Sample records for proposed compression method

  1. Coil compression in simultaneous multislice functional MRI with concentric ring slice-GRAPPA and SENSE.

    PubMed

    Chu, Alan; Noll, Douglas C

    2016-10-01

    Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. An Optimal Seed Based Compression Algorithm for DNA Sequences

    PubMed Central

    Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan

    2016-01-01

    This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868

  3. Transform-Based Channel-Data Compression to Improve the Performance of a Real-Time GPU-Based Software Beamformer.

    PubMed

    Lok, U-Wai; Li, Pai-Chi

    2016-03-01

    Graphics processing unit (GPU)-based software beamforming has advantages over hardware-based beamforming of easier programmability and a faster design cycle, since complicated imaging algorithms can be efficiently programmed and modified. However, the need for a high data rate when transferring ultrasound radio-frequency (RF) data from the hardware front end to the software back end limits the real-time performance. Data compression methods can be applied to the hardware front end to mitigate the data transfer issue. Nevertheless, most decompression processes cannot be performed efficiently on a GPU, thus becoming another bottleneck of the real-time imaging. Moreover, lossless (or nearly lossless) compression is desirable to avoid image quality degradation. In a previous study, we proposed a real-time lossless compression-decompression algorithm and demonstrated that it can reduce the overall processing time because the reduction in data transfer time is greater than the computation time required for compression/decompression. This paper analyzes the lossless compression method in order to understand the factors limiting the compression efficiency. Based on the analytical results, a nearly lossless compression is proposed to further enhance the compression efficiency. The proposed method comprises a transformation coding method involving modified lossless compression that aims at suppressing amplitude data. The simulation results indicate that the compression ratio (CR) of the proposed approach can be enhanced from nearly 1.8 to 2.5, thus allowing a higher data acquisition rate at the front end. The spatial and contrast resolutions with and without compression were almost identical, and the process of decompressing the data of a single frame on a GPU took only several milliseconds. Moreover, the proposed method has been implemented in a 64-channel system that we built in-house to demonstrate the feasibility of the proposed algorithm in a real system. It was found that channel data from a 64-channel system can be transferred using the standard USB 3.0 interface in most practical imaging applications.

  4. The Pixon Method for Data Compression Image Classification, and Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, Richard; Yahil, Amos

    2002-01-01

    As initially proposed, this program had three goals: (1) continue to develop the highly successful Pixon method for image reconstruction and support other scientist in implementing this technique for their applications; (2) develop image compression techniques based on the Pixon method; and (3) develop artificial intelligence algorithms for image classification based on the Pixon approach for simplifying neural networks. Subsequent to proposal review the scope of the program was greatly reduced and it was decided to investigate the ability of the Pixon method to provide superior restorations of images compressed with standard image compression schemes, specifically JPEG-compressed images.

  5. Wavelet compression of multichannel ECG data by enhanced set partitioning in hierarchical trees algorithm.

    PubMed

    Sharifahmadian, Ershad

    2006-01-01

    The set partitioning in hierarchical trees (SPIHT) algorithm is very effective and computationally simple technique for image and signal compression. Here the author modified the algorithm which provides even better performance than the SPIHT algorithm. The enhanced set partitioning in hierarchical trees (ESPIHT) algorithm has performance faster than the SPIHT algorithm. In addition, the proposed algorithm reduces the number of bits in a bit stream which is stored or transmitted. I applied it to compression of multichannel ECG data. Also, I presented a specific procedure based on the modified algorithm for more efficient compression of multichannel ECG data. This method employed on selected records from the MIT-BIH arrhythmia database. According to experiments, the proposed method attained the significant results regarding compression of multichannel ECG data. Furthermore, in order to compress one signal which is stored for a long time, the proposed multichannel compression method can be utilized efficiently.

  6. Blind compressed sensing image reconstruction based on alternating direction method

    NASA Astrophysics Data System (ADS)

    Liu, Qinan; Guo, Shuxu

    2018-04-01

    In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.

  7. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  8. Detecting double compressed MPEG videos with the same quantization matrix and synchronized group of pictures structure

    NASA Astrophysics Data System (ADS)

    Aghamaleki, Javad Abbasi; Behrad, Alireza

    2018-01-01

    Double compression detection is a crucial stage in digital image and video forensics. However, the detection of double compressed videos is challenging when the video forger uses the same quantization matrix and synchronized group of pictures (GOP) structure during the recompression history to conceal tampering effects. A passive approach is proposed for detecting double compressed MPEG videos with the same quantization matrix and synchronized GOP structure. To devise the proposed algorithm, the effects of recompression on P frames are mathematically studied. Then, based on the obtained guidelines, a feature vector is proposed to detect double compressed frames on the GOP level. Subsequently, sparse representations of the feature vectors are used for dimensionality reduction and enrich the traces of recompression. Finally, a support vector machine classifier is employed to detect and localize double compression in temporal domain. The experimental results show that the proposed algorithm achieves the accuracy of more than 95%. In addition, the comparisons of the results of the proposed method with those of other methods reveal the efficiency of the proposed algorithm.

  9. A novel ECG data compression method based on adaptive Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Tan, Chunyu; Zhang, Liming

    2017-12-01

    This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.

  10. The behavior of compression and degradation for municipal solid waste and combined settlement calculation method.

    PubMed

    Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang

    2016-09-01

    The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.

    PubMed

    Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian

    2017-11-08

    It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.

  12. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition

    NASA Astrophysics Data System (ADS)

    Li, Jin; Liu, Zilong

    2017-12-01

    Nonnegative tensor Tucker decomposition (NTD) in a transform domain (e.g., 2D-DWT, etc) has been used in the compression of hyper-spectral images because it can remove redundancies between spectrum bands and also exploit spatial correlations of each band. However, the use of a NTD has a very high computational cost. In this paper, we propose a low complexity NTD-based compression method of hyper-spectral images. This method is based on a pair-wise multilevel grouping approach for the NTD to overcome its high computational cost. The proposed method has a low complexity under a slight decrease of the coding performance compared to conventional NTD. We experimentally confirm this method, which indicates that this method has the less processing time and keeps a better coding performance than the case that the NTD is not used. The proposed approach has a potential application in the loss compression of hyper-spectral or multi-spectral images

  13. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  15. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  16. Novel Near-Lossless Compression Algorithm for Medical Sequence Images with Adaptive Block-Based Spatial Prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2016-12-01

    To address the low compression efficiency of lossless compression and the low image quality of general near-lossless compression, a novel near-lossless compression algorithm based on adaptive spatial prediction is proposed for medical sequence images for possible diagnostic use in this paper. The proposed method employs adaptive block size-based spatial prediction to predict blocks directly in the spatial domain and Lossless Hadamard Transform before quantization to improve the quality of reconstructed images. The block-based prediction breaks the pixel neighborhood constraint and takes full advantage of the local spatial correlations found in medical images. The adaptive block size guarantees a more rational division of images and the improved use of the local structure. The results indicate that the proposed algorithm can efficiently compress medical images and produces a better peak signal-to-noise ratio (PSNR) under the same pre-defined distortion than other near-lossless methods.

  17. Highly Efficient Compression Algorithms for Multichannel EEG.

    PubMed

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  18. Three dimensional range geometry and texture data compression with space-filling curves.

    PubMed

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  19. Joint image encryption and compression scheme based on IWT and SPIHT

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-03-01

    A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.

  20. A method of vehicle license plate recognition based on PCANet and compressive sensing

    NASA Astrophysics Data System (ADS)

    Ye, Xianyi; Min, Feng

    2018-03-01

    The manual feature extraction of the traditional method for vehicle license plates has no good robustness to change in diversity. And the high feature dimension that is extracted with Principal Component Analysis Network (PCANet) leads to low classification efficiency. For solving these problems, a method of vehicle license plate recognition based on PCANet and compressive sensing is proposed. First, PCANet is used to extract the feature from the images of characters. And then, the sparse measurement matrix which is a very sparse matrix and consistent with Restricted Isometry Property (RIP) condition of the compressed sensing is used to reduce the dimensions of extracted features. Finally, the Support Vector Machine (SVM) is used to train and recognize the features whose dimension has been reduced. Experimental results demonstrate that the proposed method has better performance than Convolutional Neural Network (CNN) in the recognition and time. Compared with no compression sensing, the proposed method has lower feature dimension for the increase of efficiency.

  1. Two-dimensional compression of surface electromyographic signals using column-correlation sorting and image encoders.

    PubMed

    Costa, Marcus V C; Carvalho, Joao L A; Berger, Pedro A; Zaghetto, Alexandre; da Rocha, Adson F; Nascimento, Francisco A O

    2009-01-01

    We present a new preprocessing technique for two-dimensional compression of surface electromyographic (S-EMG) signals, based on correlation sorting. We show that the JPEG2000 coding system (originally designed for compression of still images) and the H.264/AVC encoder (video compression algorithm operating in intraframe mode) can be used for compression of S-EMG signals. We compare the performance of these two off-the-shelf image compression algorithms for S-EMG compression, with and without the proposed preprocessing step. Compression of both isotonic and isometric contraction S-EMG signals is evaluated. The proposed methods were compared with other S-EMG compression algorithms from the literature.

  2. A novel high-frequency encoding algorithm for image compression

    NASA Astrophysics Data System (ADS)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  3. Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction.

    PubMed

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2018-06-01

    To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.

  4. Compression of next-generation sequencing quality scores using memetic algorithm

    PubMed Central

    2014-01-01

    Background The exponential growth of next-generation sequencing (NGS) derived DNA data poses great challenges to data storage and transmission. Although many compression algorithms have been proposed for DNA reads in NGS data, few methods are designed specifically to handle the quality scores. Results In this paper we present a memetic algorithm (MA) based NGS quality score data compressor, namely MMQSC. The algorithm extracts raw quality score sequences from FASTQ formatted files, and designs compression codebook using MA based multimodal optimization. The input data is then compressed in a substitutional manner. Experimental results on five representative NGS data sets show that MMQSC obtains higher compression ratio than the other state-of-the-art methods. Particularly, MMQSC is a lossless reference-free compression algorithm, yet obtains an average compression ratio of 22.82% on the experimental data sets. Conclusions The proposed MMQSC compresses NGS quality score data effectively. It can be utilized to improve the overall compression ratio on FASTQ formatted files. PMID:25474747

  5. Hybrid method based on singular value decomposition and embedded zero tree wavelet technique for ECG signal compression.

    PubMed

    Kumar, Ranjeet; Kumar, A; Singh, G K

    2016-06-01

    In the field of biomedical, it becomes necessary to reduce data quantity due to the limitation of storage in real-time ambulatory system and telemedicine system. Research has been underway since very beginning for the development of an efficient and simple technique for longer term benefits. This paper, presents an algorithm based on singular value decomposition (SVD), and embedded zero tree wavelet (EZW) techniques for ECG signal compression which deals with the huge data of ambulatory system. The proposed method utilizes the low rank matrix for initial compression on two dimensional (2-D) ECG data array using SVD, and then EZW is initiated for final compression. Initially, 2-D array construction has key issue for the proposed technique in pre-processing. Here, three different beat segmentation approaches have been exploited for 2-D array construction using segmented beat alignment with exploitation of beat correlation. The proposed algorithm has been tested on MIT-BIH arrhythmia record, and it was found that it is very efficient in compression of different types of ECG signal with lower signal distortion based on different fidelity assessments. The evaluation results illustrate that the proposed algorithm has achieved the compression ratio of 24.25:1 with excellent quality of signal reconstruction in terms of percentage-root-mean square difference (PRD) as 1.89% for ECG signal Rec. 100 and consumes only 162bps data instead of 3960bps uncompressed data. The proposed method is efficient and flexible with different types of ECG signal for compression, and controls quality of reconstruction. Simulated results are clearly illustrate the proposed method can play a big role to save the memory space of health data centres as well as save the bandwidth in telemedicine based healthcare systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Chaos-Based Simultaneous Compression and Encryption for Hadoop.

    PubMed

    Usama, Muhammad; Zakaria, Nordin

    2017-01-01

    Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression.

  7. Chaos-Based Simultaneous Compression and Encryption for Hadoop

    PubMed Central

    Zakaria, Nordin

    2017-01-01

    Data compression and encryption are key components of commonly deployed platforms such as Hadoop. Numerous data compression and encryption tools are presently available on such platforms and the tools are characteristically applied in sequence, i.e., compression followed by encryption or encryption followed by compression. This paper focuses on the open-source Hadoop framework and proposes a data storage method that efficiently couples data compression with encryption. A simultaneous compression and encryption scheme is introduced that addresses an important implementation issue of source coding based on Tent Map and Piece-wise Linear Chaotic Map (PWLM), which is the infinite precision of real numbers that result from their long products. The approach proposed here solves the implementation issue by removing fractional components that are generated by the long products of real numbers. Moreover, it incorporates a stealth key that performs a cyclic shift in PWLM without compromising compression capabilities. In addition, the proposed approach implements a masking pseudorandom keystream that enhances encryption quality. The proposed algorithm demonstrated a congruent fit within the Hadoop framework, providing robust encryption security and compression. PMID:28072850

  8. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals

    PubMed Central

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-01-01

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments. PMID:26473858

  9. Complex-Difference Constrained Compressed Sensing Reconstruction for Accelerated PRF Thermometry with Application to MRI Induced RF Heating

    PubMed Central

    Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.

    2014-01-01

    Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099

  10. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    PubMed

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Hyperspectral image compressing using wavelet-based method

    NASA Astrophysics Data System (ADS)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  12. HUGO: Hierarchical mUlti-reference Genome cOmpression for aligned reads

    PubMed Central

    Li, Pinghao; Jiang, Xiaoqian; Wang, Shuang; Kim, Jihoon; Xiong, Hongkai; Ohno-Machado, Lucila

    2014-01-01

    Background and objective Short-read sequencing is becoming the standard of practice for the study of structural variants associated with disease. However, with the growth of sequence data largely surpassing reasonable storage capability, the biomedical community is challenged with the management, transfer, archiving, and storage of sequence data. Methods We developed Hierarchical mUlti-reference Genome cOmpression (HUGO), a novel compression algorithm for aligned reads in the sorted Sequence Alignment/Map (SAM) format. We first aligned short reads against a reference genome and stored exactly mapped reads for compression. For the inexact mapped or unmapped reads, we realigned them against different reference genomes using an adaptive scheme by gradually shortening the read length. Regarding the base quality value, we offer lossy and lossless compression mechanisms. The lossy compression mechanism for the base quality values uses k-means clustering, where a user can adjust the balance between decompression quality and compression rate. The lossless compression can be produced by setting k (the number of clusters) to the number of different quality values. Results The proposed method produced a compression ratio in the range 0.5–0.65, which corresponds to 35–50% storage savings based on experimental datasets. The proposed approach achieved 15% more storage savings over CRAM and comparable compression ratio with Samcomp (CRAM and Samcomp are two of the state-of-the-art genome compression algorithms). The software is freely available at https://sourceforge.net/projects/hierachicaldnac/with a General Public License (GPL) license. Limitation Our method requires having different reference genomes and prolongs the execution time for additional alignments. Conclusions The proposed multi-reference-based compression algorithm for aligned reads outperforms existing single-reference based algorithms. PMID:24368726

  13. Enhancement of DRPE performance with a novel scheme based on new RAC: Principle, security analysis and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Neji, N.; Jridi, M.; Alfalou, A.; Masmoudi, N.

    2016-02-01

    The double random phase encryption (DRPE) method is a well-known all-optical architecture which has many advantages especially in terms of encryption efficiency. However, the method presents some vulnerabilities against attacks and requires a large quantity of information to encode the complex output plane. In this paper, we present an innovative hybrid technique to enhance the performance of DRPE method in terms of compression and encryption. An optimized simultaneous compression and encryption method is applied simultaneously on the real and imaginary components of the DRPE output plane. The compression and encryption technique consists in using an innovative randomized arithmetic coder (RAC) that can well compress the DRPE output planes and at the same time enhance the encryption. The RAC is obtained by an appropriate selection of some conditions in the binary arithmetic coding (BAC) process and by using a pseudo-random number to encrypt the corresponding outputs. The proposed technique has the capabilities to process video content and to be standard compliant with modern video coding standards such as H264 and HEVC. Simulations demonstrate that the proposed crypto-compression system has presented the drawbacks of the DRPE method. The cryptographic properties of DRPE have been enhanced while a compression rate of one-sixth can be achieved. FPGA implementation results show the high performance of the proposed method in terms of maximum operating frequency, hardware occupation, and dynamic power consumption.

  14. Adaptive Encoding for Numerical Data Compression.

    ERIC Educational Resources Information Center

    Yokoo, Hidetoshi

    1994-01-01

    Discusses the adaptive compression of computer files of numerical data whose statistical properties are not given in advance. A new lossless coding method for this purpose, which utilizes Adelson-Velskii and Landis (AVL) trees, is proposed. The method is effective to any word length. Its application to the lossless compression of gray-scale images…

  15. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  16. Lossless Compression of JPEG Coded Photo Collections.

    PubMed

    Wu, Hao; Sun, Xiaoyan; Yang, Jingyu; Zeng, Wenjun; Wu, Feng

    2016-04-06

    The explosion of digital photos has posed a significant challenge to photo storage and transmission for both personal devices and cloud platforms. In this paper, we propose a novel lossless compression method to further reduce the size of a set of JPEG coded correlated images without any loss of information. The proposed method jointly removes inter/intra image redundancy in the feature, spatial, and frequency domains. For each collection, we first organize the images into a pseudo video by minimizing the global prediction cost in the feature domain. We then present a hybrid disparity compensation method to better exploit both the global and local correlations among the images in the spatial domain. Furthermore, the redundancy between each compensated signal and the corresponding target image is adaptively reduced in the frequency domain. Experimental results demonstrate the effectiveness of the proposed lossless compression method. Compared to the JPEG coded image collections, our method achieves average bit savings of more than 31%.

  17. Architecture for one-shot compressive imaging using computer-generated holograms.

    PubMed

    Macfaden, Alexander J; Kindness, Stephen J; Wilkinson, Timothy D

    2016-09-10

    We propose a synchronous implementation of compressive imaging. This method is mathematically equivalent to prevailing sequential methods, but uses a static holographic optical element to create a spatially distributed spot array from which the image can be reconstructed with an instantaneous measurement. We present the holographic design requirements and demonstrate experimentally that the linear algebra of compressed imaging can be implemented with this technique. We believe this technique can be integrated with optical metasurfaces, which will allow the development of new compressive sensing methods.

  18. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  19. DNA-COMPACT: DNA COMpression Based on a Pattern-Aware Contextual Modeling Technique

    PubMed Central

    Li, Pinghao; Wang, Shuang; Kim, Jihoon; Xiong, Hongkai; Ohno-Machado, Lucila; Jiang, Xiaoqian

    2013-01-01

    Genome data are becoming increasingly important for modern medicine. As the rate of increase in DNA sequencing outstrips the rate of increase in disk storage capacity, the storage and data transferring of large genome data are becoming important concerns for biomedical researchers. We propose a two-pass lossless genome compression algorithm, which highlights the synthesis of complementary contextual models, to improve the compression performance. The proposed framework could handle genome compression with and without reference sequences, and demonstrated performance advantages over best existing algorithms. The method for reference-free compression led to bit rates of 1.720 and 1.838 bits per base for bacteria and yeast, which were approximately 3.7% and 2.6% better than the state-of-the-art algorithms. Regarding performance with reference, we tested on the first Korean personal genome sequence data set, and our proposed method demonstrated a 189-fold compression rate, reducing the raw file size from 2986.8 MB to 15.8 MB at a comparable decompression cost with existing algorithms. DNAcompact is freely available at https://sourceforge.net/projects/dnacompact/for research purpose. PMID:24282536

  20. Joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Tong, Xiaojun

    2017-07-01

    This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.

  1. A Novel ECG Data Compression Method Using Adaptive Fourier Decomposition With Security Guarantee in e-Health Applications.

    PubMed

    Ma, JiaLi; Zhang, TanTan; Dong, MingChui

    2015-05-01

    This paper presents a novel electrocardiogram (ECG) compression method for e-health applications by adapting an adaptive Fourier decomposition (AFD) algorithm hybridized with a symbol substitution (SS) technique. The compression consists of two stages: first stage AFD executes efficient lossy compression with high fidelity; second stage SS performs lossless compression enhancement and built-in data encryption, which is pivotal for e-health. Validated with 48 ECG records from MIT-BIH arrhythmia benchmark database, the proposed method achieves averaged compression ratio (CR) of 17.6-44.5 and percentage root mean square difference (PRD) of 0.8-2.0% with a highly linear and robust PRD-CR relationship, pushing forward the compression performance to an unexploited region. As such, this paper provides an attractive candidate of ECG compression method for pervasive e-health applications.

  2. A Lossless hybrid wavelet-fractal compression for welding radiographic images.

    PubMed

    Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud

    2016-01-01

    In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.

  3. Compressive Sensing via Nonlocal Smoothed Rank Function

    PubMed Central

    Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683

  4. 2D-RBUC for efficient parallel compression of residuals

    NASA Astrophysics Data System (ADS)

    Đurđević, Đorđe M.; Tartalja, Igor I.

    2018-02-01

    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  5. Wavelet-based image compression using shuffling and bit plane correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seungjong; Jeong, Jechang

    2000-12-01

    In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.

  6. n-Gram-Based Text Compression.

