The result of our experiment shows that the precision rate and predictive quality of our system in most cases are equal to or greater than 70%. Our result also shows that the proposed system executes faster than the baseline methods studied. Therefore, the proposed risk calculator is capable of providing useful, consistent, faster, accurate and efficient risk level prediction to both the patients and the physicians at any time, online and on a real-time basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23967912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23967912"><span>Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan</p> <p>2013-09-01</p> <p>Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5299415','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5299415"><span>New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Fan; Song, Kaijun; Fan, Yong</p> <p>2017-01-01</p> <p>A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..127a2002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..127a2002B"><span>The Method of Fundamental Solutions using the Vector Magnetic Dipoles for Calculation of the Magnetic Fields in the Diagnostic Problems Based on Full-Scale Modelling Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bakhvalov, Yu A.; Grechikhin, V. V.; Yufanova, A. L.</p> <p>2016-04-01</p> <p>The article describes the calculation of the magnetic fields in the problems diagnostic of technical systems based on the full-scale modeling experiment. Use of gridless fundamental solution method and its variants in combination with grid methods (finite differences and finite elements) are allowed to considerably reduce the dimensionality task of the field calculation and hence to reduce calculation time. When implementing the method are used fictitious magnetic charges. In addition, much attention is given to the calculation accuracy. Error occurs when wrong choice of the distance between the charges. The authors are proposing to use vector magnetic dipoles to improve the accuracy of magnetic fields calculation. Examples of this approacharegiven. The article shows the results of research. They are allowed to recommend the use of this approach in the method of fundamental solutions for the full-scale modeling tests of technical systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24111387','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24111387"><span>An automatic bone segmentation method based on anatomical structure for the knee joint in MDCT image.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uozumi, Y; Nagamune, K</p> <p>2013-01-01</p> <p>The purpose of this study is to propose an automatic segmentation about each bone (the femur, the tibia, the patellar, and fibular) of the knee in MDCT image. The proposed method was applied for six patients (Age 33 ± 13, four males/tew females). The proposed method segmented the knee joint into each bone by using anatomical structure for the knee joint. The experiments calculate matching rate of the manual and the proposed method for evaluating it. As a result, The matching rate of the femur, the tibia, the patellar, and fibula were 95.84 ± 0.57%, 94.12 ± 1.01%, 94.49 ± 0.83%, 86.37 ± 4.28%, respectively. This study concluded that the proposed method is enough to segment the knee bones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJTPE.132....2K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJTPE.132....2K"><span>Evaluation of Foreign Investment in Power Plants using Real Options</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kato, Moritoshi; Zhou, Yicheng</p> <p></p> <p>This paper proposes new methods for evaluating foreign investment in power plants under market uncertainty using a real options approach. We suppose a thermal power plant project in a deregulated electricity market. One of our proposed methods is that we calculate the cash flow generated by the project in a reference year using actual market data to incorporate periodic characteristics of energy prices into a yearly cash flow model. We make the stochastic yearly cash flow model with the initial value which is the cash flow in the reference year, and certain trend and volatility. Then we calculate the real options value (ROV) of the project which has abandonment options using the yearly cash flow model. Another our proposed method is that we evaluate foreign currency/domestic currency exchange rate risk by representing ROV in foreign currency as yearly pay off and exchanging it to ROV in domestic currency using a stochastic exchange rate model. We analyze the effect of the heat rate and operation and maintenance costs of the power plant on ROV, and evaluate exchange rate risk through numerical examples. Our proposed method will be useful for the risk management of foreign investment in power plants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27834871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27834871"><span>Determination Method of Bridge Rotation Angle Response Using MEMS IMU.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi</p> <p>2016-11-09</p> <p>To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22559466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22559466"><span>Bennett's acceptance ratio and histogram analysis methods enhanced by umbrella sampling along a reaction coordinate in configurational space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Ilsoo; Allen, Toby W</p> <p>2012-04-28</p> <p>Free energy perturbation, a method for computing the free energy difference between two states, is often combined with non-Boltzmann biased sampling techniques in order to accelerate the convergence of free energy calculations. Here we present a new extension of the Bennett acceptance ratio (BAR) method by combining it with umbrella sampling (US) along a reaction coordinate in configurational space. In this approach, which we call Bennett acceptance ratio with umbrella sampling (BAR-US), the conditional histogram of energy difference (a mapping of the 3N-dimensional configurational space via a reaction coordinate onto 1D energy difference space) is weighted for marginalization with the associated population density along a reaction coordinate computed by US. This procedure produces marginal histograms of energy difference, from forward and backward simulations, with higher overlap in energy difference space, rendering free energy difference estimations using BAR statistically more reliable. In addition to BAR-US, two histogram analysis methods, termed Bennett overlapping histograms with US (BOH-US) and Bennett-Hummer (linear) least square with US (BHLS-US), are employed as consistency and convergence checks for free energy difference estimation by BAR-US. The proposed methods (BAR-US, BOH-US, and BHLS-US) are applied to a 1-dimensional asymmetric model potential, as has been used previously to test free energy calculations from non-equilibrium processes. We then consider the more stringent test of a 1-dimensional strongly (but linearly) shifted harmonic oscillator, which exhibits no overlap between two states when sampled using unbiased Brownian dynamics. We find that the efficiency of the proposed methods is enhanced over the original Bennett's methods (BAR, BOH, and BHLS) through fast uniform sampling of energy difference space via US in configurational space. We apply the proposed methods to the calculation of the electrostatic contribution to the absolute solvation free energy (excess chemical potential) of water. We then address the controversial issue of ion selectivity in the K(+) ion channel, KcsA. We have calculated the relative binding affinity of K(+) over Na(+) within a binding site of the KcsA channel for which different, though adjacent, K(+) and Na(+) configurations exist, ideally suited to these US-enhanced methods. Our studies demonstrate that the significant improvements in free energy calculations obtained using the proposed methods can have serious consequences for elucidating biological mechanisms and for the interpretation of experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5298758','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5298758"><span>A Liquid Level Measurement Technique Outside a Sealed Metal Container Based on Ultrasonic Impedance and Echo Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Bin; Wei, Yue-Juan; Liu, Wen-Yi; Zhang, Yan-Jun; Yao, Zong; Zhao, Li-Hui; Xiong, Ji-Jun</p> <p>2017-01-01</p> <p>The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas–liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power. Secondly, in order to find the two critical states of the energy circle in the process of liquid level detection, a program is designed to help with calculating two critical positions automatically. Finally, the proposed method is evaluated through a series of experiments, and the experimental results indicate that the proposed method is effective and accurate in calibration of the liquid level outside a sealed metal container. PMID:28106857</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..133a2010P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..133a2010P"><span>Comprehensive evaluation of impacts of distributed generation integration in distribution network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu</p> <p>2018-04-01</p> <p>All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JChPh.105.5321L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JChPh.105.5321L"><span>Ab initio model potential calculations on the electronic spectrum of Ni2 + -doped MgO including correlation, spin-orbit and embedding effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis</p> <p>1996-10-01</p> <p>An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23187465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23187465"><span>Correlation matching method for high-precision position detection of optical vortex using Shack-Hartmann wavefront sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng</p> <p>2012-11-19</p> <p>We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29869092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29869092"><span>Analytical and quasi-Bayesian methods as development of the iterative approach for mixed radiation biodosimetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Słonecka, Iwona; Łukasik, Krzysztof; Fornalski, Krzysztof W</p> <p>2018-06-04</p> <p>The present paper proposes two methods of calculating components of the dose absorbed by the human body after exposure to a mixed neutron and gamma radiation field. The article presents a novel approach to replace the common iterative method in its analytical form, thus reducing the calculation time. It also shows a possibility of estimating the neutron and gamma doses when their ratio in a mixed beam is not precisely known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4773740','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4773740"><span>Look Before You Leap: What Are the Obstacles to Risk Calculation in the Equestrian Sport of Eventing?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>O’Brien, Denzil</p> <p>2016-01-01</p> <p>Simple Summary This paper examines a number of methods for calculating injury risk for riders in the equestrian sport of eventing, and suggests that the primary locus of risk is the action of the horse jumping, and the jump itself. The paper argues that risk calculation should therefore focus first on this locus. Abstract All horse-riding is risky. In competitive horse sports, eventing is considered the riskiest, and is often characterised as very dangerous. But based on what data? There has been considerable research on the risks and unwanted outcomes of horse-riding in general, and on particular subsets of horse-riding such as eventing. However, there can be problems in accessing accurate, comprehensive and comparable data on such outcomes, and in using different calculation methods which cannot compare like with like. This paper critically examines a number of risk calculation methods used in estimating risk for riders in eventing, including one method which calculates risk based on hours spent in the activity and in one case concludes that eventing is more dangerous than motorcycle racing. This paper argues that the primary locus of risk for both riders and horses is the jump itself, and the action of the horse jumping. The paper proposes that risk calculation in eventing should therefore concentrate primarily on this locus, and suggests that eventing is unlikely to be more dangerous than motorcycle racing. The paper proposes avenues for further research to reduce the likelihood and consequences of rider and horse falls at jumps. PMID:26891334</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..199a2061W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..199a2061W"><span>Three-phase Power Flow Calculation of Low Voltage Distribution Network Considering Characteristics of Residents Load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yaping; Lin, Shunjiang; Yang, Zhibin</p> <p>2017-05-01</p> <p>In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=oscillator&pg=4&id=EJ691835','ERIC'); return false;" href="https://eric.ed.gov/?q=oscillator&pg=4&id=EJ691835"><span>Energy Expansion for the Period of Anharmonic Oscillators by the Method of Lindstedt-Poincare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fernandez, Francisco M.</p> <p>2004-01-01</p> <p>A simple, straightforward and efficient method is proposed for the calculation of the period of anharmonic oscillators as an energy series. The approach is based on perturbation theory and the method of Lindstedt-Poincare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25321273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25321273"><span>Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Le; Wei, Bing</p> <p>2014-08-25</p> <p>Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1214480','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1214480"><span>Shutdown Dose Rate Analysis Using the Multi-Step CADIS Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ibrahim, Ahmad M.; Peplow, Douglas E.; Peterson, Joshua L.</p> <p>2015-01-01</p> <p>The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) hybrid Monte Carlo (MC)/deterministic radiation transport method was proposed to speed up the shutdown dose rate (SDDR) neutron MC calculation using an importance function that represents the neutron importance to the final SDDR. This work applied the MS-CADIS method to the ITER SDDR benchmark problem. The MS-CADIS method was also used to calculate the SDDR uncertainty resulting from uncertainties in the MC neutron calculation and to determine the degree of undersampling in SDDR calculations because of the limited ability of the MC method to tally detailed spatial and energy distributions. The analysismore » that used the ITER benchmark problem compared the efficiency of the MS-CADIS method to the traditional approach of using global MC variance reduction techniques for speeding up SDDR neutron MC calculation. Compared to the standard Forward-Weighted-CADIS (FW-CADIS) method, the MS-CADIS method increased the efficiency of the SDDR neutron MC calculation by 69%. The MS-CADIS method also increased the fraction of nonzero scoring mesh tally elements in the space-energy regions of high importance to the final SDDR.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9674E..0LT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9674E..0LT"><span>A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan</p> <p>2015-10-01</p> <p>Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JETP..118...11O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JETP..118...11O"><span>Calculation of the X-Ray emission K and L 2,3 bands of metallic magnesium and aluminum with allowance for multielectron effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ovcharenko, R. E.; Tupitsyn, I. I.; Savinov, E. P.; Voloshina, E. N.; Dedkov, Yu. S.; Shulakov, A. S.</p> <p>2014-01-01</p> <p>A procedure is proposed to calculate the shape of the characteristic X-ray emission bands of metals with allowance for multielectron effects. The effects of the dynamic screening of a core vacancy by conduction electrons and the Auger effect in the valence band are taken into account. The dynamic screening of a core vacancy, which is known to be called the MND (Mahan-Nozeieres-De Dominics) effect, is taken into account by an ab initio band calculation of crystals using the PAW (projected augmented waves) method. The Auger effect is taken into account by a semiempirical method using the approximation of a quadratic dependence of the level width in the valence band on the difference between the level energy and the Fermi energy. The proposed calculation procedure is used to describe the X-ray emission K and L 2,3 bands of metallic magnesium and aluminum crystals. The calculated spectra agree well with the experimental bands both near the Fermi level and in the low-energy part of the spectra in all cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17989800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17989800"><span>How realistic is the pore size distribution calculated from adsorption isotherms if activated carbon is composed of fullerene-like fragments?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Terzyk, Artur P; Furmaniak, Sylwester; Harris, Peter J F; Gauden, Piotr A; Włoch, Jerzy; Kowalczyk, Piotr; Rychlicki, Gerhard</p> <p>2007-11-28</p> <p>A plausible model for the structure of non-graphitizing carbon is one which consists of curved, fullerene-like fragments grouped together in a random arrangement. Although this model was proposed several years ago, there have been no attempts to calculate the properties of such a structure. Here, we determine the density, pore size distribution and adsorption properties of a model porous carbon constructed from fullerene-like elements. Using the method proposed recently by Bhattacharya and Gubbins (BG), which was tested in this study for ideal and defective carbon slits, the pore size distributions (PSDs) of the initial model and two related carbon models are calculated. The obtained PSD curves show that two structures are micro-mesoporous (with different ratio of micro/mesopores) and the third is strictly microporous. Using the grand canonical Monte Carlo (GCMC) method, adsorption isotherms of Ar (87 K) are simulated for all the structures. Finally PSD curves are calculated using the Horvath-Kawazoe, non-local density functional theory (NLDFT), Nguyen and Do, and Barrett-Joyner-Halenda (BJH) approaches, and compared with those predicted by the BG method. This is the first study in which different methods of calculation of PSDs for carbons from adsorption data can be really verified, since absolute (i.e. true) PSDs are obtained using the BG method. This is also the first study reporting the results of computer simulations of adsorption on fullerene-like carbon models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5071210-wave-vector-modification-infinite-order-sudden-approximation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5071210-wave-vector-modification-infinite-order-sudden-approximation"><span>Wave vector modification of the infinite order sudden approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sachs, J.G.; Bowman, J.M.</p> <p>1980-10-15</p> <p>A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories ismore » run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities P/sub n/1..-->..nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when ..delta..n=such thatub f/-n/sub i/ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980JChPh..73.3699S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980JChPh..73.3699S"><span>Wave vector modification of the infinite order sudden approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sachs, Judith Grobe; Bowman, Joel M.</p> <p>1980-10-01</p> <p>A simple method is proposed to modify the infinite order sudden approximation (IOS) in order to extend its region of quantitative validity. The method involves modifying the phase of the IOS scattering matrix to include a part calculated at the outgoing relative kinetic energy as well as a part calculated at the incoming kinetic energy. An immediate advantage of this modification is that the resulting S matrix is symmetric. We also present a closely related method in which the relative kinetic energies used in the calculation of the phase are determined from quasiclassical trajectory calculations. A set of trajectories is run with the initial state being the incoming state, and another set is run with the initial state being the outgoing state, and the average final relative kinetic energy of each set is obtained. One part of the S-operator phase is then calculated at each of these kinetic energies. We apply these methods to vibrationally inelastic collinear collisions of an atom and a harmonic oscillator, and calculate transition probabilities Pn1→nf for three model systems. For systems which are sudden, or nearly so, the agreement with exact quantum close-coupling calculations is substantially improved over standard IOS ones when Δn=‖nf-ni‖ is large, and the corresponding transition probability is small, i.e., less than 0.1. However, the modifications we propose will not improve the accuracy of the IOS transition probabilities for any collisional system unless the standard form of IOS already gives at least qualitative agreement with exact quantal calculations. We also suggest comparisons between some classical quantities and sudden predictions which should help in determining the validity of the sudden approximation. This is useful when exact quantal data is not available for comparison.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLE.104..126G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLE.104..126G"><span>A novel dual-camera calibration method for 3D optical measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gai, Shaoyan; Da, Feipeng; Dai, Xianqiang</p> <p>2018-05-01</p> <p>A novel dual-camera calibration method is presented. In the classic methods, the camera parameters are usually calculated and optimized by the reprojection error. However, for a system designed for 3D optical measurement, this error does not denote the result of 3D reconstruction. In the presented method, a planar calibration plate is used. In the beginning, images of calibration plate are snapped from several orientations in the measurement range. The initial parameters of the two cameras are obtained by the images. Then, the rotation and translation matrix that link the frames of two cameras are calculated by using method of Centroid Distance Increment Matrix. The degree of coupling between the parameters is reduced. Then, 3D coordinates of the calibration points are reconstructed by space intersection method. At last, the reconstruction error is calculated. It is minimized to optimize the calibration parameters. This error directly indicates the efficiency of 3D reconstruction, thus it is more suitable for assessing the quality of dual-camera calibration. In the experiments, it can be seen that the proposed method is convenient and accurate. There is no strict requirement on the calibration plate position in the calibration process. The accuracy is improved significantly by the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10123337','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10123337"><span>Review of technical justification of assumptions and methods used by the Environmental Protection Agency for estimating risks avoided by implementing MCLs for radionuclides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morris, S.C.; Rowe, M.D.; Holtzman, S.</p> <p>1992-11-01</p> <p>The Environmental Protection Agency (EPA) has proposed regulations for allowable levels of radioactive material in drinking water (40 CFR Part 141, 56 FR 33050, July 18, 1991). This review examined the assumptions and methods used by EPA in calculating risks that would be avoided by implementing the proposed Maximum Contaminant Levels for uranium, radium, and radon. Proposed limits on gross alpha and beta-gamma emitters were not included in this review.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.1079L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.1079L"><span>Thin Cloud Detection Method by Linear Combination Model of Cloud Image</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.</p> <p>2018-04-01</p> <p>The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10461E..1HW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10461E..1HW"><span>A fast point-cloud computing method based on spatial symmetry of Fresnel field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xiangxiang; Zhang, Kai; Shen, Chuan; Zhu, Wenliang; Wei, Sui</p> <p>2017-10-01</p> <p>Aiming at the great challenge for Computer Generated Hologram (CGH) duo to the production of high spatial-bandwidth product (SBP) is required in the real-time holographic video display systems. The paper is based on point-cloud method and it takes advantage of the propagating reversibility of Fresnel diffraction in the propagating direction and the fringe pattern of a point source, known as Gabor zone plate has spatial symmetry, so it can be used as a basis for fast calculation of diffraction field in CGH. A fast Fresnel CGH method based on the novel look-up table (N-LUT) method is proposed, the principle fringe patterns (PFPs) at the virtual plane is pre-calculated by the acceleration algorithm and be stored. Secondly, the Fresnel diffraction fringe pattern at dummy plane can be obtained. Finally, the Fresnel propagation from dummy plan to hologram plane. The simulation experiments and optical experiments based on Liquid Crystal On Silicon (LCOS) is setup to demonstrate the validity of the proposed method under the premise of ensuring the quality of 3D reconstruction the method proposed in the paper can be applied to shorten the computational time and improve computational efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017STAdM..18..857I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017STAdM..18..857I"><span>Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ito, Shin-ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya</p> <p>2017-12-01</p> <p>We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23736342','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23736342"><span>Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mori, Yutaka; Nomura, Takanori</p> <p>2013-06-01</p> <p>In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018REDS..173..175B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018REDS..173..175B"><span>Semi-empirical calculations for the ranges of fast ions in silicon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belkova, Yu. A.; Teplova, Ya. A.</p> <p>2018-04-01</p> <p>A semi-empirical method is proposed to calculate the ion ranges in energy region E = 0.025-10 MeV/nucleon. The dependence of ion ranges on the projectile nuclear charge, mass and velocity is analysed. The calculations presented for ranges of ions with nuclear charges Z = 2-10 in silicon are compared with SRIM results and experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1213629-collision-history-based-approach-sensitivity-perturbation-calculations-continuous-energy-monte-carlo-code-serpent','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1213629-collision-history-based-approach-sensitivity-perturbation-calculations-continuous-energy-monte-carlo-code-serpent"><span>A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Giuseppe Palmiotti</p> <p></p> <p>In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25259769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25259769"><span>Considering relatives when assessing the evidential strength of mixed DNA profiles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taylor, Duncan; Bright, Jo-Anne; Buckleton, John</p> <p>2014-11-01</p> <p>Sophisticated methods of DNA profile interpretation have enabled scientists to calculate weights for genotype sets proposed to explain some observed data. Using standard formulae these weights can be incorporated into an LR calculation that considers two competing propositions. We demonstrate here how consideration of relatedness to the person of interest can be incorporated into a LR calculation and how the same calculation can be used for familial searches of complex mixtures. We provide a general formula that can be used in semi or fully automated methods of calculation and demonstrate their use by working through an example. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472070-critical-points-metal-vapors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472070-critical-points-metal-vapors"><span>Critical points of metal vapors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khomkin, A. L., E-mail: alhomkin@mail.ru; Shumikhin, A. S.</p> <p>2015-09-15</p> <p>A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for mostmore » metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5699034-program-helps-quickly-calculate-deviated-well-path','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5699034-program-helps-quickly-calculate-deviated-well-path"><span>Program helps quickly calculate deviated well path</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gardner, M.P.</p> <p>1993-11-22</p> <p>A BASIC computer program quickly calculates the angle and measured depth of a simple directional well given only the true vertical depth and total displacement of the target. Many petroleum engineers and geologists need a quick, easy method to calculate the angle and measured depth necessary to reach a target in a proposed deviated well bore. Too many of the existing programs are large and require much input data. The drilling literature is full of equations and methods to calculate the course of well paths from surveys taken after a well is drilled. Very little information, however, covers how tomore » calculate well bore trajectories for proposed wells from limited data. Furthermore, many of the equations are quite complex and difficult to use. A figure lists a computer program with the equations to calculate the well bore trajectory necessary to reach a given displacement and true vertical depth (TVD) for a simple build plant. It can be run on an IBM compatible computer with MS-DOS version 5 or higher, QBasic, or any BASIC that does no require line numbers. QBasic 4.5 compiler will also run the program. The equations are based on conventional geometry and trigonometry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29157218','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29157218"><span>Brain medical image diagnosis based on corners with importance-values.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao</p> <p>2017-11-21</p> <p>Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection method utilizing the diagnostic information from neurologists and a corner matching method based on the uncertainty and structure of brain medical images. Additionally, we present a similarity calculation method for brain image classification. Experimental results on two brain image sets show the proposed corner-based brain medical image classifier outperforms the state-of-the-art studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22098885-numeric-kinetic-energy-operators-molecules-polyspherical-coordinates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22098885-numeric-kinetic-energy-operators-molecules-polyspherical-coordinates"><span>Numeric kinetic energy operators for molecules in polyspherical coordinates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sadri, Keyvan; Meyer, Hans-Dieter; Lauvergnat, David</p> <p></p> <p>Generalized curvilinear coordinates, as, e.g., polyspherical coordinates, are in general better adapted to the resolution of the nuclear Schroedinger equation than rectilinear ones like the normal mode coordinates. However, analytical expressions of the kinetic energy operators (KEOs) for molecular systems in polyspherical coordinates may be prohibitively complicated for large systems. In this paper we propose a method to generate a KEO numerically and bring it to a form practicable for dynamical calculations. To examine the new method we calculated vibrational spectra and eigenenergies for nitrous acid (HONO) and compare it with results obtained with an exact analytical KEO derived previouslymore » [F. Richter, P. Rosmus, F. Gatti, and H.-D. Meyer, J. Chem. Phys. 120, 6072 (2004)]. In a second example we calculated {pi}{yields}{pi}* photoabsorption spectrum and eigenenergies of ethene (C{sub 2}H{sub 4}) and compared it with previous work [M. R. Brill, F. Gatti, D. Lauvergnat, and H.-D. Meyer, Chem. Phys. 338, 186 (2007)]. In this ethene study the dimensionality was reduced from 12 to 6 by freezing six internal coordinates. Results for both molecules show that the proposed method for obtaining an approximate KEO is reliable for dynamical calculations. The error in eigenenergies was found to be below 1 cm{sup -1} for most states calculated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10235E..0CM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10235E..0CM"><span>Deformation-free rim for the primary mirror of telescope having sub-second resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malyshev, I. V.; Chkhalo, N. I.; Toropov, M. N.; Salashchenko, N. N.; Pestov, A. E.; Kuzin, S. V.; Polkovnikov, V. N.</p> <p>2017-05-01</p> <p>The work is devoted to the method of mounting and surface shape measurement of the primary mirror of ARCA telescope, intended for the Sun observation in EUV wavelength range. Calculation of mirror's deformation due to weight is carried out and a method of its experimental determination in interferometer is proposed. The method of deformation-free installation of mirror into the telescope is proposed. Impact shocks and vibrations, arising during missile launch, is analyzed, and an optimal size of bridges in the rim is determined. Calculations of the mirror deformation due to temperature difference in the telescope on the Earth's orbit and its influence on the resolution of the telescope are conducted. The stresses arising in epoxy adhesive due to temperature changes and due to starting shocks are simulated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22535126-improving-efficiency-molecular-replacement-utilizing-new-iterative-transform-phasing-algorithm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22535126-improving-efficiency-molecular-replacement-utilizing-new-iterative-transform-phasing-algorithm"><span>Improving the efficiency of molecular replacement by utilizing a new iterative transform phasing algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>He, Hongxing; Fang, Hengrui; Miller, Mitchell D.</p> <p>2016-07-15</p> <p>An iterative transform algorithm is proposed to improve the conventional molecular-replacement method for solving the phase problem in X-ray crystallography. Several examples of successful trial calculations carried out with real diffraction data are presented. An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationshipmore » of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9497E..0TS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9497E..0TS"><span>Investigation of methods to search for the boundaries on the image and their use on lung hardware of methods finding saliency map</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.</p> <p>2015-05-01</p> <p>This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10132E..32D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10132E..32D"><span>Image-based metal artifact reduction in x-ray computed tomography utilizing local anatomical similarity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees</p> <p>2017-03-01</p> <p>X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E3367T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E3367T"><span>Mapping ionospheric observations using combined techniques for Europe region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomasik, Lukasz; Gulyaeva, Tamara; Stanislawska, Iwona; Swiatek, Anna; Pozoga, Mariusz; Dziak-Jankowska, Beata</p> <p></p> <p>An k nearest neighbours algorithm (KNN) was used for filling the gaps of the missing F2-layer critical frequency is proposed and applied. This method uses TEC data calculated from EGNOS Vertical Delay Estimate (VDE ≈0.78 TECU) and several GNSS stations and its spatial correlation whit data from selected ionosondes. For mapping purposes two-dimensional similarity function in KNN method was proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSV...354..132W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSV...354..132W"><span>On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir</p> <p>2015-10-01</p> <p>A numerical method for calculating the wavenumbers of axisymmetric plane waves in rigid-walled low-Mach-number turbulent flows is proposed, which is based on solving the linearized Navier-Stokes equations with an eddy-viscosity model. In addition, theoretical models for the wavenumbers are reviewed, and the main effects (the viscothermal effects, the mean flow convection and refraction effects, the turbulent absorption, and the moderate compressibility effects) which may influence the sound propagation are discussed. Compared to the theoretical models, the proposed numerical method has the advantage of potentially including more effects in the computed wavenumbers. The numerical results of the wavenumbers are compared with the reviewed theoretical models, as well as experimental data from the literature. It shows that the proposed numerical method can give satisfactory prediction of both the real part (phase shift) and the imaginary part (attenuation) of the measured wavenumbers, especially when the refraction effects or the turbulent absorption effects become important.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000CRASB.328..875G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000CRASB.328..875G"><span>Calcul numérique des ondes de surface par une méthode de projection avec un maillage eulérien adaptatif</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guillou, Sylvain; Barbry, Nathaly; Nguyen, Kim Dan</p> <p></p> <p>A non hydrostatic vertical two-dimensional numerical model is proposed to calculate free-surface flows. This model is based on resolving the full Navier-Stokes equations by a finite-difference method coupled with Chorin's projection method. An adaptative-Eulerian grid in the sigma-coordinate system is used. The model permits the calculation of surface-waves in estuarine and coastal zones. A benchmark test relative to the soliton propagation is realised to validate the model.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JaJAP..57e8005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JaJAP..57e8005M"><span>Hybrid classical/quantum simulation for infrared spectroscopy of water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro</p> <p>2018-05-01</p> <p>We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27175785','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27175785"><span>An improved parallel fuzzy connected image segmentation method based on CUDA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Liansheng; Li, Dong; Huang, Shaohui</p> <p>2016-05-12</p> <p>Fuzzy connectedness method (FC) is an effective method for extracting fuzzy objects from medical images. However, when FC is applied to large medical image datasets, its running time will be greatly expensive. Therefore, a parallel CUDA version of FC (CUDA-kFOE) was proposed by Ying et al. to accelerate the original FC. Unfortunately, CUDA-kFOE does not consider the edges between GPU blocks, which causes miscalculation of edge points. In this paper, an improved algorithm is proposed by adding a correction step on the edge points. The improved algorithm can greatly enhance the calculation accuracy. In the improved method, an iterative manner is applied. In the first iteration, the affinity computation strategy is changed and a look up table is employed for memory reduction. In the second iteration, the error voxels because of asynchronism are updated again. Three different CT sequences of hepatic vascular with different sizes were used in the experiments with three different seeds. NVIDIA Tesla C2075 is used to evaluate our improved method over these three data sets. Experimental results show that the improved algorithm can achieve a faster segmentation compared to the CPU version and higher accuracy than CUDA-kFOE. The calculation results were consistent with the CPU version, which demonstrates that it corrects the edge point calculation error of the original CUDA-kFOE. The proposed method has a comparable time cost and has less errors compared to the original CUDA-kFOE as demonstrated in the experimental results. In the future, we will focus on automatic acquisition method and automatic processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880009936','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880009936"><span>Symmetry and equivalence restrictions in electronic structure calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauschlicher, Charles W., Jr.; Taylor, Peter R.