Addressing multi-label imbalance problem of surgical tool detection using CNN.
Sahu, Manish; Mukhopadhyay, Anirban; Szengel, Angelika; Zachow, Stefan
2017-06-01
A fully automated surgical tool detection framework is proposed for endoscopic video streams. State-of-the-art surgical tool detection methods rely on supervised one-vs-all or multi-class classification techniques, completely ignoring the co-occurrence relationship of the tools and the associated class imbalance. In this paper, we formulate tool detection as a multi-label classification task where tool co-occurrences are treated as separate classes. In addition, imbalance on tool co-occurrences is analyzed and stratification techniques are employed to address the imbalance during convolutional neural network (CNN) training. Moreover, temporal smoothing is introduced as an online post-processing step to enhance runtime prediction. Quantitative analysis is performed on the M2CAI16 tool detection dataset to highlight the importance of stratification, temporal smoothing and the overall framework for tool detection. The analysis on tool imbalance, backed by the empirical results, indicates the need and superiority of the proposed framework over state-of-the-art techniques.
Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F
2014-06-01
To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.
Semi-supervised classification tool for DubaiSat-2 multispectral imagery
NASA Astrophysics Data System (ADS)
Al-Mansoori, Saeed
2015-10-01
This paper addresses a semi-supervised classification tool based on a pixel-based approach of the multi-spectral satellite imagery. There are not many studies demonstrating such algorithm for the multispectral images, especially when the image consists of 4 bands (Red, Green, Blue and Near Infrared) as in DubaiSat-2 satellite images. The proposed approach utilizes both unsupervised and supervised classification schemes sequentially to identify four classes in the image, namely, water bodies, vegetation, land (developed and undeveloped areas) and paved areas (i.e. roads). The unsupervised classification concept is applied to identify two classes; water bodies and vegetation, based on a well-known index that uses the distinct wavelengths of visible and near-infrared sunlight that is absorbed and reflected by the plants to identify the classes; this index parameter is called "Normalized Difference Vegetation Index (NDVI)". Afterward, the supervised classification is performed by selecting training homogenous samples for roads and land areas. Here, a precise selection of training samples plays a vital role in the classification accuracy. Post classification is finally performed to enhance the classification accuracy, where the classified image is sieved, clumped and filtered before producing final output. Overall, the supervised classification approach produced higher accuracy than the unsupervised method. This paper shows some current preliminary research results which point out the effectiveness of the proposed technique in a virtual perspective.
Koua, Dominique; Kuhn-Nentwig, Lucia
2017-01-01
Spider venoms are rich cocktails of bioactive peptides, proteins, and enzymes that are being intensively investigated over the years. In order to provide a better comprehension of that richness, we propose a three-level family classification system for spider venom components. This classification is supported by an exhaustive set of 219 new profile hidden Markov models (HMMs) able to attribute a given peptide to its precise peptide type, family, and group. The proposed classification has the advantages of being totally independent from variable spider taxonomic names and can easily evolve. In addition to the new classifiers, we introduce and demonstrate the efficiency of hmmcompete, a new standalone tool that monitors HMM-based family classification and, after post-processing the result, reports the best classifier when multiple models produce significant scores towards given peptide queries. The combined used of hmmcompete and the new spider venom component-specific classifiers demonstrated 96% sensitivity to properly classify all known spider toxins from the UniProtKB database. These tools are timely regarding the important classification needs caused by the increasing number of peptides and proteins generated by transcriptomic projects. PMID:28786958
Rivals, Florent; Prignano, Luce; Semprebon, Gina M.; Lozano, Sergi
2015-01-01
The seasonality of human occupations in archaeological sites is highly significant for the study of hominin behavioural ecology, in particular the hunting strategies for their main prey-ungulates. We propose a new tool to quantify such seasonality from tooth microwear patterns in a dataset of ten large samples of extant ungulates resulting from well-known mass mortality events. The tool is based on the combination of two measures of variability of scratch density, namely standard deviation and coefficient of variation. The integration of these two measurements of variability permits the classification of each case into one of the following three categories: (1) short events, (2) long-continued event and (3) two separated short events. The tool is tested on a selection of eleven fossil samples from five Palaeolithic localities in Western Europe which show a consistent classification in the three categories. The tool proposed here opens new doors to investigate seasonal patterns of ungulate accumulations in archaeological sites using non-destructive sampling. PMID:26616864
Conceptual Change through Changing the Process of Comparison
ERIC Educational Resources Information Center
Wasmann-Frahm, Astrid
2009-01-01
Classification can serve as a tool for conceptualising ideas about vertebrates. Training enhances classification skills as well as sharpening concepts. The method described in this paper is based on the "hybrid-model" of comparison that proposes two independently working processes: associative and theory-based. The two interact during a…
[Evaluation of new and emerging health technologies. Proposal for classification].
Prados-Torres, J D; Vidal-España, F; Barnestein-Fonseca, P; Gallo-García, C; Irastorza-Aldasoro, A; Leiva-Fernández, F
2011-01-01
Review and develop a proposal for the classification of health technologies (HT) evaluated by the Health Technology Assessment Agencies (HTAA). Peer review of AETS of the previous proposed classification of HT. Analysis of their input and suggestions for amendments. Construction of a new classification. Pilot study with physicians. Andalusian Public Health System. Spanish HTAA. Experts from HTAA. Tutors of family medicine residents. HT Update classification previously made by the research team. Peer review by Spanish HTAA. Qualitative and quantitative analysis of responses. Construction of a new and pilot study based on 12 evaluation reports of the HTAA. We obtained 11 thematic categories that are classified into 6 major head groups: 1, prevention technology; 2, diagnostic technology; 3, therapeutic technologies; 4, diagnostic and therapeutic technologies; 5, organizational technology, and 6, knowledge management and quality of care. In the pilot there was a good concordance in the classification of 8 of the 12 reports reviewed by physicians. Experts agree on 11 thematic categories of HT. A new classification of HT with double entry (Nature and purpose of HT) is proposed. APPLICABILITY: According to experts, the classification of the work of the HTAA may represent a useful tool to transfer and manage knowledge. Moreover, an adequate classification of the HTAA reports would help clinicians and other potential users to locate them and this can facilitate their dissemination. Copyright © 2010 SECA. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.
2016-02-01
Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.
NASA Astrophysics Data System (ADS)
Tao, C.-S.; Chen, S.-W.; Li, Y.-Z.; Xiao, S.-P.
2017-09-01
Land cover classification is an important application for polarimetric synthetic aperture radar (PolSAR) data utilization. Rollinvariant polarimetric features such as H / Ani / α / Span are commonly adopted in PolSAR land cover classification. However, target orientation diversity effect makes PolSAR images understanding and interpretation difficult. Only using the roll-invariant polarimetric features may introduce ambiguity in the interpretation of targets' scattering mechanisms and limit the followed classification accuracy. To address this problem, this work firstly focuses on hidden polarimetric feature mining in the rotation domain along the radar line of sight using the recently reported uniform polarimetric matrix rotation theory and the visualization and characterization tool of polarimetric coherence pattern. The former rotates the acquired polarimetric matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the matrix. Sets of new polarimetric features are derived to describe the hidden scattering information of the target in the rotation domain. The latter extends the traditional polarimetric coherence at a given rotation angle to the rotation domain for complete interpretation. A visualization and characterization tool is established to derive new polarimetric features for hidden information exploration. Then, a classification scheme is developed combing both the selected new hidden polarimetric features in rotation domain and the commonly used roll-invariant polarimetric features with a support vector machine (SVM) classifier. Comparison experiments based on AIRSAR and multi-temporal UAVSAR data demonstrate that compared with the conventional classification scheme which only uses the roll-invariant polarimetric features, the proposed classification scheme achieves both higher classification accuracy and better robustness. For AIRSAR data, the overall classification accuracy with the proposed classification scheme is 94.91 %, while that with the conventional classification scheme is 93.70 %. Moreover, for multi-temporal UAVSAR data, the averaged overall classification accuracy with the proposed classification scheme is up to 97.08 %, which is much higher than the 87.79 % from the conventional classification scheme. Furthermore, for multitemporal PolSAR data, the proposed classification scheme can achieve better robustness. The comparison studies also clearly demonstrate that mining and utilization of hidden polarimetric features and information in the rotation domain can gain the added benefits for PolSAR land cover classification and provide a new vision for PolSAR image interpretation and application.
New tools for evaluating LQAS survey designs
2014-01-01
Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are provided for calculating the positive and negative predictive value of a design with respect to an underlying coverage distribution and the selected design parameters. These tools are illustrated using a data example from two consecutive LQAS surveys measuring Oral Rehydration Solution (ORS) preparation. Using the survey tools, the dependence of classification accuracy on benchmark selection and the width of the ‘grey region’ are clarified in the context of ORS preparation across seven supervision areas. Following the completion of an LQAS survey, estimation of the distribution of coverage across areas facilitates quantifying classification accuracy and can help guide intervention decisions. PMID:24528928
New tools for evaluating LQAS survey designs.
Hund, Lauren
2014-02-15
Lot Quality Assurance Sampling (LQAS) surveys have become increasingly popular in global health care applications. Incorporating Bayesian ideas into LQAS survey design, such as using reasonable prior beliefs about the distribution of an indicator, can improve the selection of design parameters and decision rules. In this paper, a joint frequentist and Bayesian framework is proposed for evaluating LQAS classification accuracy and informing survey design parameters. Simple software tools are provided for calculating the positive and negative predictive value of a design with respect to an underlying coverage distribution and the selected design parameters. These tools are illustrated using a data example from two consecutive LQAS surveys measuring Oral Rehydration Solution (ORS) preparation. Using the survey tools, the dependence of classification accuracy on benchmark selection and the width of the 'grey region' are clarified in the context of ORS preparation across seven supervision areas. Following the completion of an LQAS survey, estimation of the distribution of coverage across areas facilitates quantifying classification accuracy and can help guide intervention decisions.
Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics
Faye, Ibrahima; Samir, Brahim Belhaouari; Md Said, Abas
2014-01-01
Bioinformatics has been an emerging area of research for the last three decades. The ultimate aims of bioinformatics were to store and manage the biological data, and develop and analyze computational tools to enhance their understanding. The size of data accumulated under various sequencing projects is increasing exponentially, which presents difficulties for the experimental methods. To reduce the gap between newly sequenced protein and proteins with known functions, many computational techniques involving classification and clustering algorithms were proposed in the past. The classification of protein sequences into existing superfamilies is helpful in predicting the structure and function of large amount of newly discovered proteins. The existing classification results are unsatisfactory due to a huge size of features obtained through various feature encoding methods. In this work, a statistical metric-based feature selection technique has been proposed in order to reduce the size of the extracted feature vector. The proposed method of protein classification shows significant improvement in terms of performance measure metrics: accuracy, sensitivity, specificity, recall, F-measure, and so forth. PMID:25045727
Convolutional Neural Network for Histopathological Analysis of Osteosarcoma.
Mishra, Rashika; Daescu, Ovidiu; Leavey, Patrick; Rakheja, Dinesh; Sengupta, Anita
2018-03-01
Pathologists often deal with high complexity and sometimes disagreement over osteosarcoma tumor classification due to cellular heterogeneity in the dataset. Segmentation and classification of histology tissue in H&E stained tumor image datasets is a challenging task because of intra-class variations, inter-class similarity, crowded context, and noisy data. In recent years, deep learning approaches have led to encouraging results in breast cancer and prostate cancer analysis. In this article, we propose convolutional neural network (CNN) as a tool to improve efficiency and accuracy of osteosarcoma tumor classification into tumor classes (viable tumor, necrosis) versus nontumor. The proposed CNN architecture contains eight learned layers: three sets of stacked two convolutional layers interspersed with max pooling layers for feature extraction and two fully connected layers with data augmentation strategies to boost performance. The use of a neural network results in higher accuracy of average 92% for the classification. We compare the proposed architecture with three existing and proven CNN architectures for image classification: AlexNet, LeNet, and VGGNet. We also provide a pipeline to calculate percentage necrosis in a given whole slide image. We conclude that the use of neural networks can assure both high accuracy and efficiency in osteosarcoma classification.
Android Malware Classification Using K-Means Clustering Algorithm
NASA Astrophysics Data System (ADS)
Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah
2017-08-01
Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.
Image-based deep learning for classification of noise transients in gravitational wave detectors
NASA Astrophysics Data System (ADS)
Razzano, Massimiliano; Cuoco, Elena
2018-05-01
The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.
Seizure classification in EEG signals utilizing Hilbert-Huang transform
2011-01-01
Background Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Method Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. Results The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. Conclusion An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool. PMID:21609459
Seizure classification in EEG signals utilizing Hilbert-Huang transform.
Oweis, Rami J; Abdulhay, Enas W
2011-05-24
Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. The t-test results in a P-value < 0.02 and the clustering leads to accurate (94%) and specific (96%) results. The proposed method is also contrasted against the Multivariate Empirical Mode Decomposition that reaches 80% accuracy. Comparison results strengthen the contribution of this paper not only from the accuracy point of view but also with respect to its fast response and ease to use. An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.
Classification and authentication of unknown water samples using machine learning algorithms.
Kundu, Palash K; Panchariya, P C; Kundu, Madhusree
2011-07-01
This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
nRC: non-coding RNA Classifier based on structural features.
Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso
2017-01-01
Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.
Influence Analysis for the Area Under the Receiver Operating Characteristic Curve.
Ke, Bo-Shiang; Chiang, An Jen; Chang, Yuan-Chin Ivan
2018-01-01
Classification measures play essential roles in the assessment and construction of classifiers. Hence, determining how to prevent these measures from being affected by individual observations has become an important problem. In this paper, we propose several indexes based on the influence function and the concept of local influence to identify influential observations that affect the estimate of the area under the receiver operating characteristic curve (AUC), an important and commonly used measure. Cumulative lift charts are also used to equipoise the disagreements among the proposed indexes. Both the AUC indexes and the graphical tools only rely on the classification scores, and both are applicable to classifiers that can produce real-valued classification scores. A real data set is used for illustration.
New decision support tool for acute lymphoblastic leukemia classification
NASA Astrophysics Data System (ADS)
Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.
2012-03-01
In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.
Adaptive phase k-means algorithm for waveform classification
NASA Astrophysics Data System (ADS)
Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin
2018-01-01
Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.
Brain tumor classification and segmentation using sparse coding and dictionary learning.
Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo
2016-08-01
This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.
Zhang, Junming; Wu, Yan
2018-03-28
Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.
Real-Time Fault Classification for Plasma Processes
Yang, Ryan; Chen, Rongshun
2011-01-01
Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001
Available Tools and Challenges Classifying Cutting-Edge and Historical Astronomical Documents
NASA Astrophysics Data System (ADS)
Lagerstrom, Jill
2015-08-01
The STScI Library assists the Science Policies Division in evaluating and choosing scientific keywords and categories for proposals for the Hubble Space Telescope mission and the upcoming James Webb Space Telescope mission. In addition we are often faced with the question “what is the shape of the astronomical literature?” However, subject classification in astronomy in recent times has not been cultivated. This talk will address the available tools and challenges of classifying cutting-edge as well as historical astronomical documents. In at the process, we will give an overview of current and upcoming practices of subject classification in astronomy.
Butcher, Jason T.; Stewart, Paul M.; Simon, Thomas P.
2003-01-01
Ninety-four sites were used to analyze the effects of two different classification strategies on the Benthic Community Index (BCI). The first, a priori classification, reflected the wetland status of the streams; the second, a posteriori classification, used a bio-environmental analysis to select classification variables. Both classifications were examined by measuring classification strength and testing differences in metric values with respect to group membership. The a priori (wetland) classification strength (83.3%) was greater than the a posteriori (bio-environmental) classification strength (76.8%). Both classifications found one metric that had significant differences between groups. The original index was modified to reflect the wetland classification by re-calibrating the scoring criteria for percent Crustacea and Mollusca. A proposed refinement to the original Benthic Community Index is suggested. This study shows the importance of using hypothesis-driven classifications, as well as exploratory statistical analysis, to evaluate alternative ways to reveal environmental variability in biological assessment tools.
An Open Source Agenda for Research Linking Text and Image Content Features.
ERIC Educational Resources Information Center
Goodrum, Abby A.; Rorvig, Mark E.; Jeong, Ki-Tai; Suresh, Chitturi
2001-01-01
Proposes methods to utilize image primitives to support term assignment for image classification. Proposes to release code for image analysis in a common tool set for other researchers to use. Of particular focus is the expansion of work by researchers in image indexing to include image content-based feature extraction capabilities in their work.…
NASA Astrophysics Data System (ADS)
Fujita, Yusuke; Mitani, Yoshihiro; Hamamoto, Yoshihiko; Segawa, Makoto; Terai, Shuji; Sakaida, Isao
2017-03-01
Ultrasound imaging is a popular and non-invasive tool used in the diagnoses of liver disease. Cirrhosis is a chronic liver disease and it can advance to liver cancer. Early detection and appropriate treatment are crucial to prevent liver cancer. However, ultrasound image analysis is very challenging, because of the low signal-to-noise ratio of ultrasound images. To achieve the higher classification performance, selection of training regions of interest (ROIs) is very important that effect to classification accuracy. The purpose of our study is cirrhosis detection with high accuracy using liver ultrasound images. In our previous works, training ROI selection by MILBoost and multiple-ROI classification based on the product rule had been proposed, to achieve high classification performance. In this article, we propose self-training method to select training ROIs effectively. Evaluation experiments were performed to evaluate effect of self-training, using manually selected ROIs and also automatically selected ROIs. Experimental results show that self-training for manually selected ROIs achieved higher classification performance than other approaches, including our conventional methods. The manually ROI definition and sample selection are important to improve classification accuracy in cirrhosis detection using ultrasound images.
NASA Astrophysics Data System (ADS)
Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui
2016-01-01
Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.
Bag of Visual Words Model with Deep Spatial Features for Geographical Scene Classification
Wu, Lin
2017-01-01
With the popular use of geotagging images, more and more research efforts have been placed on geographical scene classification. In geographical scene classification, valid spatial feature selection can significantly boost the final performance. Bag of visual words (BoVW) can do well in selecting feature in geographical scene classification; nevertheless, it works effectively only if the provided feature extractor is well-matched. In this paper, we use convolutional neural networks (CNNs) for optimizing proposed feature extractor, so that it can learn more suitable visual vocabularies from the geotagging images. Our approach achieves better performance than BoVW as a tool for geographical scene classification, respectively, in three datasets which contain a variety of scene categories. PMID:28706534
Hybrid analysis for indicating patients with breast cancer using temperature time series.
Silva, Lincoln F; Santos, Alair Augusto S M D; Bravo, Renato S; Silva, Aristófanes C; Muchaluat-Saade, Débora C; Conci, Aura
2016-07-01
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A proposal for a CT driven classification of left colon acute diverticulitis.
Sartelli, Massimo; Moore, Frederick A; Ansaloni, Luca; Di Saverio, Salomone; Coccolini, Federico; Griffiths, Ewen A; Coimbra, Raul; Agresta, Ferdinando; Sakakushev, Boris; Ordoñez, Carlos A; Abu-Zidan, Fikri M; Karamarkovic, Aleksandar; Augustin, Goran; Costa Navarro, David; Ulrych, Jan; Demetrashvili, Zaza; Melo, Renato B; Marwah, Sanjay; Zachariah, Sanoop K; Wani, Imtiaz; Shelat, Vishal G; Kim, Jae Il; McFarlane, Michael; Pintar, Tadaja; Rems, Miran; Bala, Miklosh; Ben-Ishay, Offir; Gomes, Carlos Augusto; Faro, Mario Paulo; Pereira, Gerson Alves; Catani, Marco; Baiocchi, Gianluca; Bini, Roberto; Anania, Gabriele; Negoi, Ionut; Kecbaja, Zurabs; Omari, Abdelkarim H; Cui, Yunfeng; Kenig, Jakub; Sato, Norio; Vereczkei, Andras; Skrovina, Matej; Das, Koray; Bellanova, Giovanni; Di Carlo, Isidoro; Segovia Lohse, Helmut A; Kong, Victor; Kok, Kenneth Y; Massalou, Damien; Smirnov, Dmitry; Gachabayov, Mahir; Gkiokas, Georgios; Marinis, Athanasios; Spyropoulos, Charalampos; Nikolopoulos, Ioannis; Bouliaris, Konstantinos; Tepp, Jaan; Lohsiriwat, Varut; Çolak, Elif; Isik, Arda; Rios-Cruz, Daniel; Soto, Rodolfo; Abbas, Ashraf; Tranà, Cristian; Caproli, Emanuele; Soldatenkova, Darija; Corcione, Francesco; Piazza, Diego; Catena, Fausto
2015-01-01
Computed tomography (CT) imaging is the most appropriate diagnostic tool to confirm suspected left colonic diverticulitis. However, the utility of CT imaging goes beyond accurate diagnosis of diverticulitis; the grade of severity on CT imaging may drive treatment planning of patients presenting with acute diverticulitis. The appropriate management of left colon acute diverticulitis remains still debated because of the vast spectrum of clinical presentations and different approaches to treatment proposed. The authors present a new simple classification system based on both CT scan results driving decisions making management of acute diverticulitis that may be universally accepted for day to day practice.
Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Subasi, Abdulhamit
2013-06-01
Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mandibular Third Molar Impaction: Review of Literature and a Proposal of a Classification
Daugela, Povilas
2013-01-01
ABSTRACT Objectives The purpose of present article was to review impacted mandibular third molar aetiology, clinical anatomy, radiologic examination, surgical treatment and possible complications, as well as to create new mandibular third molar impaction and extraction difficulty degree classification based on anatomical and radiologic findings and literature review results. Material and Methods Literature was selected through a search of PubMed, Embase and Cochrane electronic databases. The keywords used for search were mandibular third molar, impacted mandibular third molar, inferior alveolar nerve injury third molar, lingual nerve injury third molar. The search was restricted to English language articles, published from 1976 to April 2013. Additionally, a manual search in the major anatomy and oral surgery journals and books was performed. The publications there selected by including clinical and human anatomy studies. Results In total 75 literature sources were obtained and reviewed. Impacted mandibular third molar aetiology, clinical anatomy, radiographic examination, surgical extraction of and possible complications, classifications and risk factors were discussed. New mandibular third molar impaction and extraction difficulty degree classification based on anatomical and radiologic findings and literature review results was proposed. Conclusions The classification proposed here based on anatomical and radiological impacted mandibular third molar features is promising to be a helpful tool for impacted tooth assessment as well as for planning for surgical operation. Further clinical studies should be conducted for new classification validation and reliability evaluation. PMID:24422029
Extended census transform histogram for land-use scene classification
NASA Astrophysics Data System (ADS)
Yuan, Baohua; Li, Shijin
2017-04-01
With the popular use of high-resolution satellite images, more and more research efforts have been focused on land-use scene classification. In scene classification, effective visual features can significantly boost the final performance. As a typical texture descriptor, the census transform histogram (CENTRIST) has emerged as a very powerful tool due to its effective representation ability. However, the most prominent limitation of CENTRIST is its small spatial support area, which may not necessarily be adept at capturing the key texture characteristics. We propose an extended CENTRIST (eCENTRIST), which is made up of three subschemes in a greater neighborhood scale. The proposed eCENTRIST not only inherits the advantages of CENTRIST but also encodes the more useful information of local structures. Meanwhile, multichannel eCENTRIST, which can capture the interactions from multichannel images, is developed to obtain higher categorization accuracy rates. Experimental results demonstrate that the proposed method can achieve competitive performance when compared to state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Cao, Faxian; Yang, Zhijing; Ren, Jinchang; Ling, Wing-Kuen; Zhao, Huimin; Marshall, Stephen
2017-12-01
Although the sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework.
Kazaryan, Airazat M.; Røsok, Bård I.; Edwin, Bjørn
2013-01-01
Background. Morbidity is a cornerstone assessing surgical treatment; nevertheless surgeons have not reached extensive consensus on this problem. Methods and Findings. Clavien, Dindo, and Strasberg with coauthors (1992, 2004, 2009, and 2010) made significant efforts to the standardization of surgical morbidity (Clavien-Dindo-Strasberg classification, last revision, the Accordion classification). However, this classification includes only postoperative complications and has two principal shortcomings: disregard of intraoperative events and confusing terminology. Postoperative events have a major impact on patient well-being. However, intraoperative events should also be recorded and reported even if they do not evidently affect the patient's postoperative well-being. The term surgical complication applied in the Clavien-Dindo-Strasberg classification may be regarded as an incident resulting in a complication caused by technical failure of surgery, in contrast to the so-called medical complications. Therefore, the term surgical complication contributes to misinterpretation of perioperative morbidity. The term perioperative adverse events comprising both intraoperative unfavourable incidents and postoperative complications could be regarded as better alternative. In 2005, Satava suggested a simple grading to evaluate intraoperative surgical errors. Based on that approach, we have elaborated a 3-grade classification of intraoperative incidents so that it can be used to grade intraoperative events of any type of surgery. Refinements have been made to the Accordion classification of postoperative complications. Interpretation. The proposed systematization of perioperative adverse events utilizing the combined application of two appraisal tools, that is, the elaborated classification of intraoperative incidents on the basis of the Satava approach to surgical error evaluation together with the modified Accordion classification of postoperative complication, appears to be an effective tool for comprehensive assessment of surgical outcomes. This concept was validated in regard to various surgical procedures. Broad implementation of this approach will promote the development of surgical science and practice. PMID:23762627
Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María
2014-12-17
1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Reduction in training time of a deep learning model in detection of lesions in CT
NASA Astrophysics Data System (ADS)
Makkinejad, Nazanin; Tajbakhsh, Nima; Zarshenas, Amin; Khokhar, Ashfaq; Suzuki, Kenji
2018-02-01
Deep learning (DL) emerged as a powerful tool for object detection and classification in medical images. Building a well-performing DL model, however, requires a huge number of images for training, and it takes days to train a DL model even on a cutting edge high-performance computing platform. This study is aimed at developing a method for selecting a "small" number of representative samples from a large collection of training samples to train a DL model for the could be used to detect polyps in CT colonography (CTC), without compromising the classification performance. Our proposed method for representative sample selection (RSS) consists of a K-means clustering algorithm. For the performance evaluation, we applied the proposed method to select samples for the training of a massive training artificial neural network based DL model, to be used for the classification of polyps and non-polyps in CTC. Our results show that the proposed method reduce the training time by a factor of 15, while maintaining the classification performance equivalent to the model trained using the full training set. We compare the performance using area under the receiveroperating- characteristic curve (AUC).
Dante Castellanos-Acuña; Kenneth W. Vance-Borland; J. Bradley St. Clair; Andreas Hamann; Javier López-Upton; Erika Gómez-Pineda; Juan Manuel Ortega-Rodríguez; Cuauhtémoc Sáenz-Romero
2018-01-01
Seed zones for forest tree species are a widely used tool in reforestation programs to ensure that seedlings are well adapted to their planting environments. Here, we propose a climate-based seed zone system for Mexico to address observed and projected climate change. The proposed seed zone classification is based on bands of climate variables often related to genetic...
Challenges of interoperability using HL7 v3 in Czech healthcare.
Nagy, Miroslav; Preckova, Petra; Seidl, Libor; Zvarova, Jana
2010-01-01
The paper describes several classification systems that could improve patient safety through semantic interoperability among contemporary electronic health record systems (EHR-Ss) with support of the HL7 v3 standard. We describe a proposal and a pilot implementation of a semantic interoperability platform (SIP) interconnecting current EHR-Ss by using HL7 v3 messages and concepts mappings on most widely used classification systems. The increasing number of classification systems and nomenclatures requires designing of various conversion tools for transfer between main classification systems. We present the so-called LIM filler module and the HL7 broker, which are parts of the SIP, playing the role of such conversion tools. The analysis of suitability and usability of individual terminological thesauri has been started by mapping of clinical contents of the Minimal Data Model for Cardiology (MDMC) to various terminological classification systems. A national-wide implementation of the SIP would include adopting and translating international coding systems and nomenclatures, and developing implementation guidelines facilitating the migration from national standards to international ones. Our research showed that creation of such a platform is feasible; however, it will require a huge effort to adapt fully the Czech healthcare system to the European environment.
Primary progressive aphasia: classification of variants in 100 consecutive Brazilian cases
Senaha, Mirna Lie Hosogi; Caramelli, Paulo; Brucki, Sonia M.D.; Smid, Jerusa; Takada, Leonel T.; Porto, Claudia S.; César, Karolina G.; Matioli, Maria Niures P.; Soares, Roger T.; Mansur, Letícia L.; Nitrini, Ricardo
2013-01-01
Primary progressive aphasia (PPA) is a neurodegenerative clinical syndrome characterized primarily by progressive language impairment. Recently, consensus diagnostic criteria were published for the diagnosis and classification of variants of PPA. The currently recognized variants are nonfluent/agrammatic (PPA-G), logopenic (PPA-L) and semantic (PPA-S). OBJECTIVE To analyze the demographic data and the clinical classification of 100 PPA cases. METHODS Data from 100 PPA patients who were consecutively evaluated between 1999 and 2012 were analyzed. The patients underwent neurological, cognitive and language evaluation. The cases were classified according to the proposed variants, using predominantly the guidelines proposed in the consensus diagnostic criteria from 2011. RESULTS The sample consisted of 57 women and 43 men, aged at onset 67.2±8.1 years (range of between 53 and 83 years). Thirty-five patients presented PPA-S, 29 PPA-G and 16 PPA-L. It was not possible to classify 20% of the cases into any one of the proposed variants. CONCLUSION It was possible to classify 80% of the sample into one of the three PPA variants proposed. Perhaps the consensus classification requires some adjustments to accommodate cases that do not fit into any of the variants and to avoid overlap where cases fit more than one variant. Nonetheless, the established current guidelines are a useful tool to address the classification and diagnosis of PPA and are also of great value in standardizing terminologies to improve consistency across studies from different research centers. PMID:29213827
NASA Astrophysics Data System (ADS)
Tarando, Sebastian Roberto; Fetita, Catalin; Brillet, Pierre-Yves
2017-03-01
The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. Traditionally, such classification relies on a two-dimensional analysis of axial CT images. This paper proposes a cascade of the existing CNN based CAD system, specifically tuned-up. The advantage of using a deep learning approach is a better regularization of the classification output. In a preliminary evaluation, the combined approach was tested on a 13 patient database of various lung pathologies, showing an increase of 10% in True Positive Rate (TPR) with respect to the best suited state of the art CNN for this task.
Malware distributed collection and pre-classification system using honeypot technology
NASA Astrophysics Data System (ADS)
Grégio, André R. A.; Oliveira, Isabela L.; Santos, Rafael D. C.; Cansian, Adriano M.; de Geus, Paulo L.
2009-04-01
Malware has become a major threat in the last years due to the ease of spread through the Internet. Malware detection has become difficult with the use of compression, polymorphic methods and techniques to detect and disable security software. Those and other obfuscation techniques pose a problem for detection and classification schemes that analyze malware behavior. In this paper we propose a distributed architecture to improve malware collection using different honeypot technologies to increase the variety of malware collected. We also present a daemon tool developed to grab malware distributed through spam and a pre-classification technique that uses antivirus technology to separate malware in generic classes.
A Sieving ANN for Emotion-Based Movie Clip Classification
NASA Astrophysics Data System (ADS)
Watanapa, Saowaluk C.; Thipakorn, Bundit; Charoenkitkarn, Nipon
Effective classification and analysis of semantic contents are very important for the content-based indexing and retrieval of video database. Our research attempts to classify movie clips into three groups of commonly elicited emotions, namely excitement, joy and sadness, based on a set of abstract-level semantic features extracted from the film sequence. In particular, these features consist of six visual and audio measures grounded on the artistic film theories. A unique sieving-structured neural network is proposed to be the classifying model due to its robustness. The performance of the proposed model is tested with 101 movie clips excerpted from 24 award-winning and well-known Hollywood feature films. The experimental result of 97.8% correct classification rate, measured against the collected human-judges, indicates the great potential of using abstract-level semantic features as an engineered tool for the application of video-content retrieval/indexing.
A Visual mining based framework for classification accuracy estimation
NASA Astrophysics Data System (ADS)
Arun, Pattathal Vijayakumar
2013-12-01
Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images. Techniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).
Modeling of tool path for the CNC sheet cutting machines
NASA Astrophysics Data System (ADS)
Petunin, Aleksandr A.
2015-11-01
In the paper the problem of tool path optimization for CNC (Computer Numerical Control) cutting machines is considered. The classification of the cutting techniques is offered. We also propose a new classification of toll path problems. The tasks of cost minimization and time minimization for standard cutting technique (Continuous Cutting Problem, CCP) and for one of non-standard cutting techniques (Segment Continuous Cutting Problem, SCCP) are formalized. We show that the optimization tasks can be interpreted as discrete optimization problem (generalized travel salesman problem with additional constraints, GTSP). Formalization of some constraints for these tasks is described. For the solution GTSP we offer to use mathematical model of Prof. Chentsov based on concept of a megalopolis and dynamic programming.
A typology of educationally focused medical simulation tools.
Alinier, Guillaume
2007-10-01
The concept of simulation as an educational tool in healthcare is not a new idea but its use has really blossomed over the last few years. This enthusiasm is partly driven by an attempt to increase patient safety and also because the technology is becoming more affordable and advanced. Simulation is becoming more commonly used for initial training purposes as well as for continuing professional development, but people often have very different perceptions of the definition of the term simulation, especially in an educational context. This highlights the need for a clear classification of the technology available but also about the method and teaching approach employed. The aims of this paper are to discuss the current range of simulation approaches and propose a clear typology of simulation teaching aids. Commonly used simulation techniques have been identified and discussed in order to create a classification that reports simulation techniques, their usual mode of delivery, the skills they can address, the facilities required, their typical use, and their pros and cons. This paper presents a clear classification scheme of educational simulation tools and techniques with six different technological levels. They are respectively: written simulations, three-dimensional models, screen-based simulators, standardized patients, intermediate fidelity patient simulators, and interactive patient simulators. This typology allows the accurate description of the simulation technology and the teaching methods applied. Thus valid comparison of educational tools can be made as to their potential effectiveness and verisimilitude at different training stages. The proposed typology of simulation methodologies available for educational purposes provides a helpful guide for educators and participants which should help them to realise the potential learning outcomes at different technological simulation levels in relation to the training approach employed. It should also be a useful resource for simulation users who are trying to improve their educational practice.
Tabu search and binary particle swarm optimization for feature selection using microarray data.
Chuang, Li-Yeh; Yang, Cheng-Huei; Yang, Cheng-Hong
2009-12-01
Gene expression profiles have great potential as a medical diagnosis tool because they represent the state of a cell at the molecular level. In the classification of cancer type research, available training datasets generally have a fairly small sample size compared to the number of genes involved. This fact poses an unprecedented challenge to some classification methodologies due to training data limitations. Therefore, a good selection method for genes relevant for sample classification is needed to improve the predictive accuracy, and to avoid incomprehensibility due to the large number of genes investigated. In this article, we propose to combine tabu search (TS) and binary particle swarm optimization (BPSO) for feature selection. BPSO acts as a local optimizer each time the TS has been run for a single generation. The K-nearest neighbor method with leave-one-out cross-validation and support vector machine with one-versus-rest serve as evaluators of the TS and BPSO. The proposed method is applied and compared to the 11 classification problems taken from the literature. Experimental results show that our method simplifies features effectively and either obtains higher classification accuracy or uses fewer features compared to other feature selection methods.
An Efficient Optimization Method for Solving Unsupervised Data Classification Problems.
Shabanzadeh, Parvaneh; Yusof, Rubiyah
2015-01-01
Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.
I-CAN: the classification and prediction of support needs.
Arnold, Samuel R C; Riches, Vivienne C; Stancliffe, Roger J
2014-03-01
Since 1992, the diagnosis and classification of intellectual disability has been dependent upon three constructs: intelligence, adaptive behaviour and support needs (Luckasson et al. 1992. Mental Retardation: Definition, Classification and Systems of Support. American Association on Intellectual and Developmental Disability, Washington, DC). While the methods and instruments to measure intelligence and adaptive behaviour are well established and generally accepted, the measurement and classification of support needs is still in its infancy. This article explores the measurement and classification of support needs. A study is presented comparing scores on the ICF (WHO, 2001) based I-CAN v4.2 support needs assessment and planning tool with expert clinical judgment using a proposed classification of support needs. A logical classification algorithm was developed and validated on a separate sample. Good internal consistency (range 0.73-0.91, N = 186) and criterion validity (κ = 0.94, n = 49) were found. Further advances in our understanding and measurement of support needs could change the way we assess, describe and classify disability. © 2013 John Wiley & Sons Ltd.
Patient-Specific Deep Architectural Model for ECG Classification
Luo, Kan; Cuschieri, Alfred
2017-01-01
Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN) classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is a powerful tool for heartbeat pattern recognition. PMID:29065597
A convolutional neural network-based screening tool for X-ray serial crystallography
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K.
2018-01-01
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. PMID:29714177
A convolutional neural network-based screening tool for X-ray serial crystallography.
Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K
2018-05-01
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.
A convolutional neural network-based screening tool for X-ray serial crystallography
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; ...
2018-04-24
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.
A convolutional neural network-based screening tool for X-ray serial crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.
Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R
2016-12-01
The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.
Xu, Xiayu; Ding, Wenxiang; Abràmoff, Michael D; Cao, Ruofan
2017-04-01
Retinal artery and vein classification is an important task for the automatic computer-aided diagnosis of various eye diseases and systemic diseases. This paper presents an improved supervised artery and vein classification method in retinal image. Intra-image regularization and inter-subject normalization is applied to reduce the differences in feature space. Novel features, including first-order and second-order texture features, are utilized to capture the discriminating characteristics of arteries and veins. The proposed method was tested on the DRIVE dataset and achieved an overall accuracy of 0.923. This retinal artery and vein classification algorithm serves as a potentially important tool for the early diagnosis of various diseases, including diabetic retinopathy and cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Wen; Zhu, Jin-Yong; Lu, Kai-Hong; Wan, Li; Mao, Xiao-Hua
2014-06-01
Appropriate schemes for classification of freshwater phytoplankton are prerequisites and important tools for revealing phytoplanktonic succession and studying freshwater ecosystems. An alternative approach, functional group of freshwater phytoplankton, has been proposed and developed due to the deficiencies of Linnaean and molecular identification in ecological applications. The functional group of phytoplankton is a classification scheme based on autoecology. In this study, the theoretical basis and classification criterion of functional group (FG), morpho-functional group (MFG) and morphology-based functional group (MBFG) were summarized, as well as their merits and demerits. FG was considered as the optimal classification approach for the aquatic ecology research and aquatic environment evaluation. The application status of FG was introduced, with the evaluation standards and problems of two approaches to assess water quality on the basis of FG, index methods of Q and QR, being briefly discussed.
NASA Astrophysics Data System (ADS)
Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusof, Z.; Tehrany, M. S.
2014-10-01
Modeling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modeling. Bivariate statistical analysis (BSA) assists in hazard modeling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, BSM (bivariate statistical modeler), for BSA technique is proposed. Three popular BSA techniques such as frequency ratio, weights-of-evidence, and evidential belief function models are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and is created by a simple graphical user interface, which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.
NASA Astrophysics Data System (ADS)
Jebur, M. N.; Pradhan, B.; Shafri, H. Z. M.; Yusoff, Z. M.; Tehrany, M. S.
2015-03-01
Modelling and classification difficulties are fundamental issues in natural hazard assessment. A geographic information system (GIS) is a domain that requires users to use various tools to perform different types of spatial modelling. Bivariate statistical analysis (BSA) assists in hazard modelling. To perform this analysis, several calculations are required and the user has to transfer data from one format to another. Most researchers perform these calculations manually by using Microsoft Excel or other programs. This process is time-consuming and carries a degree of uncertainty. The lack of proper tools to implement BSA in a GIS environment prompted this study. In this paper, a user-friendly tool, bivariate statistical modeler (BSM), for BSA technique is proposed. Three popular BSA techniques, such as frequency ratio, weight-of-evidence (WoE), and evidential belief function (EBF) models, are applied in the newly proposed ArcMAP tool. This tool is programmed in Python and created by a simple graphical user interface (GUI), which facilitates the improvement of model performance. The proposed tool implements BSA automatically, thus allowing numerous variables to be examined. To validate the capability and accuracy of this program, a pilot test area in Malaysia is selected and all three models are tested by using the proposed program. Area under curve (AUC) is used to measure the success rate and prediction rate. Results demonstrate that the proposed program executes BSA with reasonable accuracy. The proposed BSA tool can be used in numerous applications, such as natural hazard, mineral potential, hydrological, and other engineering and environmental applications.
Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, Kazunori, E-mail: kazokada@sfsu.edu; Rysavy, Steven; Flores, Arturo
Purpose: This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. Methods: The proposed semiautomatic solutionmore » combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. Results: A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon’s state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Conclusions: Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon’s conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.« less
Noninvasive differential diagnosis of dental periapical lesions in cone-beam CT scans.
Okada, Kazunori; Rysavy, Steven; Flores, Arturo; Linguraru, Marius George
2015-04-01
This paper proposes a novel application of computer-aided diagnosis (CAD) to an everyday clinical dental challenge: the noninvasive differential diagnosis of periapical lesions between periapical cysts and granulomas. A histological biopsy is the most reliable method currently available for this differential diagnosis; however, this invasive procedure prevents the lesions from healing noninvasively despite a report that they may heal without surgical treatment. A CAD using cone-beam computed tomography (CBCT) offers an alternative noninvasive diagnostic tool which helps to avoid potentially unnecessary surgery and to investigate the unknown healing process and rate for the lesions. The proposed semiautomatic solution combines graph-based random walks segmentation with machine learning-based boosted classifiers and offers a robust clinical tool with minimal user interaction. As part of this CAD framework, the authors provide two novel technical contributions: (1) probabilistic extension of the random walks segmentation with likelihood ratio test and (2) LDA-AdaBoost: a new integration of weighted linear discriminant analysis to AdaBoost. A dataset of 28 CBCT scans is used to validate the approach and compare it with other popular segmentation and classification methods. The results show the effectiveness of the proposed method with 94.1% correct classification rate and an improvement of the performance by comparison with the Simon's state-of-the-art method by 17.6%. The authors also compare classification performances with two independent ground-truth sets from the histopathology and CBCT diagnoses provided by endodontic experts. Experimental results of the authors show that the proposed CAD system behaves in clearer agreement with the CBCT ground-truth than with histopathology, supporting the Simon's conjecture that CBCT diagnosis can be as accurate as histopathology for differentiating the periapical lesions.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-06-01
Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research.
Waring, R; Knight, R
2013-01-01
Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of theoretically differing classification systems have been proposed based on either an aetiological (medical) approach, a descriptive-linguistic approach or a processing approach. To describe and review the supporting evidence, and to provide a critical evaluation of the current childhood SSD classification systems. Descriptions of the major specific approaches to classification are reviewed and research papers supporting the reliability and validity of the systems are evaluated. Three specific paediatric SSD classification systems; the aetiologic-based Speech Disorders Classification System, the descriptive-linguistic Differential Diagnosis system, and the processing-based Psycholinguistic Framework are identified as potentially useful in classifying children with SSD into homogeneous subgroups. The Differential Diagnosis system has a growing body of empirical support from clinical population studies, across language error pattern studies and treatment efficacy studies. The Speech Disorders Classification System is currently a research tool with eight proposed subgroups. The Psycholinguistic Framework is a potential bridge to linking cause and surface level speech errors. There is a need for a universally agreed-upon classification system that is useful to clinicians and researchers. The resulting classification system needs to be robust, reliable and valid. A universal classification system would allow for improved tailoring of treatments to subgroups of SSD which may, in turn, lead to improved treatment efficacy. © 2012 Royal College of Speech and Language Therapists.
Cattaneo, Ruggero; Marci, Maria Chiara; Pietropaoli, Davide; Ortu, Eleonora
2017-01-01
Dysregulation of Autonomic Nervous System (ANS) and central pain pathways in temporomandibular disorders (TMD) is a growing evidence. Authors include some forms of TMD among central sensitization syndromes (CSS), a group of pathologies characterized by central morphofunctional alterations. Central Sensitization Inventory (CSI) is useful for clinical diagnosis. Clinical examination and CSI cannot identify the central site(s) affected in these diseases. Ultralow frequency transcutaneous electrical nerve stimulation (ULFTENS) is extensively used in TMD and in dental clinical practice, because of its effects on descending pain modulation pathways. The Diagnostic Criteria for TMD (DC/TMD) are the most accurate tool for diagnosis and classification of TMD. However, it includes CSI to investigate central aspects of TMD. Preliminary data on sensory ULFTENS show it is a reliable tool for the study of central and autonomic pathways in TMD. An alternative classification based on the presence of Central Sensitization and on individual response to sensory ULFTENS is proposed. TMD may be classified into 4 groups: (a) TMD with Central Sensitization ULFTENS Responders; (b) TMD with Central Sensitization ULFTENS Nonresponders; (c) TMD without Central Sensitization ULFTENS Responders; (d) TMD without Central Sensitization ULFTENS Nonresponders. This pathogenic classification of TMD may help to differentiate therapy and aetiology. PMID:28932132
ERIC Educational Resources Information Center
Wilson, Amy D.
2012-01-01
Categorising e-learning is almost as problematic as defining the term. In an attempt to quantify/qualify the level of e-learning use in the tertiary sector in New Zealand, the Ministry of Education (MoE) established a classification system for courses in the tertiary sector. The value of this tool was disputed, and a new system was proposed but…
A Minimum Spanning Forest Based Method for Noninvasive Cancer Detection with Hyperspectral Imaging
Pike, Robert; Lu, Guolan; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei
2016-01-01
Goal The purpose of this paper is to develop a classification method that combines both spectral and spatial information for distinguishing cancer from healthy tissue on hyperspectral images in an animal model. Methods An automated algorithm based on a minimum spanning forest (MSF) and optimal band selection has been proposed to classify healthy and cancerous tissue on hyperspectral images. A support vector machine (SVM) classifier is trained to create a pixel-wise classification probability map of cancerous and healthy tissue. This map is then used to identify markers that are used to compute mutual information for a range of bands in the hyperspectral image and thus select the optimal bands. An MSF is finally grown to segment the image using spatial and spectral information. Conclusion The MSF based method with automatically selected bands proved to be accurate in determining the tumor boundary on hyperspectral images. Significance Hyperspectral imaging combined with the proposed classification technique has the potential to provide a noninvasive tool for cancer detection. PMID:26285052
Model of experts for decision support in the diagnosis of leukemia patients.