    PubMed

    Nguyen, Vu H; Nguyen, Hien T; Duong, Hieu N; Snasel, Vaclav

    2016-01-01

    We propose an efficient method for compressing Vietnamese text using n -gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n -grams and then encodes them based on n -gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n -gram is encoded by two to four bytes accordingly based on its corresponding n -gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n -gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.

  7. n-Gram-Based Text Compression

    PubMed Central

    Duong, Hieu N.; Snasel, Vaclav

    2016-01-01

    We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods. PMID:27965708

  8. Detection of shifted double JPEG compression by an adaptive DCT coefficient model

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Lin; Liew, Alan Wee-Chung; Li, Sheng-Hong; Zhang, Yu-Jin; Li, Jian-Hua

    2014-12-01

    In many JPEG image splicing forgeries, the tampered image patch has been JPEG-compressed twice with different block alignments. Such phenomenon in JPEG image forgeries is called the shifted double JPEG (SDJPEG) compression effect. Detection of SDJPEG-compressed patches could help in detecting and locating the tampered region. However, the current SDJPEG detection methods do not provide satisfactory results especially when the tampered region is small. In this paper, we propose a new SDJPEG detection method based on an adaptive discrete cosine transform (DCT) coefficient model. DCT coefficient distributions for SDJPEG and non-SDJPEG patches have been analyzed and a discriminative feature has been proposed to perform the two-class classification. An adaptive approach is employed to select the most discriminative DCT modes for SDJPEG detection. The experimental results show that the proposed approach can achieve much better results compared with some existing approaches in SDJPEG patch detection especially when the patch size is small.

  9. Efficient two-dimensional compressive sensing in MIMO radar

    NASA Astrophysics Data System (ADS)

    Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad

    2017-12-01

    Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.

  10. An effective and efficient compression algorithm for ECG signals with irregular periods.

    PubMed

    Chou, Hsiao-Hsuan; Chen, Ying-Jui; Shiau, Yu-Chien; Kuo, Te-Son

    2006-06-01

    This paper presents an effective and efficient preprocessing algorithm for two-dimensional (2-D) electrocardiogram (ECG) compression to better compress irregular ECG signals by exploiting their inter- and intra-beat correlations. To better reveal the correlation structure, we first convert the ECG signal into a proper 2-D representation, or image. This involves a few steps including QRS detection and alignment, period sorting, and length equalization. The resulting 2-D ECG representation is then ready to be compressed by an appropriate image compression algorithm. We choose the state-of-the-art JPEG2000 for its high efficiency and flexibility. In this way, the proposed algorithm is shown to outperform some existing arts in the literature by simultaneously achieving high compression ratio (CR), low percent root mean squared difference (PRD), low maximum error (MaxErr), and low standard derivation of errors (StdErr). In particular, because the proposed period sorting method rearranges the detected heartbeats into a smoother image that is easier to compress, this algorithm is insensitive to irregular ECG periods. Thus either the irregular ECG signals or the QRS false-detection cases can be better compressed. This is a significant improvement over existing 2-D ECG compression methods. Moreover, this algorithm is not tied exclusively to JPEG2000. It can also be combined with other 2-D preprocessing methods or appropriate codecs to enhance the compression performance in irregular ECG cases.

  11. A weakly-compressible Cartesian grid approach for hydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Bigay, P.; Oger, G.; Guilcher, P.-M.; Le Touzé, D.

    2017-11-01

    The present article aims at proposing an original strategy to solve hydrodynamic flows. In introduction, the motivations for this strategy are developed. It aims at modeling viscous and turbulent flows including complex moving geometries, while avoiding meshing constraints. The proposed approach relies on a weakly-compressible formulation of the Navier-Stokes equations. Unlike most hydrodynamic CFD (Computational Fluid Dynamics) solvers usually based on implicit incompressible formulations, a fully-explicit temporal scheme is used. A purely Cartesian grid is adopted for numerical accuracy and algorithmic simplicity purposes. This characteristic allows an easy use of Adaptive Mesh Refinement (AMR) methods embedded within a massively parallel framework. Geometries are automatically immersed within the Cartesian grid with an AMR compatible treatment. The method proposed uses an Immersed Boundary Method (IBM) adapted to the weakly-compressible formalism and imposed smoothly through a regularization function, which stands as another originality of this work. All these features have been implemented within an in-house solver based on this WCCH (Weakly-Compressible Cartesian Hydrodynamic) method which meets the above requirements whilst allowing the use of high-order (> 3) spatial schemes rarely used in existing hydrodynamic solvers. The details of this WCCH method are presented and validated in this article.

  12. An image registration-based technique for noninvasive vascular elastography

    NASA Astrophysics Data System (ADS)

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-02-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in the regions far from the center of the vessel, causing a high error of displacement measurement. On the other hand, increasing the compression leads to a relatively large displacement in the regions near the center, which reduces the performance of the cross correlation-based methods. In this study, a non-rigid image registration-based technique is proposed to measure the tissue displacement for a relatively large compression. The results show that the error of the displacement measurement obtained by the proposed method is reduced by increasing the amount of compression while the error of the cross correlationbased method rises for a relatively large compression. We also used the synthetic aperture imaging method, benefiting the directivity diagram, to improve the image quality, especially in the superficial regions. The best relative root-mean-square error (RMSE) of the proposed method and the adaptive cross correlation method were 4.5% and 6%, respectively. Consequently, the proposed algorithm outperforms the conventional method and reduces the relative RMSE by 25%.

  13. Compressive Classification for TEM-EELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Weituo; Stevens, Andrew; Yang, Hao

    Electron energy loss spectroscopy (EELS) is typically conducted in STEM mode with a spectrometer, or in TEM mode with energy selction. These methods produce a 3D data set (x, y, energy). Some compressive sensing [1,2] and inpainting [3,4,5] approaches have been proposed for recovering a full set of spectra from compressed measurements. In many cases the final form of the spectral data is an elemental map (an image with channels corresponding to elements). This means that most of the collected data is unused or summarized. We propose a method to directly recover the elemental map with reduced dose and acquisitionmore » time. We have designed a new computational TEM sensor for compressive classification [6,7] of energy loss spectra called TEM-EELS.« less

  14. Adaptive compressed sensing of remote-sensing imaging based on the sparsity prediction

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Li, Xilong; Chong, Xin

    2017-10-01

    The conventional compressive sensing works based on the non-adaptive linear projections, and the parameter of its measurement times is usually set empirically. As a result, the quality of image reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was given. Then an estimation method for the sparsity of image was proposed based on the two dimensional discrete cosine transform (2D DCT). With an energy threshold given beforehand, the DCT coefficients were processed with both energy normalization and sorting in descending order, and the sparsity of the image can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of image effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparse degree estimated with the energy threshold provided, the proposed method can ensure the quality of image reconstruction.

  15. Adaptive compressed sensing of multi-view videos based on the sparsity estimation

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Li, Xilong; Chong, Xin

    2017-11-01

    The conventional compressive sensing for videos based on the non-adaptive linear projections, and the measurement times is usually set empirically. As a result, the quality of videos reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was described. Then an estimation method for the sparsity of multi-view videos was proposed based on the two dimensional discrete wavelet transform (2D DWT). With an energy threshold given beforehand, the DWT coefficients were processed with both energy normalization and sorting by descending order, and the sparsity of the multi-view video can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of video frame effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparsity estimated with the energy threshold provided, the proposed method can ensure the reconstruction quality of multi-view videos.

  16. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  17. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  18. A simple and efficient algorithm operating with linear time for MCEEG data compression.

    PubMed

    Titus, Geevarghese; Sudhakar, M S

    2017-09-01

    Popularisation of electroencephalograph (EEG) signals in diversified fields have increased the need for devices capable of operating at lower power and storage requirements. This has led to a great deal of research in data compression, that can address (a) low latency in the coding of the signal, (b) reduced hardware and software dependencies, (c) quantify the system anomalies, and (d) effectively reconstruct the compressed signal. This paper proposes a computationally simple and novel coding scheme named spatial pseudo codec (SPC), to achieve lossy to near lossless compression of multichannel EEG (MCEEG). In the proposed system, MCEEG signals are initially normalized, followed by two parallel processes: one operating on integer part and the other, on fractional part of the normalized data. The redundancies in integer part are exploited using spatial domain encoder, and the fractional part is coded as pseudo integers. The proposed method has been tested on a wide range of databases having variable sampling rates and resolutions. Results indicate that the algorithm has a good recovery performance with an average percentage root mean square deviation (PRD) of 2.72 for an average compression ratio (CR) of 3.16. Furthermore, the algorithm has a complexity of only O(n) with an average encoding and decoding time per sample of 0.3 ms and 0.04 ms respectively. The performance of the algorithm is comparable with recent methods like fast discrete cosine transform (fDCT) and tensor decomposition methods. The results validated the feasibility of the proposed compression scheme for practical MCEEG recording, archiving and brain computer interfacing systems.

  19. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging.

    PubMed

    Li, Guobin; Hennig, Jürgen; Raithel, Esther; Büchert, Martin; Paul, Dominik; Korvink, Jan G; Zaitsev, Maxim

    2015-10-01

    In most half-Fourier imaging methods, explicit phase replacement is used. In combination with parallel imaging, or compressed sensing, half-Fourier reconstruction is usually performed in a separate step. The purpose of this paper is to report that integration of half-Fourier reconstruction into iterative reconstruction minimizes reconstruction errors. The L1-norm phase constraint for half-Fourier imaging proposed in this work is compared with the L2-norm variant of the same algorithm, with several typical half-Fourier reconstruction methods. Half-Fourier imaging with the proposed phase constraint can be seamlessly combined with parallel imaging and compressed sensing to achieve high acceleration factors. In simulations and in in-vivo experiments half-Fourier imaging with the proposed L1-norm phase constraint enables superior performance both reconstruction of image details and with regard to robustness against phase estimation errors. The performance and feasibility of half-Fourier imaging with the proposed L1-norm phase constraint is reported. Its seamless combination with parallel imaging and compressed sensing enables use of greater acceleration in 3D MR imaging.

  20. Novel Data Reduction Based on Statistical Similarity

    DOE PAGES

    Lee, Dongeun; Sim, Alex; Choi, Jaesik; ...

    2016-07-18

    Applications such as scientific simulations and power grid monitoring are generating so much data quickly that compression is essential to reduce storage requirement or transmission capacity. To achieve better compression, one is often willing to discard some repeated information. These lossy compression methods are primarily designed to minimize the Euclidean distance between the original data and the compressed data. But this measure of distance severely limits either reconstruction quality or compression performance. In this paper, we propose a new class of compression method by redefining the distance measure with a statistical concept known as exchangeability. This approach reduces the storagemore » requirement and captures essential features, while reducing the storage requirement. In this paper, we report our design and implementation of such a compression method named IDEALEM. To demonstrate its effectiveness, we apply it on a set of power grid monitoring data, and show that it can reduce the volume of data much more than the best known compression method while maintaining the quality of the compressed data. Finally, in these tests, IDEALEM captures extraordinary events in the data, while its compression ratios can far exceed 100.« less

  1. High-quality compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun

    2018-04-01

    We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.

  2. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    PubMed

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Low Complexity Compression and Speed Enhancement for Optical Scanning Holography

    PubMed Central

    Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Kim, T.; Kim, Y. S.

    2016-01-01

    In this paper we report a low complexity compression method that is suitable for compact optical scanning holography (OSH) systems with different optical settings. Our proposed method can be divided into 2 major parts. First, an automatic decision maker is applied to select the rows of holographic pixels to be scanned. This process enhances the speed of acquiring a hologram, and also lowers the data rate. Second, each row of down-sampled pixels is converted into a one-bit representation with delta modulation (DM). Existing DM-based hologram compression techniques suffers from the disadvantage that a core parameter, commonly known as the step size, has to be determined in advance. However, the correct value of the step size for compressing each row of hologram is dependent on the dynamic range of the pixels, which could deviate significantly with the object scene, as well as OSH systems with different opical settings. We have overcome this problem by incorporating a dynamic step-size adjustment scheme. The proposed method is applied in the compression of holograms that are acquired with 2 different OSH systems, demonstrating a compression ratio of over two orders of magnitude, while preserving favorable fidelity on the reconstructed images. PMID:27708410

  4. Nonlinear compression of temporal solitons in an optical waveguide via inverse engineering

    NASA Astrophysics Data System (ADS)

    Paul, Koushik; Sarma, Amarendra K.

    2018-03-01

    We propose a novel method based on the so-called shortcut-to-adiabatic passage techniques to achieve fast compression of temporal solitons in a nonlinear waveguide. We demonstrate that soliton compression could be achieved, in principle, at an arbitrarily small distance by inverse-engineering the pulse width and the nonlinearity of the medium. The proposed scheme could possibly be exploited for various short-distance communication protocols and may be even in nonlinear guided wave-optics devices and generation of ultrashort soliton pulses.

  5. Optimal color coding for compression of true color images

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-11-01

    In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.

  6. Image splitting and remapping method for radiological image compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  7. Digital mammography, cancer screening: Factors important for image compression

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  8. DNABIT Compress – Genome compression algorithm

    PubMed Central

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  9. High-performance compression and double cryptography based on compressive ghost imaging with the fast Fourier transform

    NASA Astrophysics Data System (ADS)

    Leihong, Zhang; Zilan, Pan; Luying, Wu; Xiuhua, Ma

    2016-11-01

    To solve the problem that large images can hardly be retrieved for stringent hardware restrictions and the security level is low, a method based on compressive ghost imaging (CGI) with Fast Fourier Transform (FFT) is proposed, named FFT-CGI. Initially, the information is encrypted by the sender with FFT, and the FFT-coded image is encrypted by the system of CGI with a secret key. Then the receiver decrypts the image with the aid of compressive sensing (CS) and FFT. Simulation results are given to verify the feasibility, security, and compression of the proposed encryption scheme. The experiment suggests the method can improve the quality of large images compared with conventional ghost imaging and achieve the imaging for large-sized images, further the amount of data transmitted largely reduced because of the combination of compressive sensing and FFT, and improve the security level of ghost images through ciphertext-only attack (COA), chosen-plaintext attack (CPA), and noise attack. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.

  10. Compression and Transmission of RF Signals for Telediagnosis

    NASA Astrophysics Data System (ADS)

    Seko, Toshihiro; Doi, Motonori; Oshiro, Osamu; Chihara, Kunihiro

    2000-05-01

    Health care is a critical issue nowadays. Much emphasis is given to quality care for all people. Telediagnosis has attracted public attention. We propose a new method of ultrasound image transmission for telediagnosis. In conventional methods, video image signals are transmitted. In our method, the RF signals which are acquired by an ultrasound probe, are transmitted. The RF signals can be transformed to color Doppler images or high-resolution images by a receiver. Because a stored form is adopted, the proposed system can be realized with existent technology such as hyper text transfer protocol (HTTP) and file transfer protocol (FTP). In this paper, we describe two lossless compression methods which specialize in the transmission of RF signals. One of the methods uses the characteristics of the RF signal. In the other method, the amount of the data is reduced. Measurements were performed in water targeting an iron block and triangular Styrofoam. Additionally, abdominal fat measurement was performed. Our method achieved a compression rate of 13% with 8 bit data.

  11. Compressed domain ECG biometric with two-lead features

    NASA Astrophysics Data System (ADS)

    Lee, Wan-Jou; Chang, Wen-Whei

    2016-07-01

    This study presents a new method to combine ECG biometrics with data compression within a common JPEG2000 framework. We target the two-lead ECG configuration that is routinely used in long-term heart monitoring. Incorporation of compressed-domain biometric techniques enables faster person identification as it by-passes the full decompression. Experiments on public ECG databases demonstrate the validity of the proposed method for biometric identification with high accuracies on both healthy and diseased subjects.

  12. Detecting double compression of audio signal

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Shi, Yun Q.; Huang, Jiwu

    2010-01-01

    MP3 is the most popular audio format nowadays in our daily life, for example music downloaded from the Internet and file saved in the digital recorder are often in MP3 format. However, low bitrate MP3s are often transcoded to high bitrate since high bitrate ones are of high commercial value. Also audio recording in digital recorder can be doctored easily by pervasive audio editing software. This paper presents two methods for the detection of double MP3 compression. The methods are essential for finding out fake-quality MP3 and audio forensics. The proposed methods use support vector machine classifiers with feature vectors formed by the distributions of the first digits of the quantized MDCT (modified discrete cosine transform) coefficients. Extensive experiments demonstrate the effectiveness of the proposed methods. To the best of our knowledge, this piece of work is the first one to detect double compression of audio signal.

  13. Use of the shape memory effect of a titanium nickelide spring in a suturing device for the formation of compression esophageal anastomoses.

    PubMed

    Robak, A N

    2008-11-01

    A new method for the formation of a compression esophagointestinal anastomosis is proposed. The compression force in the new device for creation of compression circular anastomoses is created by means of a titanium nickelide spring with a "shape memory" effect. Experimental study showed good prospects of the new device and the advantages of the anastomosis compression suture formed by means of this device in comparison with manual ligature suturing.

  14. Wavelet-based Encoding Scheme for Controlling Size of Compressed ECG Segments in Telecardiology Systems.

    PubMed

    Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben

    2017-09-12

    One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.

  15. Compressed learning and its applications to subcellular localization.

    PubMed

    Zheng, Zhong-Long; Guo, Li; Jia, Jiong; Xie, Chen-Mao; Zeng, Wen-Cai; Yang, Jie

    2011-09-01

    One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.

  16. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks

    PubMed Central

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-01-01

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It’s theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods. PMID:27669250

  17. An Online Dictionary Learning-Based Compressive Data Gathering Algorithm in Wireless Sensor Networks.

    PubMed

    Wang, Donghao; Wan, Jiangwen; Chen, Junying; Zhang, Qiang

    2016-09-22

    To adapt to sense signals of enormous diversities and dynamics, and to decrease the reconstruction errors caused by ambient noise, a novel online dictionary learning method-based compressive data gathering (ODL-CDG) algorithm is proposed. The proposed dictionary is learned from a two-stage iterative procedure, alternately changing between a sparse coding step and a dictionary update step. The self-coherence of the learned dictionary is introduced as a penalty term during the dictionary update procedure. The dictionary is also constrained with sparse structure. It's theoretically demonstrated that the sensing matrix satisfies the restricted isometry property (RIP) with high probability. In addition, the lower bound of necessary number of measurements for compressive sensing (CS) reconstruction is given. Simulation results show that the proposed ODL-CDG algorithm can enhance the recovery accuracy in the presence of noise, and reduce the energy consumption in comparison with other dictionary based data gathering methods.

  18. A set of parallel, implicit methods for a reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids

    DOE PAGES

    Xia, Yidong; Luo, Hong; Frisbey, Megan; ...

    2014-07-01

    A set of implicit methods are proposed for a third-order hierarchical WENO reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. An attractive feature in these methods are the application of the Jacobian matrix based on the P1 element approximation, resulting in a huge reduction of memory requirement compared with DG (P2). Also, three approaches -- analytical derivation, divided differencing, and automatic differentiation (AD) are presented to construct the Jacobian matrix respectively, where the AD approach shows the best robustness. A variety of compressible flow problems are computed to demonstrate the fast convergence property of the implemented flowmore » solver. Furthermore, an SPMD (single program, multiple data) programming paradigm based on MPI is proposed to achieve parallelism. The numerical results on complex geometries indicate that this low-storage implicit method can provide a viable and attractive DG solution for complicated flows of practical importance.« less

  19. Compression of CCD raw images for digital still cameras

    NASA Astrophysics Data System (ADS)

    Sriram, Parthasarathy; Sudharsanan, Subramania

    2005-03-01

    Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.

  20. Compressive sensing method for recognizing cat-eye effect targets.

    PubMed

    Li, Li; Li, Hui; Dang, Ersheng; Liu, Bo

    2013-10-01

    This paper proposes a cat-eye effect target recognition method with compressive sensing (CS) and presents a recognition method (sample processing before reconstruction based on compressed sensing, or SPCS) for image processing. In this method, the linear projections of original image sequences are applied to remove dynamic background distractions and extract cat-eye effect targets. Furthermore, the corresponding imaging mechanism for acquiring active and passive image sequences is put forward. This method uses fewer images to recognize cat-eye effect targets, reduces data storage, and translates the traditional target identification, based on original image processing, into measurement vectors processing. The experimental results show that the SPCS method is feasible and superior to the shape-frequency dual criteria method.

  1. Compressed Symmetric Nested Arrays and Their Application for Direction-of-Arrival Estimation of Near-Field Sources.

    PubMed

    Li, Shuang; Xie, Dongfeng

    2016-11-17

    In this paper, a new sensor array geometry, called a compressed symmetric nested array (CSNA), is designed to increase the degrees of freedom in the near field. As its name suggests, a CSNA is constructed by getting rid of some elements from two identical nested arrays. The closed form expressions are also presented for the sensor locations and the largest degrees of freedom obtainable as a function of the total number of sensors. Furthermore, a novel DOA estimation method is proposed by utilizing the CSNA in the near field. By employing this new array geometry, our method can identify more sources than sensors. Compared with other existing methods, the proposed method achieves higher resolution because of increased array aperture. Simulation results are demonstrated to verify the effectiveness of the proposed method.

  2. Adaptive temporal compressive sensing for video with motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi

    2018-04-01

    In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.