</p> <p>1988-01-01</p> <p>A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalnece restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10445E..2EN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10445E..2EN"><span>The approach to engineering tasks composition on knowledge portals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novogrudska, Rina; Globa, Larysa; Schill, Alexsander; Romaniuk, Ryszard; Wójcik, Waldemar; Karnakova, Gaini; Kalizhanova, Aliya</p> <p>2017-08-01</p> <p>The paper presents an approach to engineering tasks composition on engineering knowledge portals. The specific features of engineering tasks are highlighted, their analysis makes the basis for partial engineering tasks integration. The formal algebraic system for engineering tasks composition is proposed, allowing to set the context-independent formal structures for engineering tasks elements' description. The method of engineering tasks composition is developed that allows to integrate partial calculation tasks into general calculation tasks on engineering portals, performed on user request demand. The real world scenario «Calculation of the strength for the power components of magnetic systems» is represented, approving the applicability and efficiency of proposed approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10127E..0IK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10127E..0IK"><span>Sparsity-based fast CGH generation using layer-based approach for 3D point cloud model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Hak Gu; Jeong, Hyunwook; Ro, Yong Man</p> <p>2017-03-01</p> <p>Computer generated hologram (CGH) is becoming increasingly important for a 3-D display in various applications including virtual reality. In the CGH, holographic fringe patterns are generated by numerically calculating them on computer simulation systems. However, a heavy computational cost is required to calculate the complex amplitude on CGH plane for all points of 3D objects. This paper proposes a new fast CGH generation based on the sparsity of CGH for 3D point cloud model. The aim of the proposed method is to significantly reduce computational complexity while maintaining the quality of the holographic fringe patterns. To that end, we present a new layer-based approach for calculating the complex amplitude distribution on the CGH plane by using sparse FFT (sFFT). We observe the CGH of a layer of 3D objects is sparse so that dominant CGH is rapidly generated from a small set of signals by sFFT. Experimental results have shown that the proposed method is one order of magnitude faster than recently reported fast CGH generation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APhy...63..686K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APhy...63..686K"><span>Helicopter noise in hover: Computational modelling and experimental validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopiev, V. F.; Zaytsev, M. Yu.; Vorontsov, V. I.; Karabasov, S. A.; Anikin, V. A.</p> <p>2017-11-01</p> <p>The aeroacoustic characteristics of a helicopter rotor are calculated by a new method, to assess its applicability in assessing rotor performance in hovering. Direct solution of the Euler equations in a noninertial coordinate system is used to calculate the near-field flow around the spinning rotor. The far-field noise field is calculated by the Ffowcs Williams-Hawkings (FW-H) method using permeable control surfaces that include the blade. For a multiblade rotor, the signal obtained is duplicated and shifted in phase for each successive blade. By that means, the spectral characteristics of the far-field noise may be obtained. To determine the integral aerodynamic characteristics of the rotor, software is written to calculate the thrust and torque characteristics from the near-field flow solution. The results of numerical simulation are compared with experimental acoustic and aerodynamic data for a large-scale model of a helicopter main rotor in an open test facility. Two- and four-blade configurations of the rotor are considered, in different hover conditions. The proposed method satisfactorily predicts the aerodynamic characteristics of the blades in such conditions and gives good estimates for the first harmonics of the noise. That permits the practical use of the proposed method, not only for hovering but also for forward flight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1015c2084L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1015c2084L"><span>Ranking of options of real estate use by expert assessments mathematical processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lepikhina, O. Yu; Skachkova, M. E.; Mihaelyan, T. A.</p> <p>2018-05-01</p> <p>The article is devoted to the development of the real estate assessment concept. In conditions of multivariate using of the real estate method based on calculating, the integral indicator of each variant’s efficiency is proposed. In order to calculate weights of criteria of the efficiency expert method, Analytic hierarchy process and its mathematical support are used. The method allows fulfilling ranking of alternative types of real estate use in dependence of their efficiency. The method was applied for one of the land parcels located on Primorsky district in Saint Petersburg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19282957','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19282957"><span>Hybrid transfer-matrix FDTD method for layered periodic structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deinega, Alexei; Belousov, Sergei; Valuev, Ilya</p> <p>2009-03-15</p> <p>A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20337587','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20337587"><span>Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fukunishi, Yoshifumi</p> <p>2010-01-01</p> <p>For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20968350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20968350"><span>Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chevillotte, Fabien; Perrot, Camille; Panneton, Raymond</p> <p>2010-10-01</p> <p>Closed-cell metallic foams are known for their rigidity, lightness, thermal conductivity as well as their low production cost compared to open-cell metallic foams. However, they are also poor sound absorbers. Similarly to a rigid solid, a method to enhance their sound absorption is to perforate them. This method has shown good preliminary results but has not yet been analyzed from a microstructure point of view. The objective of this work is to better understand how perforations interact with closed-cell foam microstructure and how it modifies the sound absorption of the foam. A simple two-dimensional microstructural model of the perforated closed-cell metallic foam is presented and numerically solved. A rough three-dimensional conversion of the two-dimensional results is proposed. The results obtained with the calculation method show that the perforated closed-cell foam behaves similarly to a perforated solid; however, its sound absorption is modulated by the foam microstructure, and most particularly by the diameters of both perforation and pore. A comparison with measurements demonstrates that the proposed calculation method yields realistic trends. Some design guides are also proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29715954','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29715954"><span>Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Peng; Chang, Shengqian; Liu, Siqi; Tao, Xiao; Wang, Chang; Zheng, Zhenrong</p> <p>2018-04-16</p> <p>In this paper, a method is proposed to implement noises reduced three-dimensional (3D) holographic near-eye display by phase-only computer-generated hologram (CGH). The CGH is calculated from a double-convergence light Gerchberg-Saxton (GS) algorithm, in which the phases of two virtual convergence lights are introduced into GS algorithm simultaneously. The first phase of convergence light is a replacement of random phase as the iterative initial value and the second phase of convergence light will modulate the phase distribution calculated by GS algorithm. Both simulations and experiments are carried out to verify the feasibility of the proposed method. The results indicate that this method can effectively reduce the noises in the reconstruction. Field of view (FOV) of the reconstructed image reaches 40 degrees and experimental light path in the 4-f system is shortened. As for 3D experiments, the results demonstrate that the proposed algorithm can present 3D images with 180cm zooming range and continuous depth cues. This method may provide a promising solution in future 3D augmented reality (AR) realization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920010162','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920010162"><span>Practical theories for service life prediction of critical aerospace structural components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.</p> <p>1992-01-01</p> <p>A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26212477','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26212477"><span>A literature-driven method to calculate similarities among diseases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Hyunjin; Yoon, Youngmi; Ahn, Jaegyoon; Park, Sanghyun</p> <p>2015-11-01</p> <p>"Our lives are connected by a thousand invisible threads and along these sympathetic fibers, our actions run as causes and return to us as results". It is Herman Melville's famous quote describing connections among human lives. To paraphrase the Melville's quote, diseases are connected by many functional threads and along these sympathetic fibers, diseases run as causes and return as results. The Melville's quote explains the reason for researching disease-disease similarity and disease network. Measuring similarities between diseases and constructing disease network can play an important role in disease function research and in disease treatment. To estimate disease-disease similarities, we proposed a novel literature-based method. The proposed method extracted disease-gene relations and disease-drug relations from literature and used the frequencies of occurrence of the relations as features to calculate similarities among diseases. We also constructed disease network with top-ranking disease pairs from our method. The proposed method discovered a larger number of answer disease pairs than other comparable methods and showed the lowest p-value. We presume that our method showed good results because of using literature data, using all possible gene symbols and drug names for features of a disease, and determining feature values of diseases with the frequencies of co-occurrence of two entities. The disease-disease similarities from the proposed method can be used in computational biology researches which use similarities among diseases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26737640','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26737640"><span>Heart rate calculation from ensemble brain wave using wavelet and Teager-Kaiser energy operator.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Srinivasan, Jayaraman; Adithya, V</p> <p>2015-01-01</p> <p>Electroencephalogram (EEG) signal artifacts are caused by various factors, such as, Electro-oculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG), movement artifact and line interference. The relatively high electrical energy cardiac activity causes EEG artifacts. In EEG signal processing the general approach is to remove the ECG signal. In this paper, we introduce an automated method to extract the ECG signal from EEG using wavelet and Teager-Kaiser energy operator for R-peak enhancement and detection. From the detected R-peaks the heart rate (HR) is calculated for clinical diagnosis. To check the efficiency of our method, we compare the HR calculated from ECG signal recorded in synchronous with EEG. The proposed method yields a mean error of 1.4% for the heart rate and 1.7% for mean R-R interval. The result illustrates that, proposed method can be used for ECG extraction from single channel EEG and used in clinical diagnosis like estimation for stress analysis, fatigue, and sleep stages classification studies as a multi-model system. In addition, this method eliminates the dependence of additional synchronous ECG in extraction of ECG from EEG signal process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27782520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27782520"><span>Communication: Finite size correction in periodic coupled cluster theory calculations of solids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liao, Ke; Grüneis, Andreas</p> <p>2016-10-14</p> <p>We present a method to correct for finite size errors in coupled cluster theory calculations of solids. The outlined technique shares similarities with electronic structure factor interpolation methods used in quantum Monte Carlo calculations. However, our approach does not require the calculation of density matrices. Furthermore we show that the proposed finite size corrections achieve chemical accuracy in the convergence of second-order Møller-Plesset perturbation and coupled cluster singles and doubles correlation energies per atom for insulating solids with two atomic unit cells using 2 × 2 × 2 and 3 × 3 × 3 k-point meshes only.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJP..132..455E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJP..132..455E"><span>Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy</p> <p>2017-11-01</p> <p>A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28704959','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28704959"><span>Cross Deployment Networking and Systematic Performance Analysis of Underwater Wireless Sensor Networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei; Song, Houbing</p> <p>2017-07-12</p> <p>Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..321F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..321F"><span>An Improved Interferometric Calibration Method Based on Independent Parameter Decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, J.; Zuo, X.; Li, T.; Chen, Q.; Geng, X.</p> <p>2018-04-01</p> <p>Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM). The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs). However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD). Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5539687','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5539687"><span>Cross Deployment Networking and Systematic Performance Analysis of Underwater Wireless Sensor Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wei, Zhengxian; Song, Min; Yin, Guisheng; Wang, Hongbin; Ma, Xuefei</p> <p>2017-01-01</p> <p>Underwater wireless sensor networks (UWSNs) have become a new hot research area. However, due to the work dynamics and harsh ocean environment, how to obtain an UWSN with the best systematic performance while deploying as few sensor nodes as possible and setting up self-adaptive networking is an urgent problem that needs to be solved. Consequently, sensor deployment, networking, and performance calculation of UWSNs are challenging issues, hence the study in this paper centers on this topic and three relevant methods and models are put forward. Firstly, the normal body-centered cubic lattice to cross body-centered cubic lattice (CBCL) has been improved, and a deployment process and topology generation method are built. Then most importantly, a cross deployment networking method (CDNM) for UWSNs suitable for the underwater environment is proposed. Furthermore, a systematic quar-performance calculation model (SQPCM) is proposed from an integrated perspective, in which the systematic performance of a UWSN includes coverage, connectivity, durability and rapid-reactivity. Besides, measurement models are established based on the relationship between systematic performance and influencing parameters. Finally, the influencing parameters are divided into three types, namely, constraint parameters, device performance and networking parameters. Based on these, a networking parameters adjustment method (NPAM) for optimized systematic performance of UWSNs has been presented. The simulation results demonstrate that the approach proposed in this paper is feasible and efficient in networking and performance calculation of UWSNs. PMID:28704959</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890015811','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890015811"><span>An investigation of using an RQP based method to calculate parameter sensitivity derivatives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Beltracchi, Todd J.; Gabriele, Gary A.</p> <p>1989-01-01</p> <p>Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..2200011B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..2200011B"><span>Environmental impact assessment of coal power plants in operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bartan, Ayfer; Kucukali, Serhat; Ar, Irfan</p> <p>2017-11-01</p> <p>Coal power plants constitute an important component of the energy mix in many countries. However, coal power plants can cause several environmental risks such as: climate change and biodiversity loss. In this study, a tool has been proposed to calculate the environmental impact of a coal-fired thermal power plant in operation by using multi-criteria scoring and fuzzy logic method. We take into account the following environmental parameters in our tool: CO, SO2, NOx, particulate matter, fly ash, bottom ash, the cooling water intake impact on aquatic biota, and the thermal pollution. In the proposed tool, the boundaries of the fuzzy logic membership functions were established taking into account the threshold values of the environmental parameters which were defined in the environmental legislation. Scoring of these environmental parameters were done with the statistical analysis of the environmental monitoring data of the power plant and by using the documented evidences that were obtained during the site visits. The proposed method estimates each environmental impact factor level separately and then aggregates them by calculating the Environmental Impact Score (EIS). The proposed method uses environmental monitoring data and documented evidence instead of using simulation models. The proposed method has been applied to the 4 coal-fired power plants that have been operation in Turkey. The Environmental Impact Score was obtained for each power plant and their environmental performances were compared. It is expected that those environmental impact assessments will contribute to the decision-making process for environmental investments to those plants. The main advantage of the proposed method is its flexibility and ease of use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17110352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17110352"><span>Improved estimates of environmental copper release rates from antifouling products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Finnie, Alistair A</p> <p>2006-01-01</p> <p>The US Navy Dome method for measuring copper release rates from antifouling paint in-service on ships' hulls can be considered to be the most reliable indicator of environmental release rates. In this paper, the relationship between the apparent copper release rate and the environmental release rate is established for a number of antifouling coating types using data from a variety of available laboratory, field and calculation methods. Apart from a modified Dome method using panels, all laboratory, field and calculation methods significantly overestimate the environmental release rate of copper from antifouling coatings. The difference is greatest for self-polishing copolymer antifoulings (SPCs) and smallest for certain erodible/ablative antifoulings, where the ASTM/ISO standard and the CEPE calculation method are seen to typically overestimate environmental release rates by factors of about 10 and 4, respectively. Where ASTM/ISO or CEPE copper release rate data are used for environmental risk assessment or regulatory purposes, it is proposed that the release rate values should be divided by a correction factor to enable more reliable generic environmental risk assessments to be made. Using a conservative approach based on a realistic worst case and accounting for experimental uncertainty in the data that are currently available, proposed default correction factors for use with all paint types are 5.4 for the ASTM/ISO method and 2.9 for the CEPE calculation method. Further work is required to expand this data-set and refine the correction factors through correlation of laboratory measured and calculated copper release rates with the direct in situ environmental release rate for different antifouling paints under a range of environmental conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24959612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24959612"><span>Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sertić, Josip; Kozak, Dražan; Samardžić, Ivan</p> <p>2014-01-01</p> <p>The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEI....26f3016L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEI....26f3016L"><span>Seamless image stitching by homography refinement and structure deformation using optimal seam pair detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Daeho; Lee, Seohyung</p> <p>2017-11-01</p> <p>We propose an image stitching method that can remove ghost effects and realign the structure misalignments that occur in common image stitching methods. To reduce the artifacts caused by different parallaxes, an optimal seam pair is selected by comparing the cross correlations from multiple seams detected by variable cost weights. Along the optimal seam pair, a histogram of oriented gradients is calculated, and feature points for matching are detected. The homography is refined using the matching points, and the remaining misalignment is eliminated using the propagation of deformation vectors calculated from matching points. In multiband blending, the overlapping regions are determined from a distance between the matching points to remove overlapping artifacts. The experimental results show that the proposed method more robustly eliminates misalignments and overlapping artifacts than the existing method that uses single seam detection and gradient features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcAau.129..429M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcAau.129..429M"><span>A hypersonic aeroheating calculation method based on inviscid outer edge of boundary layer parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meng, ZhuXuan; Fan, Hu; Peng, Ke; Zhang, WeiHua; Yang, HuiXin</p> <p>2016-12-01</p> <p>This article presents a rapid and accurate aeroheating calculation method for hypersonic vehicles. The main innovation is combining accurate of numerical method with efficient of engineering method, which makes aeroheating simulation more precise and faster. Based on the Prandtl boundary layer theory, the entire flow field is divided into inviscid and viscid flow at the outer edge of the boundary layer. The parameters at the outer edge of the boundary layer are numerically calculated from assuming inviscid flow. The thermodynamic parameters of constant-volume specific heat, constant-pressure specific heat and the specific heat ratio are calculated, the streamlines on the vehicle surface are derived and the heat flux is then obtained. The results of the double cone show that at the 0° and 10° angle of attack, the method of aeroheating calculation based on inviscid outer edge of boundary layer parameters reproduces the experimental data better than the engineering method. Also the proposed simulation results of the flight vehicle reproduce the viscid numerical results well. Hence, this method provides a promising way to overcome the high cost of numerical calculation and improves the precision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26964243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26964243"><span>[A New Distance Metric between Different Stellar Spectra: the Residual Distribution Distance].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Jie; Pan, Jing-chang; Luo, A-li; Wei, Peng; Liu, Meng</p> <p>2015-12-01</p> <p>Distance metric is an important issue for the spectroscopic survey data processing, which defines a calculation method of the distance between two different spectra. Based on this, the classification, clustering, parameter measurement and outlier data mining of spectral data can be carried out. Therefore, the distance measurement method has some effect on the performance of the classification, clustering, parameter measurement and outlier data mining. With the development of large-scale stellar spectral sky surveys, how to define more efficient distance metric on stellar spectra has become a very important issue in the spectral data processing. Based on this problem and fully considering of the characteristics and data features of the stellar spectra, a new distance measurement method of stellar spectra named Residual Distribution Distance is proposed. While using this method to measure the distance, the two spectra are firstly scaled and then the standard deviation of the residual is used the distance. Different from the traditional distance metric calculation methods of stellar spectra, when used to calculate the distance between stellar spectra, this method normalize the two spectra to the same scale, and then calculate the residual corresponding to the same wavelength, and the standard error of the residual spectrum is used as the distance measure. The distance measurement method can be used for stellar classification, clustering and stellar atmospheric physical parameters measurement and so on. This paper takes stellar subcategory classification as an example to test the distance measure method. The results show that the distance defined by the proposed method is more effective to describe the gap between different types of spectra in the classification than other methods, which can be well applied in other related applications. At the same time, this paper also studies the effect of the signal to noise ratio (SNR) on the performance of the proposed method. The result show that the distance is affected by the SNR. The smaller the signal-to-noise ratio is, the greater impact is on the distance; While SNR is larger than 10, the signal-to-noise ratio has little effect on the performance for the classification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MeScT..29d5208G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MeScT..29d5208G"><span>Full-field stress determination in photoelasticity with phase shifting technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Enhai; Liu, Yonggang; Han, Yongsheng; Arola, Dwayne; Zhang, Dongsheng</p> <p>2018-04-01</p> <p>Photoelasticity is an effective method for evaluating the stress and its spatial variations within a stressed body. In the present study, a method to determine the stress distribution by means of phase shifting and a modified shear-difference is proposed. First, the orientation of the first principal stress and the retardation between the principal stresses are determined in the full-field through phase shifting. Then, through bicubic interpolation and derivation of a modified shear-difference method, the internal stress is calculated from the point with a free boundary along its normal direction. A method to reduce integration error in the shear difference scheme is proposed and compared to the existing methods; the integration error is reduced when using theoretical photoelastic parameters to calculate the stress component with the same points. Results show that when the value of Δx/Δy approaches one, the error is minimum, and although the interpolation error is inevitable, it has limited influence on the accuracy of the result. Finally, examples are presented for determining the stresses in a circular plate and ring subjected to diametric loading. Results show that the proposed approach provides a complete solution for determining the full-field stresses in photoelastic models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OptEn..53b4108S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OptEn..53b4108S"><span>Calculation reduction method for color digital holography and computer-generated hologram using color space conversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shimobaba, Tomoyoshi; Nagahama, Yuki; Kakue, Takashi; Takada, Naoki; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Hiyama, Daisuke; Ito, Tomoyoshi</p> <p>2014-02-01</p> <p>A calculation reduction method for color digital holography (DH) and computer-generated holograms (CGHs) using color space conversion is reported. Color DH and color CGHs are generally calculated on RGB space. We calculate color DH and CGHs in other color spaces for accelerating the calculation (e.g., YCbCr color space). In YCbCr color space, a RGB image or RGB hologram is converted to the luminance component (Y), blue-difference chroma (Cb), and red-difference chroma (Cr) components. In terms of the human eye, although the negligible difference of the luminance component is well recognized, the difference of the other components is not. In this method, the luminance component is normal sampled and the chroma components are down-sampled. The down-sampling allows us to accelerate the calculation of the color DH and CGHs. We compute diffraction calculations from the components, and then we convert the diffracted results in YCbCr color space to RGB color space. The proposed method, which is possible to accelerate the calculations up to a factor of 3 in theory, accelerates the calculation over two times faster than the ones in RGB color space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25925774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25925774"><span>Reference point detection for camera-based fingerprint image based on wavelet transformation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khalil, Mohammed S</p> <p>2015-04-30</p> <p>Fingerprint recognition systems essentially require core-point detection prior to fingerprint matching. The core-point is used as a reference point to align the fingerprint with a template database. When processing a larger fingerprint database, it is necessary to consider the core-point during feature extraction. Numerous core-point detection methods are available and have been reported in the literature. However, these methods are generally applied to scanner-based images. Hence, this paper attempts to explore the feasibility of applying a core-point detection method to a fingerprint image obtained using a camera phone. The proposed method utilizes a discrete wavelet transform to extract the ridge information from a color image. The performance of proposed method is evaluated in terms of accuracy and consistency. These two indicators are calculated automatically by comparing the method's output with the defined core points. The proposed method is tested on two data sets, controlled and uncontrolled environment, collected from 13 different subjects. In the controlled environment, the proposed method achieved a detection rate 82.98%. In uncontrolled environment, the proposed method yield a detection rate of 78.21%. The proposed method yields promising results in a collected-image database. Moreover, the proposed method outperformed compare to existing method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-11-27/pdf/2012-28741.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-11-27/pdf/2012-28741.pdf"><span>77 FR 70780 - Agency Forms Undergoing Paperwork Reduction Act Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-11-27</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... notice. Proposed Project Generic Clearance for the Collection of Qualitative Feedback on Agency Service... Collection of Qualitative Feedback on Agency Service Delivery'' to OMB for approval under the Paperwork...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-03-31/pdf/2011-7512.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-03-31/pdf/2011-7512.pdf"><span>76 FR 17861 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-03-31</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods...; Comment Request; Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery... Information Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29047721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29047721"><span>Bessel function expansion to reduce the calculation time and memory usage for cylindrical computer-generated holograms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sando, Yusuke; Barada, Daisuke; Jackin, Boaz Jessie; Yatagai, Toyohiko</p> <p>2017-07-10</p> <p>This study proposes a method to reduce the calculation time and memory usage required for calculating cylindrical computer-generated holograms. The wavefront on the cylindrical observation surface is represented as a convolution integral in the 3D Fourier domain. The Fourier transformation of the kernel function involving this convolution integral is analytically performed using a Bessel function expansion. The analytical solution can drastically reduce the calculation time and the memory usage without any cost, compared with the numerical method using fast Fourier transform to Fourier transform the kernel function. In this study, we present the analytical derivation, the efficient calculation of Bessel function series, and a numerical simulation. Furthermore, we demonstrate the effectiveness of the analytical solution through comparisons of calculation time and memory usage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22653932-tu-ab-brc-accurate-tissue-characterization-monte-carlo-dose-calculation-using-dual-multi-energy-ct-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22653932-tu-ab-brc-accurate-tissue-characterization-monte-carlo-dose-calculation-using-dual-multi-energy-ct-data"><span>TU-AB-BRC-03: Accurate Tissue Characterization for Monte Carlo Dose Calculation Using Dual-and Multi-Energy CT Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lalonde, A; Bouchard, H</p> <p></p> <p>Purpose: To develop a general method for human tissue characterization with dual-and multi-energy CT and evaluate its performance in determining elemental compositions and the associated proton stopping power relative to water (SPR) and photon mass absorption coefficients (EAC). Methods: Principal component analysis is used to extract an optimal basis of virtual materials from a reference dataset of tissues. These principal components (PC) are used to perform two-material decomposition using simulated DECT data. The elemental mass fraction and the electron density in each tissue is retrieved by measuring the fraction of each PC. A stoichiometric calibration method is adapted to themore » technique to make it suitable for clinical use. The present approach is compared with two others: parametrization and three-material decomposition using the water-lipid-protein (WLP) triplet. Results: Monte Carlo simulations using TOPAS for four reference tissues shows that characterizing them with only two PC is enough to get a submillimetric precision on proton range prediction. Based on the simulated DECT data of 43 references tissues, the proposed method is in agreement with theoretical values of protons SPR and low-kV EAC with a RMS error of 0.11% and 0.35%, respectively. In comparison, parametrization and WLP respectively yield RMS errors of 0.13% and 0.29% on SPR, and 2.72% and 2.19% on EAC. Furthermore, the proposed approach shows potential applications for spectral CT. Using five PC and five energy bins reduces the SPR RMS error to 0.03%. Conclusion: The proposed method shows good performance in determining elemental compositions from DECT data and physical quantities relevant to radiotherapy dose calculation and generally shows better accuracy and unbiased results compared to reference methods. The proposed method is particularly suitable for Monte Carlo calculations and shows promise in using more than two energies to characterize human tissue with CT.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcMSn.tmp..129Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcMSn.tmp..129Z"><span>A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Y.; Chen, J.</p> <p>2017-09-01</p> <p>A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ESASP.704E.113L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ESASP.704E.113L"><span>Generalized Wishart Mixtures for Unsupervised Classification of PolSAR Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Lan; Chen, Erxue; Li, Zengyuan</p> <p>2013-01-01</p> <p>This paper presents an unsupervised clustering algorithm based upon the expectation maximization (EM) algorithm for finite mixture modelling, using the complex wishart probability density function (PDF) for the probabilities. The mixture model enables to consider heterogeneous thematic classes which could not be better fitted by the unimodal wishart distribution. In order to make it fast and robust to calculate, we use the recently proposed generalized gamma distribution (GΓD) for the single polarization intensity data to make the initial partition. Then we use the wishart probability density function for the corresponding sample covariance matrix to calculate the posterior class probabilities for each pixel. The posterior class probabilities are used for the prior probability estimates of each class and weights for all class parameter updates. The proposed method is evaluated and compared with the wishart H-Alpha-A classification. Preliminary results show that the proposed method has better performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634401','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634401"><span>Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao</p> <p>2015-01-01</p> <p>In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28662053','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28662053"><span>Tire-road friction estimation and traction control strategy for motorized electric vehicle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang</p> <p>2017-01-01</p> <p>In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5491023','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5491023"><span>Tire-road friction estimation and traction control strategy for motorized electric vehicle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jin, Li-Qiang; Yue, Weiqiang</p> <p>2017-01-01</p> <p>In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E..103a2004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E..103a2004S"><span>Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, A. W.; Guo, J. L.; Wang, Z. J.</p> <p>2015-12-01</p> <p>In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29669415','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29669415"><span>Accelerated Enveloping Distribution Sampling: Enabling Sampling of Multiple End States while Preserving Local Energy Minima.