Corchado, Juan M; De Paz, Juan F; Rodríguez, Sara; Bajo, Javier
2009-07-01
Recent advances in the field of biomedicine, specifically in the field of genomics, have led to an increase in the information available for conducting expression analysis. Expression analysis is a technique used in transcriptomics, a branch of genomics that deals with the study of messenger ribonucleic acid (mRNA) and the extraction of information contained in the genes. This increase in information is reflected in the exon arrays, which require the use of new techniques in order to extract the information. The purpose of this study is to provide a tool based on a mixture of experts model that allows the analysis of the information contained in the exon arrays, from which automatic classifications for decision support in diagnoses of leukemia patients can be made. The proposed model integrates several cooperative algorithms characterized for their efficiency for data processing, filtering, classification and knowledge extraction. The Cancer Institute of the University of Salamanca is making an effort to develop tools to automate the evaluation of data and to facilitate de analysis of information. This proposal is a step forward in this direction and the first step toward the development of a mixture of experts tool that integrates different cognitive and statistical approaches to deal with the analysis of exon arrays. The mixture of experts model presented within this work provides great capacities for learning and adaptation to the characteristics of the problem in consideration, using novel algorithms in each of the stages of the analysis process that can be easily configured and combined, and provides results that notably improve those provided by the existing methods for exon arrays analysis. The material used consists of data from exon arrays provided by the Cancer Institute that contain samples from leukemia patients. The methodology used consists of a system based on a mixture of experts. Each one of the experts incorporates novel artificial intelligence techniques that improve the process of carrying out various tasks such as pre-processing, filtering, classification and extraction of knowledge. This article will detail the manner in which individual experts are combined so that together they generate a system capable of extracting knowledge, thus permitting patients to be classified in an automatic and efficient manner that is also comprehensible for medical personnel. The system has been tested in a real setting and has been used for classifying patients who suffer from different forms of leukemia at various stages. Personnel from the Cancer Institute supervised and participated throughout the testing period. Preliminary results are promising, notably improving the results obtained with previously used tools. The medical staff from the Cancer Institute considers the tools that have been developed to be positive and very useful in a supporting capacity for carrying out their daily tasks. Additionally the mixture of experts supplies a tool for the extraction of necessary information in order to explain the associations that have been made in simple terms. That is, it permits the extraction of knowledge for each classification made and generalized in order to be used in subsequent classifications. This allows for a large amount of learning and adaptation within the proposed system.
Increasing CAD system efficacy for lung texture analysis using a convolutional network
NASA Astrophysics Data System (ADS)
Tarando, Sebastian Roberto; Fetita, Catalin; Faccinetto, Alex; Brillet, Pierre-Yves
2016-03-01
The infiltrative lung diseases are a class of irreversible, non-neoplastic lung pathologies requiring regular follow-up with CT imaging. Quantifying the evolution of the patient status imposes the development of automated classification tools for lung texture. For the large majority of CAD systems, such classification relies on a two-dimensional analysis of axial CT images. In a previously developed CAD system, we proposed a fully-3D approach exploiting a multi-scale morphological analysis which showed good performance in detecting diseased areas, but with a major drawback consisting of sometimes overestimating the pathological areas and mixing different type of lung patterns. This paper proposes a combination of the existing CAD system with the classification outcome provided by a convolutional network, specifically tuned-up, in order to increase the specificity of the classification and the confidence to diagnosis. The advantage of using a deep learning approach is a better regularization of the classification output (because of a deeper insight into a given pathological class over a large series of samples) where the previous system is extra-sensitive due to the multi-scale response on patient-specific, localized patterns. In a preliminary evaluation, the combined approach was tested on a 10 patient database of various lung pathologies, showing a sharp increase of true detections.
Kamarudin, Nur Diyana; Ooi, Chia Yee; Kawanabe, Tadaaki; Odaguchi, Hiroshi; Kobayashi, Fuminori
2017-01-01
In tongue diagnosis, colour information of tongue body has kept valuable information regarding the state of disease and its correlation with the internal organs. Qualitatively, practitioners may have difficulty in their judgement due to the instable lighting condition and naked eye's ability to capture the exact colour distribution on the tongue especially the tongue with multicolour substance. To overcome this ambiguity, this paper presents a two-stage tongue's multicolour classification based on a support vector machine (SVM) whose support vectors are reduced by our proposed k -means clustering identifiers and red colour range for precise tongue colour diagnosis. In the first stage, k -means clustering is used to cluster a tongue image into four clusters of image background (black), deep red region, red/light red region, and transitional region. In the second-stage classification, red/light red tongue images are further classified into red tongue or light red tongue based on the red colour range derived in our work. Overall, true rate classification accuracy of the proposed two-stage classification to diagnose red, light red, and deep red tongue colours is 94%. The number of support vectors in SVM is improved by 41.2%, and the execution time for one image is recorded as 48 seconds.
NASA Astrophysics Data System (ADS)
Zhu, Maohu; Jie, Nanfeng; Jiang, Tianzi
2014-03-01
A reliable and precise classification of schizophrenia is significant for its diagnosis and treatment of schizophrenia. Functional magnetic resonance imaging (fMRI) is a novel tool increasingly used in schizophrenia research. Recent advances in statistical learning theory have led to applying pattern classification algorithms to access the diagnostic value of functional brain networks, discovered from resting state fMRI data. The aim of this study was to propose an adaptive learning algorithm to distinguish schizophrenia patients from normal controls using resting-state functional language network. Furthermore, here the classification of schizophrenia was regarded as a sample selection problem where a sparse subset of samples was chosen from the labeled training set. Using these selected samples, which we call informative vectors, a classifier for the clinic diagnosis of schizophrenia was established. We experimentally demonstrated that the proposed algorithm incorporating resting-state functional language network achieved 83.6% leaveone- out accuracy on resting-state fMRI data of 27 schizophrenia patients and 28 normal controls. In contrast with KNearest- Neighbor (KNN), Support Vector Machine (SVM) and l1-norm, our method yielded better classification performance. Moreover, our results suggested that a dysfunction of resting-state functional language network plays an important role in the clinic diagnosis of schizophrenia.
Ooi, Chia Yee; Kawanabe, Tadaaki; Odaguchi, Hiroshi; Kobayashi, Fuminori
2017-01-01
In tongue diagnosis, colour information of tongue body has kept valuable information regarding the state of disease and its correlation with the internal organs. Qualitatively, practitioners may have difficulty in their judgement due to the instable lighting condition and naked eye's ability to capture the exact colour distribution on the tongue especially the tongue with multicolour substance. To overcome this ambiguity, this paper presents a two-stage tongue's multicolour classification based on a support vector machine (SVM) whose support vectors are reduced by our proposed k-means clustering identifiers and red colour range for precise tongue colour diagnosis. In the first stage, k-means clustering is used to cluster a tongue image into four clusters of image background (black), deep red region, red/light red region, and transitional region. In the second-stage classification, red/light red tongue images are further classified into red tongue or light red tongue based on the red colour range derived in our work. Overall, true rate classification accuracy of the proposed two-stage classification to diagnose red, light red, and deep red tongue colours is 94%. The number of support vectors in SVM is improved by 41.2%, and the execution time for one image is recorded as 48 seconds. PMID:29065640
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
Li, Yang; Cui, Weigang; Luo, Meilin; Li, Ke; Wang, Lina
2018-01-25
The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.
A Proposal to Develop Interactive Classification Technology
NASA Technical Reports Server (NTRS)
deBessonet, Cary
1998-01-01
Research for the first year was oriented towards: 1) the design of an interactive classification tool (ICT); and 2) the development of an appropriate theory of inference for use in ICT technology. The general objective was to develop a theory of classification that could accommodate a diverse array of objects, including events and their constituent objects. Throughout this report, the term "object" is to be interpreted in a broad sense to cover any kind of object, including living beings, non-living physical things, events, even ideas and concepts. The idea was to produce a theory that could serve as the uniting fabric of a base technology capable of being implemented in a variety of automated systems. The decision was made to employ two technologies under development by the principal investigator, namely, SMS (Symbolic Manipulation System) and SL (Symbolic Language) [see debessonet, 1991, for detailed descriptions of SMS and SL]. The plan was to enhance and modify these technologies for use in an ICT environment. As a means of giving focus and direction to the proposed research, the investigators decided to design an interactive, classificatory tool for use in building accessible knowledge bases for selected domains. Accordingly, the proposed research was divisible into tasks that included: 1) the design of technology for classifying domain objects and for building knowledge bases from the results automatically; 2) the development of a scheme of inference capable of drawing upon previously processed classificatory schemes and knowledge bases; and 3) the design of a query/ search module for accessing the knowledge bases built by the inclusive system. The interactive tool for classifying domain objects was to be designed initially for textual corpora with a view to having the technology eventually be used in robots to build sentential knowledge bases that would be supported by inference engines specially designed for the natural or man-made environments in which the robots would be called upon to operate.
Probabilistic topic modeling for the analysis and classification of genomic sequences
2015-01-01
Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734
Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model
Wang, Guofeng; Yang, Yinwei; Li, Zhimeng
2014-01-01
Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514
Force sensor based tool condition monitoring using a heterogeneous ensemble learning model.
Wang, Guofeng; Yang, Yinwei; Li, Zhimeng
2014-11-14
Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.
Multicategory Composite Least Squares Classifiers
Park, Seo Young; Liu, Yufeng; Liu, Dacheng; Scholl, Paul
2010-01-01
Classification is a very useful statistical tool for information extraction. In particular, multicategory classification is commonly seen in various applications. Although binary classification problems are heavily studied, extensions to the multicategory case are much less so. In view of the increased complexity and volume of modern statistical problems, it is desirable to have multicategory classifiers that are able to handle problems with high dimensions and with a large number of classes. Moreover, it is necessary to have sound theoretical properties for the multicategory classifiers. In the literature, there exist several different versions of simultaneous multicategory Support Vector Machines (SVMs). However, the computation of the SVM can be difficult for large scale problems, especially for problems with large number of classes. Furthermore, the SVM cannot produce class probability estimation directly. In this article, we propose a novel efficient multicategory composite least squares classifier (CLS classifier), which utilizes a new composite squared loss function. The proposed CLS classifier has several important merits: efficient computation for problems with large number of classes, asymptotic consistency, ability to handle high dimensional data, and simple conditional class probability estimation. Our simulated and real examples demonstrate competitive performance of the proposed approach. PMID:21218128
43 CFR 2461.1 - Proposed classifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Proposed classifications. 2461.1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.1 Proposed classifications. (a) Proposed classifications will...
43 CFR 2461.1 - Proposed classifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Proposed classifications. 2461.1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.1 Proposed classifications. (a) Proposed classifications will...
43 CFR 2461.1 - Proposed classifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Proposed classifications. 2461.1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.1 Proposed classifications. (a) Proposed classifications will...
43 CFR 2461.1 - Proposed classifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Proposed classifications. 2461.1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Multiple-Use Classification Procedures § 2461.1 Proposed classifications. (a) Proposed classifications will...
Classification and assessment tools for structural motif discovery algorithms.
Badr, Ghada; Al-Turaiki, Isra; Mathkour, Hassan
2013-01-01
Motif discovery is the problem of finding recurring patterns in biological data. Patterns can be sequential, mainly when discovered in DNA sequences. They can also be structural (e.g. when discovering RNA motifs). Finding common structural patterns helps to gain a better understanding of the mechanism of action (e.g. post-transcriptional regulation). Unlike DNA motifs, which are sequentially conserved, RNA motifs exhibit conservation in structure, which may be common even if the sequences are different. Over the past few years, hundreds of algorithms have been developed to solve the sequential motif discovery problem, while less work has been done for the structural case. In this paper, we survey, classify, and compare different algorithms that solve the structural motif discovery problem, where the underlying sequences may be different. We highlight their strengths and weaknesses. We start by proposing a benchmark dataset and a measurement tool that can be used to evaluate different motif discovery approaches. Then, we proceed by proposing our experimental setup. Finally, results are obtained using the proposed benchmark to compare available tools. To the best of our knowledge, this is the first attempt to compare tools solely designed for structural motif discovery. Results show that the accuracy of discovered motifs is relatively low. The results also suggest a complementary behavior among tools where some tools perform well on simple structures, while other tools are better for complex structures. We have classified and evaluated the performance of available structural motif discovery tools. In addition, we have proposed a benchmark dataset with tools that can be used to evaluate newly developed tools.
Classifying diseases and remedies in ethnomedicine and ethnopharmacology.
Staub, Peter O; Geck, Matthias S; Weckerle, Caroline S; Casu, Laura; Leonti, Marco
2015-11-04
Ethnopharmacology focuses on the understanding of local and indigenous use of medicines and therefore an emic approach is inevitable. Often, however, standard biomedical disease classifications are used to describe and analyse local diseases and remedies. Standard classifications might be a valid tool for cross-cultural comparisons and bioprospecting purposes but are not suitable to understand the local perception of disease and use of remedies. Different standard disease classification systems exist but their suitability for cross-cultural comparisons of ethnomedical data has never been assessed. Depending on the research focus, (I) ethnomedical, (II) cross-cultural, and (III) bioprospecting, we provide suggestions for the use of specific classification systems. We analyse three different standard biomedical classification systems (the International Classification of Diseases (ICD); the Economic Botany Data Collection Standard (EBDCS); and the International Classification of Primary Care (ICPC)), and discuss their value for categorizing diseases of ethnomedical systems and their suitability for cross-cultural research in ethnopharmacology. Moreover, based on the biomedical uses of all approved plant derived biomedical drugs, we propose a biomedical therapy-based classification system as a guide for the discovery of drugs from ethnopharmacological sources. Widely used standards, such as the International Classification of Diseases (ICD) by the WHO and the Economic Botany Data Collection Standard (EBDCS) are either technically challenging due to a categorisation system based on clinical examinations, which are usually not possible during field research (ICD) or lack clear biomedical criteria combining disorders and medical effects in an imprecise and confusing way (EBDCS). The International Classification of Primary Care (ICPC), also accepted by the WHO, has more in common with ethnomedical reality than the ICD or the EBDCS, as the categories are designed according to patient's perceptions and are less influenced by clinical medicine. Since diagnostic tools are not required, medical ethnobotanists and ethnopharmacologists can easily classify reported symptoms and complaints with the ICPC in one of the "chapters" based on 17 body systems, psychological and social problems. Also the biomedical uses of plant-derived drugs are classifiable into 17 broad organ- and therapy-based use-categories but can easily be divided into more specific subcategories. Depending on the research focus (I-III) we propose the following classification systems: I. Ethnomedicine: Ethnomedicine is culture-bound and local classifications have to be understood from an emic perspective. Consequently, the application of prefabricated, "one-size fits all" biomedical classification schemes is of limited value. II. Cross-cultural analysis: The ICPC is a suitable standard that can be applied but modified as required. III. Bioprospecting: We suggest a biomedical therapy-driven classification system with currently 17 use-categories based on biomedical uses of all approved plant derived natural product drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Caetano dos Santos, Florentino Luciano; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari
2016-01-01
Aims A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. Methods For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. Dataset and Results The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. Conclusions Here we showed that the developed ensembles of texture descriptors are able to classify the RPE cell maturation stage. Moreover, we proved that preprocessing and region-based decomposition improves many descriptors’ accuracy in biological dataset classification. Finally, we built the first public dataset of stem cell-derived RPE cells, which is publicly available to the scientific community for classification studies. The proposed tool is available at https://www.dei.unipd.it/node/2357 and the RPE dataset at http://www.biomeditech.fi/data/RPE_dataset/. Both are available at https://figshare.com/s/d6fb591f1beb4f8efa6f. PMID:26895509
Effective Feature Selection for Classification of Promoter Sequences.
K, Kouser; P G, Lavanya; Rangarajan, Lalitha; K, Acharya Kshitish
2016-01-01
Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method) but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.
Doukas, Charalampos; Goudas, Theodosis; Fischer, Simon; Mierswa, Ingo; Chatziioannou, Aristotle; Maglogiannis, Ilias
2010-01-01
This paper presents an open image-mining framework that provides access to tools and methods for the characterization of medical images. Several image processing and feature extraction operators have been implemented and exposed through Web Services. Rapid-Miner, an open source data mining system has been utilized for applying classification operators and creating the essential processing workflows. The proposed framework has been applied for the detection of salient objects in Obstructive Nephropathy microscopy images. Initial classification results are quite promising demonstrating the feasibility of automated characterization of kidney biopsy images.
GHM method for obtaining rationalsolutions of nonlinear differential equations.
Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo
2015-01-01
In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.
ERIC Educational Resources Information Center
Roberts, Nicky
2016-01-01
Drawing on a literature review of classifications developed by each of Riley, Verschaffel and Carpenter and their respective research groups, a refined typology of additive relations word problems is proposed and then used as analytical tool to classify the additive relations word problems in South African Curriculum and Assessment Policy Standard…
Toward an Attention-Based Diagnostic Tool for Patients With Locked-in Syndrome.
Lesenfants, Damien; Habbal, Dina; Chatelle, Camille; Soddu, Andrea; Laureys, Steven; Noirhomme, Quentin
2018-03-01
Electroencephalography (EEG) has been proposed as a supplemental tool for reducing clinical misdiagnosis in severely brain-injured populations helping to distinguish conscious from unconscious patients. We studied the use of spectral entropy as a measure of focal attention in order to develop a motor-independent, portable, and objective diagnostic tool for patients with locked-in syndrome (LIS), answering the issues of accuracy and training requirement. Data from 20 healthy volunteers, 6 LIS patients, and 10 patients with a vegetative state/unresponsive wakefulness syndrome (VS/UWS) were included. Spectral entropy was computed during a gaze-independent 2-class (attention vs rest) paradigm, and compared with EEG rhythms (delta, theta, alpha, and beta) classification. Spectral entropy classification during the attention-rest paradigm showed 93% and 91% accuracy in healthy volunteers and LIS patients respectively. VS/UWS patients were at chance level. EEG rhythms classification reached a lower accuracy than spectral entropy. Resting-state EEG spectral entropy could not distinguish individual VS/UWS patients from LIS patients. The present study provides evidence that an EEG-based measure of attention could detect command-following in patients with severe motor disabilities. The entropy system could detect a response to command in all healthy subjects and LIS patients, while none of the VS/UWS patients showed a response to command using this system.
A scope classification of data quality requirements for food composition data.
Presser, Karl; Hinterberger, Hans; Weber, David; Norrie, Moira
2016-02-15
Data quality is an important issue when managing food composition data since the usage of the data can have a significant influence on policy making and further research. Although several frameworks for data quality have been proposed, general tools and measures are still lacking. As a first step in this direction, we investigated data quality requirements for an information system to manage food composition data, called FoodCASE. The objective of our investigation was to find out if different requirements have different impacts on the intrinsic data quality that must be regarded during data quality assessment and how these impacts can be described. We refer to the resulting classification with its categories as the scope classification of data quality requirements. As proof of feasibility, the scope classification has been implemented in the FoodCASE system. Copyright © 2015 Elsevier Ltd. All rights reserved.
A thyroid nodule classification method based on TI-RADS
NASA Astrophysics Data System (ADS)
Wang, Hao; Yang, Yang; Peng, Bo; Chen, Qin
2017-07-01
Thyroid Imaging Reporting and Data System(TI-RADS) is a valuable tool for differentiating the benign and the malignant thyroid nodules. In clinic, doctors can determine the extent of being benign or malignant in terms of different classes by using TI-RADS. Classification represents the degree of malignancy of thyroid nodules. TI-RADS as a classification standard can be used to guide the ultrasonic doctor to examine thyroid nodules more accurately and reliably. In this paper, we aim to classify the thyroid nodules with the help of TI-RADS. To this end, four ultrasound signs, i.e., cystic and solid, echo pattern, boundary feature and calcification of thyroid nodules are extracted and converted into feature vectors. Then semi-supervised fuzzy C-means ensemble (SS-FCME) model is applied to obtain the classification results. The experimental results demonstrate that the proposed method can help doctors diagnose the thyroid nodules effectively.
Robust spike classification based on frequency domain neural waveform features.
Yang, Chenhui; Yuan, Yuan; Si, Jennie
2013-12-01
We introduce a new spike classification algorithm based on frequency domain features of the spike snippets. The goal for the algorithm is to provide high classification accuracy, low false misclassification, ease of implementation, robustness to signal degradation, and objectivity in classification outcomes. In this paper, we propose a spike classification algorithm based on frequency domain features (CFDF). It makes use of frequency domain contents of the recorded neural waveforms for spike classification. The self-organizing map (SOM) is used as a tool to determine the cluster number intuitively and directly by viewing the SOM output map. After that, spike classification can be easily performed using clustering algorithms such as the k-Means. In conjunction with our previously developed multiscale correlation of wavelet coefficient (MCWC) spike detection algorithm, we show that the MCWC and CFDF detection and classification system is robust when tested on several sets of artificial and real neural waveforms. The CFDF is comparable to or outperforms some popular automatic spike classification algorithms with artificial and real neural data. The detection and classification of neural action potentials or neural spikes is an important step in single-unit-based neuroscientific studies and applications. After the detection of neural snippets potentially containing neural spikes, a robust classification algorithm is applied for the analysis of the snippets to (1) extract similar waveforms into one class for them to be considered coming from one unit, and to (2) remove noise snippets if they do not contain any features of an action potential. Usually, a snippet is a small 2 or 3 ms segment of the recorded waveform, and differences in neural action potentials can be subtle from one unit to another. Therefore, a robust, high performance classification system like the CFDF is necessary. In addition, the proposed algorithm does not require any assumptions on statistical properties of the noise and proves to be robust under noise contamination.
An Automated and Intelligent Medical Decision Support System for Brain MRI Scans Classification.
Siddiqui, Muhammad Faisal; Reza, Ahmed Wasif; Kanesan, Jeevan
2015-01-01
A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
NASA Astrophysics Data System (ADS)
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Master plan for REIS implementation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knobloch, P.C.
1974-08-01
Implementation requirements of the regional energy information system (REIS) and provision of a brief cost/benefit analysis of the proposed system are discussed. Divided into four sectors (problems, requirements, the present system, and the proposed implementation of REIS), the development of a demonstration data base, its implementation and that of the regional input-output model as a tool for decision makers are subjects of the report. The accounting subsystem and energy flow network model are two main components; the need to identify specific problems, to gather information on source, energy type, location, use, time with cross classification, the structure of REIS withmore » parameter subsystem, and a description of the study area (N. E. Minnesota) are included. Five energy-producing and 76 energy-using sectors are specified, with energy classification and forms included. (GRA)« less
Retinal artery-vein classification via topology estimation
Estrada, Rolando; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Tomasi, Carlo; Farsiu, Sina
2015-01-01
We propose a novel, graph-theoretic framework for distinguishing arteries from veins in a fundus image. We make use of the underlying vessel topology to better classify small and midsized vessels. We extend our previously proposed tree topology estimation framework by incorporating expert, domain-specific features to construct a simple, yet powerful global likelihood model. We efficiently maximize this model by iteratively exploring the space of possible solutions consistent with the projected vessels. We tested our method on four retinal datasets and achieved classification accuracies of 91.0%, 93.5%, 91.7%, and 90.9%, outperforming existing methods. Our results show the effectiveness of our approach, which is capable of analyzing the entire vasculature, including peripheral vessels, in wide field-of-view fundus photographs. This topology-based method is a potentially important tool for diagnosing diseases with retinal vascular manifestation. PMID:26068204
Anterior Chamber Angle Shape Analysis and Classification of Glaucoma in SS-OCT Images.
Ni Ni, Soe; Tian, J; Marziliano, Pina; Wong, Hong-Tym
2014-01-01
Optical coherence tomography is a high resolution, rapid, and noninvasive diagnostic tool for angle closure glaucoma. In this paper, we present a new strategy for the classification of the angle closure glaucoma using morphological shape analysis of the iridocorneal angle. The angle structure configuration is quantified by the following six features: (1) mean of the continuous measurement of the angle opening distance; (2) area of the trapezoidal profile of the iridocorneal angle centered at Schwalbe's line; (3) mean of the iris curvature from the extracted iris image; (4) complex shape descriptor, fractal dimension, to quantify the complexity, or changes of iridocorneal angle; (5) ellipticity moment shape descriptor; and (6) triangularity moment shape descriptor. Then, the fuzzy k nearest neighbor (fkNN) classifier is utilized for classification of angle closure glaucoma. Two hundred and sixty-four swept source optical coherence tomography (SS-OCT) images from 148 patients were analyzed in this study. From the experimental results, the fkNN reveals the best classification accuracy (99.11 ± 0.76%) and AUC (0.98 ± 0.012) with the combination of fractal dimension and biometric parameters. It showed that the proposed approach has promising potential to become a computer aided diagnostic tool for angle closure glaucoma (ACG) disease.
Brain tumor segmentation based on local independent projection-based classification.
Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin
2014-10-01
Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.
Machine learning algorithms for mode-of-action classification in toxicity assessment.
Zhang, Yile; Wong, Yau Shu; Deng, Jian; Anton, Cristina; Gabos, Stephan; Zhang, Weiping; Huang, Dorothy Yu; Jin, Can
2016-01-01
Real Time Cell Analysis (RTCA) technology is used to monitor cellular changes continuously over the entire exposure period. Combining with different testing concentrations, the profiles have potential in probing the mode of action (MOA) of the testing substances. In this paper, we present machine learning approaches for MOA assessment. Computational tools based on artificial neural network (ANN) and support vector machine (SVM) are developed to analyze the time-concentration response curves (TCRCs) of human cell lines responding to tested chemicals. The techniques are capable of learning data from given TCRCs with known MOA information and then making MOA classification for the unknown toxicity. A novel data processing step based on wavelet transform is introduced to extract important features from the original TCRC data. From the dose response curves, time interval leading to higher classification success rate can be selected as input to enhance the performance of the machine learning algorithm. This is particularly helpful when handling cases with limited and imbalanced data. The validation of the proposed method is demonstrated by the supervised learning algorithm applied to the exposure data of HepG2 cell line to 63 chemicals with 11 concentrations in each test case. Classification success rate in the range of 85 to 95 % are obtained using SVM for MOA classification with two clusters to cases up to four clusters. Wavelet transform is capable of capturing important features of TCRCs for MOA classification. The proposed SVM scheme incorporated with wavelet transform has a great potential for large scale MOA classification and high-through output chemical screening.
Paper Tools and Periodic Tables: Newlands and Mendeleev Draw Grids.
Gordin, Michael D
2018-02-01
This essay elaborates on Ursula Klein's methodological concept of "paper tools" by drawing on several examples from the history of the periodic table. Moving from John A. R. Newlands's "Law of Octaves," to Dmitrii Mendeleev's first drafts of his periodic system in 1869, to Mendeleev's chemical speculations on the place of the ether within his classification, one sees that the ways in which the scientists presented the balance between empirical data and theoretical manipulation proved crucial for the chemical community's acceptance or rejection of their proposed innovations. This negotiated balance illustrates an underemphasised feature of Klein's conceptualisation of the ways in which a paper tool generates new knowledge.
NASA Astrophysics Data System (ADS)
Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei
2014-03-01
As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and classification technology has been demonstrated in animal models and can have many potential applications in cancer research and management.
Pirih, Nina; Kunej, Tanja
2018-05-01
The volume of publications and the type of research approaches used in omics system sciences are vast and continue to expand rapidly. This increased complexity and heterogeneity of omics data are challenging data extraction, sensemaking, analyses, knowledge translation, and interpretation. An extended and dynamic taxonomy for the classification and summary of omics studies are essential. We present an updated taxonomy for classification of omics research studies based on four criteria: (1) type and number of genomic loci in a research study, (2) number of species and biological samples, (3) the type of omics technology (e.g., genomics, transcriptomics, and proteomics) and omics technology application type (e.g., pharmacogenomics and nutrigenomics), and (4) phenotypes. In addition, we present a graphical summary approach that enables the researchers to define the main characteristics of their study in a single figure, and offers the readers to rapidly grasp the published study and omics data. We searched the PubMed and the Web of Science from 09/2002 to 02/2018, including research and review articles, and identified 90 scientific publications. We propose a call toward omics studies' standardization for reporting in scientific literature. We anticipate the proposed classification scheme will usefully contribute to improved classification of published reports in genomics and other omics fields, and help data extraction from publications for future multiomics data integration.
Azadmanjir, Zahra; Safdari, Reza; Ghazisaeedi, Marjan; Mokhtaran, Mehrshad; Kameli, Mohammad Esmail
2017-01-01
Introduction: Accurate coded data in the healthcare are critical. Computer-Assisted Coding (CAC) is an effective tool to improve clinical coding in particular when a new classification will be developed and implemented. But determine the appropriate method for development need to consider the specifications of existing CAC systems, requirements for each type, our infrastructure and also, the classification scheme. Aim: The aim of the study was the development of a decision model for determining accurate code of each medical intervention in Iranian Classification of Health Interventions (IRCHI) that can be implemented as a suitable CAC system. Methods: first, a sample of existing CAC systems was reviewed. Then feasibility of each one of CAC types was examined with regard to their prerequisites for their implementation. The next step, proper model was proposed according to the structure of the classification scheme and was implemented as an interactive system. Results: There is a significant relationship between the level of assistance of a CAC system and integration of it with electronic medical documents. Implementation of fully automated CAC systems is impossible due to immature development of electronic medical record and problems in using language for medical documenting. So, a model was proposed to develop semi-automated CAC system based on hierarchical relationships between entities in the classification scheme and also the logic of decision making to specify the characters of code step by step through a web-based interactive user interface for CAC. It was composed of three phases to select Target, Action and Means respectively for an intervention. Conclusion: The proposed model was suitable the current status of clinical documentation and coding in Iran and also, the structure of new classification scheme. Our results show it was practical. However, the model needs to be evaluated in the next stage of the research. PMID:28883671
Maxwell, Gregor; Koutsogeorgou, Eleni
2012-02-01
Inclusive education is part of social inclusion; therefore, social capital can be linked to an inclusive education policy and practice. This association is explored in this article, and a practical measure is proposed. Specifically, the World Health Organization's International Classification of Functioning, Disability and Health Children and Youth Version (ICF-CY) is proposed as the link between social capital and inclusive education. By mapping participation and trust indicators of social capital to the ICF-CY and by using the Matrix to Analyse Functioning in Education Systems (MAFES) to analyze the functioning of inclusive education policies and systems, a measure for stronger inclusive education policies is proposed. Such a tool can be used for policy planning and monitoring to ensure better inclusive education environments. In conclusion, combining enhanced social capital linked to stronger inclusive education policies, by using the ICF-CY, can lead to better health and well-being for all.
Target Identification Using Harmonic Wavelet Based ISAR Imaging
NASA Astrophysics Data System (ADS)
Shreyamsha Kumar, B. K.; Prabhakar, B.; Suryanarayana, K.; Thilagavathi, V.; Rajagopal, R.
2006-12-01
A new approach has been proposed to reduce the computations involved in the ISAR imaging, which uses harmonic wavelet-(HW) based time-frequency representation (TFR). Since the HW-based TFR falls into a category of nonparametric time-frequency (T-F) analysis tool, it is computationally efficient compared to parametric T-F analysis tools such as adaptive joint time-frequency transform (AJTFT), adaptive wavelet transform (AWT), and evolutionary AWT (EAWT). Further, the performance of the proposed method of ISAR imaging is compared with the ISAR imaging by other nonparametric T-F analysis tools such as short-time Fourier transform (STFT) and Choi-Williams distribution (CWD). In the ISAR imaging, the use of HW-based TFR provides similar/better results with significant (92%) computational advantage compared to that obtained by CWD. The ISAR images thus obtained are identified using a neural network-based classification scheme with feature set invariant to translation, rotation, and scaling.
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua
2014-01-01
A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance.
Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua
2014-01-01
A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance. PMID:25484912
NASA Astrophysics Data System (ADS)
Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza
2012-11-01
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.
An efficient scheme for automatic web pages categorization using the support vector machine
NASA Astrophysics Data System (ADS)
Bhalla, Vinod Kumar; Kumar, Neeraj
2016-07-01
In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.
Laryngeal Cysts in Adults: Simplifying Classification and Management.
Heyes, Richard; Lott, David G
2017-12-01
Objective Laryngeal cysts may occur at any mucosa-lined location within the larynx and account for 5% to 10% of nonmalignant laryngeal lesions. A number of proposed classifications for laryngeal cysts exist; however, no previously published classification aims to guide management. This review analyzes contemporary laryngeal cyst management and proposes a framework for the terminology and management of cystic lesions in the larynx. Data Sources PubMed/Medline. Review Methods A primary literature search of the entire Medline database was performed for all titles of publications pertaining to laryngeal cysts and reviewed for relevance. Full manuscripts were reviewed per the relevance of their titles and abstracts, and selection into this review was according to their clinical and scientific relevance. Conclusion Laryngeal cysts have been associated with rapid-onset epiglottitis, dyspnea, stridor, and death; therefore, they should not be considered of little significance. Symptoms are varied and nonspecific. Laryngoscopy is the primary initial diagnostic tool. Cross-sectional imaging may be required, and future use of endolaryngeal ultrasound and optical coherence tomography may revolutionize practice. Where possible, cysts should be completely excised, and there is growing evidence that a transoral approach is superior to transcervical excision for nearly all cysts. Histology provides definitive diagnosis, and oncocytic cysts require close follow-up. Implications for Practice A new classification system is proposed that increases clarity in terminology, with the aim of better preparing surgeons and authors for future advances in the understanding and management of laryngeal cysts.
Placidi, Giuseppe; Petracca, Andrea; Spezialetti, Matteo; Iacoviello, Daniela
2016-01-01
A Brain Computer Interface (BCI) allows communication for impaired people unable to express their intention with common channels. Electroencephalography (EEG) represents an effective tool to allow the implementation of a BCI. The present paper describes a modular framework for the implementation of the graphic interface for binary BCIs based on the selection of symbols in a table. The proposed system is also designed to reduce the time required for writing text. This is made by including a motivational tool, necessary to improve the quality of the collected signals, and by containing a predictive module based on the frequency of occurrence of letters in a language, and of words in a dictionary. The proposed framework is described in a top-down approach through its modules: signal acquisition, analysis, classification, communication, visualization, and predictive engine. The framework, being modular, can be easily modified to personalize the graphic interface to the needs of the subject who has to use the BCI and it can be integrated with different classification strategies, communication paradigms, and dictionaries/languages. The implementation of a scenario and some experimental results on healthy subjects are also reported and discussed: the modules of the proposed scenario can be used as a starting point for further developments, and application on severely disabled people under the guide of specialized personnel.
GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.
Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A
2016-01-01
In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.
A software tool for ecosystem services assessments
NASA Astrophysics Data System (ADS)
Riegels, Niels; Klinting, Anders; Butts, Michael; Middelboe, Anne Lise; Mark, Ole
2017-04-01
The EU FP7 DESSIN project is developing methods and tools for assessment of ecosystem services (ESS) and associated economic values, with a focus on freshwater ESS in urban settings. Although the ESS approach has gained considerable visibility over the past ten years, operationalizing the approach remains a challenge. Therefore, DESSSIN is also supporting development of a free software tool to support users implementing the DESSIN ESS evaluation framework. The DESSIN ESS evaluation framework is a structured approach to measuring changes in ecosystem services. The main purpose of the framework is to facilitate the application of the ESS approach in the appraisal of projects that have impacts on freshwater ecosystems and their services. The DESSIN framework helps users evaluate changes in ESS by linking biophysical, economic, and sustainability assessments sequentially. It was developed using the Common International Classification of Ecosystem Services (CICES) and the DPSIR (Drivers, Pressures, States, Impacts, Responses) adaptive management cycle. The former is a standardized system for the classification of ESS developed by the European Union to enhance the consistency and comparability of ESS assessments. The latter is a well-known concept to disentangle the biophysical and social aspects of a system under study. As part of its analytical component, the DESSIN framework also integrates elements of the Final Ecosystem Goods and Services-Classification System (FEGS-CS) of the US Environmental Protection Agency (USEPA). As implemented in the software tool, the DESSIN framework consists of five parts: • In part I of the evaluation, the ecosystem is defined and described and the local stakeholders are identified. In addition, administrative details and objectives of the assessment are defined. • In part II, drivers and pressures are identified. Once these first two elements of the DPSIR scheme have been characterized, the claimed/expected capabilities of a proposed project can be estimated to determine whether the project affects drivers, pressures, states or a combination of these. • In part III, information about impacts on drivers, pressures, and states is used to identify ESS impacted by a proposed project. Potential beneficiaries of impacted ESS are also identified. • In part IV, changes in ESS are estimated. These estimates include changes in the provision of ESS, the use of ESS, and the value of ESS. • A sustainability assessment in Part V estimates the broader impact of a proposed project according to social, environmental, governance and other criteria. The ESS evaluation software tool is designed to assist an evaluation or study leader carrying out an ESS assessment. The tool helps users move through the logic of the ESS evaluation and make sense of relationships between elements of the DPSIR framework, the CICES classification scheme, and the FEGS approach. The tool also provides links to useful indicators and assessment methods in order to help users quantify changes in ESS and ESS values. The software tool is developed in collaboration with the DESSIN user group, who will use the software to estimate changes in ESS resulting from the implementation of green technologies addressing water quality and water scarcity issues. Although the software is targeted to this user group, it will be made available for free to the public after the conclusion of the project.
Wu, Jianning; Wu, Bin
2015-01-01
The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis. PMID:25705672
Wu, Jianning; Wu, Bin
2015-01-01
The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.
Goshvarpour, Ateke; Goshvarpour, Atefeh
2018-04-30
Heart rate variability (HRV) analysis has become a widely used tool for monitoring pathological and psychological states in medical applications. In a typical classification problem, information fusion is a process whereby the effective combination of the data can achieve a more accurate system. The purpose of this article was to provide an accurate algorithm for classifying HRV signals in various psychological states. Therefore, a novel feature level fusion approach was proposed. First, using the theory of information, two similarity indicators of the signal were extracted, including correntropy and Cauchy-Schwarz divergence. Applying probabilistic neural network (PNN) and k-nearest neighbor (kNN), the performance of each index in the classification of meditators and non-meditators HRV signals was appraised. Then, three fusion rules, including division, product, and weighted sum rules were used to combine the information of both similarity measures. For the first time, we propose an algorithm to define the weights of each feature based on the statistical p-values. The performance of HRV classification using combined features was compared with the non-combined features. Totally, the accuracy of 100% was obtained for discriminating all states. The results showed the strong ability and proficiency of division and weighted sum rules in the improvement of the classifier accuracies.
Pattern recognition for passive polarimetric data using nonparametric classifiers
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.
2005-08-01
Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.
NASA Astrophysics Data System (ADS)
Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Khristoforova, Yulia A.; Moryatov, Alexander A.; Kozlov, Sergey V.; Zakharov, Valery P.
2017-02-01
The differentiation of skin melanomas and basal cell carcinomas (BCCs) was demonstrated based on combined analysis of Raman and autofluorescence spectra stimulated by visible and NIR lasers. It was ex vivo tested on 39 melanomas and 40 BCCs. Six spectroscopic criteria utilizing information about alteration of melanin, porphyrins, flavins, lipids, and collagen content in tumor with a comparison to healthy skin were proposed. The measured correlation between the proposed criteria makes it possible to define weakly correlated criteria groups for discriminant analysis and principal components analysis application. It was shown that the accuracy of cancerous tissues classification reaches 97.3% for a combined 6-criteria multimodal algorithm, while the accuracy determined separately for each modality does not exceed 79%. The combined 6-D method is a rapid and reliable tool for malignant skin detection and classification.
Camera-Model Identification Using Markovian Transition Probability Matrix
NASA Astrophysics Data System (ADS)
Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei
Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.
The construction of support vector machine classifier using the firefly algorithm.
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511
2011-01-01
Background The aim of this study was to develop a child-specific classification system for long bone fractures and to examine its reliability and validity on the basis of a prospective multicentre study. Methods Using the sequentially developed classification system, three samples of between 30 and 185 paediatric limb fractures from a pool of 2308 fractures documented in two multicenter studies were analysed in a blinded fashion by eight orthopaedic surgeons, on a total of 5 occasions. Intra- and interobserver reliability and accuracy were calculated. Results The reliability improved with successive simplification of the classification. The final version resulted in an overall interobserver agreement of κ = 0.71 with no significant difference between experienced and less experienced raters. Conclusions In conclusion, the evaluation of the newly proposed classification system resulted in a reliable and routinely applicable system, for which training in its proper use may further improve the reliability. It can be recommended as a useful tool for clinical practice and offers the option for developing treatment recommendations and outcome predictions in the future. PMID:21548939
Nouretdinov, Ilia; Costafreda, Sergi G; Gammerman, Alexander; Chervonenkis, Alexey; Vovk, Vladimir; Vapnik, Vladimir; Fu, Cynthia H Y
2011-05-15
There is rapidly accumulating evidence that the application of machine learning classification to neuroimaging measurements may be valuable for the development of diagnostic and prognostic prediction tools in psychiatry. However, current methods do not produce a measure of the reliability of the predictions. Knowing the risk of the error associated with a given prediction is essential for the development of neuroimaging-based clinical tools. We propose a general probabilistic classification method to produce measures of confidence for magnetic resonance imaging (MRI) data. We describe the application of transductive conformal predictor (TCP) to MRI images. TCP generates the most likely prediction and a valid measure of confidence, as well as the set of all possible predictions for a given confidence level. We present the theoretical motivation for TCP, and we have applied TCP to structural and functional MRI data in patients and healthy controls to investigate diagnostic and prognostic prediction in depression. We verify that TCP predictions are as accurate as those obtained with more standard machine learning methods, such as support vector machine, while providing the additional benefit of a valid measure of confidence for each prediction. Copyright © 2010 Elsevier Inc. All rights reserved.
Brain tumor classification using AFM in combination with data mining techniques.
Huml, Marlene; Silye, René; Zauner, Gerald; Hutterer, Stephan; Schilcher, Kurt
2013-01-01
Although classification of astrocytic tumors is standardized by the WHO grading system, which is mainly based on microscopy-derived, histomorphological features, there is great interobserver variability. The main causes are thought to be the complexity of morphological details varying from tumor to tumor and from patient to patient, variations in the technical histopathological procedures like staining protocols, and finally the individual experience of the diagnosing pathologist. Thus, to raise astrocytoma grading to a more objective standard, this paper proposes a methodology based on atomic force microscopy (AFM) derived images made from histopathological samples in combination with data mining techniques. By comparing AFM images with corresponding light microscopy images of the same area, the progressive formation of cavities due to cell necrosis was identified as a typical morphological marker for a computer-assisted analysis. Using genetic programming as a tool for feature analysis, a best model was created that achieved 94.74% classification accuracy in distinguishing grade II tumors from grade IV ones. While utilizing modern image analysis techniques, AFM may become an important tool in astrocytic tumor diagnosis. By this way patients suffering from grade II tumors are identified unambiguously, having a less risk for malignant transformation. They would benefit from early adjuvant therapies.
Cunningham, Barbara Jane; Hidecker, Mary Jo Cooley; Thomas-Stonell, Nancy; Rosenbaum, Peter
2018-05-01
In this paper, we present our experiences - both successes and challenges - in implementing evidence-based classification tools into clinical practice. We also make recommendations for others wanting to promote the uptake and application of new research-based assessment tools. We first describe classification systems and the benefits of using them in both research and practice. We then present a theoretical framework from Implementation Science to report strategies we have used to implement two research-based classification tools into practice. We also illustrate some of the challenges we have encountered by reporting results from an online survey investigating 58 Speech-language Pathologists' knowledge and use of the Communication Function Classification System (CFCS), a new tool to classify children's functional communication skills. We offer recommendations for researchers wanting to promote the uptake of new tools in clinical practice. Specifically, we identify structural, organizational, innovation, practitioner, and patient-related factors that we recommend researchers address in the design of implementation interventions. Roles and responsibilities of both researchers and clinicians in making implementations science a success are presented. Implications for rehabilitation Promoting uptake of new and evidence-based tools into clinical practice is challenging. Implementation science can help researchers to close the knowledge-to-practice gap. Using concrete examples, we discuss our experiences in implementing evidence-based classification tools into practice within a theoretical framework. Recommendations are provided for researchers wanting to implement new tools in clinical practice. Implications for researchers and clinicians are presented.
Kardashev's Classification at 50+: A Fine Vehicle With Room for Improvement
NASA Astrophysics Data System (ADS)
Ćirković, M. M.
2015-12-01
We review the history and status of the famous classification of extraterrestrial civilizations given by the great Russian astrophysicist Nikolai Semenovich Kardashev, roughly half a century after it has been proposed. While Kardashev's classification (or Kardashev's scale) has often been seen as oversimplified, and multiple improvements, refinements, and alternatives to it have been suggested, it is still one of the major tools for serious theoretical investigation of SETI issues. During these 50+ years, several attempts at modifying or reforming the classification have been made; we review some of them here, together with presenting some of the scenarios which present difficulties to the standard version. Recent results in both theoretical and observational SETI studies, especially the {Ĝ infrared survey (2014-2015), have persuasively shown that the emphasis on detectability inherent in Kardashev's classification obtains new significance and freshness. Several new movements and conceptual frameworks, such as the Dysonian SETI, tally extremely well with these developments. So, the apparent simplicity of the classification is highly deceptive: Kardashev's work offers a wealth of still insufficiently studied methodological and epistemological ramifications and it remains, in both letter and spirit, perhaps the worthiest legacy of the SETI "founding fathers".
Gallon, Marília Elias; Monge, Marcelo; Casoti, Rosana; Da Costa, Fernando Batista; Semir, João; Gobbo-Neto, Leonardo
2018-06-01
Vernonia sensu lato is the largest and most complex genus of the tribe Vernonieae (Asteraceae). The tribe is chemically characterized by the presence of sesquiterpene lactones and flavonoids. Over the years, several taxonomic classifications have been proposed for Vernonia s.l. and for the tribe; however, there has been no consensus among the researches. According to traditional classification, Vernonia s.l. comprises more than 1000 species divided into sections, subsections and series (sensu Bentham). In a more recent classification, these species have been segregated into other genera and some subtribes were proposed, while the genus Vernonia sensu stricto was restricted to 22 species distributed mainly in North America (sensu Robinson). In this study, species from the subtribes Vernoniinae, Lepidaploinae and Rolandrinae were analyzed by UHPLC-UV-HRMS followed by multivariate statistical analysis. Data mining was performed using unsupervised (HCA and PCA) and supervised methods (OPLS-DA). The HCA showed the segregation of the species into four main groups. Comparing the HCA with taxonomical classifications of Vernonieae, we observed that the groups of the dendogram, based on metabolic profiling, were in accordance with the generic classification proposed by Robinson and with previous phylogenetic studies. The species of the genera Stenocephalum, Stilpnopappus, Strophopappus and Rolandra (Group 1) were revealed to be more related to the species of the genus Vernonanthura (Group 2), while the genera Cyrtocymura, Chrysolaena and Echinocoryne (Group 3) were chemically more similar to the genera Lessingianthus and Lepidaploa (Group 4). These findings indicated that the subtribes Vernoniinae and Lepidaploinae are non-chemically homogeneous groups and highlighted the application of untargeted metabolomic tools for taxonomy and as indicators of species evolution. Discriminant compounds for the groups obtained by OPLS-DA were determined. Groups 1 and 2 were characterized by the presence of 3',4'-dimethoxyluteolin, glaucolide A and 8-tigloyloxyglaucolide A. The species of Groups 3 and 4 were characterized by the presence of putative acacetin 7-O-rutinoside and glaucolide B. Therefore, untargeted metabolomic approach combined with multivariate statistical analysis, as proposed herein, allowed the identification of potential chemotaxonomic markers, helping in the taxonomic classifications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bayoumi, Ahmed B; Laviv, Yosef; Yokus, Burhan; Efe, Ibrahim E; Toktas, Zafer Orkun; Kilic, Turker; Demir, Mustafa K; Konya, Deniz; Kasper, Ekkehard M
2017-11-01
1) To provide neurosurgeons and radiologists with a new quantitative and anatomical method to describe spinal meningiomas (SM) consistently. 2) To provide a guide to the surgical approach needed and amount of bony resection required based on the proposed classification. 3) To report the distribution of our 58 cases of SM over different Stages and Subtypes in correlation to the surgical treatment needed for each case. 4) To briefly review the literature on the rare non-conventional surgical corridors to resect SM. We reviewed the literature to report on previously published cohorts and classifications used to describe the location of the tumor inside the spinal canal. We reviewed the cases that were published prior showing non-conventional surgical approaches to resect spinal meningiomas. We proposed our classification system composed of Staging based on maximal cross-sectional surface area of tumor inside canal, Typing based on number of quadrants occupied by tumor and Subtyping based on location of the tumor bulk to spinal cord. Extradural and extra-spinal growth were also covered by our classification. We then applied it retrospectively on our 58 cases. 12 articles were published illustrating overlapping terms to describe spinal meningiomas. Another 7 articles were published reporting on 23 cases of anteriorly located spinal meningiomas treated with approaches other than laminectomies/laminoplasties. 4 Types, 9 Subtypes and 4 Stages were described in our Classification System. In our series of 58 patients, no midline anterior type was represented. Therefore, all our cases were treated by laminectomies or laminoplasties (with/without facetectomies) except a case with a paraspinal component where a costotransversectomy was needed. Spinal meningiomas can be radiologically described in a precise fashion. Selection of surgical corridor depends mainly on location of tumor bulk inside canal. Copyright © 2017 Elsevier B.V. All rights reserved.