  3. A Discriminative Sentence Compression Method as Combinatorial Optimization Problem

    NASA Astrophysics Data System (ADS)

    Hirao, Tsutomu; Suzuki, Jun; Isozaki, Hideki

    In the study of automatic summarization, the main research topic was `important sentence extraction' but nowadays `sentence compression' is a hot research topic. Conventional sentence compression methods usually transform a given sentence into a parse tree or a dependency tree, and modify them to get a shorter sentence. However, this method is sometimes too rigid. In this paper, we regard sentence compression as an combinatorial optimization problem that extracts an optimal subsequence of words. Hori et al. also proposed a similar method, but they used only a small number of features and their weights were tuned by hand. We introduce a large number of features such as part-of-speech bigrams and word position in the sentence. Furthermore, we train the system by discriminative learning. According to our experiments, our method obtained better score than other methods with statistical significance.

  4. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  5. Performance evaluation of the multiple-image optical compression and encryption method by increasing the number of target images

    NASA Astrophysics Data System (ADS)

    Aldossari, M.; Alfalou, A.; Brosseau, C.

    2017-08-01

    In an earlier study [Opt. Express 22, 22349-22368 (2014)], a compression and encryption method that simultaneous compress and encrypt closely resembling images was proposed and validated. This multiple-image optical compression and encryption (MIOCE) method is based on a special fusion of the different target images spectra in the spectral domain. Now for the purpose of assessing the capacity of the MIOCE method, we would like to evaluate and determine the influence of the number of target images. This analysis allows us to evaluate the performance limitation of this method. To achieve this goal, we use a criterion based on the root-mean-square (RMS) [Opt. Lett. 35, 1914-1916 (2010)] and compression ratio to determine the spectral plane area. Then, the different spectral areas are merged in a single spectrum plane. By choosing specific areas, we can compress together 38 images instead of 26 using the classical MIOCE method. The quality of the reconstructed image is evaluated by making use of the mean-square-error criterion (MSE).

  6. Artificial acoustic stiffness reduction in fully compressible, direct numerical simulation of combustion

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Trouvé, Arnaud

    2004-09-01

    A pseudo-compressibility method is proposed to modify the acoustic time step restriction found in fully compressible, explicit flow solvers. The method manipulates terms in the governing equations of order Ma2, where Ma is a characteristic flow Mach number. A decrease in the speed of acoustic waves is obtained by adding an extra term in the balance equation for total energy. This term is proportional to flow dilatation and uses a decomposition of the dilatational field into an acoustic component and a component due to heat transfer. The present method is a variation of the pressure gradient scaling (PGS) method proposed in Ramshaw et al (1985 Pressure gradient scaling method for fluid flow with nearly uniform pressure J. Comput. Phys. 58 361-76). It achieves gains in computational efficiencies similar to PGS: at the cost of a slightly more involved right-hand-side computation, the numerical time step increases by a full order of magnitude. It also features the added benefit of preserving the hydrodynamic pressure field. The original and modified PGS methods are implemented into a parallel direct numerical simulation solver developed for applications to turbulent reacting flows with detailed chemical kinetics. The performance of the pseudo-compressibility methods is illustrated in a series of test problems ranging from isothermal sound propagation to laminar premixed flame problems.

  7. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  8. Image Quality Assessment of JPEG Compressed Mars Science Laboratory Mastcam Images using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Kerner, H. R.; Bell, J. F., III; Ben Amor, H.

    2017-12-01

    The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.

  9. Three-dimensional numerical simulation for plastic injection-compression molding

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  10. Pornographic image recognition and filtering using incremental learning in compressed domain

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Wang, Chao; Zhuo, Li; Geng, Wenhao

    2015-11-01

    With the rapid development and popularity of the network, the openness, anonymity, and interactivity of networks have led to the spread and proliferation of pornographic images on the Internet, which have done great harm to adolescents' physical and mental health. With the establishment of image compression standards, pornographic images are mainly stored with compressed formats. Therefore, how to efficiently filter pornographic images is one of the challenging issues for information security. A pornographic image recognition and filtering method in the compressed domain is proposed by using incremental learning, which includes the following steps: (1) low-resolution (LR) images are first reconstructed from the compressed stream of pornographic images, (2) visual words are created from the LR image to represent the pornographic image, and (3) incremental learning is adopted to continuously adjust the classification rules to recognize the new pornographic image samples after the covering algorithm is utilized to train and recognize the visual words in order to build the initial classification model of pornographic images. The experimental results show that the proposed pornographic image recognition method using incremental learning has a higher recognition rate as well as costing less recognition time in the compressed domain.

  11. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  12. Symmetric and asymmetric hybrid cryptosystem based on compressive sensing and computer generated holography

    NASA Astrophysics Data System (ADS)

    Ma, Lihong; Jin, Weimin

    2018-01-01

    A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.

  13. Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation.

    PubMed

    Mohajerani, Pouyan; Ntziachristos, Vasilis

    2013-07-01

    The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.

  14. Design of Restoration Method Based on Compressed Sensing and TwIST Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Piao, Yan

    2018-04-01

    In order to improve the subjective and objective quality of degraded images at low sampling rates effectively,save storage space and reduce computational complexity at the same time, this paper proposes a joint restoration algorithm of compressed sensing and two step iterative threshold shrinkage (TwIST). The algorithm applies the TwIST algorithm which used in image restoration to the compressed sensing theory. Then, a small amount of sparse high-frequency information is obtained in frequency domain. The TwIST algorithm based on compressed sensing theory is used to accurately reconstruct the high frequency image. The experimental results show that the proposed algorithm achieves better subjective visual effects and objective quality of degraded images while accurately restoring degraded images.

  15. Fluffy dust forms icy planetesimals by static compression

    NASA Astrophysics Data System (ADS)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  16. A Generalized Method for the Comparable and Rigorous Calculation of the Polytropic Efficiencies of Turbocompressors

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Panagiotis

    2018-03-01

    The calculation of polytropic efficiencies is a very important task, especially during the development of new compression units, like compressor impellers, stages and stage groups. Such calculations are also crucial for the determination of the performance of a whole compressor. As processors and computational capacities have substantially been improved in the last years, the need for a new, rigorous, robust, accurate and at the same time standardized method merged, regarding the computation of the polytropic efficiencies, especially based on thermodynamics of real gases. The proposed method is based on the rigorous definition of the polytropic efficiency. The input consists of pressure and temperature values at the end points of the compression path (suction and discharge), for a given working fluid. The average relative error for the studied cases was 0.536 %. Thus, this high-accuracy method is proposed for efficiency calculations related with turbocompressors and their compression units, especially when they are operating at high power levels, for example in jet engines and high-power plants.

  17. Compressive Spectral Method for the Simulation of the Nonlinear Gravity Waves

    PubMed Central

    Bayındır, Cihan

    2016-01-01

    In this paper an approach for decreasing the computational effort required for the spectral simulations of the fully nonlinear ocean waves is introduced. The proposed approach utilizes the compressive sampling algorithm and depends on the idea of using a smaller number of spectral components compared to the classical spectral method. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique, it is shown that the ocean wave field can be reconstructed with a significantly better efficiency compared to the classical spectral method. For the sparse ocean wave model in the frequency domain the fully nonlinear ocean waves with Jonswap spectrum is considered. By implementation of a high-order spectral method it is shown that the proposed methodology can simulate the linear and the fully nonlinear ocean waves with negligible difference in the accuracy and with a great efficiency by reducing the computation time significantly especially for large time evolutions. PMID:26911357

  18. A channel differential EZW coding scheme for EEG data compression.

    PubMed

    Dehkordi, Vahid R; Daou, Hoda; Labeau, Fabrice

    2011-11-01

    In this paper, a method is proposed to compress multichannel electroencephalographic (EEG) signals in a scalable fashion. Correlation between EEG channels is exploited through clustering using a k-means method. Representative channels for each of the clusters are encoded individually while other channels are encoded differentially, i.e., with respect to their respective cluster representatives. The compression is performed using the embedded zero-tree wavelet encoding adapted to 1-D signals. Simulations show that the scalable features of the scheme lead to a flexible quality/rate tradeoff, without requiring detailed EEG signal modeling.

  19. Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials.

    PubMed

    Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob

    2013-11-01

    Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.

  20. Adaptive multifocus image fusion using block compressed sensing with smoothed projected Landweber integration in the wavelet domain.

    PubMed

    V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S

    2016-12-01

    The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.

  1. A real-time ECG data compression and transmission algorithm for an e-health device.

    PubMed

    Lee, SangJoon; Kim, Jungkuk; Lee, Myoungho

    2011-09-01

    This paper introduces a real-time data compression and transmission algorithm between e-health terminals for a periodic ECGsignal. The proposed algorithm consists of five compression procedures and four reconstruction procedures. In order to evaluate the performance of the proposed algorithm, the algorithm was applied to all 48 recordings of MIT-BIH arrhythmia database, and the compress ratio (CR), percent root mean square difference (PRD), percent root mean square difference normalized (PRDN), rms, SNR, and quality score (QS) values were obtained. The result showed that the CR was 27.9:1 and the PRD was 2.93 on average for all 48 data instances with a 15% window size. In addition, the performance of the algorithm was compared to those of similar algorithms introduced recently by others. It was found that the proposed algorithm showed clearly superior performance in all 48 data instances at a compression ratio lower than 15:1, whereas it showed similar or slightly inferior PRD performance for a data compression ratio higher than 20:1. In light of the fact that the similarity with the original data becomes meaningless when the PRD is higher than 2, the proposed algorithm shows significantly better performance compared to the performance levels of other algorithms. Moreover, because the algorithm can compress and transmit data in real time, it can be served as an optimal biosignal data transmission method for limited bandwidth communication between e-health devices.

  2. An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).

    PubMed

    Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling

    2018-04-17

    Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.

  3. A modified JPEG-LS lossless compression method for remote sensing images

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua

    2015-12-01

    As many variable length source coders, JPEG-LS is highly vulnerable to channel errors which occur in the transmission of remote sensing images. The error diffusion is one of the important factors which infect its robustness. The common method of improving the error resilience of JPEG-LS is dividing the image into many strips or blocks, and then coding each of them independently, but this method reduces the coding efficiency. In this paper, a block based JPEP-LS lossless compression method with an adaptive parameter is proposed. In the modified scheme, the threshold parameter RESET is adapted to an image and the compression efficiency is close to that of the conventional JPEG-LS.

  4. An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra

    2011-06-01

    The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.

  5. Microlabels For Auto Parts

    NASA Technical Reports Server (NTRS)

    Ash, John P.

    1993-01-01

    Proposed method of unique labeling and identification of automotive parts greatly simplifies recall campaigns and reduces effort and expense associated. Compressed symbols fully characterize each part by type and manufacturing history. Manufacturers notify only those owners whose cars need repairs or modifications. Similar compressed symbology developed for possible use on spacecraft.

  6. Inverted File Compression through Document Identifier Reassignment.

    ERIC Educational Resources Information Center

    Shieh, Wann-Yun; Chen, Tien-Fu; Shann, Jean Jyh-Jiun; Chung, Chung-Ping

    2003-01-01

    Discusses the use of inverted files in information retrieval systems and proposes a document identifier reassignment method to reduce the average gap values in an inverted file. Highlights include the d-gap technique; document similarity; heuristic algorithms; file compression; and performance evaluation from a simulation environment. (LRW)

  7. Robust QRS detection for HRV estimation from compressively sensed ECG measurements for remote health-monitoring systems.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2018-03-15

    To present a new compressive sensing (CS)-based method for the acquisition of ECG signals and for robust estimation of heart-rate variability (HRV) parameters from compressively sensed measurements with high compression ratio. CS is used in the biosensor to compress the ECG signal. Estimation of the locations of QRS segments is carried out by applying two algorithms on the compressed measurements. The first algorithm reconstructs the ECG signal by enforcing a block-sparse structure on the first-order difference of the signal, so the transient QRS segments are significantly emphasized on the first-order difference of the signal. Multiple block-divisions of the signals are carried out with various block lengths, and multiple reconstructed signals are combined to enhance the robustness of the localization of the QRS segments. The second algorithm removes errors in the locations of QRS segments by applying low-pass filtering and morphological operations. The proposed CS-based method is found to be effective for the reconstruction of ECG signals by enforcing transient QRS structures on the first-order difference of the signal. It is demonstrated to be robust not only to high compression ratio but also to various artefacts present in ECG signals acquired by using on-body wireless sensors. HRV parameters computed by using the QRS locations estimated from the signals reconstructed with a compression ratio as high as 90% are comparable with that computed by using QRS locations estimated by using the Pan-Tompkins algorithm. The proposed method is useful for the realization of long-term HRV monitoring systems by using CS-based low-power wireless on-body biosensors.

  8. Single image non-uniformity correction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Jian, Xian-zhong; Lu, Rui-zhi; Guo, Qiang; Wang, Gui-pu

    2016-05-01

    A non-uniformity correction (NUC) method for an infrared focal plane array imaging system was proposed. The algorithm, based on compressive sensing (CS) of single image, overcame the disadvantages of "ghost artifacts" and bulk calculating costs in traditional NUC algorithms. A point-sampling matrix was designed to validate the measurements of CS on the time domain. The measurements were corrected using the midway infrared equalization algorithm, and the missing pixels were solved with the regularized orthogonal matching pursuit algorithm. Experimental results showed that the proposed method can reconstruct the entire image with only 25% pixels. A small difference was found between the correction results using 100% pixels and the reconstruction results using 40% pixels. Evaluation of the proposed method on the basis of the root-mean-square error, peak signal-to-noise ratio, and roughness index (ρ) proved the method to be robust and highly applicable.

  9. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wu, S. P.

    2017-04-01

    Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.

  10. An ROI multi-resolution compression method for 3D-HEVC

    NASA Astrophysics Data System (ADS)

    Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan

    2017-09-01

    3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.

  11. A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT.

    PubMed

    Deepu, Chacko John; Heng, Chun-Huat; Lian, Yong

    2017-04-01

    This paper presents a novel data compression and transmission scheme for power reduction in Internet-of-Things (IoT) enabled wireless sensors. In the proposed scheme, data is compressed with both lossy and lossless techniques, so as to enable hybrid transmission mode, support adaptive data rate selection and save power in wireless transmission. Applying the method to electrocardiogram (ECG), the data is first compressed using a lossy compression technique with a high compression ratio (CR). The residual error between the original data and the decompressed lossy data is preserved using entropy coding, enabling a lossless restoration of the original data when required. Average CR of 2.1 × and 7.8 × were achieved for lossless and lossy compression respectively with MIT/BIH database. The power reduction is demonstrated using a Bluetooth transceiver and is found to be reduced to 18% for lossy and 53% for lossless transmission respectively. Options for hybrid transmission mode, adaptive rate selection and system level power reduction make the proposed scheme attractive for IoT wireless sensors in healthcare applications.

  12. Channel Estimation and Pilot Design for Massive MIMO Systems with Block-Structured Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Lv, ZhuoKai; Yang, Tiejun; Zhu, Chunhua

    2018-03-01

    Through utilizing the technology of compressive sensing (CS), the channel estimation methods can achieve the purpose of reducing pilots and improving spectrum efficiency. The channel estimation and pilot design scheme are explored during the correspondence under the help of block-structured CS in massive MIMO systems. The block coherence property of the aggregate system matrix can be minimized so that the pilot design scheme based on stochastic search is proposed. Moreover, the block sparsity adaptive matching pursuit (BSAMP) algorithm under the common sparsity model is proposed so that the channel estimation can be caught precisely. Simulation results are to be proved the proposed design algorithm with superimposed pilots design and the BSAMP algorithm can provide better channel estimation than existing methods.

  13. Entropy coders for image compression based on binary forward classification

    NASA Astrophysics Data System (ADS)

    Yoo, Hoon; Jeong, Jechang

    2000-12-01

    Entropy coders as a noiseless compression method are widely used as final step compression for images, and there have been many contributions to increase of entropy coder performance and to reduction of entropy coder complexity. In this paper, we propose some entropy coders based on the binary forward classification (BFC). The BFC requires overhead of classification but there is no change between the amount of input information and the total amount of classified output information, which we prove this property in this paper. And using the proved property, we propose entropy coders that are the BFC followed by Golomb-Rice coders (BFC+GR) and the BFC followed by arithmetic coders (BFC+A). The proposed entropy coders introduce negligible additional complexity due to the BFC. Simulation results also show better performance than other entropy coders that have similar complexity to the proposed coders.

  14. Adaptive efficient compression of genomes

    PubMed Central

    2012-01-01

    Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. However, memory requirements of the current algorithms are high and run times often are slow. In this paper, we propose an adaptive, parallel and highly efficient referential sequence compression method which allows fine-tuning of the trade-off between required memory and compression speed. When using 12 MB of memory, our method is for human genomes on-par with the best previous algorithms in terms of compression ratio (400:1) and compression speed. In contrast, it compresses a complete human genome in just 11 seconds when provided with 9 GB of main memory, which is almost three times faster than the best competitor while using less main memory. PMID:23146997

  15. High speed inviscid compressible flow by the finite element method

    NASA Technical Reports Server (NTRS)

    Zienkiewicz, O. C.; Loehner, R.; Morgan, K.

    1984-01-01

    The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.

  16. A stable penalty method for the compressible Navier-Stokes equations. 1: Open boundary conditions

    NASA Technical Reports Server (NTRS)

    Hesthaven, J. S.; Gottlieb, D.

    1994-01-01

    The purpose of this paper is to present asymptotically stable open boundary conditions for the numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment uses the conservation form of the Navier-Stokes equations and utilizes linearization and localization at the boundaries based on these variables. The proposed boundary conditions are applied through a penalty procedure, thus ensuring correct behavior of the scheme as the Reynolds number tends to infinity. The versatility of this method is demonstrated for the problem of a compressible flow past a circular cylinder.

  17. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.

    PubMed

    Li, Q; He, Y L; Wang, Y; Tao, W Q

    2007-11-01

    A coupled double-distribution-function lattice Boltzmann method is developed for the compressible Navier-Stokes equations. Different from existing thermal lattice Boltzmann methods, this method can recover the compressible Navier-Stokes equations with a flexible specific-heat ratio and Prandtl number. In the method, a density distribution function based on a multispeed lattice is used to recover the compressible continuity and momentum equations, while the compressible energy equation is recovered by an energy distribution function. The energy distribution function is then coupled to the density distribution function via the thermal equation of state. In order to obtain an adjustable specific-heat ratio, a constant related to the specific-heat ratio is introduced into the equilibrium energy distribution function. Two different coupled double-distribution-function lattice Boltzmann models are also proposed in the paper. Numerical simulations are performed for the Riemann problem, the double-Mach-reflection problem, and the Couette flow with a range of specific-heat ratios and Prandtl numbers. The numerical results are found to be in excellent agreement with analytical and/or other solutions.

  18. A new efficient method for color image compression based on visual attention mechanism

    NASA Astrophysics Data System (ADS)

    Shao, Xiaoguang; Gao, Kun; Lv, Lily; Ni, Guoqiang

    2010-11-01

    One of the key procedures in color image compression is to extract its region of interests (ROIs) and evaluate different compression ratios. A new non-uniform color image compression algorithm with high efficiency is proposed in this paper by using a biology-motivated selective attention model for the effective extraction of ROIs in natural images. When the ROIs have been extracted and labeled in the image, the subsequent work is to encode the ROIs and other regions with different compression ratios via popular JPEG algorithm. Furthermore, experiment results and quantitative and qualitative analysis in the paper show perfect performance when comparing with other traditional color image compression approaches.

  19. Binary image encryption in a joint transform correlator scheme by aid of run-length encoding and QR code

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong

    2018-07-01

    We propose a binary image encryption method in joint transform correlator (JTC) by aid of the run-length encoding (RLE) and Quick Response (QR) code, which enables lossless retrieval of the primary image. The binary image is encoded with RLE to obtain the highly compressed data, and then the compressed binary image is further scrambled using a chaos-based method. The compressed and scrambled binary image is then transformed into one QR code that will be finally encrypted in JTC. The proposed method successfully, for the first time to our best knowledge, encodes a binary image into a QR code with the identical size of it, and therefore may probe a new way for extending the application of QR code in optical security. Moreover, the preprocessing operations, including RLE, chaos scrambling and the QR code translation, append an additional security level on JTC. We present digital results that confirm our approach.

  20. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  1. Hyperspectral imagery super-resolution by compressive sensing inspired dictionary learning and spatial-spectral regularization.

    PubMed

    Huang, Wei; Xiao, Liang; Liu, Hongyi; Wei, Zhihui

    2015-01-19

    Due to the instrumental and imaging optics limitations, it is difficult to acquire high spatial resolution hyperspectral imagery (HSI). Super-resolution (SR) imagery aims at inferring high quality images of a given scene from degraded versions of the same scene. This paper proposes a novel hyperspectral imagery super-resolution (HSI-SR) method via dictionary learning and spatial-spectral regularization. The main contributions of this paper are twofold. First, inspired by the compressive sensing (CS) framework, for learning the high resolution dictionary, we encourage stronger sparsity on image patches and promote smaller coherence between the learned dictionary and sensing matrix. Thus, a sparsity and incoherence restricted dictionary learning method is proposed to achieve higher efficiency sparse representation. Second, a variational regularization model combing a spatial sparsity regularization term and a new local spectral similarity preserving term is proposed to integrate the spectral and spatial-contextual information of the HSI. Experimental results show that the proposed method can effectively recover spatial information and better preserve spectral information. The high spatial resolution HSI reconstructed by the proposed method outperforms reconstructed results by other well-known methods in terms of both objective measurements and visual evaluation.