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Perthold, Jan Walther; Oostenbrink, Chris</p> <p>2018-05-17</p> <p>Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JMSTL...5...71K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JMSTL...5...71K"><span>Motion Planning of Two Stacker Cranes in a Large-Scale Automated Storage/Retrieval System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kung, Yiheng; Kobayashi, Yoshimasa; Higashi, Toshimitsu; Ota, Jun</p> <p></p> <p>We propose a method for reducing the computational time of motion planning for stacker cranes. Most automated storage/retrieval systems (AS/RSs) are only equipped with one stacker crane. However, this is logistically challenging, and greater work efficiency in warehouses, such as those using two stacker cranes, is required. In this paper, a warehouse with two stacker cranes working simultaneously is proposed. Unlike warehouses with only one crane, trajectory planning in those with two cranes is very difficult. Since there are two cranes working together, a proper trajectory must be considered to avoid collision. However, verifying collisions is complicated and requires a considerable amount of computational time. As transport work in AS/RSs occurs randomly, motion planning cannot be conducted in advance. Planning an appropriate trajectory within a restricted duration would be a difficult task. We thereby address the current problem of motion planning requiring extensive calculation time. As a solution, we propose a “free-step” to simplify the procedure of collision verification and reduce the computational time. On the other hand, we proposed a method to reschedule the order of collision verification in order to find an appropriate trajectory in less time. By the proposed method, we reduce the calculation time to less than 1/300 of that achieved in former research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11..895T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11..895T"><span>A new method for calculating number concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, Jiangchuan; Zhao, Chunsheng; Kuang, Ye; Zhao, Gang; Shen, Chuanyang; Yu, Yingli; Bian, Yuxuan; Xu, Wanyun</p> <p>2018-02-01</p> <p>The number concentration of cloud condensation nuclei (CCN) plays a fundamental role in cloud physics. Instrumentations of direct measurements of CCN number concentration (NCCN) based on chamber technology are complex and costly; thus a simple way for measuring NCCN is needed. In this study, a new method for NCCN calculation based on measurements of a three-wavelength humidified nephelometer system is proposed. A three-wavelength humidified nephelometer system can measure the aerosol light-scattering coefficient (σsp) at three wavelengths and the light-scattering enhancement factor (fRH). The Ångström exponent (Å) inferred from σsp at three wavelengths provides information on mean predominate aerosol size, and hygroscopicity parameter (κ) can be calculated from the combination of fRH and Å. Given this, a lookup table that includes σsp, κ and Å is established to predict NCCN. Due to the precondition for the application, this new method is not suitable for externally mixed particles, large particles (e.g., dust and sea salt) or fresh aerosol particles. This method is validated with direct measurements of NCCN using a CCN counter on the North China Plain. Results show that relative deviations between calculated NCCN and measured NCCN are within 30 % and confirm the robustness of this method. This method enables simplerNCCN measurements because the humidified nephelometer system is easily operated and stable. Compared with the method using a CCN counter, another advantage of this newly proposed method is that it can obtain NCCN at lower supersaturations in the ambient atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22471987-alternative-method-evaluating-pair-energy-nucleons-nuclei','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22471987-alternative-method-evaluating-pair-energy-nucleons-nuclei"><span>Alternative method for evaluating the pair energy of nucleons in nuclei</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nurmukhamedov, A. M., E-mail: fattah52@mail.ru</p> <p>2015-12-15</p> <p>An alternative method for determining the odd–even effect parameter related to special features of the Casimir operator in Wigner’s mass formula for nuclei is proposed. A procedure for calculating this parameter is presented. The proposed method relies on a geometric interpretation of the Casimir operator, experimental data concerning the contribution of spin–orbit interaction to the nuclear mass for even–even and odd–odd nuclei, and systematics of energy gaps in the spectra of excited states of even–even nuclei.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.110b1109Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.110b1109Y"><span>Engineering topological edge states in two dimensional magnetic photonic crystal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Bing; Wu, Tong; Zhang, Xiangdong</p> <p>2017-01-01</p> <p>Based on a perturbative approach, we propose a simple and efficient method to engineer the topological edge states in two dimensional magnetic photonic crystals. The topological edge states in the microstructures can be constructed and varied by altering the parameters of the microstructure according to the field-energy distributions of the Bloch states at the related Bloch wave vectors. The validity of the proposed method has been demonstrated by exact numerical calculations through three concrete examples. Our method makes the topological edge states "designable."</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134541','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5134541"><span>Determination Method of Bridge Rotation Angle Response Using MEMS IMU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi</p> <p>2016-01-01</p> <p>To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5841653','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5841653"><span>Deblurring traffic sign images based on exemplars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Qiu, Tianshuang; Luan, Shengyang; Song, Haiyu; Wu, Linxiu</p> <p>2018-01-01</p> <p>Motion blur appearing in traffic sign images may lead to poor recognition results, and therefore it is of great significance to study how to deblur the images. In this paper, a novel method for deblurring traffic sign is proposed based on exemplars and several related approaches are also made. First, an exemplar dataset construction method is proposed based on multiple-size partition strategy to lower calculation cost of exemplar matching. Second, a matching criterion based on gradient information and entropy correlation coefficient is also proposed to enhance the matching accuracy. Third, L0.5-norm is introduced as the regularization item to maintain the sparsity of blur kernel. Experiments verify the superiority of the proposed approaches and extensive evaluations against state-of-the-art methods demonstrate the effectiveness of the proposed algorithm. PMID:29513677</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..207a2064T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..207a2064T"><span>Effectiveness Evaluation Method of Anti-Radiation Missile against Active Decoy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Junyao; Cao, Fei; Li, Sijia</p> <p>2017-06-01</p> <p>In the problem of anti-radiation missile against active decoy, whether the ARM can effectively kill the target radiation source and bait is an important index for evaluating the operational effectiveness of the missile. Aiming at this problem, this paper proposes a method to evaluate the effect of ARM against active decoy. Based on the calculation of ARM’s ability to resist the decoy, the paper proposes a method to evaluate the decoy resistance based on the key components of the hitting radar. The method has the advantages of scientific and reliability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E2061M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E2061M"><span>Determination of celestial bodies orbits and probabilities of their collisions with the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Medvedev, Yuri; Vavilov, Dmitrii</p> <p></p> <p>In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1955d0154Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1955d0154Y"><span>Android malware detection based on evolutionary super-network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Haisheng; Peng, Lingling</p> <p>2018-04-01</p> <p>In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.1127L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.1127L"><span>a Method of Time-Series Change Detection Using Full Polsar Images from Different Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, W.; Yang, J.; Zhao, J.; Shi, H.; Yang, L.</p> <p>2018-04-01</p> <p>Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, difference images between any two images in different times ware acquired by Rj statistic test. Generalized Gaussian mixture model (GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change from different sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26267497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26267497"><span>Correction of the heat loss method for calculating clothing real evaporative resistance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Faming; Zhang, Chengjiao; Lu, Yehu</p> <p>2015-08-01</p> <p>In the so-called isothermal condition (i.e., Tair [air temperature]=Tmanikin [manikin temperature]=Tr [radiant temperature]), the actual energy used for moisture evaporation detected by most sweating manikins was underestimated due to the uncontrolled fabric 'skin' temperature Tsk,f (i.e., Tsk,f<Tmanikin). Thus, it must be corrected before being used to compute the clothing real evaporative resistance. In this study, correction of the real evaporative heat loss from the wet fabric 'skin'-clothing system was proposed and experimentally validated on a 'Newton' sweating manikin. The real evaporative resistance of five clothing ensembles and the nude fabric 'skin' calculated by the corrected heat loss method was also reported and compared with that by the mass loss method. Results revealed that, depending on the types of tested clothing, different amounts of heat were drawn from the ambient environment. In general, a greater amount of heat was drawn from the ambient environment by the wet fabric 'skin'-clothing system in lower thermal insulation clothing than that in higher insulation clothing. There were no significant differences between clothing real evaporative resistances calculated by the corrected heat loss method and those by the mass loss method. It was therefore concluded that the correction method proposed in this study has been successfully validated. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985anch.conf.....B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985anch.conf.....B"><span>Detecting isotopic ratio outliers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bayne, C. K.; Smith, D. H.</p> <p></p> <p>An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..262a2160F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..262a2160F"><span>Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filatov, V. B.</p> <p>2017-11-01</p> <p>The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3139963','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3139963"><span>Problems With Risk Reclassification Methods for Evaluating Prediction Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pepe, Margaret S.</p> <p>2011-01-01</p> <p>For comparing the performance of a baseline risk prediction model with one that includes an additional predictor, a risk reclassification analysis strategy has been proposed. The first step is to cross-classify risks calculated according to the 2 models for all study subjects. Summary measures including the percentage of reclassification and the percentage of correct reclassification are calculated, along with 2 reclassification calibration statistics. The author shows that interpretations of the proposed summary measures and P values are problematic. The author's recommendation is to display the reclassification table, because it shows interesting information, but to use alternative methods for summarizing and comparing model performance. The Net Reclassification Index has been suggested as one alternative method. The author argues for reporting components of the Net Reclassification Index because they are more clinically relevant than is the single numerical summary measure. PMID:21555714</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJTP...57.1094L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJTP...57.1094L"><span>A New Proposal to Redefine Kilogram by Measuring the Planck Constant Based on Inertial Mass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yongmeng; Wang, Dawei</p> <p>2018-04-01</p> <p>A novel method to measure the Planck constant based on inertial mass is proposed here, which is distinguished from the conventional Kibble balance experiment which is based on the gravitational mass. The kilogram unit is linked to the Planck constant by calculating the difference of the parameters, i.e. resistance, voltage, velocity and time, which is measured in a two-mode experiment, unloaded mass mode and the loaded mass mode. In principle, all parameters measured in this experiment can reach a high accuracy, as that in Kibble balance experiment. This method has an advantage that some systematic error can be eliminated in difference calculation of measurements. In addition, this method is insensitive to air buoyancy and the alignment work in this experiment is easy. At last, the initial design of the apparatus is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyC..531...20E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyC..531...20E"><span>Calculation of AC loss in two-layer superconducting cable with equal currents in the layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erdogan, Muzaffer</p> <p>2016-12-01</p> <p>A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22657976-tight-binding-approximations-time-dependent-density-functional-theory-fast-approach-calculation-electronically-excited-states','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22657976-tight-binding-approximations-time-dependent-density-functional-theory-fast-approach-calculation-electronically-excited-states"><span>Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rüger, Robert, E-mail: rueger@scm.com; Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig</p> <p>2016-05-14</p> <p>We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of twomore » compared to TD-DFTB.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJTJE..34..233S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJTJE..34..233S"><span>Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong</p> <p>2017-08-01</p> <p>In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29607905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29607905"><span>Linear Discriminant Analysis for the in Silico Discovery of Mechanism-Based Reversible Covalent Inhibitors of a Serine Protease: Application of Hydration Thermodynamics Analysis and Semi-empirical Molecular Orbital Calculation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi</p> <p>2018-01-01</p> <p>We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-04-27/pdf/2011-10237.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-04-27/pdf/2011-10237.pdf"><span>76 FR 23536 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-04-27</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... Qualitative Feedback on Agency Service Delivery April 22, 2011. AGENCY: Department of Agriculture (USDA... Qualitative Feedback on Agency Service Delivery'' to OMB for approval under the Paperwork Reduction Act (PRA...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-05-05/pdf/2011-10952.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-05-05/pdf/2011-10952.pdf"><span>76 FR 25693 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-05-05</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... Collection; Comment Request; Generic Clearance for the Collection of Qualitative Feedback on Agency Service... Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback on Agency...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-12-22/pdf/2011-32834.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-12-22/pdf/2011-32834.pdf"><span>76 FR 79702 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-12-22</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential... Qualitative Feedback on Agency Service Delivery AGENCY: National Institute of Mental Health (NIMH), HHS... Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback on Agency...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-03-15/pdf/2011-5979.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-03-15/pdf/2011-5979.pdf"><span>76 FR 13977 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-03-15</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... of Qualitative Feedback on Agency Service Delivery AGENCY: Office of the Secretary/Office of the...): ``Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery'' to OMB for...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-12-05/pdf/2012-29403.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-12-05/pdf/2012-29403.pdf"><span>77 FR 72361 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-12-05</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential... Qualitative Feedback on Agency Service Delivery SUMMARY: As part of a Federal Government-wide effort to... Information Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-04-08/pdf/2011-8384.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-04-08/pdf/2011-8384.pdf"><span>76 FR 19826 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-04-08</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential... Request; Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery AGENCY... (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-02-28/pdf/2011-4331.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-02-28/pdf/2011-4331.pdf"><span>76 FR 10939 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-02-28</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... of Qualitative Feedback on Agency Service Delivery AGENCY: Federal Railroad Administration (FRA... Qualitative Feedback on Agency Service Delivery'' to OMB for approval under the Paperwork Reduction Act (PRA...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-07-23/pdf/2013-17650.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-07-23/pdf/2013-17650.pdf"><span>78 FR 44099 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-07-23</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... Collection; Comment Request; Generic Clearance for the Collection of Qualitative Feedback on Agency Service... Qualitative Feedback on Agency Service Delivery'' for approval under the Paperwork Reduction Act (PRA) (44 U.S...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-12-22/pdf/2010-32084.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-12-22/pdf/2010-32084.pdf"><span>75 FR 80542 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-12-22</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential...; Comment Request; Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery... Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback on Agency...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-05-31/pdf/2011-13350.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-05-31/pdf/2011-13350.pdf"><span>76 FR 31383 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-05-31</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods...; Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery AGENCY: Peace... Qualitative Feedback on Agency Service Delivery '' to OMB for approval under the Paperwork Reduction Act (PRA...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-07-27/pdf/2011-19027.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-07-27/pdf/2011-19027.pdf"><span>76 FR 44938 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-07-27</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential... Qualitative Feedback on Agency Service Delivery: National Cancer Center (NCI) ACTION: 30-Day notice of... Collection Request (Generic ICR): ``Generic Clearance for the Collection of Qualitative Feedback on Agency...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-04-14/pdf/2011-9080.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-04-14/pdf/2011-9080.pdf"><span>76 FR 20967 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-04-14</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... Request; Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery AGENCY: U... Clearance for the Collection of Qualitative Feedback on Agency Service Delivery'' to OMB for approval under...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-06-30/pdf/2011-16510.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-06-30/pdf/2011-16510.pdf"><span>76 FR 38355 - Agency Information Collection Activities: Proposed Collection; Comment Request; Generic Clearance...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-06-30</p> <p>... calculations that justify the proposed sample size, the expected response rate, methods for assessing potential... of Qualitative Feedback on Agency Service Delivery AGENCY: Architectural and Transportation Barriers...: ``Generic Clearance for the Collection of Qualitative Feedback on Agency Service Delivery'' to the Office of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2011-04-25/pdf/2011-9915.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2011-04-25/pdf/2011-9915.pdf"><span>76 FR 22920 - Agency Information Collection Activities: Proposed Collection; Comment Request; DOL Generic...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2011-04-25</p> <p>... requirements or power calculations that justify the proposed sample size, the expected response rate, methods... Collection; Comment Request; DOL Generic Clearance for the Collection of Qualitative Feedback on Agency... of Qualitative Feedback on Agency Service Delivery'' to the Office of Management and Budget (OMB) for...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEI....26f3021L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEI....26f3021L"><span>Robust and fast-converging level set method for side-scan sonar image segmentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yan; Li, Qingwu; Huo, Guanying</p> <p>2017-11-01</p> <p>A robust and fast-converging level set method is proposed for side-scan sonar (SSS) image segmentation. First, the noise in each sonar image is removed using the adaptive nonlinear complex diffusion filter. Second, k-means clustering is used to obtain the initial presegmentation image from the denoised image, and then the distance maps of the initial contours are reinitialized to guarantee the accuracy of the numerical calculation used in the level set evolution. Finally, the satisfactory segmentation is achieved using a robust variational level set model, where the evolution control parameters are generated by the presegmentation. The proposed method is successfully applied to both synthetic image with speckle noise and real SSS images. Experimental results show that the proposed method needs much less iteration and therefore is much faster than the fuzzy local information c-means clustering method, the level set method using a gamma observation model, and the enhanced region-scalable fitting method. Moreover, the proposed method can usually obtain more accurate segmentation results compared with other methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......119H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......119H"><span>Methods for Melting Temperature Calculation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, Qi-Jun</p> <p></p> <p>Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties whose determination requires extensive sampling of atomic configuration space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JMSTL...3...53T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JMSTL...3...53T"><span>Numerical Calculation Method for Prediction of Ground-borne Vibration near Subway Tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuno, Kiwamu; Furuta, Masaru; Abe, Kazuhisa</p> <p></p> <p>This paper describes the development of prediction method for ground-borne vibration from railway tunnels. Field measurement was carried out both in a subway shield tunnel, in the ground and on the ground surface. The generated vibration in the tunnel was calculated by means of the train/track/tunnel interaction model and was compared with the measurement results. On the other hand, wave propagation in the ground was calculated utilizing the empirical model, which was proposed based on the relationship between frequency and material damping coefficient α in order to predict the attenuation in the ground in consideration of frequency characteristics. Numerical calculation using 2-dimensinal FE analysis was also carried out in this research. The comparison between calculated and measured results shows that the prediction method including the model for train/track/tunnel interaction and that for wave propagation is applicable to the prediction of train-induced vibration propagated from railway tunnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1290...53F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1290...53F"><span>Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.</p> <p>2010-10-01</p> <p>A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...63a2002K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...63a2002K"><span>Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu</p> <p>2017-05-01</p> <p>This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20345499','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20345499"><span>On sample size of the kruskal-wallis test with application to a mouse peritoneal cavity study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Chunpeng; Zhang, Donghui; Zhang, Cun-Hui</p> <p>2011-03-01</p> <p>As the nonparametric generalization of the one-way analysis of variance model, the Kruskal-Wallis test applies when the goal is to test the difference between multiple samples and the underlying population distributions are nonnormal or unknown. Although the Kruskal-Wallis test has been widely used for data analysis, power and sample size methods for this test have been investigated to a much lesser extent. This article proposes new power and sample size calculation methods for the Kruskal-Wallis test based on the pilot study in either a completely nonparametric model or a semiparametric location model. No assumption is made on the shape of the underlying population distributions. Simulation results show that, in terms of sample size calculation for the Kruskal-Wallis test, the proposed methods are more reliable and preferable to some more traditional methods. A mouse peritoneal cavity study is used to demonstrate the application of the methods. © 2010, The International Biometric Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOpt...20d5301K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOpt...20d5301K"><span>Cylindrical optical resonators: fundamental properties and bio-sensing characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khozeymeh, Foroogh; Razaghi, Mohammad</p> <p>2018-04-01</p> <p>In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28425394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28425394"><span>Near-Infrared Spectrum Detection of Wheat Gluten Protein Content Based on a Combined Filtering Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cai, Jian-Hua</p> <p>2017-09-01</p> <p>To eliminate the random error of the derivative near-IR (NIR) spectrum and to improve model stability and the prediction accuracy of the gluten protein content, a combined method is proposed for pretreatment of the NIR spectrum based on both empirical mode decomposition and the wavelet soft-threshold method. The principle and the steps of the method are introduced and the denoising effect is evaluated. The wheat gluten protein content is calculated based on the denoised spectrum, and the results are compared with those of the nine-point smoothing method and the wavelet soft-threshold method. Experimental results show that the proposed combined method is effective in completing pretreatment of the NIR spectrum, and the proposed method improves the accuracy of detection of wheat gluten protein content from the NIR spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29092492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29092492"><span>Note: Demodulation of spectral signal modulated by optical chopper with unstable modulation frequency.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Shengzhao; Li, Gang; Wang, Jiexi; Wang, Donggen; Han, Ying; Cao, Hui; Lin, Ling; Diao, Chunhong</p> <p>2017-10-01</p> <p>When an optical chopper is used to modulate the light source, the rotating speed of the wheel may vary with time and subsequently cause jitter of the modulation frequency. The amplitude calculated from the modulated signal would be distorted when the frequency fluctuations occur. To precisely calculate the amplitude of the modulated light flux, we proposed a method to estimate the range of the frequency fluctuation in the measurement of the spectrum and then extract the amplitude based on the sum of power of the signal in the selected frequency range. Experiments were designed to test the feasibility of the proposed method and the results showed lower root means square error than the conventional way.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10615E..4SN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10615E..4SN"><span>Adjacent bin stability evaluating for feature description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nie, Dongdong; Ma, Qinyong</p> <p>2018-04-01</p> <p>Recent study improves descriptor performance by accumulating stability votes for all scale pairs to compose the local descriptor. We argue that the stability of a bin depends on the differences across adjacent pairs more than the differences across all scale pairs, and a new local descriptor is composed based on the hypothesis. A series of SIFT descriptors are extracted from multiple scales firstly. Then the difference value of the bin across adjacent scales is calculated, and the stability value of a bin is calculated based on it and accumulated to compose the final descriptor. The performance of the proposed method is evaluated with two popular matching datasets, and compared with other state-of-the-art works. Experimental results show that the proposed method performs satisfactorily.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-08-11/pdf/2010-18354.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-08-11/pdf/2010-18354.pdf"><span>75 FR 48743 - Mandatory Reporting of Greenhouse Gases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-08-11</p> <p>...EPA is proposing to amend specific provisions in the GHG reporting rule to clarify certain provisions, to correct technical and editorial errors, and to address certain questions and issues that have arisen since promulgation. These proposed changes include providing additional information and clarity on existing requirements, allowing greater flexibility or simplified calculation methods for certain sources in a facility, amending data reporting requirements to provide additional clarity on when different types of GHG emissions need to be calculated and reported, clarifying terms and definitions in certain equations, and technical corrections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED529101.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED529101.pdf"><span>The Utility of Robust Means in Statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Goodwyn, Fara</p> <p>2012-01-01</p> <p>Location estimates calculated from heuristic data were examined using traditional and robust statistical methods. The current paper demonstrates the impact outliers have on the sample mean and proposes robust methods to control for outliers in sample data. Traditional methods fail because they rely on the statistical assumptions of normality and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CPL...700..149T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CPL...700..149T"><span>Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarumi, Moto; Nakai, Hiromi</p> <p>2018-05-01</p> <p>This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27927167','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27927167"><span>Development of a group contribution method for estimating free energy of peptides in a dodecane-water system via molecular dynamic simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mora Osorio, Camilo Andrés; González Barrios, Andrés Fernando</p> <p>2016-12-07</p> <p>Calculation of the Gibbs free energy changes of biological molecules at the oil-water interface is commonly performed with Molecular Dynamics simulations (MD). It is a process that could be performed repeatedly in order to find some molecules of high stability in this medium. Here, an alternative method of calculation has been proposed: a group contribution method (GCM) for peptides based on MD of the twenty classic amino acids to obtain free energy change during the insertion of any peptide chain in water-dodecane interfaces. Multiple MD of the twenty classic amino acids located at the interface of rectangular simulation boxes with a dodecane-water medium were performed. A GCM to calculate the free energy of entire peptides is then proposed. The method uses the summation of the Gibbs free energy of each amino acid adjusted in function of its presence or absence in the chain as well as its hydrophobic characteristics. Validation of the equation was performed with twenty-one peptides all simulated using MD in dodecane-water rectangular boxes in previous work, obtaining an average relative error of 16%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JSAST..49..137T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JSAST..49..137T"><span>Near-Optimal Guidance Method for Maximizing the Reachable Domain of Gliding Aircraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuchiya, Takeshi</p> <p></p> <p>This paper proposes a guidance method for gliding aircraft by using onboard computers to calculate a near-optimal trajectory in real-time, and thereby expanding the reachable domain. The results are applicable to advanced aircraft and future space transportation systems that require high safety. The calculation load of the optimal control problem that is used to maximize the reachable domain is too large for current computers to calculate in real-time. Thus the optimal control problem is divided into two problems: a gliding distance maximization problem in which the aircraft motion is limited to a vertical plane, and an optimal turning flight problem in a horizontal direction. First, the former problem is solved using a shooting method. It can be solved easily because its scale is smaller than that of the original problem, and because some of the features of the optimal solution are obtained in the first part of this paper. Next, in the latter problem, the optimal bank angle is computed from the solution of the former; this is an analytical computation, rather than an iterative computation. Finally, the reachable domain obtained from the proposed near-optimal guidance method is compared with that obtained from the original optimal control problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.744a2220S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.744a2220S"><span>Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma</p> <p>2016-09-01</p> <p>Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhSS...58..134M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhSS...58..134M"><span>Contribution of spontaneous polarization and its fluctuations to refraction of light in ferroelectrics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markovin, P. A.; Trepakov, V. A.; Tagantsev, A. K.; Deineka, A.; Andreev, D. A.</p> <p>2016-01-01</p> <p>The expressions for the spontaneous polar contribution δ n i s to the principal values of the refractive index due to the quadratic electro-optic effect in ferroelectrics have been considered within the phenomenological approach taking into account the polarization fluctuations. A method has been proposed for calculating the magnitude and temperature dependence of the root-mean-square fluctuations of the polarization (short-range local polar order) P sh = < P fl 2 >1/2 below the ferroelectric transition temperature T c from temperature changes in the spontaneous polar contribution δ n i s ( T) if the average spontaneous polarization P s = < P> characterizing the long-range order is determined from independent measurements (for example, from dielectric hysteresis loops). For the case of isotropic fluctuations, the proposed method has made it possible to calculate P sh and P s only from refractometric measurements. It has been shown that, upon interferometric measurements, the method developed in this work allows calculating P sh and P s directly from the measured temperature and electric-field changes in the relative optical path (the specific optical retardation) of the light.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22105721-improvement-method-equivalent-cross-section-htr','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22105721-improvement-method-equivalent-cross-section-htr"><span>The improvement of the method of equivalent cross section in HTR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Guo, J.; Li, F.</p> <p></p> <p>The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system whichmore » have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=%22Artificial+Neural+Network%22&pg=5&id=EJ852020','ERIC'); return false;" href="https://eric.ed.gov/?q=%22Artificial+Neural+Network%22&pg=5&id=EJ852020"><span>Analyzing Problem's Difficulty Based on Neural Networks and Knowledge Map</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kuo, Rita; Lien, Wei-Peng; Chang, Maiga; Heh, Jia-Sheng</p> <p>2004-01-01</p> <p>This paper proposes a methodology to calculate both the difficulty of the basic problems and the difficulty of solving a problem. The method to calculate the difficulty of problem is according to the process of constructing a problem, including Concept Selection, Unknown Designation, and Proposition Construction. Some necessary measures observed…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhA...51o5003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhA...51o5003A"><span>Diagram reduction in problem of critical dynamics of ferromagnets: 4-loop approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adzhemyan, L. Ts; Ivanova, E. V.; Kompaniets, M. V.; Vorobyeva, S. Ye</p> <p>2018-04-01</p> <p>Within the framework of the renormalization group approach to the models of critical dynamics, we propose a method for a considerable reduction of the number of integrals needed to calculate the critical exponents. With this method we perform a calculation of the critical exponent z of model A at 4-loop level, where our method allows one to reduce the number of integrals from 66 to 17. The way of constructing the integrand in a Feynman representation of such diagrams is discussed. Integrals were estimated numerically with a sector decomposition technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CPL...682...87A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CPL...682...87A"><span>Explicitly-correlated non-born-oppenheimer calculations of the HD molecule in a strong magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adamowicz, Ludwik; Stanke, Monika; Tellgren, Erik; Helgaker, Trygve</p> <p>2017-08-01</p> <p>Explicitly correlated all-particle Gaussian functions with shifted centers (ECGs) are implemented within the earlier proposed effective variational non-Born-Oppenheimer method for calculating bound states of molecular systems in magnetic field (Adamowicz et al., 2015). The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Test ECG calculations are performed for the HD molecule.