43 CFR 2462.1 - Publication of notice of, and public hearings on, proposed classification.
Code of Federal Regulations, 2011 CFR
2011-10-01
... hearings on, proposed classification. 2462.1 Section 2462.1 Public Lands: Interior Regulations Relating to... (2000) BUREAU INITIATED CLASSIFICATION SYSTEM Disposal Classification Procedure: Over 2,560 Acres § 2462.1 Publication of notice of, and public hearings on, proposed classification. The authorized officer...
Hyperspectral imaging of neoplastic progression in a mouse model of oral carcinogenesis
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Chen, Zhuo Georgia; Fei, Baowei
2016-03-01
Hyperspectral imaging (HSI) is an emerging modality for medical applications and holds great potential for noninvasive early detection of cancer. It has been reported that early cancer detection can improve the survival and quality of life of head and neck cancer patients. In this paper, we explored the possibility of differentiating between premalignant lesions and healthy tongue tissue using hyperspectral imaging in a chemical induced oral cancer animal model. We proposed a novel classification algorithm for cancer detection using hyperspectral images. The method detected the dysplastic tissue with an average area under the curve (AUC) of 0.89. The hyperspectral imaging and classification technique may provide a new tool for oral cancer detection.
Maturity assessment of harumanis mango using thermal camera sensor
NASA Astrophysics Data System (ADS)
Sa'ad, F. S. A.; Shakaff, A. Y. Md.; Zakaria, A.; Abdullah, A. H.; Ibrahim, M. F.
2017-03-01
The perceived quality of fruits, such as mangoes, is greatly dependent on many parameters such as ripeness, shape, size, and is influenced by other factors such as harvesting time. Unfortunately, a manual fruit grading has several drawbacks such as subjectivity, tediousness and inconsistency. By automating the procedure, as well as developing new classification technique, it may solve these problems. This paper presents the novel work on the using Infrared as a Tool in Quality Monitoring of Harumanis Mangoes. The histogram of infrared image was used to distinguish and classify the level of ripeness of the fruits based on the colour spectrum by week. The approach proposed thermal data was able to achieve 90.5% correct classification.
NASA Astrophysics Data System (ADS)
Milioto, A.; Lottes, P.; Stachniss, C.
2017-08-01
UAVs are becoming an important tool for field monitoring and precision farming. A prerequisite for observing and analyzing fields is the ability to identify crops and weeds from image data. In this paper, we address the problem of detecting the sugar beet plants and weeds in the field based solely on image data. We propose a system that combines vegetation detection and deep learning to obtain a high-quality classification of the vegetation in the field into value crops and weeds. We implemented and thoroughly evaluated our system on image data collected from different sugar beet fields and illustrate that our approach allows for accurately identifying the weeds on the field.
Krueger, Richard B; Reed, Geoffrey M; First, Michael B; Marais, Adele; Kismodi, Eszter; Briken, Peer
2017-07-01
The World Health Organization is currently developing the 11th revision of the International Classifications of Diseases and Related Health Problems (ICD-11), with approval of the ICD-11 by the World Health Assembly anticipated in 2018. The Working Group on the Classification of Sexual Disorders and Sexual Health (WGSDSH) was created and charged with reviewing and making recommendations for categories related to sexuality that are contained in the chapter of Mental and Behavioural Disorders in ICD-10 (World Health Organization 1992a). Among these categories was the ICD-10 grouping F65, Disorders of sexual preference, which describes conditions now widely referred to as Paraphilic Disorders. This article reviews the evidence base, rationale, and recommendations for the proposed revisions in this area for ICD-11 and compares them with DSM-5. The WGSDSH recommended that the grouping, Disorders of sexual preference, be renamed to Paraphilic Disorders and be limited to disorders that involve sexual arousal patterns that focus on non-consenting others or are associated with substantial distress or direct risk of injury or death. Consistent with this framework, the WGSDSH also recommended that the ICD-10 categories of Fetishism, Fetishistic Transvestism, and Sadomasochism be removed from the classification and new categories of Coercive Sexual Sadism Disorder, Frotteuristic Disorder, Other Paraphilic Disorder Involving Non-Consenting Individuals, and Other Paraphilic Disorder Involving Solitary Behaviour or Consenting Individuals be added. The WGSDSH's proposals for Paraphilic Disorders in ICD-11 are based on the WHO's role as a global public health agency and the ICD's function as a public health reporting tool.
Wang, Wei; Ackland, David C; McClelland, Jodie A; Webster, Kate E; Halgamuge, Saman
2018-01-01
Quantitative gait analysis is an important tool in objective assessment and management of total knee arthroplasty (TKA) patients. Studies evaluating gait patterns in TKA patients have tended to focus on discrete data such as spatiotemporal information, joint range of motion and peak values of kinematics and kinetics, or consider selected principal components of gait waveforms for analysis. These strategies may not have the capacity to capture small variations in gait patterns associated with each joint across an entire gait cycle, and may ultimately limit the accuracy of gait classification. The aim of this study was to develop an automatic feature extraction method to analyse patterns from high-dimensional autocorrelated gait waveforms. A general linear feature extraction framework was proposed and a hierarchical partial least squares method derived for discriminant analysis of multiple gait waveforms. The effectiveness of this strategy was verified using a dataset of joint angle and ground reaction force waveforms from 43 patients after TKA surgery and 31 healthy control subjects. Compared with principal component analysis and partial least squares methods, the hierarchical partial least squares method achieved generally better classification performance on all possible combinations of waveforms, with the highest classification accuracy . The novel hierarchical partial least squares method proposed is capable of capturing virtually all significant differences between TKA patients and the controls, and provides new insights into data visualization. The proposed framework presents a foundation for more rigorous classification of gait, and may ultimately be used to evaluate the effects of interventions such as surgery and rehabilitation.
Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.
2007-01-01
The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.
Fractal measures of video-recorded trajectories can classify motor subtypes in Parkinson's Disease
NASA Astrophysics Data System (ADS)
Figueiredo, Thiago C.; Vivas, Jamile; Peña, Norberto; Miranda, José G. V.
2016-11-01
Parkinson's Disease is one of the most prevalent neurodegenerative diseases in the world and affects millions of individuals worldwide. The clinical criteria for classification of motor subtypes in Parkinson's Disease are subjective and may be misleading when symptoms are not clearly identifiable. A video recording protocol was used to measure hand tremor of 14 individuals with Parkinson's Disease and 7 healthy subjects. A method for motor subtype classification was proposed based on the spectral distribution of the movement and compared with the existing clinical criteria. Box-counting dimension and Hurst Exponent calculated from the trajectories were used as the relevant measures for the statistical tests. The classification based on the power-spectrum is shown to be well suited to separate patients with and without tremor from healthy subjects and could provide clinicians with a tool to aid in the diagnosis of patients in an early stage of the disease.
Transient classification in LIGO data using difference boosting neural network
NASA Astrophysics Data System (ADS)
Mukund, N.; Abraham, S.; Kandhasamy, S.; Mitra, S.; Philip, N. S.
2017-05-01
Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers, we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on nine simulated classes of gravitational wave transients and also LIGO's sixth science run hardware injections are reported. Targeted searches for a couple of known classes of nonastrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.
U.S. Geological Survey ArcMap Sediment Classification tool
O'Malley, John
2007-01-01
The U.S. Geological Survey (USGS) ArcMap Sediment Classification tool is a custom toolbar that extends the Environmental Systems Research Institute, Inc. (ESRI) ArcGIS 9.2 Desktop application to aid in the analysis of seabed sediment classification. The tool uses as input either a point data layer with field attributes containing percentage of gravel, sand, silt, and clay or four raster data layers representing a percentage of sediment (0-100%) for the various sediment grain size analysis: sand, gravel, silt and clay. This tool is designed to analyze the percent of sediment at a given location and classify the sediments according to either the Folk (1954, 1974) or Shepard (1954) as modified by Schlee(1973) classification schemes. The sediment analysis tool is based upon the USGS SEDCLASS program (Poppe, et al. 2004).
Classification of multiple sclerosis lesions using adaptive dictionary learning.
Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian
2015-12-01
This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bréant, C; Borst, F; Campi, D; Griesser, V; Momjian, S
1999-01-01
The use of a controlled vocabulary set in a hospital-wide clinical information system is of crucial importance for many departmental database systems to communicate and exchange information. In the absence of an internationally recognized clinical controlled vocabulary set, a new extension of the International statistical Classification of Diseases (ICD) is proposed. It expands the scope of the standard ICD beyond diagnosis and procedures to clinical terminology. In addition, the common Clinical Findings Dictionary (CFD) further records the definition of clinical entities. The construction of the vocabulary set and the CFD is incremental and manual. Tools have been implemented to facilitate the tasks of defining/maintaining/publishing dictionary versions. The design of database applications in the integrated clinical information system is driven by the CFD which is part of the Medical Questionnaire Designer tool. Several integrated clinical database applications in the field of diabetes and neuro-surgery have been developed at the HUG.
Bréant, C.; Borst, F.; Campi, D.; Griesser, V.; Momjian, S.
1999-01-01
The use of a controlled vocabulary set in a hospital-wide clinical information system is of crucial importance for many departmental database systems to communicate and exchange information. In the absence of an internationally recognized clinical controlled vocabulary set, a new extension of the International statistical Classification of Diseases (ICD) is proposed. It expands the scope of the standard ICD beyond diagnosis and procedures to clinical terminology. In addition, the common Clinical Findings Dictionary (CFD) further records the definition of clinical entities. The construction of the vocabulary set and the CFD is incremental and manual. Tools have been implemented to facilitate the tasks of defining/maintaining/publishing dictionary versions. The design of database applications in the integrated clinical information system is driven by the CFD which is part of the Medical Questionnaire Designer tool. Several integrated clinical database applications in the field of diabetes and neuro-surgery have been developed at the HUG. Images Figure 1 PMID:10566451
43 CFR 2450.3 - Proposed classification decision.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Proposed classification decision. 2450.3... MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) PETITION-APPLICATION CLASSIFICATION SYSTEM Petition-Application Procedures § 2450.3 Proposed classification decision. (a) The State Director...
Complex extreme learning machine applications in terahertz pulsed signals feature sets.
Yin, X-X; Hadjiloucas, S; Zhang, Y
2014-11-01
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dinov, Ivo D; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H V; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D Stott; Toga, Arthur W
2008-05-28
The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu.
Dinov, Ivo D.; Rubin, Daniel; Lorensen, William; Dugan, Jonathan; Ma, Jeff; Murphy, Shawn; Kirschner, Beth; Bug, William; Sherman, Michael; Floratos, Aris; Kennedy, David; Jagadish, H. V.; Schmidt, Jeanette; Athey, Brian; Califano, Andrea; Musen, Mark; Altman, Russ; Kikinis, Ron; Kohane, Isaac; Delp, Scott; Parker, D. Stott; Toga, Arthur W.
2008-01-01
The advancement of the computational biology field hinges on progress in three fundamental directions – the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources–data, software tools and web-services. The iTools design, implementation and resource meta - data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long-term resource management. We demonstrate several applications of iTools as a framework for integrated bioinformatics. iTools and the complete details about its specifications, usage and interfaces are available at the iTools web page http://iTools.ccb.ucla.edu. PMID:18509477
CAD-RADS - a new clinical decision support tool for coronary computed tomography angiography.
Foldyna, Borek; Szilveszter, Bálint; Scholtz, Jan-Erik; Banerji, Dahlia; Maurovich-Horvat, Pál; Hoffmann, Udo
2018-04-01
Coronary computed tomography angiography (CTA) has been established as an accurate method to non-invasively assess coronary artery disease (CAD). The proposed 'Coronary Artery Disease Reporting and Data System' (CAD-RADS) may enable standardised reporting of the broad spectrum of coronary CTA findings related to the presence, extent and composition of coronary atherosclerosis. The CAD-RADS classification is a comprehensive tool for summarising findings on a per-patient-basis dependent on the highest-grade coronary artery lesion, ranging from CAD-RADS 0 (absence of CAD) to CAD-RADS 5 (total occlusion of a coronary artery). In addition, it provides suggestions for clinical management for each classification, including further testing and therapeutic options. Despite some limitations, CAD-RADS may facilitate improved communication between imagers and patient caregivers. As such, CAD-RADS may enable a more efficient use of coronary CTA leading to more accurate utilisation of invasive coronary angiograms. Furthermore, widespread use of CAD-RADS may facilitate registry-based research of diagnostic and prognostic aspects of CTA. • CAD-RADS is a tool for standardising coronary CTA reports. • CAD-RADS includes clinical treatment recommendations based on CTA findings. • CAD-RADS has the potential to reduce variability of CTA reports.
2012-01-01
Background Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-)families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets), making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. Results We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. Conclusions LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining the output of software for predicting LTR retrotransposons up to the stage of preparing full-length reference sequence libraries. The LTRsift software is freely available at http://www.zbh.uni-hamburg.de/LTRsift under an open-source license. PMID:23131050
Steinbiss, Sascha; Kastens, Sascha; Kurtz, Stefan
2012-11-07
Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-)families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets), making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining the output of software for predicting LTR retrotransposons up to the stage of preparing full-length reference sequence libraries. The LTRsift software is freely available at http://www.zbh.uni-hamburg.de/LTRsift under an open-source license.
Evans, Melissa; Hocking, Clare; Kersten, Paula
2017-12-01
This study aim was to evaluate whether the Extended International Classification of Functioning, Disability and Health Core Set for Stroke captured the interventions of a community stroke rehabilitation team situated in a large city in New Zealand. It was proposed that the results would identify the contribution of each discipline, and the gaps and differences in service provision to Māori and non-Māori. Applying the Extended International Classification of Functioning, Disability and Health Core Set for Stroke in this way would also inform whether this core set should be adopted in New Zealand. Interventions were retrospectively extracted from 18 medical records and linked to the International Classification of Functioning, Disability and Health and the Extended International Classification of Functioning, Disability and Health Core Set for Stroke. The frequencies of linked interventions and the health discipline providing the intervention were calculated. Analysis revealed that 98.8% of interventions provided by the rehabilitation team could be linked to the Extended International Classification of Functioning, Disability and Health Core Set for Stroke, with more interventions for body function and structure than for activities and participation; no interventions for emotional concerns; and limited interventions for community, social and civic life. Results support previous recommendations for additions to the EICSS. The results support the use of the Extended International Classification of Functioning, Disability and Health Core Set for Stroke in New Zealand and demonstrates its use as a quality assurance tool that can evaluate the scope and practice of a rehabilitation service. Implications for Rehabilitation The Extended International Classification of Functioning Disability and Health Core Set for Stroke appears to represent the stroke interventions of a community stroke rehabilitation team in New Zealand. As a result, researchers and clinicians may have increased confidence to use this core set in research and clinical practice. The Extended International Classification of Functioning Disability and Health Core Set for Stroke can be used as a quality assurance tool to establish whether a community stroke rehabilitation team is meeting the functional needs of its stroke population.
NASA Astrophysics Data System (ADS)
Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros
2012-11-01
Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.
NASA Astrophysics Data System (ADS)
Craig, Paul; Kennedy, Jessie
2008-01-01
An increasingly common approach being taken by taxonomists to define the relationships between taxa in alternative hierarchical classifications is to use a set-based notation which states relationship between two taxa from alternative classifications. Textual recording of these relationships is cumbersome and difficult for taxonomists to manage. While text based GUI tools are beginning to appear which ease the process, these have several limitations. Interactive visual tools offer greater potential to allow taxonomists to explore the taxa in these hierarchies and specify such relationships. This paper describes the Concept Relationship Editor, an interactive visualisation tool designed to support the assertion of relationships between taxonomic classifications. The tool operates using an interactive space-filling adjacency layout which allows users to expand multiple lists of taxa with common parents so they can explore and assert relationships between two classifications.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... Proposed Classification of Public Lands/Minerals for State Indemnity Selection, Colorado AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Proposed Classification. SUMMARY: The Colorado State Board of Land Commissioners (State) has filed a petition for classification and application to obtain...
Temporally-aware algorithms for the classification of anuran sounds.
Luque, Amalia; Romero-Lemos, Javier; Carrasco, Alejandro; Gonzalez-Abril, Luis
2018-01-01
Several authors have shown that the sounds of anurans can be used as an indicator of climate change. Hence, the recording, storage and further processing of a huge number of anuran sounds, distributed over time and space, are required in order to obtain this indicator. Furthermore, it is desirable to have algorithms and tools for the automatic classification of the different classes of sounds. In this paper, six classification methods are proposed, all based on the data-mining domain, which strive to take advantage of the temporal character of the sounds. The definition and comparison of these classification methods is undertaken using several approaches. The main conclusions of this paper are that: (i) the sliding window method attained the best results in the experiments presented, and even outperformed the hidden Markov models usually employed in similar applications; (ii) noteworthy overall classification performance has been obtained, which is an especially striking result considering that the sounds analysed were affected by a highly noisy background; (iii) the instance selection for the determination of the sounds in the training dataset offers better results than cross-validation techniques; and (iv) the temporally-aware classifiers have revealed that they can obtain better performance than their non-temporally-aware counterparts.
Temporally-aware algorithms for the classification of anuran sounds
Gonzalez-Abril, Luis
2018-01-01
Several authors have shown that the sounds of anurans can be used as an indicator of climate change. Hence, the recording, storage and further processing of a huge number of anuran sounds, distributed over time and space, are required in order to obtain this indicator. Furthermore, it is desirable to have algorithms and tools for the automatic classification of the different classes of sounds. In this paper, six classification methods are proposed, all based on the data-mining domain, which strive to take advantage of the temporal character of the sounds. The definition and comparison of these classification methods is undertaken using several approaches. The main conclusions of this paper are that: (i) the sliding window method attained the best results in the experiments presented, and even outperformed the hidden Markov models usually employed in similar applications; (ii) noteworthy overall classification performance has been obtained, which is an especially striking result considering that the sounds analysed were affected by a highly noisy background; (iii) the instance selection for the determination of the sounds in the training dataset offers better results than cross-validation techniques; and (iv) the temporally-aware classifiers have revealed that they can obtain better performance than their non-temporally-aware counterparts. PMID:29740517
Robust feature detection and local classification for surfaces based on moment analysis.
Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru
2004-01-01
The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.
High-order distance-based multiview stochastic learning in image classification.
Yu, Jun; Rui, Yong; Tang, Yuan Yan; Tao, Dacheng
2014-12-01
How do we find all images in a larger set of images which have a specific content? Or estimate the position of a specific object relative to the camera? Image classification methods, like support vector machine (supervised) and transductive support vector machine (semi-supervised), are invaluable tools for the applications of content-based image retrieval, pose estimation, and optical character recognition. However, these methods only can handle the images represented by single feature. In many cases, different features (or multiview data) can be obtained, and how to efficiently utilize them is a challenge. It is inappropriate for the traditionally concatenating schema to link features of different views into a long vector. The reason is each view has its specific statistical property and physical interpretation. In this paper, we propose a high-order distance-based multiview stochastic learning (HD-MSL) method for image classification. HD-MSL effectively combines varied features into a unified representation and integrates the labeling information based on a probabilistic framework. In comparison with the existing strategies, our approach adopts the high-order distance obtained from the hypergraph to replace pairwise distance in estimating the probability matrix of data distribution. In addition, the proposed approach can automatically learn a combination coefficient for each view, which plays an important role in utilizing the complementary information of multiview data. An alternative optimization is designed to solve the objective functions of HD-MSL and obtain different views on coefficients and classification scores simultaneously. Experiments on two real world datasets demonstrate the effectiveness of HD-MSL in image classification.
NASA Astrophysics Data System (ADS)
Balouchestani, Mohammadreza
2017-05-01
Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.
The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.
Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T
2011-09-30
Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Multi-level discriminative dictionary learning with application to large scale image classification.
Shen, Li; Sun, Gang; Huang, Qingming; Wang, Shuhui; Lin, Zhouchen; Wu, Enhua
2015-10-01
The sparse coding technique has shown flexibility and capability in image representation and analysis. It is a powerful tool in many visual applications. Some recent work has shown that incorporating the properties of task (such as discrimination for classification task) into dictionary learning is effective for improving the accuracy. However, the traditional supervised dictionary learning methods suffer from high computation complexity when dealing with large number of categories, making them less satisfactory in large scale applications. In this paper, we propose a novel multi-level discriminative dictionary learning method and apply it to large scale image classification. Our method takes advantage of hierarchical category correlation to encode multi-level discriminative information. Each internal node of the category hierarchy is associated with a discriminative dictionary and a classification model. The dictionaries at different layers are learnt to capture the information of different scales. Moreover, each node at lower layers also inherits the dictionary of its parent, so that the categories at lower layers can be described with multi-scale information. The learning of dictionaries and associated classification models is jointly conducted by minimizing an overall tree loss. The experimental results on challenging data sets demonstrate that our approach achieves excellent accuracy and competitive computation cost compared with other sparse coding methods for large scale image classification.
Using Supervised Learning Techniques for Diagnosis of Dynamic Systems
2002-05-04
M. Gasca 2 , Juan A. Ortega2 Abstract. This paper describes an approach based on supervised diagnose systems faults are needed to maintain the systems...labelled, data will be used for this purpose [5] [6]. treated to add additional information about the running of system. In [7] the fundaments of the based ...8] proposes classification tool to the set of labelled and treated data. This a consistency- based approach with qualitative models. way, any
Report of 2 cases of primary epithelioid hemangioendothelioma of the external iliac vein.
Muñoz, Alberto; Diaz-Perez, Julio A; Romero-Rojas, Alfredo E; Hernandez, Elizabeth; Martin-Berdazco, Francisco
2013-08-01
The epithelioid hemangioendothelioma (EHE) is a rare type of endothelial neoplasm found mainly in soft tissues and visceral organs and in extraordinary cases in large veins like the iliac veins. Currently, there is an active discussion in which EHE behavior, classification, new diagnostic tools, and treatment procedures are proposed. Here, we present 2 cases of EHE and discuss our experience in diagnosis and treatment of this neoplasm.
Data-driven automated acoustic analysis of human infant vocalizations using neural network tools.
Warlaumont, Anne S; Oller, D Kimbrough; Buder, Eugene H; Dale, Rick; Kozma, Robert
2010-04-01
Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f(0), duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network's weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network's receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations.
Geomorphic Flood Area (GFA): a QGIS tool for a cost-effective delineation of the floodplains
NASA Astrophysics Data System (ADS)
Samela, Caterina; Albano, Raffaele; Sole, Aurelia; Manfreda, Salvatore
2017-04-01
The importance of delineating flood hazard and risk areas at a global scale has been highlighted for many years. However, its complete achievement regularly encounters practical difficulties, above all the lack of data and implementation costs. In conditions of scarce data availability (e.g. ungauged basins, large-scale analyses), a fast and cost-effective floodplain delineation can be carried out using geomorphic methods (e.g., Manfreda et al., 2011; 2014). In particular, an automatic DEM-based procedure has been implemented in an open-source QGIS plugin named Geomorphic Flood Area - tool (GFA - tool). This tool performs a linear binary classification based on the recently proposed Geomorphic Flood Index (GFI), which exhibited high classification accuracy and reliability in several test sites located in Europe, United States and Africa (Manfreda et al., 2015; Samela et al., 2016, 2017; Samela, 2016). The GFA - tool is designed to make available to all users the proposed procedure, that includes a number of operations requiring good geomorphic and GIS competences. It allows computing the GFI through terrain analysis, turning it into a binary classifier, and training it on the base of a standard inundation map derived for a portion of the river basin (a minimum of 2% of the river basin's area is suggested) using detailed methods of analysis (e.g. flood hazard maps produced by emergency management agencies or river basin authorities). Finally, GFA - tool allows to extend the classification outside the calibration area to delineate the flood-prone areas across the entire river basin. The full analysis has been implemented in this plugin with a user-friendly interface that should make it easy to all user to apply the approach and produce the desired results. Keywords: flood susceptibility; data scarce environments; geomorphic flood index; linear binary classification; Digital elevation models (DEMs). References Manfreda, S., Di Leo, M., Sole, A., (2011). Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, 16(10), 781-790. Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the Use of Geomorphic Approaches for the Delineation of Flood Prone Areas, Journal of Hydrology, 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, Vol. 79 (2), pp 735-754. Samela, C. (2016), 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. University of Basilicata. Dataset. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 1-10. Samela, C., Troy, T.J., Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments, Advances in Water Resources (under review).
Thomas, Minta; De Brabanter, Kris; De Moor, Bart
2014-05-10
DNA microarrays are potentially powerful technology for improving diagnostic classification, treatment selection, and prognostic assessment. The use of this technology to predict cancer outcome has a history of almost a decade. Disease class predictors can be designed for known disease cases and provide diagnostic confirmation or clarify abnormal cases. The main input to this class predictors are high dimensional data with many variables and few observations. Dimensionality reduction of these features set significantly speeds up the prediction task. Feature selection and feature transformation methods are well known preprocessing steps in the field of bioinformatics. Several prediction tools are available based on these techniques. Studies show that a well tuned Kernel PCA (KPCA) is an efficient preprocessing step for dimensionality reduction, but the available bandwidth selection method for KPCA was computationally expensive. In this paper, we propose a new data-driven bandwidth selection criterion for KPCA, which is related to least squares cross-validation for kernel density estimation. We propose a new prediction model with a well tuned KPCA and Least Squares Support Vector Machine (LS-SVM). We estimate the accuracy of the newly proposed model based on 9 case studies. Then, we compare its performances (in terms of test set Area Under the ROC Curve (AUC) and computational time) with other well known techniques such as whole data set + LS-SVM, PCA + LS-SVM, t-test + LS-SVM, Prediction Analysis of Microarrays (PAM) and Least Absolute Shrinkage and Selection Operator (Lasso). Finally, we assess the performance of the proposed strategy with an existing KPCA parameter tuning algorithm by means of two additional case studies. We propose, evaluate, and compare several mathematical/statistical techniques, which apply feature transformation/selection for subsequent classification, and consider its application in medical diagnostics. Both feature selection and feature transformation perform well on classification tasks. Due to the dynamic selection property of feature selection, it is hard to define significant features for the classifier, which predicts classes of future samples. Moreover, the proposed strategy enjoys a distinctive advantage with its relatively lesser time complexity.
Content Classification: Leveraging New Tools and Librarians' Expertise.
ERIC Educational Resources Information Center
Starr, Jennie
1999-01-01
Presents factors for librarians to consider when decision-making about information retrieval. Discusses indexing theory; thesauri aids; controlled vocabulary or thesauri to increase access; humans versus machines; automated tools; product evaluations and evaluation criteria; automated classification tools; content server products; and document…
NASA Astrophysics Data System (ADS)
Ma, Ling; Lu, Guolan; Wang, Dongsheng; Wang, Xu; Chen, Zhuo Georgia; Muller, Susan; Chen, Amy; Fei, Baowei
2017-03-01
Hyperspectral imaging (HSI) is an emerging imaging modality that can provide a noninvasive tool for cancer detection and image-guided surgery. HSI acquires high-resolution images at hundreds of spectral bands, providing big data to differentiating different types of tissue. We proposed a deep learning based method for the detection of head and neck cancer with hyperspectral images. Since the deep learning algorithm can learn the feature hierarchically, the learned features are more discriminative and concise than the handcrafted features. In this study, we adopt convolutional neural networks (CNN) to learn the deep feature of pixels for classifying each pixel into tumor or normal tissue. We evaluated our proposed classification method on the dataset containing hyperspectral images from 12 tumor-bearing mice. Experimental results show that our method achieved an average accuracy of 91.36%. The preliminary study demonstrated that our deep learning method can be applied to hyperspectral images for detecting head and neck tumors in animal models.
Alignment of ICNP® 2.0 ontology and a proposed INCP® Brazilian ontology.
Carvalho, Carina Maris Gaspar; Cubas, Marcia Regina; Malucelli, Andreia; Nóbrega, Maria Miriam Lima da
2014-01-01
to align the International Classification for Nursing Practice (ICNP®) Version 2.0 ontology and a proposed INCP® Brazilian Ontology. document-based, exploratory and descriptive study, the empirical basis of which was provided by the ICNP® 2.0 Ontology and the INCP® Brazilian Ontology. The ontology alignment was performed using a computer tool with algorithms to identify correspondences between concepts, which were organized and analyzed according to their presence or absence, their names, and their sibling, parent, and child classes. there were 2,682 concepts present in the ICNP® 2.0 Ontology that were missing in the Brazilian Ontology; 717 concepts present in the Brazilian Ontology were missing in the ICNP® 2.0 Ontology; and there were 215 pairs of matching concepts. it is believed that the correspondences identified in this study might contribute to the interoperability between the representations of nursing practice elements in ICNP®, thus allowing the standardization of nursing records based on this classification system.
Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue.
Dias, Luís G; Fernandes, Andreia; Veloso, Ana C A; Machado, Adélio A S C; Pereira, José A; Peres, António M
2014-10-01
Label authentication of monovarietal extra virgin olive oils is of great importance. A novel approach based on a potentiometric electronic tongue is proposed to classify oils obtained from single olive cultivars (Portuguese cvs. Cobrançosa, Madural, Verdeal Transmontana; Spanish cvs. Arbequina, Hojiblanca, Picual). A meta-heuristic simulated annealing algorithm was applied to select the most informative sets of sensors to establish predictive linear discriminant models. Olive oils were correctly classified according to olive cultivar (sensitivities greater than 97%) and each Spanish olive oil was satisfactorily discriminated from the Portuguese ones with the exception of cv. Arbequina (sensitivities from 61% to 98%). Also, the discriminant ability was related to the polar compounds contents of olive oils and so, indirectly, with organoleptic properties like bitterness, astringency or pungency. Therefore the proposed E-tongue can be foreseen as a useful auxiliary tool for trained sensory panels for the classification of monovarietal extra virgin olive oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vehicle Maneuver Detection with Accelerometer-Based Classification.
Cervantes-Villanueva, Javier; Carrillo-Zapata, Daniel; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F
2016-09-29
In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.
2011-01-01
Background Cardiotocography (CTG) is the most widely used tool for fetal surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the expertise and experience of the clinician involved. Several approaches have been proposed for the effective interpretation of FHR. In this paper, a new approach for FHR feature extraction based on empirical mode decomposition (EMD) is proposed, which was used along with support vector machine (SVM) for the classification of FHR recordings as 'normal' or 'at risk'. Methods The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a dataset consisting of 90 randomly selected records of 20 minutes duration was formed from these. All records were labelled as 'normal' or 'at risk' by two experienced obstetricians. A training set was formed by 60 records, the remaining 30 left as the testing set. The standard deviations of the EMD components are input as features to a support vector machine (SVM) to classify FHR samples. Results For the training set, a five-fold cross validation test resulted in an accuracy of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%. The Kappa value for the training set was .923. Application of the proposed method to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa value for the testing set was .684. Conclusions Based on the overall performance of the system it can be stated that the proposed methodology is a promising new approach for the feature extraction and classification of FHR signals. PMID:21244712
A comparison of autonomous techniques for multispectral image analysis and classification
NASA Astrophysics Data System (ADS)
Valdiviezo-N., Juan C.; Urcid, Gonzalo; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso
2012-10-01
Multispectral imaging has given place to important applications related to classification and identification of objects from a scene. Because of multispectral instruments can be used to estimate the reflectance of materials in the scene, these techniques constitute fundamental tools for materials analysis and quality control. During the last years, a variety of algorithms has been developed to work with multispectral data, whose main purpose has been to perform the correct classification of the objects in the scene. The present study introduces a brief review of some classical as well as a novel technique that have been used for such purposes. The use of principal component analysis and K-means clustering techniques as important classification algorithms is here discussed. Moreover, a recent method based on the min-W and max-M lattice auto-associative memories, that was proposed for endmember determination in hyperspectral imagery, is introduced as a classification method. Besides a discussion of their mathematical foundation, we emphasize their main characteristics and the results achieved for two exemplar images conformed by objects similar in appearance, but spectrally different. The classification results state that the first components computed from principal component analysis can be used to highlight areas with different spectral characteristics. In addition, the use of lattice auto-associative memories provides good results for materials classification even in the cases where some spectral similarities appears in their spectral responses.
Himmelmann, Kate; Horber, Veronka; De La Cruz, Javier; Horridge, Karen; Mejaski-Bosnjak, Vlatka; Hollody, Katalin; Krägeloh-Mann, Ingeborg
2017-01-01
To develop and evaluate a classification system for magnetic resonance imaging (MRI) findings of children with cerebral palsy (CP) that can be used in CP registers. The classification system was based on pathogenic patterns occurring in different periods of brain development. The MRI classification system (MRICS) consists of five main groups: maldevelopments, predominant white matter injury, predominant grey matter injury, miscellaneous, and normal findings. A detailed manual for the descriptions of these patterns was developed, including test cases (www.scpenetwork.eu/en/my-scpe/rtm/neuroimaging/cp-neuroimaging/). A literature review was performed and MRICS was compared with other classification systems. An exercise was carried out to check applicability and interrater reliability. Professionals working with children with CP or in CP registers were invited to participate in the exercise and chose to classify either 18 MRIs or MRI reports of children with CP. Classification systems in the literature were compatible with MRICS and harmonization possible. Interrater reliability was found to be good overall (k=0.69; 0.54-0.82) among the 41 participants and very good (k=0.81; 0.74-0.92) using the classification based on imaging reports. Surveillance of Cerebral Palsy in Europe (SCPE) proposes the MRICS as a reliable tool. Together with its manual it is simple to apply for CP registers. © 2016 Mac Keith Press.
Colorectal Cancer Classification and Cell Heterogeneity: A Systems Oncology Approach
Blanco-Calvo, Moisés; Concha, Ángel; Figueroa, Angélica; Garrido, Federico; Valladares-Ayerbes, Manuel
2015-01-01
Colorectal cancer is a heterogeneous disease that manifests through diverse clinical scenarios. During many years, our knowledge about the variability of colorectal tumors was limited to the histopathological analysis from which generic classifications associated with different clinical expectations are derived. However, currently we are beginning to understand that under the intense pathological and clinical variability of these tumors there underlies strong genetic and biological heterogeneity. Thus, with the increasing available information of inter-tumor and intra-tumor heterogeneity, the classical pathological approach is being displaced in favor of novel molecular classifications. In the present article, we summarize the most relevant proposals of molecular classifications obtained from the analysis of colorectal tumors using powerful high throughput techniques and devices. We also discuss the role that cancer systems biology may play in the integration and interpretation of the high amount of data generated and the challenges to be addressed in the future development of precision oncology. In addition, we review the current state of implementation of these novel tools in the pathological laboratory and in clinical practice. PMID:26084042
Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.
Kilic, Niyazi; Hosgormez, Erkan
2016-03-01
Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.
An alternative respiratory sounds classification system utilizing artificial neural networks.
Oweis, Rami J; Abdulhay, Enas W; Khayal, Amer; Awad, Areen
2015-01-01
Computerized lung sound analysis involves recording lung sound via an electronic device, followed by computer analysis and classification based on specific signal characteristics as non-linearity and nonstationarity caused by air turbulence. An automatic analysis is necessary to avoid dependence on expert skills. This work revolves around exploiting autocorrelation in the feature extraction stage. All process stages were implemented in MATLAB. The classification process was performed comparatively using both artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS) toolboxes. The methods have been applied to 10 different respiratory sounds for classification. The ANN was superior to the ANFIS system and returned superior performance parameters. Its accuracy, specificity, and sensitivity were 98.6%, 100%, and 97.8%, respectively. The obtained parameters showed superiority to many recent approaches. The promising proposed method is an efficient fast tool for the intended purpose as manifested in the performance parameters, specifically, accuracy, specificity, and sensitivity. Furthermore, it may be added that utilizing the autocorrelation function in the feature extraction in such applications results in enhanced performance and avoids undesired computation complexities compared to other techniques.
Bayesian learning for spatial filtering in an EEG-based brain-computer interface.
Zhang, Haihong; Yang, Huijuan; Guan, Cuntai
2013-07-01
Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.
Speaker gender identification based on majority vote classifiers
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2017-03-01
Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.
Development of a brain MRI-based hidden Markov model for dementia recognition.
Chen, Ying; Pham, Tuan D
2013-01-01
Dementia is an age-related cognitive decline which is indicated by an early degeneration of cortical and sub-cortical structures. Characterizing those morphological changes can help to understand the disease development and contribute to disease early prediction and prevention. But modeling that can best capture brain structural variability and can be valid in both disease classification and interpretation is extremely challenging. The current study aimed to establish a computational approach for modeling the magnetic resonance imaging (MRI)-based structural complexity of the brain using the framework of hidden Markov models (HMMs) for dementia recognition. Regularity dimension and semi-variogram were used to extract structural features of the brains, and vector quantization method was applied to convert extracted feature vectors to prototype vectors. The output VQ indices were then utilized to estimate parameters for HMMs. To validate its accuracy and robustness, experiments were carried out on individuals who were characterized as non-demented and mild Alzheimer's diseased. Four HMMs were constructed based on the cohort of non-demented young, middle-aged, elder and demented elder subjects separately. Classification was carried out using a data set including both non-demented and demented individuals with a wide age range. The proposed HMMs have succeeded in recognition of individual who has mild Alzheimer's disease and achieved a better classification accuracy compared to other related works using different classifiers. Results have shown the ability of the proposed modeling for recognition of early dementia. The findings from this research will allow individual classification to support the early diagnosis and prediction of dementia. By using the brain MRI-based HMMs developed in our proposed research, it will be more efficient, robust and can be easily used by clinicians as a computer-aid tool for validating imaging bio-markers for early prediction of dementia.
An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.
Mumtaz, Wajid; Saad, Mohamad Naufal B Mohamad; Kamel, Nidal; Ali, Syed Saad Azhar; Malik, Aamir Saeed
2018-01-01
The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. The SL features could be utilized as objective markers to screen the AUD patients and healthy controls. Copyright © 2017 Elsevier B.V. All rights reserved.
CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules.
Cestarelli, Valerio; Fiscon, Giulia; Felici, Giovanni; Bertolazzi, Paola; Weitschek, Emanuel
2016-03-01
Nowadays, knowledge extraction methods from Next Generation Sequencing data are highly requested. In this work, we focus on RNA-seq gene expression analysis and specifically on case-control studies with rule-based supervised classification algorithms that build a model able to discriminate cases from controls. State of the art algorithms compute a single classification model that contains few features (genes). On the contrary, our goal is to elicit a higher amount of knowledge by computing many classification models, and therefore to identify most of the genes related to the predicted class. We propose CAMUR, a new method that extracts multiple and equivalent classification models. CAMUR iteratively computes a rule-based classification model, calculates the power set of the genes present in the rules, iteratively eliminates those combinations from the data set, and performs again the classification procedure until a stopping criterion is verified. CAMUR includes an ad-hoc knowledge repository (database) and a querying tool.We analyze three different types of RNA-seq data sets (Breast, Head and Neck, and Stomach Cancer) from The Cancer Genome Atlas (TCGA) and we validate CAMUR and its models also on non-TCGA data. Our experimental results show the efficacy of CAMUR: we obtain several reliable equivalent classification models, from which the most frequent genes, their relationships, and the relation with a particular cancer are deduced. dmb.iasi.cnr.it/camur.php emanuel@iasi.cnr.it Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Tixier, Eliott; Raphel, Fabien; Lombardi, Damiano; Gerbeau, Jean-Frédéric
2017-01-01
The Micro-Electrode Array (MEA) device enables high-throughput electrophysiology measurements that are less labor-intensive than patch-clamp based techniques. Combined with human-induced pluripotent stem cells cardiomyocytes (hiPSC-CM), it represents a new and promising paradigm for automated and accurate in vitro drug safety evaluation. In this article, the following question is addressed: which features of the MEA signals should be measured to better classify the effects of drugs? A framework for the classification of drugs using MEA measurements is proposed. The classification is based on the ion channels blockades induced by the drugs. It relies on an in silico electrophysiology model of the MEA, a feature selection algorithm and automatic classification tools. An in silico model of the MEA is developed and is used to generate synthetic measurements. An algorithm that extracts MEA measurements features designed to perform well in a classification context is described. These features are called composite biomarkers. A state-of-the-art machine learning program is used to carry out the classification of drugs using experimental MEA measurements. The experiments are carried out using five different drugs: mexiletine, flecainide, diltiazem, moxifloxacin, and dofetilide. We show that the composite biomarkers outperform the classical ones in different classification scenarios. We show that using both synthetic and experimental MEA measurements improves the robustness of the composite biomarkers and that the classification scores are increased.
NASA Astrophysics Data System (ADS)
Langhammer, Jakub; Vacková, Tereza
2017-04-01
In the contribution, we are presenting a novel method, enabling objective detection and classification of the alluvial features resulting from flooding, based on the imagery, acquired by the unmanned aerial vehicles (UAVs, drones). We have proposed and tested a workflow, using two key data products of the UAV photogrammetry - the 2D orthoimage and 3D digital elevation model, together with derived information on surface texture for the consequent classification of erosional and depositional features resulting from the flood. The workflow combines the photogrammetric analysis of the UAV imagery, texture analysis of the DEM, and the supervised image classification. Application of the texture analysis and use of DEM data is aimed to enhance 2D information, resulting from the high-resolution orthoimage by adding the newly derived bands, which enhance potential for detection and classification of key types of fluvial features in the stream and the floodplain. The method was tested on the example of a snowmelt-driven flood in a montane stream in Sumava Mts., Czech Republic, Central Europe, that occurred in December 2015. Using the UAV platform DJI Inspire 1 equipped with the RGB camera there was acquired imagery covering a 1 km long stretch of a meandering creek with elevated fluvial dynamics. Agisoft Photoscan Pro was used to derive a point cloud and further the high-resolution seamless orthoimage and DEM, Orfeo toolkit and SAGA GIS tools were used for DEM analysis. From the UAV-based data inputs, a multi-band dataset was derived as a source for the consequent classification of fluvial landforms. The RGB channels of the derived orthoimage were completed by the selected texture feature layers and the information on 3D properties of the riverscape - the normalized DEM and terrain ruggedness. Haralick features, derived from the RGB channels, are used for extracting information on the surface texture, the terrain ruggedness index is used as a measure of local topographical variability. Based on this dataset, the supervised classification was performed to identify the fluvial features, including the fresh and old accumulations of different size, fresh bank erosion, in-stream features and the riparian zone vegetation, verified later by the field survey. The classification based on the fusion of high-resolution 2D and 3D data, derived from UAV imagery, enabled to identify and quantify the extent of recent and old accumulations, to distinguish the coarse and fine sediments or to separate the shallow and deep zones in the submerged zone of the channel. With the high operability of the data acquisition process, the proposed method appears to be a promising tool for rapid mapping and classification of flood effects in streams and floodplains.
Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Möller, Steffen; Hartmann, Enno; Kalies, Kai-Uwe; Suganthan, P N; Martinetz, Thomas
2010-12-01
Apoptosis is an essential process for controlling tissue homeostasis by regulating a physiological balance between cell proliferation and cell death. The subcellular locations of proteins performing the cell death are determined by mostly independent cellular mechanisms. The regular bioinformatics tools to predict the subcellular locations of such apoptotic proteins do often fail. This work proposes a model for the sorting of proteins that are involved in apoptosis, allowing us to both the prediction of their subcellular locations as well as the molecular properties that contributed to it. We report a novel hybrid Genetic Algorithm (GA)/Support Vector Machine (SVM) approach to predict apoptotic protein sequences using 119 sequence derived properties like frequency of amino acid groups, secondary structure, and physicochemical properties. GA is used for selecting a near-optimal subset of informative features that is most relevant for the classification. Jackknife cross-validation is applied to test the predictive capability of the proposed method on 317 apoptosis proteins. Our method achieved 85.80% accuracy using all 119 features and 89.91% accuracy for 25 features selected by GA. Our models were examined by a test dataset of 98 apoptosis proteins and obtained an overall accuracy of 90.34%. The results show that the proposed approach is promising; it is able to select small subsets of features and still improves the classification accuracy. Our model can contribute to the understanding of programmed cell death and drug discovery. The software and dataset are available at http://www.inb.uni-luebeck.de/tools-demos/apoptosis/GASVM.
Multiple Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2010-01-01
A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.
Determination of fragrance content in perfume by Raman spectroscopy and multivariate calibration
NASA Astrophysics Data System (ADS)
Godinho, Robson B.; Santos, Mauricio C.; Poppi, Ronei J.
2016-03-01
An alternative methodology is herein proposed for determination of fragrance content in perfumes and their classification according to the guidelines established by fine perfume manufacturers. The methodology is based on Raman spectroscopy associated with multivariate calibration, allowing the determination of fragrance content in a fast, nondestructive, and sustainable manner. The results were considered consistent with the conventional method, whose standard error of prediction values was lower than the 1.0%. This result indicates that the proposed technology is a feasible analytical tool for determination of the fragrance content in a hydro-alcoholic solution for use in manufacturing, quality control and regulatory agencies.