  2. Encryption method based on pseudo random spatial light modulation for single-fibre data transmission

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Zyczkowski, Marek

    2017-11-01

    Optical cryptosystems can provide encryption and sometimes compression simultaneously. They are increasingly attractive for information securing especially for image encryption. Our studies shown that the optical cryptosystems can be used to encrypt optical data transmission. We propose and study a new method for securing fibre data communication. The paper presents a method for optical encryption of data transmitted with a single optical fibre. The encryption process relies on pseudo-random spatial light modulation, combination of two encryption keys and the Compressed Sensing framework. A linear combination of light pulses with pseudo-random patterns provides a required encryption performance. We propose an architecture to transmit the encrypted data through the optical fibre. The paper describes the method, presents the theoretical analysis, design of physical model and results of experiment.

  3. A hybrid data compression approach for online backup service

    NASA Astrophysics Data System (ADS)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  4. Robust High-Capacity Audio Watermarking Based on FFT Amplitude Modification

    NASA Astrophysics Data System (ADS)

    Fallahpour, Mehdi; Megías, David

    This paper proposes a novel robust audio watermarking algorithm to embed data and extract it in a bit-exact manner based on changing the magnitudes of the FFT spectrum. The key point is selecting a frequency band for embedding based on the comparison between the original and the MP3 compressed/decompressed signal and on a suitable scaling factor. The experimental results show that the method has a very high capacity (about 5kbps), without significant perceptual distortion (ODG about -0.25) and provides robustness against common audio signal processing such as added noise, filtering and MPEG compression (MP3). Furthermore, the proposed method has a larger capacity (number of embedded bits to number of host bits rate) than recent image data hiding methods.

  5. Pan-sharpening via compressed superresolution reconstruction and multidictionary learning

    NASA Astrophysics Data System (ADS)

    Shi, Cheng; Liu, Fang; Li, Lingling; Jiao, Licheng; Hao, Hongxia; Shang, Ronghua; Li, Yangyang

    2018-01-01

    In recent compressed sensing (CS)-based pan-sharpening algorithms, pan-sharpening performance is affected by two key problems. One is that there are always errors between the high-resolution panchromatic (HRP) image and the linear weighted high-resolution multispectral (HRM) image, resulting in spatial and spectral information lost. The other is that the dictionary construction process depends on the nontruth training samples. These problems have limited applications to CS-based pan-sharpening algorithm. To solve these two problems, we propose a pan-sharpening algorithm via compressed superresolution reconstruction and multidictionary learning. Through a two-stage implementation, compressed superresolution reconstruction model reduces the error effectively between the HRP and the linear weighted HRM images. Meanwhile, the multidictionary with ridgelet and curvelet is learned for both the two stages in the superresolution reconstruction process. Since ridgelet and curvelet can better capture the structure and directional characteristics, a better reconstruction result can be obtained. Experiments are done on the QuickBird and IKONOS satellites images. The results indicate that the proposed algorithm is competitive compared with the recent CS-based pan-sharpening methods and other well-known methods.

  6. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE PAGES

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    2018-03-20

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  7. Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics

    NASA Astrophysics Data System (ADS)

    Kohira, K.; Masuda, H.

    2017-09-01

    A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  8. Application of the SeDeM Diagram and a new mathematical equation in the design of direct compression tablet formulation.

    PubMed

    Suñé-Negre, Josep M; Pérez-Lozano, Pilar; Miñarro, Montserrat; Roig, Manel; Fuster, Roser; Hernández, Carmen; Ruhí, Ramon; García-Montoya, Encarna; Ticó, Josep R

    2008-08-01

    Application of the new SeDeM Method is proposed for the study of the galenic properties of excipients in terms of the applicability of direct-compression technology. Through experimental studies of the parameters of the SeDeM Method and their subsequent mathematical treatment and graphical expression (SeDeM Diagram), six different DC diluents were analysed to determine whether they were suitable for direct compression (DC). Based on the properties of these diluents, a mathematical equation was established to identify the best DC diluent and the optimum amount to be used when defining a suitable formula for direct compression, depending on the SeDeM properties of the active pharmaceutical ingredient (API) to be used. The results obtained confirm that the SeDeM Method is an appropriate system, effective tool for determining a viable formulation for tablets prepared by direct compression, and can thus be used as the basis for the relevant pharmaceutical development.

  9. Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.

    A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less

  10. Analysis of axial compressive loaded beam under random support excitations

    NASA Astrophysics Data System (ADS)

    Xiao, Wensheng; Wang, Fengde; Liu, Jian

    2017-12-01

    An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.

  11. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.

    PubMed

    Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub

    2017-01-01

    A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A contourlet transform based algorithm for real-time video encoding

    NASA Astrophysics Data System (ADS)

    Katsigiannis, Stamos; Papaioannou, Georgios; Maroulis, Dimitris

    2012-06-01

    In recent years, real-time video communication over the internet has been widely utilized for applications like video conferencing. Streaming live video over heterogeneous IP networks, including wireless networks, requires video coding algorithms that can support various levels of quality in order to adapt to the network end-to-end bandwidth and transmitter/receiver resources. In this work, a scalable video coding and compression algorithm based on the Contourlet Transform is proposed. The algorithm allows for multiple levels of detail, without re-encoding the video frames, by just dropping the encoded information referring to higher resolution than needed. Compression is achieved by means of lossy and lossless methods, as well as variable bit rate encoding schemes. Furthermore, due to the transformation utilized, it does not suffer from blocking artifacts that occur with many widely adopted compression algorithms. Another highly advantageous characteristic of the algorithm is the suppression of noise induced by low-quality sensors usually encountered in web-cameras, due to the manipulation of the transform coefficients at the compression stage. The proposed algorithm is designed to introduce minimal coding delay, thus achieving real-time performance. Performance is enhanced by utilizing the vast computational capabilities of modern GPUs, providing satisfactory encoding and decoding times at relatively low cost. These characteristics make this method suitable for applications like video-conferencing that demand real-time performance, along with the highest visual quality possible for each user. Through the presented performance and quality evaluation of the algorithm, experimental results show that the proposed algorithm achieves better or comparable visual quality relative to other compression and encoding methods tested, while maintaining a satisfactory compression ratio. Especially at low bitrates, it provides more human-eye friendly images compared to algorithms utilizing block-based coding, like the MPEG family, as it introduces fuzziness and blurring instead of artificial block artifacts.

  13. Efficient biprediction decision scheme for fast high efficiency video coding encoding

    NASA Astrophysics Data System (ADS)

    Park, Sang-hyo; Lee, Seung-ho; Jang, Euee S.; Jun, Dongsan; Kang, Jung-Won

    2016-11-01

    An efficient biprediction decision scheme of high efficiency video coding (HEVC) is proposed for fast-encoding applications. For low-delay video applications, bidirectional prediction can be used to increase compression performance efficiently with previous reference frames. However, at the same time, the computational complexity of the HEVC encoder is significantly increased due to the additional biprediction search. Although a some research has attempted to reduce this complexity, whether the prediction is strongly related to both motion complexity and prediction modes in a coding unit has not yet been investigated. A method that avoids most compression-inefficient search points is proposed so that the computational complexity of the motion estimation process can be dramatically decreased. To determine if biprediction is critical, the proposed method exploits the stochastic correlation of the context of prediction units (PUs): the direction of a PU and the accuracy of a motion vector. Through experimental results, the proposed method showed that the time complexity of biprediction can be reduced to 30% on average, outperforming existing methods in view of encoding time, number of function calls, and memory access.

  14. A block-based JPEG-LS compression technique with lossless region of interest

    NASA Astrophysics Data System (ADS)

    Deng, Lihua; Huang, Zhenghua; Yao, Shoukui

    2018-03-01

    JPEG-LS lossless compression algorithm is used in many specialized applications that emphasize on the attainment of high fidelity for its lower complexity and better compression ratios than the lossless JPEG standard. But it cannot prevent error diffusion because of the context dependence of the algorithm, and have low compression rate when compared to lossy compression. In this paper, we firstly divide the image into two parts: ROI regions and non-ROI regions. Then we adopt a block-based image compression technique to decrease the range of error diffusion. We provide JPEG-LS lossless compression for the image blocks which include the whole or part region of interest (ROI) and JPEG-LS near lossless compression for the image blocks which are included in the non-ROI (unimportant) regions. Finally, a set of experiments are designed to assess the effectiveness of the proposed compression method.

  15. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node

    PubMed Central

    Cai, Zhipeng; Zou, Fumin; Zhang, Xiangyu

    2018-01-01

    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption. PMID:29599945

  16. A Digital Compressed Sensing-Based Energy-Efficient Single-Spot Bluetooth ECG Node.

    PubMed

    Luo, Kan; Cai, Zhipeng; Du, Keqin; Zou, Fumin; Zhang, Xiangyu; Li, Jianqing

    2018-01-01

    Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing- (CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the node's specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences (PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-hungry wireless links, the energy consumption of proposed node is 6.53 mJ, and the energy consumption of radio decreases 77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total energy consumption.

  17. Application of grammar-based codes for lossless compression of digital mammograms

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Krishnan, Srithar; Ma, Ngok-Wah

    2006-01-01

    A newly developed grammar-based lossless source coding theory and its implementation was proposed in 1999 and 2000, respectively, by Yang and Kieffer. The code first transforms the original data sequence into an irreducible context-free grammar, which is then compressed using arithmetic coding. In the study of grammar-based coding for mammography applications, we encountered two issues: processing time and limited number of single-character grammar G variables. For the first issue, we discover a feature that can simplify the matching subsequence search in the irreducible grammar transform process. Using this discovery, an extended grammar code technique is proposed and the processing time of the grammar code can be significantly reduced. For the second issue, we propose to use double-character symbols to increase the number of grammar variables. Under the condition that all the G variables have the same probability of being used, our analysis shows that the double- and single-character approaches have the same compression rates. By using the methods proposed, we show that the grammar code can outperform three other schemes: Lempel-Ziv-Welch (LZW), arithmetic, and Huffman on compression ratio, and has similar error tolerance capabilities as LZW coding under similar circumstances.

  18. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  19. Automatic Summarization as a Combinatorial Optimization Problem

    NASA Astrophysics Data System (ADS)

    Hirao, Tsutomu; Suzuki, Jun; Isozaki, Hideki

    We derived the oracle summary with the highest ROUGE score that can be achieved by integrating sentence extraction with sentence compression from the reference abstract. The analysis results of the oracle revealed that summarization systems have to assign an appropriate compression rate for each sentence in the document. In accordance with this observation, this paper proposes a summarization method as a combinatorial optimization: selecting the set of sentences that maximize the sum of the sentence scores from the pool which consists of the sentences with various compression rates, subject to length constrains. The score of the sentence is defined by its compression rate, content words and positional information. The parameters for the compression rates and positional information are optimized by minimizing the loss between score of oracles and that of candidates. The results obtained from TSC-2 corpus showed that our method outperformed the previous systems with statistical significance.

  20. A test data compression scheme based on irrational numbers stored coding.

    PubMed

    Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan

    2014-01-01

    Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.

  1. High efficient optical remote sensing images acquisition for nano-satellite-framework

    NASA Astrophysics Data System (ADS)

    Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi

    2017-09-01

    It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.

  2. A PDF closure model for compressible turbulent chemically reacting flows

    NASA Technical Reports Server (NTRS)

    Kollmann, W.

    1992-01-01

    The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.

  3. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Nan, Suqin; Li, Hengxing; Bai, Yanfeng; Fu, Xiquan

    2018-04-01

    Detector noise has a significantly negative impact on ghost imaging at low light levels, especially for existing recovery algorithm. Based on the characteristics of the additive detector noise, a method named modified compressive sensing ghost imaging is proposed to reduce the background imposed by the randomly distributed detector noise at signal path. Experimental results show that, with an appropriate choice of threshold value, modified compressive sensing ghost imaging algorithm can dramatically enhance the contrast-to-noise ratio of the object reconstruction significantly compared with traditional ghost imaging and compressive sensing ghost imaging methods. The relationship between the contrast-to-noise ratio of the reconstruction image and the intensity ratio (namely, the average signal intensity to average noise intensity ratio) for the three reconstruction algorithms are also discussed. This noise suppression imaging technique will have great applications in remote-sensing and security areas.

  4. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery

    NASA Astrophysics Data System (ADS)

    Vishnukumar, S.; Wilscy, M.

    2017-12-01

    In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.

  5. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    NASA Astrophysics Data System (ADS)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  6. Wavelet-based watermarking and compression for ECG signals with verification evaluation.

    PubMed

    Tseng, Kuo-Kun; He, Xialong; Kung, Woon-Man; Chen, Shuo-Tsung; Liao, Minghong; Huang, Huang-Nan

    2014-02-21

    In the current open society and with the growth of human rights, people are more and more concerned about the privacy of their information and other important data. This study makes use of electrocardiography (ECG) data in order to protect individual information. An ECG signal can not only be used to analyze disease, but also to provide crucial biometric information for identification and authentication. In this study, we propose a new idea of integrating electrocardiogram watermarking and compression approach, which has never been researched before. ECG watermarking can ensure the confidentiality and reliability of a user's data while reducing the amount of data. In the evaluation, we apply the embedding capacity, bit error rate (BER), signal-to-noise ratio (SNR), compression ratio (CR), and compressed-signal to noise ratio (CNR) methods to assess the proposed algorithm. After comprehensive evaluation the final results show that our algorithm is robust and feasible.

  7. A new interferential multispectral image compression algorithm based on adaptive classification and curve-fitting

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke

    2008-08-01

    A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.

  8. Modeling fibrous biological tissues with a general invariant that excludes compressed fibers

    NASA Astrophysics Data System (ADS)

    Li, Kewei; Ogden, Ray W.; Holzapfel, Gerhard A.

    2018-01-01

    Dispersed collagen fibers in fibrous soft biological tissues have a significant effect on the overall mechanical behavior of the tissues. Constitutive modeling of the detailed structure obtained by using advanced imaging modalities has been investigated extensively in the last decade. In particular, our group has previously proposed a fiber dispersion model based on a generalized structure tensor. However, the fiber tension-compression switch described in that study is unable to exclude compressed fibers within a dispersion and the model requires modification so as to avoid some unphysical effects. In a recent paper we have proposed a method which avoids such problems, but in this present study we introduce an alternative approach by using a new general invariant that only depends on the fibers under tension so that compressed fibers within a dispersion do not contribute to the strain-energy function. We then provide expressions for the associated Cauchy stress and elasticity tensors in a decoupled form. We have also implemented the proposed model in a finite element analysis program and illustrated the implementation with three representative examples: simple tension and compression, simple shear, and unconfined compression on articular cartilage. We have obtained very good agreement with the analytical solutions that are available for the first two examples. The third example shows the efficacy of the fibrous tissue model in a larger scale simulation. For comparison we also provide results for the three examples with the compressed fibers included, and the results are completely different. If the distribution of collagen fibers is such that it is appropriate to exclude compressed fibers then such a model should be adopted.

  9. Measurement of lower leg compression in vivo: recommendations for the performance of measurements of interface pressure and stiffness: consensus statement.

    PubMed

    Partsch, Hugo; Clark, Michael; Bassez, Sophie; Benigni, Jean-Patrick; Becker, Francis; Blazek, Vladimir; Caprini, Joseph; Cornu-Thénard, André; Hafner, Jürg; Flour, Mieke; Jünger, Michael; Moffatt, Christine; Neumann, Martino

    2006-02-01

    Interface pressure and stiffness characterizing the elastic properties of the material are the parameters determining the dosage of compression treatment and should therefore be measured in future clinical trials. To provide some recommendations regarding the use of suitable methods for this indication. This article was formulated based on the results of an international consensus meeting between a group of medical experts and representatives from the industry held in January 2005 in Vienna, Austria. Proposals are made concerning methods for measuring the interface pressure and for assessing the stiffness of a compression device in an individual patient. In vivo measurement of interface pressure is encouraged when clinical and experimental outcomes of compression treatment are to be evaluated.

  10. Image and Video Compression with VLSI Neural Networks

    NASA Technical Reports Server (NTRS)

    Fang, W.; Sheu, B.

    1993-01-01

    An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.

  11. An RBF-based compression method for image-based relighting.

    PubMed

    Leung, Chi-Sing; Wong, Tien-Tsin; Lam, Ping-Man; Choy, Kwok-Hung

    2006-04-01

    In image-based relighting, a pixel is associated with a number of sampled radiance values. This paper presents a two-level compression method. In the first level, the plenoptic property of a pixel is approximated by a spherical radial basis function (SRBF) network. That means that the spherical plenoptic function of each pixel is represented by a number of SRBF weights. In the second level, we apply a wavelet-based method to compress these SRBF weights. To reduce the visual artifact due to quantization noise, we develop a constrained method for estimating the SRBF weights. Our proposed approach is superior to JPEG, JPEG2000, and MPEG. Compared with the spherical harmonics approach, our approach has a lower complexity, while the visual quality is comparable. The real-time rendering method for our SRBF representation is also discussed.

  12. Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT

    PubMed Central

    2014-01-01

    Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT). In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed. PMID:24868241

  13. Electroencephalographic compression based on modulated filter banks and wavelet transform.

    PubMed

    Bazán-Prieto, Carlos; Cárdenas-Barrera, Julián; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando

    2011-01-01

    Due to the large volume of information generated in an electroencephalographic (EEG) study, compression is needed for storage, processing or transmission for analysis. In this paper we evaluate and compare two lossy compression techniques applied to EEG signals. It compares the performance of compression schemes with decomposition by filter banks or wavelet Packets transformation, seeking the best value for compression, best quality and more efficient real time implementation. Due to specific properties of EEG signals, we propose a quantization stage adapted to the dynamic range of each band, looking for higher quality. The results show that the compressor with filter bank performs better than transform methods. Quantization adapted to the dynamic range significantly enhances the quality.

  14. Fast depth decision for HEVC inter prediction based on spatial and temporal correlation

    NASA Astrophysics Data System (ADS)

    Chen, Gaoxing; Liu, Zhenyu; Ikenaga, Takeshi

    2016-07-01

    High efficiency video coding (HEVC) is a video compression standard that outperforms the predecessor H.264/AVC by doubling the compression efficiency. To enhance the compression accuracy, the partition sizes ranging is from 4x4 to 64x64 in HEVC. However, the manifold partition sizes dramatically increase the encoding complexity. This paper proposes a fast depth decision based on spatial and temporal correlation. Spatial correlation utilize the code tree unit (CTU) Splitting information and temporal correlation utilize the motion vector predictor represented CTU in inter prediction to determine the maximum depth in each CTU. Experimental results show that the proposed method saves about 29.1% of the original processing time with 0.9% of BD-bitrate increase on average.

  15. An incremental block-line-Gauss-Seidel method for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Napolitano, M.; Walters, R. W.

    1985-01-01

    A block-line-Gauss-Seidel (LGS) method is developed for solving the incompressible and compressible Navier-Stokes equations in two dimensions. The method requires only one block-tridiagonal solution process per iteration and is consequently faster per step than the linearized block-ADI methods. Results are presented for both incompressible and compressible separated flows: in all cases the proposed block-LGS method is more efficient than the block-ADI methods. Furthermore, for high Reynolds number weakly separated incompressible flow in a channel, which proved to be an impossible task for a block-ADI method, solutions have been obtained very efficiently by the new scheme.

  16. Theoretical extension and experimental demonstration of spectral compression in second-harmonic generation by Fresnel-inspired binary phase shaping

    NASA Astrophysics Data System (ADS)

    Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang

    2018-05-01

    Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.

  17. Depth assisted compression of full parallax light fields

    NASA Astrophysics Data System (ADS)

    Graziosi, Danillo B.; Alpaslan, Zahir Y.; El-Ghoroury, Hussein S.

    2015-03-01

    Full parallax light field displays require high pixel density and huge amounts of data. Compression is a necessary tool used by 3D display systems to cope with the high bandwidth requirements. One of the formats adopted by MPEG for 3D video coding standards is the use of multiple views with associated depth maps. Depth maps enable the coding of a reduced number of views, and are used by compression and synthesis software to reconstruct the light field. However, most of the developed coding and synthesis tools target linearly arranged cameras with small baselines. Here we propose to use the 3D video coding format for full parallax light field coding. We introduce a view selection method inspired by plenoptic sampling followed by transform-based view coding and view synthesis prediction to code residual views. We determine the minimal requirements for view sub-sampling and present the rate-distortion performance of our proposal. We also compare our method with established video compression techniques, such as H.264/AVC, H.264/MVC, and the new 3D video coding algorithm, 3DV-ATM. Our results show that our method not only has an improved rate-distortion performance, it also preserves the structure of the perceived light fields better.

  18. HapZipper: sharing HapMap populations just got easier.

    PubMed

    Chanda, Pritam; Elhaik, Eran; Bader, Joel S

    2012-11-01

    The rapidly growing amount of genomic sequence data being generated and made publicly available necessitate the development of new data storage and archiving methods. The vast amount of data being shared and manipulated also create new challenges for network resources. Thus, developing advanced data compression techniques is becoming an integral part of data production and analysis. The HapMap project is one of the largest public resources of human single-nucleotide polymorphisms (SNPs), characterizing over 3 million SNPs genotyped in over 1000 individuals. The standard format and biological properties of HapMap data suggest that a dedicated genetic compression method can outperform generic compression tools. We propose a compression methodology for genetic data by introducing HapZipper, a lossless compression tool tailored to compress HapMap data beyond benchmarks defined by generic tools such as gzip, bzip2 and lzma. We demonstrate the usefulness of HapZipper by compressing HapMap 3 populations to <5% of their original sizes. HapZipper is freely downloadable from https://bitbucket.org/pchanda/hapzipper/downloads/HapZipper.tar.bz2.