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29383737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29383737"><span>Quality evaluation of no-reference MR images using multidirectional filters and image statistics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik</p> <p>2018-09-01</p> <p>This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27026862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27026862"><span>Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim</p> <p>2016-01-01</p> <p>The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24825686','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24825686"><span>Applying operational research and data mining to performance based medical personnel motivation system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niaksu, Olegas; Zaptorius, Jonas</p> <p>2014-01-01</p> <p>This paper presents the methodology suitable for creation of a performance related remuneration system in healthcare sector, which would meet requirements for efficiency and sustainable quality of healthcare services. Methodology for performance indicators selection, ranking and a posteriori evaluation has been proposed and discussed. Priority Distribution Method is applied for unbiased performance criteria weighting. Data mining methods are proposed to monitor and evaluate the results of motivation system.We developed a method for healthcare specific criteria selection consisting of 8 steps; proposed and demonstrated application of Priority Distribution Method for the selected criteria weighting. Moreover, a set of data mining methods for evaluation of the motivational system outcomes was proposed. The described methodology for calculating performance related payment needs practical approbation. We plan to develop semi-automated tools for institutional and personal performance indicators monitoring. The final step would be approbation of the methodology in a healthcare facility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1955d0174Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1955d0174Z"><span>A method for cone fitting based on certain sampling strategy in CMM metrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Li; Guo, Chaopeng</p> <p>2018-04-01</p> <p>A method of cone fitting in engineering is explored and implemented to overcome shortcomings of current fitting method. In the current method, the calculations of the initial geometric parameters are imprecise which cause poor accuracy in surface fitting. A geometric distance function of cone is constructed firstly, then certain sampling strategy is defined to calculate the initial geometric parameters, afterwards nonlinear least-squares method is used to fit the surface. The experiment is designed to verify accuracy of the method. The experiment data prove that the proposed method can get initial geometric parameters simply and efficiently, also fit the surface precisely, and provide a new accurate way to cone fitting in the coordinate measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MAR.G7007G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MAR.G7007G"><span>An Efficient numerical method to calculate the conductivity tensor for disordered topological matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garcia, Jose H.; Covaci, Lucian; Rappoport, Tatiana G.</p> <p>2015-03-01</p> <p>We propose a new efficient numerical approach to calculate the conductivity tensor in solids. We use a real-space implementation of the Kubo formalism where both diagonal and off-diagonal conductivities are treated in the same footing. We adopt a formulation of the Kubo theory that is known as Bastin formula and expand the Green's functions involved in terms of Chebyshev polynomials using the kernel polynomial method. Within this method, all the computational effort is on the calculation of the expansion coefficients. It also has the advantage of obtaining both conductivities in a single calculation step and for various values of temperature and chemical potential, capturing the topology of the band-structure. Our numerical technique is very general and is suitable for the calculation of transport properties of disordered systems. We analyze how the method's accuracy varies with the number of moments used in the expansion and illustrate our approach by calculating the transverse conductivity of different topological systems. T.G.R, J.H.G and L.C. acknowledge Brazilian agencies CNPq, FAPERJ and INCT de Nanoestruturas de Carbono, Flemish Science Foundation for financial support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMMM..435..136Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMMM..435..136Z"><span>A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna</p> <p>2017-08-01</p> <p>Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.349..122S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.349..122S"><span>Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Wanjun; Zhang, Hou</p> <p>2017-11-01</p> <p>Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22107759-environment-based-pin-power-reconstruction-method-homogeneous-core-calculations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22107759-environment-based-pin-power-reconstruction-method-homogeneous-core-calculations"><span>Environment-based pin-power reconstruction method for homogeneous core calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leroyer, H.; Brosselard, C.; Girardi, E.</p> <p>2012-07-01</p> <p>Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOXmore » assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ChOE...28..471D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ChOE...28..471D"><span>Nonlinear optimization method of ship floating condition calculation in wave based on vector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ding, Ning; Yu, Jian-xing</p> <p>2014-08-01</p> <p>Ship floating condition in regular waves is calculated. New equations controlling any ship's floating condition are proposed by use of the vector operation. This form is a nonlinear optimization problem which can be solved using the penalty function method with constant coefficients. And the solving process is accelerated by dichotomy. During the solving process, the ship's displacement and buoyant centre have been calculated by the integration of the ship surface according to the waterline. The ship surface is described using an accumulative chord length theory in order to determine the displacement, the buoyancy center and the waterline. The draught forming the waterline at each station can be found out by calculating the intersection of the ship surface and the wave surface. The results of an example indicate that this method is exact and efficient. It can calculate the ship floating condition in regular waves as well as simplify the calculation and improve the computational efficiency and the precision of results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17328198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17328198"><span>Calculation methods to perform mass balances of micropollutants in sewage treatment plants. application to pharmaceutical and personal care products (PPCPs).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carballa, Marta; Omil, Francisco; Lema, Juan M</p> <p>2007-02-01</p> <p>Two different methods are proposed to perform the mass balance calculations of micropollutants in sewage treatment plants (STPs). The first method uses the measured data in both liquid and sludge phase and the second one uses the solid-water distribution coefficient (Kd) to calculate the concentrations in the sludge from those measured in the liquid phase. The proposed methodologies facilitate the identification of the main mechanisms involved in the elimination of micropollutants. Both methods are applied for determining mass balances of selected pharmaceutical and personal care products (PPCPs) and their results are discussed. In that way, the fate of 2 musks (galaxolide and tonalide), 3 pharmaceuticals (ibuprofen, naproxen, and sulfamethoxazole), and 2 natural estrogens (estrone and 17beta-estradiol) has been investigated along the different water and sludge treatment units of a STP. Ibuprofen, naproxen, and sulfamethoxazole are biologically degraded in the aeration tank (50-70%), while musks are equally sorbed to the sludge and degraded. In contrast, estrogens are not removed in the STP studied. About 40% of the initial load of pharmaceuticals passes through the plant unaltered, with the fraction associated to sludge lower than 0.5%. In contrast, between 20 and 40% of the initial load of musks leaves the plant associated to solids, with less than 10% present in the final effluent. The results obtained show that the conclusions concerning the efficiency of micropollutants removal in a particular STP may be seriously affected by the calculation method used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5949043','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5949043"><span>Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin</p> <p>2018-01-01</p> <p>Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP..107..137F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP..107..137F"><span>An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Chao; Ren, Xingmin; Yang, Yongfeng; Xia, Yebao; Deng, Wangqun</p> <p>2018-07-01</p> <p>A non-intrusive interval precise integration method (IPIM) is proposed in this paper to analyze the transient unbalance response of uncertain rotor systems. The transfer matrix method (TMM) is used to derive the deterministic equations of motion of a hollow-shaft overhung rotor. The uncertain transient dynamic problem is solved by combing the Chebyshev approximation theory with the modified precise integration method (PIM). Transient response bounds are calculated by interval arithmetic of the expansion coefficients. Theoretical error analysis of the proposed method is provided briefly, and its accuracy is further validated by comparing with the scanning method in simulations. Numerical results show that the IPIM can keep good accuracy in vibration prediction of the start-up transient process. Furthermore, the proposed method can also provide theoretical guidance to other transient dynamic mechanical systems with uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29614028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29614028"><span>Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin</p> <p>2018-04-03</p> <p>Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22613991-new-estimates-extensive-air-shower-energies-basis-signals-scintillation-detectors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22613991-new-estimates-extensive-air-shower-energies-basis-signals-scintillation-detectors"><span>New estimates of extensive-air-shower energies on the basis of signals in scintillation detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anyutin, N. V.; Dedenko, L. G., E-mail: ddn@dec1.sinp.msu.ru; Roganova, T. M.</p> <p></p> <p>New formulas for estimating the energy of inclined extensive air showers (EASs) on the basis of signals in detectors by means of an original method and detailed tables of signals induced in scintillation detectors by photons, electrons, positrons, and muons and calculated with the aid of the GEANT4 code package were proposed in terms of the QGSJETII-04, EPOS LHC, and GHEISHA models. The parameters appearing in the proposed formulas were calculated by employing the CORSIKA code package. It is shown that, for showers of zenith angles in the range of 20◦–45◦, the standard constant-intensity-cut method, which is used to interpretmore » data from the Yakutsk EAS array, overestimates the shower energy by a factor of 1.2 to 1.5. It is proposed to employ the calculated VEM (Vertical Equivalent Muon) signal units of 10.8 and 11.4 MeV for, respectively, ground-based and underground scintillation detectors and to take into account the dependence of signals on the azimuthal angle of the detector position and fluctuations in the development of showers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22649277-su-brb-automation-photon-dosimetric-quality-assurance-program-linear-accelerator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22649277-su-brb-automation-photon-dosimetric-quality-assurance-program-linear-accelerator"><span>SU-G-BRB-05: Automation of the Photon Dosimetric Quality Assurance Program of a Linear Accelerator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lebron, S; Lu, B; Yan, G</p> <p></p> <p>Purpose: To develop an automated method to calculate a linear accelerator (LINAC) photon radiation field size, flatness, symmetry, output and beam quality in a single delivery for flattened (FF) and flattening-filter-free (FFF) beams using an ionization chamber array. Methods: The proposed method consists of three control points that deliver 30×30, 10×10 and 5×5cm{sup 2} fields (FF or FFF) in a step-and-shoot sequence where the number of monitor units is weighted for each field size. The IC Profiler (Sun Nuclear Inc.) with 5mm detector spacing was used for this study. The corrected counts (CCs) were calculated and the locations of themore » maxima and minima values of the first-order gradient determined data of each sub field. Then, all CCs for each field size are summed in order to obtain the final profiles. For each profile, the radiation field size, symmetry, flatness, output factor and beam quality were calculated. For field size calculation, a parameterized gradient method was used. For method validation, profiles were collected in the detector array both, individually and as part of the step-and-shoot plan, with 9.9cm buildup for FF and FFF beams at 90cm source-to-surface distance. The same data were collected with the device (plus buildup) placed on a movable platform to achieve a 1mm resolution. Results: The differences between the dosimetric quantities calculated from both deliveries, individually and step-and-shoot, were within 0.31±0.20% and 0.04±0.02mm. The differences between the calculated field sizes with 5mm and 1mm resolution were ±0.1mm. Conclusion: The proposed single delivery method proved to be simple and efficient in automating the photon dosimetric monthly and annual quality assurance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AMT....11.2967K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AMT....11.2967K"><span>A novel method for calculating ambient aerosol liquid water content based on measurements of a humidified nephelometer system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuang, Ye; Zhao, Chun Sheng; Zhao, Gang; Tao, Jiang Chuan; Xu, Wanyun; Ma, Nan; Bian, Yu Xuan</p> <p>2018-05-01</p> <p>Water condensed on ambient aerosol particles plays significant roles in atmospheric environment, atmospheric chemistry and climate. Before now, no instruments were available for real-time monitoring of ambient aerosol liquid water contents (ALWCs). In this paper, a novel method is proposed to calculate ambient ALWC based on measurements of a three-wavelength humidified nephelometer system, which measures aerosol light scattering coefficients and backscattering coefficients at three wavelengths under dry state and different relative humidity (RH) conditions, providing measurements of light scattering enhancement factor f(RH). The proposed ALWC calculation method includes two steps: the first step is the estimation of the dry state total volume concentration of ambient aerosol particles, Va(dry), with a machine learning method called random forest model based on measurements of the <q>dry</q> nephelometer. The estimated Va(dry) agrees well with the measured one. The second step is the estimation of the volume growth factor Vg(RH) of ambient aerosol particles due to water uptake, using f(RH) and the Ångström exponent. The ALWC is calculated from the estimated Va(dry) and Vg(RH). To validate the new method, the ambient ALWC calculated from measurements of the humidified nephelometer system during the Gucheng campaign was compared with ambient ALWC calculated from ISORROPIA thermodynamic model using aerosol chemistry data. A good agreement was achieved, with a slope and intercept of 1.14 and -8.6 µm3 cm-3 (r2 = 0.92), respectively. The advantage of this new method is that the ambient ALWC can be obtained solely based on measurements of a three-wavelength humidified nephelometer system, facilitating the real-time monitoring of the ambient ALWC and promoting the study of aerosol liquid water and its role in atmospheric chemistry, secondary aerosol formation and climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28241972','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28241972"><span>Identification of fracture zones and its application in automatic bone fracture reduction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paulano-Godino, Félix; Jiménez-Delgado, Juan J</p> <p>2017-04-01</p> <p>The preoperative planning of bone fractures using information from CT scans increases the probability of obtaining satisfactory results, since specialists are provided with additional information before surgery. The reduction of complex bone fractures requires solving a 3D puzzle in order to place each fragment into its correct position. Computer-assisted solutions may aid in this process by identifying the number of fragments and their location, by calculating the fracture zones or even by computing the correct position of each fragment. The main goal of this paper is the development of an automatic method to calculate contact zones between fragments and thus to ease the computation of bone fracture reduction. In this paper, an automatic method to calculate the contact zone between two bone fragments is presented. In a previous step, bone fragments are segmented and labelled from CT images and a point cloud is generated for each bone fragment. The calculated contact zones enable the automatic reduction of complex fractures. To that end, an automatic method to match bone fragments in complex fractures is also presented. The proposed method has been successfully applied in the calculation of the contact zone of 4 different bones from the ankle area. The calculated fracture zones enabled the reduction of all the tested cases using the presented matching algorithm. The performed tests show that the reduction of these fractures using the proposed methods leaded to a small overlapping between fragments. The presented method makes the application of puzzle-solving strategies easier, since it does not obtain the entire fracture zone but the contact area between each pair of fragments. Therefore, it is not necessary to find correspondences between fracture zones and fragments may be aligned two by two. The developed algorithms have been successfully applied in different fracture cases in the ankle area. The small overlapping error obtained in the performed tests demonstrates the absence of visual overlapping in the figures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptEn..55i3108N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptEn..55i3108N"><span>Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niwase, Hiroaki; Takada, Naoki; Araki, Hiromitsu; Maeda, Yuki; Fujiwara, Masato; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi</p> <p>2016-09-01</p> <p>Parallel calculations of large-pixel-count computer-generated holograms (CGHs) are suitable for multiple-graphics processing unit (multi-GPU) cluster systems. However, it is not easy for a multi-GPU cluster system to accomplish fast CGH calculations when CGH transfers between PCs are required. In these cases, the CGH transfer between the PCs becomes a bottleneck. Usually, this problem occurs only in multi-GPU cluster systems with a single spatial light modulator. To overcome this problem, we propose a simple method using the InfiniBand network. The computational speed of the proposed method using 13 GPUs (NVIDIA GeForce GTX TITAN X) was more than 3000 times faster than that of a CPU (Intel Core i7 4770) when the number of three-dimensional (3-D) object points exceeded 20,480. In practice, we achieved ˜40 tera floating point operations per second (TFLOPS) when the number of 3-D object points exceeded 40,960. Our proposed method was able to reconstruct a real-time movie of a 3-D object comprising 95,949 points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003IJNAM..27..549C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003IJNAM..27..549C"><span>Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Fei; Ugai, Keizo</p> <p>2003-06-01</p> <p>This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three-dimensional shear strength reduction finite element method (SSRFEM), where soil-anchor interactions were simulated by three-dimensional zero-thickness elasto-plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil-grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil-grouted body interfaces on the safety factor of slopes stabilized with anchors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052505','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4052505"><span>Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sertić, Josip; Kozak, Dražan; Samardžić, Ivan</p> <p>2014-01-01</p> <p>The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized. PMID:24959612</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1906c0019H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1906c0019H"><span>Study of high-performance canonical molecular orbitals calculation for proteins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirano, Toshiyuki; Sato, Fumitoshi</p> <p>2017-11-01</p> <p>The canonical molecular orbital (CMO) calculation can help to understand chemical properties and reactions in proteins. However, it is difficult to perform the CMO calculation of proteins because of its self-consistent field (SCF) convergence problem and expensive computational cost. To certainly obtain the CMO of proteins, we work in research and development of high-performance CMO applications and perform experimental studies. We have proposed the third-generation density-functional calculation method of calculating the SCF, which is more advanced than the FILE and direct method. Our method is based on Cholesky decomposition for two-electron integrals calculation and the modified grid-free method for the pure-XC term evaluation. By using the third-generation density-functional calculation method, the Coulomb, the Fock-exchange, and the pure-XC terms can be given by simple linear algebraic procedure in the SCF loop. Therefore, we can expect to get a good parallel performance in solving the SCF problem by using a well-optimized linear algebra library such as BLAS on the distributed memory parallel computers. The third-generation density-functional calculation method is implemented to our program, ProteinDF. To achieve computing electronic structure of the large molecule, not only overcoming expensive computation cost and also good initial guess for safe SCF convergence are required. In order to prepare a precise initial guess for the macromolecular system, we have developed the quasi-canonical localized orbital (QCLO) method. The QCLO has the characteristics of both localized and canonical orbital in a certain region of the molecule. We have succeeded in the CMO calculations of proteins by using the QCLO method. For simplified and semi-automated calculation of the QCLO method, we have also developed a Python-based program, QCLObot.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29529438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29529438"><span>The influence of the waterjet propulsion system on the ships' energy consumption and emissions inventories.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Durán-Grados, Vanesa; Mejías, Javier; Musina, Liliya; Moreno-Gutiérrez, Juan</p> <p>2018-08-01</p> <p>In this study we consider the problems associated with calculating ships' energy and emission inventories. Various related uncertainties are described in many similar studies published in the last decade, and applying to Europe, the USA and Canada. However, none of them have taken into account the performance of ships' propulsion systems. On the one hand, when a ship uses its propellers, there is no unanimous agreement on the equations used to calculate the main engines load factor and, on the other, the performance of waterjet propulsion systems (for which this variable depends on the speed of the ship) has not been taken into account in any previous studies. This paper proposes that the efficiency of the propulsion system should be included as a new parameter in the equation that defines the actual power delivered by a ship's main engines, as applied to calculate energy consumption and emissions in maritime transport. To highlight the influence of the propulsion system on calculated energy consumption and emissions, the bottom-up method has been applied using data from eight fast ferries operating across the Strait of Gibraltar over the course of one year. This study shows that the uncertainty about the efficiency of the propulsion system should be added as one more uncertainty in the energy and emission inventories for maritime transport as currently prepared. After comparing four methods for this calculation, the authors propose a new method for eight cases. For the calculation of the Main Engine's fuel oil consumption, differences up to 22% between some methods were obtained at low loads. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJTPE.131...59T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJTPE.131...59T"><span>A Study on Multi-Swing Stability Analysis of Power System using Damping Rate Inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuji, Takao; Morii, Yuki; Oyama, Tsutomu; Hashiguchi, Takuhei; Goda, Tadahiro; Nomiyama, Fumitoshi; Kosugi, Narifumi</p> <p></p> <p>In recent years, much attention is paid to the nonlinear analysis method in the field of stability analysis of power systems. Especially for the multi-swing stability analysis, the unstable limit cycle has an important meaning as a stability margin. It is required to develop a high speed calculation method of stability boundary regarding multi-swing stability because the real-time calculation of ATC is necessary to realize the flexible wheeling trades. Therefore, the authors have developed a new method which can calculate the unstable limit cycle based on damping rate inversion method. Using the unstable limit cycle, it is possible to predict the multi-swing stability at the time when the fault transmission line is reclosed. The proposed method is tested in Lorenz equation, single-machine infinite-bus system model and IEEJ WEST10 system model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..94f4105A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..94f4105A"><span>Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmad, Zeeshan; Viswanathan, Venkatasubramanian</p> <p>2016-08-01</p> <p>Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first-principles density functional theory calculated property values is important for the success of descriptor-based screening. The Bayesian error estimation approach has been built in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for example, adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depend on the derivatives of the energy. The procedure involves calculating energies around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble of energies, giving us an ensemble of fits and thereby, an ensemble of mechanical properties associated with each fit, whose spread can be used to quantify its uncertainty. The generation of ensemble of energies is only a post-processing step involving a perturbation of parameters of the exchange-correlation functional and solving for the energy non-self-consistently. The proposed method is computationally efficient and provides a more robust uncertainty estimate compared to the approach of self-consistent calculations employing several different exchange-correlation functionals. We demonstrate the method by calculating the uncertainty bounds for several materials belonging to different classes and having different structures using the developed method. We show that the calculated uncertainty bounds the property values obtained using three different GGA functionals: PBE, PBEsol, and RPBE. Finally, we apply the approach to calculate the uncertainty associated with the DFT-calculated elastic properties of solid state Li-ion and Na-ion conductors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011CPL...510..185S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011CPL...510..185S"><span>Validation and application of auxiliary density perturbation theory and non-iterative approximation to coupled-perturbed Kohn-Sham approach for calculation of dipole-quadrupole polarizability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.</p> <p>2011-07-01</p> <p>Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25090323','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25090323"><span>Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin</p> <p>2014-08-01</p> <p>The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3731167','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3731167"><span>A molecule-centered method for accelerating the calculation of hydrodynamic interactions in Brownian dynamics simulations containing many flexible biomolecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Elcock, Adrian H.</p> <p>2013-01-01</p> <p>Inclusion of hydrodynamic interactions (HIs) is essential in simulations of biological macromolecules that treat the solvent implicitly if the macromolecules are to exhibit correct translational and rotational diffusion. The present work describes the development and testing of a simple approach aimed at allowing more rapid computation of HIs in coarse-grained Brownian dynamics simulations of systems that contain large numbers of flexible macromolecules. The method combines a complete treatment of intramolecular HIs with an approximate treatment of the intermolecular HIs which assumes that the molecules are effectively spherical; all of the HIs are calculated at the Rotne-Prager-Yamakawa level of theory. When combined with Fixman’s Chebyshev polynomial method for calculating correlated random displacements, the proposed method provides an approach that is simple to program but sufficiently fast that it makes it computationally viable to include HIs in large-scale simulations. Test calculations performed on very coarse-grained models of the pyruvate dehydrogenase (PDH) E2 complex and on oligomers of ParM (ranging in size from 1 to 20 monomers) indicate that the method reproduces the translational diffusion behavior seen in more complete HI simulations surprisingly well; the method performs less well at capturing rotational diffusion but its discrepancies diminish with increasing size of the simulated assembly. Simulations of residue-level models of two tetrameric protein models demonstrate that the method also works well when more structurally detailed models are used in the simulations. Finally, test simulations of systems containing up to 1024 coarse-grained PDH molecules indicate that the proposed method rapidly becomes more efficient than the conventional BD approach in which correlated random displacements are obtained via a Cholesky decomposition of the complete diffusion tensor. PMID:23914146</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10620E..03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10620E..03Z"><span>Speckle reduction in digital holography with resampling ring masks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Wenhui; Cao, Liangcai; Jin, Guofan</p> <p>2018-01-01</p> <p>One-shot digital holographic imaging has the advantages of high stability and low temporal cost. However, the reconstruction is affected by the speckle noise. Resampling ring-mask method in spectrum domain is proposed for speckle reduction. The useful spectrum of one hologram is divided into several sub-spectra by ring masks. In the reconstruction, angular spectrum transform is applied to guarantee the calculation accuracy which has no approximation. N reconstructed amplitude images are calculated from the corresponding sub-spectra. Thanks to speckle's random distribution, superimposing these N uncorrelated amplitude images would lead to a final reconstructed image with lower speckle noise. Normalized relative standard deviation values of the reconstructed image are used to evaluate the reduction of speckle. Effect of the method on the spatial resolution of the reconstructed image is also quantitatively evaluated. Experimental and simulation results prove the feasibility and effectiveness of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9279E..0PW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9279E..0PW"><span>3D palmprint data fast acquisition and recognition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua</p> <p>2014-11-01</p> <p>This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JEI....25f1622W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JEI....25f1622W"><span>Scene analysis for effective visual search in rough three-dimensional-modeling scenes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Qi; Hu, Xiaopeng</p> <p>2016-11-01</p> <p>Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29724025','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29724025"><span>Quantitative Study on Corrosion of Steel Strands Based on Self-Magnetic Flux Leakage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xia, Runchuan; Zhou, Jianting; Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhang, Zeyu</p> <p>2018-05-02</p> <p>This paper proposed a new computing method to quantitatively and non-destructively determine the corrosion of steel strands by analyzing the self-magnetic flux leakage (SMFL) signals from them. The magnetic dipole model and three growth models (Logistic model, Exponential model, and Linear model) were proposed to theoretically analyze the characteristic value of SMFL. Then, the experimental study on the corrosion detection by the magnetic sensor was carried out. The setup of the magnetic scanning device and signal collection method were also introduced. The results show that the Logistic Growth model is verified as the optimal model for calculating the magnetic field with good fitting effects. Combined with the experimental data analysis, the amplitudes of the calculated values ( B xL ( x,z ) curves) agree with the measured values in general. This method provides significant application prospects for the evaluation of the corrosion and the residual bearing capacity of steel strand.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.358..173F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.358..173F"><span>Enhancement of a 2D front-tracking algorithm with a non-uniform distribution of Lagrangian markers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Febres, Mijail; Legendre, Dominique</p> <p>2018-04-01</p> <p>The 2D front tracking method is enhanced to control the development of spurious velocities for non-uniform distributions of markers. The hybrid formulation of Shin et al. (2005) [7] is considered. A new tangent calculation is proposed for the calculation of the tension force at markers. A new reconstruction method is also proposed to manage non-uniform distributions of markers. We show that for both the static and the translating spherical drop test case the spurious currents are reduced to the machine precision. We also show that the ratio of the Lagrangian grid size Δs over the Eulerian grid size Δx has to satisfy Δs / Δx > 0.2 for ensuring such low level of spurious velocity. The method is found to provide very good agreement with benchmark test cases from the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934233','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934233"><span>An Exact Formula for Calculating Inverse Radial Lens Distortions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Drap, Pierre; Lefèvre, Julien</p> <p>2016-01-01</p> <p>This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view. PMID:27258288</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010IEITC..93..811T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010IEITC..93..811T"><span>Learning Multiple Band-Pass Filters for Sleep Stage Estimation: Towards Care Support for Aged Persons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takadama, Keiki; Hirose, Kazuyuki; Matsushima, Hiroyasu; Hattori, Kiyohiko; Nakajima, Nobuo</p> <p></p> <p>This paper proposes the sleep stage estimation method that can provide an accurate estimation for each person without connecting any devices to human's body. In particular, our method learns the appropriate multiple band-pass filters to extract the specific wave pattern of heartbeat, which is required to estimate the sleep stage. For an accurate estimation, this paper employs Learning Classifier System (LCS) as the data-mining techniques and extends it to estimate the sleep stage. Extensive experiments on five subjects in mixed health confirm the following implications: (1) the proposed method can provide more accurate sleep stage estimation than the conventional method, and (2) the sleep stage estimation calculated by the proposed method is robust regardless of the physical condition of the subject.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPRS..138...12C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPRS..138...12C"><span>Use of LiDAR for calculating solar irradiance on roofs and façades of buildings at city scale: Methodology, validation, and analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Liang; Xu, Hao; Li, Shuyi; Chen, Yanming; Zhang, Fangli; Li, Manchun</p> <p>2018-04-01</p> <p>As the rate of urbanization continues to accelerate, the utilization of solar energy in buildings plays an increasingly important role in sustainable urban development. For this purpose, we propose a LiDAR-based joint approach for calculating the solar irradiance incident on roofs and façades of buildings at city scale, which includes a methodology for calculating solar irradiance, the validation of the proposed method, and analysis of its application. The calculation of surface irradiance on buildings may then inform photovoltaic power generation simulations, architectural design, and urban energy planning. Application analyses of the proposed method in the experiment area found that: (1) Global and direct irradiations vary significantly by hour, day, month and season, both following the same trends; however, diffuse irradiance essentially remains unchanged over time. (2) Roof irradiation, but not façade irradiation, displays distinct time-dependent patterns. (3) Global and direct irradiations on roofs are highly correlated with roof aspect and slope, with high global and direct irradiations observed on roofs of aspect 100-250° and slopes of 0-60°, whereas diffuse irradiation on roofs is only affected by roof slope. (4) The façade of a building receives higher levels of global and direct irradiations if facing southeast, south, and southwest; however, diffuse irradiation remains constant regardless of façade orientation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.931a2007V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.931a2007V"><span>Artifacts Quantification of Metal Implants in MRI</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vrachnis, I. N.; Vlachopoulos, G. F.; Maris, T. G.; Costaridou, L. I.