Rajagopal, Rekha; Ranganathan, Vidhyapriya
2018-06-05
Automation in cardiac arrhythmia classification helps medical professionals make accurate decisions about the patient's health. The aim of this work was to design a hybrid classification model to classify cardiac arrhythmias. The design phase of the classification model comprises the following stages: preprocessing of the cardiac signal by eliminating detail coefficients that contain noise, feature extraction through Daubechies wavelet transform, and arrhythmia classification using a collaborative decision from the K nearest neighbor classifier (KNN) and a support vector machine (SVM). The proposed model is able to classify 5 arrhythmia classes as per the ANSI/AAMI EC57: 1998 classification standard. Level 1 of the proposed model involves classification using the KNN and the classifier is trained with examples from all classes. Level 2 involves classification using an SVM and is trained specifically to classify overlapped classes. The final classification of a test heartbeat pertaining to a particular class is done using the proposed KNN/SVM hybrid model. The experimental results demonstrated that the average sensitivity of the proposed model was 92.56%, the average specificity 99.35%, the average positive predictive value 98.13%, the average F-score 94.5%, and the average accuracy 99.78%. The results obtained using the proposed model were compared with the results of discriminant, tree, and KNN classifiers. The proposed model is able to achieve a high classification accuracy.
DeepPap: Deep Convolutional Networks for Cervical Cell Classification.
Zhang, Ling; Le Lu; Nogues, Isabella; Summers, Ronald M; Liu, Shaoxiong; Yao, Jianhua
2017-11-01
Automation-assisted cervical screening via Pap smear or liquid-based cytology (LBC) is a highly effective cell imaging based cancer detection tool, where cells are partitioned into "abnormal" and "normal" categories. However, the success of most traditional classification methods relies on the presence of accurate cell segmentations. Despite sixty years of research in this field, accurate segmentation remains a challenge in the presence of cell clusters and pathologies. Moreover, previous classification methods are only built upon the extraction of hand-crafted features, such as morphology and texture. This paper addresses these limitations by proposing a method to directly classify cervical cells-without prior segmentation-based on deep features, using convolutional neural networks (ConvNets). First, the ConvNet is pretrained on a natural image dataset. It is subsequently fine-tuned on a cervical cell dataset consisting of adaptively resampled image patches coarsely centered on the nuclei. In the testing phase, aggregation is used to average the prediction scores of a similar set of image patches. The proposed method is evaluated on both Pap smear and LBC datasets. Results show that our method outperforms previous algorithms in classification accuracy (98.3%), area under the curve (0.99) values, and especially specificity (98.3%), when applied to the Herlev benchmark Pap smear dataset and evaluated using five-fold cross validation. Similar superior performances are also achieved on the HEMLBC (H&E stained manual LBC) dataset. Our method is promising for the development of automation-assisted reading systems in primary cervical screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivas-Ubach, Albert; Liu, Yina; Bianchi, Thomas S.
van Krevelen diagrams (O:C vs H:C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O:C and H:C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O:C vs. H:C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classificationmore » for biological samples analyzed by high-resolution mass spectrometry-based on an assessment of the C:H:O:N:P stoichiometric ratios of over 130,000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino-sugars, carbohydrates, nucleotides and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a significant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to further our understanding the ecosystem structure and function through the chemical characterization of different biological samples.« less
2016-10-01
are being conducted with 60 providers to assess practitioner needs and interests in the registry as well as pre-test the proposed registry survey . In...15. SUBJECT TERMS PTSD, qualitative interviews, survey development, best practices, CPGs 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...being; and to identify factors enabling the implementation of clinical best practices in the treatment of PTSD. This clinician-informed online survey and
Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm
NASA Astrophysics Data System (ADS)
Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad
2016-04-01
Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.
Descriptive Statistics of the Genome: Phylogenetic Classification of Viruses.
Hernandez, Troy; Yang, Jie
2016-10-01
The typical process for classifying and submitting a newly sequenced virus to the NCBI database involves two steps. First, a BLAST search is performed to determine likely family candidates. That is followed by checking the candidate families with the pairwise sequence alignment tool for similar species. The submitter's judgment is then used to determine the most likely species classification. The aim of this article is to show that this process can be automated into a fast, accurate, one-step process using the proposed alignment-free method and properly implemented machine learning techniques. We present a new family of alignment-free vectorizations of the genome, the generalized vector, that maintains the speed of existing alignment-free methods while outperforming all available methods. This new alignment-free vectorization uses the frequency of genomic words (k-mers), as is done in the composition vector, and incorporates descriptive statistics of those k-mers' positional information, as inspired by the natural vector. We analyze five different characterizations of genome similarity using k-nearest neighbor classification and evaluate these on two collections of viruses totaling over 10,000 viruses. We show that our proposed method performs better than, or as well as, other methods at every level of the phylogenetic hierarchy. The data and R code is available upon request.
Protein Structure Classification and Loop Modeling Using Multiple Ramachandran Distributions.
Najibi, Seyed Morteza; Maadooliat, Mehdi; Zhou, Lan; Huang, Jianhua Z; Gao, Xin
2017-01-01
Recently, the study of protein structures using angular representations has attracted much attention among structural biologists. The main challenge is how to efficiently model the continuous conformational space of the protein structures based on the differences and similarities between different Ramachandran plots. Despite the presence of statistical methods for modeling angular data of proteins, there is still a substantial need for more sophisticated and faster statistical tools to model the large-scale circular datasets. To address this need, we have developed a nonparametric method for collective estimation of multiple bivariate density functions for a collection of populations of protein backbone angles. The proposed method takes into account the circular nature of the angular data using trigonometric spline which is more efficient compared to existing methods. This collective density estimation approach is widely applicable when there is a need to estimate multiple density functions from different populations with common features. Moreover, the coefficients of adaptive basis expansion for the fitted densities provide a low-dimensional representation that is useful for visualization, clustering, and classification of the densities. The proposed method provides a novel and unique perspective to two important and challenging problems in protein structure research: structure-based protein classification and angular-sampling-based protein loop structure prediction.
Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Theotokas, Ioannis; Zoumpoulis, Pavlos; Hazle, John D; Kagadis, George C
2015-07-01
Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.
Geodemographics--a tool for health intelligence?
Abbas, J; Ojo, A; Orange, S
2009-01-01
In recent years, social marketing principles and techniques have featured at the heart of government proposals for improving health and tackling health inequalities. This, in part, has led to a shift in the type of information and intelligence needed to support service planning at all levels. In particular, there has been increasing interest in the use of commercial geodemographic classification systems. Despite the amount of activity and associated investment in this area, there is evidence of a real lack of understanding among users about the tools themselves, and the added value they are providing in the National Health Service. This paper describes some of the potential applications of geodemographic tools in the health sector, and explores issues for consideration when selecting or using a system. This paper also describes a potentially cost-effective and sustainable model for utilizing geodemographic tools as part of a regional insight function within the health service.
Li, Xiaoou; Yan, Yuning; Wei, Wenshi
2013-01-01
The early detection of subjects with probable cognitive deficits is crucial for effective appliance of treatment strategies. This paper explored a methodology used to discriminate between evoked related potential signals of stroke patients and their matched control subjects in a visual working memory paradigm. The proposed algorithm, which combined independent component analysis and orthogonal empirical mode decomposition, was applied to extract independent sources. Four types of target stimulus features including P300 peak latency, P300 peak amplitude, root mean square, and theta frequency band power were chosen. Evolutionary multiple kernel support vector machine (EMK-SVM) based on genetic programming was investigated to classify stroke patients and healthy controls. Based on 5-fold cross-validation runs, EMK-SVM provided better classification performance compared with other state-of-the-art algorithms. Comparing stroke patients with healthy controls using the proposed algorithm, we achieved the maximum classification accuracies of 91.76% and 82.23% for 0-back and 1-back tasks, respectively. Overall, the experimental results showed that the proposed method was effective. The approach in this study may eventually lead to a reliable tool for identifying suitable brain impairment candidates and assessing cognitive function.
12 CFR 1777.20 - Capital classifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... notice of proposed capital classification, holds core capital equaling or exceeding the minimum capital... classification, holds core capital equaling or exceeding the minimum capital level. (3) Significantly... the date specified in the notice of proposed capital classification, holds core capital less than the...
NASA Astrophysics Data System (ADS)
Jevtić, Dubravka R.; Avramov Ivić, Milka L.; Reljin, Irini S.; Reljin, Branimir D.; Plavec, Goran I.; Petrović, Slobodan D.; Mijin, Dušan Ž.
2014-06-01
The automated, computer-aided method for differentiation and classification of malignant (M) from benign (B) cases, by analyzing the UV/VIS spectra of pleural effusions is described. It was shown that by two independent objective features, the maximum of Katz fractal dimension (KFDmax) and the area under normalized UV/VIS absorbance curve (Area), highly reliable M-B classification is possible. In the Area-KFDmax space M and B samples are linearly separable permitting thus the use of linear support vector machine as a classification tool. By analyzing 104 samples of UV/VIS spectra of pleural effusions (88 M and 16 B) collected from patients at the Clinic for Lung Diseases and Tuberculosis, Military Medical Academy in Belgrade, the accuracy of 95.45% for M cases and 100% for B cases are obtained by using the proposed method. It was shown that by applying some modifications, which are suggested in the paper, the accuracy of 100% for M cases can be reached.
Muñoz Yunta, J A; Palau Baduell, M; Salvado Salvado, B; Amo, C; Fernandez Lucas, A; Maestu, F; Ortiz, T
2004-02-01
Autistic spectrum disorders (ASD) is a term that is not included in DSM IV or in ICD 10, which are the diagnostic tools most commonly used by clinical professionals but can offer problems in research when it comes to finding homogenous groups. From a neuropaediatric point of view, there is a need for a classification of the generalised disorders affecting development and for this purpose we used Wing's triad, which defines the continuum of the autistic spectrum, and the information provided by magnetoencephalography (MEG) as grouping elements. Specific generalised developmental disorders were taken as being those syndromes that partially expressed some autistic trait, but with their own personality so that they could be considered to be a specific disorder. ASD were classified as being primary, cryptogenic or secondary. The primary disorders, in turn, express a continuum that ranges from Savant syndrome to Asperger's syndrome and the different degrees of early infantile autism. MEG is a functional neuroimaging technique that has enabled us to back up this classification.
Liao, Hstau Y.; Hashem, Yaser; Frank, Joachim
2015-01-01
Summary Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. 3D covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. PMID:25982529
Liao, Hstau Y; Hashem, Yaser; Frank, Joachim
2015-06-02
Single-particle cryogenic electron microscopy (cryo-EM) is a powerful tool for the study of macromolecular structures at high resolution. Classification allows multiple structural states to be extracted and reconstructed from the same sample. One classification approach is via the covariance matrix, which captures the correlation between every pair of voxels. Earlier approaches employ computing-intensive resampling and estimate only the eigenvectors of the matrix, which are then used in a separate fast classification step. We propose an iterative scheme to explicitly estimate the covariance matrix in its entirety. In our approach, the flexibility in choosing the solution domain allows us to examine a part of the molecule in greater detail. Three-dimensional covariance maps obtained in this way from experimental data (cryo-EM images of the eukaryotic pre-initiation complex) prove to be in excellent agreement with conclusions derived by using traditional approaches, revealing in addition the interdependencies of ligand bindings and structural changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of a screening tool for staging of diabetic retinopathy in fundus images
NASA Astrophysics Data System (ADS)
Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Bency, Mayur Joseph; Rangayyan, Rangaraj M.; Bansal, Reema; Gupta, Amod
2015-03-01
Diabetic retinopathy is a condition of the eye of diabetic patients where the retina is damaged because of long-term diabetes. The condition deteriorates towards irreversible blindness in extreme cases of diabetic retinopathy. Hence, early detection of diabetic retinopathy is important to prevent blindness. Regular screening of fundus images of diabetic patients could be helpful in preventing blindness caused by diabetic retinopathy. In this paper, we propose techniques for staging of diabetic retinopathy in fundus images using several shape and texture features computed from detected microaneurysms, exudates, and hemorrhages. The classification accuracy is reported in terms of the area (Az) under the receiver operating characteristic curve using 200 fundus images from the MESSIDOR database. The value of Az for classifying normal images versus mild, moderate, and severe nonproliferative diabetic retinopathy (NPDR) is 0:9106. The value of Az for classification of mild NPDR versus moderate and severe NPDR is 0:8372. The Az value for classification of moderate NPDR and severe NPDR is 0:9750.
Classifying quantum entanglement through topological links
NASA Astrophysics Data System (ADS)
Quinta, Gonçalo M.; André, Rui
2018-04-01
We propose an alternative classification scheme for quantum entanglement based on topological links. This is done by identifying a nonrigid ring to a particle, attributing the act of cutting and removing a ring to the operation of tracing out the particle, and associating linked rings to entangled particles. This analogy naturally leads us to a classification of multipartite quantum entanglement based on all possible distinct links for a given number of rings. To determine all different possibilities, we develop a formalism that associates any link to a polynomial, with each polynomial thereby defining a distinct equivalence class. To demonstrate the use of this classification scheme, we choose qubit quantum states as our example of physical system. A possible procedure to obtain qubit states from the polynomials is also introduced, providing an example state for each link class. We apply the formalism for the quantum systems of three and four qubits and demonstrate the potential of these tools in a context of qubit networks.
Object Classification in Semi Structured Enviroment Using Forward-Looking Sonar
dos Santos, Matheus; Ribeiro, Pedro Otávio; Núñez, Pedro; Botelho, Silvia
2017-01-01
The submarine exploration using robots has been increasing in recent years. The automation of tasks such as monitoring, inspection, and underwater maintenance requires the understanding of the robot’s environment. The object recognition in the scene is becoming a critical issue for these systems. On this work, an underwater object classification pipeline applied in acoustic images acquired by Forward-Looking Sonar (FLS) are studied. The object segmentation combines thresholding, connected pixels searching and peak of intensity analyzing techniques. The object descriptor extract intensity and geometric features of the detected objects. A comparison between the Support Vector Machine, K-Nearest Neighbors, and Random Trees classifiers are presented. An open-source tool was developed to annotate and classify the objects and evaluate their classification performance. The proposed method efficiently segments and classifies the structures in the scene using a real dataset acquired by an underwater vehicle in a harbor area. Experimental results demonstrate the robustness and accuracy of the method described in this paper. PMID:28961163
Kaznowska, E; Depciuch, J; Łach, K; Kołodziej, M; Koziorowska, A; Vongsvivut, J; Zawlik, I; Cholewa, M; Cebulski, J
2018-08-15
Lung cancer has the highest mortality rate of all malignant tumours. The current effects of cancer treatment, as well as its diagnostics, are unsatisfactory. Therefore it is very important to introduce modern diagnostic tools, which will allow for rapid classification of lung cancers and their degree of malignancy. For this purpose, the authors propose the use of Fourier Transform InfraRed (FTIR) spectroscopy combined with Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA) and a physics-based computational model. The results obtained for lung cancer tissues, adenocarcinoma and squamous cell carcinoma FTIR spectra, show a shift in wavenumbers compared to control tissue FTIR spectra. Furthermore, in the FTIR spectra of adenocarcinoma there are no peaks corresponding to glutamate or phospholipid functional groups. Moreover, in the case of G2 and G3 malignancy of adenocarcinoma lung cancer, the absence of an OH groups peak was noticed. Thus, it seems that FTIR spectroscopy is a valuable tool to classify lung cancer and to determine the degree of its malignancy. Copyright © 2018 Elsevier B.V. All rights reserved.
A new feature constituting approach to detection of vocal fold pathology
NASA Astrophysics Data System (ADS)
Hariharan, M.; Polat, Kemal; Yaacob, Sazali
2014-08-01
In the last two decades, non-invasive methods through acoustic analysis of voice signal have been proved to be excellent and reliable tool to diagnose vocal fold pathologies. This paper proposes a new feature vector based on the wavelet packet transform and singular value decomposition for the detection of vocal fold pathology. k-means clustering based feature weighting is proposed to increase the distinguishing performance of the proposed features. In this work, two databases Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and MAPACI speech pathology database are used. Four different supervised classifiers such as k-nearest neighbour (k-NN), least-square support vector machine, probabilistic neural network and general regression neural network are employed for testing the proposed features. The experimental results uncover that the proposed features give very promising classification accuracy of 100% for both MEEI database and MAPACI speech pathology database.
A Comparative Study with RapidMiner and WEKA Tools over some Classification Techniques for SMS Spam
NASA Astrophysics Data System (ADS)
Foozy, Cik Feresa Mohd; Ahmad, Rabiah; Faizal Abdollah, M. A.; Chai Wen, Chuah
2017-08-01
SMS Spamming is a serious attack that can manipulate the use of the SMS by spreading the advertisement in bulk. By sending the unwanted SMS that contain advertisement can make the users feeling disturb and this against the privacy of the mobile users. To overcome these issues, many studies have proposed to detect SMS Spam by using data mining tools. This paper will do a comparative study using five machine learning techniques such as Naïve Bayes, K-NN (K-Nearest Neighbour Algorithm), Decision Tree, Random Forest and Decision Stumps to observe the accuracy result between RapidMiner and WEKA for dataset SMS Spam UCI Machine Learning repository.
Classification of parotidectomies: a proposal of the European Salivary Gland Society.
Quer, M; Guntinas-Lichius, O; Marchal, F; Vander Poorten, V; Chevalier, D; León, X; Eisele, D; Dulguerov, P
2016-10-01
The objective of this study is to provide a comprehensive classification system for parotidectomy operations. Data sources include Medline publications, author's experience, and consensus round table at the Third European Salivary Gland Society (ESGS) Meeting. The Medline database was searched with the term "parotidectomy" and "definition". The various definitions of parotidectomy procedures and parotid gland subdivisions extracted. Previous classification systems re-examined and a new classification proposed by a consensus. The ESGS proposes to subdivide the parotid parenchyma in five levels: I (lateral superior), II (lateral inferior), III (deep inferior), IV (deep superior), V (accessory). A new classification is proposed where the type of resection is divided into formal parotidectomy with facial nerve dissection and extracapsular dissection. Parotidectomies are further classified according to the levels removed, as well as the extra-parotid structures ablated. A new classification of parotidectomy procedures is proposed.
Dias, Luís G; Veloso, Ana C A; Sousa, Mara E B C; Estevinho, Letícia; Machado, Adélio A S C; Peres, António M
2015-11-05
Nowadays the main honey producing countries require accurate labeling of honey before commercialization, including floral classification. Traditionally, this classification is made by melissopalynology analysis, an accurate but time-consuming task requiring laborious sample pre-treatment and high-skilled technicians. In this work the potential use of a potentiometric electronic tongue for pollinic assessment is evaluated, using monofloral and polyfloral honeys. The results showed that after splitting honeys according to color (white, amber and dark), the novel methodology enabled quantifying the relative percentage of the main pollens (Castanea sp., Echium sp., Erica sp., Eucaliptus sp., Lavandula sp., Prunus sp., Rubus sp. and Trifolium sp.). Multiple linear regression models were established for each type of pollen, based on the best sensors' sub-sets selected using the simulated annealing algorithm. To minimize the overfitting risk, a repeated K-fold cross-validation procedure was implemented, ensuring that at least 10-20% of the honeys were used for internal validation. With this approach, a minimum average determination coefficient of 0.91 ± 0.15 was obtained. Also, the proposed technique enabled the correct classification of 92% and 100% of monofloral and polyfloral honeys, respectively. The quite satisfactory performance of the novel procedure for quantifying the relative pollen frequency may envisage its applicability for honey labeling and geographical origin identification. Nevertheless, this approach is not a full alternative to the traditional melissopalynologic analysis; it may be seen as a practical complementary tool for preliminary honey floral classification, leaving only problematic cases for pollinic evaluation. Copyright © 2015 Elsevier B.V. All rights reserved.
Joint Concept Correlation and Feature-Concept Relevance Learning for Multilabel Classification.
Zhao, Xiaowei; Ma, Zhigang; Li, Zhi; Li, Zhihui
2018-02-01
In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.
Classification of burn wounds using support vector machines
NASA Astrophysics Data System (ADS)
Acha, Begona; Serrano, Carmen; Palencia, Sergio; Murillo, Juan Jose
2004-05-01
The purpose of this work is to improve a previous method developed by the authors for the classification of burn wounds into their depths. The inputs of the system are color and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. Our previous work consisted in segmenting the burn wound from the rest of the image and classifying the burn into its depth. In this paper we focus on the classification problem only. We already proposed to use a Fuzzy-ARTMAP neural network (NN). However, we may take advantage of new powerful classification tools such as Support Vector Machines (SVM). We apply the five-folded cross validation scheme to divide the database into training and validating sets. Then, we apply a feature selection method for each classifier, which will give us the set of features that yields the smallest classification error for each classifier. Features used to classify are first-order statistical parameters extracted from the L*, u* and v* color components of the image. The feature selection algorithms used are the Sequential Forward Selection (SFS) and the Sequential Backward Selection (SBS) methods. As data of the problem faced here are not linearly separable, the SVM was trained using some different kernels. The validating process shows that the SVM method, when using a Gaussian kernel of variance 1, outperforms classification results obtained with the rest of the classifiers, yielding an error classification rate of 0.7% whereas the Fuzzy-ARTMAP NN attained 1.6 %.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
Prediction of composites behavior undergoing an ATP process through data-mining
NASA Astrophysics Data System (ADS)
Martin, Clara Argerich; Collado, Angel Leon; Pinillo, Rubén Ibañez; Barasinski, Anaïs; Abisset-Chavanne, Emmanuelle; Chinesta, Francisco
2018-05-01
The need to characterize composite surfaces for distinct mechanical or physical processes leads to different manners of evaluate the state of the surface. During many manufacturing processes deformation occurs, thus hindering composite classification for fabrication processes. In this work we focus on the challenge of a priori identifying the surfaces' behavior in order to optimize manufacturing. We will propose and validate the curvature of the surface as a reliable parameter and we will develop a tool that allows the prediction of the surface behavior.
"HIP" new software: The Hydroecological Integrity Assessment Process
Henriksen, Jim; Wilson, Juliette T.
2006-01-01
Center (FORT) have developed the Hydroecological Integrity Assessment Process (HIP) and a suite of software tools for conducting a hydrologic classification of streams, addressing instream flow needs, and assessing past and proposed hydrologic alterations on streamflow and other ecosystem components. The HIP recognizes that streamflow is strongly related to many critical physiochemical components of rivers, such as dissolved oxygen, channel geomorphology, and habitats. Streamflow is considered a “master variable” that limits the distribution, abundance, and diversity of many aquatic plant and animal species.
A novel classification of prostate specific antigen (PSA) biosensors based on transducing elements.
Najeeb, Mansoor Ani; Ahmad, Zubair; Shakoor, R A; Mohamed, A M A; Kahraman, Ramazan
2017-06-01
During the last few decades, there has been a tremendous rise in the number of research studies dedicated towards the development of diagnostic tools based on bio-sensing technology for the early detection of various diseases like cardiovascular diseases (CVD), many types of cancer, diabetes mellitus (DM) and many infectious diseases. Many breakthroughs have been developed in the areas of improving specificity, selectivity and repeatability of the biosensor devices. Innovations in the interdisciplinary areas like biotechnology, genetics, organic electronics and nanotechnology also had a great positive impact on the growth of bio-sensing technology. As a product of these improvements, fast and consistent sensing policies have been productively created for precise and ultrasensitive biomarker-based disease diagnostics. Prostate-specific antigen (PSA) is widely considered as an important biomarker used for diagnosing prostate cancer. There have been many publications based on various biosensors used for PSA detection, but a limited review was available for the classification of these biosensors used for the detection of PSA. This review highlights the various biosensors used for PSA detection and proposes a novel classification for PSA biosensors based on the transducer type used. We also highlight the advantages, disadvantages and limitations of each technique used for PSA biosensing which will make this article a complete reference tool for the future researches in PSA biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.
Diagnostic index: an open-source tool to classify TMJ OA condyles
NASA Astrophysics Data System (ADS)
Paniagua, Beatriz; Pascal, Laura; Prieto, Juan; Vimort, Jean Baptiste; Gomes, Liliane; Yatabe, Marilia; Ruellas, Antonio Carlos; Budin, Francois; Pieper, Steve; Styner, Martin; Benavides, Erika; Cevidanes, Lucia
2017-03-01
Osteoarthritis (OA) of temporomandibular joints (TMJ) occurs in about 40% of the patients who present TMJ disorders. Despite its prevalence, OA diagnosis and treatment remain controversial since there are no clear symptoms of the disease, especially in early stages. Quantitative tools based on 3D imaging of the TMJ condyle have the potential to help characterize TMJ OA changes. The goals of the tools proposed in this study are to ultimately develop robust imaging markers for diagnosis and assessment of treatment efficacy. This work proposes to identify differences among asymptomatic controls and different clinical phenotypes of TMJ OA by means of Statistical Shape Modeling (SSM), obtained via clinical expert consensus. From three different grouping schemes (with 3, 5 and 7 groups), our best results reveal that that the majority (74.5%) of the classifications occur in agreement with the groups assigned by consensus between our clinical experts. Our findings suggest the existence of different disease-based phenotypic morphologies in TMJ OA. Our preliminary findings with statistical shape modeling based biomarkers may provide a quantitative staging of the disease. The methodology used in this study is included in an open source image analysis toolbox, to ensure reproducibility and appropriate distribution and dissemination of the solution proposed.
Roger D. Ottmar; David V. Sandberg; Cynthia L. Riccardi; Susan J. Prichard
2007-01-01
We present an overview of the Fuel Characteristic Classification System (FCCS), a tool that enables land managers, regulators, and scientists to create and catalog fuelbeds and to classify those fuelbeds for their capacity to support fire and consume fuels. The fuelbed characteristics and fire classification from this tool will provide inputs for current and future...
Domingo-Salvany, Antònia; Bacigalupe, Amaia; Carrasco, José Miguel; Espelt, Albert; Ferrando, Josep; Borrell, Carme
2013-01-01
In Spain, the new National Classification of Occupations (Clasificación Nacional de Ocupaciones [CNO-2011]) is substantially different to the 1994 edition, and requires adaptation of occupational social classes for use in studies of health inequalities. This article presents two proposals to measure social class: the new classification of occupational social class (CSO-SEE12), based on the CNO-2011 and a neo-Weberian perspective, and a social class classification based on a neo-Marxist approach. The CSO-SEE12 is the result of a detailed review of the CNO-2011 codes. In contrast, the neo-Marxist classification is derived from variables related to capital and organizational and skill assets. The proposed CSO-SEE12 consists of seven classes that can be grouped into a smaller number of categories according to study needs. The neo-Marxist classification consists of 12 categories in which home owners are divided into three categories based on capital goods and employed persons are grouped into nine categories composed of organizational and skill assets. These proposals are complemented by a proposed classification of educational level that integrates the various curricula in Spain and provides correspondences with the International Standard Classification of Education. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.
Automatic 3D Extraction of Buildings, Vegetation and Roads from LIDAR Data
NASA Astrophysics Data System (ADS)
Bellakaout, A.; Cherkaoui, M.; Ettarid, M.; Touzani, A.
2016-06-01
Aerial topographic surveys using Light Detection and Ranging (LiDAR) technology collect dense and accurate information from the surface or terrain; it is becoming one of the important tools in the geosciences for studying objects and earth surface. Classification of Lidar data for extracting ground, vegetation, and buildings is a very important step needed in numerous applications such as 3D city modelling, extraction of different derived data for geographical information systems (GIS), mapping, navigation, etc... Regardless of what the scan data will be used for, an automatic process is greatly required to handle the large amount of data collected because the manual process is time consuming and very expensive. This paper is presenting an approach for automatic classification of aerial Lidar data into five groups of items: buildings, trees, roads, linear object and soil using single return Lidar and processing the point cloud without generating DEM. Topological relationship and height variation analysis is adopted to segment, preliminary, the entire point cloud preliminarily into upper and lower contours, uniform and non-uniform surface, non-uniform surfaces, linear objects, and others. This primary classification is used on the one hand to know the upper and lower part of each building in an urban scene, needed to model buildings façades; and on the other hand to extract point cloud of uniform surfaces which contain roofs, roads and ground used in the second phase of classification. A second algorithm is developed to segment the uniform surface into buildings roofs, roads and ground, the second phase of classification based on the topological relationship and height variation analysis, The proposed approach has been tested using two areas : the first is a housing complex and the second is a primary school. The proposed approach led to successful classification results of buildings, vegetation and road classes.
Self-organizing ontology of biochemically relevant small molecules
2012-01-01
Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology can ease the burden of chemical data annotators and dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will make chemical classification criteria more transparent to humans and machines alike and will thus facilitate predictive and integrative bioactivity model development. PMID:22221313
Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No
2015-11-01
One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
...] Identification of Nonattainment Classification and Deadlines for Submission of State Implementation Plan (SIP... NAAQS under subpart 4. This proposed rulemaking identifies the classification under subpart 4 for areas... pursuant to subpart 1. Specifically, the EPA is proposing to identify the initial classification of current...
NASA Astrophysics Data System (ADS)
Alvandipour, Mehrdad; Umbaugh, Scott E.; Mishra, Deependra K.; Dahal, Rohini; Lama, Norsang; Marino, Dominic J.; Sackman, Joseph
2017-05-01
Thermography and pattern classification techniques are used to classify three different pathologies in veterinary images. Thermographic images of both normal and diseased animals were provided by the Long Island Veterinary Specialists (LIVS). The three pathologies are ACL rupture disease, bone cancer, and feline hyperthyroid. The diagnosis of these diseases usually involves radiology and laboratory tests while the method that we propose uses thermographic images and image analysis techniques and is intended for use as a prescreening tool. Images in each category of pathologies are first filtered by Gabor filters and then various features are extracted and used for classification into normal and abnormal classes. Gabor filters are linear filters that can be characterized by the two parameters wavelength λ and orientation θ. With two different wavelength and five different orientations, a total of ten different filters were studied. Different combinations of camera views, filters, feature vectors, normalization methods, and classification methods, produce different tests that were examined and the sensitivity, specificity and success rate for each test were produced. Using the Gabor features alone, sensitivity, specificity, and overall success rates of 85% for each of the pathologies was achieved.
Creating a Taxonomy of Local Boards of Health Based on Local Health Departments’ Perspectives
Shah, Gulzar H.; Sotnikov, Sergey; Leep, Carolyn J.; Ye, Jiali; Van Wave, Timothy W.
2017-01-01
Objectives To develop a local board of health (LBoH) classification scheme and empirical definitions to provide a coherent framework for describing variation in the LBoHs. Methods This study is based on data from the 2015 Local Board of Health Survey, conducted among a nationally representative sample of local health department administrators, with 394 responses. The classification development consisted of the following steps: (1) theoretically guided initial domain development, (2) mapping of the survey variables to the proposed domains, (3) data reduction using principal component analysis and group consensus, and (4) scale development and testing for internal consistency. Results The final classification scheme included 60 items across 6 governance function domains and an additional domain—LBoH characteristics and strengths, such as meeting frequency, composition, and diversity of information sources. Application of this classification strongly supports the premise that LBoHs differ in their performance of governance functions and in other characteristics. Conclusions The LBoH taxonomy provides an empirically tested standardized tool for classifying LBoHs from the viewpoint of local health department administrators. Future studies can use this taxonomy to better characterize the impact of LBoHs. PMID:27854524
Determination of fragrance content in perfume by Raman spectroscopy and multivariate calibration.
Godinho, Robson B; Santos, Mauricio C; Poppi, Ronei J
2016-03-15
An alternative methodology is herein proposed for determination of fragrance content in perfumes and their classification according to the guidelines established by fine perfume manufacturers. The methodology is based on Raman spectroscopy associated with multivariate calibration, allowing the determination of fragrance content in a fast, nondestructive, and sustainable manner. The results were considered consistent with the conventional method, whose standard error of prediction values was lower than the 1.0%. This result indicates that the proposed technology is a feasible analytical tool for determination of the fragrance content in a hydro-alcoholic solution for use in manufacturing, quality control and regulatory agencies. Copyright © 2015 Elsevier B.V. All rights reserved.
Nagarajan, R; Hariharan, M; Satiyan, M
2012-08-01
Developing tools to assist physically disabled and immobilized people through facial expression is a challenging area of research and has attracted many researchers recently. In this paper, luminance stickers based facial expression recognition is proposed. Recognition of facial expression is carried out by employing Discrete Wavelet Transform (DWT) as a feature extraction method. Different wavelet families with their different orders (db1 to db20, Coif1 to Coif 5 and Sym2 to Sym8) are utilized to investigate their performance in recognizing facial expression and to evaluate their computational time. Standard deviation is computed for the coefficients of first level of wavelet decomposition for every order of wavelet family. This standard deviation is used to form a set of feature vectors for classification. In this study, conventional validation and cross validation are performed to evaluate the efficiency of the suggested feature vectors. Three different classifiers namely Artificial Neural Network (ANN), k-Nearest Neighborhood (kNN) and Linear Discriminant Analysis (LDA) are used to classify a set of eight facial expressions. The experimental results demonstrate that the proposed method gives very promising classification accuracies.
Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm.
Beloufa, Fayssal; Chikh, M A
2013-10-01
In this study, diagnosis of diabetes disease, which is one of the most important diseases, is conducted with artificial intelligence techniques. We have proposed a novel Artificial Bee Colony (ABC) algorithm in which a mutation operator is added to an Artificial Bee Colony for improving its performance. When the current best solution cannot be updated, a blended crossover operator (BLX-α) of genetic algorithm is applied, in order to enhance the diversity of ABC, without compromising with the solution quality. This modified version of ABC is used as a new tool to create and optimize automatically the membership functions and rules base directly from data. We take the diabetes dataset used in our work from the UCI machine learning repository. The performances of the proposed method are evaluated through classification rate, sensitivity and specificity values using 10-fold cross-validation method. The obtained classification rate of our method is 84.21% and it is very promising when compared with the previous research in the literature for the same problem. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suzuki, Yutaka; Fukasawa, Mizuya; Sakata, Osamu; Kato, Hatsuhiro; Hattori, Asobu; Kato, Takaya
Vascular access for hemodialysis is a lifeline for over 280,000 chronic renal failure patients in Japan. Early detection of stenosis may facilitate long-term use of hemodialysis shunts. Stethoscope auscultation of vascular murmurs has some utility in the assessment of access patency; however, the sensitivity of this diagnostic approach is skill dependent. This study proposes a novel diagnosis support system to detect stenosis by using vascular murmurs. The system is based on a self-organizing map (SOM) and short-time maximum entropy method (STMEM) for data analysis. SOM is an artificial neural network, which is trained using unsupervised learning to produce a feature map that is useful for visualizing the analogous relationship between input data. The author recorded vascular murmurs before and after percutaneous transluminal angioplasty (PTA). The SOM-based classification was consistent with to the classification based on MEM spectral and spectrogram characteristics. The ratio of pre-PTA murmurs in the stenosis category was much higher than the post-PTA murmurs. The results suggest that the proposed method may be an effective tool in the determination of shunt stenosis.
Village Building Identification Based on Ensemble Convolutional Neural Networks
Guo, Zhiling; Chen, Qi; Xu, Yongwei; Shibasaki, Ryosuke; Shao, Xiaowei
2017-01-01
In this study, we present the Ensemble Convolutional Neural Network (ECNN), an elaborate CNN frame formulated based on ensembling state-of-the-art CNN models, to identify village buildings from open high-resolution remote sensing (HRRS) images. First, to optimize and mine the capability of CNN for village mapping and to ensure compatibility with our classification targets, a few state-of-the-art models were carefully optimized and enhanced based on a series of rigorous analyses and evaluations. Second, rather than directly implementing building identification by using these models, we exploited most of their advantages by ensembling their feature extractor parts into a stronger model called ECNN based on the multiscale feature learning method. Finally, the generated ECNN was applied to a pixel-level classification frame to implement object identification. The proposed method can serve as a viable tool for village building identification with high accuracy and efficiency. The experimental results obtained from the test area in Savannakhet province, Laos, prove that the proposed ECNN model significantly outperforms existing methods, improving overall accuracy from 96.64% to 99.26%, and kappa from 0.57 to 0.86. PMID:29084154
Classification of the Pospiviroidae based on their structural hallmarks.
Giguère, Tamara; Perreault, Jean-Pierre
2017-01-01
The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed.
Classification of the Pospiviroidae based on their structural hallmarks
Giguère, Tamara
2017-01-01
The simplest known plant pathogens are the viroids. Because of their non-coding single-stranded circular RNA genome, they depend on both their sequence and their structure for both a successful infection and their replication. In the recent years, important progress in the elucidation of their structures was achieved using an adaptation of the selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) protocol in order to probe viroid structures in solution. Previously, SHAPE has been adapted to elucidate the structures of all of the members of the family Avsunviroidae, as well as those of a few members of the family Pospiviroidae. In this study, with the goal of providing an entire compendium of the secondary structures of the various viroid species, a total of thirteen new Pospiviroidae members were probed in solution using the SHAPE protocol. More specifically, the secondary structures of eleven species for which the genus was previously known were initially elucidated. At this point, considering all of the SHAPE elucidated secondary structures, a classification system for viroids in their respective genera was proposed. On the basis of the structural classification reported here, the probings of both the Grapevine latent viroid and the Dahlia latent viroid provide sound arguments for the determination of their respective genera, which appear to be Apscaviroid and Hostuviroid, respectively. More importantly, this study provides the complete repertoire of the secondary structures, mapped in solution, of all of the accepted viroid species reported thus far. In addition, a classification scheme based on structural hallmarks, an important tool for many biological studies, is proposed. PMID:28783761
Liu, Yanqiu; Lu, Huijuan; Yan, Ke; Xia, Haixia; An, Chunlin
2016-01-01
Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.
Wang, Jian-Gang; Sung, Eric; Yau, Wei-Yun
2011-07-01
Facial age classification is an approach to classify face images into one of several predefined age groups. One of the difficulties in applying learning techniques to the age classification problem is the large amount of labeled training data required. Acquiring such training data is very costly in terms of age progress, privacy, human time, and effort. Although unlabeled face images can be obtained easily, it would be expensive to manually label them on a large scale and getting the ground truth. The frugal selection of the unlabeled data for labeling to quickly reach high classification performance with minimal labeling efforts is a challenging problem. In this paper, we present an active learning approach based on an online incremental bilateral two-dimension linear discriminant analysis (IB2DLDA) which initially learns from a small pool of labeled data and then iteratively selects the most informative samples from the unlabeled set to increasingly improve the classifier. Specifically, we propose a novel data selection criterion called the furthest nearest-neighbor (FNN) that generalizes the margin-based uncertainty to the multiclass case and which is easy to compute, so that the proposed active learning algorithm can handle a large number of classes and large data sizes efficiently. Empirical experiments on FG-NET and Morph databases together with a large unlabeled data set for age categorization problems show that the proposed approach can achieve results comparable or even outperform a conventionally trained active classifier that requires much more labeling effort. Our IB2DLDA-FNN algorithm can achieve similar results much faster than random selection and with fewer samples for age categorization. It also can achieve comparable results with active SVM but is much faster than active SVM in terms of training because kernel methods are not needed. The results on the face recognition database and palmprint/palm vein database showed that our approach can handle problems with large number of classes. Our contributions in this paper are twofold. First, we proposed the IB2DLDA-FNN, the FNN being our novel idea, as a generic on-line or active learning paradigm. Second, we showed that it can be another viable tool for active learning of facial age range classification.
Tools and Functions of Reconfigurable Colloidal Assembly.
Solomon, Michael J
2018-02-19
We review work in reconfigurable colloidal assembly, a field in which rapid, back-and-forth transitions between the equilibrium states of colloidal self-assembly are accomplished by dynamic manipulation of the size, shape, and interaction potential of colloids, as well as the magnitude and direction of the fields applied to them. It is distinguished from the study of colloidal phase transitions by the centrality of thermodynamic variables and colloidal properties that are time switchable; by the applicability of these changes to generate transitions in assembled colloids that may be spatially localized; and by its incorporation of the effects of generalized potentials due to, for example, applied electric and magnetic fields. By drawing upon current progress in the field, we propose a matrix classification of reconfigurable colloidal systems based on the tool used and function performed by reconfiguration. The classification distinguishes between the multiple means by which reconfigurable assembly can be accomplished (i.e., the tools of reconfiguration) and the different kinds of structural transitions that can be achieved by it (i.e., the functions of reconfiguration). In the first case, the tools of reconfiguration can be broadly classed as (i) those that control the colloidal contribution to the system entropy-as through volumetric and/or shape changes of the particles; (ii) those that control the internal energy of the colloids-as through manipulation of colloidal interaction potentials; and (iii) those that control the spatially resolved potential energy that is imposed on the colloids-as through the introduction of field-induced phoretic mechanisms that yield colloidal displacement and accumulation. In the second case, the functions of reconfiguration include reversible: (i) transformation between different phases-including fluid, cluster, gel, and crystal structures; (ii) manipulation of the spacing between colloids in crystals and clusters; and (iii) translation, rotation, or shape-change of finite-size objects self-assembled from colloids. With this classification in hand, we correlate the current limits on the spatiotemporal scales for reconfigurable colloidal assembly and identify a set of future research challenges.
A support vector machine approach for classification of welding defects from ultrasonic signals
NASA Astrophysics Data System (ADS)
Chen, Yuan; Ma, Hong-Wei; Zhang, Guang-Ming
2014-07-01
Defect classification is an important issue in ultrasonic non-destructive evaluation. A layered multi-class support vector machine (LMSVM) classification system, which combines multiple SVM classifiers through a layered architecture, is proposed in this paper. The proposed LMSVM classification system is applied to the classification of welding defects from ultrasonic test signals. The measured ultrasonic defect echo signals are first decomposed into wavelet coefficients by the wavelet packet transform. The energy of the wavelet coefficients at different frequency channels are used to construct the feature vectors. The bees algorithm (BA) is then used for feature selection and SVM parameter optimisation for the LMSVM classification system. The BA-based feature selection optimises the energy feature vectors. The optimised feature vectors are input to the LMSVM classification system for training and testing. Experimental results of classifying welding defects demonstrate that the proposed technique is highly robust, precise and reliable for ultrasonic defect classification.
Ensemble of sparse classifiers for high-dimensional biological data.
Kim, Sunghan; Scalzo, Fabien; Telesca, Donatello; Hu, Xiao
2015-01-01
Biological data are often high in dimension while the number of samples is small. In such cases, the performance of classification can be improved by reducing the dimension of data, which is referred to as feature selection. Recently, a novel feature selection method has been proposed utilising the sparsity of high-dimensional biological data where a small subset of features accounts for most variance of the dataset. In this study we propose a new classification method for high-dimensional biological data, which performs both feature selection and classification within a single framework. Our proposed method utilises a sparse linear solution technique and the bootstrap aggregating algorithm. We tested its performance on four public mass spectrometry cancer datasets along with two other conventional classification techniques such as Support Vector Machines and Adaptive Boosting. The results demonstrate that our proposed method performs more accurate classification across various cancer datasets than those conventional classification techniques.
Hartling, Lisa; Bond, Kenneth; Santaguida, P Lina; Viswanathan, Meera; Dryden, Donna M
2011-08-01
To develop and test a study design classification tool. We contacted relevant organizations and individuals to identify tools used to classify study designs and ranked these using predefined criteria. The highest ranked tool was a design algorithm developed, but no longer advocated, by the Cochrane Non-Randomized Studies Methods Group; this was modified to include additional study designs and decision points. We developed a reference classification for 30 studies; 6 testers applied the tool to these studies. Interrater reliability (Fleiss' κ) and accuracy against the reference classification were assessed. The tool was further revised and retested. Initial reliability was fair among the testers (κ=0.26) and the reference standard raters κ=0.33). Testing after revisions showed improved reliability (κ=0.45, moderate agreement) with improved, but still low, accuracy. The most common disagreements were whether the study design was experimental (5 of 15 studies), and whether there was a comparison of any kind (4 of 15 studies). Agreement was higher among testers who had completed graduate level training versus those who had not. The moderate reliability and low accuracy may be because of lack of clarity and comprehensiveness of the tool, inadequate reporting of the studies, and variability in tester characteristics. The results may not be generalizable to all published studies, as the test studies were selected because they had posed challenges for previous reviewers with respect to their design classification. Application of such a tool should be accompanied by training, pilot testing, and context-specific decision rules. Copyright © 2011 Elsevier Inc. All rights reserved.
Complex network approach to classifying classical piano compositions
NASA Astrophysics Data System (ADS)
Xin, Chen; Zhang, Huishu; Huang, Jiping
2016-10-01
Complex network has been regarded as a useful tool handling systems with vague interactions. Hence, numerous applications have arised. In this paper we construct complex networks for 770 classical piano compositions of Mozart, Beethoven and Chopin based on musical note pitches and lengths. We find prominent distinctions among network edges of different composers. Some stylized facts can be explained by such parameters of network structures and topologies. Further, we propose two classification methods for music styles and genres according to the discovered distinctions. These methods are easy to implement and the results are sound. This work suggests that complex network could be a decent way to analyze the characteristics of musical notes, since it could provide a deep view into understanding of the relationships among notes in musical compositions and evidence for classification of different composers, styles and genres of music.
Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure
2015-05-01
In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.
Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel
2011-05-09
Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data
2011-01-01
Background Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net. We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone. Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Results Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error. Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. Conclusions The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters. The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'. We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets. PMID:21554689
Automated compound classification using a chemical ontology.
Bobach, Claudia; Böhme, Timo; Laube, Ulf; Püschel, Anett; Weber, Lutz
2012-12-29
Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated.
Automated compound classification using a chemical ontology
2012-01-01
Background Classification of chemical compounds into compound classes by using structure derived descriptors is a well-established method to aid the evaluation and abstraction of compound properties in chemical compound databases. MeSH and recently ChEBI are examples of chemical ontologies that provide a hierarchical classification of compounds into general compound classes of biological interest based on their structural as well as property or use features. In these ontologies, compounds have been assigned manually to their respective classes. However, with the ever increasing possibilities to extract new compounds from text documents using name-to-structure tools and considering the large number of compounds deposited in databases, automated and comprehensive chemical classification methods are needed to avoid the error prone and time consuming manual classification of compounds. Results In the present work we implement principles and methods to construct a chemical ontology of classes that shall support the automated, high-quality compound classification in chemical databases or text documents. While SMARTS expressions have already been used to define chemical structure class concepts, in the present work we have extended the expressive power of such class definitions by expanding their structure-based reasoning logic. Thus, to achieve the required precision and granularity of chemical class definitions, sets of SMARTS class definitions are connected by OR and NOT logical operators. In addition, AND logic has been implemented to allow the concomitant use of flexible atom lists and stereochemistry definitions. The resulting chemical ontology is a multi-hierarchical taxonomy of concept nodes connected by directed, transitive relationships. Conclusions A proposal for a rule based definition of chemical classes has been made that allows to define chemical compound classes more precisely than before. The proposed structure-based reasoning logic allows to translate chemistry expert knowledge into a computer interpretable form, preventing erroneous compound assignments and allowing automatic compound classification. The automated assignment of compounds in databases, compound structure files or text documents to their related ontology classes is possible through the integration with a chemical structure search engine. As an application example, the annotation of chemical structure files with a prototypic ontology is demonstrated. PMID:23273256
Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H. M.; Tin, Chung
2017-01-01
Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications. PMID:28744189
Zhai, Xiaolong; Jelfs, Beth; Chan, Rosa H M; Tin, Chung
2017-01-01
Hand movement classification based on surface electromyography (sEMG) pattern recognition is a promising approach for upper limb neuroprosthetic control. However, maintaining day-to-day performance is challenged by the non-stationary nature of sEMG in real-life operation. In this study, we propose a self-recalibrating classifier that can be automatically updated to maintain a stable performance over time without the need for user retraining. Our classifier is based on convolutional neural network (CNN) using short latency dimension-reduced sEMG spectrograms as inputs. The pretrained classifier is recalibrated routinely using a corrected version of the prediction results from recent testing sessions. Our proposed system was evaluated with the NinaPro database comprising of hand movement data of 40 intact and 11 amputee subjects. Our system was able to achieve ~10.18% (intact, 50 movement types) and ~2.99% (amputee, 10 movement types) increase in classification accuracy averaged over five testing sessions with respect to the unrecalibrated classifier. When compared with a support vector machine (SVM) classifier, our CNN-based system consistently showed higher absolute performance and larger improvement as well as more efficient training. These results suggest that the proposed system can be a useful tool to facilitate long-term adoption of prosthetics for amputees in real-life applications.