  19. Simulating compressible-incompressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Denner, Fabian; van Wachem, Berend

    2017-11-01

    Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.

  20. Optimized Projection Matrix for Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Pi, Yiming; Cao, Zongjie

    2010-12-01

    Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  1. Subband directional vector quantization in radiological image compression

    NASA Astrophysics Data System (ADS)

    Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel

    1992-05-01

    The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.

  2. Long-term settlement prediction at open dumping area using Hossein and Gabr method for new development

    NASA Astrophysics Data System (ADS)

    Pauzi, Nur Irfah Mohd; Shariffuddin, Ahmad Sulaimi; Omar, Husaini; Misran, Halina

    2017-07-01

    In Malaysia, the most common method of disposal is landfill/open dumping. The soil at the dumping area are mixed with waste and soil. Thus, it was called as waste soil. Due to its heterogeneity properties, waste soil has a different settlement rate because different types of waste tends to settle differently. The Hussein and Gabr model which used empirical model was proposed to compute the long-term settlement. This Hussein and Gabr model is one of the soil settlement model that can be used to predict the long-term settlement at the dumping area. The model relates between the compression index and the time factor. The time factor are t1, t2, t3 and t4. The compression index is Cα1=compression index and Cβ is biodegradation index. The duration for initial compression, the compression, the biological compression and time creep are included in the model. The sample of waste soil is taken from closed dumping area in Lukut, Negeri Sembilan with the height of waste approximately 1 to 3 meters. The sample is tested using consolidation test for determining the geotechnical parameters and compressibility index. Based on the Hossein and Gabr model, the predicted long-term settlement for 20 years (ΔH) for the waste height of 1 to 3 meters are 0.21m, 0.42m and 0.63m respectively and are below the percentages of proposed maximum settlement for waste soil which is acceptable for new development to takes place.. The types of deep or shallow foundation are proposed based on the predicted settlement. The abandoned open dumping area can now be reused for the new development after the long-term settlement are predicted and some of the precaution measures has been taken as a safety measures.

  3. Scale-adaptive compressive tracking with feature integration

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin

    2016-05-01

    Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.

  4. Pressure prediction model for compression garment design.

    PubMed

    Leung, W Y; Yuen, D W; Ng, Sun Pui; Shi, S Q

    2010-01-01

    Based on the application of Laplace's law to compression garments, an equation for predicting garment pressure, incorporating the body circumference, the cross-sectional area of fabric, applied strain (as a function of reduction factor), and its corresponding Young's modulus, is developed. Design procedures are presented to predict garment pressure using the aforementioned parameters for clinical applications. Compression garments have been widely used in treating burning scars. Fabricating a compression garment with a required pressure is important in the healing process. A systematic and scientific design method can enable the occupational therapist and compression garments' manufacturer to custom-make a compression garment with a specific pressure. The objectives of this study are 1) to develop a pressure prediction model incorporating different design factors to estimate the pressure exerted by the compression garments before fabrication; and 2) to propose more design procedures in clinical applications. Three kinds of fabrics cut at different bias angles were tested under uniaxial tension, as were samples made in a double-layered structure. Sets of nonlinear force-extension data were obtained for calculating the predicted pressure. Using the value at 0° bias angle as reference, the Young's modulus can vary by as much as 29% for fabric type P11117, 43% for fabric type PN2170, and even 360% for fabric type AP85120 at a reduction factor of 20%. When comparing the predicted pressure calculated from the single-layered and double-layered fabrics, the double-layered construction provides a larger range of target pressure at a particular strain. The anisotropic and nonlinear behaviors of the fabrics have thus been determined. Compression garments can be methodically designed by the proposed analytical pressure prediction model.

  5. Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measurements.

    PubMed

    Da Poian, Giulia; Rozell, Christopher J; Bernardini, Riccardo; Rinaldo, Roberto; Clifford, Gari D

    2017-09-14

    Compressive Sensing (CS) has recently been applied as a low complexity compression framework for long-term monitoring of electrocardiogram signals using Wireless Body Sensor Networks. Long-term recording of ECG signals can be useful for diagnostic purposes and to monitor the evolution of several widespread diseases. In particular, beat to beat intervals provide important clinical information, and these can be derived from the ECG signal by computing the distance between QRS complexes (R-peaks). Numerous methods for R-peak detection are available for uncompressed ECG. However, in case of compressed sensed data, signal reconstruction can be performed with relatively complex optimisation algorithms, which may require significant energy consumption. This article addresses the problem of hearth rate estimation from compressive sensing electrocardiogram (ECG) recordings, avoiding the reconstruction of the entire signal. We consider a framework where the ECG signals are represented under the form of CS linear measurements. The QRS locations are estimated in the compressed domain by computing the correlation of the compressed ECG and a known QRS template. Experiments on actual ECG signals show that our novel solution is competitive with methods applied to the reconstructed signals. Avoiding the reconstruction procedure, the proposed method proves to be very convenient for real-time, low-power applications.

  6. Compressive strength and hydration processes of concrete with recycled aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenders, Eduardus A.B., E-mail: e.a.b.koenders@coc.ufrj.br; Microlab, Delft University of Technology; Pepe, Marco, E-mail: mapepe@unisa.it

    2014-02-15

    This paper deals with the correlation between the time evolution of the degree of hydration and the compressive strength of Recycled Aggregate Concrete (RAC) for different water to cement ratios and initial moisture conditions of the Recycled Concrete Aggregates (RCAs). Particularly, the influence of such moisture conditions is investigated by monitoring the hydration process and determining the compressive strength development of fully dry or fully saturated recycled aggregates in four RAC mixtures. Hydration processes are monitored via temperature measurements in hardening concrete samples and the time evolution of the degree of hydration is determined through a 1D hydration and heatmore » flow model. The effect of the initial moisture condition of RCAs employed in the considered concrete mixtures clearly emerges from this study. In fact, a novel conceptual method is proposed to predict the compressive strength of RAC-systems, from the initial mixture parameters and the hardening conditions. -- Highlights: •The concrete industry is more and more concerned with sustainability issues. •The use of recycled aggregates is a promising solution to enhance sustainability. •Recycled aggregates affect both hydration processes and compressive strength. •A fundamental approach is proposed to unveil the influence of recycled aggregates. •Some experimental comparisons are presented to validate the proposed approach.« less

  7. Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Scofield, K.M.

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.

  8. Design of Compressed Sensing Algorithm for Coal Mine IoT Moving Measurement Data Based on a Multi-Hop Network and Total Variation.

    PubMed

    Wang, Gang; Zhao, Zhikai; Ning, Yongjie

    2018-05-28

    As the application of a coal mine Internet of Things (IoT), mobile measurement devices, such as intelligent mine lamps, cause moving measurement data to be increased. How to transmit these large amounts of mobile measurement data effectively has become an urgent problem. This paper presents a compressed sensing algorithm for the large amount of coal mine IoT moving measurement data based on a multi-hop network and total variation. By taking gas data in mobile measurement data as an example, two network models for the transmission of gas data flow, namely single-hop and multi-hop transmission modes, are investigated in depth, and a gas data compressed sensing collection model is built based on a multi-hop network. To utilize the sparse characteristics of gas data, the concept of total variation is introduced and a high-efficiency gas data compression and reconstruction method based on Total Variation Sparsity based on Multi-Hop (TVS-MH) is proposed. According to the simulation results, by using the proposed method, the moving measurement data flow from an underground distributed mobile network can be acquired and transmitted efficiently.

  9. Real-time and encryption efficiency improvements of simultaneous fusion, compression and encryption method based on chaotic generators

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2018-03-01

    In this paper, enhancement of an existing optical simultaneous fusion, compression and encryption (SFCE) scheme in terms of real-time requirements, bandwidth occupation and encryption robustness is proposed. We have used and approximate form of the DCT to decrease the computational resources. Then, a novel chaos-based encryption algorithm is introduced in order to achieve the confusion and diffusion effects. In the confusion phase, Henon map is used for row and column permutations, where the initial condition is related to the original image. Furthermore, the Skew Tent map is employed to generate another random matrix in order to carry out pixel scrambling. Finally, an adaptation of a classical diffusion process scheme is employed to strengthen security of the cryptosystem against statistical, differential, and chosen plaintext attacks. Analyses of key space, histogram, adjacent pixel correlation, sensitivity, and encryption speed of the encryption scheme are provided, and favorably compared to those of the existing crypto-compression system. The proposed method has been found to be digital/optical implementation-friendly which facilitates the integration of the crypto-compression system on a very broad range of scenarios.

  10. Secret shared multiple-image encryption based on row scanning compressive ghost imaging and phase retrieval in the Fresnel domain

    NASA Astrophysics Data System (ADS)

    Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2017-09-01

    A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.

  11. Flood inundation extent mapping based on block compressed tracing

    NASA Astrophysics Data System (ADS)

    Shen, Dingtao; Rui, Yikang; Wang, Jiechen; Zhang, Yu; Cheng, Liang

    2015-07-01

    Flood inundation extent, depth, and duration are important factors affecting flood hazard evaluation. At present, flood inundation analysis is based mainly on a seeded region-growing algorithm, which is an inefficient process because it requires excessive recursive computations and it is incapable of processing massive datasets. To address this problem, we propose a block compressed tracing algorithm for mapping the flood inundation extent, which reads the DEM data in blocks before transferring them to raster compression storage. This allows a smaller computer memory to process a larger amount of data, which solves the problem of the regular seeded region-growing algorithm. In addition, the use of a raster boundary tracing technique allows the algorithm to avoid the time-consuming computations required by the seeded region-growing. Finally, we conduct a comparative evaluation in the Chin-sha River basin, results show that the proposed method solves the problem of flood inundation extent mapping based on massive DEM datasets with higher computational efficiency than the original method, which makes it suitable for practical applications.

  12. A Double Dwell High Sensitivity GPS Acquisition Scheme Using Binarized Convolution Neural Network

    PubMed Central

    Wang, Zhen; Zhuang, Yuan; Yang, Jun; Zhang, Hengfeng; Dong, Wei; Wang, Min; Hua, Luchi; Liu, Bo; Shi, Longxing

    2018-01-01

    Conventional GPS acquisition methods, such as Max selection and threshold crossing (MAX/TC), estimate GPS code/Doppler by its correlation peak. Different from MAX/TC, a multi-layer binarized convolution neural network (BCNN) is proposed to recognize the GPS acquisition correlation envelope in this article. The proposed method is a double dwell acquisition in which a short integration is adopted in the first dwell and a long integration is applied in the second one. To reduce the search space for parameters, BCNN detects the possible envelope which contains the auto-correlation peak in the first dwell to compress the initial search space to 1/1023. Although there is a long integration in the second dwell, the acquisition computation overhead is still low due to the compressed search space. Comprehensively, the total computation overhead of the proposed method is only 1/5 of conventional ones. Experiments show that the proposed double dwell/correlation envelope identification (DD/CEI) neural network achieves 2 dB improvement when compared with the MAX/TC under the same specification. PMID:29747373

  13. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa.

    PubMed

    Knudson, M D; Hanson, D L; Bailey, J E; Hall, C A; Asay, J R

    2003-01-24

    A novel approach was developed to probe density compression of liquid deuterium (L-D2) along the principal Hugoniot. Relative transit times of shock waves reverberating within the sample are shown to be sensitive to the compression due to the first shock. This technique has proven to be more sensitive than the conventional method of inferring density from the shock and mass velocity, at least in this high-pressure regime. Results in the range of 22-75 GPa indicate an approximately fourfold density compression, and provide data to differentiate between proposed theories for hydrogen and its isotopes.

  14. An ECG signals compression method and its validation using NNs.

    PubMed

    Fira, Catalina Monica; Goras, Liviu

    2008-04-01

    This paper presents a new algorithm for electrocardiogram (ECG) signal compression based on local extreme extraction, adaptive hysteretic filtering and Lempel-Ziv-Welch (LZW) coding. The algorithm has been verified using eight of the most frequent normal and pathological types of cardiac beats and an multi-layer perceptron (MLP) neural network trained with original cardiac patterns and tested with reconstructed ones. Aspects regarding the possibility of using the principal component analysis (PCA) to cardiac pattern classification have been investigated as well. A new compression measure called "quality score," which takes into account both the reconstruction errors and the compression ratio, is proposed.

  15. Dictionary Approaches to Image Compression and Reconstruction

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.

    1998-01-01

    This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as phi(sub gamma), are discrete time signals, where gamma represents the dictionary index. A dictionary with a collection of these waveforms is typically complete or overcomplete. Given such a dictionary, the goal is to obtain a representation image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.

  16. Dictionary Approaches to Image Compression and Reconstruction

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.

    1998-01-01

    This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as lambda, are discrete time signals, where y represents the dictionary index. A dictionary with a collection of these waveforms Is typically complete or over complete. Given such a dictionary, the goal is to obtain a representation Image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.

  17. Using false colors to protect visual privacy of sensitive content

    NASA Astrophysics Data System (ADS)

    Ćiftçi, Serdar; Korshunov, Pavel; Akyüz, Ahmet O.; Ebrahimi, Touradj

    2015-03-01

    Many privacy protection tools have been proposed for preserving privacy. Tools for protection of visual privacy available today lack either all or some of the important properties that are expected from such tools. Therefore, in this paper, we propose a simple yet effective method for privacy protection based on false color visualization, which maps color palette of an image into a different color palette, possibly after a compressive point transformation of the original pixel data, distorting the details of the original image. This method does not require any prior face detection or other sensitive regions detection and, hence, unlike typical privacy protection methods, it is less sensitive to inaccurate computer vision algorithms. It is also secure as the look-up tables can be encrypted, reversible as table look-ups can be inverted, flexible as it is independent of format or encoding, adjustable as the final result can be computed by interpolating the false color image with the original using different degrees of interpolation, less distracting as it does not create visually unpleasant artifacts, and selective as it preserves better semantic structure of the input. Four different color scales and four different compression functions, one which the proposed method relies, are evaluated via objective (three face recognition algorithms) and subjective (50 human subjects in an online-based study) assessments using faces from FERET public dataset. The evaluations demonstrate that DEF and RBS color scales lead to the strongest privacy protection, while compression functions add little to the strength of privacy protection. Statistical analysis also shows that recognition algorithms and human subjects perceive the proposed protection similarly

  18. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    NASA Astrophysics Data System (ADS)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  19. Lateral Compression Properties of Magnesium Alloy Tubes Fabricated via Hydrostatic Extrusion Integrated with Circular ECAP

    NASA Astrophysics Data System (ADS)

    Lv, Jiuming; Hu, Fangyi; Cao, Quoc Dinh; Yuan, Renshu; Wu, Zhilin; Cai, Hongming; Zhao, Lei; Zhang, Xinping

    2017-03-01

    Hydrostatic extrusion integrated with circular equal channel angular pressing has been previously proposed for fabricating AZ80 magnesium alloy tubes as a method to obtain high-strength tubes for industrial applications. In order to axial tensile strength, circumferential mechanical properties are also important for tubular structures. The tensile properties of AZ80 tubes have been previously studied; however, the circumferential properties have not been examined. In this work, circumferential mechanical properties of these tubes were studied using lateral compression tests. An analytical model is proposed to evaluate the circumferential elongation, which is in good agreement with finite element results. The effects of the extrusion ratio and conical mandrel angle on the circumferential elongation and lateral compression strength are discussed. The strain distribution in the sample during lateral compression testing was found to be inhomogeneous, and cracks initially appeared on the inner surface of the sample vertex. The circumferential elongation and lateral compression strength increased with the extrusion ratio and conical mandrel angle. The anisotropy of the tube's mechanical properties was insignificant when geometric effects were ignored.

  20. Human Motion Capture Data Tailored Transform Coding.

    PubMed

    Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He

    2015-07-01

    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.

  1. Mammogram registration: a phantom-based evaluation of compressed breast thickness variation effects.

    PubMed

    Richard, Frédéric J P; Bakić, Predrag R; Maidment, Andrew D A

    2006-02-01

    The temporal comparison of mammograms is complex; a wide variety of factors can cause changes in image appearance. Mammogram registration is proposed as a method to reduce the effects of these changes and potentially to emphasize genuine alterations in breast tissue. Evaluation of such registration techniques is difficult since ground truth regarding breast deformations is not available in clinical mammograms. In this paper, we propose a systematic approach to evaluate sensitivity of registration methods to various types of changes in mammograms using synthetic breast images with known deformations. As a first step, images of the same simulated breasts with various amounts of simulated physical compression have been used to evaluate a previously described nonrigid mammogram registration technique. Registration performance is measured by calculating the average displacement error over a set of evaluation points identified in mammogram pairs. Applying appropriate thickness compensation and using a preferred order of the registered images, we obtained an average displacement error of 1.6 mm for mammograms with compression differences of 1-3 cm. The proposed methodology is applicable to analysis of other sources of mammogram differences and can be extended to the registration of multimodality breast data.

  2. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI

    PubMed Central

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-01-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484

  3. Improved image decompression for reduced transform coding artifacts

    NASA Technical Reports Server (NTRS)

    Orourke, Thomas P.; Stevenson, Robert L.

    1994-01-01

    The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.

  4. Sparse Bayesian Inference of White Matter Fiber Orientations from Compressed Multi-resolution Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2015-10-01

    The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.

  5. Compressed sensing for ultrasound computed tomography.

    PubMed

    van Sloun, Ruud; Pandharipande, Ashish; Mischi, Massimo; Demi, Libertario

    2015-06-01

    Ultrasound computed tomography (UCT) allows the reconstruction of quantitative tissue characteristics, such as speed of sound, mass density, and attenuation. Lowering its acquisition time would be beneficial; however, this is fundamentally limited by the physical time of flight and the number of transmission events. In this letter, we propose a compressed sensing solution for UCT. The adopted measurement scheme is based on compressed acquisitions, with concurrent randomised transmissions in a circular array configuration. Reconstruction of the image is then obtained by combining the born iterative method and total variation minimization, thereby exploiting variation sparsity in the image domain. Evaluation using simulated UCT scattering measurements shows that the proposed transmission scheme performs better than uniform undersampling, and is able to reduce acquisition time by almost one order of magnitude, while maintaining high spatial resolution.

  6. Tampered Region Localization of Digital Color Images Based on JPEG Compression Noise

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Dong, Jing; Tan, Tieniu

    With the availability of various digital image edit tools, seeing is no longer believing. In this paper, we focus on tampered region localization for image forensics. We propose an algorithm which can locate tampered region(s) in a lossless compressed tampered image when its unchanged region is output of JPEG decompressor. We find the tampered region and the unchanged region have different responses for JPEG compression. The tampered region has stronger high frequency quantization noise than the unchanged region. We employ PCA to separate different spatial frequencies quantization noises, i.e. low, medium and high frequency quantization noise, and extract high frequency quantization noise for tampered region localization. Post-processing is involved to get final localization result. The experimental results prove the effectiveness of our proposed method.

  7. Image reconstruction of dynamic infrared single-pixel imaging system

    NASA Astrophysics Data System (ADS)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  8. Cancelable ECG biometrics using GLRT and performance improvement using guided filter with irreversible guide signal.

    PubMed

    Kim, Hanvit; Minh Phuong Nguyen; Se Young Chun

    2017-07-01

    Biometrics such as ECG provides a convenient and powerful security tool to verify or identify an individual. However, one important drawback of biometrics is that it is irrevocable. In other words, biometrics cannot be re-used practically once it is compromised. Cancelable biometrics has been investigated to overcome this drawback. In this paper, we propose a cancelable ECG biometrics by deriving a generalized likelihood ratio test (GLRT) detector from a composite hypothesis testing in randomly projected domain. Since it is common to observe performance degradation for cancelable biometrics, we also propose a guided filtering (GF) with irreversible guide signal that is a non-invertibly transformed signal of ECG authentication template. We evaluated our proposed method using ECG-ID database with 89 subjects. Conventional Euclidean detector with original ECG template yielded 93.9% PD1 (detection probability at 1% FAR) while Euclidean detector with 10% compressed ECG (1/10 of the original data size) yielded 90.8% PD1. Our proposed GLRT detector with 10% compressed ECG yielded 91.4%, which is better than Euclidean with the same compressed ECG. GF with our proposed irreversible ECG template further improved the performance of our GLRT with 10% compressed ECG up to 94.3%, which is higher than Euclidean detector with original ECG. Lastly, we showed that our proposed cancelable ECG biometrics practically met cancelable biometrics criteria such as efficiency, re-usability, diversity and non-invertibility.

  9. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  10. Study of on-board compression of earth resources data

    NASA Technical Reports Server (NTRS)

    Habibi, A.

    1975-01-01

    The current literature on image bandwidth compression was surveyed and those methods relevant to compression of multispectral imagery were selected. Typical satellite multispectral data was then analyzed statistically and the results used to select a smaller set of candidate bandwidth compression techniques particularly relevant to earth resources data. These were compared using both theoretical analysis and simulation, under various criteria of optimality such as mean square error (MSE), signal-to-noise ratio, classification accuracy, and computational complexity. By concatenating some of the most promising techniques, three multispectral data compression systems were synthesized which appear well suited to current and future NASA earth resources applications. The performance of these three recommended systems was then examined in detail by all of the above criteria. Finally, merits and deficiencies were summarized and a number of recommendations for future NASA activities in data compression proposed.