</p> <p>2017-11-01</p> <p>The presence of materials with different magnetic properties, such as metal implants, causes distortion of the magnetic field locally, resulting in signal voids and pile ups, i.e. susceptibility artifacts in MRI. Quantitative and unbiased measurement of the artifact is prerequisite for optimization of acquisition parameters. In this study an image gradient based segmentation method is proposed for susceptibility artifact quantification. The method captures abrupt signal alterations by calculation of the image gradient. Then the artifact is quantified in terms of its extent by an automated cross entropy thresholding method as image area percentage. The proposed method for artifact quantification was tested in phantoms containing two orthopedic implants with significantly different magnetic permeabilities. The method was compared against a method proposed in the literature, considered as a reference, demonstrating moderate to good correlation (Spearman’s rho = 0.62 and 0.802 in case of titanium and stainless steel implants). The automated character of the proposed quantification method seems promising towards MRI acquisition parameter optimization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10132E..2SX','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10132E..2SX"><span>Accelerating separable footprint (SF) forward and back projection on GPU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Xiaobin; McGaffin, Madison G.; Long, Yong; Fessler, Jeffrey A.; Wen, Minhua; Lin, James</p> <p>2017-03-01</p> <p>Statistical image reconstruction (SIR) methods for X-ray CT can improve image quality and reduce radiation dosages over conventional reconstruction methods, such as filtered back projection (FBP). However, SIR methods require much longer computation time. The separable footprint (SF) forward and back projection technique simplifies the calculation of intersecting volumes of image voxels and finite-size beams in a way that is both accurate and efficient for parallel implementation. We propose a new method to accelerate the SF forward and back projection on GPU with NVIDIA's CUDA environment. For the forward projection, we parallelize over all detector cells. For the back projection, we parallelize over all 3D image voxels. The simulation results show that the proposed method is faster than the acceleration method of the SF projectors proposed by Wu and Fessler.13 We further accelerate the proposed method using multiple GPUs. The results show that the computation time is reduced approximately proportional to the number of GPUs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22589236-comparative-analysis-methods-integrating-various-environmental-impacts-single-index-life-cycle-assessment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22589236-comparative-analysis-methods-integrating-various-environmental-impacts-single-index-life-cycle-assessment"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr</p> <p></p> <p>Previous studies have proposed several methods for integrating characterized environmental impacts as a single index in life cycle assessment. Each of them, however, may lead to different results. This study presents internal and external normalization methods, weighting factors proposed by panel methods, and a monetary valuation based on an endpoint life cycle impact assessment method as the integration methods. Furthermore, this study investigates the differences among the integration methods and identifies the causes of the differences through a case study in which five elementary school buildings were used. As a result, when using internal normalization with weighting factors, the weightingmore » factors had a significant influence on the total environmental impacts whereas the normalization had little influence on the total environmental impacts. When using external normalization with weighting factors, the normalization had more significant influence on the total environmental impacts than weighing factors. Due to such differences, the ranking of the five buildings varied depending on the integration methods. The ranking calculated by the monetary valuation method was significantly different from that calculated by the normalization and weighting process. The results aid decision makers in understanding the differences among these integration methods, and, finally, help them select the method most appropriate for the goal at hand.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930027908&hterms=model+atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodel%2Batomic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930027908&hterms=model+atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmodel%2Batomic"><span>On the calculation of atomic term populations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kastner, S. O.; Bhatia, A. K.</p> <p>1992-01-01</p> <p>The usefulness of calculations on model atomic term systems which can give spectral multiplet intensities is emphasized, in contrast to more detailed level calculations which are not always feasible because of lack of appropriate atomic data. A more general expression for the multiplet radiative transition rate is proposed to facilitate term representations. The differences between term and level representations are discussed quantitatively with respect to a model three-level atom and real examples of the C III and Ne IV ions. It is shown that term representations fail at lower densities when level inverse lifetimes within terms differ by only a few orders of magnitude. In such cases one must resort to other methods; a hybrid calculation is therefore proposed to fill this need and is carried out for the C III ion to demonstrate its feasibility and validity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26404277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26404277"><span>A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xin; Wang, Jian; Liu, Chunyan</p> <p>2015-09-25</p> <p>This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians' different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians' moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the "go and back" phenomenon caused by the instability of the Bluetooth-based positioning system and the "cross-wall" phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634470','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4634470"><span>A Bluetooth/PDR Integration Algorithm for an Indoor Positioning System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Xin; Wang, Jian; Liu, Chunyan</p> <p>2015-01-01</p> <p>This paper proposes two schemes for indoor positioning by fusing Bluetooth beacons and a pedestrian dead reckoning (PDR) technique to provide meter-level positioning without additional infrastructure. As to the PDR approach, a more effective multi-threshold step detection algorithm is used to improve the positioning accuracy. According to pedestrians’ different walking patterns such as walking or running, this paper makes a comparative analysis of multiple step length calculation models to determine a linear computation model and the relevant parameters. In consideration of the deviation between the real heading and the value of the orientation sensor, a heading estimation method with real-time compensation is proposed, which is based on a Kalman filter with map geometry information. The corrected heading can inhibit the positioning error accumulation and improve the positioning accuracy of PDR. Moreover, this paper has implemented two positioning approaches integrated with Bluetooth and PDR. One is the PDR-based positioning method based on map matching and position correction through Bluetooth. There will not be too much calculation work or too high maintenance costs using this method. The other method is a fusion calculation method based on the pedestrians’ moving status (direct movement or making a turn) to determine adaptively the noise parameters in an Extended Kalman Filter (EKF) system. This method has worked very well in the elimination of various phenomena, including the “go and back” phenomenon caused by the instability of the Bluetooth-based positioning system and the “cross-wall” phenomenon due to the accumulative errors caused by the PDR algorithm. Experiments performed on the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) building in the China University of Mining and Technology (CUMT) campus showed that the proposed scheme can reliably achieve a 2-meter precision. PMID:26404277</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4883420','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4883420"><span>Systematic Error Modeling and Bias Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Feihu; Knoll, Alois</p> <p>2016-01-01</p> <p>This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29334240','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29334240"><span>New method for estimating arterial pulse wave velocity at single site.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abdessalem, Khaled Ben; Flaud, Patrice; Zobaidi, Samir</p> <p>2018-01-01</p> <p>The clinical importance of measuring local pulse wave velocity (PWV), has encouraged researchers to develop several local methods to estimate it. In this work, we proposed a new method, the sum-of-squares method [Formula: see text], that allows the estimations of PWV by using simultaneous measurements of blood pressure (P) and arterial diameter (D) at single-location. Pulse waveforms generated by: (1) two-dimensional (2D) fluid-structure interaction simulation (FSI) in a compliant tube, (2) one-dimensional (1D) model of 55 larger human systemic arteries and (3) experimental data were used to validate the new formula and evaluate several classical methods. The performance of the proposed method was assessed by comparing its results to theoretical PWV calculated from the parameters of the model and/or to PWV estimated by several classical methods. It was found that values of PWV obtained by the developed method [Formula: see text] are in good agreement with theoretical ones and with those calculated by PA-loop and D 2 P-loop. The difference between the PWV calculated by [Formula: see text] and PA-loop does not exceed 1% when data from simulations are used, 3% when in vitro data are used and 5% when in vivo data are used. In addition, this study suggests that estimated PWV from arterial pressure and diameter waveforms provide correct values while methods that require flow rate (Q) and velocity (U) overestimate or underestimate PWV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP..106..413W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP..106..413W"><span>An improved time-varying mesh stiffness model for helical gear pairs considering axial mesh force component</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Qibin; Zhao, Bo; Fu, Yang; Kong, Xianguang; Ma, Hui</p> <p>2018-06-01</p> <p>An improved time-varying mesh stiffness (TVMS) model of a helical gear pair is proposed, in which the total mesh stiffness contains not only the common transverse tooth bending stiffness, transverse tooth shear stiffness, transverse tooth radial compressive stiffness, transverse gear foundation stiffness and Hertzian contact stiffness, but also the axial tooth bending stiffness, axial tooth torsional stiffness and axial gear foundation stiffness proposed in this paper. In addition, a rapid TVMS calculation method is proposed. Considering each stiffness component, the TVMS can be calculated by the integration along the tooth width direction. Then, three cases are applied to validate the developed model. The results demonstrate that the proposed analytical method is accurate, effective and efficient for helical gear pairs and the axial mesh stiffness should be taken into consideration in the TVMS of a helical gear pair. Finally, influences of the helix angle on TVMS are studied. The results show that the improved TVMS model is effective for any helix angle and the traditional TVMS model is only effective under a small helix angle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27624912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27624912"><span>Anharmonic Vibrational Analyses of Pentapeptide Conformations Explored with Enhanced Sampling Simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Otaki, Hiroki; Yagi, Kiyoshi; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Sugita, Yuji</p> <p>2016-10-06</p> <p>An accurate theoretical prediction of the vibrational spectrum of polypeptides remains to be a challenge due to (1) their conformational flexibility and (2) non-negligible anharmonic effects. The former makes the search for conformers that contribute to the spectrum difficult, and the latter requires an expensive, quantum mechanical calculation for both electrons and vibrations. Here, we propose a new theoretical approach, which implements an enhanced conformational sampling by the replica-exchange molecular dynamics method, a structural clustering to identify distinct conformations, and a vibrational structure calculation by the second-order vibrational quasi-degenerate perturbation theory (VQDPT2). A systematic mode-selection scheme is developed to reduce the cost of VQDPT2 and the generation of a potential energy surface by the electronic structure calculation. The proposed method is applied to a pentapeptide, SIVSF-NH 2 , for which the infrared spectrum has recently been measured in the gas phase with high resolution in the OH and NH stretching region. The theoretical spectrum of the lowest energy conformer is obtained with a mean absolute deviation of 11.2 cm -1 from the experimental spectrum. Furthermore, the NH stretching frequencies of the five lowest energy conformers are found to be consistent with the literature values measured for small peptides with a similar secondary structure. Therefore, the proposed method is a promising way to analyze the vibrational spectrum of polypeptides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002CP....282..237D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002CP....282..237D"><span>A simple method for the fast calculation of charge redistribution of solutes in an implicit solvent model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dias, L. G.; Shimizu, K.; Farah, J. P. S.; Chaimovich, H.</p> <p>2002-09-01</p> <p>We propose and demonstrate the usefulness of a method, defined as generalized Born electronegativity equalization method (GBEEM) to estimate solvent-induced charge redistribution. The charges obtained by GBEEM, in a representative series of small organic molecules, were compared to PM3-CM1 charges in vacuum and in water. Linear regressions with appropriate correlation coefficients and standard deviations between GBEEM and PM3-CM1 methods were obtained ( R=0.94,SD=0.15, Ftest=234, N=32, in vacuum; R=0.94,SD=0.16, Ftest=218, N=29, in water). In order to test the GBEEM response when intermolecular interactions are involved we calculated a water dimer in dielectric water using both GBEEM and PM3-CM1 and the results were similar. Hence, the method developed here is comparable to established calculation methods.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-04-09/pdf/2012-8469.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-04-09/pdf/2012-8469.pdf"><span>77 FR 21038 - Energy Conservation Program: Test Procedures for Light-Emitting Diode Lamps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-04-09</p> <p>... Photometric Measurements of Solid-State Lighting Products'' for determining lumen output, input power, and CCT.... Test Method 5. Test Calculations and Rounding C. Proposed Approach for Rated Lifetime Measurements 1... Test Method to Project Rated Lifetime 4. Test Conditions 5. Test Setup 6. Test Method and Measurements...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/9696','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/9696"><span>Development of simplified procedure for computing the absorption of sound by the atmosphere and applicability to aircraft noise certification : proposed SAE method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-11-30</p> <p>This report presents the results of the study to extend the useful attenuation range of the Approximate Method outlined in the American National Standard, Method for Calculation of the Absorption of Sound by the Atmosphere (ANSI S1.26-1995), an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CoTPh..69..519P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CoTPh..69..519P"><span>Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) Collocation Method for Solving Linear and Nonlinear Fokker-Planck Equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.</p> <p>2018-05-01</p> <p>In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28783650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28783650"><span>Automatic Polyp Detection via A Novel Unified Bottom-up and Top-down Saliency Approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Yixuan; Li, Dengwang; Meng, Max Q-H</p> <p>2017-07-31</p> <p>In this paper, we propose a novel automatic computer-aided method to detect polyps for colonoscopy videos. To find the perceptually and semantically meaningful salient polyp regions, we first segment images into multilevel superpixels. Each level corresponds to different sizes of superpixels. Rather than adopting hand-designed features to describe these superpixels in images, we employ sparse autoencoder (SAE) to learn discriminative features in an unsupervised way. Then a novel unified bottom-up and top-down saliency method is proposed to detect polyps. In the first stage, we propose a weak bottom-up (WBU) saliency map by fusing the contrast based saliency and object-center based saliency together. The contrast based saliency map highlights image parts that show different appearances compared with surrounding areas while the object-center based saliency map emphasizes the center of the salient object. In the second stage, a strong classifier with Multiple Kernel Boosting (MKB) is learned to calculate the strong top-down (STD) saliency map based on samples directly from the obtained multi-level WBU saliency maps. We finally integrate these two stage saliency maps from all levels together to highlight polyps. Experiment results achieve 0.818 recall for saliency calculation, validating the effectiveness of our method. Extensive experiments on public polyp datasets demonstrate that the proposed saliency algorithm performs favorably against state-of-the-art saliency methods to detect polyps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptLE..98...23G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptLE..98...23G"><span>Dynamic deformation image de-blurring and image processing for digital imaging correlation measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, X.; Li, Y.; Suo, T.; Liu, H.; Zhang, C.</p> <p>2017-11-01</p> <p>This paper proposes a method for de-blurring of images captured in the dynamic deformation of materials. De-blurring is achieved based on the dynamic-based approach, which is used to estimate the Point Spread Function (PSF) during the camera exposure window. The deconvolution process involving iterative matrix calculations of pixels, is then performed on the GPU to decrease the time cost. Compared to the Gauss method and the Lucy-Richardson method, it has the best result of the image restoration. The proposed method has been evaluated by using the Hopkinson bar loading system. In comparison to the blurry image, the proposed method has successfully restored the image. It is also demonstrated from image processing applications that the de-blurring method can improve the accuracy and the stability of the digital imaging correlation measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJMPB..3150254L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJMPB..3150254L"><span>Similarity indices based on link weight assignment for link prediction of unweighted complex networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Shuxin; Ji, Xinsheng; Liu, Caixia; Bai, Yi</p> <p>2017-01-01</p> <p>Many link prediction methods have been proposed for predicting the likelihood that a link exists between two nodes in complex networks. Among these methods, similarity indices are receiving close attention. Most similarity-based methods assume that the contribution of links with different topological structures is the same in the similarity calculations. This paper proposes a local weighted method, which weights the strength of connection between each pair of nodes. Based on the local weighted method, six local weighted similarity indices extended from unweighted similarity indices (including Common Neighbor (CN), Adamic-Adar (AA), Resource Allocation (RA), Salton, Jaccard and Local Path (LP) index) are proposed. Empirical study has shown that the local weighted method can significantly improve the prediction accuracy of these unweighted similarity indices and that in sparse and weakly clustered networks, the indices perform even better.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87553&Lab=NCER&keyword=comparative+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=87553&Lab=NCER&keyword=comparative+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>SYSTEMS APPROACH TO RECOVERY AND REUSE OF ORGANIC MATERIAL FLOWS IN SANTA BARBARA COUNTY TO EXTRACT MAXIMUM VALUE AND ELIMINATE WASTE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><p>The goal of the project is to calculate the net social, environmental, and economic benefits of a systems approach to organic waste and resource management in Santa Barbara County. To calculate these benefits, a comparative method was chosen of the proposed desi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740020268&hterms=influence+level&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3Dthe%2Binfluence%2Blevel%2Bof','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740020268&hterms=influence+level&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D20%26Ntt%3Dthe%2Binfluence%2Blevel%2Bof"><span>Load influence on gear noise. [mathematical model for determining acoustic pressure level as function of load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Merticaru, V.</p> <p>1974-01-01</p> <p>An original mathematical model is proposed to derive equations for calculation of gear noise. These equations permit the acoustic pressure level to be determined as a function of load. Application of this method to three parallel gears is reported. The logical calculation scheme is given, as well as the results obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhD...51a5002Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhD...51a5002Y"><span>A novel method for calculating and measuring the second-order buoyancy experienced by a magnet immersed in magnetic fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Jun; Hao, Du; Li, Decai</p> <p>2018-01-01</p> <p>The phenomenon whereby an object whose density is greater than magnetic fluid can be suspended stably in magnetic fluid under the magnetic field is one of the peculiar properties of magnetic fluids. Examples of applications based on the peculiar properties of magnetic fluid are sensors and actuators, dampers, positioning systems and so on. Therefore, the calculation and measurement of magnetic levitation force of magnetic fluid is of vital importance. This paper concerns the peculiar second-order buoyancy experienced by a magnet immersed in magnetic fluid. The expression for calculating the second-order buoyancy was derived, and a novel method for calculating and measuring the second-order buoyancy was proposed based on the expression. The second-order buoyancy was calculated by ANSYS and measured experimentally using the novel method. To verify the novel method, the second-order buoyancy was measured experimentally with a nonmagnetic rod stuck on the top surface of the magnet. The results of calculations and experiments show that the novel method for calculating the second-order buoyancy is correct with high accuracy. In addition, the main causes of error were studied in this paper, including magnetic shielding of magnetic fluid and the movement of magnetic fluid in a nonuniform magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24514178','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24514178"><span>Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Changwei; Li, Bangming; Zhang, Sijiong</p> <p>2014-02-01</p> <p>This paper proposes a modified Shack-Hartmann wavefront sensor for phase retrieval. The sensor is revamped by placing a detector at a defocused plane before the focal plane of the lenslet array of the Shack-Hartmann sensor. The algorithm for phase retrieval is an optimization with initial Zernike coefficients calculated by the conventional phase reconstruction of the Shack-Hartmann sensor. Numerical simulations show that the proposed sensor permits sensitive, accurate phase retrieval. Furthermore, experiments tested the feasibility of phase retrieval using the proposed sensor. The surface irregularity for a flat mirror was measured by the proposed method and a Veeco interferometer, respectively. The irregularity for the mirror measured by the proposed method is in very good agreement with that measured using the Veeco interferometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740020170&hterms=refrigeration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drefrigeration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740020170&hterms=refrigeration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Drefrigeration"><span>Method of calculating gas dynamics and heat transfer in single stage refrigeration units</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhitomirskiy, I. S.; Popolskiy, A. B.</p> <p>1974-01-01</p> <p>A generalized mathematical model of gas-dynamic and heat transfer processes in single-stage regenerative installations operating in Stirling, MacMahon, Gifford-MacMahon, and pulsating tube cycles is proposed. A numerical method os solving initial equations on a digital computer is given. This makes it possible to calculate the change in the thermodynamic parameters in the working cycle in different machine components, as well as the dependence of cold productivity on the temperature level in the steady regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996NuPhA.598....1Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996NuPhA.598....1Y"><span>Trial densities for the extended Thomas-Fermi model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, An; Jimin, Hu</p> <p>1996-02-01</p> <p>A new and simplified form of nuclear densities is proposed for the extended Thomas-Fermi method (ETF) and applied to calculate the ground-state properties of several spherical nuclei, with results comparable or even better than other conventional density profiles. With the expectation value method (EVM) for microscopic corrections we checked our new densities for spherical nuclei. The binding energies of ground states almost reproduce the Hartree-Fock (HF) calculations exactly. Further applications to nuclei far away from the β-stability line are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..96f2701A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..96f2701A"><span>Extended wave-packet model to calculate energy-loss moments of protons in matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Archubi, C. D.; Arista, N. R.</p> <p>2017-12-01</p> <p>In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25637975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25637975"><span>A new scheme for perturbative triples correction to (0,1) sector of Fock space multi-reference coupled cluster method: theory, implementation, and examples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dutta, Achintya Kumar; Vaval, Nayana; Pal, Sourav</p> <p>2015-01-28</p> <p>We propose a new elegant strategy to implement third order triples correction in the light of many-body perturbation theory to the Fock space multi-reference coupled cluster method for the ionization problem. The computational scaling as well as the storage requirement is of key concerns in any many-body calculations. Our proposed approach scales as N(6) does not require the storage of triples amplitudes and gives superior agreement over all the previous attempts made. This approach is capable of calculating multiple roots in a single calculation in contrast to the inclusion of perturbative triples in the equation of motion variant of the coupled cluster theory, where each root needs to be computed in a state-specific way and requires both the left and right state vectors together. The performance of the newly implemented scheme is tested by applying to methylene, boron nitride (B2N) anion, nitrogen, water, carbon monoxide, acetylene, formaldehyde, and thymine monomer, a DNA base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJEEP..17..205J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJEEP..17..205J"><span>Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.</p> <p>2016-04-01</p> <p>This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.861a2006Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.861a2006Y"><span>Rotational stellar structures based on the Lagrangian variational principle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasutake, Nobutoshi; Fujisawa, Kotaro; Yamada, Shoichi</p> <p>2017-06-01</p> <p>A new method for multi-dimensional stellar structures is proposed in this study. As for stellar evolution calculations, the Heney method is the defacto standard now, but basically assumed to be spherical symmetric. It is one of the difficulties for deformed stellar-evolution calculations to trace the potentially complex movements of each fluid element. On the other hand, our new method is very suitable to follow such movements, since it is based on the Lagrange coordinate. This scheme is also based on the variational principle, which is adopted to the studies for the pasta structures inside of neutron stars. Our scheme could be a major break through for evolution calculations of any types of deformed stars: proto-planets, proto-stars, and proto-neutron stars, etc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MeScT..29g5204S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MeScT..29g5204S"><span>A novel algorithm for laser self-mixing sensors used with the Kalman filter to measure displacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Hui; Liu, Ji-Gou</p> <p>2018-07-01</p> <p>This paper proposes a simple and effective method for estimating the feedback level factor C in a self-mixing interferometric sensor. It is used with a Kalman filter to retrieve the displacement. Without the complicated and onerous calculation process of the general C estimation method, a final equation is obtained. Thus, the estimation of C only involves a few simple calculations. It successfully retrieves the sinusoidal and aleatory displacement by means of simulated self-mixing signals in both weak and moderate feedback regimes. To deal with the errors resulting from noise and estimate bias of C and to further improve the retrieval precision, a Kalman filter is employed following the general phase unwrapping method. The simulation and experiment results show that the retrieved displacement using the C obtained with the proposed method is comparable to the joint estimation of C and α. Besides, the Kalman filter can significantly decrease measurement errors, especially the error caused by incorrectly locating the peak and valley positions of the signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhRvB..92l5126D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhRvB..92l5126D"><span>Hybrid Monte Carlo approach to the entanglement entropy of interacting fermions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drut, Joaquín E.; Porter, William J.</p> <p>2015-09-01</p> <p>The Monte Carlo calculation of Rényi entanglement entropies Sn of interacting fermions suffers from a well-known signal-to-noise problem, even for a large number of situations in which the infamous sign problem is absent. A few methods have been proposed to overcome this issue, such as ensemble switching and the use of auxiliary partition-function ratios. Here, we present an approach that builds on the recently proposed free-fermion decomposition method; it incorporates entanglement in the probability measure in a natural way; it takes advantage of the hybrid Monte Carlo algorithm (an essential tool in lattice quantum chromodynamics and other gauge theories with dynamical fermions); and it does not suffer from noise problems. This method displays no sign problem for the same cases as other approaches and is therefore useful for a wide variety of systems. As a proof of principle, we calculate S2 for the one-dimensional, half-filled Hubbard model and compare with results from exact diagonalization and the free-fermion decomposition method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JSV...331.4763Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JSV...331.4763Z"><span>A precise integration method for solving coupled vehicle-track dynamics with nonlinear wheel-rail contact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, J.; Gao, Q.; Tan, S. J.; Zhong, W. X.</p> <p>2012-10-01</p> <p>A new method is proposed as a solution for the large-scale coupled vehicle-track dynamic model with nonlinear wheel-rail contact. The vehicle is simplified as a multi-rigid-body model, and the track is treated as a three-layer beam model. In the track model, the rail is assumed to be an Euler-Bernoulli beam supported by discrete sleepers. The vehicle model and the track model are coupled using Hertzian nonlinear contact theory, and the contact forces of the vehicle subsystem and the track subsystem are approximated by the Lagrange interpolation polynomial. The response of the large-scale coupled vehicle-track model is calculated using the precise integration method. A more efficient algorithm based on the periodic property of the track is applied to calculate the exponential matrix and certain matrices related to the solution of the track subsystem. Numerical examples demonstrate the computational accuracy and efficiency of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25676446','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25676446"><span>Autophoretic locomotion from geometric asymmetry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Michelin, Sébastien; Lauga, Eric</p> <p>2015-02-01</p> <p>Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a chemically homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large locomotion speeds without the need of chemical patterning.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22622203-frequency-independent-approach-calculate-physical-optics-radiations-quadratic-concave-phase-variations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22622203-frequency-independent-approach-calculate-physical-optics-radiations-quadratic-concave-phase-variations"><span>Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, Yu Mao, E-mail: yumaowu@fudan.edu.cn; Teng, Si Jia, E-mail: sjteng12@fudan.edu.cn</p> <p></p> <p>In this work, we develop the numerical steepest descent path (NSDP) method to calculate the physical optics (PO) radiations with the quadratic concave phase variations. With the surface integral equation method, the physical optics (PO) scattered fields are formulated and further reduced to the surface integrals. The high frequency physical critical points contributions, including the stationary phase points, the boundary resonance points and the vertex points are comprehensively studied via the proposed NSDP method. The key contributions of this work are twofold. One is that together with the PO integrals taking the quadratic parabolic and hyperbolic phase terms, this workmore » makes the NSDP theory be complete for treating the PO integrals with quadratic phase variations. Another is that, in order to illustrate the transition effect of the high frequency physical critical points, in this work, we consider and further extend the NSDP method to calculate the PO integrals with the coalescence of the high frequency critical points. Numerical results for the highly oscillatory PO integral with the coalescence of the critical points are given to verify the efficiency of the proposed NSDP method. The NSDP method could achieve the frequency independent computational workload and error controllable accuracy in all the numerical experiments, especially for the case of the coalescence of the high frequency critical points.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10621E..0ZG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10621E..0ZG"><span>Welding studs detection based on line structured light</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geng, Lei; Wang, Jia; Wang, Wen; Xiao, Zhitao</p> <p>2018-01-01</p> <p>The quality of welding studs is significant for installation and localization of components of car in the process of automobile general assembly. A welding stud detection method based on line structured light is proposed. Firstly, the adaptive threshold is designed to calculate the binary images. Then, the light stripes of the image are extracted after skeleton line extraction and morphological filtering. The direction vector of the main light stripe is calculated using the length of the light stripe. Finally, the gray projections along the orientation of the main light stripe and the vertical orientation of the main light stripe are computed to obtain curves of gray projection, which are used to detect the studs. Experimental results demonstrate that the error rate of proposed method is lower than 0.1%, which is applied for automobile manufacturing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950011286','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950011286"><span>Structural optimization with approximate sensitivities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.</p> <p>1994-01-01</p> <p>Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MeScT..28e5002R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MeScT..28e5002R"><span>Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž</p> <p>2017-05-01</p> <p>This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was proposed • The efficiency of the new method was demonstrated by spectral analyses and calculations of rate-of-heat-release traces</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SSCom..97..163I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SSCom..97..163I"><span>Generalized variational approach to Kim-Gordon electron gas theory for ionic crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, O. V.; Maksimov, E. G.</p> <p>1996-01-01</p> <p>The generalized approach to the Kim-Gordon electron gas model is proposed. The total density of a crystal is considered as a superposition of densities of individual overlapping ions. The possible distortions of individual ion densities are calculated in the presence of some auxiliary external potentials. The real values of these distortions are calculated by a variational method from the minimum total energy of a crystal. The proper prescription of the ion self-energy with a distorted density is given using the method elaborated in the nonequilibrium thermodynamics. Some examples of the calculation for phonon frequencies are presented and demonstrate a good agreement with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ThEng..61..189G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ThEng..61..189G"><span>An express method for optimally tuning an analog controller with respect to integral quality criteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golinko, I. M.; Kovrigo, Yu. M.; Kubrak, A. I.