Zhang, Xiaodong; Jing, Shasha; Gao, Peiyi; Xue, Jing; Su, Lu; Li, Weiping; Ren, Lijie; Hu, Qingmao
2016-01-01
Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient, four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net is adopted to replace the traditional L 0 -norm/ L 1 -norm constraints on sparse representation to stabilize sparse code. To decrease computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels. The proposed method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118) than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average Dice coefficient less than 0.610). The proposed method could provide a potential tool to quantify infarcts from diffusion weighted imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-12
...; 4500007763; IDI-36028] Notice of Realty Action: Recreation and Public Purposes Act Classification, Lease and... comments regarding this proposed classification and lease or sale of this public land until February 26... classification are restricted to whether the land is physically suited for the proposal, whether the use will...
Classification Algorithms for Big Data Analysis, a Map Reduce Approach
NASA Astrophysics Data System (ADS)
Ayma, V. A.; Ferreira, R. S.; Happ, P.; Oliveira, D.; Feitosa, R.; Costa, G.; Plaza, A.; Gamba, P.
2015-03-01
Since many years ago, the scientific community is concerned about how to increase the accuracy of different classification methods, and major achievements have been made so far. Besides this issue, the increasing amount of data that is being generated every day by remote sensors raises more challenges to be overcome. In this work, a tool within the scope of InterIMAGE Cloud Platform (ICP), which is an open-source, distributed framework for automatic image interpretation, is presented. The tool, named ICP: Data Mining Package, is able to perform supervised classification procedures on huge amounts of data, usually referred as big data, on a distributed infrastructure using Hadoop MapReduce. The tool has four classification algorithms implemented, taken from WEKA's machine learning library, namely: Decision Trees, Naïve Bayes, Random Forest and Support Vector Machines (SVM). The results of an experimental analysis using a SVM classifier on data sets of different sizes for different cluster configurations demonstrates the potential of the tool, as well as aspects that affect its performance.
Algorithmic Classification of Five Characteristic Types of Paraphasias.
Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven
2016-12-01
This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.
NASA Astrophysics Data System (ADS)
Agarwal, Smriti; Singh, Dharmendra
2016-04-01
Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.
A novel fruit shape classification method based on multi-scale analysis
NASA Astrophysics Data System (ADS)
Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin
2005-11-01
Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.
Dutov, V V; Bazaev, V V; Mamedov, E A; Urenkov, S B; Podoinitsyn, A A
2017-07-01
To investigate the advantages and disadvantages of the current variants of systematization and grading of complications of contact ureteral lithotripsy (CULT) and develop a working classification of CULT complications. The study analyzed results of 545 fluoroscopy-guided endoscopic procedures performed at the MRRCI Clinic of Urology from 2008 to 2015 in 506 patients with ureterolithiasis. The proposed and implemented classification and terminology of CULT complications unifies the diagnostic and management algorithm. This tool is more systematic and structured than the classical classification and universal methods of systematization and grading of CULT complications (classifying CULT complications in "major" and "minor", PULS scale, Satava and Clavien-Dindo grading systems). Given the lack of clear grading of ureteral rupture, it was divided into amputation (two-level rupture) and avulsion (one-level rupture). Using such term as extravasation of the contrast media and/or migration of the stone outside of the ureter is groundless because these complications occur only after the perforation of the ureteral wall. Therefore, these conditions are complications not of CULT, but of the ureteral wall perforation. The ureteral perforation was classified into macro- and micro-perforation. The existing terminology, classification and grading of the CULT complications should undergo a more detailed analysis. None of the existing classifications of CULT complications afford them to be fully staged and systematized. The working classification of complications of CULT developed at the M.F. Vladimirsky MRRCI Clinic of Urology warrants a multi-center prospective study to validate it and investigate its effectiveness.
Hyperspectral feature mapping classification based on mathematical morphology
NASA Astrophysics Data System (ADS)
Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli
2016-03-01
This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.
Entanglement classification with matrix product states
NASA Astrophysics Data System (ADS)
Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-07-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .
Dimitriadis, S I; Liparas, Dimitris; Tsolaki, Magda N
2018-05-15
In the era of computer-assisted diagnostic tools for various brain diseases, Alzheimer's disease (AD) covers a large percentage of neuroimaging research, with the main scope being its use in daily practice. However, there has been no study attempting to simultaneously discriminate among Healthy Controls (HC), early mild cognitive impairment (MCI), late MCI (cMCI) and stable AD, using features derived from a single modality, namely MRI. Based on preprocessed MRI images from the organizers of a neuroimaging challenge, 3 we attempted to quantify the prediction accuracy of multiple morphological MRI features to simultaneously discriminate among HC, MCI, cMCI and AD. We explored the efficacy of a novel scheme that includes multiple feature selections via Random Forest from subsets of the whole set of features (e.g. whole set, left/right hemisphere etc.), Random Forest classification using a fusion approach and ensemble classification via majority voting. From the ADNI database, 60 HC, 60 MCI, 60 cMCI and 60 CE were used as a training set with known labels. An extra dataset of 160 subjects (HC: 40, MCI: 40, cMCI: 40 and AD: 40) was used as an external blind validation dataset to evaluate the proposed machine learning scheme. In the second blind dataset, we succeeded in a four-class classification of 61.9% by combining MRI-based features with a Random Forest-based Ensemble Strategy. We achieved the best classification accuracy of all teams that participated in this neuroimaging competition. The results demonstrate the effectiveness of the proposed scheme to simultaneously discriminate among four groups using morphological MRI features for the very first time in the literature. Hence, the proposed machine learning scheme can be used to define single and multi-modal biomarkers for AD. Copyright © 2017 Elsevier B.V. All rights reserved.
Understanding similarity of groundwater systems with empirical copulas
NASA Astrophysics Data System (ADS)
Haaf, Ezra; Kumar, Rohini; Samaniego, Luis; Barthel, Roland
2016-04-01
Within the classification framework for groundwater systems that aims for identifying similarity of hydrogeological systems and transferring information from a well-observed to an ungauged system (Haaf and Barthel, 2015; Haaf and Barthel, 2016), we propose a copula-based method for describing groundwater-systems similarity. Copulas are an emerging method in hydrological sciences that make it possible to model the dependence structure of two groundwater level time series, independently of the effects of their marginal distributions. This study is based on Samaniego et al. (2010), which described an approach calculating dissimilarity measures from bivariate empirical copula densities of streamflow time series. Subsequently, streamflow is predicted in ungauged basins by transferring properties from similar catchments. The proposed approach is innovative because copula-based similarity has not yet been applied to groundwater systems. Here we estimate the pairwise dependence structure of 600 wells in Southern Germany using 10 years of weekly groundwater level observations. Based on these empirical copulas, dissimilarity measures are estimated, such as the copula's lower- and upper corner cumulated probability, copula-based Spearman's rank correlation - as proposed by Samaniego et al. (2010). For the characterization of groundwater systems, copula-based metrics are compared with dissimilarities obtained from precipitation signals corresponding to the presumed area of influence of each groundwater well. This promising approach provides a new tool for advancing similarity-based classification of groundwater system dynamics. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria. Haaf, E., Barthel, R., 2016. An approach for classification of hydrogeological systems at the regional scale based on groundwater hydrographs EGU General Assembly 2016, Vienna, Austria. Samaniego, L., Bardossy, A., Kumar, R., 2010. Streamflow prediction in ungauged catchments using copula-based dissimilarity measures. Water Resources Research, 46. DOI:10.1029/2008wr007695
Development of a brain MRI-based hidden Markov model for dementia recognition
2013-01-01
Background Dementia is an age-related cognitive decline which is indicated by an early degeneration of cortical and sub-cortical structures. Characterizing those morphological changes can help to understand the disease development and contribute to disease early prediction and prevention. But modeling that can best capture brain structural variability and can be valid in both disease classification and interpretation is extremely challenging. The current study aimed to establish a computational approach for modeling the magnetic resonance imaging (MRI)-based structural complexity of the brain using the framework of hidden Markov models (HMMs) for dementia recognition. Methods Regularity dimension and semi-variogram were used to extract structural features of the brains, and vector quantization method was applied to convert extracted feature vectors to prototype vectors. The output VQ indices were then utilized to estimate parameters for HMMs. To validate its accuracy and robustness, experiments were carried out on individuals who were characterized as non-demented and mild Alzheimer's diseased. Four HMMs were constructed based on the cohort of non-demented young, middle-aged, elder and demented elder subjects separately. Classification was carried out using a data set including both non-demented and demented individuals with a wide age range. Results The proposed HMMs have succeeded in recognition of individual who has mild Alzheimer's disease and achieved a better classification accuracy compared to other related works using different classifiers. Results have shown the ability of the proposed modeling for recognition of early dementia. Conclusion The findings from this research will allow individual classification to support the early diagnosis and prediction of dementia. By using the brain MRI-based HMMs developed in our proposed research, it will be more efficient, robust and can be easily used by clinicians as a computer-aid tool for validating imaging bio-markers for early prediction of dementia. PMID:24564961
Li, Der-Chiang; Liu, Chiao-Wen; Hu, Susan C
2011-05-01
Medical data sets are usually small and have very high dimensionality. Too many attributes will make the analysis less efficient and will not necessarily increase accuracy, while too few data will decrease the modeling stability. Consequently, the main objective of this study is to extract the optimal subset of features to increase analytical performance when the data set is small. This paper proposes a fuzzy-based non-linear transformation method to extend classification related information from the original data attribute values for a small data set. Based on the new transformed data set, this study applies principal component analysis (PCA) to extract the optimal subset of features. Finally, we use the transformed data with these optimal features as the input data for a learning tool, a support vector machine (SVM). Six medical data sets: Pima Indians' diabetes, Wisconsin diagnostic breast cancer, Parkinson disease, echocardiogram, BUPA liver disorders dataset, and bladder cancer cases in Taiwan, are employed to illustrate the approach presented in this paper. This research uses the t-test to evaluate the classification accuracy for a single data set; and uses the Friedman test to show the proposed method is better than other methods over the multiple data sets. The experiment results indicate that the proposed method has better classification performance than either PCA or kernel principal component analysis (KPCA) when the data set is small, and suggest creating new purpose-related information to improve the analysis performance. This paper has shown that feature extraction is important as a function of feature selection for efficient data analysis. When the data set is small, using the fuzzy-based transformation method presented in this work to increase the information available produces better results than the PCA and KPCA approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks.
Al Hajj, Hassan; Lamard, Mathieu; Conze, Pierre-Henri; Cochener, Béatrice; Quellec, Gwenolé
2018-05-09
This paper investigates the automatic monitoring of tool usage during a surgery, with potential applications in report generation, surgical training and real-time decision support. Two surgeries are considered: cataract surgery, the most common surgical procedure, and cholecystectomy, one of the most common digestive surgeries. Tool usage is monitored in videos recorded either through a microscope (cataract surgery) or an endoscope (cholecystectomy). Following state-of-the-art video analysis solutions, each frame of the video is analyzed by convolutional neural networks (CNNs) whose outputs are fed to recurrent neural networks (RNNs) in order to take temporal relationships between events into account. Novelty lies in the way those CNNs and RNNs are trained. Computational complexity prevents the end-to-end training of "CNN+RNN" systems. Therefore, CNNs are usually trained first, independently from the RNNs. This approach is clearly suboptimal for surgical tool analysis: many tools are very similar to one another, but they can generally be differentiated based on past events. CNNs should be trained to extract the most useful visual features in combination with the temporal context. A novel boosting strategy is proposed to achieve this goal: the CNN and RNN parts of the system are simultaneously enriched by progressively adding weak classifiers (either CNNs or RNNs) trained to improve the overall classification accuracy. Experiments were performed in a dataset of 50 cataract surgery videos, where the usage of 21 surgical tools was manually annotated, and a dataset of 80 cholecystectomy videos, where the usage of 7 tools was manually annotated. Very good classification performance are achieved in both datasets: tool usage could be labeled with an average area under the ROC curve of A z =0.9961 and A z =0.9939, respectively, in offline mode (using past, present and future information), and A z =0.9957 and A z =0.9936, respectively, in online mode (using past and present information only). Copyright © 2018 Elsevier B.V. All rights reserved.
Reducing uncertainty on satellite image classification through spatiotemporal reasoning
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Nikolakaki, Natassa; Psillakis, Periklis; Miliaresis, George; Xanthakis, Michail
2014-05-01
The natural habitat constantly endures both inherent natural and human-induced influences. Remote sensing has been providing monitoring oriented solutions regarding the natural Earth surface, by offering a series of tools and methodologies which contribute to prudent environmental management. Processing and analysis of multi-temporal satellite images for the observation of the land changes include often classification and change-detection techniques. These error prone procedures are influenced mainly by the distinctive characteristics of the study areas, the remote sensing systems limitations and the image analysis processes. The present study takes advantage of the temporal continuity of multi-temporal classified images, in order to reduce classification uncertainty, based on reasoning rules. More specifically, pixel groups that temporally oscillate between classes are liable to misclassification or indicate problematic areas. On the other hand, constant pixel group growth indicates a pressure prone area. Computational tools are developed in order to disclose the alterations in land use dynamics and offer a spatial reference to the pressures that land use classes endure and impose between them. Moreover, by revealing areas that are susceptible to misclassification, we propose specific target site selection for training during the process of supervised classification. The underlying objective is to contribute to the understanding and analysis of anthropogenic and environmental factors that influence land use changes. The developed algorithms have been tested upon Landsat satellite image time series, depicting the National Park of Ainos in Kefallinia, Greece, where the unique in the world Abies cephalonica grows. Along with the minor changes and pressures indicated in the test area due to harvesting and other human interventions, the developed algorithms successfully captured fire incidents that have been historically confirmed. Overall, the results have shown that the use of the suggested procedures can contribute to the reduction of the classification uncertainty and support the existing knowledge regarding the pressure among land-use changes.
Henriksen, James A.; Heasley, John; Kennen, Jonathan G.; Nieswand, Steven
2006-01-01
Applying the Hydroecological Integrity Assessment Process involves four steps: (1) a hydrologic classification of relatively unmodified streams in a geographic area using long-term gage records and 171 ecologically relevant indices; (2) the identification of statistically significant, nonredundant, hydroecologically relevant indices associated with the five major flow components for each stream class; and (3) the development of a stream-classification tool and a hydrologic assessment tool. Four computer software tools have been developed.
Culto: AN Ontology-Based Annotation Tool for Data Curation in Cultural Heritage
NASA Astrophysics Data System (ADS)
Garozzo, R.; Murabito, F.; Santagati, C.; Pino, C.; Spampinato, C.
2017-08-01
This paper proposes CulTO, a software tool relying on a computational ontology for Cultural Heritage domain modelling, with a specific focus on religious historical buildings, for supporting cultural heritage experts in their investigations. It is specifically thought to support annotation, automatic indexing, classification and curation of photographic data and text documents of historical buildings. CULTO also serves as a useful tool for Historical Building Information Modeling (H-BIM) by enabling semantic 3D data modeling and further enrichment with non-geometrical information of historical buildings through the inclusion of new concepts about historical documents, images, decay or deformation evidence as well as decorative elements into BIM platforms. CulTO is the result of a joint research effort between the Laboratory of Surveying and Architectural Photogrammetry "Luigi Andreozzi" and the PeRCeiVe Lab (Pattern Recognition and Computer Vision Lab) of the University of Catania,
USDA-ARS?s Scientific Manuscript database
The iPhyClassifier is an Internet-based research tool for quick identification and classification of diverse phytoplasmas. The iPhyClassifier simulates laboratory restriction enzyme digestions and subsequent gel electrophoresis and generates virtual restriction fragment length polymorphism (RFLP) p...
Sahan, Seral; Polat, Kemal; Kodaz, Halife; Güneş, Salih
2007-03-01
The use of machine learning tools in medical diagnosis is increasing gradually. This is mainly because the effectiveness of classification and recognition systems has improved in a great deal to help medical experts in diagnosing diseases. Such a disease is breast cancer, which is a very common type of cancer among woman. As the incidence of this disease has increased significantly in the recent years, machine learning applications to this problem have also took a great attention as well as medical consideration. This study aims at diagnosing breast cancer with a new hybrid machine learning method. By hybridizing a fuzzy-artificial immune system with k-nearest neighbour algorithm, a method was obtained to solve this diagnosis problem via classifying Wisconsin Breast Cancer Dataset (WBCD). This data set is a very commonly used data set in the literature relating the use of classification systems for breast cancer diagnosis and it was used in this study to compare the classification performance of our proposed method with regard to other studies. We obtained a classification accuracy of 99.14%, which is the highest one reached so far. The classification accuracy was obtained via 10-fold cross validation. This result is for WBCD but it states that this method can be used confidently for other breast cancer diagnosis problems, too.
Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang
2016-11-16
The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.
NASA Astrophysics Data System (ADS)
Devillez, Arnaud; Dudzinski, Daniel
2007-01-01
Today the knowledge of a process is very important for engineers to find optimal combination of control parameters warranting productivity, quality and functioning without defects and failures. In our laboratory, we carry out research in the field of high speed machining with modelling, simulation and experimental approaches. The aim of our investigation is to develop a software allowing the cutting conditions optimisation to limit the number of predictive tests, and the process monitoring to prevent any trouble during machining operations. This software is based on models and experimental data sets which constitute the knowledge of the process. In this paper, we deal with the problem of vibrations occurring during a machining operation. These vibrations may cause some failures and defects to the process, like workpiece surface alteration and rapid tool wear. To measure on line the tool micro-movements, we equipped a lathe with a specific instrumentation using eddy current sensors. Obtained signals were correlated with surface finish and a signal processing algorithm was used to determine if a test is stable or unstable. Then, a fuzzy classification method was proposed to classify the tests in a space defined by the width of cut and the cutting speed. Finally, it was shown that the fuzzy classification takes into account of the measurements incertitude to compute the stability limit or stability lobes of the process.
NASA Astrophysics Data System (ADS)
Navares, Ricardo; Aznarte, José Luis
2017-04-01
In this paper, we approach the problem of predicting the concentrations of Poaceae pollen which define the main pollination season in the city of Madrid. A classification-based approach, based on a computational intelligence model (random forests), is applied to forecast the dates in which risk concentration levels are to be observed. Unlike previous works, the proposal extends the range of forecasting horizons up to 6 months ahead. Furthermore, the proposed model allows to determine the most influential factors for each horizon, making no assumptions about the significance of the weather features. The performace of the proposed model proves it as a successful tool for allergy patients in preventing and minimizing the exposure to risky pollen concentrations and for researchers to gain a deeper insight on the factors driving the pollination season.
Navares, Ricardo; Aznarte, José Luis
2017-04-01
In this paper, we approach the problem of predicting the concentrations of Poaceae pollen which define the main pollination season in the city of Madrid. A classification-based approach, based on a computational intelligence model (random forests), is applied to forecast the dates in which risk concentration levels are to be observed. Unlike previous works, the proposal extends the range of forecasting horizons up to 6 months ahead. Furthermore, the proposed model allows to determine the most influential factors for each horizon, making no assumptions about the significance of the weather features. The performace of the proposed model proves it as a successful tool for allergy patients in preventing and minimizing the exposure to risky pollen concentrations and for researchers to gain a deeper insight on the factors driving the pollination season.
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
Liu, Da; Li, Jianxun
2016-12-16
Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.
A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
Iacoviello, Daniela; Petracca, Andrea; Spezialetti, Matteo; Placidi, Giuseppe
2015-12-01
The aim of this paper is to provide an efficient, parametric, general, and completely automatic real time classification method of electroencephalography (EEG) signals obtained from self-induced emotions. The particular characteristics of the considered low-amplitude signals (a self-induced emotion produces a signal whose amplitude is about 15% of a really experienced emotion) require exploring and adapting strategies like the Wavelet Transform, the Principal Component Analysis (PCA) and the Support Vector Machine (SVM) for signal processing, analysis and classification. Moreover, the method is thought to be used in a multi-emotions based Brain Computer Interface (BCI) and, for this reason, an ad hoc shrewdness is assumed. The peculiarity of the brain activation requires ad-hoc signal processing by wavelet decomposition, and the definition of a set of features for signal characterization in order to discriminate different self-induced emotions. The proposed method is a two stages algorithm, completely parameterized, aiming at a multi-class classification and may be considered in the framework of machine learning. The first stage, the calibration, is off-line and is devoted at the signal processing, the determination of the features and at the training of a classifier. The second stage, the real-time one, is the test on new data. The PCA theory is applied to avoid redundancy in the set of features whereas the classification of the selected features, and therefore of the signals, is obtained by the SVM. Some experimental tests have been conducted on EEG signals proposing a binary BCI, based on the self-induced disgust produced by remembering an unpleasant odor. Since in literature it has been shown that this emotion mainly involves the right hemisphere and in particular the T8 channel, the classification procedure is tested by using just T8, though the average accuracy is calculated and reported also for the whole set of the measured channels. The obtained classification results are encouraging with percentage of success that is, in the average for the whole set of the examined subjects, above 90%. An ongoing work is the application of the proposed procedure to map a large set of emotions with EEG and to establish the EEG headset with the minimal number of channels to allow the recognition of a significant range of emotions both in the field of affective computing and in the development of auxiliary communication tools for subjects affected by severe disabilities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Decoding magnetoencephalographic rhythmic activity using spectrospatial information.
Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo
2013-12-01
We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.
Optimizing high performance computing workflow for protein functional annotation.
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-09-10
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.
Optimizing high performance computing workflow for protein functional annotation
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-01-01
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296
Ying, Jun; Dutta, Joyita; Guo, Ning; Hu, Chenhui; Zhou, Dan; Sitek, Arkadiusz; Li, Quanzheng
2016-12-21
This study aims to develop an automatic classifier based on deep learning for exacerbation frequency in patients with chronic obstructive pulmonary disease (COPD). A threelayer deep belief network (DBN) with two hidden layers and one visible layer was employed to develop classification models and the models' robustness to exacerbation was analyzed. Subjects from the COPDGene cohort were labeled with exacerbation frequency, defined as the number of exacerbation events per year. 10,300 subjects with 361 features each were included in the analysis. After feature selection and parameter optimization, the proposed classification method achieved an accuracy of 91.99%, using a 10-fold cross validation experiment. The analysis of DBN weights showed that there was a good visual spatial relationship between the underlying critical features of different layers. Our findings show that the most sensitive features obtained from the DBN weights are consistent with the consensus showed by clinical rules and standards for COPD diagnostics. We thus demonstrate that DBN is a competitive tool for exacerbation risk assessment for patients suffering from COPD.
Retrieval evaluation and distance learning from perceived similarity between endomicroscopy videos.
André, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas
2011-01-01
Evaluating content-based retrieval (CBR) is challenging because it requires an adequate ground-truth. When the available groundtruth is limited to textual metadata such as pathological classes, retrieval results can only be evaluated indirectly, for example in terms of classification performance. In this study we first present a tool to generate perceived similarity ground-truth that enables direct evaluation of endomicroscopic video retrieval. This tool uses a four-points Likert scale and collects subjective pairwise similarities perceived by multiple expert observers. We then evaluate against the generated ground-truth a previously developed dense bag-of-visual-words method for endomicroscopic video retrieval. Confirming the results of previous indirect evaluation based on classification, our direct evaluation shows that this method significantly outperforms several other state-of-the-art CBR methods. In a second step, we propose to improve the CBR method by learning an adjusted similarity metric from the perceived similarity ground-truth. By minimizing a margin-based cost function that differentiates similar and dissimilar video pairs, we learn a weight vector applied to the visual word signatures of videos. Using cross-validation, we demonstrate that the learned similarity distance is significantly better correlated with the perceived similarity than the original visual-word-based distance.
NASA Astrophysics Data System (ADS)
Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.
2016-01-01
In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... NATIONAL SCIENCE FOUNDATION Proposed Collection of Information; Comment Request: Biological Sciences Proposal Classification Form AGENCY: National Science Foundation. ACTION: Notice. SUMMARY: The... Biological Sciences has a continuing commitment to monitor its information collection in order to preserve...
Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D
2017-01-04
The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
NASA Astrophysics Data System (ADS)
Tamimi, E.; Ebadi, H.; Kiani, A.
2017-09-01
Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.
NASA Astrophysics Data System (ADS)
Nomura, Yukihiro; Lu, Jianming; Sekiya, Hiroo; Yahagi, Takashi
This paper presents a speech enhancement using the classification between the dominants of speech and noise. In our system, a new classification scheme between the dominants of speech and noise is proposed. The proposed classifications use the standard deviation of the spectrum of observation signal in each band. We introduce two oversubtraction factors for the dominants of speech and noise, respectively. And spectral subtraction is carried out after the classification. The proposed method is tested on several noise types from the Noisex-92 database. From the investigation of segmental SNR, Itakura-Saito distance measure, inspection of spectrograms and listening tests, the proposed system is shown to be effective to reduce background noise. Moreover, the enhanced speech using our system generates less musical noise and distortion than that of conventional systems.
Bearing damage assessment using Jensen-Rényi Divergence based on EEMD
NASA Astrophysics Data System (ADS)
Singh, Jaskaran; Darpe, A. K.; Singh, S. P.
2017-03-01
An Ensemble Empirical Mode Decomposition (EEMD) and Jensen Rényi divergence (JRD) based methodology is proposed for the degradation assessment of rolling element bearings using vibration data. The EEMD decomposes vibration signals into a set of intrinsic mode functions (IMFs). A systematic methodology to select IMFs that are sensitive and closely related to the fault is proposed in the paper. The change in probability distribution of the energies of the sensitive IMFs is measured through JRD which acts as a damage identification parameter. Evaluation of JRD with sensitive IMFs makes it largely unaffected by change/fluctuations in operating conditions. Further, an algorithm based on Chebyshev's inequality is applied to JRD to identify exact points of change in bearing health and remove outliers. The identified change points are investigated for fault classification as possible locations where specific defect initiation could have taken place. For fault classification, two new parameters are proposed: 'α value' and Probable Fault Index, which together classify the fault. To standardize the degradation process, a Confidence Value parameter is proposed to quantify the bearing degradation value in a range of zero to unity. A simulation study is first carried out to demonstrate the robustness of the proposed JRD parameter under variable operating conditions of load and speed. The proposed methodology is then validated on experimental data (seeded defect data and accelerated bearing life test data). The first validation on two different vibration datasets (inner/outer) obtained from seeded defect experiments demonstrate the effectiveness of JRD parameter in detecting a change in health state as the severity of fault changes. The second validation is on two accelerated life tests. The results demonstrate the proposed approach as a potential tool for bearing performance degradation assessment.
Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.
Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L
2014-10-01
Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert classification (7 and 5, respectively). In contrast, in only one case presented the new algorithm resulted in fewer classes and activation areas. We propose that the use of automated spike sorting algorithms to classify IED provides an efficient tool for mapping IED-related fMRI changes and increases the EEG-fMRI clinical value for the pre-surgical assessment of patients with severe epilepsy. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohamed, Abdul Aziz; Hasan, Abu Bakar; Ghazali, Abu Bakar Mhd.
2017-01-01
Classification of large data into respected classes or groups could be carried out with the help of artificial intelligence (AI) tools readily available in the market. To get the optimum or best results, optimization tool could be applied on those data. Classification and optimization have been used by researchers throughout their works, and the outcomes were very encouraging indeed. Here, the authors are trying to share what they have experienced in three different areas of applied research.
Mycofier: a new machine learning-based classifier for fungal ITS sequences.
Delgado-Serrano, Luisa; Restrepo, Silvia; Bustos, Jose Ricardo; Zambrano, Maria Mercedes; Anzola, Juan Manuel
2016-08-11
The taxonomic and phylogenetic classification based on sequence analysis of the ITS1 genomic region has become a crucial component of fungal ecology and diversity studies. Nowadays, there is no accurate alignment-free classification tool for fungal ITS1 sequences for large environmental surveys. This study describes the development of a machine learning-based classifier for the taxonomical assignment of fungal ITS1 sequences at the genus level. A fungal ITS1 sequence database was built using curated data. Training and test sets were generated from it. A Naïve Bayesian classifier was built using features from the primary sequence with an accuracy of 87 % in the classification at the genus level. The final model was based on a Naïve Bayes algorithm using ITS1 sequences from 510 fungal genera. This classifier, denoted as Mycofier, provides similar classification accuracy compared to BLASTN, but the database used for the classification contains curated data and the tool, independent of alignment, is more efficient and contributes to the field, given the lack of an accurate classification tool for large data from fungal ITS1 sequences. The software and source code for Mycofier are freely available at https://github.com/ldelgado-serrano/mycofier.git .
Development of neural network techniques for finger-vein pattern classification
NASA Astrophysics Data System (ADS)
Wu, Jian-Da; Liu, Chiung-Tsiung; Tsai, Yi-Jang; Liu, Jun-Ching; Chang, Ya-Wen
2010-02-01
A personal identification system using finger-vein patterns and neural network techniques is proposed in the present study. In the proposed system, the finger-vein patterns are captured by a device that can transmit near infrared through the finger and record the patterns for signal analysis and classification. The biometric system for verification consists of a combination of feature extraction using principal component analysis and pattern classification using both back-propagation network and adaptive neuro-fuzzy inference systems. Finger-vein features are first extracted by principal component analysis method to reduce the computational burden and removes noise residing in the discarded dimensions. The features are then used in pattern classification and identification. To verify the effect of the proposed adaptive neuro-fuzzy inference system in the pattern classification, the back-propagation network is compared with the proposed system. The experimental results indicated the proposed system using adaptive neuro-fuzzy inference system demonstrated a better performance than the back-propagation network for personal identification using the finger-vein patterns.
Dey, Soumyabrata; Rao, A Ravishankar; Shah, Mubarak
2014-01-01
Attention Deficit Hyperactive Disorder (ADHD) is getting a lot of attention recently for two reasons. First, it is one of the most commonly found childhood disorders and second, the root cause of the problem is still unknown. Functional Magnetic Resonance Imaging (fMRI) data has become a popular tool for the analysis of ADHD, which is the focus of our current research. In this paper we propose a novel framework for the automatic classification of the ADHD subjects using their resting state fMRI (rs-fMRI) data of the brain. We construct brain functional connectivity networks for all the subjects. The nodes of the network are constructed with clusters of highly active voxels and edges between any pair of nodes represent the correlations between their average fMRI time series. The activity level of the voxels are measured based on the average power of their corresponding fMRI time-series. For each node of the networks, a local descriptor comprising of a set of attributes of the node is computed. Next, the Multi-Dimensional Scaling (MDS) technique is used to project all the subjects from the unknown graph-space to a low dimensional space based on their inter-graph distance measures. Finally, the Support Vector Machine (SVM) classifier is used on the low dimensional projected space for automatic classification of the ADHD subjects. Exhaustive experimental validation of the proposed method is performed using the data set released for the ADHD-200 competition. Our method shows promise as we achieve impressive classification accuracies on the training (70.49%) and test data sets (73.55%). Our results reveal that the detection rates are higher when classification is performed separately on the male and female groups of subjects.
Hyperspectral Image Classification using a Self-Organizing Map
NASA Technical Reports Server (NTRS)
Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.
2001-01-01
The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.
Keeley, Jared W; Reed, Geoffrey M; Roberts, Michael C; Evans, Spencer C; Medina-Mora, María Elena; Robles, Rebeca; Rebello, Tahilia; Sharan, Pratap; Gureje, Oye; First, Michael B; Andrews, Howard F; Ayuso-Mateos, José Luís; Gaebel, Wolfgang; Zielasek, Juergen; Saxena, Shekhar
2016-01-01
The World Health Organization (WHO) Department of Mental Health and Substance Abuse has developed a systematic program of field studies to evaluate and improve the clinical utility of the proposed diagnostic guidelines for mental and behavioral disorders in the Eleventh Revision of the International Classification of Diseases and Related Health Problems (ICD-11). The clinical utility of a diagnostic classification is critical to its function as the interface between health encounters and health information, and to making the ICD-11 be a more effective tool for helping the WHO's 194 member countries, including the United States, reduce the global disease burden of mental disorders. This article describes the WHO's efforts to develop a science of clinical utility in regard to one of the two major classification systems for mental disorders. We present the rationale and methodologies for an integrated and complementary set of field study strategies, including large international surveys, formative field studies of the structure of clinicians' conceptualization of mental disorders, case-controlled field studies using experimental methodologies to evaluate the impact of proposed changes to the diagnostic guidelines on clinicians' diagnostic decision making, and ecological implementation field studies of clinical utility in the global settings in which the guidelines will ultimately be implemented. The results of these studies have already been used in making decisions about the structure and content of ICD-11. If clinical utility is indeed among the highest aims of diagnostic systems for mental disorders, as their developers routinely claim, future revision efforts should continue to build on these efforts. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A methodology for space-time classification of groundwater quality.
Passarella, G; Caputo, M C
2006-04-01
Safeguarding groundwater from civil, agricultural and industrial contamination is matter of great interest in water resource management. During recent years, much legislation has been produced stating the importance of groundwater as a source for drinking water supplies, underlining its vulnerability and defining the required quality standards. Thus, schematic tools, able to characterise the quality and quantity of groundwater systems, are of very great interest in any territorial planning and/or water resource management activity. This paper proposes a groundwater quality classification method which has been applied to a real aquifer, starting from several studies published by the Italian National Hydrogeologic Catastrophe Defence Group (GNDCI). The methodology is based on the concentration values of several parameters used as indexes of the natural hydro-chemical water condition and of potential man-induced modifications of groundwater quality. The resulting maps, although representative of the quality, do not include any information on its evolution in time. In this paper, this "stationary" classification method has been improved by crossing the quality classes with three indexes of temporal behaviour during recent years. It was then applied to data from monitoring campaigns, performed in spring and autumn, from 1990 to 1996, in the plain of Modena aquifer (central Italy). The results are reported in the form of space-time classification table and maps.
Martins, Lucia Regina Rocha; Pereira-Filho, Edenir Rodrigues; Cass, Quezia Bezerra
2011-04-01
Taking in consideration the global analysis of complex samples, proposed by the metabolomic approach, the chromatographic fingerprint encompasses an attractive chemical characterization of herbal medicines. Thus, it can be used as a tool in quality control analysis of phytomedicines. The generated multivariate data are better evaluated by chemometric analyses, and they can be modeled by classification methods. "Stone breaker" is a popular Brazilian plant of Phyllanthus genus, used worldwide to treat renal calculus, hepatitis, and many other diseases. In this study, gradient elution at reversed-phase conditions with detection at ultraviolet region were used to obtain chemical profiles (fingerprints) of botanically identified samples of six Phyllanthus species. The obtained chromatograms, at 275 nm, were organized in data matrices, and the time shifts of peaks were adjusted using the Correlation Optimized Warping algorithm. Principal Component Analyses were performed to evaluate similarities among cultivated and uncultivated samples and the discrimination among the species and, after that, the samples were used to compose three classification models using Soft Independent Modeling of Class analogy, K-Nearest Neighbor, and Partial Least Squares for Discriminant Analysis. The ability of classification models were discussed after their successful application for authenticity evaluation of 25 commercial samples of "stone breaker."
Differentiation of osteophyte types in osteoarthritis - proposal of a histological classification.
Junker, Susann; Krumbholz, Grit; Frommer, Klaus W; Rehart, Stefan; Steinmeyer, Jürgen; Rickert, Markus; Schett, Georg; Müller-Ladner, Ulf; Neumann, Elena
2016-01-01
Osteoarthritis is not only characterized by cartilage degradation but also involves subchondral bone remodeling and osteophyte formation. Osteophytes are fibrocartilage-capped bony outgrowths originating from the periosteum. The pathophysiology of osteophyte formation is not completely understood. Yet, different research approaches are under way. Therefore, a histological osteophyte classification to achieve comparable results in osteophyte research was established for application to basic science research questions. The osteophytes were collected from knee joints of osteoarthritis patients (n=10, 94 osteophytes in total) after joint replacement surgery. Their size and origin in the respective joint were photo-documented. To develop an osteophyte classification, serial tissue sections were evaluated using histological (hematoxylin and eosin, Masson's trichrome, toluidine blue) and immunohistochemical staining (collagen type II). Based on the histological and immunohistochemical evaluation, osteophytes were categorized into four different types depending on the degree of ossification and the percentage of mesenchymal connective tissue. Size and localization of osteophytes were independent from the histological stages. This histological classification system of osteoarthritis osteophytes provides a helpful tool for analyzing and monitoring osteophyte development and for characterizing osteophyte types within a single human joint and may therefore contribute to achieve comparable results when analyzing histological findings in osteophytes. Copyright © 2015 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Bouktif, Salah; Hanna, Eileen Marie; Zaki, Nazar; Abu Khousa, Eman
2014-01-01
Prediction and classification techniques have been well studied by machine learning researchers and developed for several real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to some difficulties such as the low performance of prediction models when they are applied in different environments. Such a problem has been addressed by many researchers, mainly from the machine learning community. A second problem, principally raised by model users in different communities, such as managers, economists, engineers, biologists, and medical practitioners, etc., is the prediction models' interpretability. The latter is the ability of a model to explain its predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers combination approach that does not only promote the overall performance but also preserves the interpretability of the resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers. We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based predictions, problems where interpretability is critical to make appropriate clinical decisions. The datasets, Prediction Models and software tool together with supplementary materials are available at http://faculty.uaeu.ac.ae/salahb/ACO4BC.htm.
Method of Grassland Information Extraction Based on Multi-Level Segmentation and Cart Model
NASA Astrophysics Data System (ADS)
Qiao, Y.; Chen, T.; He, J.; Wen, Q.; Liu, F.; Wang, Z.
2018-04-01
It is difficult to extract grassland accurately by traditional classification methods, such as supervised method based on pixels or objects. This paper proposed a new method combing the multi-level segmentation with CART (classification and regression tree) model. The multi-level segmentation which combined the multi-resolution segmentation and the spectral difference segmentation could avoid the over and insufficient segmentation seen in the single segmentation mode. The CART model was established based on the spectral characteristics and texture feature which were excavated from training sample data. Xilinhaote City in Inner Mongolia Autonomous Region was chosen as the typical study area and the proposed method was verified by using visual interpretation results as approximate truth value. Meanwhile, the comparison with the nearest neighbor supervised classification method was obtained. The experimental results showed that the total precision of classification and the Kappa coefficient of the proposed method was 95 % and 0.9, respectively. However, the total precision of classification and the Kappa coefficient of the nearest neighbor supervised classification method was 80 % and 0.56, respectively. The result suggested that the accuracy of classification proposed in this paper was higher than the nearest neighbor supervised classification method. The experiment certificated that the proposed method was an effective extraction method of grassland information, which could enhance the boundary of grassland classification and avoid the restriction of grassland distribution scale. This method was also applicable to the extraction of grassland information in other regions with complicated spatial features, which could avoid the interference of woodland, arable land and water body effectively.
Biernacka, Joanna; Betlejewska-Kielak, Katarzyna; Kłosińska-Szmurło, Ewa; Pluciński, Franciszek A; Mazurek, Aleksander P
2013-01-01
The physicochemical properties relevant to biological activity of selected bisphosphonates such as clodronate disodium salt, etidronate disodium salt, pamidronate disodium salt, alendronate sodium salt, ibandronate sodium salt, risedronate sodium salt and zoledronate disodium salt were determined using in silico methods. The main aim of our research was to investigate and propose molecular determinants thataffect bioavailability of above mentioned compounds. These determinants are: stabilization energy (deltaE), free energy of solvation (deltaG(solv)), electrostatic potential, dipole moment, as well as partition and distribution coefficients estimated by the log P and log D values. Presented values indicate that selected bisphosphonates a recharacterized by high solubility and low permeability. The calculated parameters describing both solubility and permeability through biological membranes seem to be a good bioavailability indicators of bisphosphonates examined and can be a useful tool to include into Biopharmaceutical Classification System (BCS) development.
From Patient Discharge Summaries to an Ontology for Psychiatry.
Richard, Marion; Aimé, Xavier; Jaulent, Marie-Christine; Krebs, Marie-Odile; Charlet, Jean
2017-01-01
Psychiatry aims at detecting symptoms, providing diagnoses and treating mental disorders. We developed ONTOPSYCHIA, an ontology for psychiatry in three modules: social and environmental factors of mental disorders, mental disorders, and treatments. The use of ONTOPSYCHIA, associated with dedicated tools, will facilitate semantic research in Patient Discharge Summaries (PDS). To develop the first module of the ontology we propose a PDS text analysis in order to explicit psychiatry concepts. We decided to set aside classifications during the construction of the modu le, to focus only on the information contained in PDS (bottom-up approach) and to return to domain classifications solely for the enrichment phase (top-down approach). Then, we focused our work on the development of the LOVMI methodology (Les Ontologies Validées par Méthode Interactive - Ontologies Validated by Interactive Method), which aims to provide a methodological framework to validate the structure and the semantic of an ontology.
Güreşci, Servet; Hızlı, Samil; Simşek, Gülçin Güler
2012-09-01
Small intestinal biopsy remains the gold standard in diagnosing celiac disease (CD); however, the wide spectrum of histopathological states and differential diagnosis of CD is still a diagnostic problem for pathologists. Recently, Ensari reviewed the literature and proposed an update of the histopathological diagnosis and classification for CD. In this study, the histopathological materials of 54 children in whom CD was diagnosed at our hospital were reviewed to compare the previous Marsh and Modified Marsh-Oberhuber classifications with this new proposal. In this study, we show that the Ensari classification is as accurate as the Marsh and Modified Marsh classifications in describing the consecutive states of mucosal damage seen in CD. Ensari's classification is simple, practical and facilitative in diagnosing and subtyping of mucosal pathology of CD.
NASA Astrophysics Data System (ADS)
Shin, K. H.; Kim, K. H.; Ki, S. J.; Lee, H. G.
2017-12-01
The vulnerability assessment tool at a Tier 1 level, although not often used for regulatory purposes, helps establish pollution prevention and management strategies in the areas of potential environmental concern such as soil and ground water. In this study, the Neural Network Pattern Recognition Tool embedded in MATLAB was used to allow the initial screening of soil and groundwater pollution based on data compiled across about 1000 previously contaminated sites in Korea. The input variables included a series of parameters which were tightly related to downward movement of water and contaminants through soil and ground water, whereas multiple classes were assigned to the sum of concentrations of major pollutants detected. Results showed that in accordance with diverse pollution indices for soil and ground water, pollution levels in both media were strongly modulated by site-specific characteristics such as intrinsic soil and other geologic properties, in addition to pollution sources and rainfall. However, classification accuracy was very sensitive to the number of classes defined as well as the types of the variables incorporated, requiring careful selection of input variables and output categories. Therefore, we believe that the proposed methodology is used not only to modify existing pollution indices so that they are more suitable for addressing local vulnerability, but also to develop a unique assessment tool to support decision making based on locally or nationally available data. This study was funded by a grant from the GAIA project(2016000560002), Korea Environmental Industry & Technology Institute, Republic of Korea.
Focal liver lesions segmentation and classification in nonenhanced T2-weighted MRI.
Gatos, Ilias; Tsantis, Stavros; Karamesini, Maria; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Hazle, John D; Kagadis, George C
2017-07-01
To automatically segment and classify focal liver lesions (FLLs) on nonenhanced T2-weighted magnetic resonance imaging (MRI) scans using a computer-aided diagnosis (CAD) algorithm. 71 FLLs (30 benign lesions, 19 hepatocellular carcinomas, and 22 metastases) on T2-weighted MRI scans were delineated by the proposed CAD scheme. The FLL segmentation procedure involved wavelet multiscale analysis to extract accurate edge information and mean intensity values for consecutive edges computed using horizontal and vertical analysis that were fed into the subsequent fuzzy C-means algorithm for final FLL border extraction. Texture information for each extracted lesion was derived using 42 first- and second-order textural features from grayscale value histogram, co-occurrence, and run-length matrices. Twelve morphological features were also extracted to capture any shape differentiation between classes. Feature selection was performed with stepwise multilinear regression analysis that led to a reduced feature subset. A multiclass Probabilistic Neural Network (PNN) classifier was then designed and used for lesion classification. PNN model evaluation was performed using the leave-one-out (LOO) method and receiver operating characteristic (ROC) curve analysis. The mean overlap between the automatically segmented FLLs and the manual segmentations performed by radiologists was 0.91 ± 0.12. The highest classification accuracies in the PNN model for the benign, hepatocellular carcinoma, and metastatic FLLs were 94.1%, 91.4%, and 94.1%, respectively, with sensitivity/specificity values of 90%/97.3%, 89.5%/92.2%, and 90.9%/95.6% respectively. The overall classification accuracy for the proposed system was 90.1%. Our diagnostic system using sophisticated FLL segmentation and classification algorithms is a powerful tool for routine clinical MRI-based liver evaluation and can be a supplement to contrast-enhanced MRI to prevent unnecessary invasive procedures. © 2017 American Association of Physicists in Medicine.
Tartar, A; Akan, A; Kilic, N
2014-01-01
Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively.
Classification-Based Spatial Error Concealment for Visual Communications
NASA Astrophysics Data System (ADS)
Chen, Meng; Zheng, Yefeng; Wu, Min
2006-12-01
In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.
Iris Image Classification Based on Hierarchical Visual Codebook.
Zhenan Sun; Hui Zhang; Tieniu Tan; Jianyu Wang
2014-06-01
Iris recognition as a reliable method for personal identification has been well-studied with the objective to assign the class label of each iris image to a unique subject. In contrast, iris image classification aims to classify an iris image to an application specific category, e.g., iris liveness detection (classification of genuine and fake iris images), race classification (e.g., classification of iris images of Asian and non-Asian subjects), coarse-to-fine iris identification (classification of all iris images in the central database into multiple categories). This paper proposes a general framework for iris image classification based on texture analysis. A novel texture pattern representation method called Hierarchical Visual Codebook (HVC) is proposed to encode the texture primitives of iris images. The proposed HVC method is an integration of two existing Bag-of-Words models, namely Vocabulary Tree (VT), and Locality-constrained Linear Coding (LLC). The HVC adopts a coarse-to-fine visual coding strategy and takes advantages of both VT and LLC for accurate and sparse representation of iris texture. Extensive experimental results demonstrate that the proposed iris image classification method achieves state-of-the-art performance for iris liveness detection, race classification, and coarse-to-fine iris identification. A comprehensive fake iris image database simulating four types of iris spoof attacks is developed as the benchmark for research of iris liveness detection.