  11. Compression of multispectral fluorescence microscopic images based on a modified set partitioning in hierarchal trees

    NASA Astrophysics Data System (ADS)

    Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek

    2009-02-01

    Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands at the same level of decomposition. The insignicant quadtrees in dierent subbands in the high-frequency subband class are coded by a combined function to reduce redundancy. A number of experiments conducted on microscopic multispectral images have shown promising results for the proposed method over current state-of-the-art image-compression techniques.

  12. Collaborative Wideband Compressed Signal Detection in Interplanetary Internet

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Zhang, Gengxin; Bian, Dongming; Gou, Liang; Zhang, Wei

    2014-07-01

    As the development of autonomous radio in deep space network, it is possible to actualize communication between explorers, aircrafts, rovers and satellites, e.g. from different countries, adopting different signal modes. The first mission to enforce the autonomous radio is to detect signals of the explorer autonomously without disturbing the original communication. This paper develops a collaborative wideband compressed signal detection approach for InterPlaNetary (IPN) Internet where there exist sparse active signals in the deep space environment. Compressed sensing (CS) can be utilized by exploiting the sparsity of IPN Internet communication signal, whose useful frequency support occupies only a small portion of an entirely wide spectrum. An estimate of the signal spectrum can be obtained by using reconstruction algorithms. Against deep space shadowing and channel fading, multiple satellites collaboratively sense and make a final decision according to certain fusion rule to gain spatial diversity. A couple of novel discrete cosine transform (DCT) and walsh-hadamard transform (WHT) based compressed spectrum detection methods are proposed which significantly improve the performance of spectrum recovery and signal detection. Finally, extensive simulation results are presented to show the effectiveness of our proposed collaborative scheme for signal detection in IPN Internet. Compared with the conventional discrete fourier transform (DFT) based method, our DCT and WHT based methods reduce computational complexity, decrease processing time, save energy and enhance probability of detection.

  13. Discussion on the installation checking method of precast composite floor slab with lattice girders

    NASA Astrophysics Data System (ADS)

    Chen, Li; Jin, Xing; Wang, Yahui; Zhou, Hele; Gu, Jianing

    2018-03-01

    Based on the installation checking requirements of China’s current standards and the international norms for prefabricated structural precast components, it proposed an installation checking method for precast composite floor slab with lattice girders. By taking an equivalent composite beam consisted of a single lattice girder and the precast concrete slab as the checking object, compression instability stress of upper chords and yield stress of slab distribution reinforcement at the maximum positive moment, tensile yield stress of upper chords, slab normal section normal compression stress and shear instability stress of diagonal bars at the maximum negative moment were checked. And the bending stress and deflection of support beams, strength and compression stability bearing capacity of the vertical support, shear bearing capacity of the bolt and compression bearing capacity of steel tube wall at the bolt were checked at the same time. Every different checking object was given a specific load value and load combination. Application of installation checking method was given and testified by example.

  14. High Order Entropy-Constrained Residual VQ for Lossless Compression of Images

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen

    1995-01-01

    High order entropy coding is a powerful technique for exploiting high order statistical dependencies. However, the exponentially high complexity associated with such a method often discourages its use. In this paper, an entropy-constrained residual vector quantization method is proposed for lossless compression of images. The method consists of first quantizing the input image using a high order entropy-constrained residual vector quantizer and then coding the residual image using a first order entropy coder. The distortion measure used in the entropy-constrained optimization is essentially the first order entropy of the residual image. Experimental results show very competitive performance.

  15. Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features

    NASA Astrophysics Data System (ADS)

    Ahmed, H. O. A.; Wong, M. L. D.; Nandi, A. K.

    2018-01-01

    Condition classification of rolling element bearings in rotating machines is important to prevent the breakdown of industrial machinery. A considerable amount of literature has been published on bearing faults classification. These studies aim to determine automatically the current status of a roller element bearing. Of these studies, methods based on compressed sensing (CS) have received some attention recently due to their ability to allow one to sample below the Nyquist sampling rate. This technology has many possible uses in machine condition monitoring and has been investigated as a possible approach for fault detection and classification in the compressed domain, i.e., without reconstructing the original signal. However, previous CS based methods have been found to be too weak for highly compressed data. The present paper explores computationally, for the first time, the effects of sparse autoencoder based over-complete sparse representations on the classification performance of highly compressed measurements of bearing vibration signals. For this study, the CS method was used to produce highly compressed measurements of the original bearing dataset. Then, an effective deep neural network (DNN) with unsupervised feature learning algorithm based on sparse autoencoder is used for learning over-complete sparse representations of these compressed datasets. Finally, the fault classification is achieved using two stages, namely, pre-training classification based on stacked autoencoder and softmax regression layer form the deep net stage (the first stage), and re-training classification based on backpropagation (BP) algorithm forms the fine-tuning stage (the second stage). The experimental results show that the proposed method is able to achieve high levels of accuracy even with extremely compressed measurements compared with the existing techniques.

  16. High bit depth infrared image compression via low bit depth codecs

    NASA Astrophysics Data System (ADS)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    2017-08-01

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.

  17. Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.

    PubMed

    Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong

    2015-10-01

    Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.

  18. An accelerated proximal augmented Lagrangian method and its application in compressive sensing.

    PubMed

    Sun, Min; Liu, Jing

    2017-01-01

    As a first-order method, the augmented Lagrangian method (ALM) is a benchmark solver for linearly constrained convex programming, and in practice some semi-definite proximal terms are often added to its primal variable's subproblem to make it more implementable. In this paper, we propose an accelerated PALM with indefinite proximal regularization (PALM-IPR) for convex programming with linear constraints, which generalizes the proximal terms from semi-definite to indefinite. Under mild assumptions, we establish the worst-case [Formula: see text] convergence rate of PALM-IPR in a non-ergodic sense. Finally, numerical results show that our new method is feasible and efficient for solving compressive sensing.

  19. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval

    PubMed Central

    Meng, Bowen; Lee, Ho; Xing, Lei; Fahimian, Benjamin P.

    2013-01-01

    Purpose: X-ray scatter results in a significant degradation of image quality in computed tomography (CT), representing a major limitation in cone-beam CT (CBCT) and large field-of-view diagnostic scanners. In this work, a novel scatter estimation and correction technique is proposed that utilizes peripheral detection of scatter during the patient scan to simultaneously acquire image and patient-specific scatter information in a single scan, and in conjunction with a proposed compressed sensing scatter recovery technique to reconstruct and correct for the patient-specific scatter in the projection space. Methods: The method consists of the detection of patient scatter at the edges of the field of view (FOV) followed by measurement based compressed sensing recovery of the scatter through-out the projection space. In the prototype implementation, the kV x-ray source of the Varian TrueBeam OBI system was blocked at the edges of the projection FOV, and the image detector in the corresponding blocked region was used for scatter detection. The design enables image data acquisition of the projection data on the unblocked central region of and scatter data at the blocked boundary regions. For the initial scatter estimation on the central FOV, a prior consisting of a hybrid scatter model that combines the scatter interpolation method and scatter convolution model is estimated using the acquired scatter distribution on boundary region. With the hybrid scatter estimation model, compressed sensing optimization is performed to generate the scatter map by penalizing the L1 norm of the discrete cosine transform of scatter signal. The estimated scatter is subtracted from the projection data by soft-tuning, and the scatter-corrected CBCT volume is obtained by the conventional Feldkamp-Davis-Kress algorithm. Experimental studies using image quality and anthropomorphic phantoms on a Varian TrueBeam system were carried out to evaluate the performance of the proposed scheme. Results: The scatter shading artifacts were markedly suppressed in the reconstructed images using the proposed method. On the Catphan©504 phantom, the proposed method reduced the error of CT number to 13 Hounsfield units, 10% of that without scatter correction, and increased the image contrast by a factor of 2 in high-contrast regions. On the anthropomorphic phantom, the spatial nonuniformity decreased from 10.8% to 6.8% after correction. Conclusions: A novel scatter correction method, enabling unobstructed acquisition of the high frequency image data and concurrent detection of the patient-specific low frequency scatter data at the edges of the FOV, is proposed and validated in this work. Relative to blocker based techniques, rather than obstructing the central portion of the FOV which degrades and limits the image reconstruction, compressed sensing is used to solve for the scatter from detection of scatter at the periphery of the FOV, enabling for the highest quality reconstruction in the central region and robust patient-specific scatter correction. PMID:23298098

  20. Fracture mechanisms and fracture control in composite structures

    NASA Astrophysics Data System (ADS)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally observed complex compressive failure modes, such as shear crippling and pure compressive fiber failure of fibers are explained by the predicted stress distributions calculated in this work. These fracture analyses can be damage tolerant design methodology for composite structures. The proposed fracture criteria and the corresponding critical fracture strains provide the designer with quantitative guidelines for safe-life design. These have been incorporated into a fracture control plan for composite structures, which is also described. Currently, fracture control plans do not exist for composite structures; the proposed plan is a first step towards establishing fracture control and damage tolerant design methodology for this important class of materials.

  1. Fast implementation for compressive recovery of highly accelerated cardiac cine MRI using the balanced sparse model.

    PubMed

    Ting, Samuel T; Ahmad, Rizwan; Jin, Ning; Craft, Jason; Serafim da Silveira, Juliana; Xue, Hui; Simonetti, Orlando P

    2017-04-01

    Sparsity-promoting regularizers can enable stable recovery of highly undersampled magnetic resonance imaging (MRI), promising to improve the clinical utility of challenging applications. However, lengthy computation time limits the clinical use of these methods, especially for dynamic MRI with its large corpus of spatiotemporal data. Here, we present a holistic framework that utilizes the balanced sparse model for compressive sensing and parallel computing to reduce the computation time of cardiac MRI recovery methods. We propose a fast, iterative soft-thresholding method to solve the resulting ℓ1-regularized least squares problem. In addition, our approach utilizes a parallel computing environment that is fully integrated with the MRI acquisition software. The methodology is applied to two formulations of the multichannel MRI problem: image-based recovery and k-space-based recovery. Using measured MRI data, we show that, for a 224 × 144 image series with 48 frames, the proposed k-space-based approach achieves a mean reconstruction time of 2.35 min, a 24-fold improvement compared a reconstruction time of 55.5 min for the nonlinear conjugate gradient method, and the proposed image-based approach achieves a mean reconstruction time of 13.8 s. Our approach can be utilized to achieve fast reconstruction of large MRI datasets, thereby increasing the clinical utility of reconstruction techniques based on compressed sensing. Magn Reson Med 77:1505-1515, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Numerical simulation of the change characteristics of power dissipation coefficient of Ti-24Al-15Nb alloy in hot deformation

    NASA Astrophysics Data System (ADS)

    Wang, Kelu; Li, Xin; Zhang, Xiaobo

    2018-03-01

    The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.

  3. Streamlined Genome Sequence Compression using Distributed Source Coding

    PubMed Central

    Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel

    2014-01-01

    We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552

  4. Compressive strength of human openwedges: a selection method

    NASA Astrophysics Data System (ADS)

    Follet, H.; Gotteland, M.; Bardonnet, R.; Sfarghiu, A. M.; Peyrot, J.; Rumelhart, C.

    2004-02-01

    A series of 44 samples of bone wedges of human origin, intended for allograft openwedge osteotomy and obtained without particular precautions during hip arthroplasty were re-examined. After viral inactivity chemical treatment, lyophilisation and radio-sterilisation (intended to produce optimal health safety), the compressive strength, independent of age, sex and the height of the sample (or angle of cut), proved to be too widely dispersed [ 10{-}158 MPa] in the first study. We propose a method for selecting samples which takes into account their geometry (width, length, thicknesses, cortical surface area). Statistical methods (Principal Components Analysis PCA, Hierarchical Cluster Analysis, Multilinear regression) allowed final selection of 29 samples having a mean compressive strength σ_{max} =103 MPa ± 26 and with variation [ 61{-}158 MPa] . These results are equivalent or greater than average materials currently used in openwedge osteotomy.

  5. Directional filtering for block recovery using wavelet features

    NASA Astrophysics Data System (ADS)

    Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.

    2005-07-01

    When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.

  6. A model and numerical method for compressible flows with capillary effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr

    2017-04-01

    A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less

  7. An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction

    NASA Astrophysics Data System (ADS)

    Del Pino, S.; Labourasse, E.; Morel, G.

    2018-06-01

    We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.

  8. Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing

    NASA Astrophysics Data System (ADS)

    Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.

    2018-05-01

    In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.

  9. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs.

    PubMed

    Zheng, Yu; Yang, Yang; Chen, Wu

    2017-06-25

    In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm.

  10. Dynamic magnetic resonance imaging method based on golden-ratio cartesian sampling and compressed sensing.

    PubMed

    Li, Shuo; Zhu, Yanchun; Xie, Yaoqin; Gao, Song

    2018-01-01

    Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.

  11. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  12. Distributed Coding of Compressively Sensed Sources

    NASA Astrophysics Data System (ADS)

    Goukhshtein, Maxim

    In this work we propose a new method for compressing multiple correlated sources with a very low-complexity encoder in the presence of side information. Our approach uses ideas from compressed sensing and distributed source coding. At the encoder, syndromes of the quantized compressively sensed sources are generated and transmitted. The decoder uses side information to predict the compressed sources. The predictions are then used to recover the quantized measurements via a two-stage decoding process consisting of bitplane prediction and syndrome decoding. Finally, guided by the structure of the sources and the side information, the sources are reconstructed from the recovered measurements. As a motivating example, we consider the compression of multispectral images acquired on board satellites, where resources, such as computational power and memory, are scarce. Our experimental results exhibit a significant improvement in the rate-distortion trade-off when compared against approaches with similar encoder complexity.

  13. Optimisation algorithms for ECG data compression.

    PubMed

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  14. Authenticity examination of compressed audio recordings using detection of multiple compression and encoders' identification.

    PubMed

    Korycki, Rafal

    2014-05-01

    Since the appearance of digital audio recordings, audio authentication has been becoming increasingly difficult. The currently available technologies and free editing software allow a forger to cut or paste any single word without audible artifacts. Nowadays, the only method referring to digital audio files commonly approved by forensic experts is the ENF criterion. It consists in fluctuation analysis of the mains frequency induced in electronic circuits of recording devices. Therefore, its effectiveness is strictly dependent on the presence of mains signal in the recording, which is a rare occurrence. Recently, much attention has been paid to authenticity analysis of compressed multimedia files and several solutions were proposed for detection of double compression in both digital video and digital audio. This paper addresses the problem of tampering detection in compressed audio files and discusses new methods that can be used for authenticity analysis of digital recordings. Presented approaches consist in evaluation of statistical features extracted from the MDCT coefficients as well as other parameters that may be obtained from compressed audio files. Calculated feature vectors are used for training selected machine learning algorithms. The detection of multiple compression covers up tampering activities as well as identification of traces of montage in digital audio recordings. To enhance the methods' robustness an encoder identification algorithm was developed and applied based on analysis of inherent parameters of compression. The effectiveness of tampering detection algorithms is tested on a predefined large music database consisting of nearly one million of compressed audio files. The influence of compression algorithms' parameters on the classification performance is discussed, based on the results of the current study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Symmetry compression method for discovering network motifs.

    PubMed

    Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi

    2012-01-01

    Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.

  16. Compact Representation of High-Dimensional Feature Vectors for Large-Scale Image Recognition and Retrieval.

    PubMed

    Zhang, Yu; Wu, Jianxin; Cai, Jianfei

    2016-05-01

    In large-scale visual recognition and image retrieval tasks, feature vectors, such as Fisher vector (FV) or the vector of locally aggregated descriptors (VLAD), have achieved state-of-the-art results. However, the combination of the large numbers of examples and high-dimensional vectors necessitates dimensionality reduction, in order to reduce its storage and CPU costs to a reasonable range. In spite of the popularity of various feature compression methods, this paper shows that the feature (dimension) selection is a better choice for high-dimensional FV/VLAD than the feature (dimension) compression methods, e.g., product quantization. We show that strong correlation among the feature dimensions in the FV and the VLAD may not exist, which renders feature selection a natural choice. We also show that, many dimensions in FV/VLAD are noise. Throwing them away using feature selection is better than compressing them and useful dimensions altogether using feature compression methods. To choose features, we propose an efficient importance sorting algorithm considering both the supervised and unsupervised cases, for visual recognition and image retrieval, respectively. Combining with the 1-bit quantization, feature selection has achieved both higher accuracy and less computational cost than feature compression methods, such as product quantization, on the FV and the VLAD image representations.

  17. Fast reversible wavelet image compressor

    NASA Astrophysics Data System (ADS)

    Kim, HyungJun; Li, Ching-Chung

    1996-10-01

    We present a unified image compressor with spline biorthogonal wavelets and dyadic rational filter coefficients which gives high computational speed and excellent compression performance. Convolutions with these filters can be preformed by using only arithmetic shifting and addition operations. Wavelet coefficients can be encoded with an arithmetic coder which also uses arithmetic shifting and addition operations. Therefore, from the beginning to the end, the while encoding/decoding process can be done within a short period of time. The proposed method naturally extends form the lossless compression to the lossy but high compression range and can be easily adapted to the progressive reconstruction.

  18. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Sheng; Cappello, Franck

    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points canmore » be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.« less

  19. Spectral data compression using weighted principal component analysis with consideration of human visual system and light sources

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Wan, Xiaoxia; Li, Junfeng; Liu, Qiang; Liang, Jingxing; Li, Chan

    2016-10-01

    This paper proposed two weight functions based on principal component analysis (PCA) to reserve more colorimetric information in spectral data compression process. One weight function consisted of the CIE XYZ color-matching functions representing the characteristic of the human visual system, while another was made up of the CIE XYZ color-matching functions of human visual system and relative spectral power distribution of the CIE standard illuminant D65. The improvement obtained from the proposed two methods were tested to compress and reconstruct the reflectance spectra of 1600 glossy Munsell color chips and 1950 Natural Color System color chips as well as six multispectral images. The performance was evaluated by the mean values of color difference under the CIE 1931 standard colorimetric observer and the CIE standard illuminant D65 and A. The mean values of root mean square errors between the original and reconstructed spectra were also calculated. The experimental results show that the proposed two methods significantly outperform the standard PCA and another two weighted PCA in the aspects of colorimetric reconstruction accuracy with very slight degradation in spectral reconstruction accuracy. In addition, weight functions with the CIE standard illuminant D65 can improve the colorimetric reconstruction accuracy compared to weight functions without the CIE standard illuminant D65.

  20. Digital holographic image fusion for a larger size object using compressive sensing

    NASA Astrophysics Data System (ADS)

    Tian, Qiuhong; Yan, Liping; Chen, Benyong; Yao, Jiabao; Zhang, Shihua

    2017-05-01

    Digital holographic imaging fusion for a larger size object using compressive sensing is proposed. In this method, the high frequency component of the digital hologram under discrete wavelet transform is represented sparsely by using compressive sensing so that the data redundancy of digital holographic recording can be resolved validly, the low frequency component is retained totally to ensure the image quality, and multiple reconstructed images with different clear parts corresponding to a laser spot size are fused to realize the high quality reconstructed image of a larger size object. In addition, a filter combing high-pass and low-pass filters is designed to remove the zero-order term from a digital hologram effectively. The digital holographic experimental setup based on off-axis Fresnel digital holography was constructed. The feasible and comparative experiments were carried out. The fused image was evaluated by using the Tamura texture features. The experimental results demonstrated that the proposed method can improve the processing efficiency and visual characteristics of the fused image and enlarge the size of the measured object effectively.

  1. A Novel Range Compression Algorithm for Resolution Enhancement in GNSS-SARs

    PubMed Central

    Zheng, Yu; Yang, Yang; Chen, Wu

    2017-01-01

    In this paper, a novel range compression algorithm for enhancing range resolutions of a passive Global Navigation Satellite System-based Synthetic Aperture Radar (GNSS-SAR) is proposed. In the proposed algorithm, within each azimuth bin, firstly range compression is carried out by correlating a reflected GNSS intermediate frequency (IF) signal with a synchronized direct GNSS base-band signal in the range domain. Thereafter, spectrum equalization is applied to the compressed results for suppressing side lobes to obtain a final range-compressed signal. Both theoretical analysis and simulation results have demonstrated that significant range resolution improvement in GNSS-SAR images can be achieved by the proposed range compression algorithm, compared to the conventional range compression algorithm. PMID:28672830

  2. A compressible multiphase framework for simulating supersonic atomization

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark

    2016-11-01

    The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.

  3. Investigation of primary static recrystallization in a NiTiFe shape memory alloy subjected to cold canning compression using the coupling crystal plasticity finite element method with cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Hu, Li; Zhao, Yanan; Sun, Dong

    2017-10-01

    The behavior of primary static recrystallization (SRX) in a NiTiFe shape memory alloy (SMA) subjected to cold canning compression was investigated using the coupling crystal plasticity finite element method (CPFEM) with the cellular automaton (CA) method, where the distribution of the dislocation density and the deformed grain topology quantified by CPFEM were used as the input for the subsequent SRX simulation performed using the CA method. The simulation results were confirmed by the experimental ones in terms of microstructures, average grain size and recrystallization fraction, which indicates that the proposed coupling method is well able to describe the SRX behavior of the NiTiFe SMA. The results show that the dislocation density exhibits an inhomogeneous distribution in the deformed sample and the recrystallization nuclei mainly concentrate on zones where the dislocation density is relatively higher. An increase in the compressive deformation degree leads to an increase in nucleation rate and a decrease in grain boundary spaces in the compression direction, which reduces the growth spaces for the SRX nuclei and impedes their further growth. In addition, both the mechanisms of local grain refinement in the incomplete SRX and the influence of compressive deformation degree on the grain size of SRX were vividly illustrated by the corresponding physical models.