</p> <p>2014-03-01</p> <p>An express method for optimally tuning analog PI and PID controllers is considered. An integral quality criterion with minimizing the control output is proposed for optimizing control systems. The suggested criterion differs from existing ones in that the control output applied to the technological process is taken into account in a correct manner, due to which it becomes possible to maximally reduce the expenditure of material and/or energy resources in performing control of industrial equipment sets. With control organized in such manner, smaller wear and longer service life of control devices are achieved. A unimodal nature of the proposed criterion for optimally tuning a controller is numerically demonstrated using the methods of optimization theory. A functional interrelation between the optimal controller parameters and dynamic properties of a controlled plant is numerically determined for a single-loop control system. The results obtained from simulation of transients in a control system carried out using the proposed and existing functional dependences are compared with each other. The proposed calculation formulas differ from the existing ones by a simple structure and highly accurate search for the optimal controller tuning parameters. The obtained calculation formulas are recommended for being used by specialists in automation for design and optimization of control systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JKPS...61.1114N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JKPS...61.1114N"><span>A new computerized diagnostic algorithm for quantitative evaluation of binocular misalignment in patients with strabismus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nam, Kyoung Won; Kim, In Young; Kang, Ho Chul; Yang, Hee Kyung; Yoon, Chang Ki; Hwang, Jeong Min; Kim, Young Jae; Kim, Tae Yun; Kim, Kwang Gi</p> <p>2012-10-01</p> <p>Accurate measurement of binocular misalignment between both eyes is important for proper preoperative management, surgical planning, and postoperative evaluation of patients with strabismus. In this study, we proposed a new computerized diagnostic algorithm that can calculate the angle of binocular eye misalignment photographically by using a dedicated three-dimensional eye model mimicking the structure of the natural human eye. To evaluate the performance of the proposed algorithm, eight healthy volunteers and eight individuals with strabismus were recruited in this study, the horizontal deviation angle, vertical deviation angle, and angle of eye misalignment were calculated and the angular differences between the healthy and the strabismus groups were evaluated using the nonparametric Mann-Whitney test and the Pearson correlation test. The experimental results demonstrated a statistically significant difference between the healthy and strabismus groups (p = 0.015 < 0.05), but no statistically significant difference between the proposed method and the Krimsky test (p = 0.912 > 0.05). The measurements of the two methods were highly correlated (r = 0.969, p < 0.05). From the experimental results, we believe that the proposed diagnostic method has the potential to be a diagnostic tool that measures the physical disorder of the human eye to diagnose non-invasively the severity of strabismus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005QuEle..35.1045D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005QuEle..35.1045D"><span>LASER BEAMS: On alternative methods for measuring the radius and propagation ratio of axially symmetric laser beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dementjev, Aleksandr S.; Jovaisa, A.; Silko, Galina; Ciegis, Raimondas</p> <p>2005-11-01</p> <p>Based on the developed efficient numerical methods for calculating the propagation of light beams, the alternative methods for measuring the beam radius and propagation ratio proposed in the international standard ISO 11146 are analysed. The specific calculations of the alternative beam propagation ratios Mi2 performed for a number of test beams with a complicated spatial structure showed that the correlation coefficients ci used in the international standard do not establish the universal one-to-one relation between the alternative propagation ratios Mi2 and invariant propagation ratios Mσ2 found by the method of moments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MeScT..24j5011Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MeScT..24j5011Q"><span>A novel navigation method used in a ballistic missile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qian, Hua-ming; Sun, Long; Cai, Jia-nan; Peng, Yu</p> <p>2013-10-01</p> <p>The traditional strapdown inertial/celestial integrated navigation method used in a ballistic missile cannot accurately estimate the accelerometer bias. It might cause a divergence of navigation errors. To solve this problem, a new navigation method named strapdown inertial/starlight refractive celestial integrated navigation is proposed. To verify the feasibility of the proposed method, a simulated program of a ballistic missile is presented. The simulation results indicated that, when multiple refraction stars are used, the proposed method can accurately estimate the accelerometer bias, and suppress the divergence of navigation errors completely. Specifically, in order to apply this method to a ballistic missile, a novel measurement equation based on stellar refraction was developed. Furthermore a method to calculate the number of refraction stars observed by the stellar sensor was given. Finally, the relationship between the number of refraction stars used and the navigation accuracy is analysed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10459E..0AZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10459E..0AZ"><span>Infrared dim small target segmentation method based on ALI-PCNN model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Shangnan; Song, Yong; Zhao, Yufei; Li, Yun; Li, Xu; Jiang, Yurong; Li, Lin</p> <p>2017-10-01</p> <p>Pulse Coupled Neural Network (PCNN) is improved by Adaptive Lateral Inhibition (ALI), while a method of infrared (IR) dim small target segmentation based on ALI-PCNN model is proposed in this paper. Firstly, the feeding input signal is modulated by lateral inhibition network to suppress background. Then, the linking input is modulated by ALI, and linking weight matrix is generated adaptively by calculating ALI coefficient of each pixel. Finally, the binary image is generated through the nonlinear modulation and the pulse generator in PCNN. The experimental results show that the segmentation effect as well as the values of contrast across region and uniformity across region of the proposed method are better than the OTSU method, maximum entropy method, the methods based on conventional PCNN and visual attention, and the proposed method has excellent performance in extracting IR dim small target from complex background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880044517&hterms=Lte&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DLte','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880044517&hterms=Lte&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DLte"><span>Collisional-radiative switching - A powerful technique for converging non-LTE calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hummer, D. G.; Voels, S. A.</p> <p>1988-01-01</p> <p>A very simple technique has been developed to converge statistical equilibrium and model atmospheric calculations in extreme non-LTE conditions when the usual iterative methods fail to converge from an LTE starting model. The proposed technique is based on a smooth transition from a collision-dominated LTE situation to the desired non-LTE conditions in which radiation dominates, at least in the most important transitions. The proposed approach was used to successfully compute stellar models with He abundances of 0.20, 0.30, and 0.50; Teff = 30,000 K, and log g = 2.9.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12964209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12964209"><span>A new modulated Hebbian learning rule--biologically plausible method for local computation of a principal subspace.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jankovic, Marko; Ogawa, Hidemitsu</p> <p>2003-08-01</p> <p>This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23496633','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23496633"><span>Free-energy analyses of a proton transfer reaction by simulated-tempering umbrella sampling and first-principles molecular dynamics simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mori, Yoshiharu; Okamoto, Yuko</p> <p>2013-02-01</p> <p>A simulated tempering method, which is referred to as simulated-tempering umbrella sampling, for calculating the free energy of chemical reactions is proposed. First principles molecular dynamics simulations with this simulated tempering were performed to study the intramolecular proton transfer reaction of malonaldehyde in an aqueous solution. Conformational sampling in reaction coordinate space can be easily enhanced with this method, and the free energy along a reaction coordinate can be calculated accurately. Moreover, the simulated-tempering umbrella sampling provides trajectory data more efficiently than the conventional umbrella sampling method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25493900','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25493900"><span>Integral method for the calculation of Hawking radiation in dispersive media. II. Asymmetric asymptotics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Robertson, Scott</p> <p>2014-11-01</p> <p>Analog gravity experiments make feasible the realization of black hole space-times in a laboratory setting and the observational verification of Hawking radiation. Since such analog systems are typically dominated by dispersion, efficient techniques for calculating the predicted Hawking spectrum in the presence of strong dispersion are required. In the preceding paper, an integral method in Fourier space is proposed for stationary 1+1-dimensional backgrounds which are asymptotically symmetric. Here, this method is generalized to backgrounds which are different in the asymptotic regions to the left and right of the scattering region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10466E..6DS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10466E..6DS"><span>Deterministic and stochastic methods of calculation of polarization characteristics of radiation in natural environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strelkov, S. A.; Sushkevich, T. A.; Maksakova, S. V.</p> <p>2017-11-01</p> <p>We are talking about russian achievements of the world level in the theory of radiation transfer, taking into account its polarization in natural media and the current scientific potential developing in Russia, which adequately provides the methodological basis for theoretically-calculated research of radiation processes and radiation fields in natural media using supercomputers and mass parallelism. A new version of the matrix transfer operator is proposed for solving problems of polarized radiation transfer in heterogeneous media by the method of influence functions, when deterministic and stochastic methods can be combined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JEPT...86..735K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JEPT...86..735K"><span>Method for calculating the duration of vacuum drying of a metal-concrete container for spent nuclear fuel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karyakin, Yu. E.; Nekhozhin, M. A.; Pletnev, A. A.</p> <p>2013-07-01</p> <p>A method for calculating the quantity of moisture in a metal-concrete container in the process of its charging with spent nuclear fuel is proposed. A computing method and results obtained by it for conservative estimation of the time of vacuum drying of a container charged with spent nuclear fuel by technologies with quantization and without quantization of the lower fuel element cluster are presented. It has been shown that the absence of quantization in loading spent fuel increases several times the time of vacuum drying of the metal-concrete container.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJO.....7...67N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJO.....7...67N"><span>Apnea Detection Method for Cheyne-Stokes Respiration Analysis on Newborn</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niimi, Taiga; Itoh, Yushi; Natori, Michiya; Aoki, Yoshimitsu</p> <p>2013-04-01</p> <p>Cheyne-Stokes respiration is especially prevalent in preterm newborns, but its severity may not be recognized. It is characterized by apnea and cyclical weakening and strengthening of the breathing. We developed a method for detecting apnea and this abnormal respiration and for estimating its malignancy. Apnea was detected based on a "difference" feature (calculated from wavelet coefficients) and a modified maximum displacement feature (related to the respiratory waveform shape). The waveform is calculated from vertical motion of the thoracic and abdominal region during respiration using a vision sensor. Our proposed detection method effectively detects apnea (sensitivity 88.4%, specificity 99.7%).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1125992.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1125992.pdf"><span>Methods to Estimate the Variance of Some Indices of the Signal Detection Theory: A Simulation Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Suero, Manuel; Privado, Jesús; Botella, Juan</p> <p>2017-01-01</p> <p>A simulation study is presented to evaluate and compare three methods to estimate the variance of the estimates of the parameters d and "C" of the signal detection theory (SDT). Several methods have been proposed to calculate the variance of their estimators, "d'" and "c." Those methods have been mostly assessed by…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.887....7M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.887....7M"><span>Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar</p> <p>2018-04-01</p> <p>Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PMB....45..383K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PMB....45..383K"><span>Dose rate calculations around 192Ir brachytherapy sources using a Sievert integration model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karaiskos, P.; Angelopoulos, A.; Baras, P.; Rozaki-Mavrouli, H.; Sandilos, P.; Vlachos, L.; Sakelliou, L.</p> <p>2000-02-01</p> <p>The classical Sievert integral method is a valuable tool for dose rate calculations around brachytherapy sources, combining simplicity with reasonable computational times. However, its accuracy in predicting dose rate anisotropy around 192 Ir brachytherapy sources has been repeatedly put into question. In this work, we used a primary and scatter separation technique to improve an existing modification of the Sievert integral (Williamson's isotropic scatter model) that determines dose rate anisotropy around commercially available 192 Ir brachytherapy sources. The proposed Sievert formalism provides increased accuracy while maintaining the simplicity and computational time efficiency of the Sievert integral method. To describe transmission within the materials encountered, the formalism makes use of narrow beam attenuation coefficients which can be directly and easily calculated from the initially emitted 192 Ir spectrum. The other numerical parameters required for its implementation, once calculated with the aid of our home-made Monte Carlo simulation code, can be used for any 192 Ir source design. Calculations of dose rate and anisotropy functions with the proposed Sievert expression, around commonly used 192 Ir high dose rate sources and other 192 Ir elongated source designs, are in good agreement with corresponding accurate Monte Carlo results which have been reported by our group and other authors.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..322f2017K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..322f2017K"><span>Computation of the Genetic Code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozlov, Nicolay N.; Kozlova, Olga N.</p> <p>2018-03-01</p> <p>One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740025864&hterms=development+equipment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddevelopment%2Bequipment','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740025864&hterms=development+equipment&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddevelopment%2Bequipment"><span>Characteristic features of determining the labor input and estimated cost of the development and manufacture of equipment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kurmanaliyev, T. I.; Breslavets, A. V.</p> <p>1974-01-01</p> <p>The difficulties in obtaining exact calculation data for the labor input and estimated cost are noted. The method of calculating the labor cost of the design work using the provisional normative indexes with respect to individual forms of operations is proposed. Values of certain coefficients recommended for use in the practical calculations of the labor input for the development of new scientific equipment for space research are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20083291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20083291"><span>A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heo, Seo Weon; Kim, Hyungsuk</p> <p>2010-05-01</p> <p>An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPArXL24...75K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPArXL24...75K"><span>Areal Feature Matching Based on Similarity Using Critic Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, J.; Yu, K.</p> <p>2015-10-01</p> <p>In this paper, we propose an areal feature matching method that can be applied for many-to-many matching, which involves matching a simple entity with an aggregate of several polygons or two aggregates of several polygons with fewer user intervention. To this end, an affine transformation is applied to two datasets by using polygon pairs for which the building name is the same. Then, two datasets are overlaid with intersected polygon pairs that are selected as candidate matching pairs. If many polygons intersect at this time, we calculate the inclusion function between such polygons. When the value is more than 0.4, many of the polygons are aggregated as single polygons by using a convex hull. Finally, the shape similarity is calculated between the candidate pairs according to the linear sum of the weights computed in CRITIC method and the position similarity, shape ratio similarity, and overlap similarity. The candidate pairs for which the value of the shape similarity is more than 0.7 are determined as matching pairs. We applied the method to two geospatial datasets: the digital topographic map and the KAIS map in South Korea. As a result, the visual evaluation showed two polygons that had been well detected by using the proposed method. The statistical evaluation indicates that the proposed method is accurate when using our test dataset with a high F-measure of 0.91.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ammonia&id=EJ931541','ERIC'); return false;" href="https://eric.ed.gov/?q=ammonia&id=EJ931541"><span>Wronskian Method for Bound States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fernandez, Francisco M.</p> <p>2011-01-01</p> <p>We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9890E..0ZW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9890E..0ZW"><span>Systemic errors calibration in dynamic stitching interferometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Xin; Qi, Te; Yu, Yingjie; Zhang, Linna</p> <p>2016-05-01</p> <p>The systemic error is the main error sauce in sub-aperture stitching calculation. In this paper, a systemic error calibration method is proposed based on pseudo shearing. This method is suitable in dynamic stitching interferometry for large optical plane. The feasibility is vibrated by some simulations and experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvE..85a1151G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvE..85a1151G"><span>Mean-field approximation for spacing distribution functions in classical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.</p> <p>2012-01-01</p> <p>We propose a mean-field method to calculate approximately the spacing distribution functions p(n)(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p(n)(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10256E..57L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10256E..57L"><span>Global optimization method based on ray tracing to achieve optimum figure error compensation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin</p> <p>2017-02-01</p> <p>Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ChJME..30.1406J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ChJME..30.1406J"><span>Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi</p> <p>2017-11-01</p> <p>Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997APS..SES..AD02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997APS..SES..AD02H"><span>A numerical fragment basis approach to SCF calculations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hinde, Robert J.</p> <p>1997-11-01</p> <p>The counterpoise method is often used to correct for basis set superposition error in calculations of the electronic structure of bimolecular systems. One drawback of this approach is the need to specify a ``reference state'' for the system; for reactive systems, the choice of an unambiguous reference state may be difficult. An example is the reaction F^- + HCl arrow HF + Cl^-. Two obvious reference states for this reaction are F^- + HCl and HF + Cl^-; however, different counterpoise-corrected interaction energies are obtained using these two reference states. We outline a method for performing SCF calculations which employs numerical basis functions; this method attempts to eliminate basis set superposition errors in an a priori fashion. We test the proposed method on two one-dimensional, three-center systems and discuss the possibility of extending our approach to include electron correlation effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22230825-hybrid-preconditioning-iterative-diagonalization-ill-conditioned-generalized-eigenvalue-problems-electronic-structure-calculations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22230825-hybrid-preconditioning-iterative-diagonalization-ill-conditioned-generalized-eigenvalue-problems-electronic-structure-calculations"><span>Hybrid preconditioning for iterative diagonalization of ill-conditioned generalized eigenvalue problems in electronic structure calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu</p> <p>2013-12-15</p> <p>The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JMoSt.693...49S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JMoSt.693...49S"><span>Progesterone and testosterone studies by neutron scattering and nuclear magnetic resonance methods and quantum chemistry calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.</p> <p>2004-05-01</p> <p>Inelastic incoherent neutron scattering spectra of progesterone and testosterone measured at 20 and 290 K were compared with the IR spectra measured at 290 K. The Phonon Density of States spectra display well resolved peaks of low frequency internal vibration modes up to 1200 cm -1. The quantum chemistry calculations were performed by semiempirical PM3 method and by the density functional theory method with different basic sets for isolated molecule, as well as for the dimer system of testosterone. The proposed assignment of internal vibrations of normal modes enable us to conclude about the sequence of the onset of the torsion movements of the CH 3 groups. These conclusions were correlated with the results of proton molecular dynamics studies performed by NMR method. The GAUSSIAN program had been used for calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JChPh.133v4105M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JChPh.133v4105M"><span>Scalable free energy calculation of proteins via multiscale essential sampling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moritsugu, Kei; Terada, Tohru; Kidera, Akinori</p> <p>2010-12-01</p> <p>A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29493682','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29493682"><span>A numerical calculation method of environmental impacts for the deep sea mining industry - a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Wenbin; van Rhee, Cees; Schott, Dingena</p> <p>2018-03-01</p> <p>Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world. However, until now there has been no commercial scale DSM project in progress. Together with the reasons of technological feasibility and economic profitability, the environmental impact is one of the major parameters hindering its industrialization. Most of the DSM environmental impact research focuses on only one particular aspect ignoring that all the DSM environmental impacts are related to each other. The objective of this work is to propose a framework for the numerical calculation methods of the integrated DSM environmental impacts through a literature review. This paper covers three parts: (i) definition and importance description of different DSM environmental impacts; (ii) description of the existing numerical calculation methods for different environmental impacts; (iii) selection of a numerical calculation method based on the selected criteria. The research conducted in this paper provides a clear numerical calculation framework for DSM environmental impact and could be helpful to speed up the industrialization process of the DSM industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMoSt1094..254S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMoSt1094..254S"><span>Vibrational studies on (E)-1-((pyridine-2-yl)methylene)semicarbazide using experimental and theoretical method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subashchandrabose, S.; Ramesh Babu, N.; Saleem, H.; Syed Ali Padusha, M.</p> <p>2015-08-01</p> <p>The (E)-1-((pyridine-2-yl)methylene)semicarbazide (PMSC) was synthesized. The experimental and theoretical study on molecular structure and vibrational spectra were carried out. The FT-IR (400-4000 cm-1), FT-Raman (50-3500 cm-1) and UV-Vis (200-500 nm) spectra of PMSC were recorded. The geometric structure, conformational analysis, vibrational wavenumbers of PMSC in the ground state have been calculated using B3LYP method of 6-311++G(d,p) basis set. The complete vibrational assignments were made on the basis of TED, calculated by SQM method. The Non-linear optical activity was measured by means of first order hyperpolarizability calculation and π-electrons of conjugative bond in the molecule. The intra-molecular charge transfer, mode hyperconjugative interaction and molecular stabilization energies were calculated. The band gap energies between occupied and unoccupied molecular orbitals were analyzed; it proposes lesser band gap with more reactivity. To understand the electronic properties of this molecule the Mulliken charges were also calculated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyC..550...99J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyC..550...99J"><span>Thermal stability analysis of a superconducting magnet considering heat flow between magnet surface and liquid helium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jang, J. Y.; Hwang, Y. J.; Ahn, M. C.; Choi, Y. S.</p> <p>2018-07-01</p> <p>This paper represents a numerical calculation method that enables highly-accurate simulations on temperature analysis of superconducting magnets considering the heat flow between the magnet and liquid helium during a quench. A three-dimensional (3D) superconducting magnet space was divided into many cells and the finite-difference method (FDM) was adopted to calculate the superconducting magnet temperatures governed by the heat transfer and joule heating of the each cell during a quench. To enhance the accuracy of the temperature calculations during a quench, the heat flow between the superconducting magnet surface and liquid helium, which lowers the magnet temperatures, was considered in this work. The electrical equation coupled with the governing thermal equation was also applied to calculate the change of the decay of the magnet current related to the joule heating. The proposed FDM method for temperatures calculation of a superconducting magnet during a quench process achieved results that were in good agreement with those obtained from an experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4431239','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4431239"><span>A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun</p> <p>2015-01-01</p> <p>This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5241871','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5241871"><span>Different Volumetric Measurement Methods for Pituitary Adenomas and Their Crucial Clinical Significance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chuang, Chi-Cheng; Lin, Shinn-Yn; Pai, Ping-Ching; Yan, Jiun-Lin; Toh, Cheng-Hong; Lee, Shih-Tseng; Wei, Kuo-Chen; Liu, Zhuo-Hao; Chen, Chung-Ming; Wang, Yu-Chi; Lee, Cheng-Chi</p> <p>2017-01-01</p> <p>Confirming the status of residual tumors is crucial. In stationary or spontaneous regression cases, early treatments are inappropriate. The long-used geometric calculation formula is 1/2 (length × width × height). However, it yields only rough estimates and is particularly unreliable for irregularly shaped masses. In our study, we attempted to propose a more accurate method. Between 2004 and 2014, 94 patients with pituitary tumors were enrolled in this retrospective study. All patients underwent transsphenoidal surgery and received magnetic resonance imaging (MRI). The pre- and postoperative volumes calculated using the traditional formula were termed A1 and A2, and those calculated using the proposed method were termed O1 and O2, respectively. Wilcoxon signed rank test revealed no significant difference between the A1 and O1 groups (P = 0.1810) but a significant difference between the A2 and O2 groups (P < 0.0001). Significant differences were present in the extent of resection (P < 0.0001), high-grade cavernous sinus invasion (P = 0.0312), and irregular shape (P = 0.0116). Volume is crucial in evaluating tumor status and determining treatment. Therefore, a more scientific method is especially useful when lesions are irregularly shaped or when treatment is determined exclusively based on the tumor volume. PMID:28098212</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21914033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21914033"><span>Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei</p> <p>2013-04-01</p> <p>The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdWR...96..405L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdWR...96..405L"><span>Computational methods for reactive transport modeling: An extended law of mass-action, xLMA, method for multiphase equilibrium calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leal, Allan M. M.; Kulik, Dmitrii A.; Kosakowski, Georg; Saar, Martin O.</p> <p>2016-10-01</p> <p>We present an extended law of mass-action (xLMA) method for multiphase equilibrium calculations and apply it in the context of reactive transport modeling. This extended LMA formulation differs from its conventional counterpart in that (i) it is directly derived from the Gibbs energy minimization (GEM) problem (i.e., the fundamental problem that describes the state of equilibrium of a chemical system under constant temperature and pressure); and (ii) it extends the conventional mass-action equations with Lagrange multipliers from the Gibbs energy minimization problem, which can be interpreted as stability indices of the chemical species. Accounting for these multipliers enables the method to determine all stable phases without presuming their types (e.g., aqueous, gaseous) or their presence in the equilibrium state. Therefore, the here proposed xLMA method inherits traits of Gibbs energy minimization algorithms that allow it to naturally detect the phases present in equilibrium, which can be single-component phases (e.g., pure solids or liquids) or non-ideal multi-component phases (e.g., aqueous, melts, gaseous, solid solutions, adsorption, or ion exchange). Moreover, our xLMA method requires no technique that tentatively adds or removes reactions based on phase stability indices (e.g., saturation indices for minerals), since the extended mass-action equations are valid even when their corresponding reactions involve unstable species. We successfully apply the proposed method to a reactive transport modeling problem in which we use PHREEQC and GEMS as alternative backends for the calculation of thermodynamic properties such as equilibrium constants of reactions, standard chemical potentials of species, and activity coefficients. Our tests show that our algorithm is efficient and robust for demanding applications, such as reactive transport modeling, where it converges within 1-3 iterations in most cases. The proposed xLMA method is implemented in Reaktoro, a unified open-source framework for modeling chemically reactive systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28766259','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28766259"><span>Male body dissatisfaction scale (MBDS): proposal for a reduced model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>da Silva, Wanderson Roberto; Marôco, João; Ochner, Christopher N; Campos, Juliana Alvares Duarte Bonini</p> <p>2017-09-01</p> <p>To evaluate the psychometric properties of the male body dissatisfaction scale (MBDS) in Brazilian and Portuguese university students; to present a reduced model of the scale; to compare two methods of computing global scores for participants' body dissatisfaction; and to estimate the prevalence of participants' body dissatisfaction. A total of 932 male students participated in this study. A confirmatory factor analysis (CFA) was used to assess the scale's psychometric properties. Multi-group analysis was used to test transnational invariance and invariance in independent samples. The body dissatisfaction score was calculated using two methods (mean and matrix of weights in the CFA), which were compared. Finally, individuals were classified according to level of body dissatisfaction, using the best method. The MBDS model did not show adequate fit for the sample and was, therefore, refined. Thirteen items were excluded and two factors were combined. A reduced model of 12 items and 2 factors was proposed and shown to have adequate psychometric properties. There was a significant difference (p < 0.001) between the methods for calculating the score for body dissatisfaction, since the mean overestimated the scores. Among student participants, the prevalence of body dissatisfaction with musculature and general appearance was 11.2 and 5.3%, respectively. The reduced bi-factorial model of the MBDS showed adequate validity, reliability, and transnational invariance and invariance in independent samples for Brazilian and Portuguese students. The new proposal for calculating the global score was able to more accurately show their body dissatisfaction. No level of evidence Basic Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLE.100...61L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLE.100...61L"><span>High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan</p> <p>2018-01-01</p> <p>In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEE....68..444L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEE....68..444L"><span>Enhanced method of fast re-routing with load balancing in software-defined networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemeshko, Oleksandr; Yeremenko, Oleksandra</p> <p>2017-11-01</p> <p>A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29649473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29649473"><span>Development of Quenching-qPCR (Q-Q) assay for measuring absolute intracellular cleavage efficiency of ribozyme.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Min Woo; Sun, Gwanggyu; Lee, Jung Hyuk; Kim, Byung-Gee</p> <p>2018-06-01</p> <p>Ribozyme (Rz) is a very attractive RNA molecule in metabolic engineering and synthetic biology fields where RNA processing is required as a control unit or ON/OFF signal for its cleavage reaction. In order to use Rz for such RNA processing, Rz must have highly active and specific catalytic activity. However, current methods for assessing the intracellular activity of Rz have limitations such as difficulty in handling and inaccuracies in the evaluation of correct cleavage activity. In this paper, we proposed a simple method to accurately measure the "intracellular cleavage efficiency" of Rz. This method deactivates unwanted activity of Rz which may consistently occur after cell lysis using DNA quenching method, and calculates the cleavage efficiency by analyzing the cleaved fraction of mRNA by Rz from the total amount of mRNA containing Rz via quantitative real-time PCR (qPCR). The proposed method was applied to measure "intracellular cleavage efficiency" of sTRSV, a representative Rz, and its mutant, and their intracellular cleavage efficiencies were calculated as 89% and 93%, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA243707','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA243707"><span>Benefit Analysis of Proposed Information Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-03-01</p> <p>be evaluated in such an analysis. Different benefit comparison and user satisfaction methods are reviewed for their particular advantages and...Different benefit comparison and user satisfaction methods are reviewed for their particular advantages and disadvantages. A discussion is given on...determine the alternative that is the most advantageous to the government. Secondly, which benefit analysis methods are capable of calculating a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhyEd..49..431C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhyEd..49..431C"><span>Wobbly strings: calculating the capture rate of a webcam using the rolling shutter effect in a guitar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunnah, David</p> <p>2014-07-01</p> <p>In this paper I propose a method of calculating the time between line captures in a standard complementary metal-oxide-semiconductor (CMOS) webcam using the rolling shutter effect when filming a guitar. The exercise links the concepts of wavelength and frequency, while outlining the basic operation of a CMOS camera through vertical line capture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840027015','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840027015"><span>The calculation of molecular Eigen-frequencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lindemann, F. A.</p> <p>1984-01-01</p> <p>A method of determining molecular eigen-frequencies based on the function of Einstein expressing the variation of the atomic heat of various elements is proposed. It is shown that the same equation can be utilized to calculate both atomic heat and optically identifiably eigen-frequencies - at least to an order of magnitude - suggesting that in both cases the same oscillating structure is responsible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=semiconductor&id=EJ1037501','ERIC'); return false;" href="https://eric.ed.gov/?q=semiconductor&id=EJ1037501"><span>Wobbly Strings: Calculating the Capture Rate of a Webcam Using the Rolling Shutter Effect in a Guitar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Cunnah, David</p> <p>2014-01-01</p> <p>In this paper I propose a method of calculating the time between line captures in a standard complementary metal-oxide-semiconductor (CMOS) webcam using the rolling shutter effect when filming a guitar. The exercise links the concepts of wavelength and frequency, while outlining the basic operation of a CMOS camera through vertical line capture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1015c2116A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1015c2116A"><span>Method of calculation of critical values of financial indicators for developing food security strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aigyl Ilshatovna, Sabirova; Svetlana Fanilevna, Khasanova; Vildanovna, Nagumanova Regina</p> <p>2018-05-01</p> <p>On the basis of decision making theory (minimax and maximin approaches) the authors propose a technique with the results of calculations of the critical values of effectiveness indicators of agricultural producers in the Republic of Tatarstan for 2013-2015. There is justified necessity of monitoring the effectiveness of the state support and the direction of its improvement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RuMet2017.1165S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RuMet2017.1165S"><span>Development and Implementation of Methods and Means for Achieving a Uniform Functional Coating Thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shishlov, A. V.; Sagatelyan, G. R.; Shashurin, V. D.