An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation
NASA Technical Reports Server (NTRS)
Zhang, Zhou; Pasolli, Edoardo; Crawford, Melba M.; Tilton, James C.
2015-01-01
Augmenting spectral data with spatial information for image classification has recently gained significant attention, as classification accuracy can often be improved by extracting spatial information from neighboring pixels. In this paper, we propose a new framework in which active learning (AL) and hierarchical segmentation (HSeg) are combined for spectral-spatial classification of hyperspectral images. The spatial information is extracted from a best segmentation obtained by pruning the HSeg tree using a new supervised strategy. The best segmentation is updated at each iteration of the AL process, thus taking advantage of informative labeled samples provided by the user. The proposed strategy incorporates spatial information in two ways: 1) concatenating the extracted spatial features and the original spectral features into a stacked vector and 2) extending the training set using a self-learning-based semi-supervised learning (SSL) approach. Finally, the two strategies are combined within an AL framework. The proposed framework is validated with two benchmark hyperspectral datasets. Higher classification accuracies are obtained by the proposed framework with respect to five other state-of-the-art spectral-spatial classification approaches. Moreover, the effectiveness of the proposed pruning strategy is also demonstrated relative to the approaches based on a fixed segmentation.
Ground-based cloud classification by learning stable local binary patterns
NASA Astrophysics Data System (ADS)
Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua
2018-07-01
Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.
Machine assisted histogram classification
NASA Astrophysics Data System (ADS)
Benyó, B.; Gaspar, C.; Somogyi, P.
2010-04-01
LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.
Wu, Guey-Hau; Liou, Yiing-Mei; Huang, Lian-Hua
2004-10-01
In assessing the health of a community is important to select tools appropriate to the community's characteristics. The framework for this paper is the system framework for community assessment developed by Trotter, Smith and Maurer (2000); the data were collected by windshield survey, literature review, interview, and observation. Through data analysis and the identification of the community's problem, the authors prioritize those problems in accordance with Goeppinger and Schuste's (1992) criteria. They illustrate the practicality and local applicability of this method by means of a local case. Finally, the authors evaluate the framework in terms of concept clearance, variable classification, and indicator measurement. In addition, they propose concrete suggestions for community workers to consider in the selection of assessment tools, and to enrich nursing knowledge.
Deep learning for tumor classification in imaging mass spectrometry.
Behrmann, Jens; Etmann, Christian; Boskamp, Tobias; Casadonte, Rita; Kriegsmann, Jörg; Maaß, Peter
2018-04-01
Tumor classification using imaging mass spectrometry (IMS) data has a high potential for future applications in pathology. Due to the complexity and size of the data, automated feature extraction and classification steps are required to fully process the data. Since mass spectra exhibit certain structural similarities to image data, deep learning may offer a promising strategy for classification of IMS data as it has been successfully applied to image classification. Methodologically, we propose an adapted architecture based on deep convolutional networks to handle the characteristics of mass spectrometry data, as well as a strategy to interpret the learned model in the spectral domain based on a sensitivity analysis. The proposed methods are evaluated on two algorithmically challenging tumor classification tasks and compared to a baseline approach. Competitiveness of the proposed methods is shown on both tasks by studying the performance via cross-validation. Moreover, the learned models are analyzed by the proposed sensitivity analysis revealing biologically plausible effects as well as confounding factors of the considered tasks. Thus, this study may serve as a starting point for further development of deep learning approaches in IMS classification tasks. https://gitlab.informatik.uni-bremen.de/digipath/Deep_Learning_for_Tumor_Classification_in_IMS. jbehrmann@uni-bremen.de or christianetmann@uni-bremen.de. Supplementary data are available at Bioinformatics online.
Alternative temporal classification of long Gamma Ray Bursts
NASA Astrophysics Data System (ADS)
Alejandro Vasquez, Nicolas; Baquero, Andres; Andrade, David
2015-08-01
In order to increase the understanding on Gamma Ray Bursts, many attempts of classification have been proposed. Starting with the canonical classification into long and short GRBs, alternative classifications taking into account the cosmological origin of GRBs have been analyzed. In the present work we propose an alternative classification based on two temporal estimators, the Auto Correlation Function (ACF) of the light curves and the emission time which considered the time where the bursts engine is active. The time estimators chosen reflects the internal evolution of the GRB and the internal structure. Using a sample of 61 bright GRBs detected by SWIFT satellite with known redshift, we proposed a bimodal distribution of long bursts. The two types of bursts have different internal structure suggesting different progenitors.
Spectral-Spatial Classification of Hyperspectral Images Using Hierarchical Optimization
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new spectral-spatial method for hyperspectral data classification is proposed. For a given hyperspectral image, probabilistic pixelwise classification is first applied. Then, hierarchical step-wise optimization algorithm is performed, by iteratively merging neighboring regions with the smallest Dissimilarity Criterion (DC) and recomputing class labels for new regions. The DC is computed by comparing region mean vectors, class labels and a number of pixels in the two regions under consideration. The algorithm is converged when all the pixels get involved in the region merging procedure. Experimental results are presented on two remote sensing hyperspectral images acquired by the AVIRIS and ROSIS sensors. The proposed approach improves classification accuracies and provides maps with more homogeneous regions, when compared to previously proposed classification techniques.
A Neural-Network-Based Semi-Automated Geospatial Classification Tool
NASA Astrophysics Data System (ADS)
Hale, R. G.; Herzfeld, U. C.
2014-12-01
North America's largest glacier system, the Bering Bagley Glacier System (BBGS) in Alaska, surged in 2011-2013, as shown by rapid mass transfer, elevation change, and heavy crevassing. Little is known about the physics controlling surge glaciers' semi-cyclic patterns; therefore, it is crucial to collect and analyze as much data as possible so that predictive models can be made. In addition, physical signs frozen in ice in the form of crevasses may help serve as a warning for future surges. The BBGS surge provided an opportunity to develop an automated classification tool for crevasse classification based on imagery collected from small aircraft. The classification allows one to link image classification to geophysical processes associated with ice deformation. The tool uses an approach that employs geostatistical functions and a feed-forward perceptron with error back-propagation. The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network (NN) can recognize. In an application to preform analysis on airborne video graphic data from the surge of the BBGS, an NN was able to distinguish 18 different crevasse classes with 95 percent or higher accuracy, for over 3,000 images. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we designed the tool's semi-automated pre-training algorithm to be adaptable. The tool can be optimized to specific settings and variables of image analysis: (airborne and satellite imagery, different camera types, observation altitude, number and types of classes, and resolution). The generalization of the classification tool brings three important advantages: (1) multiple types of problems in geophysics can be studied, (2) the training process is sufficiently formalized to allow non-experts in neural nets to perform the training process, and (3) the time required to manually pre-sort imagery into classes is greatly reduced.
Minimalist approach to the classification of symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Xiong, Zhaoxi
A number of proposals with differing predictions (e.g. group cohomology, cobordisms, group supercohomology, spin cobordisms, etc.) have been made for the classification of symmetry protected topological (SPT) phases. Here we treat various proposals on equal footing and present rigorous, general results that are independent of which proposal is correct. We do so by formulating a minimalist Generalized Cohomology Hypothesis, which is satisfied by existing proposals and captures essential aspects of SPT classification. From this Hypothesis alone, formulas relating classifications in different dimensions and/or protected by different symmetry groups are derived. Our formalism is expected to work for fermionic as well as bosonic phases, Floquet as well as stationary phases, and spatial as well as on-site symmetries.
NASA Astrophysics Data System (ADS)
Ressel, Rudolf; Singha, Suman; Lehner, Susanne
2016-08-01
Arctic Sea ice monitoring has attracted increasing attention over the last few decades. Besides the scientific interest in sea ice, the operational aspect of ice charting is becoming more important due to growing navigational possibilities in an increasingly ice free Arctic. For this purpose, satellite borne SAR imagery has become an invaluable tool. In past, mostly single polarimetric datasets were investigated with supervised or unsupervised classification schemes for sea ice investigation. Despite proven sea ice classification achievements on single polarimetric data, a fully automatic, general purpose classifier for single-pol data has not been established due to large variation of sea ice manifestations and incidence angle impact. Recently, through the advent of polarimetric SAR sensors, polarimetric features have moved into the focus of ice classification research. The higher information content four polarimetric channels promises to offer greater insight into sea ice scattering mechanism and overcome some of the shortcomings of single- polarimetric classifiers. Two spatially and temporally coincident pairs of fully polarimetric acquisitions from the TerraSAR-X/TanDEM-X and RADARSAT-2 satellites are investigated. Proposed supervised classification algorithm consists of two steps: The first step comprises a feature extraction, the results of which are ingested into a neural network classifier in the second step. Based on the common coherency and covariance matrix, we extract a number of features and analyze the relevance and redundancy by means of mutual information for the purpose of sea ice classification. Coherency matrix based features which require an eigendecomposition are found to be either of low relevance or redundant to other covariance matrix based features. Among the most useful features for classification are matrix invariant based features (Geometric Intensity, Scattering Diversity, Surface Scattering Fraction).
Treelets Binary Feature Retrieval for Fast Keypoint Recognition.
Zhu, Jianke; Wu, Chenxia; Chen, Chun; Cai, Deng
2015-10-01
Fast keypoint recognition is essential to many vision tasks. In contrast to the classification-based approaches, we directly formulate the keypoint recognition as an image patch retrieval problem, which enjoys the merit of finding the matched keypoint and its pose simultaneously. To effectively extract the binary features from each patch surrounding the keypoint, we make use of treelets transform that can group the highly correlated data together and reduce the noise through the local analysis. Treelets is a multiresolution analysis tool, which provides an orthogonal basis to reflect the geometry of the noise-free data. To facilitate the real-world applications, we have proposed two novel approaches. One is the convolutional treelets that capture the image patch information locally and globally while reducing the computational cost. The other is the higher-order treelets that reflect the relationship between the rows and columns within image patch. An efficient sub-signature-based locality sensitive hashing scheme is employed for fast approximate nearest neighbor search in patch retrieval. Experimental evaluations on both synthetic data and the real-world Oxford dataset have shown that our proposed treelets binary feature retrieval methods outperform the state-of-the-art feature descriptors and classification-based approaches.
Robust prediction of protein subcellular localization combining PCA and WSVMs.
Tian, Jiang; Gu, Hong; Liu, Wenqi; Gao, Chiyang
2011-08-01
Automated prediction of protein subcellular localization is an important tool for genome annotation and drug discovery, and Support Vector Machines (SVMs) can effectively solve this problem in a supervised manner. However, the datasets obtained from real experiments are likely to contain outliers or noises, which can lead to poor generalization ability and classification accuracy. To explore this problem, we adopt strategies to lower the effect of outliers. First we design a method based on Weighted SVMs, different weights are assigned to different data points, so the training algorithm will learn the decision boundary according to the relative importance of the data points. Second we analyse the influence of Principal Component Analysis (PCA) on WSVM classification, propose a hybrid classifier combining merits of both PCA and WSVM. After performing dimension reduction operations on the datasets, kernel-based possibilistic c-means algorithm can generate more suitable weights for the training, as PCA transforms the data into a new coordinate system with largest variances affected greatly by the outliers. Experiments on benchmark datasets show promising results, which confirms the effectiveness of the proposed method in terms of prediction accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.
2014-05-01
Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-06-17
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.
Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego
2016-01-01
Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273
Cytopathological image analysis using deep-learning networks in microfluidic microscopy.
Gopakumar, G; Hari Babu, K; Mishra, Deepak; Gorthi, Sai Siva; Sai Subrahmanyam, Gorthi R K
2017-01-01
Cytopathologic testing is one of the most critical steps in the diagnosis of diseases, including cancer. However, the task is laborious and demands skill. Associated high cost and low throughput drew considerable interest in automating the testing process. Several neural network architectures were designed to provide human expertise to machines. In this paper, we explore and propose the feasibility of using deep-learning networks for cytopathologic analysis by performing the classification of three important unlabeled, unstained leukemia cell lines (K562, MOLT, and HL60). The cell images used in the classification are captured using a low-cost, high-throughput cell imaging technique: microfluidics-based imaging flow cytometry. We demonstrate that without any conventional fine segmentation followed by explicit feature extraction, the proposed deep-learning algorithms effectively classify the coarsely localized cell lines. We show that the designed deep belief network as well as the deeply pretrained convolutional neural network outperform the conventionally used decision systems and are important in the medical domain, where the availability of labeled data is limited for training. We hope that our work enables the development of a clinically significant high-throughput microfluidic microscopy-based tool for disease screening/triaging, especially in resource-limited settings.
Acute pesticide poisoning: a proposed classification tool.
Thundiyil, Josef G; Stober, Judy; Besbelli, Nida; Pronczuk, Jenny
2008-03-01
Cases of acute pesticide poisoning (APP) account for significant morbidity and mortality worldwide. Developing countries are particularly susceptible due to poorer regulation, lack of surveillance systems, less enforcement, lack of training and inadequate access to information systems. Previous research has demonstrated wide variability in incidence rates for APP. This is possibly due to inconsistent reporting methodology and exclusion of occupational and non-intentional poisonings. The purpose of this document is to create a standard case definition to facilitate the identification and diagnosis of all causes of APP, especially at the field level, rural clinics and primary health-care systems. This document is a synthesis of existing literature and case definitions that have been previously proposed by other authors around the world. It provides a standardized case definition and classification scheme for APP into categories of probable, possible and unlikely/unknown cases. Its use is intended to be applicable worldwide to contribute to identification of the scope of existing problems and thus promote action for improved management and prevention. By enabling a field diagnosis for APP, this standardized case definition may facilitate immediate medical management of pesticide poisoning and aid in estimating its incidence.
A New Dusts Sensor for Cultural Heritage Applications Based on Image Processing
Proietti, Andrea; Leccese, Fabio; Caciotta, Maurizio; Morresi, Fabio; Santamaria, Ulderico; Malomo, Carmela
2014-01-01
In this paper, we propose a new sensor for the detection and analysis of dusts (seen as powders and fibers) in indoor environments, especially designed for applications in the field of Cultural Heritage or in other contexts where the presence of dust requires special care (surgery, clean rooms, etc.). The presented system relies on image processing techniques (enhancement, noise reduction, segmentation, metrics analysis) and it allows obtaining both qualitative and quantitative information on the accumulation of dust. This information aims to identify the geometric and topological features of the elements of the deposit. The curators can use this information in order to design suitable prevention and maintenance actions for objects and environments. The sensor consists of simple and relatively cheap tools, based on a high-resolution image acquisition system, a preprocessing software to improve the captured image and an analysis algorithm for the feature extraction and the classification of the elements of the dust deposit. We carried out some tests in order to validate the system operation. These tests were performed within the Sistine Chapel in the Vatican Museums, showing the good performance of the proposed sensor in terms of execution time and classification accuracy. PMID:24901977
Road Infrastructure Safety Management in Poland
NASA Astrophysics Data System (ADS)
Budzynski, Marcin; Jamroz, Kazimierz; Kustra, Wojciech; Michalski, Lech; Gaca, Stanislaw
2017-10-01
The objective of road safety infrastructure management is to ensure that when roads are planned, designed, built and used road risks can be identified, assessed and mitigated. Road transport safety is significantly less developed than that of rail, water and air transport. The average individual risk of being a fatality in relation to the distance covered is thirty times higher in road transport that in the other modes. This is mainly because the different modes have a different approach to safety management and to the use of risk management methods and tools. In recent years Poland has had one of the European Union’s highest road death numbers. In 2016 there were 3026 fatalities on Polish roads with 40,766 injuries. Protecting road users from the risk of injury and death should be given top priority. While Poland’s national and regional road safety programmes address this problem and are instrumental in systematically reducing the number of casualties, the effects are far from the expectations. Modern approaches to safety focus on three integrated elements: infrastructure measures, safety management and safety culture. Due to its complexity, the process of road safety management requires modern tools to help with identifying road user risks, assess and evaluate the safety of road infrastructure and select effective measures to improve road safety. One possible tool for tackling this problem is the risk-based method for road infrastructure safety management. European Union Directive 2008/96/EC regulates and proposes a list of tools for managing road infrastructure safety. Road safety tools look at two criteria: the life cycle of a road structure and the process of risk management. Risk can be minimized through the application of the proposed interventions during design process as reasonable. The proposed methods of risk management bring together two stages: risk assessment and risk response occurring within the analyzed road structure (road network, road stretch, road section, junction, etc.). The objective of the methods is to help road authorities to take rational decisions in the area of road safety and road infrastructure safety and understand the consequences occurring in the particular phases of road life cycle. To help with assessing the impact of a road project on the safety of related roads, a method was developed for long-term forecasts of accidents and accident cost estimation as well as a risk classification to identify risks that are not acceptable risks. With regard to road safety audits and road safety inspection, a set of principles was developed to identify risks and the basic classification of mistakes and omissions. This work has added to the Polish experience of preparing and implementing such tools within the competent road authorities.
Limitations and implications of stream classification
Juracek, K.E.; Fitzpatrick, F.A.
2003-01-01
Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.
Neyman-Pearson classification algorithms and NP receiver operating characteristics
Tong, Xin; Feng, Yang; Li, Jingyi Jessica
2018-01-01
In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies. PMID:29423442
Neyman-Pearson classification algorithms and NP receiver operating characteristics.
Tong, Xin; Feng, Yang; Li, Jingyi Jessica
2018-02-01
In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies.
76 FR 47531 - Approval of Classification Societies
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... proposed rulemaking (NPRM) proposing application procedures and performance standards that classification... exempt from Coast Guard approval prior to working in the United States. Because [[Page 47532
Leucocyte classification for leukaemia detection using image processing techniques.
Putzu, Lorenzo; Caocci, Giovanni; Di Ruberto, Cecilia
2014-11-01
The counting and classification of blood cells allow for the evaluation and diagnosis of a vast number of diseases. The analysis of white blood cells (WBCs) allows for the detection of acute lymphoblastic leukaemia (ALL), a blood cancer that can be fatal if left untreated. Currently, the morphological analysis of blood cells is performed manually by skilled operators. However, this method has numerous drawbacks, such as slow analysis, non-standard accuracy, and dependences on the operator's skill. Few examples of automated systems that can analyse and classify blood cells have been reported in the literature, and most of these systems are only partially developed. This paper presents a complete and fully automated method for WBC identification and classification using microscopic images. In contrast to other approaches that identify the nuclei first, which are more prominent than other components, the proposed approach isolates the whole leucocyte and then separates the nucleus and cytoplasm. This approach is necessary to analyse each cell component in detail. From each cell component, different features, such as shape, colour and texture, are extracted using a new approach for background pixel removal. This feature set was used to train different classification models in order to determine which one is most suitable for the detection of leukaemia. Using our method, 245 of 267 total leucocytes were properly identified (92% accuracy) from 33 images taken with the same camera and under the same lighting conditions. Performing this evaluation using different classification models allowed us to establish that the support vector machine with a Gaussian radial basis kernel is the most suitable model for the identification of ALL, with an accuracy of 93% and a sensitivity of 98%. Furthermore, we evaluated the goodness of our new feature set, which displayed better performance with each evaluated classification model. The proposed method permits the analysis of blood cells automatically via image processing techniques, and it represents a medical tool to avoid the numerous drawbacks associated with manual observation. This process could also be used for counting, as it provides excellent performance and allows for early diagnostic suspicion, which can then be confirmed by a haematologist through specialised techniques. Copyright © 2014 Elsevier B.V. All rights reserved.
C-fuzzy variable-branch decision tree with storage and classification error rate constraints
NASA Astrophysics Data System (ADS)
Yang, Shiueng-Bien
2009-10-01
The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.
Huo, Guanying
2017-01-01
As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614
Arnone, Mario; Koppisch, Dorothea; Smola, Thomas; Gabriel, Stefan; Verbist, Koen; Visser, Remco
2015-10-01
Many control banding tools use hazard banding in risk assessments for the occupational handling of hazardous substances. The outcome of these assessments can be combined with advice for the required risk management measures (RMMs). The Globally Harmonised System of Classification and Labelling of Chemicals (GHS) has resulted in a change in the hazard communication elements, i.e. Hazard (H) statements instead of Risk-phrases. Hazard banding schemes that depend on the old form of safety information have to be adapted to the new rules. The purpose of this publication is to outline the rationales for the assignment of hazard bands to H statements under the GHS. Based on this, this publication proposes a hazard banding scheme that uses the information from the safety data sheets as the basis for assignment. The assignment of hazard bands tiered according to the severity of the underlying hazards supports the important principle of substitution. Additionally, the set of assignment rules permits an exposure-route-specific assignment of hazard bands, which is necessary for the proposed route-specific RMMs. Ideally, all control banding tools should apply the same assignment rules. This GHS-compliant hazard banding scheme can hopefully help to establish a unified hazard banding strategy in the various control banding tools. Copyright © 2015 Elsevier Inc. All rights reserved.
Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy
2014-01-01
Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659
Sparse Covariance Matrix Estimation by DCA-Based Algorithms.
Phan, Duy Nhat; Le Thi, Hoai An; Dinh, Tao Pham
2017-11-01
This letter proposes a novel approach using the [Formula: see text]-norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the [Formula: see text] term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of [Formula: see text]-norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.
Güreşci, Servet; Hızlı, Şamil; Şimşek, Gülçin Güler
2012-01-01
Objective: Small intestinal biopsy remains the gold standard in diagnosing celiac disease (CD); however, the wide spectrum of histopathological states and differential diagnosis of CD is still a diagnostic problem for pathologists. Recently, Ensari reviewed the literature and proposed an update of the histopathological diagnosis and classification for CD. Materials and Methods: In this study, the histopathological materials of 54 children in whom CD was diagnosed at our hospital were reviewed to compare the previous Marsh and Modified Marsh-Oberhuber classifications with this new proposal. Results: In this study, we show that the Ensari classification is as accurate as the Marsh and Modified Marsh classifications in describing the consecutive states of mucosal damage seen in CD. Conclusions: Ensari’s classification is simple, practical and facilitative in diagnosing and subtyping of mucosal pathology of CD. PMID:25207015
Significance of perceptually relevant image decolorization for scene classification
NASA Astrophysics Data System (ADS)
Viswanathan, Sowmya; Divakaran, Govind; Soman, Kutti Padanyl
2017-11-01
Color images contain luminance and chrominance components representing the intensity and color information, respectively. The objective of this paper is to show the significance of incorporating chrominance information to the task of scene classification. An improved color-to-grayscale image conversion algorithm that effectively incorporates chrominance information is proposed using the color-to-gray structure similarity index and singular value decomposition to improve the perceptual quality of the converted grayscale images. The experimental results based on an image quality assessment for image decolorization and its success rate (using the Cadik and COLOR250 datasets) show that the proposed image decolorization technique performs better than eight existing benchmark algorithms for image decolorization. In the second part of the paper, the effectiveness of incorporating the chrominance component for scene classification tasks is demonstrated using a deep belief network-based image classification system developed using dense scale-invariant feature transforms. The amount of chrominance information incorporated into the proposed image decolorization technique is confirmed with the improvement to the overall scene classification accuracy. Moreover, the overall scene classification performance improved by combining the models obtained using the proposed method and conventional decolorization methods.
Integration of heterogeneous features for remote sensing scene classification
NASA Astrophysics Data System (ADS)
Wang, Xin; Xiong, Xingnan; Ning, Chen; Shi, Aiye; Lv, Guofang
2018-01-01
Scene classification is one of the most important issues in remote sensing (RS) image processing. We find that features from different channels (shape, spectral, texture, etc.), levels (low-level and middle-level), or perspectives (local and global) could provide various properties for RS images, and then propose a heterogeneous feature framework to extract and integrate heterogeneous features with different types for RS scene classification. The proposed method is composed of three modules (1) heterogeneous features extraction, where three heterogeneous feature types, called DS-SURF-LLC, mean-Std-LLC, and MS-CLBP, are calculated, (2) heterogeneous features fusion, where the multiple kernel learning (MKL) is utilized to integrate the heterogeneous features, and (3) an MKL support vector machine classifier for RS scene classification. The proposed method is extensively evaluated on three challenging benchmark datasets (a 6-class dataset, a 12-class dataset, and a 21-class dataset), and the experimental results show that the proposed method leads to good classification performance. It produces good informative features to describe the RS image scenes. Moreover, the integration of heterogeneous features outperforms some state-of-the-art features on RS scene classification tasks.
Promoting consistent use of the communication function classification system (CFCS).
Cunningham, Barbara Jane; Rosenbaum, Peter; Hidecker, Mary Jo Cooley
2016-01-01
We developed a Knowledge Translation (KT) intervention to standardize the way speech-language pathologists working in Ontario Canada's Preschool Speech and Language Program (PSLP) used the Communication Function Classification System (CFCS). This tool was being used as part of a provincial program evaluation and standardizing its use was critical for establishing reliability and validity within the provincial dataset. Two theoretical foundations - Diffusion of Innovations and the Communication Persuasion Matrix - were used to develop and disseminate the intervention to standardize use of the CFCS among a cohort speech-language pathologists. A descriptive pre-test/post-test study was used to evaluate the intervention. Fifty-two participants completed an electronic pre-test survey, reviewed intervention materials online, and then immediately completed an electronic post-test survey. The intervention improved clinicians' understanding of how the CFCS should be used, their intentions to use the tool in the standardized way, and their abilities to make correct classifications using the tool. Findings from this work will be shared with representatives of the Ontario PSLP. The intervention may be disseminated to all speech-language pathologists working in the program. This study can be used as a model for developing and disseminating KT interventions for clinicians in paediatric rehabilitation. The Communication Function Classification System (CFCS) is a new tool that allows speech-language pathologists to classify children's skills into five meaningful levels of function. There is uncertainty and inconsistent practice in the field about the methods for using this tool. This study used combined two theoretical frameworks to develop an intervention to standardize use of the CFCS among a cohort of speech-language pathologists. The intervention effectively increased clinicians' understanding of the methods for using the CFCS, ability to make correct classifications, and intention to use the tool in the standardized way in the future.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Gong, Cailan; Hu, Yong; Meng, Peng; Xu, Feifei
2013-08-01
Hyperspectral data, consisting of hundreds of spectral bands with a high spectral resolution, enables acquisition of continuous spectral characteristic curves, and therefore have served as a powerful tool for vegetation classification. The difficulty of using hyperspectral data is that they are usually redundant, strongly correlated and subject to Hughes phenomenon where classification accuracy increases gradually in the beginning as the number of spectral bands or dimensions increases, but decreases dramatically when the band number reaches some value. In recent years,some algorithms have been proposed to overcome the Hughes phenomenon in classification, such as selecting several bands from full bands, PCA- and MNF-based feature transformations. Up to date, however, few studies have been conducted to investigate the turning point of Hughes phenomenon (i.e., the point at which the classification accuracy begins to decline). In this paper, we firstly analyze reasons for occurrence of Hughes phenomenon, and then based on the Mahalanobis classifier, classify the ground spectrum of several grasslands which were recorded in September 2012 using FieldSpec3 spectrometer in the regions around Qinghai Lake,a important pasturing area in the north of China. Before classification, we extract features from hyperspectral data by bands selecting and PCA- based feature transformations, and In the process of classification, we analyze how the correlation coefficient between wavebands, the number of waveband channels and the number of principal components affect the classification result. The results show that Hushes phenomenon may occur when the correlation coefficient between wavebands is greater than 94%,the number of wavebands is greater than 6, or the number of principal components is greater than 6. Best classification result can be achieved (overall accuracy of grasslands 90%) if the number of wavebands equals to 3 (the band positions are 370nm, 509nm and 886nm respectively) or the number of principal components ranges from 4 to 6.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-12-16
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.
Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems.
Oh, Sang-Il; Kang, Hang-Bong
2017-01-22
To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.
Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN). The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI) pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR) sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226×370 image, whereas the original selective search method extracted approximately 106×n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset. PMID:28117742
Classification accuracy for stratification with remotely sensed data
Raymond L. Czaplewski; Paul L. Patterson
2003-01-01
Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an âerror matrix,â which is...
Breast masses in mammography classification with local contour features.
Li, Haixia; Meng, Xianjing; Wang, Tingwen; Tang, Yuchun; Yin, Yilong
2017-04-14
Mammography is one of the most popular tools for early detection of breast cancer. Contour of breast mass in mammography is very important information to distinguish benign and malignant mass. Contour of benign mass is smooth and round or oval, while malignant mass has irregular shape and spiculated contour. Several studies have shown that 1D signature translated from 2D contour can describe the contour features well. In this paper, we propose a new method to translate 2D contour of breast mass in mammography into 1D signature. The method can describe not only the contour features but also the regularity of breast mass. Then we segment the whole 1D signature into different subsections. We extract four local features including a new contour descriptor from the subsections. The new contour descriptor is root mean square (RMS) slope. It can describe the roughness of the contour. KNN, SVM and ANN classifier are used to classify benign breast mass and malignant mass. The proposed method is tested on a set with 323 contours including 143 benign masses and 180 malignant ones from digital database of screening mammography (DDSM). The best accuracy of classification is 99.66% using the feature of root mean square slope with SVM classifier. The performance of the proposed method is better than traditional method. In addition, RMS slope is an effective feature comparable to most of the existing features.
Mumtaz, Wajid; Ali, Syed Saad Azhar; Yasin, Mohd Azhar Mohd; Malik, Aamir Saeed
2018-02-01
Major depressive disorder (MDD), a debilitating mental illness, could cause functional disabilities and could become a social problem. An accurate and early diagnosis for depression could become challenging. This paper proposed a machine learning framework involving EEG-derived synchronization likelihood (SL) features as input data for automatic diagnosis of MDD. It was hypothesized that EEG-based SL features could discriminate MDD patients and healthy controls with an acceptable accuracy better than measures such as interhemispheric coherence and mutual information. In this work, classification models such as support vector machine (SVM), logistic regression (LR) and Naïve Bayesian (NB) were employed to model relationship between the EEG features and the study groups (MDD patient and healthy controls) and ultimately achieved discrimination of study participants. The results indicated that the classification rates were better than chance. More specifically, the study resulted into SVM classification accuracy = 98%, sensitivity = 99.9%, specificity = 95% and f-measure = 0.97; LR classification accuracy = 91.7%, sensitivity = 86.66%, specificity = 96.6% and f-measure = 0.90; NB classification accuracy = 93.6%, sensitivity = 100%, specificity = 87.9% and f-measure = 0.95. In conclusion, SL could be a promising method for diagnosing depression. The findings could be generalized to develop a robust CAD-based tool that may help for clinical purposes.
Elsebaie, H B; Dannawi, Z; Altaf, F; Zaidan, A; Al Mukhtar, M; Shaw, M J; Gibson, A; Noordeen, H
2016-02-01
The achievement of shoulder balance is an important measure of successful scoliosis surgery. No previously described classification system has taken shoulder balance into account. We propose a simple classification system for AIS based on two components which include the curve type and shoulder level. Altogether, three curve types have been defined according to the size and location of the curves, each curve pattern is subdivided into type A or B depending on the shoulder level. This classification was tested for interobserver reproducibility and intraobserver reliability. A retrospective analysis of the radiographs of 232 consecutive cases of AIS patients treated surgically between 2005 and 2009 was also performed. Three major types and six subtypes were identified. Type I accounted for 30 %, type II 28 % and type III 42 %. The retrospective analysis showed three patients developed a decompensation that required extension of the fusion. One case developed worsening of shoulder balance requiring further surgery. This classification was tested for interobserver and intraobserver reliability. The mean kappa coefficients for interobserver reproducibility ranged from 0.89 to 0.952, while the mean kappa value for intraobserver reliability was 0.964 indicating a good-to-excellent reliability. The treatment algorithm guides the spinal surgeon to achieve optimal curve correction and postoperative shoulder balance whilst fusing the smallest number of spinal segments. The high interobserver reproducibility and intraobserver reliability makes it an invaluable tool to describe scoliosis curves in everyday clinical practice.
Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.
Kim, Eunwoo; Park, HyunWook
2017-02-01
The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.
Khalilzadeh, Omid; Baerlocher, Mark O; Shyn, Paul B; Connolly, Bairbre L; Devane, A Michael; Morris, Christopher S; Cohen, Alan M; Midia, Mehran; Thornton, Raymond H; Gross, Kathleen; Caplin, Drew M; Aeron, Gunjan; Misra, Sanjay; Patel, Nilesh H; Walker, T Gregory; Martinez-Salazar, Gloria; Silberzweig, James E; Nikolic, Boris
2017-10-01
To develop a new adverse event (AE) classification for the interventional radiology (IR) procedures and evaluate its clinical, research, and educational value compared with the existing Society of Interventional Radiology (SIR) classification via an SIR member survey. A new AE classification was developed by members of the Standards of Practice Committee of the SIR. Subsequently, a survey was created by a group of 18 members from the SIR Standards of Practice Committee and Service Lines. Twelve clinical AE case scenarios were generated that encompassed a broad spectrum of IR procedures and potential AEs. Survey questions were designed to evaluate the following domains: educational and research values, accountability for intraprocedural challenges, consistency of AE reporting, unambiguity, and potential for incorporation into existing quality-assurance framework. For each AE scenario, the survey participants were instructed to answer questions about the proposed and existing SIR classifications. SIR members were invited via online survey links, and 68 members participated among 140 surveyed. Answers on new and existing classifications were evaluated and compared statistically. Overall comparison between the two surveys was performed by generalized linear modeling. The proposed AE classification received superior evaluations in terms of consistency of reporting (P < .05) and potential for incorporation into existing quality-assurance framework (P < .05). Respondents gave a higher overall rating to the educational and research value of the new compared with the existing classification (P < .05). This study proposed an AE classification system that outperformed the existing SIR classification in the studied domains. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.
A New Tool for Climatic Analysis Using the Koppen Climate Classification
ERIC Educational Resources Information Center
Larson, Paul R.; Lohrengel, C. Frederick, II
2011-01-01
The purpose of climate classification is to help make order of the seemingly endless spatial distribution of climates. The Koppen classification system in a modified format is the most widely applied system in use today. This system may not be the best nor most complete climate classification that can be conceived, but it has gained widespread…
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
Wang, Jie; Feng, Zuren; Lu, Na; Luo, Jing
2018-06-01
Feature selection plays an important role in the field of EEG signals based motor imagery pattern classification. It is a process that aims to select an optimal feature subset from the original set. Two significant advantages involved are: lowering the computational burden so as to speed up the learning procedure and removing redundant and irrelevant features so as to improve the classification performance. Therefore, feature selection is widely employed in the classification of EEG signals in practical brain-computer interface systems. In this paper, we present a novel statistical model to select the optimal feature subset based on the Kullback-Leibler divergence measure, and automatically select the optimal subject-specific time segment. The proposed method comprises four successive stages: a broad frequency band filtering and common spatial pattern enhancement as preprocessing, features extraction by autoregressive model and log-variance, the Kullback-Leibler divergence based optimal feature and time segment selection and linear discriminate analysis classification. More importantly, this paper provides a potential framework for combining other feature extraction models and classification algorithms with the proposed method for EEG signals classification. Experiments on single-trial EEG signals from two public competition datasets not only demonstrate that the proposed method is effective in selecting discriminative features and time segment, but also show that the proposed method yields relatively better classification results in comparison with other competitive methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hydrologic Landscape Classification to Estimate Bristol Bay Watershed Hydrology
The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on cl...
Koppers, Lars; Wormer, Holger; Ickstadt, Katja
2017-08-01
The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for quality assurance, such as laboratory supervisors, we propose a basic classification of image manipulation. Based on this classification, we developed and explored some simple algorithms to detect copied areas in images. Using an artificial image and two examples of previously published modified images, we apply quantitative methods such as pixel-wise comparison, a nearest neighbor and a variance algorithm to detect copied-and-pasted areas or duplicated images. We show that our algorithms are able to detect some simple types of image alteration, such as copying and pasting background areas. The variance algorithm detects not only identical, but also very similar areas that differ only by brightness. Further types could, in principle, be implemented in a standardized scanning routine. We detected the copied areas in a proven case of image manipulation in Germany and showed the similarity of two images in a retracted paper from the Kato labs, which has been widely discussed on sites such as pubpeer and retraction watch.
Ghasemi-Varnamkhasti, Mahdi; Amiri, Zahra Safari; Tohidi, Mojtaba; Dowlati, Majid; Mohtasebi, Seyed Saeid; Silva, Adenilton C; Fernandes, David D S; Araujo, Mário C U
2018-01-01
Cumin is a plant of the Apiaceae family (umbelliferae) which has been used since ancient times as a medicinal plant and as a spice. The difference in the percentage of aromatic compounds in cumin obtained from different locations has led to differentiation of some species of cumin from other species. The quality and price of cumin vary according to the specie and may be an incentive for the adulteration of high value samples with low quality cultivars. An electronic nose simulates the human olfactory sense by using an array of sensors to distinguish complex smells. This makes it an alternative for the identification and classification of cumin species. The data, however, may have a complex structure, difficult to interpret. Given this, chemometric tools can be used to manipulate data with two-dimensional structure (sensor responses in time) obtained by using electronic nose sensors. In this study, an electronic nose based on eight metal oxide semiconductor sensors (MOS) and 2D-LDA (two-dimensional linear discriminant analysis), U-PLS-DA (Partial least square discriminant analysis applied to the unfolded data) and PARAFAC-LDA (Parallel factor analysis with linear discriminant analysis) algorithms were used in order to identify and classify different varieties of both cultivated and wild black caraway and cumin. The proposed methodology presented a correct classification rate of 87.1% for PARAFAC-LDA and 100% for 2D-LDA and U-PLS-DA, indicating a promising strategy for the classification different varieties of cumin, caraway and other seeds. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment and classification of cancer breakthrough pain: a systematic literature review.
Haugen, Dagny Faksvåg; Hjermstad, Marianne Jensen; Hagen, Neil; Caraceni, Augusto; Kaasa, Stein
2010-06-01
Temporal variations in cancer pain intensity are highly prevalent, and are often difficult to manage. However, the phenomenon is not well understood: several definitions and approaches to classification and bedside assessment of cancer breakthrough pain (BTP) have been described. The present study is a systematic review of published literature on cancer BTP to answer the following questions: which terms and definitions have been used; are there validated assessment tools; which domains of BTP do the tools delineate, and which items do they contain; how have assessment tools been applied within clinical studies; and are there validated classification systems for BTP. A systematic search of the peer-reviewed literature was performed using five major databases. Of 375 titles and abstracts initially identified, 51 articles were examined in detail. Analysis of these publications indicates a range of overlapping but distinct definitions have been used to characterize BTP; 42 of the included papers presented one or more ways of classifying BTP; and while 10 tools to assess patients' experience of BTP were identified, only 2 have been partially validated. We conclude that there is no widely accepted definition, classification system or well-validated assessment tool for cancer-related breakthrough pain, but there is strong concurrence on most of its key attributes. With further work in this area, an internationally agreed upon definition and classification system for cancer-related breakthrough pain, and a standard approach on how to measure it, hold the promise to improve patient care and support research in this poor-prognosis cancer pain syndrome.
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
NASA Astrophysics Data System (ADS)
Yu, Yali; Wang, Mengxia; Lima, Dimas
2018-04-01
In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.
Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics
NASA Astrophysics Data System (ADS)
Liu, J.; Xie, H.; Zha, B.; Ding, W.; Luo, J.; Hu, C.
2018-03-01
A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.
Alecu, C S; Jitaru, E; Moisil, I
2000-01-01
This paper presents some tools designed and implemented for learning-related purposes; these tools can be downloaded or run on the TeleNurse web site. Among other facilities, TeleNurse web site is hosting now the version 1.2 of SysTerN (terminology system for nursing) which can be downloaded on request and also the "Evaluation of Translation" form which has been designed in order to improve the Romanian translation of the ICNP (the International Classification of Nursing Practice). SysTerN has been developed using the framework of the TeleNurse ID--ENTITY Telematics for Health EU project. This version is using the beta version of ICNP containing Phenomena and Actions classification. This classification is intended to facilitate documentation of nursing practice, by providing a terminology or vocabulary for use in the description of the nursing process. The TeleNurse site is bilingual, Romanian-English, in order to enlarge the discussion forum with members from other CEE (or Non-CEE) countries.
Tsimmerman, Ia S
2008-01-01
The new International Classification of Chronic Pancreatitis (designated as M-ANNHEIM) proposed by a group of German specialists in late 2007 is reviewed. All its sections are subjected to analysis (risk group categories, clinical stages and phases, variants of clinical course, diagnostic criteria for "established" and "suspected" pancreatitis, instrumental methods and functional tests used in the diagnosis, evaluation of the severity of the disease using a scoring system, stages of elimination of pain syndrome). The new classification is compared with the earlier classification proposed by the author. Its merits and demerits are discussed.
An operational structured decision making framework for ...
Pressure to develop an operational framework for decision makers to employ the concepts of ecosystem goods and services for assessing changes to human well-being has been increasing since these concepts gained widespread notoriety after the Millennium Ecosystem Assessment Report. Many conceptual frameworks have been proposed, but most do not propose methodologies and tools to make this approach to decision making implementable. Building on common components of existing conceptual frameworks for ecosystem services and human well-being assessment we apply a structured decision making approach to develop a standardized operational framework and suggest tools and methods for completing each step. The structured decision making approach consists of six steps: 1) Clarify the Decision Context 2) Define Objectives and Evaluation Criteria 3) Develop Alternatives 4) Estimate Consequences 5) Evaluate Trade-Offs and Select and 6) Implement and Monitor. These six steps include the following activities, and suggested tools, when applied to ecosystem goods and services and human well-being conceptual frameworks: 1) Characterization of decision specific human beneficiaries using the Final Ecosystem Goods and Services (FEGS) approach and Classification System (FEGS-CS) 2) Determine beneficiaries’ relative priorities for human well-being domains in the Human Well-Being Index (HWBI) through stakeholder engagement and identify beneficiary-relevant metrics of FEGS using the Nat
Patient classification tool in home health care.
Pavasaris, B
1989-01-01
Medicare's system of diagnosis related groups for health care cost reimbursements is inadequate for the special requirements of home health care. A visiting nurses association's patient classification tool correlates a meticulous record of professional time spent per patient with patient diagnosis and level of care, aimed at helping policymakers develop a more equitable DRG-based prospective payment formula for home care costs.
NASA Astrophysics Data System (ADS)
Jiang, Yicheng; Cheng, Ping; Ou, Yangkui
2001-09-01
A new method for target classification of high-range resolution radar is proposed. It tries to use neural learning to obtain invariant subclass features of training range profiles. A modified Euclidean metric based on the Box-Cox transformation technique is investigated for Nearest Neighbor target classification improvement. The classification experiments using real radar data of three different aircraft have demonstrated that classification error can reduce 8% if this method proposed in this paper is chosen instead of the conventional method. The results of this paper have shown that by choosing an optimized metric, it is indeed possible to reduce the classification error without increasing the number of samples.
Rodrigues, J M; Trombert-Paviot, B; Baud, R; Wagner, J; Meusnier-Carriot, F
1998-01-01
GALEN has developed a language independent common reference model based on a medically oriented ontology and practical tools and techniques for managing healthcare terminology including natural language processing. GALEN-IN-USE is the current phase which applied the modelling and the tools to the development or the updating of coding systems for surgical procedures in different national coding centers co-operating within the European Federation of Coding Centre (EFCC) to create a language independent knowledge repository for multicultural Europe. We used an integrated set of artificial intelligence terminology tools named CLAssification Manager workbench to process French professional medical language rubrics into intermediate dissections and to the Grail reference ontology model representation. From this language independent concept model representation we generate controlled French natural language. The French national coding centre is then able to retrieve the initial professional rubrics with different categories of concepts, to compare the professional language proposed by expert clinicians to the French generated controlled vocabulary and to finalize the linguistic labels of the coding system in relation with the meanings of the conceptual system structure.
Food Service Guideline Policies on State Government Controlled Properties
Zaganjor, Hatidza; Bishop Kendrick, Katherine; Warnock, Amy Lowry; Onufrak, Stephen; Whitsel, Laurie P.; Ralston Aoki, Julie; Kimmons, Joel
2017-01-01
Purpose Food service guidelines (FSG) policies can impact millions of daily meals sold or provided to government employees, patrons, and institutionalized persons. This study describes a classification tool to assess FSG policy attributes and uses it to rate FSG policies. Design Quantitative content analysis. Setting State government facilities in the U.S. Subjects 50 states and District of Columbia. Measures Frequency of FSG policies and percent alignment to tool. Analysis State-level policies were identified using legal research databases to assess bills, statutes, regulations, and executive orders proposed or adopted by December 31, 2014. Full-text reviews were conducted to determine inclusion. Included policies were analyzed to assess attributes related to nutrition, behavioral supports, and implementation guidance. Results A total of 31 policies met inclusion criteria; 15 were adopted. Overall alignment ranged from 0% to 86%, and only 10 policies aligned with a majority of FSG policy attributes. Western States had the most FSG policy proposed or adopted (11 policies). The greatest number of FSG policies were proposed or adopted (8 policies) in 2011, followed by the years 2013 and 2014. Conclusion FSG policies proposed or adopted through 2014 that intended to improve the food and beverage environment on state government property vary considerably in their content. This analysis offers baseline data on the FSG landscape and information for future FSG policy assessments. PMID:27630113
Food Service Guideline Policies on State Government-Controlled Properties.
Zaganjor, Hatidza; Bishop Kendrick, Katherine; Warnock, Amy Lowry; Onufrak, Stephen; Whitsel, Laurie P; Ralston Aoki, Julie; Kimmons, Joel
2016-09-13
Food service guideline (FSG) policies can impact millions of daily meals sold or provided to government employees, patrons, and institutionalized persons. This study describes a classification tool to assess FSG policy attributes and uses it to rate FSG policies. Quantitative content analysis. State government facilities in the United States. Participants were from 50 states and District of Columbia in the United States. Frequency of FSG policies and percentage alignment to tool. State-level policies were identified using legal research databases to assess bills, statutes, regulations, and executive orders proposed or adopted by December 31, 2014. Full-text reviews were conducted to determine inclusion. Included policies were analyzed to assess attributes related to nutrition, behavioral supports, and implementation guidance. A total of 31 policies met the inclusion criteria; 15 were adopted. Overall alignment ranged from 0% to 86%, and only 10 policies aligned with a majority of the FSG policy attributes. Western states had the most FSG policies proposed or adopted (11 policies). The greatest number of FSG policies were proposed or adopted (8 policies) in 2011, followed by the years 2013 and 2014. The FSG policies proposed or adopted through 2014 that intended to improve the food and beverage environment on state government property vary considerably in their content. This analysis offers baseline data on the FSG landscape and information for future FSG policy assessments. © The Author(s) 2016.