  4. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  5. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  6. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  7. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  8. Biometric and Emotion Identification: An ECG Compression Based Method.

    PubMed

    Brás, Susana; Ferreira, Jacqueline H T; Soares, Sandra C; Pinho, Armando J

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  9. Biometric and Emotion Identification: An ECG Compression Based Method

    PubMed Central

    Brás, Susana; Ferreira, Jacqueline H. T.; Soares, Sandra C.; Pinho, Armando J.

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model. PMID:29670564

  10. A method of mobile video transmission based on J2ee

    NASA Astrophysics Data System (ADS)

    Guo, Jian-xin; Zhao, Ji-chun; Gong, Jing; Chun, Yang

    2013-03-01

    As 3G (3rd-generation) networks evolve worldwide, the rising demand for mobile video services and the enormous growth of video on the internet is creating major new revenue opportunities for mobile network operators and application developers. The text introduced a method of mobile video transmission based on J2ME, giving the method of video compressing, then describing the video compressing standard, and then describing the software design. The proposed mobile video method based on J2EE is a typical mobile multimedia application, which has a higher availability and a wide range of applications. The users can get the video through terminal devices such as phone.

  11. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    PubMed

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Consistent lattice Boltzmann methods for incompressible axisymmetric flows

    NASA Astrophysics Data System (ADS)

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Yin, Linmao; Zhao, Ya; Chew, Jia Wei

    2016-08-01

    In this work, consistent lattice Boltzmann (LB) methods for incompressible axisymmetric flows are developed based on two efficient axisymmetric LB models available in the literature. In accord with their respective original models, the proposed axisymmetric models evolve within the framework of the standard LB method and the source terms contain no gradient calculations. Moreover, the incompressibility conditions are realized with the Hermite expansion, thus the compressibility errors arising in the existing models are expected to be reduced by the proposed incompressible models. In addition, an extra relaxation parameter is added to the Bhatnagar-Gross-Krook collision operator to suppress the effect of the ghost variable and thus the numerical stability of the present models is significantly improved. Theoretical analyses, based on the Chapman-Enskog expansion and the equivalent moment system, are performed to derive the macroscopic equations from the LB models and the resulting truncation terms (i.e., the compressibility errors) are investigated. In addition, numerical validations are carried out based on four well-acknowledged benchmark tests and the accuracy and applicability of the proposed incompressible axisymmetric LB models are verified.

  13. Compressibility-aware media retargeting with structure preserving.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-03-01

    A number of algorithms have been proposed for intelligent image/video retargeting with image content retained as much as possible. However, they usually suffer from some artifacts in the results, such as ridge or structure twist. In this paper, we present a structure-preserving media retargeting technique that preserves the content and image structure as best as possible. Different from the previous pixel or grid based methods, we estimate the image content saliency from the structure of the content. A block structure energy is introduced with a top-down strategy to constrain the image structure inside to deform uniformly in either x or y direction. However, the flexibilities for retargeting are quite different for different images. To cope with this problem, we propose a compressibility assessment scheme for media retargeting by combining the entropies of image gradient magnitude and orientation distributions. Thus, the resized media is produced to preserve the image content and structure as best as possible. Our experiments demonstrate that the proposed method provides resized images/videos with better preservation of content and structure than those by the previous methods.

  14. Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Molaeimanesh, G. R.; Nazemian, M.

    2017-08-01

    Proton exchange membrane (PEM) fuel cells with a great potential for application in vehicle propulsion systems will have a promising future. However, to overcome the exiting challenges against their wider commercialization further fundamental research is inevitable. The effects of gas diffusion layer (GDL) compression on the performance of a PEM fuel cell is not well-recognized; especially, via pore-scale simulation technique capturing the fibrous microstructure of the GDL. In the current investigation, a stochastic microstructure reconstruction method is proposed which can capture GDL microstructure changes by compression. Afterwards, lattice Boltzmann pore-scale simulation technique is adopted to simulate the reactive gas flow through 10 different cathode electrodes with dissimilar carbon paper GDLs produced from five different compression levels and two different carbon fiber diameters. The distributions of oxygen mole fraction, water vapor mole fraction and current density for the simulated cases are presented and analyzed. The results of simulations demonstrate that when the fiber diameter is 9 μm adding compression leads to lower average current density while when the fiber diameter is 7 μm the compression effect is not monotonic.

  15. Multidimensional Compressed Sensing MRI Using Tensor Decomposition-Based Sparsifying Transform

    PubMed Central

    Yu, Yeyang; Jin, Jin; Liu, Feng; Crozier, Stuart

    2014-01-01

    Compressed Sensing (CS) has been applied in dynamic Magnetic Resonance Imaging (MRI) to accelerate the data acquisition without noticeably degrading the spatial-temporal resolution. A suitable sparsity basis is one of the key components to successful CS applications. Conventionally, a multidimensional dataset in dynamic MRI is treated as a series of two-dimensional matrices, and then various matrix/vector transforms are used to explore the image sparsity. Traditional methods typically sparsify the spatial and temporal information independently. In this work, we propose a novel concept of tensor sparsity for the application of CS in dynamic MRI, and present the Higher-order Singular Value Decomposition (HOSVD) as a practical example. Applications presented in the three- and four-dimensional MRI data demonstrate that HOSVD simultaneously exploited the correlations within spatial and temporal dimensions. Validations based on cardiac datasets indicate that the proposed method achieved comparable reconstruction accuracy with the low-rank matrix recovery methods and, outperformed the conventional sparse recovery methods. PMID:24901331

  16. An efficient finite differences method for the computation of compressible, subsonic, unsteady flows past airfoils and panels

    NASA Astrophysics Data System (ADS)

    Colera, Manuel; Pérez-Saborid, Miguel

    2017-09-01

    A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.

  17. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  18. A Lossless Multichannel Bio-Signal Compression Based on Low-Complexity Joint Coding Scheme for Portable Medical Devices

    PubMed Central

    Kim, Dong-Sun; Kwon, Jin-San

    2014-01-01

    Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900

  19. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  20. Compressed sensing of ECG signal for wireless system with new fast iterative method.

    PubMed

    Tawfic, Israa; Kayhan, Sema

    2015-12-01

    Recent experiments in wireless body area network (WBAN) show that compressive sensing (CS) is a promising tool to compress the Electrocardiogram signal ECG signal. The performance of CS is based on algorithms use to reconstruct exactly or approximately the original signal. In this paper, we present two methods work with absence and presence of noise, these methods are Least Support Orthogonal Matching Pursuit (LS-OMP) and Least Support Denoising-Orthogonal Matching Pursuit (LSD-OMP). The algorithms achieve correct support recovery without requiring sparsity knowledge. We derive an improved restricted isometry property (RIP) based conditions over the best known results. The basic procedures are done by observational and analytical of a different Electrocardiogram signal downloaded them from PhysioBankATM. Experimental results show that significant performance in term of reconstruction quality and compression rate can be obtained by these two new proposed algorithms, and help the specialist gathering the necessary information from the patient in less time if we use Magnetic Resonance Imaging (MRI) application, or reconstructed the patient data after sending it through the network. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Energy-efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted ℓ₁ minimization reconstruction.

    PubMed

    Zhang, Jun; Gu, Zhenghui; Yu, Zhu Liang; Li, Yuanqing

    2015-03-01

    Low energy consumption is crucial for body area networks (BANs). In BAN-enabled ECG monitoring, the continuous monitoring entails the need of the sensor nodes to transmit a huge data to the sink node, which leads to excessive energy consumption. To reduce airtime over energy-hungry wireless links, this paper presents an energy-efficient compressed sensing (CS)-based approach for on-node ECG compression. At first, an algorithm called minimal mutual coherence pursuit is proposed to construct sparse binary measurement matrices, which can be used to encode the ECG signals with superior performance and extremely low complexity. Second, in order to minimize the data rate required for faithful reconstruction, a weighted ℓ1 minimization model is derived by exploring the multisource prior knowledge in wavelet domain. Experimental results on MIT-BIH arrhythmia database reveals that the proposed approach can obtain higher compression ratio than the state-of-the-art CS-based methods. Together with its low encoding complexity, our approach can achieve significant energy saving in both encoding process and wireless transmission.

  2. Mechanical Behaviour of 3D Multi-layer Braided Composites: Experimental, Numerical and Theoretical Study

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei

    2017-12-01

    Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.

  3. A new compression format for fiber tracking datasets.

    PubMed

    Presseau, Caroline; Jodoin, Pierre-Marc; Houde, Jean-Christophe; Descoteaux, Maxime

    2015-04-01

    A single diffusion MRI streamline fiber tracking dataset may contain hundreds of thousands, and often millions of streamlines and can take up to several gigabytes of memory. This amount of data is not only heavy to compute, but also difficult to visualize and hard to store on disk (especially when dealing with a collection of brains). These problems call for a fiber-specific compression format that simplifies its manipulation. As of today, no fiber compression format has yet been adopted and the need for it is now becoming an issue for future connectomics research. In this work, we propose a new compression format, .zfib, for streamline tractography datasets reconstructed from diffusion magnetic resonance imaging (dMRI). Tracts contain a large amount of redundant information and are relatively smooth. Hence, they are highly compressible. The proposed method is a processing pipeline containing a linearization, a quantization and an encoding step. Our pipeline is tested and validated under a wide range of DTI and HARDI tractography configurations (step size, streamline number, deterministic and probabilistic tracking) and compression options. Similar to JPEG, the user has one parameter to select: a worst-case maximum tolerance error in millimeter (mm). Overall, we find a compression factor of more than 96% for a maximum error of 0.1mm without any perceptual change or change of diffusion statistics (mean fractional anisotropy and mean diffusivity) along bundles. This opens new opportunities for connectomics and tractometry applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Retained energy-based coding for EEG signals.

    PubMed

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cárdenas-Barrera, Julián; Cruz-Roldán, Fernando

    2012-09-01

    The recent use of long-term records in electroencephalography is becoming more frequent due to its diagnostic potential and the growth of novel signal processing methods that deal with these types of recordings. In these cases, the considerable volume of data to be managed makes compression necessary to reduce the bit rate for transmission and storage applications. In this paper, a new compression algorithm specifically designed to encode electroencephalographic (EEG) signals is proposed. Cosine modulated filter banks are used to decompose the EEG signal into a set of subbands well adapted to the frequency bands characteristic of the EEG. Given that no regular pattern may be easily extracted from the signal in time domain, a thresholding-based method is applied for quantizing samples. The method of retained energy is designed for efficiently computing the threshold in the decomposition domain which, at the same time, allows the quality of the reconstructed EEG to be controlled. The experiments are conducted over a large set of signals taken from two public databases available at Physionet and the results show that the compression scheme yields better compression than other reported methods. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Regularized spherical polar fourier diffusion MRI with optimal dictionary learning.

    PubMed

    Cheng, Jian; Jiang, Tianzi; Deriche, Rachid; Shen, Dinggang; Yap, Pew-Thian

    2013-01-01

    Compressed Sensing (CS) takes advantage of signal sparsity or compressibility and allows superb signal reconstruction from relatively few measurements. Based on CS theory, a suitable dictionary for sparse representation of the signal is required. In diffusion MRI (dMRI), CS methods proposed for reconstruction of diffusion-weighted signal and the Ensemble Average Propagator (EAP) utilize two kinds of Dictionary Learning (DL) methods: 1) Discrete Representation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL is susceptible to numerical inaccuracy owing to interpolation and regridding errors in a discretized q-space. In this paper, we propose a novel CR-DL approach, called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for effective compressed-sensing reconstruction of the q-space diffusion-weighted signal and the EAP. In DL-SPFI, a dictionary that sparsifies the signal is learned from the space of continuous Gaussian diffusion signals. The learned dictionary is then adaptively applied to different voxels using a weighted LASSO framework for robust signal reconstruction. Compared with the start-of-the-art CR-DL and DR-DL methods proposed by Merlet et al. and Bilgic et al., respectively, our work offers the following advantages. First, the learned dictionary is proved to be optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first work to learn a voxel-adaptive dictionary. The importance of the adaptive dictionary in EAP reconstruction will be demonstrated theoretically and empirically. Third, optimization in DL-SPFI is only performed in a small subspace resided by the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al. We experimentally evaluated DL-SPFI with respect to L1-norm regularized SPFI (L1-SPFI), which uses the original SPF basis, and the DR-DL method proposed by Bilgic et al. The experiment results on synthetic and real data indicate that the learned dictionary produces sparser coefficients than the original SPF basis and results in significantly lower reconstruction error than Bilgic et al.'s method.

  6. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction

    PubMed Central

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems. PMID:27814367

  7. Medical Ultrasound Video Coding with H.265/HEVC Based on ROI Extraction.

    PubMed

    Wu, Yueying; Liu, Pengyu; Gao, Yuan; Jia, Kebin

    2016-01-01

    High-efficiency video compression technology is of primary importance to the storage and transmission of digital medical video in modern medical communication systems. To further improve the compression performance of medical ultrasound video, two innovative technologies based on diagnostic region-of-interest (ROI) extraction using the high efficiency video coding (H.265/HEVC) standard are presented in this paper. First, an effective ROI extraction algorithm based on image textural features is proposed to strengthen the applicability of ROI detection results in the H.265/HEVC quad-tree coding structure. Second, a hierarchical coding method based on transform coefficient adjustment and a quantization parameter (QP) selection process is designed to implement the otherness encoding for ROIs and non-ROIs. Experimental results demonstrate that the proposed optimization strategy significantly improves the coding performance by achieving a BD-BR reduction of 13.52% and a BD-PSNR gain of 1.16 dB on average compared to H.265/HEVC (HM15.0). The proposed medical video coding algorithm is expected to satisfy low bit-rate compression requirements for modern medical communication systems.

  8. HEVC for high dynamic range services

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Hwan; Zhao, Jie; Misra, Kiran; Segall, Andrew

    2015-09-01

    Displays capable of showing a greater range of luminance values can render content containing high dynamic range information in a way such that the viewers have a more immersive experience. This paper introduces the design aspects of a high dynamic range (HDR) system, and examines the performance of the HDR processing chain in terms of compression efficiency. Specifically it examines the relation between recently introduced Society of Motion Picture and Television Engineers (SMPTE) ST 2084 transfer function and the High Efficiency Video Coding (HEVC) standard. SMPTE ST 2084 is designed to cover the full range of an HDR signal from 0 to 10,000 nits, however in many situations the valid signal range of actual video might be smaller than SMPTE ST 2084 supported range. The above restricted signal range results in restricted range of code values for input video data and adversely impacts compression efficiency. In this paper, we propose a code value remapping method that extends the restricted range code values into the full range code values so that the existing standards such as HEVC may better compress the video content. The paper also identifies related non-normative encoder-only changes that are required for remapping method for a fair comparison with anchor. Results are presented comparing the efficiency of the current approach versus the proposed remapping method for HM-16.2.

  9. An Encoding Method for Compressing Geographical Coordinates in 3d Space

    NASA Astrophysics Data System (ADS)

    Qian, C.; Jiang, R.; Li, M.

    2017-09-01

    This paper proposed an encoding method for compressing geographical coordinates in 3D space. By the way of reducing the length of geographical coordinates, it helps to lessen the storage size of geometry information. In addition, the encoding algorithm subdivides the whole space according to octree rules, which enables progressive transmission and loading. Three main steps are included in this method: (1) subdividing the whole 3D geographic space based on octree structure, (2) resampling all the vertices in 3D models, (3) encoding the coordinates of vertices with a combination of Cube Index Code (CIC) and Geometry Code. A series of geographical 3D models were applied to evaluate the encoding method. The results showed that this method reduced the storage size of most test data by 90 % or even more under the condition of a speed of encoding and decoding. In conclusion, this method achieved a remarkable compression rate in vertex bit size with a steerable precision loss. It shall be of positive meaning to the web 3d map storing and transmission.

  10. Analysis of signal-dependent sensor noise on JPEG 2000-compressed Sentinel-2 multi-spectral images

    NASA Astrophysics Data System (ADS)

    Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.

    2017-10-01

    The processing chain of Sentinel-2 MultiSpectral Instrument (MSI) data involves filtering and compression stages that modify MSI sensor noise. As a result, noise in Sentinel-2 Level-1C data distributed to users becomes processed. We demonstrate that processed noise variance model is bivariate: noise variance depends on image intensity (caused by signal-dependency of photon counting detectors) and signal-to-noise ratio (SNR; caused by filtering/compression). To provide information on processed noise parameters, which is missing in Sentinel-2 metadata, we propose to use blind noise parameter estimation approach. Existing methods are restricted to univariate noise model. Therefore, we propose extension of existing vcNI+fBm blind noise parameter estimation method to multivariate noise model, mvcNI+fBm, and apply it to each band of Sentinel-2A data. Obtained results clearly demonstrate that noise variance is affected by filtering/compression for SNR less than about 15. Processed noise variance is reduced by a factor of 2 - 5 in homogeneous areas as compared to noise variance for high SNR values. Estimate of noise variance model parameters are provided for each Sentinel-2A band. Sentinel-2A MSI Level-1C noise models obtained in this paper could be useful for end users and researchers working in a variety of remote sensing applications.

  11. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.; Le, Hanh N. D.; Kang, Jin U.; Roland, Per E.; Wong, Dean F.; Rahmim, Arman

    2017-02-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT effects could be exploited, traditional compressive-sensing methods cannot be directly applied as the system matrix in FMT is highly coherent. To overcome these issues, we propose and assess a three-step reconstruction method. First, truncated singular value decomposition is applied on the data to reduce matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via l1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1, absorption coefficient: 0.1 cm-1 and tomographic measurements made using pixelated detectors. In different experiments, fluorescent sources of varying size and intensity were simulated. The proposed reconstruction method provided accurate estimates of the fluorescent source intensity, with a 20% lower root mean square error on average compared to the pure-homotopy method for all considered source intensities and sizes. Further, compared with conventional l2 regularized algorithm, overall, the proposed method reconstructed substantially more accurate fluorescence distribution. The proposed method shows considerable promise and will be tested using more realistic simulations and experimental setups.

  12. Closed-loop controller for chest compressions based on coronary perfusion pressure: a computer simulation study.

    PubMed

    Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling

    2016-03-01

    High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.

  13. Novel approach to multispectral image compression on the Internet

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqiu; Jin, Jesse S.

    2000-10-01

    Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.

  14. Compression-based integral curve data reuse framework for flow visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Fan; Bi, Chongke; Guo, Hanqi

    Currently, by default, integral curves are repeatedly re-computed in different flow visualization applications, such as FTLE field computation, source-destination queries, etc., leading to unnecessary resource cost. We present a compression-based data reuse framework for integral curves, to greatly reduce their retrieval cost, especially in a resource-limited environment. In our design, a hierarchical and hybrid compression scheme is proposed to balance three objectives, including high compression ratio, controllable error, and low decompression cost. Specifically, we use and combine digitized curve sparse representation, floating-point data compression, and octree space partitioning to adaptively achieve the objectives. Results have shown that our data reusemore » framework could acquire tens of times acceleration in the resource-limited environment compared to on-the-fly particle tracing, and keep controllable information loss. Moreover, our method could provide fast integral curve retrieval for more complex data, such as unstructured mesh data.« less

  15. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  16. A comparative study of SAR data compression schemes

    NASA Technical Reports Server (NTRS)

    Lambert-Nebout, C.; Besson, O.; Massonnet, D.; Rogron, B.

    1994-01-01

    The amount of data collected from spaceborne remote sensing has substantially increased in the last years. During same time period, the ability to store or transmit data has not increased as quickly. At this time, there is a growing interest in developing compression schemes that could provide both higher compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic Aperture Radar (SAR) earth observation system developed by the French Space Agency (CNES), the volume of data to be processed will exceed both the on-board storage capacities and the telecommunication link. The objective of this paper is twofold: to present various compression schemes adapted to SAR data; and to define a set of evaluation criteria and compare the algorithms on SAR data. In this paper, we review two classical methods of SAR data compression and propose novel approaches based on Fourier Transforms and spectrum coding.

  17. Incompressible material point method for free surface flow

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan

    2017-02-01

    To overcome the shortcomings of the weakly compressible material point method (WCMPM) for modeling the free surface flow problems, an incompressible material point method (iMPM) is proposed based on operator splitting technique which splits the solution of momentum equation into two steps. An intermediate velocity field is first obtained by solving the momentum equations ignoring the pressure gradient term, and then the intermediate velocity field is corrected by the pressure term to obtain a divergence-free velocity field. A level set function which represents the signed distance to free surface is used to track the free surface and apply the pressure boundary conditions. Moreover, an hourglass damping is introduced to suppress the spurious velocity modes which are caused by the discretization of the cell center velocity divergence from the grid vertexes velocities when solving pressure Poisson equations. Numerical examples including dam break, oscillation of a cubic liquid drop and a droplet impact into deep pool show that the proposed incompressible material point method is much more accurate and efficient than the weakly compressible material point method in solving free surface flow problems.