</p> <p>2017-12-01</p> <p>A mathematical model is proposed to calculate the growth rate of the thin-film coating thickness at various points in a flat substrate surface during planetary motion of the substrate, which makes it possible to calculate an expected coating thickness distribution. Proper software package is developed. The coefficients used for computer simulation are experimentally determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27604760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27604760"><span>Automatic 3D liver location and segmentation via convolutional neural network and graph cut.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Fang; Wu, Fa; Hu, Peijun; Peng, Zhiyi; Kong, Dexing</p> <p>2017-02-01</p> <p>Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans. The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map. The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively. The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014E%26ES...22e2014K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014E%26ES...22e2014K"><span>Numerical estimation of cavitation intensity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krumenacker, L.; Fortes-Patella, R.; Archer, A.</p> <p>2014-03-01</p> <p>Cavitation may appear in turbomachinery and in hydraulic orifices, venturis or valves, leading to performance losses, vibrations and material erosion. This study propose a new method to predict the cavitation intensity of the flow, based on a post-processing of unsteady CFD calculations. The paper presents the analyses of cavitating structures' evolution at two different scales: • A macroscopic one in which the growth of cavitating structures is calculated using an URANS software based on a homogeneous model. Simulations of cavitating flows are computed using a barotropic law considering presence of air and interfacial tension, and Reboud's correction on the turbulence model. • Then a small one where a Rayleigh-Plesset software calculates the acoustic energy generated by the implosion of the vapor/gas bubbles with input parameters from macroscopic scale. The volume damage rate of the material during incubation time is supposed to be a part of the cumulated acoustic energy received by the solid wall. The proposed analysis method is applied to calculations on hydrofoil and orifice geometries. Comparisons between model results and experimental works concerning flow characteristic (size of cavity, pressure,velocity) as well as pitting (erosion area, relative cavitation intensity) are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ExFl...59...92J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ExFl...59...92J"><span>Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>James, Christopher M.; Bourke, Emily J.; Gildfind, David E.</p> <p>2018-06-01</p> <p>To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSemi..37f4015P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSemi..37f4015P"><span>Evaluation of light extraction efficiency for the light-emitting diodes based on the transfer matrix formalism and ray-tracing method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pingbo, An; Li, Wang; Hongxi, Lu; Zhiguo, Yu; Lei, Liu; Xin, Xi; Lixia, Zhao; Junxi, Wang; Jinmin, Li</p> <p>2016-06-01</p> <p>The internal quantum efficiency (IQE) of the light-emitting diodes can be calculated by the ratio of the external quantum efficiency (EQE) and the light extraction efficiency (LEE). The EQE can be measured experimentally, but the LEE is difficult to calculate due to the complicated LED structures. In this work, a model was established to calculate the LEE by combining the transfer matrix formalism and an in-plane ray tracing method. With the calculated LEE, the IQE was determined and made a good agreement with that obtained by the ABC model and temperature-dependent photoluminescence method. The proposed method makes the determination of the IQE more practical and conventional. Project supported by the National Natural Science Foundation of China (Nos.11574306, 61334009), the China International Science and Technology Cooperation Program (No. 2014DFG62280), and the National High Technology Program of China (No. 2015AA03A101).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Fract..2650006X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Fract..2650006X"><span>a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin</p> <p></p> <p>Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27472343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27472343"><span>Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan</p> <p>2016-07-27</p> <p>This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25004902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25004902"><span>Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaazaa, Hala E; Mohamed, Afaf O; Hawwam, Maha A; Abdelkawy, Mohamed</p> <p>2015-01-05</p> <p>A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10616E..0XZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10616E..0XZ"><span>Spatio-temporal alignment of multiple sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao</p> <p>2018-01-01</p> <p>Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29489785','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29489785"><span>Improved atmospheric effect elimination method for the roughness estimation of painted surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Ying; Xuan, Jiabin; Zhao, Huijie; Song, Ping; Zhang, Yi; Xu, Wujian</p> <p>2018-03-01</p> <p>We propose a method for eliminating the atmospheric effect in polarimetric imaging remote sensing by using polarimetric imagers to simultaneously detect ground targets and skylight, which does not need calibrated targets. In addition, calculation efficiencies are improved by the skylight division method without losing estimation accuracy. Outdoor experiments are performed to obtain the polarimetric bidirectional reflectance distribution functions of painted surfaces and skylight under different weather conditions. Finally, the roughness of the painted surfaces is estimated. We find that the estimation accuracy with the proposed method is 6% on cloudy weather, while it is 30.72% without atmospheric effect elimination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16355666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16355666"><span>An efficient method for the computation of Legendre moments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yap, Pew-Thian; Paramesran, Raveendran</p> <p>2005-12-01</p> <p>Legendre moments are continuous moments, hence, when applied to discrete-space images, numerical approximation is involved and error occurs. This paper proposes a method to compute the exact values of the moments by mathematically integrating the Legendre polynomials over the corresponding intervals of the image pixels. Experimental results show that the values obtained match those calculated theoretically, and the image reconstructed from these moments have lower error than that of the conventional methods for the same order. Although the same set of exact Legendre moments can be obtained indirectly from the set of geometric moments, the computation time taken is much longer than the proposed method.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28891309','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28891309"><span>A Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) Quantitative Analysis Method Based on the Auto-Selection of an Internal Reference Line and Optimized Estimation of Plasma Temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Jianhong; Li, Xiaomeng; Xu, Jinwu; Ma, Xianghong</p> <p>2018-01-01</p> <p>The quantitative analysis accuracy of calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is severely affected by the self-absorption effect and estimation of plasma temperature. Herein, a CF-LIBS quantitative analysis method based on the auto-selection of internal reference line and the optimized estimation of plasma temperature is proposed. The internal reference line of each species is automatically selected from analytical lines by a programmable procedure through easily accessible parameters. Furthermore, the self-absorption effect of the internal reference line is considered during the correction procedure. To improve the analysis accuracy of CF-LIBS, the particle swarm optimization (PSO) algorithm is introduced to estimate the plasma temperature based on the calculation results from the Boltzmann plot. Thereafter, the species concentrations of a sample can be calculated according to the classical CF-LIBS method. A total of 15 certified alloy steel standard samples of known compositions and elemental weight percentages were used in the experiment. Using the proposed method, the average relative errors of Cr, Ni, and Fe calculated concentrations were 4.40%, 6.81%, and 2.29%, respectively. The quantitative results demonstrated an improvement compared with the classical CF-LIBS method and the promising potential of in situ and real-time application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JaJAP..56gJF18C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JaJAP..56gJF18C"><span>Mutual conversion between B-mode image and acoustic impedance image</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chean, Tan Wei; Hozumi, Naohiro; Yoshida, Sachiko; Kobayashi, Kazuto; Ogura, Yuki</p> <p>2017-07-01</p> <p>To study the acoustic properties of a B-mode image, two ways of analysis methods were proposed in this report. The first method is the conversion of an acoustic impedance image into a B-mode image (Z to B). The time domain reflectometry theory and transmission line model were used as reference in the calculation. The second method is the direct a conversion of B-mode image into an acoustic impedance image (B to Z). The theoretical background of the second method is similar to that of the first method; however, the calculation is in the opposite direction. Significant scatter, refraction, and attenuation were assumed not to take place during the propagation of an ultrasonic wave. Hence, they were ignored in both calculations. In this study, rat cerebellar tissue and human cheek skin were used to determine the feasibility of the first and second methods respectively. Some good results are obtained and hence both methods showed their possible applications in the study of acoustic properties of B-mode images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97f0502I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97f0502I"><span>G W (Γ ) method without the Bethe-Salpeter equation for photoabsorption energies of spin-polarized systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isobe, Tomoharu; Kuwahara, Riichi; Ohno, Kaoru</p> <p>2018-06-01</p> <p>The one-shot G W method, beginning with the local density approximation (LDA), enables one to calculate photoemission and inverse photoemission spectra. In order to calculate photoabsorption spectra, one had to additionally solve the Bethe-Salpeter equation (BSE) for the two-particle (electron-hole) Green's function, which doubly induces evaluation errors. It has been recently reported that the G W +BSE method significantly underestimates the experimental photoabsorption energies (PAEs) of small molecules. In order to avoid these problems, we propose to apply the G W (Γ ) method not to the neutral ground state but to the cationic state to calculate PAEs without solving the BSE, which allows a rigorous one-to-one correspondence between the photoabsorption peak and the "extended" quasiparticle level. We applied the self-consistent linearized G W Γ method including the vertex correction Γ to our method, and found that this method gives the PAEs of B, Na3, and Li3 to within 0.1 eV accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24284769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24284769"><span>Robust finger vein ROI localization based on flexible segmentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun</p> <p>2013-10-24</p> <p>Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3871073','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3871073"><span>Robust Finger Vein ROI Localization Based on Flexible Segmentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun</p> <p>2013-01-01</p> <p>Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008MeScR...8..151G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008MeScR...8..151G"><span>Uncertainty Estimation for the Determination of Ni, Pb and Al in Natural Water Samples by SPE-ICP-OES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghorbani, A.; Farahani, M. Mahmoodi; Rabbani, M.; Aflaki, F.; Waqifhosain, Syed</p> <p>2008-01-01</p> <p>In this paper we propose uncertainty estimation for the analytical results we obtained from determination of Ni, Pb and Al by solidphase extraction and inductively coupled plasma optical emission spectrometry (SPE-ICP-OES). The procedure is based on the retention of analytes in the form of 8-hydroxyquinoline (8-HQ) complexes on a mini column of XAD-4 resin and subsequent elution with nitric acid. The influence of various analytical parameters including the amount of solid phase, pH, elution factors (concentration and volume of eluting solution), volume of sample solution, and amount of ligand on the extraction efficiency of analytes was investigated. To estimate the uncertainty of analytical result obtained, we propose assessing trueness by employing spiked sample. Two types of bias are calculated in the assessment of trueness: a proportional bias and a constant bias. We applied Nested design for calculating proportional bias and Youden method to calculate the constant bias. The results we obtained for proportional bias are calculated from spiked samples. In this case, the concentration found is plotted against the concentration added and the slop of standard addition curve is an estimate of the method recovery. Estimated method of average recovery in Karaj river water is: (1.004±0.0085) for Ni, (0.999±0.010) for Pb and (0.987±0.008) for Al.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGE....11a5003L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGE....11a5003L"><span>Traveltime computation and imaging from rugged topography in 3D TTI media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Shaoyong; Wang, Huazhong; Yang, Qinyong; Fang, Wubao</p> <p>2014-02-01</p> <p>Foothill areas with rugged topography are of great potential for oil and gas seismic exploration, but subsurface imaging in these areas is very challenging. Seismic acquisition with larger offset and wider azimuth is necessary for seismic imaging in complex areas. However, the scale anisotropy in this case must be taken into account. To generalize the pre-stack depth migration (PSDM) to 3D transversely isotropic media with vertical symmetry axes (VTI) and tilted symmetry axes (TTI) from rugged topography, a new dynamic programming approach for the first-arrival traveltime computation method is proposed. The first-arrival time on every uniform mesh point is calculated based on Fermat's principle with simple calculus techniques and a systematic mapping scheme. In order to calculate the minimum traveltime, a set of nonlinear equations is solved on each mesh point, where the group velocity is determined by the group angle. Based on the new first-arrival time calculation method, the corresponding PSDM and migration velocity analysis workflow for 3D anisotropic media from rugged surface is developed. Numerical tests demonstrate that the proposed traveltime calculation method is effective in both VTI and TTI media. The migration results for 3D field data show that it is necessary to choose a smooth datum to remove the high wavenumber move-out components for PSDM with rugged topography and take anisotropy into account to achieve better images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22086012-computation-spectrum-spatial-lyapunov-exponents-spatially-extended-beam-plasma-systems-electron-wave-devices','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22086012-computation-spectrum-spatial-lyapunov-exponents-spatially-extended-beam-plasma-systems-electron-wave-devices"><span>Computation of the spectrum of spatial Lyapunov exponents for the spatially extended beam-plasma systems and electron-wave devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.</p> <p>2012-08-15</p> <p>The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PSSBR.202..763K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PSSBR.202..763K"><span>Materials Design of the Codoping for the Fabrication of Low-Resistivity p-Type ZnSe and GaN by ab-initio Electronic Structure Calculation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katayama-Yoshida, H.; Yamamoto, T.</p> <p>1997-08-01</p> <p>We propose an effective doping method, the codoping (doping with n- and p-type dopants at the same time) method, for the fabrication of low-resistivity p-type ZnSe and GaN with wide-band-gap based upon ab-initio electronic band structure calculations. p-type doping eminently leads to an increase in the electrostatic energy, called the Madelung energy, which shifts the Se 4p levels for p-type doped ZnSe and the N 2p levels for p-type doped GaN materials towards higher energy regions. This leads to a destabilization of ionic charge distributions in p-type ZnSe and p-type GaN crystals, resulting in the self-compensation of anion intrinsic defects. For ZnSe crystals, we propose the codoping of n-type In donors at Zn sites and p-type N acceptors at Se sites based on the calculation. In addition, we propose the codoping of n-type Si-donors at Ga sites (n-type O donors at N sites) and p-type Be- or Mg acceptors at Ga sites. The codoping decreases the Madelung energy and leads to an increase in the net acceptor carrier density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1890d0011F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1890d0011F"><span>A new edge detection algorithm based on Canny idea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Yingke; Zhang, Jinmin; Wang, Siming</p> <p>2017-10-01</p> <p>The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhRvB..67k5321Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhRvB..67k5321Y"><span>Numerical method for N electrons bound to a polar quantum dot with a Coulomb impurity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yau, J. K.; Lee, C. M.</p> <p>2003-03-01</p> <p>A numerical method is proposed to calculate the Frohlich Hamiltonian containing N electrons bound to polar quantum dot with a Coulomb impurity without transformation to the coordination frame of the center of mass and by direct diagonalization. As an example to demonstrate the formalism of this method, the low-lying spectra of three interacting electrons bound to an on-center Coulomb impurity, both for accepter and donor, are calculated and analyzed in a polar quantum dot under a perpendicular magnetic field. Taking polaron effect into account, the physical meaning of the phonon-induced terms, both self-square terms and cross terms of the Hamiltonian are discussed. The calculation can also be applied to systems containing particles with opposite charges, such as excitons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002OptSp..93..598K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002OptSp..93..598K"><span>Computer simulation of selective absorption of radiation by the components of a light-scattering layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozakov, O. N.</p> <p>2002-10-01</p> <p>A method of calculating the partial characteristics of radiation absorption by the components of light-scattering disperse layers is proposed. This method is based on statistical modeling (the Monte Carlo method). The absorptivities of photographic gelatin and silver bromide microcrystals and the corresponding distributions of the absorbed energy over the layer thickness are calculated using the example of an interaction between actinic radiation and silver halide photographic layers in the wavelength range λ=200 440 nm. The following structural parameters of the photographic layer are used in the calculation: the mean size of emulsion crystals d=0.5 μm; the polydispersity C V =25%; the volume concentrations C V =10, 20, and 30%; and the thickness of the emulsion layer H=10 μm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IEITI..92.1484K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IEITI..92.1484K"><span>Color Image Classification Using Block Matching and Learning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kondo, Kazuki; Hotta, Seiji</p> <p></p> <p>In this paper, we propose block matching and learning for color image classification. In our method, training images are partitioned into small blocks. Given a test image, it is also partitioned into small blocks, and mean-blocks corresponding to each test block are calculated with neighbor training blocks. Our method classifies a test image into the class that has the shortest total sum of distances between mean blocks and test ones. We also propose a learning method for reducing memory requirement. Experimental results show that our classification outperforms other classifiers such as support vector machine with bag of keypoints.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3.1643T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3.1643T"><span>Semantic Information Extraction of Lanes Based on Onboard Camera Videos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, L.; Deng, T.; Ren, C.</p> <p>2018-04-01</p> <p>In the field of autonomous driving, semantic information of lanes is very important. This paper proposes a method of automatic detection of lanes and extraction of semantic information from onboard camera videos. The proposed method firstly detects the edges of lanes by the grayscale gradient direction, and improves the Probabilistic Hough transform to fit them; then, it uses the vanishing point principle to calculate the lane geometrical position, and uses lane characteristics to extract lane semantic information by the classification of decision trees. In the experiment, 216 road video images captured by a camera mounted onboard a moving vehicle were used to detect lanes and extract lane semantic information. The results show that the proposed method can accurately identify lane semantics from video images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP...98..951W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP...98..951W"><span>Fault feature analysis of cracked gear based on LOD and analytical-FE method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Jiateng; Yang, Yu; Yang, Xingkai; Cheng, Junsheng</p> <p>2018-01-01</p> <p>At present, there are two main ideas for gear fault diagnosis. One is the model-based gear dynamic analysis; the other is signal-based gear vibration diagnosis. In this paper, a method for fault feature analysis of gear crack is presented, which combines the advantages of dynamic modeling and signal processing. Firstly, a new time-frequency analysis method called local oscillatory-characteristic decomposition (LOD) is proposed, which has the attractive feature of extracting fault characteristic efficiently and accurately. Secondly, an analytical-finite element (analytical-FE) method which is called assist-stress intensity factor (assist-SIF) gear contact model, is put forward to calculate the time-varying mesh stiffness (TVMS) under different crack states. Based on the dynamic model of the gear system with 6 degrees of freedom, the dynamic simulation response was obtained for different tooth crack depths. For the dynamic model, the corresponding relation between the characteristic parameters and the degree of the tooth crack is established under a specific condition. On the basis of the methods mentioned above, a novel gear tooth root crack diagnosis method which combines the LOD with the analytical-FE is proposed. Furthermore, empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) are contrasted with the LOD by gear crack fault vibration signals. The analysis results indicate that the proposed method performs effectively and feasibility for the tooth crack stiffness calculation and the gear tooth crack fault diagnosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4140750-limitations-method-complex-basis-functions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4140750-limitations-method-complex-basis-functions"><span>Limitations of the method of complex basis functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Baumel, R.T.; Crocker, M.C.; Nuttall, J.</p> <p>1975-08-01</p> <p>The method of complex basis functions proposed by Rescigno and Reinhardt is applied to the calculation of the amplitude in a model problem which can be treated analytically. It is found for an important class of potentials, including some of infinite range and also the square well, that the method does not provide a converging sequence of approximations. However, in some cases, approximations of relatively low order might be close to the correct result. The method is also applied to S-wave e-H elastic scattering above the ionization threshold, and spurious ''convergence'' to the wrong result is found. A procedure whichmore » might overcome the difficulties of the method is proposed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...86a2038G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...86a2038G"><span>Allocation of Load-Loss Cost Caused by Voltage Sag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, X.</p> <p>2017-10-01</p> <p>This paper focuses on the allocation of load-loss cost caused by voltage sag in the environment of electricity market. To compensate the loss of loads due to voltage sags, the load-loss cost is allocated to both sources and power consumers. On the basis of Load Drop Cost (LDC), a quantitative evaluation index of load-loss cost caused by voltage sag is identified. The load-loss cost to be allocated to power consumers themselves is calculated according to load classification. Based on the theory of power component the quantitative relation between sources and loads is established, thereby a quantitative calculation method for load-loss cost allocated to each source is deduced and the quantitative compensation from individual source to load is proposed. A simple five-bus system illustrates the main features of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20991596-magnetotelluric-inversion-via-reverse-time-migration-algorithm-seismic-data','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20991596-magnetotelluric-inversion-via-reverse-time-migration-algorithm-seismic-data"><span>Magnetotelluric inversion via reverse time migration algorithm of seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ha, Taeyoung; Shin, Changsoo</p> <p>2007-07-01</p> <p>We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10420E..03T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10420E..03T"><span>Real-time driver fatigue detection based on face alignment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, Huanhuan; Zhang, Guiying; Zhao, Yong; Zhou, Yi</p> <p>2017-07-01</p> <p>The performance and robustness of fatigue detection largely decrease if the driver with glasses. To address this issue, this paper proposes a practical driver fatigue detection method based on face alignment at 3000 FPS algorithm. Firstly, the eye regions of the driver are localized by exploiting 6 landmarks surrounding each eye. Secondly, the HOG features of the extracted eye regions are calculated and put into SVM classifier to recognize the eye state. Finally, the value of PERCLOS is calculated to determine whether the driver is drowsy or not. An alarm will be generated if the eye is closed for a specified period of time. The accuracy and real-time on testing videos with different drivers demonstrate that the proposed algorithm is robust and obtain better accuracy for driver fatigue detection compared with some previous method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..144a2056T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..144a2056T"><span>Study of optimizing water utilization in Benanga reservoir for irrigation and fresh water purposes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamrin; Retati, E.</p> <p>2018-04-01</p> <p>Benanga dam was built in1978an irrigation weir but currently it was developed into a multipurpose dam. However, based on the capacity curve measurement in 2015, the capacity curve measurement has been changed to get below. The runoff rate is calculated by using NRECA method, andwater reservoir volume is calculated by using penman modification method. The cropping pattern that has been implemented by the farmer of Lempake sincein Februaryis Paddy-Paddy-Fallow While the proposed cropping pattern in Benanga reservoir started on December, that proposed is based on the service ability for both raw water demands like irrigation and fresh water and if early planting is started besides these two months the elevation of benanga reservoir will not reach the normal elevation effective storage which is the condition pattern of reservoir operation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23966180','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23966180"><span>A vision-based automated guided vehicle system with marker recognition for indoor use.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jeisung; Hyun, Chang-Ho; Park, Mignon</p> <p>2013-08-07</p> <p>We propose an intelligent vision-based Automated Guided Vehicle (AGV) system using fiduciary markers. In this paper, we explore a low-cost, efficient vehicle guiding method using a consumer grade web camera and fiduciary markers. In the proposed method, the system uses fiduciary markers with a capital letter or triangle indicating direction in it. The markers are very easy to produce, manipulate, and maintain. The marker information is used to guide a vehicle. We use hue and saturation values in the image to extract marker candidates. When the known size fiduciary marker is detected by using a bird's eye view and Hough transform, the positional relation between the marker and the vehicle can be calculated. To recognize the character in the marker, a distance transform is used. The probability of feature matching was calculated by using a distance transform, and a feature having high probability is selected as a captured marker. Four directional signals and 10 alphabet features are defined and used as markers. A 98.87% recognition rate was achieved in the testing phase. The experimental results with the fiduciary marker show that the proposed method is a solution for an indoor AGV system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEI....26b3024R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEI....26b3024R"><span>Reducible dictionaries for single image super-resolution based on patch matching and mean shifting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rasti, Pejman; Nasrollahi, Kamal; Orlova, Olga; Tamberg, Gert; Moeslund, Thomas B.; Anbarjafari, Gholamreza</p> <p>2017-03-01</p> <p>A single-image super-resolution (SR) method is proposed. The proposed method uses a generated dictionary from pairs of high resolution (HR) images and their corresponding low resolution (LR) representations. First, HR images and the corresponding LR ones are divided into patches of HR and LR, respectively, and then they are collected into separate dictionaries. Afterward, when performing SR, the distance between every patch of the input LR image and those of available LR patches in the LR dictionary is calculated. The minimum distance between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary is passed through an illumination enhancement process. By this technique, the noticeable change of illumination between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch represents the HR patch of the super-resolved image. Finally, to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the conventional and state-of-art methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1414..188A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1414..188A"><span>Image Retrieval using Integrated Features of Binary Wavelet Transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agarwal, Megha; Maheshwari, R. P.</p> <p>2011-12-01</p> <p>In this paper a new approach for image retrieval is proposed with the application of binary wavelet transform. This new approach facilitates the feature calculation with the integration of histogram and correlogram features extracted from binary wavelet subbands. Experiments are performed to evaluate and compare the performance of proposed method with the published literature. It is verified that average precision and average recall of proposed method (69.19%, 41.78%) is significantly improved compared to optimal quantized wavelet correlogram (OQWC) [6] (64.3%, 38.00%) and Gabor wavelet correlogram (GWC) [10] (64.1%, 40.6%). All the experiments are performed on Corel 1000 natural image database [20].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29843416','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29843416"><span>Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Ching-Hsue; Liu, Wei-Xiang</p> <p>2018-05-28</p> <p>Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1424581-image-phase-shift-invariance-based-cloud-motion-displacement-vector-calculation-method-ultra-short-term-solar-pv-power-forecasting','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1424581-image-phase-shift-invariance-based-cloud-motion-displacement-vector-calculation-method-ultra-short-term-solar-pv-power-forecasting"><span>Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Fei; Zhen, Zhao; Liu, Chun</p> <p></p> <p>Irradiance received on the earth's surface is the main factor that affects the output power of solar PV plants, and is chiefly determined by the cloud distribution seen in a ground-based sky image at the corresponding moment in time. It is the foundation for those linear extrapolation-based ultra-short-term solar PV power forecasting approaches to obtain the cloud distribution in future sky images from the accurate calculation of cloud motion displacement vectors (CMDVs) by using historical sky images. Theoretically, the CMDV can be obtained from the coordinate of the peak pulse calculated from a Fourier phase correlation theory (FPCT) method throughmore » the frequency domain information of sky images. The peak pulse is significant and unique only when the cloud deformation between two consecutive sky images is slight enough, which is likely possible for a very short time interval (such as 1?min or shorter) with common changes in the speed of cloud. Sometimes, there will be more than one pulse with similar values when the deformation of the clouds between two consecutive sky images is comparatively obvious under fast changing cloud speeds. This would probably lead to significant errors if the CMDVs were still only obtained from the single coordinate of the peak value pulse. However, the deformation estimation of clouds between two images and its influence on FPCT-based CMDV calculations are terrifically complex and difficult because the motion of clouds is complicated to describe and model. Therefore, to improve the accuracy and reliability under these circumstances in a simple manner, an image-phase-shift-invariance (IPSI) based CMDV calculation method using FPCT is proposed for minute time scale solar power forecasting. First, multiple different CMDVs are calculated from the corresponding consecutive images pairs obtained through different synchronous rotation angles compared to the original images by using the FPCT method. Second, the final CMDV is generated from all of the calculated CMDVs through a centroid iteration strategy based on its density and distance distribution. Third, the influence of different rotation angle resolution on the final CMDV is analyzed as a means of parameter estimation. Simulations under various scenarios including both thick and thin clouds conditions indicated that the proposed IPSI-based CMDV calculation method using FPCT is more accurate and reliable than the original FPCT method, optimal flow (OF) method, and particle image velocimetry (PIV) method.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1424581-image-phase-shift-invariance-based-cloud-motion-displacement-vector-calculation-method-ultra-short-term-solar-pv-power-forecasting','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1424581-image-phase-shift-invariance-based-cloud-motion-displacement-vector-calculation-method-ultra-short-term-solar-pv-power-forecasting"><span>Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Fei; Zhen, Zhao; Liu, Chun; ...</p> <p>2017-12-18</p> <p>Irradiance received on the earth's surface is the main factor that affects the output power of solar PV plants, and is chiefly determined by the cloud distribution seen in a ground-based sky image at the corresponding moment in time. It is the foundation for those linear extrapolation-based ultra-short-term solar PV power forecasting approaches to obtain the cloud distribution in future sky images from the accurate calculation of cloud motion displacement vectors (CMDVs) by using historical sky images. Theoretically, the CMDV can be obtained from the coordinate of the peak pulse calculated from a Fourier phase correlation theory (FPCT) method throughmore » the frequency domain information of sky images. The peak pulse is significant and unique only when the cloud deformation between two consecutive sky images is slight enough, which is likely possible for a very short time interval (such as 1?min or shorter) with common changes in the speed of cloud. Sometimes, there will be more than one pulse with similar values when the deformation of the clouds between two consecutive sky images is comparatively obvious under fast changing cloud speeds. This would probably lead to significant errors if the CMDVs were still only obtained from the single coordinate of the peak value pulse. However, the deformation estimation of clouds between two images and its influence on FPCT-based CMDV calculations are terrifically complex and difficult because the motion of clouds is complicated to describe and model. Therefore, to improve the accuracy and reliability under these circumstances in a simple manner, an image-phase-shift-invariance (IPSI) based CMDV calculation method using FPCT is proposed for minute time scale solar power forecasting. First, multiple different CMDVs are calculated from the corresponding consecutive images pairs obtained through different synchronous rotation angles compared to the original images by using the FPCT method. Second, the final CMDV is generated from all of the calculated CMDVs through a centroid iteration strategy based on its density and distance distribution. Third, the influence of different rotation angle resolution on the final CMDV is analyzed as a means of parameter estimation. Simulations under various scenarios including both thick and thin clouds conditions indicated that the proposed IPSI-based CMDV calculation method using FPCT is more accurate and reliable than the original FPCT method, optimal flow (OF) method, and particle image velocimetry (PIV) method.