Orientation selectivity based structure for texture classification
NASA Astrophysics Data System (ADS)
Wu, Jinjian; Lin, Weisi; Shi, Guangming; Zhang, Yazhong; Lu, Liu
2014-10-01
Local structure, e.g., local binary pattern (LBP), is widely used in texture classification. However, LBP is too sensitive to disturbance. In this paper, we introduce a novel structure for texture classification. Researches on cognitive neuroscience indicate that the primary visual cortex presents remarkable orientation selectivity for visual information extraction. Inspired by this, we investigate the orientation similarities among neighbor pixels, and propose an orientation selectivity based pattern for local structure description. Experimental results on texture classification demonstrate that the proposed structure descriptor is quite robust to disturbance.
Some sequential, distribution-free pattern classification procedures with applications
NASA Technical Reports Server (NTRS)
Poage, J. L.
1971-01-01
Some sequential, distribution-free pattern classification techniques are presented. The decision problem to which the proposed classification methods are applied is that of discriminating between two kinds of electroencephalogram responses recorded from a human subject: spontaneous EEG and EEG driven by a stroboscopic light stimulus at the alpha frequency. The classification procedures proposed make use of the theory of order statistics. Estimates of the probabilities of misclassification are given. The procedures were tested on Gaussian samples and the EEG responses.
Kashihara, Koji
2014-01-01
Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression. PMID:25206321
Kashihara, Koji
2014-01-01
Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In accordance with this classification, a face on a computer morphs into a sad or displeased countenance. The proposed method could be incorporated as a part of non-verbal communication tools to enable emotional expression.
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
Using deep learning in image hyper spectral segmentation, classification, and detection
NASA Astrophysics Data System (ADS)
Zhao, Xiuying; Su, Zhenyu
2018-02-01
Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.
Unsupervised Biomedical Named Entity Recognition: Experiments with Clinical and Biological Texts
Zhang, Shaodian; Elhadad, Nóemie
2013-01-01
Named entity recognition is a crucial component of biomedical natural language processing, enabling information extraction and ultimately reasoning over and knowledge discovery from text. Much progress has been made in the design of rule-based and supervised tools, but they are often genre and task dependent. As such, adapting them to different genres of text or identifying new types of entities requires major effort in re-annotation or rule development. In this paper, we propose an unsupervised approach to extracting named entities from biomedical text. We describe a stepwise solution to tackle the challenges of entity boundary detection and entity type classification without relying on any handcrafted rules, heuristics, or annotated data. A noun phrase chunker followed by a filter based on inverse document frequency extracts candidate entities from free text. Classification of candidate entities into categories of interest is carried out by leveraging principles from distributional semantics. Experiments show that our system, especially the entity classification step, yields competitive results on two popular biomedical datasets of clinical notes and biological literature, and outperforms a baseline dictionary match approach. Detailed error analysis provides a road map for future work. PMID:23954592
Hyperspectral image classification based on local binary patterns and PCANet
NASA Astrophysics Data System (ADS)
Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang
2018-04-01
Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.
Robert E. Keane; Jason M. Herynk; Chris Toney; Shawn P. Urbanski; Duncan C. Lutes; Roger D. Ottmar
2015-01-01
Fuel classifications are integral tools in fire management and planning because they are used as inputs to fire behavior and effects simulation models. Fuel Loading Models (FLMs) and Fuel Characteristic Classification System (FCCSs) fuelbeds are the most popular classifications used throughout wildland fire science and management, but they have yet to be thoroughly...
The Reliability of Galaxy Classifications by Citizen Scientists
NASA Astrophysics Data System (ADS)
Francis, Lennox; Kautsch, Stefan J.; Bizyaev, Dmitry
2017-01-01
Citizen scientists are becoming more and more important in helping professionals working through big data. An example in astronomy is crowdsourced galaxy classification. But how reliable are these classifications for studies of galaxy evolution? We present a tool in order to investigate those morphological classifications and test it on a diverse population on our campus. We observe a slight offset towards earlier Hubble types in the crowdsourced morphologies, when compared to professional classifications.
NASA Astrophysics Data System (ADS)
Teffahi, Hanane; Yao, Hongxun; Belabid, Nasreddine; Chaib, Souleyman
2018-02-01
The satellite images with very high spatial resolution have been recently widely used in image classification topic as it has become challenging task in remote sensing field. Due to a number of limitations such as the redundancy of features and the high dimensionality of the data, different classification methods have been proposed for remote sensing images classification particularly the methods using feature extraction techniques. This paper propose a simple efficient method exploiting the capability of extended multi-attribute profiles (EMAP) with sparse autoencoder (SAE) for remote sensing image classification. The proposed method is used to classify various remote sensing datasets including hyperspectral and multispectral images by extracting spatial and spectral features based on the combination of EMAP and SAE by linking them to kernel support vector machine (SVM) for classification. Experiments on new hyperspectral image "Huston data" and multispectral image "Washington DC data" shows that this new scheme can achieve better performance of feature learning than the primitive features, traditional classifiers and ordinary autoencoder and has huge potential to achieve higher accuracy for classification in short running time.
A software platform for the analysis of dermatology images
NASA Astrophysics Data System (ADS)
Vlassi, Maria; Mavraganis, Vlasios; Asvestas, Panteleimon
2017-11-01
The purpose of this paper is to present a software platform developed in Python programming environment that can be used for the processing and analysis of dermatology images. The platform provides the capability for reading a file that contains a dermatology image. The platform supports image formats such as Windows bitmaps, JPEG, JPEG2000, portable network graphics, TIFF. Furthermore, it provides suitable tools for selecting, either manually or automatically, a region of interest (ROI) on the image. The automated selection of a ROI includes filtering for smoothing the image and thresholding. The proposed software platform has a friendly and clear graphical user interface and could be a useful second-opinion tool to a dermatologist. Furthermore, it could be used to classify images including from other anatomical parts such as breast or lung, after proper re-training of the classification algorithms.
De Smet, L
2002-01-01
The purpose of a classification for clinical problems which, except for a few specialized centers, occur only sporadically is to provide a system where these cases can be stored. This should allow all involved investigators to speak the same language; so-doing syndromes can be delinated, frequencies of occurence established and results of--different--treatments compared. A classification system should be simple to use, reliable and uniformly accepted. It should allow space for adaptations and/or extensions. The IFSSH proposed a 7 categories classification based on the proposed classification of Swanson et al. in 1976. This classification, was based on, which was thought in the seventies, etiopathogenic pathways. These 7 groups are: I. Failure of formation; transverse (A), or longitudinal (B) II. Failure of differentiation III. Polydactyly IV. Overgrowth V. Undergrowth VI. Amniotic band syndrome VII. Generalized skeletal syndromes. The extended classification proposed by IFSSH was used to classify 1013 hand differences in 925 hands of 650 patients. We found associated anomalies in 26.7%. The classification was straightforward in 86%, difficult in 6.6% and not possible in 7.8%. Group II was the most numerous group including 513 anomalies. We propose to include in this group the Madelung deformity, the Kirner deformity and congenital trigger fingers and trigger thumbs. In group I the radial and ulnar deficiencies, limited to the hand without forearm deficlencies should be Included. Triphalangeal thumbs are a problem, we suggest it to be listed in group III and consider it as a duplication in length. It is not always possible to evaluate the (transverse) absence of the fingers or hand. Longitudinal deficiencies (group IIB), symbrachydactyly (group V), and amniotic bands (group IV) occasionally develop a phenotype similar to the genuine transverse deficiency (group IA). Recently, the Japanese Society for Surgery of the Hand (JSSH) (16) proposed an extension/modification of the IFSSH classification. Based on newer knowledge on teratology, symbrachydactyly in all stages were transfered to group I. Two new groups were introduced. A group "failure of finger ray induction" including typical cleft hand (IC), central polydactyly (III) and (bony) syndactyly (II)--was included. Also a group of "unclassifiable" cases was added. This Japanese proposed classification is a real improvement and most clinicians and surgeons tend to use it in the future.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-01-01
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261
Selb, Melissa; Gimigliano, Francesca; Prodinger, Birgit; Stucki, Gerold; Pestelli, Germano; Iocco, Maurizio; Boldrini, Paolo
2017-04-01
As part of international efforts to develop and implement national models including the specification of ICF-based clinical data collection tools, the Italian rehabilitation community initiated a project to develop simple, intuitive descriptions of the ICF Rehabilitation Set, highlighting the core concept of each category in user-friendly language. This paper outlines the Italian experience in developing simple, intuitive descriptions of the ICF Rehabilitation Set as an ICF-based clinical data collection tool for Italy. Consensus process. Expert conference. Multidisciplinary group of rehabilitation professionals. The first of a two-stage consensus process involved developing an initial proposal for simple, intuitive descriptions of each ICF Rehabilitation Set category based on descriptions generated in a similar process in China. Stage two involved a consensus conference. Divided into three working groups, participants discussed and voted (vote A) whether the initially proposed descriptions of each ICF Rehabilitation Set category was simple and intuitive enough for use in daily practice. Afterwards the categories with descriptions considered ambiguous i.e. not simple and intuitive enough, were divided among the working groups, who were asked to propose a new description for the allocated categories. These proposals were then voted (vote B) on in a plenary session. The last step of the consensus conference required each working group to develop a new proposal for each and the same categories with descriptions still considered ambiguous. Participants then voted (final vote) for which of the three proposed descriptions they preferred. Nineteen clinicians from diverse rehabilitation disciplines from various regions of Italy participated in the consensus process. Three ICF categories already achieved consensus in vote A, while 20 ICF categories were accepted in vote B. The remaining 7 categories were decided in the final vote. The findings were discussed in light of current efforts toward developing strategies for ICF implementation, specifically for the application of an ICF-based clinical data collection tool, not only for Italy but also for the rest of Europe. Promising as minimal standards for monitoring the impact of interventions and for standardized reporting of functioning as a relevant outcome in rehabilitation.
Classification via Clustering for Predicting Final Marks Based on Student Participation in Forums
ERIC Educational Resources Information Center
Lopez, M. I.; Luna, J. M.; Romero, C.; Ventura, S.
2012-01-01
This paper proposes a classification via clustering approach to predict the final marks in a university course on the basis of forum data. The objective is twofold: to determine if student participation in the course forum can be a good predictor of the final marks for the course and to examine whether the proposed classification via clustering…
Fusion and Sense Making of Heterogeneous Sensor Network and Other Sources
2017-03-16
multimodal fusion framework that uses both training data and web resources for scene classification, the experimental results on the benchmark datasets...show that the proposed text-aided scene classification framework could significantly improve classification performance. Experimental results also show...human whose adaptability is achieved by reliability- dependent weighting of different sensory modalities. Experimental results show that the proposed
Bat detective-Deep learning tools for bat acoustic signal detection.
Mac Aodha, Oisin; Gibb, Rory; Barlow, Kate E; Browning, Ella; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R; Newson, Stuart E; Pandourski, Ivan; Parsons, Stuart; Russ, Jon; Szodoray-Paradi, Abigel; Szodoray-Paradi, Farkas; Tilova, Elena; Girolami, Mark; Brostow, Gabriel; Jones, Kate E
2018-03-01
Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.
Bat detective—Deep learning tools for bat acoustic signal detection
Barlow, Kate E.; Firman, Michael; Freeman, Robin; Harder, Briana; Kinsey, Libby; Mead, Gary R.; Newson, Stuart E.; Pandourski, Ivan; Russ, Jon; Szodoray-Paradi, Abigel; Tilova, Elena; Girolami, Mark; Jones, Kate E.
2018-01-01
Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio. PMID:29518076
NASA Technical Reports Server (NTRS)
Jung, Jinha; Pasolli, Edoardo; Prasad, Saurabh; Tilton, James C.; Crawford, Melba M.
2014-01-01
Acquiring current, accurate land-use information is critical for monitoring and understanding the impact of anthropogenic activities on natural environments.Remote sensing technologies are of increasing importance because of their capability to acquire information for large areas in a timely manner, enabling decision makers to be more effective in complex environments. Although optical imagery has demonstrated to be successful for land cover classification, active sensors, such as light detection and ranging (LiDAR), have distinct capabilities that can be exploited to improve classification results. However, utilization of LiDAR data for land cover classification has not been fully exploited. Moreover, spatial-spectral classification has recently gained significant attention since classification accuracy can be improved by extracting additional information from the neighboring pixels. Although spatial information has been widely used for spectral data, less attention has been given to LiDARdata. In this work, a new framework for land cover classification using discrete return LiDAR data is proposed. Pseudo-waveforms are generated from the LiDAR data and processed by hierarchical segmentation. Spatial featuresare extracted in a region-based way using a new unsupervised strategy for multiple pruning of the segmentation hierarchy. The proposed framework is validated experimentally on a real dataset acquired in an urban area. Better classification results are exhibited by the proposed framework compared to the cases in which basic LiDAR products such as digital surface model and intensity image are used. Moreover, the proposed region-based feature extraction strategy results in improved classification accuracies in comparison with a more traditional window-based approach.
Toward an endovascular internal carotid artery classification system.
Shapiro, M; Becske, T; Riina, H A; Raz, E; Zumofen, D; Jafar, J J; Huang, P P; Nelson, P K
2014-02-01
Does the world need another ICA classification scheme? We believe so. The purpose of proposed angiography-driven classification is to optimize description of the carotid artery from the endovascular perspective. A review of existing, predominantly surgically-driven classifications is performed, and a new scheme, based on the study of NYU aneurysm angiographic and cross-sectional databases is proposed. Seven segments - cervical, petrous, cavernous, paraophthlamic, posterior communicating, choroidal, and terminus - are named. This nomenclature recognizes intrinsic uncertainty in precise angiographic and cross-sectional localization of aneurysms adjacent to the dural rings, regarding all lesions distal to the cavernous segment as potentially intradural. Rather than subdividing various transitional, ophthalmic, and hypophyseal aneurysm subtypes, as necessitated by their varied surgical approaches and risks, the proposed classification emphasizes their common endovascular treatment features, while recognizing that many complex, trans-segmental, and fusiform aneurysms not readily classifiable into presently available, saccular aneurysm-driven schemes, are being increasingly addressed by endovascular means. We believe this classification may find utility in standardizing nomenclature for outcome tracking, treatment trials and physician communication.
NASA Astrophysics Data System (ADS)
Chen, Fulong; Wang, Chao; Yang, Chengyun; Zhang, Hong; Wu, Fan; Lin, Wenjuan; Zhang, Bo
2008-11-01
This paper proposed a method that uses a case-based classification of remote sensing images and applied this method to abstract the information of suspected illegal land use in urban areas. Because of the discrete cases for imagery classification, the proposed method dealt with the oscillation of spectrum or backscatter within the same land use category, and it not only overcame the deficiency of maximum likelihood classification (the prior probability of land use could not be obtained) but also inherited the advantages of the knowledge-based classification system, such as artificial intelligence and automatic characteristics. Consequently, the proposed method could do the classifying better. Then the researchers used the object-oriented technique for shadow removal in highly dense city zones. With multi-temporal SPOT 5 images whose resolution was 2.5×2.5 meters, the researchers found that the method can abstract suspected illegal land use information in urban areas using post-classification comparison technique.
Ihmaid, Saleh K; Ahmed, Hany E A; Zayed, Mohamed F; Abadleh, Mohammed M
2016-01-30
The main step in a successful drug discovery pipeline is the identification of small potent compounds that selectively bind to the target of interest with high affinity. However, there is still a shortage of efficient and accurate computational methods with powerful capability to study and hence predict compound selectivity properties. In this work, we propose an affordable machine learning method to perform compound selectivity classification and prediction. For this purpose, we have collected compounds with reported activity and built a selectivity database formed of 153 cathepsin K and S inhibitors that are considered of medicinal interest. This database has three compound sets, two K/S and S/K selective ones and one non-selective KS one. We have subjected this database to the selectivity classification tool 'Emergent Self-Organizing Maps' for exploring its capability to differentiate selective cathepsin inhibitors for one target over the other. The method exhibited good clustering performance for selective ligands with high accuracy (up to 100 %). Among the possibilites, BAPs and MACCS molecular structural fingerprints were used for such a classification. The results exhibited the ability of the method for structure-selectivity relationship interpretation and selectivity markers were identified for the design of further novel inhibitors with high activity and target selectivity.
Giordano, Vincenzo; Koch, Hilton Augusto; Mendes, Carlos Henrique; Bergamin, André; de Souza, Felipe Serrão; do Amaral, Ney Pecegueiro
2015-02-01
The aim of this study was to evaluate the inter- and intra-observer agreement in the initial diagnosis and classification by means of plain radiographs and CT scans of tibial plateau fractures photographed and sent via WhatsApp Messenger. The increasing popularity of smartphones has driven the development of technology for data transmission and imaging and generated a growing interest in the use of these devices as diagnostic tools. The emergence of WhatsApp Messenger technology, which is available for various platforms used by smartphones, has led to an improvement in the quality and resolution of images sent and received. The images (plain radiographs and CT scans) were obtained from 13 cases of tibial plateau fractures using the iPhone 5 (Apple Inc., Cupertino, CA, USA) and were sent to six observers via the WhatsApp Messenger application. The observers were asked to determine the standard deviation and type of injury, the classification according to the Schatzker and the Luo classifications schemes, and whether the CT scan changed the classification. The six observers independently assessed the images on two separate occasions, 15 days apart. The inter- and intra-observer agreement for both periods of the study ranged from excellent to perfect (0.75<κ<1.0) across all survey questions. When asked if the inclusion of the CT images would change their final X-ray classification (Schatzker or Luo), the inter- and intra-observer agreement was perfect (k=1) on both assessment occasions. We found an excellent inter- and intra-observer agreement in the imaging assessment of tibial plateau fractures sent via WhatsApp Messenger. The authors now propose the systematic use of the application to facilitate faster documentation and obtaining the opinion of an experienced consultant when not on call. Finally, we think the use of the WhatsApp Messenger as an adjuvant tool could be broadened to other clinical centres to assess its viability in other skeletal and non-skeletal trauma situations. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Urban local climate zone mapping and apply in urban environment study
NASA Astrophysics Data System (ADS)
He, Shan; Zhang, Yunwei; Zhang, Jili
2018-02-01
The city’s local climate zone (LCZ) was considered to be a powerful tool for urban climate mapping. But for cities in different countries and regions, the LCZ division methods and results were different, thus targeted researches should be performed. In the current work, a LCZ mapping method was proposed, which is convenient in operation and city planning oriented. In this proposed method, the local climate zoning types were adjusted firstly, according to the characteristics of Chinese city, that more tall buildings and high density. Then the classification method proposed by WUDAPT based on remote sensing data was performed on Xi’an city, as an example, for LCZ mapping. Combined with the city road network, a reasonable expression of the dividing results was provided, to adapt to the characteristics in city planning that land parcels are usually recognized as the basic unit. The proposed method was validated against the actual land use and construction data that surveyed in Xi’an, with results indicating the feasibility of the proposed method for urban LCZ mapping in China.
NASA Astrophysics Data System (ADS)
Bratic, G.; Brovelli, M. A.; Molinari, M. E.
2018-04-01
The availability of thematic maps has significantly increased over the last few years. Validation of these maps is a key factor in assessing their suitability for different applications. The evaluation of the accuracy of classified data is carried out through a comparison with a reference dataset and the generation of a confusion matrix from which many quality indexes can be derived. In this work, an ad hoc free and open source Python tool was implemented to automatically compute all the matrix confusion-derived accuracy indexes proposed by literature. The tool was integrated into GRASS GIS environment and successfully applied to evaluate the quality of three high-resolution global datasets (GlobeLand30, Global Urban Footprint, Global Human Settlement Layer Built-Up Grid) in the Lombardy Region area (Italy). In addition to the most commonly used accuracy measures, e.g. overall accuracy and Kappa, the tool allowed to compute and investigate less known indexes such as the Ground Truth and the Classification Success Index. The promising tool will be further extended with spatial autocorrelation analysis functions and made available to researcher and user community.
EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Falk, Tiago H.; Fraga, Francisco J.; Trambaiolli, Lucas; Anghinah, Renato
2012-12-01
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
Albarrak, Abdulrahman; Coenen, Frans; Zheng, Yalin
2017-01-01
Three-dimensional (3D) (volumetric) diagnostic imaging techniques are indispensable with respect to the diagnosis and management of many medical conditions. However there is a lack of automated diagnosis techniques to facilitate such 3D image analysis (although some support tools do exist). This paper proposes a novel framework for volumetric medical image classification founded on homogeneous decomposition and dictionary learning. In the proposed framework each image (volume) is recursively decomposed until homogeneous regions are arrived at. Each region is represented using a Histogram of Oriented Gradients (HOG) which is transformed into a set of feature vectors. The Gaussian Mixture Model (GMM) is then used to generate a "dictionary" and the Improved Fisher Kernel (IFK) approach is used to encode feature vectors so as to generate a single feature vector for each volume, which can then be fed into a classifier generator. The principal advantage offered by the framework is that it does not require the detection (segmentation) of specific objects within the input data. The nature of the framework is fully described. A wide range of experiments was conducted with which to analyse the operation of the proposed framework and these are also reported fully in the paper. Although the proposed approach is generally applicable to 3D volumetric images, the focus for the work is 3D retinal Optical Coherence Tomography (OCT) images in the context of the diagnosis of Age-related Macular Degeneration (AMD). The results indicate that excellent diagnostic predictions can be produced using the proposed framework. Copyright © 2016 Elsevier Ltd. All rights reserved.
Remote sensing imagery classification using multi-objective gravitational search algorithm
NASA Astrophysics Data System (ADS)
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2016-10-01
Simultaneous optimization of different validity measures can capture different data characteristics of remote sensing imagery (RSI) and thereby achieving high quality classification results. In this paper, two conflicting cluster validity indices, the Xie-Beni (XB) index and the fuzzy C-means (FCM) (Jm) measure, are integrated with a diversity-enhanced and memory-based multi-objective gravitational search algorithm (DMMOGSA) to present a novel multi-objective optimization based RSI classification method. In this method, the Gabor filter method is firstly implemented to extract texture features of RSI. Then, the texture features are syncretized with the spectral features to construct the spatial-spectral feature space/set of the RSI. Afterwards, cluster of the spectral-spatial feature set is carried out on the basis of the proposed method. To be specific, cluster centers are randomly generated initially. After that, the cluster centers are updated and optimized adaptively by employing the DMMOGSA. Accordingly, a set of non-dominated cluster centers are obtained. Therefore, numbers of image classification results of RSI are produced and users can pick up the most promising one according to their problem requirements. To quantitatively and qualitatively validate the effectiveness of the proposed method, the proposed classification method was applied to classifier two aerial high-resolution remote sensing imageries. The obtained classification results are compared with that produced by two single cluster validity index based and two state-of-the-art multi-objective optimization algorithms based classification results. Comparison results show that the proposed method can achieve more accurate RSI classification.
43 CFR 2450.4 - Protests: Initial classification decision.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Protests: Initial classification decision... CLASSIFICATION SYSTEM Petition-Application Procedures § 2450.4 Protests: Initial classification decision. (a) For a period of 30 days after the proposed classification decision has been served upon the parties...
Bertaux, François; Maler, Oded; Batt, Gregory
2013-01-01
Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the ever-increasing availability of heterogeneous knowledge on complex signal transduction pathways. PMID:23675292
Scherer, Klaus R.; Schuller, Björn W.
2018-01-01
In the present study, we applied Machine Learning (ML) methods to identify psychobiological markers of cognitive processes involved in the process of emotion elicitation as postulated by the Component Process Model (CPM). In particular, we focused on the automatic detection of five appraisal checks—novelty, intrinsic pleasantness, goal conduciveness, control, and power—in electroencephalography (EEG) and facial electromyography (EMG) signals. We also evaluated the effects on classification accuracy of averaging the raw physiological signals over different numbers of trials, and whether the use of minimal sets of EEG channels localized over specific scalp regions of interest are sufficient to discriminate between appraisal checks. We demonstrated the effectiveness of our approach on two data sets obtained from previous studies. Our results show that novelty and power appraisal checks can be consistently detected in EEG signals above chance level (binary tasks). For novelty, the best classification performance in terms of accuracy was achieved using features extracted from the whole scalp, and by averaging across 20 individual trials in the same experimental condition (UAR = 83.5 ± 4.2; N = 25). For power, the best performance was obtained by using the signals from four pre-selected EEG channels averaged across all trials available for each participant (UAR = 70.6 ± 5.3; N = 24). Together, our results indicate that accurate classification can be achieved with a relatively small number of trials and channels, but that averaging across a larger number of individual trials is beneficial for the classification for both appraisal checks. We were not able to detect any evidence of the appraisal checks under study in the EMG data. The proposed methodology is a promising tool for the study of the psychophysiological mechanisms underlying emotional episodes, and their application to the development of computerized tools (e.g., Brain-Computer Interface) for the study of cognitive processes involved in emotions. PMID:29293572
Coutinho, Eduardo; Gentsch, Kornelia; van Peer, Jacobien; Scherer, Klaus R; Schuller, Björn W
2018-01-01
In the present study, we applied Machine Learning (ML) methods to identify psychobiological markers of cognitive processes involved in the process of emotion elicitation as postulated by the Component Process Model (CPM). In particular, we focused on the automatic detection of five appraisal checks-novelty, intrinsic pleasantness, goal conduciveness, control, and power-in electroencephalography (EEG) and facial electromyography (EMG) signals. We also evaluated the effects on classification accuracy of averaging the raw physiological signals over different numbers of trials, and whether the use of minimal sets of EEG channels localized over specific scalp regions of interest are sufficient to discriminate between appraisal checks. We demonstrated the effectiveness of our approach on two data sets obtained from previous studies. Our results show that novelty and power appraisal checks can be consistently detected in EEG signals above chance level (binary tasks). For novelty, the best classification performance in terms of accuracy was achieved using features extracted from the whole scalp, and by averaging across 20 individual trials in the same experimental condition (UAR = 83.5 ± 4.2; N = 25). For power, the best performance was obtained by using the signals from four pre-selected EEG channels averaged across all trials available for each participant (UAR = 70.6 ± 5.3; N = 24). Together, our results indicate that accurate classification can be achieved with a relatively small number of trials and channels, but that averaging across a larger number of individual trials is beneficial for the classification for both appraisal checks. We were not able to detect any evidence of the appraisal checks under study in the EMG data. The proposed methodology is a promising tool for the study of the psychophysiological mechanisms underlying emotional episodes, and their application to the development of computerized tools (e.g., Brain-Computer Interface) for the study of cognitive processes involved in emotions.
Algamal, Z Y; Lee, M H
2017-01-01
A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.
Automatic classification of blank substrate defects
NASA Astrophysics Data System (ADS)
Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati
2014-10-01
Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.
Proposed International League Against Epilepsy Classification 2010: new insights.
Udani, Vrajesh; Desai, Neelu
2014-09-01
The International League Against Epilepsy (ILAE) Classification of Seizures in 1981 and the Classification of the Epilepsies, in 1989 have been widely accepted the world over for the last 3 decades. Since then, there has been an explosive growth in imaging, genetics and other fields in the epilepsies which have changed many of our concepts. It was felt that a revision was in order and hence the ILAE commissioned a group of experts who submitted the initial draft of this revised classification in 2010. This review focuses on what are the strengths and weaknesses of this new proposed classification, especially in the context of a developing country.
On the use of interaction error potentials for adaptive brain computer interfaces.
Llera, A; van Gerven, M A J; Gómez, V; Jensen, O; Kappen, H J
2011-12-01
We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and MEG data. We show that the proposed adaptive framework significantly improves the static classification methods. Copyright © 2011 Elsevier Ltd. All rights reserved.
A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image
NASA Astrophysics Data System (ADS)
Su, Junying
2011-11-01
A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.
Pozo-Aguilar, Jorge O; Monroy-Martínez, Verónica; Díaz, Daniel; Barrios-Palacios, Jacqueline; Ramos, Celso; Ulloa-García, Armando; García-Pillado, Janet; Ruiz-Ordaz, Blanca H
2014-12-11
Dengue fever (DF) is the most prevalent arthropod-borne viral disease affecting humans. The World Health Organization (WHO) proposed a revised classification in 2009 to enable the more effective identification of cases of severe dengue (SD). This was designed primarily as a clinical tool, but it also enables cases of SD to be differentiated into three specific subcategories (severe vascular leakage, severe bleeding, and severe organ dysfunction). However, no study has addressed whether this classification has advantage in estimating factors associated with the progression of disease severity or dengue pathogenesis. We evaluate in a dengue outbreak associated risk factors that could contribute to the development of SD according to the 2009 WHO classification. A prospective cross-sectional study was performed during an epidemic of dengue in 2009 in Chiapas, Mexico. Data were analyzed for host and viral factors associated with dengue cases, using the 1997 and 2009 WHO classifications. The cost-benefit ratio (CBR) was also estimated. The sensitivity in the 1997 WHO classification for determining SD was 75%, and the specificity was 97.7%. For the 2009 scheme, these were 100% and 81.1%, respectively. The 2009 classification showed a higher benefit (537%) with a lower cost (10.2%) than the 1997 WHO scheme. A secondary antibody response was strongly associated with SD. Early viral load was higher in cases of SD than in those with DF. Logistic regression analysis identified predictive SD factors (secondary infection, disease phase, viral load) within the 2009 classification. However, within the 1997 scheme it was not possible to differentiate risk factors between DF and dengue hemorrhagic fever or dengue shock syndrome. The critical clinical stage for determining SD progression was the transition from fever to defervescence in which plasma leakage can occur. The clinical phenotype of SD is influenced by the host (secondary response) and viral factors (viral load). The 2009 WHO classification showed greater sensitivity to identify SD in real time. Timely identification of SD enables accurate early decisions, allowing proper management of health resources for the benefit of patients at risk for SD. This is possible based on the 2009 WHO classification.
Network-based high level data classification.
Silva, Thiago Christiano; Zhao, Liang
2012-06-01
Traditional supervised data classification considers only physical features (e.g., distance or similarity) of the input data. Here, this type of learning is called low level classification. On the other hand, the human (animal) brain performs both low and high orders of learning and it has facility in identifying patterns according to the semantic meaning of the input data. Data classification that considers not only physical attributes but also the pattern formation is, here, referred to as high level classification. In this paper, we propose a hybrid classification technique that combines both types of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features or class topologies, while the latter measures the compliance of the test instances to the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the pattern formation, but also is able to improve the performance of traditional classification techniques. Furthermore, as the class configuration's complexity increases, such as the mixture among different classes, a larger portion of the high level term is required to get correct classification. This feature confirms that the high level classification has a special importance in complex situations of classification. Finally, we show how the proposed technique can be employed in a real-world application, where it is capable of identifying variations and distortions of handwritten digit images. As a result, it supplies an improvement in the overall pattern recognition rate.
NASA Astrophysics Data System (ADS)
Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin
2010-12-01
We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.
A hybrid method for prediction and repositioning of drug Anatomical Therapeutic Chemical classes.
Chen, Lei; Lu, Jing; Zhang, Ning; Huang, Tao; Cai, Yu-Dong
2014-04-01
In the Anatomical Therapeutic Chemical (ATC) classification system, therapeutic drugs are divided into 14 main classes according to the organ or system on which they act and their chemical, pharmacological and therapeutic properties. This system, recommended by the World Health Organization (WHO), provides a global standard for classifying medical substances and serves as a tool for international drug utilization research to improve quality of drug use. In view of this, it is necessary to develop effective computational prediction methods to identify the ATC-class of a given drug, which thereby could facilitate further analysis of this system. In this study, we initiated an attempt to develop a prediction method and to gain insights from it by utilizing ontology information of drug compounds. Since only about one-fourth of drugs in the ATC classification system have ontology information, a hybrid prediction method combining the ontology information, chemical interaction information and chemical structure information of drug compounds was proposed for the prediction of drug ATC-classes. As a result, by using the Jackknife test, the 1st prediction accuracies for identifying the 14 main ATC-classes in the training dataset, the internal validation dataset and the external validation dataset were 75.90%, 75.70% and 66.36%, respectively. Analysis of some samples with false-positive predictions in the internal and external validation datasets indicated that some of them may even have a relationship with the false-positive predicted ATC-class, suggesting novel uses of these drugs. It was conceivable that the proposed method could be used as an efficient tool to identify ATC-classes of novel drugs or to discover novel uses of known drugs.
Inference of combinatorial Boolean rules of synergistic gene sets from cancer microarray datasets.
Park, Inho; Lee, Kwang H; Lee, Doheon
2010-06-15
Gene set analysis has become an important tool for the functional interpretation of high-throughput gene expression datasets. Moreover, pattern analyses based on inferred gene set activities of individual samples have shown the ability to identify more robust disease signatures than individual gene-based pattern analyses. Although a number of approaches have been proposed for gene set-based pattern analysis, the combinatorial influence of deregulated gene sets on disease phenotype classification has not been studied sufficiently. We propose a new approach for inferring combinatorial Boolean rules of gene sets for a better understanding of cancer transcriptome and cancer classification. To reduce the search space of the possible Boolean rules, we identify small groups of gene sets that synergistically contribute to the classification of samples into their corresponding phenotypic groups (such as normal and cancer). We then measure the significance of the candidate Boolean rules derived from each group of gene sets; the level of significance is based on the class entropy of the samples selected in accordance with the rules. By applying the present approach to publicly available prostate cancer datasets, we identified 72 significant Boolean rules. Finally, we discuss several identified Boolean rules, such as the rule of glutathione metabolism (down) and prostaglandin synthesis regulation (down), which are consistent with known prostate cancer biology. Scripts written in Python and R are available at http://biosoft.kaist.ac.kr/~ihpark/. The refined gene sets and the full list of the identified Boolean rules are provided in the Supplementary Material. Supplementary data are available at Bioinformatics online.
Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M; Grinberg, Lea T
2017-04-15
Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Karnabatidis, Dimitris; Theotokas, Ioannis; Zoumpoulis, Pavlos; Loupas, Thanasis; Hazle, John D; Kagadis, George C
2016-03-01
Classify chronic liver disease (CLD) from ultrasound shear-wave elastography (SWE) imaging by means of a computer aided diagnosis (CAD) system. The proposed algorithm employs an inverse mapping technique (red-green-blue to stiffness) to quantify 85 SWE images (54 healthy and 31 with CLD). Texture analysis is then applied involving the automatic calculation of 330 first and second order textural features from every transformed stiffness value map to determine functional features that characterize liver elasticity and describe liver condition for all available stages. Consequently, a stepwise regression analysis feature selection procedure is utilized toward a reduced feature subset that is fed into the support vector machines (SVMs) classification algorithm in the design of the CAD system. With regard to the mapping procedure accuracy, the stiffness map values had an average difference of 0.01 ± 0.001 kPa compared to the quantification results derived from the color-box provided by the built-in software of the ultrasound system. Highest classification accuracy from the SVM model was 87.0% with sensitivity and specificity values of 83.3% and 89.1%, respectively. Receiver operating characteristic curves analysis gave an area under the curve value of 0.85 with [0.77-0.89] confidence interval. The proposed CAD system employing color to stiffness mapping and classification algorithms offered superior results, comparing the already published clinical studies. It could prove to be of value to physicians improving the diagnostic accuracy of CLD and can be employed as a second opinion tool for avoiding unnecessary invasive procedures.
DATA-MEAns: an open source tool for the classification and management of neural ensemble recordings.
Bonomini, María P; Ferrandez, José M; Bolea, Jose Angel; Fernandez, Eduardo
2005-10-30
The number of laboratories using techniques that allow to acquire simultaneous recordings of as many units as possible is considerably increasing. However, the development of tools used to analyse this multi-neuronal activity is generally lagging behind the development of the tools used to acquire these data. Moreover, the data exchange between research groups using different multielectrode acquisition systems is hindered by commercial constraints such as exclusive file structures, high priced licenses and hard policies on intellectual rights. This paper presents a free open-source software for the classification and management of neural ensemble data. The main goal is to provide a graphical user interface that links the experimental data to a basic set of routines for analysis, visualization and classification in a consistent framework. To facilitate the adaptation and extension as well as the addition of new routines, tools and algorithms for data analysis, the source code and documentation are freely available.
Kilańska, D; Gaworska-Krzemińska, A; Grabowska, H; Gorzkowicz, B
2016-09-01
The development of a nursing practice, improvements in nurses' autonomy, and increased professional and personal responsibility for the medical services provided all require professional documentation with records of health status assessments, decisions undertaken, actions and their outcomes for each patient. The International Classification for Nursing Practice is a tool that meets all of these needs, and although it requires continuous evaluation, it offers professional documentation and communication in the practitioner and researcher community. The aim of this paper is to present a theoretical critique of an issue related to policy and experience of the current situation in Polish nursing - especially of the efforts to standardize nursing practices through the introduction and development of the Classification in Poland. Despite extensive promotion and training by International Council of Nurses members worldwide, there are still many countries where the Classification has not been implemented as a standard tool in healthcare facilities. Recently, a number of initiatives were undertaken in cooperation with the local and state authorities to disseminate the Classification in healthcare facilities. Thanks to intense efforts by the Polish Nurses Association and the International Council of Nurses Accredited Center for ICNP(®) Research & Development at the Medical University of Łódź, the Classification is known in Poland and has been tested at several centres. Nevertheless, an actual implementation that would allow for national and international interoperability requires strategic governmental decisions and close cooperation with information technology companies operating in the country. Discussing the barriers to the implementation of the Classification can improve understanding of it and its use. At a policy level, decision makers need to understand that use Classification in eHealth services and tools it is necessary to achieve interoperability. © 2016 International Council of Nurses.
Gas Classification Using Deep Convolutional Neural Networks.
Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin
2018-01-08
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP).
Gas Classification Using Deep Convolutional Neural Networks
Peng, Pai; Zhao, Xiaojin; Pan, Xiaofang; Ye, Wenbin
2018-01-01
In this work, we propose a novel Deep Convolutional Neural Network (DCNN) tailored for gas classification. Inspired by the great success of DCNN in the field of computer vision, we designed a DCNN with up to 38 layers. In general, the proposed gas neural network, named GasNet, consists of: six convolutional blocks, each block consist of six layers; a pooling layer; and a fully-connected layer. Together, these various layers make up a powerful deep model for gas classification. Experimental results show that the proposed DCNN method is an effective technique for classifying electronic nose data. We also demonstrate that the DCNN method can provide higher classification accuracy than comparable Support Vector Machine (SVM) methods and Multiple Layer Perceptron (MLP). PMID:29316723
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam
2017-12-01
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
Classification of complex networks based on similarity of topological network features
NASA Astrophysics Data System (ADS)
Attar, Niousha; Aliakbary, Sadegh
2017-09-01
Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.
Taxonomy-aware feature engineering for microbiome classification.
Oudah, Mai; Henschel, Andreas
2018-06-15
What is a healthy microbiome? The pursuit of this and many related questions, especially in light of the recently recognized microbial component in a wide range of diseases has sparked a surge in metagenomic studies. They are often not simply attributable to a single pathogen but rather are the result of complex ecological processes. Relatedly, the increasing DNA sequencing depth and number of samples in metagenomic case-control studies enabled the applicability of powerful statistical methods, e.g. Machine Learning approaches. For the latter, the feature space is typically shaped by the relative abundances of operational taxonomic units, as determined by cost-effective phylogenetic marker gene profiles. While a substantial body of microbiome/microbiota research involves unsupervised and supervised Machine Learning, very little attention has been put on feature selection and engineering. We here propose the first algorithm to exploit phylogenetic hierarchy (i.e. an all-encompassing taxonomy) in feature engineering for microbiota classification. The rationale is to exploit the often mono- or oligophyletic distribution of relevant (but hidden) traits by virtue of taxonomic abstraction. The algorithm is embedded in a comprehensive microbiota classification pipeline, which we applied to a diverse range of datasets, distinguishing healthy from diseased microbiota samples. We demonstrate substantial improvements over the state-of-the-art microbiota classification tools in terms of classification accuracy, regardless of the actual Machine Learning technique while using drastically reduced feature spaces. Moreover, generalized features bear great explanatory value: they provide a concise description of conditions and thus help to provide pathophysiological insights. Indeed, the automatically and reproducibly derived features are consistent with previously published domain expert analyses.
Improved Sparse Multi-Class SVM and Its Application for Gene Selection in Cancer Classification
Huang, Lingkang; Zhang, Hao Helen; Zeng, Zhao-Bang; Bushel, Pierre R.
2013-01-01
Background Microarray techniques provide promising tools for cancer diagnosis using gene expression profiles. However, molecular diagnosis based on high-throughput platforms presents great challenges due to the overwhelming number of variables versus the small sample size and the complex nature of multi-type tumors. Support vector machines (SVMs) have shown superior performance in cancer classification due to their ability to handle high dimensional low sample size data. The multi-class SVM algorithm of Crammer and Singer provides a natural framework for multi-class learning. Despite its effective performance, the procedure utilizes all variables without selection. In this paper, we propose to improve the procedure by imposing shrinkage penalties in learning to enforce solution sparsity. Results The original multi-class SVM of Crammer and Singer is effective for multi-class classification but does not conduct variable selection. We improved the method by introducing soft-thresholding type penalties to incorporate variable selection into multi-class classification for high dimensional data. The new methods were applied to simulated data and two cancer gene expression data sets. The results demonstrate that the new methods can select a small number of genes for building accurate multi-class classification rules. Furthermore, the important genes selected by the methods overlap significantly, suggesting general agreement among different variable selection schemes. Conclusions High accuracy and sparsity make the new methods attractive for cancer diagnostics with gene expression data and defining targets of therapeutic intervention. Availability: The source MATLAB code are available from http://math.arizona.edu/~hzhang/software.html. PMID:23966761
Image classification of human carcinoma cells using complex wavelet-based covariance descriptors.
Keskin, Furkan; Suhre, Alexander; Kose, Kivanc; Ersahin, Tulin; Cetin, A Enis; Cetin-Atalay, Rengul
2013-01-01
Cancer cell lines are widely used for research purposes in laboratories all over the world. Computer-assisted classification of cancer cells can alleviate the burden of manual labeling and help cancer research. In this paper, we present a novel computerized method for cancer cell line image classification. The aim is to automatically classify 14 different classes of cell lines including 7 classes of breast and 7 classes of liver cancer cells. Microscopic images containing irregular carcinoma cell patterns are represented by subwindows which correspond to foreground pixels. For each subwindow, a covariance descriptor utilizing the dual-tree complex wavelet transform (DT-[Formula: see text]WT) coefficients and several morphological attributes are computed. Directionally selective DT-[Formula: see text]WT feature parameters are preferred primarily because of their ability to characterize edges at multiple orientations which is the characteristic feature of carcinoma cell line images. A Support Vector Machine (SVM) classifier with radial basis function (RBF) kernel is employed for final classification. Over a dataset of 840 images, we achieve an accuracy above 98%, which outperforms the classical covariance-based methods. The proposed system can be used as a reliable decision maker for laboratory studies. Our tool provides an automated, time- and cost-efficient analysis of cancer cell morphology to classify different cancer cell lines using image-processing techniques, which can be used as an alternative to the costly short tandem repeat (STR) analysis. The data set used in this manuscript is available as supplementary material through http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationSampleImages.html.
Image Classification of Human Carcinoma Cells Using Complex Wavelet-Based Covariance Descriptors
Keskin, Furkan; Suhre, Alexander; Kose, Kivanc; Ersahin, Tulin; Cetin, A. Enis; Cetin-Atalay, Rengul
2013-01-01
Cancer cell lines are widely used for research purposes in laboratories all over the world. Computer-assisted classification of cancer cells can alleviate the burden of manual labeling and help cancer research. In this paper, we present a novel computerized method for cancer cell line image classification. The aim is to automatically classify 14 different classes of cell lines including 7 classes of breast and 7 classes of liver cancer cells. Microscopic images containing irregular carcinoma cell patterns are represented by subwindows which correspond to foreground pixels. For each subwindow, a covariance descriptor utilizing the dual-tree complex wavelet transform (DT-WT) coefficients and several morphological attributes are computed. Directionally selective DT-WT feature parameters are preferred primarily because of their ability to characterize edges at multiple orientations which is the characteristic feature of carcinoma cell line images. A Support Vector Machine (SVM) classifier with radial basis function (RBF) kernel is employed for final classification. Over a dataset of 840 images, we achieve an accuracy above 98%, which outperforms the classical covariance-based methods. The proposed system can be used as a reliable decision maker for laboratory studies. Our tool provides an automated, time- and cost-efficient analysis of cancer cell morphology to classify different cancer cell lines using image-processing techniques, which can be used as an alternative to the costly short tandem repeat (STR) analysis. The data set used in this manuscript is available as supplementary material through http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationSampleImages.html. PMID:23341908
Wong, Wai Keat; Shetty, Subhaschandra
2017-08-01
Parotidectomy remains the mainstay of treatment for both benign and malignant lesions of the parotid gland. There exists a wide range of possible surgical options in parotidectomy in terms of extent of parotid tissue removed. There is increasing need for uniformity of terminology resulting from growing interest in modifications of the conventional parotidectomy. It is, therefore, of paramount importance for a standardized classification system in describing extent of parotidectomy. Recently, the European Salivary Gland Society (ESGS) proposed a novel classification system for parotidectomy. The aim of this study is to evaluate this system. A classification system proposed by the ESGS was critically re-evaluated and modified to increase its accuracy and its acceptability. Modifications mainly focused on subdividing Levels I and II into IA, IB, IIA, and IIB. From June 2006 to June 2016, 126 patients underwent 130 parotidectomies at our hospital. The classification system was tested in that cohort of patient. While the ESGS classification system is comprehensive, it does not cover all possibilities. The addition of Sublevels IA, IB, IIA, and IIB may help to address some of the clinical situations seen and is clinically relevant. We aim to test the modified classification system for partial parotidectomy to address some of the challenges mentioned.
Modified Angle's Classification for Primary Dentition.
Chandranee, Kaushik Narendra; Chandranee, Narendra Jayantilal; Nagpal, Devendra; Lamba, Gagandeep; Choudhari, Purva; Hotwani, Kavita
2017-01-01
This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3-6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.
Gross, Douglas P; Zhang, Jing; Steenstra, Ivan; Barnsley, Susan; Haws, Calvin; Amell, Tyler; McIntosh, Greg; Cooper, Juliette; Zaiane, Osmar
2013-12-01
To develop a classification algorithm and accompanying computer-based clinical decision support tool to help categorize injured workers toward optimal rehabilitation interventions based on unique worker characteristics. Population-based historical cohort design. Data were extracted from a Canadian provincial workers' compensation database on all claimants undergoing work assessment between December 2009 and January 2011. Data were available on: (1) numerous personal, clinical, occupational, and social variables; (2) type of rehabilitation undertaken; and (3) outcomes following rehabilitation (receiving time loss benefits or undergoing repeat programs). Machine learning, concerned with the design of algorithms to discriminate between classes based on empirical data, was the foundation of our approach to build a classification system with multiple independent and dependent variables. The population included 8,611 unique claimants. Subjects were predominantly employed (85 %) males (64 %) with diagnoses of sprain/strain (44 %). Baseline clinician classification accuracy was high (ROC = 0.86) for selecting programs that lead to successful return-to-work. Classification performance for machine learning techniques outperformed the clinician baseline classification (ROC = 0.94). The final classifiers were multifactorial and included the variables: injury duration, occupation, job attachment status, work status, modified work availability, pain intensity rating, self-rated occupational disability, and 9 items from the SF-36 Health Survey. The use of machine learning classification techniques appears to have resulted in classification performance better than clinician decision-making. The final algorithm has been integrated into a computer-based clinical decision support tool that requires additional validation in a clinical sample.