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCoPh.345..245S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCoPh.345..245S"><span>Improvement and performance evaluation of the perturbation source method for an exact Monte Carlo perturbation calculation in fixed source problems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakamoto, Hiroki; Yamamoto, Toshihiro</p> <p>2017-09-01</p> <p>This paper presents improvement and performance evaluation of the "perturbation source method", which is one of the Monte Carlo perturbation techniques. The formerly proposed perturbation source method was first-order accurate, although it is known that the method can be easily extended to an exact perturbation method. A transport equation for calculating an exact flux difference caused by a perturbation is solved. A perturbation particle representing a flux difference is explicitly transported in the perturbed system, instead of in the unperturbed system. The source term of the transport equation is defined by the unperturbed flux and the cross section (or optical parameter) changes. The unperturbed flux is provided by an "on-the-fly" technique during the course of the ordinary fixed source calculation for the unperturbed system. A set of perturbation particle is started at the collision point in the perturbed region and tracked until death. For a perturbation in a smaller portion of the whole domain, the efficiency of the perturbation source method can be improved by using a virtual scattering coefficient or cross section in the perturbed region, forcing collisions. Performance is evaluated by comparing the proposed method to other Monte Carlo perturbation methods. Numerical tests performed for a particle transport in a two-dimensional geometry reveal that the perturbation source method is less effective than the correlated sampling method for a perturbation in a larger portion of the whole domain. However, for a perturbation in a smaller portion, the perturbation source method outperforms the correlated sampling method. The efficiency depends strongly on the adjustment of the new virtual scattering coefficient or cross section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22624344-su-metal-artifact-reduction-ray-computed-tomography-based-local-anatomical-similarity','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22624344-su-metal-artifact-reduction-ray-computed-tomography-based-local-anatomical-similarity"><span>SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dong, X; Yang, X; Rosenfield, J</p> <p></p> <p>Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map,more » which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JARS...12a5017L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JARS...12a5017L"><span>Variational method based on Retinex with double-norm hybrid constraints for uneven illumination correction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Shuo; Wang, Hui; Wang, Liyong; Yu, Xiangzhou; Yang, Le</p> <p>2018-01-01</p> <p>The uneven illumination phenomenon reduces the quality of remote sensing image and causes interference in the subsequent processing and applications. A variational method based on Retinex with double-norm hybrid constraints for uneven illumination correction is proposed. The L1 norm and the L2 norm are adopted to constrain the textures and details of reflectance image and the smoothness of the illumination image, respectively. The problem of separating the illumination image from the reflectance image is transformed into the optimal solution of the variational model. In order to accelerate the solution, the split Bregman method is used to decompose the variational model into three subproblems, which are calculated by alternate iteration. Two groups of experiments are implemented on two synthetic images and three real remote sensing images. Compared with the variational Retinex method with single-norm constraint and the Mask method, the proposed method performs better in both visual evaluation and quantitative measurements. The proposed method can effectively eliminate the uneven illumination while maintaining the textures and details of the remote sensing image. Moreover, the proposed method using split Bregman method is more than 10 times faster than the method with the steepest descent method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005CPL...411..434M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005CPL...411..434M"><span>Experimental approach to the anion problem in DFT calculation of the partial charge transfer during adsorption at electrochemical interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marichev, V. A.</p> <p>2005-08-01</p> <p>In DFT calculation of the charge transfer (Δ N), anions pose a special problem since their electron affinities are unknown. There is no method for calculating reasonable values of the absolute electronegativity ( χA) and chemical hardness ( ηA) for ions from data of species themselves. We propose a new approach to the experimental measurement of χA at the condition: Δ N = 0 at which η values may be neglected and χA = χMe. Electrochemical parameters corresponding to this condition may be obtained by the contact electric resistance method during in situ investigation of anion adsorption in the particular system anion-metal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25413493','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25413493"><span>A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heskes, Tom; Eisinga, Rob; Breitling, Rainer</p> <p>2014-11-21</p> <p>The rank product method is a powerful statistical technique for identifying differentially expressed molecules in replicated experiments. A critical issue in molecule selection is accurate calculation of the p-value of the rank product statistic to adequately address multiple testing. Both exact calculation and permutation and gamma approximations have been proposed to determine molecule-level significance. These current approaches have serious drawbacks as they are either computationally burdensome or provide inaccurate estimates in the tail of the p-value distribution. We derive strict lower and upper bounds to the exact p-value along with an accurate approximation that can be used to assess the significance of the rank product statistic in a computationally fast manner. The bounds and the proposed approximation are shown to provide far better accuracy over existing approximate methods in determining tail probabilities, with the slightly conservative upper bound protecting against false positives. We illustrate the proposed method in the context of a recently published analysis on transcriptomic profiling performed in blood. We provide a method to determine upper bounds and accurate approximate p-values of the rank product statistic. The proposed algorithm provides an order of magnitude increase in throughput as compared with current approaches and offers the opportunity to explore new application domains with even larger multiple testing issue. The R code is published in one of the Additional files and is available at http://www.ru.nl/publish/pages/726696/rankprodbounds.zip .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9790E..1VP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9790E..1VP"><span>A new post-phase rotation based dynamic receive beamforming architecture for smartphone-based wireless ultrasound imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Minsuk; Kang, Jeeun; Lee, Gunho; Kim, Min; Song, Tai-Kyong</p> <p>2016-04-01</p> <p>Recently, a portable US imaging system using smart devices is highlighted for enhancing the portability of diagnosis. Especially, the system combination can enhance the user experience during whole US diagnostic procedures by employing the advanced wireless communication technology integrated in a smart device, e.g., WiFi, Bluetooth, etc. In this paper, an effective post-phase rotation-based dynamic receive beamforming (PRBF-POST) method is presented for wireless US imaging device integrating US probe system and commercial smart device. In conventional, the frame rate of conventional PRBF (PRBF-CON) method suffers from the large amount of calculations for the bifurcated processing paths of in-phase and quadrature signal components as the number of channel increase. Otherwise, the proposed PRBF-POST method can preserve the frame rate regardless of the number of channels by firstly aggregating the baseband IQ data along the channels whose phase quantization levels are identical ahead of phase rotation and summation procedures on a smart device. To evaluate the performance of the proposed PRBF-POST method, the pointspread functions of PRBF-CON and PRBF-POST methods were compared each other. Also, the frame rate of each PRBF method was measured 20-times to calculate the average frame rate and its standard deviation. As a result, the PRBFCON and PRBF-POST methods indicates identical beamforming performance in the Field-II simulation (correlation coefficient = 1). Also, the proposed PRBF-POST method indicates the consistent frame rate for varying number of channels (i.e., 44.25, 44.32, and 44.35 fps for 16, 64, and 128 channels, respectively), while the PRBF-CON method shows the decrease of frame rate as the number of channel increase (39.73, 13.19, and 3.8 fps). These results indicate that the proposed PRBF-POST method can be more advantageous for implementing the wireless US imaging system than the PRBF-CON method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22116589','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22116589"><span>Method for automatic determination of soybean actual evapotranspiration under open top chambers (OTC) subjected to effects of water stress and air ozone concentration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rana, Gianfranco; Katerji, Nader; Mastrorilli, Marcello</p> <p>2012-10-01</p> <p>The present study describes an operational method, based on the Katerji et al. (Eur J Agron 33:218-230, 2010) model, for determining the daily evapotranspiration (ET) for soybean inside open top chambers (OTCs). It includes two functions, calculated day par day, making it possible to separately take into account the effects of concentrations of air ozone and plant water stress. This last function was calibrated in function of the daily values of actual water reserve in the soil. The input variables of the method are (a) the diurnal values of global radiation and temperature, usually measured routinely in a standard weather station; (b) the daily values of the AOT40 index accumulated (accumulated ozone over a threshold of 40 ppb during daylight hours, when global radiation exceeds 50 Wm(-2)) determined inside the OTC; and (c) the actual water reserve in the soil, at the beginning of the trial. The ensemble of these input variables can be automatable; thus, the proposed method could be applied in routine. The ability of the method to take into account contrasting conditions of ozone air concentration and water stress was evaluated over three successive years, for 513 days, in ten crop growth cycles, excluding the days employed to calibrate the method. Tests were carried out in several chambers for each year and take into account the intra- and inter-year variability of ET measured inside the OTCs. On the daily scale, the slope of the linear regression between the ET measured by the soil water balance and that calculated by the proposed method, under different water conditions, are 0.98 and 1.05 for the filtered and unfiltered (or enriched) OTCs with root mean square error (RMSE) equal to 0.77 and 1.07 mm, respectively. On the seasonal scale, the mean difference between measured and calculated ET is equal to +5% and +11% for the filtered and unfiltered OTCs, respectively. The ability of the proposed method to estimate the daily and seasonal ET inside the OTCs is therefore satisfactory following inter- and intra-annual tests. Finally, suggestions about the applications of the proposed method for other species, different from soybean, were also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51.1063W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51.1063W"><span>An Illustration of Determining Quantitatively the Rock Mass Quality Parameters of the Hoek-Brown Failure Criterion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Li; Adoko, Amoussou Coffi; Li, Bo</p> <p>2018-04-01</p> <p>In tunneling, determining quantitatively the rock mass strength parameters of the Hoek-Brown (HB) failure criterion is useful since it can improve the reliability of the design of tunnel support systems. In this study, a quantitative method is proposed to determine the rock mass quality parameters of the HB failure criterion, namely the Geological Strength Index (GSI) and the disturbance factor ( D) based on the structure of drilling core and weathering condition of rock mass combined with acoustic wave test to calculate the strength of rock mass. The Rock Mass Structure Index and the Rock Mass Weathering Index are used to quantify the GSI while the longitudinal wave velocity ( V p) is employed to derive the value of D. The DK383+338 tunnel face of Yaojia tunnel of Shanghai-Kunming passenger dedicated line served as illustration of how the methodology is implemented. The values of the GSI and D are obtained using the HB criterion and then using the proposed method. The measured in situ stress is used to evaluate their accuracy. To this end, the major and minor principal stresses are calculated based on the GSI and D given by HB criterion and the proposed method. The results indicated that both methods were close to the field observation which suggests that the proposed method can be used for determining quantitatively the rock quality parameters, as well. However, these results remain valid only for rock mass quality and rock type similar to those of the DK383+338 tunnel face of Yaojia tunnel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JEI....24a3037L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JEI....24a3037L"><span>Registration algorithm of point clouds based on multiscale normal features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua</p> <p>2015-01-01</p> <p>The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27277014','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27277014"><span>SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matsumoto, Hirotaka; Kiryu, Hisanori</p> <p>2016-06-08</p> <p>Single-cell technologies make it possible to quantify the comprehensive states of individual cells, and have the power to shed light on cellular differentiation in particular. Although several methods have been developed to fully analyze the single-cell expression data, there is still room for improvement in the analysis of differentiation. In this paper, we propose a novel method SCOUP to elucidate differentiation process. Unlike previous dimension reduction-based approaches, SCOUP describes the dynamics of gene expression throughout differentiation directly, including the degree of differentiation of a cell (in pseudo-time) and cell fate. SCOUP is superior to previous methods with respect to pseudo-time estimation, especially for single-cell RNA-seq. SCOUP also successfully estimates cell lineage more accurately than previous method, especially for cells at an early stage of bifurcation. In addition, SCOUP can be applied to various downstream analyses. As an example, we propose a novel correlation calculation method for elucidating regulatory relationships among genes. We apply this method to a single-cell RNA-seq data and detect a candidate of key regulator for differentiation and clusters in a correlation network which are not detected with conventional correlation analysis. We develop a stochastic process-based method SCOUP to analyze single-cell expression data throughout differentiation. SCOUP can estimate pseudo-time and cell lineage more accurately than previous methods. We also propose a novel correlation calculation method based on SCOUP. SCOUP is a promising approach for further single-cell analysis and available at https://github.com/hmatsu1226/SCOUP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18594581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18594581"><span>Fast calculation method for computer-generated cylindrical holograms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamaguchi, Takeshi; Fujii, Tomohiko; Yoshikawa, Hiroshi</p> <p>2008-07-01</p> <p>Since a general flat hologram has a limited viewable area, we usually cannot see the other side of a reconstructed object. There are some holograms that can solve this problem. A cylindrical hologram is well known to be viewable in 360 deg. Most cylindrical holograms are optical holograms, but there are few reports of computer-generated cylindrical holograms. The lack of computer-generated cylindrical holograms is because the spatial resolution of output devices is not great enough; therefore, we have to make a large hologram or use a small object to fulfill the sampling theorem. In addition, in calculating the large fringe, the calculation amount increases in proportion to the hologram size. Therefore, we propose what we believe to be a new calculation method for fast calculation. Then, we print these fringes with our prototype fringe printer. As a result, we obtain a good reconstructed image from a computer-generated cylindrical hologram.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28055861','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28055861"><span>A Novel Two-Compartment Model for Calculating Bone Volume Fractions and Bone Mineral Densities From Computed Tomography Images.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Hsin-Hon; Peng, Shin-Lei; Wu, Jay; Shih, Tian-Yu; Chuang, Keh-Shih; Shih, Cheng-Ting</p> <p>2017-05-01</p> <p>Osteoporosis is a disease characterized by a degradation of bone structures. Various methods have been developed to diagnose osteoporosis by measuring bone mineral density (BMD) of patients. However, BMDs from these methods were not equivalent and were incomparable. In addition, partial volume effect introduces errors in estimating bone volume from computed tomography (CT) images using image segmentation. In this study, a two-compartment model (TCM) was proposed to calculate bone volume fraction (BV/TV) and BMD from CT images. The TCM considers bones to be composed of two sub-materials. Various equivalent BV/TV and BMD can be calculated by applying corresponding sub-material pairs in the TCM. In contrast to image segmentation, the TCM prevented the influence of the partial volume effect by calculating the volume percentage of sub-material in each image voxel. Validations of the TCM were performed using bone-equivalent uniform phantoms, a 3D-printed trabecular-structural phantom, a temporal bone flap, and abdominal CT images. By using the TCM, the calculated BV/TVs of the uniform phantoms were within percent errors of ±2%; the percent errors of the structural volumes with various CT slice thickness were below 9%; the volume of the temporal bone flap was close to that from micro-CT images with a percent error of 4.1%. No significant difference (p >0.01) was found between the areal BMD of lumbar vertebrae calculated using the TCM and measured using dual-energy X-ray absorptiometry. In conclusion, the proposed TCM could be applied to diagnose osteoporosis, while providing a basis for comparing various measurement methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PMB....62.9099M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PMB....62.9099M"><span>Dosimetry and prescription in liver radioembolization with 90Y microspheres: 3D calculation of tumor-to-liver ratio from global 99mTc-MAA SPECT information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mañeru, Fernando; Abós, Dolores; Bragado, Laura; Fuentemilla, Naiara; Caudepón, Fernando; Pellejero, Santiago; Miquelez, Santiago; Rubio, Anastasio; Goñi, Elena; Hernández-Vitoria, Araceli</p> <p>2017-12-01</p> <p>Dosimetry in liver radioembolization with 90Y microspheres is a fundamental tool, both for the optimization of each treatment and for improving knowledge of the treatment effects in the tissues. Different options are available for estimating the administered activity and the tumor/organ dose, among them the so-called partition method. The key factor in the partition method is the tumor/normal tissue activity uptake ratio (T/N), which is obtained by a single-photon emission computed tomography (SPECT) scan during a pre-treatment simulation. The less clear the distinction between healthy and tumor parenchyma within the liver, the more difficult it becomes to estimate the T/N ratio; therefore the use of the method is limited. This study presents a methodology to calculate the T/N ratio using global information from the SPECT. The T/N ratio is estimated by establishing uptake thresholds consistent with previously performed volumetry. This dose calculation method was validated against 3D voxel dosimetry, and was also compared with the standard partition method based on freehand regions of interest (ROI) outlining on SPECT slices. Both comparisons were done on a sample of 20 actual cases of hepatocellular carcinoma treated with resin microspheres. The proposed method and the voxel dosimetry method yield similar results, while the ROI-based method tends to over-estimate the dose to normal tissues. In addition, the variability associated with the ROI-based method is more extreme than the other methods. The proposed method is simpler than either the ROI or voxel dosimetry approaches and avoids the subjectivity associated with the manual selection of regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OPhy...15...26C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OPhy...15...26C"><span>Research on the method of information system risk state estimation based on clustering particle filter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua</p> <p>2017-05-01</p> <p>With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JChPh.123h4904L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JChPh.123h4904L"><span>Calculation of the Maxwell stress tensor and the Poisson-Boltzmann force on a solvated molecular surface using hypersingular boundary integrals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Benzhuo; Cheng, Xiaolin; Hou, Tingjun; McCammon, J. Andrew</p> <p>2005-08-01</p> <p>The electrostatic interaction among molecules solvated in ionic solution is governed by the Poisson-Boltzmann equation (PBE). Here the hypersingular integral technique is used in a boundary element method (BEM) for the three-dimensional (3D) linear PBE to calculate the Maxwell stress tensor on the solvated molecular surface, and then the PB forces and torques can be obtained from the stress tensor. Compared with the variational method (also in a BEM frame) that we proposed recently, this method provides an even more efficient way to calculate the full intermolecular electrostatic interaction force, especially for macromolecular systems. Thus, it may be more suitable for the application of Brownian dynamics methods to study the dynamics of protein/protein docking as well as the assembly of large 3D architectures involving many diffusing subunits. The method has been tested on two simple cases to demonstrate its reliability and efficiency, and also compared with our previous variational method used in BEM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28025782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28025782"><span>A new shielding calculation method for X-ray computed tomography regarding scattered radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Watanabe, Hiroshi; Noto, Kimiya; Shohji, Tomokazu; Ogawa, Yasuyoshi; Fujibuchi, Toshioh; Yamaguchi, Ichiro; Hiraki, Hitoshi; Kida, Tetsuo; Sasanuma, Kazutoshi; Katsunuma, Yasushi; Nakano, Takurou; Horitsugi, Genki; Hosono, Makoto</p> <p>2017-06-01</p> <p>The goal of this study is to develop a more appropriate shielding calculation method for computed tomography (CT) in comparison with the Japanese conventional (JC) method and the National Council on Radiation Protection and Measurements (NCRP)-dose length product (DLP) method. Scattered dose distributions were measured in a CT room with 18 scanners (16 scanners in the case of the JC method) for one week during routine clinical use. The radiation doses were calculated for the same period using the JC and NCRP-DLP methods. The mean (NCRP-DLP-calculated dose)/(measured dose) ratios in each direction ranged from 1.7 ± 0.6 to 55 ± 24 (mean ± standard deviation). The NCRP-DLP method underestimated the dose at 3.4% in fewer shielding directions without the gantry and a subject, and the minimum (NCRP-DLP-calculated dose)/(measured dose) ratio was 0.6. The reduction factors were 0.036 ± 0.014 and 0.24 ± 0.061 for the gantry and couch directions, respectively. The (JC-calculated dose)/(measured dose) ratios ranged from 11 ± 8.7 to 404 ± 340. The air kerma scatter factor κ is expected to be twice as high as that calculated with the NCRP-DLP method and the reduction factors are expected to be 0.1 and 0.4 for the gantry and couch directions, respectively. We, therefore, propose a more appropriate method, the Japanese-DLP method, which resolves the issues of possible underestimation of the scattered radiation and overestimation of the reduction factors in the gantry and couch directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22613994-ss-horse-method-studying-resonances','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22613994-ss-horse-method-studying-resonances"><span>SS-HORSE method for studying resonances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Blokhintsev, L. D.; Mazur, A. I.; Mazur, I. A., E-mail: 008043@pnu.edu.ru</p> <p></p> <p>A new method for analyzing resonance states based on the Harmonic-Oscillator Representation of Scattering Equations (HORSE) formalism and analytic properties of partial-wave scattering amplitudes is proposed. The method is tested by applying it to the model problem of neutral-particle scattering and can be used to study resonance states on the basis of microscopic calculations performed within various versions of the shell model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10609E..0EL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10609E..0EL"><span>Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Li</p> <p>2018-03-01</p> <p>In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B1..725Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B1..725Z"><span>a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng</p> <p>2016-06-01</p> <p>This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ISPAn.II3...57F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ISPAn.II3...57F"><span>Detection and Classification of Pole-Like Objects from Mobile Mapping Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fukano, K.; Masuda, H.</p> <p>2015-08-01</p> <p>Laser scanners on a vehicle-based mobile mapping system can capture 3D point-clouds of roads and roadside objects. Since roadside objects have to be maintained periodically, their 3D models are useful for planning maintenance tasks. In our previous work, we proposed a method for detecting cylindrical poles and planar plates in a point-cloud. However, it is often required to further classify pole-like objects into utility poles, streetlights, traffic signals and signs, which are managed by different organizations. In addition, our previous method may fail to extract low pole-like objects, which are often observed in urban residential areas. In this paper, we propose new methods for extracting and classifying pole-like objects. In our method, we robustly extract a wide variety of poles by converting point-clouds into wireframe models and calculating cross-sections between wireframe models and horizontal cutting planes. For classifying pole-like objects, we subdivide a pole-like object into five subsets by extracting poles and planes, and calculate feature values of each subset. Then we apply a supervised machine learning method using feature variables of subsets. In our experiments, our method could achieve excellent results for detection and classification of pole-like objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26695268','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26695268"><span>A general method for the quantitative assessment of mineral pigments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ares, M C Zurita; Fernández, J M</p> <p>2016-01-01</p> <p>A general method for the estimation of mineral pigment contents in different bases has been proposed using a sole set of calibration curves, (one for each pigment), calculated for a white standard base, thus elaborating patterns for each utilized base is not necessary. The method can be used in different bases and its validity had ev en been proved in strongly tinted bases. The method consists of a novel procedure that combines diffuse reflectance spectroscopy, second derivatives and the Kubelka-Munk function. This technique has proved to be at least one order of magnitude more sensitive than X-Ray diffraction for colored compounds, since it allowed the determination of the pigment amount in colored samples containing 0.5 wt% of pigment that was not detected by X-Ray Diffraction. The method can be used to estimate the concentration of mineral pigments in a wide variety of either natural or artificial materials, since it does not requiere the calculation of each pigment pattern in every base. This fact could have important industrial consequences, as the proposed method would be more convenient, faster and cheaper. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/467907','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/467907"><span>Assessment of the leak tightness integrity of the steam generator tubes affected by ODSCC at the tube support plates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cuvelliez, Ch.; Roussel, G.</p> <p>1997-02-01</p> <p>An EPRI report gives a method for predicting a conservative value of the total primary-to-secondary leak rate which may occur during, a postulated steam generator depressurization accident such as a Main Steam Line Break (MSLB) in a steam generator with axial through-wall ODSCC at the TSP intersections. The Belgian utility defined an alternative method deviating somewhat from the EPRI method. When reviewing this proposed method, the Belgian safety authorities performed some calculations to investigate its conservatism. This led them to recommend some modifications to the EPRI method which should reduce its undue conservatism while maintaining the objective of conservatism inmore » the offsite dose calculations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22400556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22400556"><span>Mean-field approximation for spacing distribution functions in classical systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González, Diego Luis; Pimpinelli, Alberto; Einstein, T L</p> <p>2012-01-01</p> <p>We propose a mean-field method to calculate approximately the spacing distribution functions p((n))(s) in one-dimensional classical many-particle systems. We compare our method with two other commonly used methods, the independent interval approximation and the extended Wigner surmise. In our mean-field approach, p((n))(s) is calculated from a set of Langevin equations, which are decoupled by using a mean-field approximation. We find that in spite of its simplicity, the mean-field approximation provides good results in several systems. We offer many examples illustrating that the three previously mentioned methods give a reasonable description of the statistical behavior of the system. The physical interpretation of each method is also discussed. © 2012 American Physical Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981uill.reptT....H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981uill.reptT....H"><span>Mechanistic interpretation of nondestructive pavement testing deflections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffman, M. S.; Thompson, M. R.</p> <p>1981-06-01</p> <p>A method for the back calculation of material properties in flexible pavements based on the interpretation of surface deflection measurements is proposed. The ILLI-PAVE, a stress-dependent finite element pavement model, was used to generate data for developing algorithms and nomographs for deflection basin interpretation. Twenty four different flexible pavement sections throughout the State of Illinois were studied. Deflections were measured and loading mode effects on pavement response were investigated. The factors controlling the pavement response to different loading modes are identified and explained. Correlations between different devices are developed. The back calculated parameters derived from the proposed evaluation procedure can be used as inputs for asphalt concrete overlay design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007IJTPE.127.1060Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007IJTPE.127.1060Z"><span>A Proposal of a Fast Computation Method for Thermal Capacity and Voltage ATC by Means of Homotopy Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoka, Yoshifumi; Yorino, Naoto; Kawano, Koki; Suenari, Hiroyasu</p> <p></p> <p>This paper proposes a fast computation method for Available Transfer Capability (ATC) with respect to thermal and voltage magnitude limits. In the paper, ATC is formulated as an optimization problem. In order to obtain the efficiency for the N-1 outage contingency calculations, linear sensitivity methods are applied for screening and ranking all contingency selections with respect to the thermal and voltage magnitude limits margin to identify the severest case. In addition, homotopy functions are used for the generator QV constrains to reduce the maximum error of the linear estimation. Then, the Primal-Dual Interior Point Method (PDIPM) is used to solve the optimization problem for the severest case only, in which the solutions of ATC can be obtained efficiently. The effectiveness of the proposed method is demonstrated through IEEE 30, 57, 118-bus systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptLE..98..190W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptLE..98..190W"><span>A novel 3D deformation measurement method under optical microscope for micro-scale bulge-test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Dan; Xie, Huimin</p> <p>2017-11-01</p> <p>A micro-scale 3D deformation measurement method combined with optical microscope is proposed in this paper. The method is based on gratings and phase shifting algorithm. By recording the grating images before and after deformation from two symmetrical angles and calculating the phases of the grating patterns, the 3D deformation field of the specimen can be extracted from the phases of the grating patterns. The proposed method was applied to the micro-scale bulge test. A micro-scale thermal/mechanical coupling bulge-test apparatus matched with the super-depth microscope was exploited. With the gratings fabricated onto the film, the deformed morphology of the bulged film was measured reliably. The experimental results show that the proposed method and the exploited bulge-test apparatus can be used to characterize the thermal/mechanical properties of the films at micro-scale successfully.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3349308','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3349308"><span>Temporal Downscaling of Crop Coefficient and Crop Water Requirement from Growing Stage to Substage Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shang, Songhao</p> <p>2012-01-01</p> <p>Crop water requirement is essential for agricultural water management, which is usually available for crop growing stages. However, crop water requirement values of monthly or weekly scales are more useful for water management. A method was proposed to downscale crop coefficient and water requirement from growing stage to substage scales, which is based on the interpolation of accumulated crop and reference evapotranspiration calculated from their values in growing stages. The proposed method was compared with two straightforward methods, that is, direct interpolation of crop evapotranspiration and crop coefficient by assuming that stage average values occurred in the middle of the stage. These methods were tested with a simulated daily crop evapotranspiration series. Results indicate that the proposed method is more reliable, showing that the downscaled crop evapotranspiration series is very close to the simulated ones. PMID:22619572</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10338E..0MH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10338E..0MH"><span>Development of a classification method for a crack on a pavement surface images using machine learning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hizukuri, Akiyoshi; Nagata, Takeshi</p> <p>2017-03-01</p> <p>The purpose of this study is to develop a classification method for a crack on a pavement surface image using machine learning to reduce a maintenance fee. Our database consists of 3500 pavement surface images. This includes 800 crack and 2700 normal pavement surface images. The pavement surface images first are decomposed into several sub-images using a discrete wavelet transform (DWT) decomposition. We then calculate the wavelet sub-band histogram from each several sub-images at each level. The support vector machine (SVM) with computed wavelet sub-band histogram is employed for distinguishing between a crack and normal pavement surface images. The accuracies of the proposed classification method are 85.3% for crack and 84.4% for normal pavement images. The proposed classification method achieved high performance. Therefore, the proposed method would be useful in maintenance inspection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/605745-network-based-simulation-aircraft-gates-airport-terminals','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/605745-network-based-simulation-aircraft-gates-airport-terminals"><span>Network-based simulation of aircraft at gates in airport terminals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cheng, Y.</p> <p>1998-03-01</p> <p>Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPA....7e6646J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPA....7e6646J"><span>Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang</p> <p>2017-05-01</p> <p>This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JApSp..80..271L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JApSp..80..271L"><span>Method for calculation of light field characteristics in optical diagnosis problems and personalized laser treatment of biological tissues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lisenko, S. A.; Kugeiko, M. M.</p> <p>2013-05-01</p> <p>We have developed a simple method for solving the radiation transport equation, permitting us to rapidly calculate (with accuracy acceptable in practice) the diffuse reflection coeffi cient for a broad class of biological tissues in the spectral region of strong and weak absorption of light, and also the light flux distribution over the depth of the tissue. We show that it is feasible to use the proposed method for quantitative estimates of tissue parameters from its diffuse reflectance spectrum and also for selecting the irradiation dose which is optimal for a specifi c patient in laser therapy for various diseases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26079755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26079755"><span>Subsampled Hessian Newton Methods for Supervised Learning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen</p> <p>2015-08-01</p> <p>Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhCS.459a2015V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhCS.459a2015V"><span>Extracting the respiration cycle lengths from ECG signal recorded with bed sheet electrodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vehkaoja, A.; Peltokangas, M.; Lekkala, J.</p> <p>2013-09-01</p> <p>A method for recognizing the respiration cycle lengths from the electrocardiographic (ECG) signal recorded with textile electrodes that are attached to a bed sheet is proposed. The method uses two features extracted from the ECG that are affected by the respiration: respiratory sinus arrhythmia and the amplitude of the R-peaks. The proposed method was tested in one hour long recordings with ten healthy young adults. A relative mean absolute error of 5.6 % was achieved when the algorithm was able to provide a result for approximately 40 % of the time. 90 % of the values were within 0.5 s and 97 % within 1 s from the reference respiration value. In addition to the instantaneous respiration cycle lengths, also the mean values during 1 and 5 minutes epochs are calculated. The effect of the ECG signal source is evaluated by calculating the result also from the simultaneously recorded reference ECG signal. The acquired respiration information can be used in the estimation of sleep quality and the detection of sleep disorders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJS..232....6G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJS..232....6G"><span>Measuring Filament Orientation: A New Quantitative, Local Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Green, C.-E.; Dawson, J. R.; Cunningham, M. R.; Jones, P. A.; Novak, G.; Fissel, L. M.</p> <p>2017-09-01</p> <p>The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>