75 FR 21212 - Approval of Classification Societies
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-23
...-AB35 Approval of Classification Societies AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking. SUMMARY: Congress requires that classification societies conducting certain work in the United States must either be full members of International Association of Classification Societies (IACS) or...
A proposal for a drug product Manufacturing Classification System (MCS) for oral solid dosage forms.
Leane, Michael; Pitt, Kendal; Reynolds, Gavin
2015-01-01
This paper proposes the development of a drug product Manufacturing Classification System (MCS) based on processing route. It summarizes conclusions from a dedicated APS conference and subsequent discussion within APS focus groups and the MCS working party. The MCS is intended as a tool for pharmaceutical scientists to rank the feasibility of different processing routes for the manufacture of oral solid dosage forms, based on selected properties of the API and the needs of the formulation. It has many applications in pharmaceutical development, in particular, it will provide a common understanding of risk by defining what the "right particles" are, enable the selection of the best process, and aid subsequent transfer to manufacturing. The ultimate aim is one of prediction of product developability and processability based upon previous experience. This paper is intended to stimulate contribution from a broad range of stakeholders to develop the MCS concept further and apply it to practice. In particular, opinions are sought on what API properties are important when selecting or modifying materials to enable an efficient and robust pharmaceutical manufacturing process. Feedback can be given by replying to our dedicated e-mail address (mcs@apsgb.org); completing the survey on our LinkedIn site; or by attending one of our planned conference roundtable sessions.
Esfahani, Mohammad Shahrokh; Dougherty, Edward R
2015-01-01
Phenotype classification via genomic data is hampered by small sample sizes that negatively impact classifier design. Utilization of prior biological knowledge in conjunction with training data can improve both classifier design and error estimation via the construction of the optimal Bayesian classifier. In the genomic setting, gene/protein signaling pathways provide a key source of biological knowledge. Although these pathways are neither complete, nor regulatory, with no timing associated with them, they are capable of constraining the set of possible models representing the underlying interaction between molecules. The aim of this paper is to provide a framework and the mathematical tools to transform signaling pathways to prior probabilities governing uncertainty classes of feature-label distributions used in classifier design. Structural motifs extracted from the signaling pathways are mapped to a set of constraints on a prior probability on a Multinomial distribution. Being the conjugate prior for the Multinomial distribution, we propose optimization paradigms to estimate the parameters of a Dirichlet distribution in the Bayesian setting. The performance of the proposed methods is tested on two widely studied pathways: mammalian cell cycle and a p53 pathway model.
Spiking, Bursting, and Population Dynamics in a Network of Growth Transform Neurons.
Gangopadhyay, Ahana; Chakrabartty, Shantanu
2018-06-01
This paper investigates the dynamical properties of a network of neurons, each of which implements an asynchronous mapping based on polynomial growth transforms. In the first part of this paper, we present a geometric approach for visualizing the dynamics of the network where each of the neurons traverses a trajectory in a dual optimization space, whereas the network itself traverses a trajectory in an equivalent primal optimization space. We show that as the network learns to solve basic classification tasks, different choices of primal-dual mapping produce unique but interpretable neural dynamics like noise shaping, spiking, and bursting. While the proposed framework is general enough, in this paper, we demonstrate its use for designing support vector machines (SVMs) that exhibit noise-shaping properties similar to those of modulators, and for designing SVMs that learn to encode information using spikes and bursts. It is demonstrated that the emergent switching, spiking, and burst dynamics produced by each neuron encodes its respective margin of separation from a classification hyperplane whose parameters are encoded by the network population dynamics. We believe that the proposed growth transform neuron model and the underlying geometric framework could serve as an important tool to connect well-established machine learning algorithms like SVMs to neuromorphic principles like spiking, bursting, population encoding, and noise shaping.
Classification of epileptiform and wicket spike of EEG pattern using backpropagation neural network
NASA Astrophysics Data System (ADS)
Puspita, Juni Wijayanti; Jaya, Agus Indra; Gunadharma, Suryani
2017-03-01
Epilepsy is characterized by recurrent seizures that is resulted by permanent brain abnormalities. One of tools to support the diagnosis of epilepsy is Electroencephalograph (EEG), which describes the recording of brain electrical activity. Abnormal EEG patterns in epilepsy patients consist of Spike and Sharp waves. While both waves, there is a normal pattern that sometimes misinterpreted as epileptiform by electroenchepalographer (EEGer), namely Wicket Spike. The main difference of the three waves are on the time duration that related to the frequency. In this study, we proposed a method to classify a EEG wave into Sharp wave, Spike wave or Wicket spike group using Backpropagation Neural Network based on the frequency and amplitude of each wave. The results show that the proposed method can classifies the three group of waves with good accuracy.
A hybrid brain-computer interface-based mail client.
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.
A Hybrid Brain-Computer Interface-Based Mail Client
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880
Barbosa, Daniel J C; Ramos, Jaime; Lima, Carlos S
2008-01-01
Capsule endoscopy is an important tool to diagnose tumor lesions in the small bowel. The capsule endoscopic images possess vital information expressed by color and texture. This paper presents an approach based in the textural analysis of the different color channels, using the wavelet transform to select the bands with the most significant texture information. A new image is then synthesized from the selected wavelet bands, trough the inverse wavelet transform. The features of each image are based on second-order textural information, and they are used in a classification scheme using a multilayer perceptron neural network. The proposed methodology has been applied in real data taken from capsule endoscopic exams and reached 98.7% sensibility and 96.6% specificity. These results support the feasibility of the proposed algorithm.
Hierarchy-associated semantic-rule inference framework for classifying indoor scenes
NASA Astrophysics Data System (ADS)
Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei
2016-03-01
Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification
NASA Astrophysics Data System (ADS)
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-12-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-12-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.
A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification
Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun
2016-01-01
Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520
LONGITUDINAL COHORT METHODS STUDIES
Accurate exposure classification tools are required to link exposure with health effects in epidemiological studies. Exposure classification for occupational studies is relatively easy compared to predicting residential childhood exposures. Recent NHEXAS (Maryland) study articl...
Self-adaptive MOEA feature selection for classification of bankruptcy prediction data.
Gaspar-Cunha, A; Recio, G; Costa, L; Estébanez, C
2014-01-01
Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier.
Singularity classification as a design tool for multiblock grids
NASA Technical Reports Server (NTRS)
Jones, Alan K.
1992-01-01
A major stumbling block in interactive design of 3-D multiblock grids is the difficulty of visualizing the design as a whole. One way to make this visualization task easier is to focus, at least in early design stages, on an aspect of the grid which is inherently easy to present graphically, and to conceptualize mentally, namely the nature and location of singularities in the grid. The topological behavior of a multiblock grid design is determined by what happens at its edges and vertices. Only a few of these are in any way exceptional. The exceptional behaviors lie along a singularity graph, which is a 1-D construct embedded in 3-D space. The varieties of singular behavior are limited enough to make useful symbology on a graphics device possible. Furthermore, some forms of block design manipulation that appear appropriate to the early conceptual-modeling phase can be accomplished on this level of abstraction. An overview of a proposed singularity classification scheme and selected examples of corresponding manipulation techniques is presented.
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology
Di Ruberto, Cecilia; Kocher, Michel
2018-01-01
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781
NASA Astrophysics Data System (ADS)
Morizet, N.; Godin, N.; Tang, J.; Maillet, E.; Fregonese, M.; Normand, B.
2016-03-01
This paper aims to propose a novel approach to classify acoustic emission (AE) signals deriving from corrosion experiments, even if embedded into a noisy environment. To validate this new methodology, synthetic data are first used throughout an in-depth analysis, comparing Random Forests (RF) to the k-Nearest Neighbor (k-NN) algorithm. Moreover, a new evaluation tool called the alter-class matrix (ACM) is introduced to simulate different degrees of uncertainty on labeled data for supervised classification. Then, tests on real cases involving noise and crevice corrosion are conducted, by preprocessing the waveforms including wavelet denoising and extracting a rich set of features as input of the RF algorithm. To this end, a software called RF-CAM has been developed. Results show that this approach is very efficient on ground truth data and is also very promising on real data, especially for its reliability, performance and speed, which are serious criteria for the chemical industry.
Efficiency and credit ratings: a permutation-information-theory analysis
NASA Astrophysics Data System (ADS)
Fernandez Bariviera, Aurelio; Zunino, Luciano; Belén Guercio, M.; Martinez, Lisana B.; Rosso, Osvaldo A.
2013-08-01
The role of credit rating agencies has been under severe scrutiny after the subprime crisis. In this paper we explore the relationship between credit ratings and informational efficiency of a sample of thirty nine corporate bonds of US oil and energy companies from April 2008 to November 2012. For this purpose we use a powerful statistical tool, relatively new in the financial literature: the complexity-entropy causality plane. This representation space allows us to graphically classify the different bonds according to their degree of informational efficiency. We find that this classification agrees with the credit ratings assigned by Moody’s. In particular, we detect the formation of two clusters, which correspond to the global categories of investment and speculative grades. Regarding the latter cluster, two subgroups reflect distinct levels of efficiency. Additionally, we also find an intriguing absence of correlation between informational efficiency and firm characteristics. This allows us to conclude that the proposed permutation-information-theory approach provides an alternative practical way to justify bond classification.
A Framework for Privacy-preserving Classification of Next-generation PHR data.
Koufi, Vassiliki; Malamateniou, Flora; Prentza, Andriana; Vassilacopoulos, George
2014-01-01
Personal Health Records (PHRs), integrated with data from various sources, such as social care data, Electronic Health Record data and genetic information, are envisaged as having a pivotal role in transforming healthcare. These data, lumped under the term 'big data', are usually complex, noisy, heterogeneous, longitudinal and voluminous thus prohibiting their meaningful use by clinicians. Deriving value from these data requires the utilization of innovative data analysis techniques, which, however, may be hindered due to potential security and privacy breaches that may arise from improper release of personal health information. This paper presents a HIPAA-compliant machine learning framework that enables privacy-preserving classification of next-generation PHR data. The predictive models acquired can act as supporting tools to clinical practice by enabling more effective prevention, diagnosis and treatment of new incidents. The proposed framework has a huge potential for complementing medical staff expertise as it outperforms the manual inspection of PHR data while protecting patient privacy.
Classification of pregnancy and labor contractions using a graph theory based analysis.
Nader, N; Hassan, M; Falou, W; Diab, A; Al-Omar, S; Khalil, M; Marque, C
2015-08-01
In this paper, we propose a new framework to characterize the electrohysterographic (EHG) signals recorded during pregnancy and labor. The approach is based on the analysis of the propagation of the uterine electrical activity. The processing pipeline includes i) the estimation of the statistical dependencies between the different recorded EHG signals, ii) the characterization of the obtained connectivity matrices using network measures and iii) the use of these measures in clinical application: the classification between pregnancy and labor. Due to its robustness to volume conductor, we used the imaginary part of coherence in order to produce the connectivity matrix which is then transformed into a graph. We evaluate the performance of several graph measures. We also compare the results with the parameter mostly used in the literature: the peak frequency combined with the propagation velocity (PV +PF). Our results show that the use of the network measures is a promising tool to classify labor and pregnancy contractions with a small superiority of the graph strength over PV+PF.
Mapping of Coral Reef Environment in the Arabian Gulf Using Multispectral Remote Sensing
NASA Astrophysics Data System (ADS)
Ben-Romdhane, H.; Marpu, P. R.; Ghedira, H.; Ouarda, T. B. M. J.
2016-06-01
Coral reefs of the Arabian Gulf are subject to several pressures, thus requiring conservation actions. Well-designed conservation plans involve efficient mapping and monitoring systems. Satellite remote sensing is a cost-effective tool for seafloor mapping at large scales. Multispectral remote sensing of coastal habitats, like those of the Arabian Gulf, presents a special challenge due to their complexity and heterogeneity. The present study evaluates the potential of multispectral sensor DubaiSat-2 in mapping benthic communities of United Arab Emirates. We propose to use a spectral-spatial method that includes multilevel segmentation, nonlinear feature analysis and ensemble learning methods. Support Vector Machine (SVM) is used for comparison of classification performances. Comparative data were derived from the habitat maps published by the Environment Agency-Abu Dhabi. The spectral-spatial method produced 96.41% mapping accuracy. SVM classification is assessed to be 94.17% accurate. The adaptation of these methods can help achieving well-designed coastal management plans in the region.
Self-Adaptive MOEA Feature Selection for Classification of Bankruptcy Prediction Data
Gaspar-Cunha, A.; Recio, G.; Costa, L.; Estébanez, C.
2014-01-01
Bankruptcy prediction is a vast area of finance and accounting whose importance lies in the relevance for creditors and investors in evaluating the likelihood of getting into bankrupt. As companies become complex, they develop sophisticated schemes to hide their real situation. In turn, making an estimation of the credit risks associated with counterparts or predicting bankruptcy becomes harder. Evolutionary algorithms have shown to be an excellent tool to deal with complex problems in finances and economics where a large number of irrelevant features are involved. This paper provides a methodology for feature selection in classification of bankruptcy data sets using an evolutionary multiobjective approach that simultaneously minimise the number of features and maximise the classifier quality measure (e.g., accuracy). The proposed methodology makes use of self-adaptation by applying the feature selection algorithm while simultaneously optimising the parameters of the classifier used. The methodology was applied to four different sets of data. The obtained results showed the utility of using the self-adaptation of the classifier. PMID:24707201
Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.
Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel
2018-02-08
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
Applications of Support Vector Machines In Chemo And Bioinformatics
NASA Astrophysics Data System (ADS)
Jayaraman, V. K.; Sundararajan, V.
2010-10-01
Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.
Gemovic, Branislava; Perovic, Vladimir; Glisic, Sanja; Veljkovic, Nevena
2013-01-01
There are more than 500 amino acid substitutions in each human genome, and bioinformatics tools irreplaceably contribute to determination of their functional effects. We have developed feature-based algorithm for the detection of mutations outside conserved functional domains (CFDs) and compared its classification efficacy with the most commonly used phylogeny-based tools, PolyPhen-2 and SIFT. The new algorithm is based on the informational spectrum method (ISM), a feature-based technique, and statistical analysis. Our dataset contained neutral polymorphisms and mutations associated with myeloid malignancies from epigenetic regulators ASXL1, DNMT3A, EZH2, and TET2. PolyPhen-2 and SIFT had significantly lower accuracies in predicting the effects of amino acid substitutions outside CFDs than expected, with especially low sensitivity. On the other hand, only ISM algorithm showed statistically significant classification of these sequences. It outperformed PolyPhen-2 and SIFT by 15% and 13%, respectively. These results suggest that feature-based methods, like ISM, are more suitable for the classification of amino acid substitutions outside CFDs than phylogeny-based tools.
2015-12-15
Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network ... Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their...detection accuracy and speed on the fine-grained Caltech UCSD bird dataset (Wah et al., 2011). Recently, Convolutional Neural Networks (CNNs), a deep
Berendt, Mette; Farquhar, Robyn G; Mandigers, Paul J J; Pakozdy, Akos; Bhatti, Sofie F M; De Risio, Luisa; Fischer, Andrea; Long, Sam; Matiasek, Kaspar; Muñana, Karen; Patterson, Edward E; Penderis, Jacques; Platt, Simon; Podell, Michael; Potschka, Heidrun; Pumarola, Martí Batlle; Rusbridge, Clare; Stein, Veronika M; Tipold, Andrea; Volk, Holger A
2015-08-28
Dogs with epilepsy are among the commonest neurological patients in veterinary practice and therefore have historically attracted much attention with regard to definitions, clinical approach and management. A number of classification proposals for canine epilepsy have been published during the years reflecting always in parts the current proposals coming from the human epilepsy organisation the International League Against Epilepsy (ILAE). It has however not been possible to gain agreed consensus, "a common language", for the classification and terminology used between veterinary and human neurologists and neuroscientists, practitioners, neuropharmacologists and neuropathologists. This has led to an unfortunate situation where different veterinary publications and textbook chapters on epilepsy merely reflect individual author preferences with respect to terminology, which can be confusing to the readers and influence the definition and diagnosis of epilepsy in first line practice and research studies.In this document the International Veterinary Epilepsy Task Force (IVETF) discusses current understanding of canine epilepsy and presents our 2015 proposal for terminology and classification of epilepsy and epileptic seizures. We propose a classification system which reflects new thoughts from the human ILAE but also roots in former well accepted terminology. We think that this classification system can be used by all stakeholders.
Hayat, Maqsood; Tahir, Muhammad
2015-08-01
Membrane protein is a central component of the cell that manages intra and extracellular processes. Membrane proteins execute a diversity of functions that are vital for the survival of organisms. The topology of transmembrane proteins describes the number of transmembrane (TM) helix segments and its orientation. However, owing to the lack of its recognized structures, the identification of TM helix and its topology through experimental methods is laborious with low throughput. In order to identify TM helix segments reliably, accurately, and effectively from topogenic sequences, we propose the PSOFuzzySVM-TMH model. In this model, evolutionary based information position specific scoring matrix and discrete based information 6-letter exchange group are used to formulate transmembrane protein sequences. The noisy and extraneous attributes are eradicated using an optimization selection technique, particle swarm optimization, from both feature spaces. Finally, the selected feature spaces are combined in order to form ensemble feature space. Fuzzy-support vector Machine is utilized as a classification algorithm. Two benchmark datasets, including low and high resolution datasets, are used. At various levels, the performance of the PSOFuzzySVM-TMH model is assessed through 10-fold cross validation test. The empirical results reveal that the proposed framework PSOFuzzySVM-TMH outperforms in terms of classification performance in the examined datasets. It is ascertained that the proposed model might be a useful and high throughput tool for academia and research community for further structure and functional studies on transmembrane proteins.
29 CFR 14.3 - DOL Classification Review Committee.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 1 2014-07-01 2013-07-01 true DOL Classification Review Committee. 14.3 Section 14.3 Labor... Classification Review Committee. A DOL Classification Review Committee is hereby established. (a) Composition of... under the Freedom of Information Act, 5 U.S.C. 552, when a proposed denial is based on classification...
SoFoCles: feature filtering for microarray classification based on gene ontology.
Papachristoudis, Georgios; Diplaris, Sotiris; Mitkas, Pericles A
2010-02-01
Marker gene selection has been an important research topic in the classification analysis of gene expression data. Current methods try to reduce the "curse of dimensionality" by using statistical intra-feature set calculations, or classifiers that are based on the given dataset. In this paper, we present SoFoCles, an interactive tool that enables semantic feature filtering in microarray classification problems with the use of external, well-defined knowledge retrieved from the Gene Ontology. The notion of semantic similarity is used to derive genes that are involved in the same biological path during the microarray experiment, by enriching a feature set that has been initially produced with legacy methods. Among its other functionalities, SoFoCles offers a large repository of semantic similarity methods that are used in order to derive feature sets and marker genes. The structure and functionality of the tool are discussed in detail, as well as its ability to improve classification accuracy. Through experimental evaluation, SoFoCles is shown to outperform other classification schemes in terms of classification accuracy in two real datasets using different semantic similarity computation approaches.
Shamim, Thorakkal
2013-09-01
Iatrogenic lesions can affect both hard and soft tissues in the oral cavity, induced by the dentist's activity, manner or therapy. There is no approved simple working classification for the iatrogenic lesions of teeth and associated structures in the oral cavity in the literature. A simple working classification is proposed here for iatrogenic lesions of teeth and associated structures in the oral cavity based on its relation with dental specialities. The dental specialities considered in this classification are conservative dentistry and endodontics, orthodontics, oral and maxillofacial surgery and prosthodontics. This classification will be useful for the dental clinician who is dealing with diseases of oral cavity.
Polarimetric SAR image classification based on discriminative dictionary learning model
NASA Astrophysics Data System (ADS)
Sang, Cheng Wei; Sun, Hong
2018-03-01
Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
NASA Astrophysics Data System (ADS)
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.
Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel
2017-06-01
Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.
Prostate segmentation by sparse representation based classification
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-01-01
Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673
Prostate segmentation by sparse representation based classification.
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-10-01
The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.
Collaborative classification of hyperspectral and visible images with convolutional neural network
NASA Astrophysics Data System (ADS)
Zhang, Mengmeng; Li, Wei; Du, Qian
2017-10-01
Recent advances in remote sensing technology have made multisensor data available for the same area, and it is well-known that remote sensing data processing and analysis often benefit from multisource data fusion. Specifically, low spatial resolution of hyperspectral imagery (HSI) degrades the quality of the subsequent classification task while using visible (VIS) images with high spatial resolution enables high-fidelity spatial analysis. A collaborative classification framework is proposed to fuse HSI and VIS images for finer classification. First, the convolutional neural network model is employed to extract deep spectral features for HSI classification. Second, effective binarized statistical image features are learned as contextual basis vectors for the high-resolution VIS image, followed by a classifier. The proposed approach employs diversified data in a decision fusion, leading to an integration of the rich spectral information, spatial information, and statistical representation information. In particular, the proposed approach eliminates the potential problems of the curse of dimensionality and excessive computation time. The experiments evaluated on two standard data sets demonstrate better classification performance offered by this framework.
Joint Feature Selection and Classification for Multilabel Learning.
Huang, Jun; Li, Guorong; Huang, Qingming; Wu, Xindong
2018-03-01
Multilabel learning deals with examples having multiple class labels simultaneously. It has been applied to a variety of applications, such as text categorization and image annotation. A large number of algorithms have been proposed for multilabel learning, most of which concentrate on multilabel classification problems and only a few of them are feature selection algorithms. Current multilabel classification models are mainly built on a single data representation composed of all the features which are shared by all the class labels. Since each class label might be decided by some specific features of its own, and the problems of classification and feature selection are often addressed independently, in this paper, we propose a novel method which can perform joint feature selection and classification for multilabel learning, named JFSC. Different from many existing methods, JFSC learns both shared features and label-specific features by considering pairwise label correlations, and builds the multilabel classifier on the learned low-dimensional data representations simultaneously. A comparative study with state-of-the-art approaches manifests a competitive performance of our proposed method both in classification and feature selection for multilabel learning.
Optimizing spectral CT parameters for material classification tasks
NASA Astrophysics Data System (ADS)
Rigie, D. S.; La Rivière, P. J.
2016-06-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.
Optimizing Spectral CT Parameters for Material Classification Tasks
Rigie, D. S.; La Rivière, P. J.
2017-01-01
In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430
HEp-2 cell image classification method based on very deep convolutional networks with small datasets
NASA Astrophysics Data System (ADS)
Lu, Mengchi; Gao, Long; Guo, Xifeng; Liu, Qiang; Yin, Jianping
2017-07-01
Human Epithelial-2 (HEp-2) cell images staining patterns classification have been widely used to identify autoimmune diseases by the anti-Nuclear antibodies (ANA) test in the Indirect Immunofluorescence (IIF) protocol. Because manual test is time consuming, subjective and labor intensive, image-based Computer Aided Diagnosis (CAD) systems for HEp-2 cell classification are developing. However, methods proposed recently are mostly manual features extraction with low accuracy. Besides, the scale of available benchmark datasets is small, which does not exactly suitable for using deep learning methods. This issue will influence the accuracy of cell classification directly even after data augmentation. To address these issues, this paper presents a high accuracy automatic HEp-2 cell classification method with small datasets, by utilizing very deep convolutional networks (VGGNet). Specifically, the proposed method consists of three main phases, namely image preprocessing, feature extraction and classification. Moreover, an improved VGGNet is presented to address the challenges of small-scale datasets. Experimental results over two benchmark datasets demonstrate that the proposed method achieves superior performance in terms of accuracy compared with existing methods.
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
NASA Astrophysics Data System (ADS)
Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya
2018-04-01
In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.
A proposed ecosystem services classification system to support green accounting
There are a multitude of actual or envisioned, complete or incomplete, ecosystem service classification systems being proposed to support Green Accounting. Green Accounting is generally thought to be the formal accounting attempt to factor environmental production into National ...
Pettine, Maurizio; Casentini, Barbara; Fazi, Stefano; Giovanardi, Franco; Pagnotta, Romano
2007-09-01
The trophic status classification of coastal waters at the European scale requires the availability of harmonised indicators and procedures. The composite trophic status index (TRIX) provides useful metrics for the assessment of the trophic status of coastal waters. It was originally developed for Italian coastal waters and then applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black and Northern seas). The TRIX index does not fulfil the classification procedure suggested by the WFD for two reasons: (a) it is based on an absolute trophic scale without any normalization to type-specific reference conditions; (b) it makes an ex ante aggregation of biological (Chl-a) and physico-chemical (oxygen, nutrients) quality elements, instead of an ex post integration of separate evaluations of biological and subsequent chemical quality elements. A revisitation of the TRIX index in the light of the European Water Framework Directive (WFD, 2000/60/EC) and new TRIX derived tools are presented in this paper. A number of Italian coastal sites were grouped into different types based on a thorough analysis of their hydro-morphological conditions, and type-specific reference sites were selected. Unscaled TRIX values (UNTRIX) for reference and impacted sites have been calculated and two alternative UNTRIX-based classification procedures are discussed. The proposed procedures, to be validated on a broader scale, provide users with simple tools that give an integrated view of nutrient enrichment and its effects on algal biomass (Chl-a) and on oxygen levels. This trophic evaluation along with phytoplankton indicator species and algal blooms contribute to the comprehensive assessment of phytoplankton, one of the biological quality elements in coastal waters.
Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.
2015-01-01
Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387
NASA Astrophysics Data System (ADS)
Rivas-Ubach, A.; Liu, Y.; Bianchi, T. S.; Tolic, N.; Jansson, C.; Paša-Tolić, L.
2017-12-01
The role of nutrients in organisms, especially primary producers, has been a topic of special interest in ecosystem research for understanding the ecosystem structure and function. The majority of macro-elements in organisms, such as C, H, O, N and P, do not act as single elements but are components of organic compounds (lipids, peptides, carbohydrates, etc), which are more directly related to the physiology of organisms and thus to the ecosystem function. However, accurately deciphering the overall content of the main compound classes (lipids, proteins, carbohydrates,…) in organisms is still a major challenge. van Krevelen (vK) diagrams have been widely used as an estimation of the main compound categories present in environmental samples based on O:C vs H:C molecular ratios, but a stoichiometric classification based exclusively on O:C and H:C ratios is feeble. Different compound classes show large O:C and H:C ratio overlapping and other heteroatoms, such as N and P, should be considered to robustly distinguish the different classes. We propose a new compound classification for biological/environmental samples based on the C:H:O:N:P stoichiometric ratios of thousands of molecular formulas of characterized compounds from 6 different main categories: lipids, peptides, amino-sugars, carbohydrates, nucleotides and phytochemical compounds (oxy-aromatic compounds). This new multidimensional stoichiometric compound constraints classification (MSCC) can be applied to data obtained with high resolution mass spectrometry (HRMS), allowing an accurate overview of the relative abundances of the main compound categories present in organismal samples. The MSCC has been optimized for plants, but it could be also applied to different organisms and serve as a strong starting point to further investigate other environmental complex matrices (soils, aerosols, etc). The proposed MSCC advances environmental research, especially eco-metabolomics, ecophysiology and ecological stoichiometry studies, providing a new tool to understand the ecosystem structure and function at the molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, H; Liu, T; Xu, X
Purpose: There are clinical decision challenges to select optimal treatment positions for left-sided breast cancer patients—supine free breathing (FB), supine Deep Inspiration Breath Hold (DIBH) and prone free breathing (prone). Physicians often make the decision based on experiences and trials, which might not always result optimal OAR doses. We herein propose a mathematical model to predict the lowest OAR doses among these three positions, providing a quantitative tool for corresponding clinical decision. Methods: Patients were scanned in FB, DIBH, and prone positions under an IRB approved protocol. Tangential beam plans were generated for each position, and OAR doses were calculated.more » The position with least OAR doses is defined as the optimal position. The following features were extracted from each scan to build the model: heart, ipsilateral lung, breast volume, in-field heart, ipsilateral lung volume, distance between heart and target, laterality of heart, and dose to heart and ipsilateral lung. Principal Components Analysis (PCA) was applied to remove the co-linearity of the input data and also to lower the data dimensionality. Feature selection, another method to reduce dimensionality, was applied as a comparison. Support Vector Machine (SVM) was then used for classification. Thirtyseven patient data were acquired; up to now, five patient plans were available. K-fold cross validation was used to validate the accuracy of the classifier model with small training size. Results: The classification results and K-fold cross validation demonstrated the model is capable of predicting the optimal position for patients. The accuracy of K-fold cross validations has reached 80%. Compared to PCA, feature selection allows causal features of dose to be determined. This provides more clinical insights. Conclusion: The proposed classification system appeared to be feasible. We are generating plans for the rest of the 37 patient images, and more statistically significant results are to be presented.« less
Mexican Hat Wavelet Kernel ELM for Multiclass Classification.
Wang, Jie; Song, Yi-Fan; Ma, Tian-Lei
2017-01-01
Kernel extreme learning machine (KELM) is a novel feedforward neural network, which is widely used in classification problems. To some extent, it solves the existing problems of the invalid nodes and the large computational complexity in ELM. However, the traditional KELM classifier usually has a low test accuracy when it faces multiclass classification problems. In order to solve the above problem, a new classifier, Mexican Hat wavelet KELM classifier, is proposed in this paper. The proposed classifier successfully improves the training accuracy and reduces the training time in the multiclass classification problems. Moreover, the validity of the Mexican Hat wavelet as a kernel function of ELM is rigorously proved. Experimental results on different data sets show that the performance of the proposed classifier is significantly superior to the compared classifiers.
Graph theory for feature extraction and classification: a migraine pathology case study.
Jorge-Hernandez, Fernando; Garcia Chimeno, Yolanda; Garcia-Zapirain, Begonya; Cabrera Zubizarreta, Alberto; Gomez Beldarrain, Maria Angeles; Fernandez-Ruanova, Begonya
2014-01-01
Graph theory is also widely used as a representational form and characterization of brain connectivity network, as is machine learning for classifying groups depending on the features extracted from images. Many of these studies use different techniques, such as preprocessing, correlations, features or algorithms. This paper proposes an automatic tool to perform a standard process using images of the Magnetic Resonance Imaging (MRI) machine. The process includes pre-processing, building the graph per subject with different correlations, atlas, relevant feature extraction according to the literature, and finally providing a set of machine learning algorithms which can produce analyzable results for physicians or specialists. In order to verify the process, a set of images from prescription drug abusers and patients with migraine have been used. In this way, the proper functioning of the tool has been proved, providing results of 87% and 92% of success depending on the classifier used.
Kim, Junghoe; Calhoun, Vince D.; Shim, Eunsoo; Lee, Jong-Hwan
2015-01-01
Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was quantified by using kurtosis/modularity measures and features from the higher hidden layer showed holistic/global FC patterns differentiating SZ from HC. Our proposed schemes and reported findings attained by using the DNN classifier and whole-brain FC data suggest that such approaches show improved ability to learn hidden patterns in brain imaging data, which may be useful for developing diagnostic tools for SZ and other neuropsychiatric disorders and identifying associated aberrant FC patterns. PMID:25987366
Bào, Yīmíng; Kuhn, Jens H
2018-01-01
During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.
Zhou, Xiao-jun; Zheng, Bin; Yi, Feng-yun; Xiong, Yan-hong; Zhang, Min-qi
2015-04-01
The data of the National Natural Science Foundation (NSFC) projests obtained by the National Institute of Parasitic Diseases (NIPD), Chinese Center for Disease Control and Prevention (China CDC) during 2003-2013 were collected from internet-based science information system of NSFC, and NSFC search tool of Dingxiang Garden (http://nsfc.biomart.cn/). The number of funded projects, their subject classification and approved amount were analyzed, and compared with the other institutes of China CDC. Furthermore, the rationalization proposals were given in order to enhance the level of foundation management in the future.
CHILDHOOD PSYCHOPATHOLOGY MEAUSREMENT SCHEDULE: DEVELOPMENT AND STANDARDIZATION*
Malhotra, Savita; Varma, V. K.; Verma, S. K.; Malhotra, Anil
1988-01-01
SUMMARY Development and standardization of an instrument Childhood Psychopathology Measurement Schedule (CPMS) to assess psychopathology in children is reported. CPMS is standardized on Indian population and is applicable to children of both sexes in the age range of 4-14 years. It measures overall psychopathology in the form of a total scores and also the type of psychopathology in the form of eight factorially derived syndromes which have satisfactory reliability and validity. CPMS is proposed to be used as a screening instrument in population surveys to identify disturbed children as well as a research tool involving measurement of childhood psychopathology and its classification. PMID:21927332
Black Box Testing: Experiments with Runway Incursion Advisory Alerting System
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
2005-01-01
This report summarizes our research findings on the Black box testing of Runway Incursion Advisory Alerting System (RIAAS) and Runway Safety Monitor (RSM) system. Developing automated testing software for such systems has been a problem because of the extensive information that has to be processed. Customized software solutions have been proposed. However, they are time consuming to develop. Here, we present a less expensive, and a more general test platform that is capable of performing complete black box testing. The technique is based on the classification of the anomalies that arise during Monte Carlo simulations. In addition, we also discuss a generalized testing tool (prototype) that we have developed.
77 FR 4403 - Proposed Collection; Comment Request for Form 8832
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
... 8832, Entity Classification Election. DATES: Written comments should be received on or before March 27... INFORMATION: Title: Entity Classification Election. OMB Number: 1545-1516. Form Number: Form 8832. Abstract... its current classification must file Form 8832 to elect a classification. Current Actions: Changes...
NASA Astrophysics Data System (ADS)
Mayr, Andreas; Rutzinger, Martin; Bremer, Magnus; Geitner, Clemens
2016-06-01
In the Alps as well as in other mountain regions steep grassland is frequently affected by shallow erosion. Often small landslides or snow movements displace the vegetation together with soil and/or unconsolidated material. This results in bare earth surface patches within the grass covered slope. Close-range and remote sensing techniques are promising for both mapping and monitoring these eroded areas. This is essential for a better geomorphological process understanding, to assess past and recent developments, and to plan mitigation measures. Recent developments in image matching techniques make it feasible to produce high resolution orthophotos and digital elevation models from terrestrial oblique images. In this paper we propose to delineate the boundary of eroded areas for selected scenes of a study area, using close-range photogrammetric data. Striving for an efficient, objective and reproducible workflow for this task, we developed an approach for automated classification of the scenes into the classes grass and eroded. We propose an object-based image analysis (OBIA) workflow which consists of image segmentation and automated threshold selection for classification using the Excess Green Vegetation Index (ExG). The automated workflow is tested with ten different scenes. Compared to a manual classification, grass and eroded areas are classified with an overall accuracy between 90.7% and 95.5%, depending on the scene. The methods proved to be insensitive to differences in illumination of the scenes and greenness of the grass. The proposed workflow reduces user interaction and is transferable to other study areas. We conclude that close-range photogrammetry is a valuable low-cost tool for mapping this type of eroded areas in the field with a high level of detail and quality. In future, the output will be used as ground truth for an area-wide mapping of eroded areas in coarser resolution aerial orthophotos acquired at the same time.
Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.
Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine
2016-05-01
Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis progression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sparse dictionary learning for resting-state fMRI analysis
NASA Astrophysics Data System (ADS)
Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul
2011-09-01
Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.
Fast DCNN based on FWT, intelligent dropout and layer skipping for image retrieval.
ElAdel, Asma; Zaied, Mourad; Amar, Chokri Ben
2017-11-01
Deep Convolutional Neural Network (DCNN) can be marked as a powerful tool for object and image classification and retrieval. However, the training stage of such networks is highly consuming in terms of storage space and time. Also, the optimization is still a challenging subject. In this paper, we propose a fast DCNN based on Fast Wavelet Transform (FWT), intelligent dropout and layer skipping. The proposed approach led to improve the image retrieval accuracy as well as the searching time. This was possible thanks to three key advantages: First, the rapid way to compute the features using FWT. Second, the proposed intelligent dropout method is based on whether or not a unit is efficiently and not randomly selected. Third, it is possible to classify the image using efficient units of earlier layer(s) and skipping all the subsequent hidden layers directly to the output layer. Our experiments were performed on CIFAR-10 and MNIST datasets and the obtained results are very promising. Copyright © 2017 Elsevier Ltd. All rights reserved.
Capuano, G P; Capuano, C
2012-03-01
The objective of this work is to evaluate the usefulness of a standardized clinical classification of hydroceles in lymphatic filariasis endemic countries to guide their surgical management. 64 patients with hydroceles were operated in 2009-2010, in Level II hospitals (WHO classification), during two visits to Fiji, by the same mobile surgical team. The number of hydroceles treated was 83. We developed and evaluated a much needed clinical classification of hydroceles based on four criteria: Type (uni/bilateral); Side (left/right); Stage of enlargement of the scrotum rated from I to VI; Grade of burial of the penis rated from 0 to 4. It lead to the conclusion that 1) A Stage I or II hydrocele, associated with Grade 0 or 1 penis burial could be considered a "Simple Hydrocele". The surgical treatment is simple with no anticipated early complication. WHO Level II of health care structure seems adapted. 2) A Stage III or IV hydrocele associated with Grade 2, 3 or 4 penis burial could be considered a "Complicated Hydrocele". The operation is longer, more complicated and the possibility of occurrence of complications seems greater. A level III health care facility would be more adapted under the normal functioning of the health system. We conclude that a standardized clinical classification of hydroceles based on the Stage of enlargement of the scrotum and the Grade of burial of the penis appears to be a useful tool to guide the decision about the level of care and the surgical technique required. We use the same classification for penoscrotal lymphoedema. A decision tree is presented for the management of hydroceles in lymphatic filariasis endemic countries which could usefully complement the "Algorithm for management of scrotal swelling" proposed by WHO in 2002. An international classification system of hydroceles would also allow standardization and facilitate study design and comparisons of their results.
Designing a training tool for imaging mental models
NASA Technical Reports Server (NTRS)
Dede, Christopher J.; Jayaram, Geetha
1990-01-01
The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.
Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang
2014-01-01
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method.
Yu, Guan; Liu, Yufeng; Thung, Kim-Han; Shen, Dinggang
2014-01-01
Accurately identifying mild cognitive impairment (MCI) individuals who will progress to Alzheimer's disease (AD) is very important for making early interventions. Many classification methods focus on integrating multiple imaging modalities such as magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET). However, the main challenge for MCI classification using multiple imaging modalities is the existence of a lot of missing data in many subjects. For example, in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, almost half of the subjects do not have PET images. In this paper, we propose a new and flexible binary classification method, namely Multi-task Linear Programming Discriminant (MLPD) analysis, for the incomplete multi-source feature learning. Specifically, we decompose the classification problem into different classification tasks, i.e., one for each combination of available data sources. To solve all different classification tasks jointly, our proposed MLPD method links them together by constraining them to achieve the similar estimated mean difference between the two classes (under classification) for those shared features. Compared with the state-of-the-art incomplete Multi-Source Feature (iMSF) learning method, instead of constraining different classification tasks to choose a common feature subset for those shared features, MLPD can flexibly and adaptively choose different feature subsets for different classification tasks. Furthermore, our proposed MLPD method can be efficiently implemented by linear programming. To validate our MLPD method, we perform experiments on the ADNI baseline dataset with the incomplete MRI and PET images from 167 progressive MCI (pMCI) subjects and 226 stable MCI (sMCI) subjects. We further compared our method with the iMSF method (using incomplete MRI and PET images) and also the single-task classification method (using only MRI or only subjects with both MRI and PET images). Experimental results show very promising performance of our proposed MLPD method. PMID:24820966
Using Context Variety and Students' Discussions in Recognizing Statistical Situations
ERIC Educational Resources Information Center
Silva, José Luis Ángel Rodríguez; Aguilar, Mario Sánchez
2016-01-01
We present a proposal for helping students to cope with statistical word problems related to the classification of different cases of confidence intervals. The proposal promotes an environment where students can explicitly discuss the reasons underlying their classification of cases.
USDA-ARS?s Scientific Manuscript database
We present an updated list of the members of the subtribe Cochylina (Tortricidae) in North America north of Mexico. We summarize the proposed changes in the classification since about 1983. We propose revised status for two genera, Rolandylis Gibeaux, 1985 and Thyraylia Walsingham, 1897. We propose ...
CW-SSIM kernel based random forest for image classification
NASA Astrophysics Data System (ADS)
Fan, Guangzhe; Wang, Zhou; Wang, Jiheng
2010-07-01
Complex wavelet structural similarity (CW-SSIM) index has been proposed as a powerful image similarity metric that is robust to translation, scaling and rotation of images, but how to employ it in image classification applications has not been deeply investigated. In this paper, we incorporate CW-SSIM as a kernel function into a random forest learning algorithm. This leads to a novel image classification approach that does not require a feature extraction or dimension reduction stage at the front end. We use hand-written digit recognition as an example to demonstrate our algorithm. We compare the performance of the proposed approach with random forest learning based on other kernels, including the widely adopted Gaussian and the inner product kernels. Empirical evidences show that the proposed method is superior in its classification power. We also compared our proposed approach with the direct random forest method without kernel and the popular kernel-learning method support vector machine. Our test results based on both simulated and realworld data suggest that the proposed approach works superior to traditional methods without the feature selection procedure.
New Splitting Criteria for Decision Trees in Stationary Data Streams.
Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Jaworski, Maciej; Duda, Piotr; Rutkowski, Leszek; Rutkowski, Leszek; Duda, Piotr; Jaworski, Maciej
2018-06-01
The most popular tools for stream data mining are based on decision trees. In previous 15 years, all designed methods, headed by the very fast decision tree algorithm, relayed on Hoeffding's inequality and hundreds of researchers followed this scheme. Recently, we have demonstrated that although the Hoeffding decision trees are an effective tool for dealing with stream data, they are a purely heuristic procedure; for example, classical decision trees such as ID3 or CART cannot be adopted to data stream mining using Hoeffding's inequality. Therefore, there is an urgent need to develop new algorithms, which are both mathematically justified and characterized by good performance. In this paper, we address this problem by developing a family of new splitting criteria for classification in stationary data streams and investigating their probabilistic properties. The new criteria, derived using appropriate statistical tools, are based on the misclassification error and the Gini index impurity measures. The general division of splitting criteria into two types is proposed. Attributes chosen based on type- splitting criteria guarantee, with high probability, the highest expected value of split measure. Type- criteria ensure that the chosen attribute is the same, with high probability, as it would be chosen based on the whole infinite data stream. Moreover, in this paper, two hybrid splitting criteria are proposed, which are the combinations of single criteria based on the misclassification error and Gini index.
Lin, Lei; Wang, Qian; Sadek, Adel W
2016-06-01
The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean absolute percentage error (MAPE). Copyright © 2016 Elsevier Ltd. All rights reserved.
49 CFR 1105.6 - Classification of actions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 8 2011-10-01 2011-10-01 false Classification of actions. 1105.6 Section 1105.6... Classification of actions. (a) Environmental Impact Statements will normally be prepared for rail construction... classifications in this section apply without regard to whether the action is proposed by application, petition...
49 CFR 1105.6 - Classification of actions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 8 2010-10-01 2010-10-01 false Classification of actions. 1105.6 Section 1105.6... Classification of actions. (a) Environmental Impact Statements will normally be prepared for rail construction... classifications in this section apply without regard to whether the action is proposed by application, petition...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-03
... Economic Census General Classification Report AGENCY: U.S. Census Bureau, Commerce. ACTION: Notice. SUMMARY... directed to Scott P. Handmaker, Chief, Economic Classifications Operations Branch, U.S. Census Bureau... . SUPPLEMENTARY INFORMATION: I. Abstract The Economic Census General Classification Report (NC-99023) collects...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
...; Business and Professional Classification Report AGENCY: U.S. Census Bureau, Commerce. ACTION: Notice... directed to Scott Handmaker, Chief, Economic Classifications Operations Branch, U.S. Census Bureau, 8K149... INFORMATION: I. Abstract The Business and Professional Classification Report survey (SQ- [[Page 21593
NASA Astrophysics Data System (ADS)
Mikhailenko, Anna V.; Nazarenko, Olesya V.; Ruban, Dmitry A.; Zayats, Pavel P.
2017-03-01
The current growth in geotourism requires an urgent development of classifications of geological features on the basis of criteria that are relevant to tourist perceptions. It appears that structure-related patterns are especially attractive for geotourists. Consideration of the main criteria by which tourists judge beauty and observations made in the geodiversity hotspot of the Western Caucasus allow us to propose a tentative aesthetics-based classification of geological structures in outcrops, with two classes and four subclasses. It is possible to distinguish between regular and quasi-regular patterns (i.e., striped and lined and contorted patterns) and irregular and complex patterns (paysage and sculptured patterns). Typical examples of each case are found both in the study area and on a global scale. The application of the proposed classification permits to emphasise features of interest to a broad range of tourists. Aesthetics-based (i.e., non-geological) classifications are necessary to take into account visions and attitudes of visitors.
Convolutional neural network with transfer learning for rice type classification
NASA Astrophysics Data System (ADS)
Patel, Vaibhav Amit; Joshi, Manjunath V.
2018-04-01
Presently, rice type is identified manually by humans, which is time consuming and error prone. Therefore, there is a need to do this by machine which makes it faster with greater accuracy. This paper proposes a deep learning based method for classification of rice types. We propose two methods to classify the rice types. In the first method, we train a deep convolutional neural network (CNN) using the given segmented rice images. In the second method, we train a combination of a pretrained VGG16 network and the proposed method, while using transfer learning in which the weights of a pretrained network are used to achieve better accuracy. Our approach can also be used for classification of rice grain as broken or fine. We train a 5-class model for classifying rice types using 4000 training images and another 2- class model for the classification of broken and normal rice using 1600 training images. We observe that despite having distinct rice images, our architecture, pretrained on ImageNet data boosts classification accuracy significantly.
Zhang, Y N
2017-01-01
Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed.
2017-01-01
Parkinson's disease (PD) is primarily diagnosed by clinical examinations, such as walking test, handwriting test, and MRI diagnostic. In this paper, we propose a machine learning based PD telediagnosis method for smartphone. Classification of PD using speech records is a challenging task owing to the fact that the classification accuracy is still lower than doctor-level. Here we demonstrate automatic classification of PD using time frequency features, stacked autoencoders (SAE), and K nearest neighbor (KNN) classifier. KNN classifier can produce promising classification results from useful representations which were learned by SAE. Empirical results show that the proposed method achieves better performance with all tested cases across classification tasks, demonstrating machine learning capable of classifying PD with a level of competence comparable to doctor. It concludes that a smartphone can therefore potentially provide low-cost PD diagnostic care. This paper also gives an implementation on browser/server system and reports the running time cost. Both advantages and disadvantages of the proposed telediagnosis system are discussed. PMID:29075547