  18. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  19. Mixed raster content (MRC) model for compound image compression

    NASA Astrophysics Data System (ADS)

    de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming

    1998-12-01

    This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.

  20. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  1. Study on data compression algorithm and its implementation in portable electronic device for Internet of Things applications

    NASA Astrophysics Data System (ADS)

    Asilah Khairi, Nor; Bahari Jambek, Asral

    2017-11-01

    An Internet of Things (IoT) device is usually powered by a small battery, which does not last long. As a result, saving energy in IoT devices has become an important issue when it comes to this subject. Since power consumption is the primary cause of radio communication, some researchers have proposed several compression algorithms with the purpose of overcoming this particular problem. Several data compression algorithms from previous reference papers are discussed in this paper. The description of the compression algorithm in the reference papers was collected and summarized in a table form. From the analysis, MAS compression algorithm was selected as a project prototype due to its high potential for meeting the project requirements. Besides that, it also produced better performance regarding energy-saving, better memory usage, and data transmission efficiency. This method is also suitable to be implemented in WSN. MAS compression algorithm will be prototyped and applied in portable electronic devices for Internet of Things applications.

  2. Laser-pulse compression using magnetized plasmas

    DOE PAGES

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2017-02-28

    Proposals to reach the next generation of laser intensities through Raman or Brillouin backscattering have centered on optical frequencies. Higher frequencies are beyond the range of such methods mainly due to the wave damping that accompanies the higher-density plasmas necessary for compressing higher frequency lasers. However, we find that an external magnetic field transverse to the direction of laser propagation can reduce the required plasma density. Using parametric interactions in magnetized plasmas to mediate pulse compression, both reduces the wave damping and alleviates instabilities, thereby enabling higher frequency or lower intensity pumps to produce pulses at higher intensities and longermore » durations. Finally, in addition to these theoretical advantages, our method in which strong uniform magnetic fields lessen the need for high-density uniform plasmas also lessens key engineering challenges or at least exchanges them for different challenges.« less

  3. Accelerated Compressed Sensing Based CT Image Reconstruction.

    PubMed

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  4. Accelerated Compressed Sensing Based CT Image Reconstruction

    PubMed Central

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200

  5. Efficient Prediction Structures for H.264 Multi View Coding Using Temporal Scalability

    NASA Astrophysics Data System (ADS)

    Guruvareddiar, Palanivel; Joseph, Biju K.

    2014-03-01

    Prediction structures with "disposable view components based" hierarchical coding have been proven to be efficient for H.264 multi view coding. Though these prediction structures along with the QP cascading schemes provide superior compression efficiency when compared to the traditional IBBP coding scheme, the temporal scalability requirements of the bit stream could not be met to the fullest. On the other hand, a fully scalable bit stream, obtained by "temporal identifier based" hierarchical coding, provides a number of advantages including bit rate adaptations and improved error resilience, but lacks in compression efficiency when compared to the former scheme. In this paper it is proposed to combine the two approaches such that a fully scalable bit stream could be realized with minimal reduction in compression efficiency when compared to state-of-the-art "disposable view components based" hierarchical coding. Simulation results shows that the proposed method enables full temporal scalability with maximum BDPSNR reduction of only 0.34 dB. A novel method also has been proposed for the identification of temporal identifier for the legacy H.264/AVC base layer packets. Simulation results also show that this enables the scenario where the enhancement views could be extracted at a lower frame rate (1/2nd or 1/4th of base view) with average extraction time for a view component of only 0.38 ms.

  6. Secure and Energy-Efficient Data Transmission System Based on Chaotic Compressive Sensing in Body-to-Body Networks.

    PubMed

    Peng, Haipeng; Tian, Ye; Kurths, Jurgen; Li, Lixiang; Yang, Yixian; Wang, Daoshun

    2017-06-01

    Applications of wireless body area networks (WBANs) are extended from remote health care to military, sports, disaster relief, etc. With the network scale expanding, nodes increasing, and links complicated, a WBAN evolves to a body-to-body network. Along with the development, energy saving and data security problems are highlighted. In this paper, chaotic compressive sensing (CCS) is proposed to solve these two crucial problems, simultaneously. Compared with the traditional compressive sensing, CCS can save vast storage space by only storing the matrix generation parameters. Additionally, the sensitivity of chaos can improve the security of data transmission. Aimed at image transmission, modified CCS is proposed, which uses two encryption mechanisms, confusion and mask, and performs a much better encryption quality. Simulation is conducted to verify the feasibility and effectiveness of the proposed methods. The results show that the energy efficiency and security are strongly improved, while the storage space is saved. And the secret key is extremely sensitive, [Formula: see text] perturbation of the secret key could lead to a total different decoding, the relative error is larger than 100%. Particularly for image encryption, the performance of the modified method is excellent. The adjacent pixel correlation is smaller than 0.04 in different directions including horizontal, vertical, and diagonal; the entropy of the cipher image with a 256-level gray value is larger than 7.98.

  7. Pulse compression of harmonic chirp signals using the fractional fourier transform.

    PubMed

    Arif, M; Cowell, D M J; Freear, S

    2010-06-01

    In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  8. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  9. Compressed-Sensing Reconstruction Based on Block Sparse Bayesian Learning in Bearing-Condition Monitoring

    PubMed Central

    Sun, Jiedi; Yu, Yang; Wen, Jiangtao

    2017-01-01

    Remote monitoring of bearing conditions, using wireless sensor network (WSN), is a developing trend in the industrial field. In complicated industrial environments, WSN face three main constraints: low energy, less memory, and low operational capability. Conventional data-compression methods, which concentrate on data compression only, cannot overcome these limitations. Aiming at these problems, this paper proposed a compressed data acquisition and reconstruction scheme based on Compressed Sensing (CS) which is a novel signal-processing technique and applied it for bearing conditions monitoring via WSN. The compressed data acquisition is realized by projection transformation and can greatly reduce the data volume, which needs the nodes to process and transmit. The reconstruction of original signals is achieved in the host computer by complicated algorithms. The bearing vibration signals not only exhibit the sparsity property, but also have specific structures. This paper introduced the block sparse Bayesian learning (BSBL) algorithm which works by utilizing the block property and inherent structures of signals to reconstruct CS sparsity coefficients of transform domains and further recover the original signals. By using the BSBL, CS reconstruction can be improved remarkably. Experiments and analyses showed that BSBL method has good performance and is suitable for practical bearing-condition monitoring. PMID:28635623

  10. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    PubMed

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  11. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes.

    PubMed

    Ahmed, Faisal; Tamberg, Gert; Le Moullec, Yannick; Annus, Paul

    2018-04-05

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90-94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models.

  12. Adaptive LINE-P: An Adaptive Linear Energy Prediction Model for Wireless Sensor Network Nodes

    PubMed Central

    Ahmed, Faisal

    2018-01-01

    In the context of wireless sensor networks, energy prediction models are increasingly useful tools that can facilitate the power management of the wireless sensor network (WSN) nodes. However, most of the existing models suffer from the so-called fixed weighting parameter, which limits their applicability when it comes to, e.g., solar energy harvesters with varying characteristics. Thus, in this article we propose the Adaptive LINE-P (all cases) model that calculates adaptive weighting parameters based on the stored energy profiles. Furthermore, we also present a profile compression method to reduce the memory requirements. To determine the performance of our proposed model, we have used real data for the solar and wind energy profiles. The simulation results show that our model achieves 90–94% accuracy and that the compressed method reduces memory overheads by 50% as compared to state-of-the-art models. PMID:29621169

  13. Optimization of compressive 4D-spatio-spectral snapshot imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Feng, Weiyi; Lin, Lihua; Su, Wu; Xu, Guoqing

    2017-10-01

    In this paper, a modified 3D computational reconstruction method in the compressive 4D-spectro-volumetric snapshot imaging system is proposed for better sensing spectral information of 3D objects. In the design of the imaging system, a microlens array (MLA) is used to obtain a set of multi-view elemental images (EIs) of the 3D scenes. Then, these elemental images with one dimensional spectral information and different perspectives are captured by the coded aperture snapshot spectral imager (CASSI) which can sense the spectral data cube onto a compressive 2D measurement image. Finally, the depth images of 3D objects at arbitrary depths, like a focal stack, are computed by inversely mapping the elemental images according to geometrical optics. With the spectral estimation algorithm, the spectral information of 3D objects is also reconstructed. Using a shifted translation matrix, the contrast of the reconstruction result is further enhanced. Numerical simulation results verify the performance of the proposed method. The system can obtain both 3D spatial information and spectral data on 3D objects using only one single snapshot, which is valuable in the agricultural harvesting robots and other 3D dynamic scenes.

  14. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.

    PubMed

    Shaeri, Mohammad Ali; Sodagar, Amir M

    2015-05-01

    This paper proposes an efficient data compression technique dedicated to implantable intra-cortical neural recording devices. The proposed technique benefits from processing neural signals in the Discrete Haar Wavelet Transform space, a new spike extraction approach, and a novel data framing scheme to telemeter the recorded neural information to the outside world. Based on the proposed technique, a 64-channel neural signal processor was designed and prototyped as a part of a wireless implantable extra-cellular neural recording microsystem. Designed in a 0.13- μ m standard CMOS process, the 64-channel neural signal processor reported in this paper occupies ∼ 0.206 mm(2) of silicon area, and consumes 94.18 μW when operating under a 1.2-V supply voltage at a master clock frequency of 1.28 MHz.

  15. Infrared super-resolution imaging based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Sui, Xiubao; Chen, Qian; Gu, Guohua; Shen, Xuewei

    2014-03-01

    The theoretical basis of traditional infrared super-resolution imaging method is Nyquist sampling theorem. The reconstruction premise is that the relative positions of the infrared objects in the low-resolution image sequences should keep fixed and the image restoration means is the inverse operation of ill-posed issues without fixed rules. The super-resolution reconstruction ability of the infrared image, algorithm's application area and stability of reconstruction algorithm are limited. To this end, we proposed super-resolution reconstruction method based on compressed sensing in this paper. In the method, we selected Toeplitz matrix as the measurement matrix and realized it by phase mask method. We researched complementary matching pursuit algorithm and selected it as the recovery algorithm. In order to adapt to the moving target and decrease imaging time, we take use of area infrared focal plane array to acquire multiple measurements at one time. Theoretically, the method breaks though Nyquist sampling theorem and can greatly improve the spatial resolution of the infrared image. The last image contrast and experiment data indicate that our method is effective in improving resolution of infrared images and is superior than some traditional super-resolution imaging method. The compressed sensing super-resolution method is expected to have a wide application prospect.

  16. Handling the data management needs of high-throughput sequencing data: SpeedGene, a compression algorithm for the efficient storage of genetic data

    PubMed Central

    2012-01-01

    Background As Next-Generation Sequencing data becomes available, existing hardware environments do not provide sufficient storage space and computational power to store and process the data due to their enormous size. This is and will be a frequent problem that is encountered everyday by researchers who are working on genetic data. There are some options available for compressing and storing such data, such as general-purpose compression software, PBAT/PLINK binary format, etc. However, these currently available methods either do not offer sufficient compression rates, or require a great amount of CPU time for decompression and loading every time the data is accessed. Results Here, we propose a novel and simple algorithm for storing such sequencing data. We show that, the compression factor of the algorithm ranges from 16 to several hundreds, which potentially allows SNP data of hundreds of Gigabytes to be stored in hundreds of Megabytes. We provide a C++ implementation of the algorithm, which supports direct loading and parallel loading of the compressed format without requiring extra time for decompression. By applying the algorithm to simulated and real datasets, we show that the algorithm gives greater compression rate than the commonly used compression methods, and the data-loading process takes less time. Also, The C++ library provides direct-data-retrieving functions, which allows the compressed information to be easily accessed by other C++ programs. Conclusions The SpeedGene algorithm enables the storage and the analysis of next generation sequencing data in current hardware environment, making system upgrades unnecessary. PMID:22591016

  17. Revealing the jet substructure in a compressed spectrum of new physics

    NASA Astrophysics Data System (ADS)

    Han, Chengcheng; Park, Myeonghun

    2016-07-01

    The physics beyond the Standard Model with parameters of the compressed spectrum is well motivated both in the theory side and with phenomenological reasons, especially related to dark matter phenomenology. In this letter, we propose a method to tag soft final state particles from a decaying process of a new particle in this parameter space. By taking a supersymmetric gluino search as an example, we demonstrate how the Large Hadron Collider experimental collaborations can improve sensitivity in these nontrivial search regions.

  18. An Adaptive Prediction-Based Approach to Lossless Compression of Floating-Point Volume Data.

    PubMed

    Fout, N; Ma, Kwan-Liu

    2012-12-01

    In this work, we address the problem of lossless compression of scientific and medical floating-point volume data. We propose two prediction-based compression methods that share a common framework, which consists of a switched prediction scheme wherein the best predictor out of a preset group of linear predictors is selected. Such a scheme is able to adapt to different datasets as well as to varying statistics within the data. The first method, called APE (Adaptive Polynomial Encoder), uses a family of structured interpolating polynomials for prediction, while the second method, which we refer to as ACE (Adaptive Combined Encoder), combines predictors from previous work with the polynomial predictors to yield a more flexible, powerful encoder that is able to effectively decorrelate a wide range of data. In addition, in order to facilitate efficient visualization of compressed data, our scheme provides an option to partition floating-point values in such a way as to provide a progressive representation. We compare our two compressors to existing state-of-the-art lossless floating-point compressors for scientific data, with our data suite including both computer simulations and observational measurements. The results demonstrate that our polynomial predictor, APE, is comparable to previous approaches in terms of speed but achieves better compression rates on average. ACE, our combined predictor, while somewhat slower, is able to achieve the best compression rate on all datasets, with significantly better rates on most of the datasets.

  19. Analytics-Driven Lossless Data Compression for Rapid In-situ Indexing, Storing, and Querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, John; Arkatkar, Isha; Lakshminarasimhan, Sriram

    2013-01-01

    The analysis of scientific simulations is highly data-intensive and is becoming an increasingly important challenge. Peta-scale data sets require the use of light-weight query-driven analysis methods, as opposed to heavy-weight schemes that optimize for speed at the expense of size. This paper is an attempt in the direction of query processing over losslessly compressed scientific data. We propose a co-designed double-precision compression and indexing methodology for range queries by performing unique-value-based binning on the most significant bytes of double precision data (sign, exponent, and most significant mantissa bits), and inverting the resulting metadata to produce an inverted index over amore » reduced data representation. Without the inverted index, our method matches or improves compression ratios over both general-purpose and floating-point compression utilities. The inverted index is light-weight, and the overall storage requirement for both reduced column and index is less than 135%, whereas existing DBMS technologies can require 200-400%. As a proof-of-concept, we evaluate univariate range queries that additionally return column values, a critical component of data analytics, against state-of-the-art bitmap indexing technology, showing multi-fold query performance improvements.« less

  20. Method to study cell migration under uniaxial compression

    PubMed Central

    Srivastava, Nishit; Kay, Robert R.; Kabla, Alexandre J.

    2017-01-01

    The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments. PMID:28122819

  1. Distortion correction in EPI at ultra-high-field MRI using PSF mapping with optimal combination of shift detection dimension.

    PubMed

    Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee

    2012-10-01

    Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. Copyright © 2011 Wiley Periodicals, Inc.

  2. Lossless data compression for improving the performance of a GPU-based beamformer.

    PubMed

    Lok, U-Wai; Fan, Gang-Wei; Li, Pai-Chi

    2015-04-01

    The powerful parallel computation ability of a graphics processing unit (GPU) makes it feasible to perform dynamic receive beamforming However, a real time GPU-based beamformer requires high data rate to transfer radio-frequency (RF) data from hardware to software memory, as well as from central processing unit (CPU) to GPU memory. There are data compression methods (e.g. Joint Photographic Experts Group (JPEG)) available for the hardware front end to reduce data size, alleviating the data transfer requirement of the hardware interface. Nevertheless, the required decoding time may even be larger than the transmission time of its original data, in turn degrading the overall performance of the GPU-based beamformer. This article proposes and implements a lossless compression-decompression algorithm, which enables in parallel compression and decompression of data. By this means, the data transfer requirement of hardware interface and the transmission time of CPU to GPU data transfers are reduced, without sacrificing image quality. In simulation results, the compression ratio reached around 1.7. The encoder design of our lossless compression approach requires low hardware resources and reasonable latency in a field programmable gate array. In addition, the transmission time of transferring data from CPU to GPU with the parallel decoding process improved by threefold, as compared with transferring original uncompressed data. These results show that our proposed lossless compression plus parallel decoder approach not only mitigate the transmission bandwidth requirement to transfer data from hardware front end to software system but also reduce the transmission time for CPU to GPU data transfer. © The Author(s) 2014.

  3. A-posteriori error estimation for the finite point method with applications to compressible flow

    NASA Astrophysics Data System (ADS)

    Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio

    2017-08-01

    An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.

  4. Design of a Biorthogonal Wavelet Transform Based R-Peak Detection and Data Compression Scheme for Implantable Cardiac Pacemaker Systems.

    PubMed

    Kumar, Ashish; Kumar, Manjeet; Komaragiri, Rama

    2018-04-19

    Bradycardia can be modulated using the cardiac pacemaker, an implantable medical device which sets and balances the patient's cardiac health. The device has been widely used to detect and monitor the patient's heart rate. The data collected hence has the highest authenticity assurance and is convenient for further electric stimulation. In the pacemaker, ECG detector is one of the most important element. The device is available in its new digital form, which is more efficient and accurate in performance with the added advantage of economical power consumption platform. In this work, a joint algorithm based on biorthogonal wavelet transform and run-length encoding (RLE) is proposed for QRS complex detection of the ECG signal and compressing the detected ECG data. Biorthogonal wavelet transform of the input ECG signal is first calculated using a modified demand based filter bank architecture which consists of a series combination of three lowpass filters with a highpass filter. Lowpass and highpass filters are realized using a linear phase structure which reduces the hardware cost of the proposed design approximately by 50%. Then, the location of the R-peak is found by comparing the denoised ECG signal with the threshold value. The proposed R-peak detector achieves the highest sensitivity and positive predictivity of 99.75 and 99.98 respectively with the MIT-BIH arrhythmia database. Also, the proposed R-peak detector achieves a comparatively low data error rate (DER) of 0.002. The use of RLE for the compression of detected ECG data achieves a higher compression ratio (CR) of 17.1. To justify the effectiveness of the proposed algorithm, the results have been compared with the existing methods, like Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.

  5. A new smoothing modified three-term conjugate gradient method for [Formula: see text]-norm minimization problem.

    PubMed

    Du, Shouqiang; Chen, Miao

    2018-01-01

    We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.

  6. Secure Hashing of Dynamic Hand Signatures Using Wavelet-Fourier Compression with BioPhasor Mixing and [InlineEquation not available: see fulltext.] Discretization

    NASA Astrophysics Data System (ADS)

    Wai Kuan, Yip; Teoh, Andrew B. J.; Ngo, David C. L.

    2006-12-01

    We introduce a novel method for secure computation of biometric hash on dynamic hand signatures using BioPhasor mixing and[InlineEquation not available: see fulltext.] discretization. The use of BioPhasor as the mixing process provides a one-way transformation that precludes exact recovery of the biometric vector from compromised hashes and stolen tokens. In addition, our user-specific[InlineEquation not available: see fulltext.] discretization acts both as an error correction step as well as a real-to-binary space converter. We also propose a new method of extracting compressed representation of dynamic hand signatures using discrete wavelet transform (DWT) and discrete fourier transform (DFT). Without the conventional use of dynamic time warping, the proposed method avoids storage of user's hand signature template. This is an important consideration for protecting the privacy of the biometric owner. Our results show that the proposed method could produce stable and distinguishable bit strings with equal error rates (EERs) of[InlineEquation not available: see fulltext.] and[InlineEquation not available: see fulltext.] for random and skilled forgeries for stolen token (worst case) scenario, and[InlineEquation not available: see fulltext.] for both forgeries in the genuine token (optimal) scenario.

  7. Multispectral Image Compression for Improvement of Colorimetric and Spectral Reproducibility by Nonlinear Spectral Transform

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2006-09-01

    The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.

  8. A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment

    PubMed Central

    Freschi, Valerio; Bogliolo, Alessandro

    2012-01-01

    In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086

  9. On system behaviour using complex networks of a compression algorithm

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Correa, Debora C.; Small, Michael

    2018-01-01

    We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

  10. Data-Driven Sampling Matrix Boolean Optimization for Energy-Efficient Biomedical Signal Acquisition by Compressive Sensing.

    PubMed

    Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao

    2017-04-01

    Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.

  11. RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing

    NASA Astrophysics Data System (ADS)

    Gui, Guan; Xu, Li; Adachi, Fumiyuki

    2014-12-01

    Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.

  12. Simultaneous compression and encryption of closely resembling images: application to video sequences and polarimetric images.

    PubMed

    Aldossari, M; Alfalou, A; Brosseau, C

    2014-09-22

    This study presents and validates an optimized method of simultaneous compression and encryption designed to process images with close spectra. This approach is well adapted to the compression and encryption of images of a time-varying scene but also to static polarimetric images. We use the recently developed spectral fusion method [Opt. Lett.35, 1914-1916 (2010)] to deal with the close resemblance of the images. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. We use a root-mean-square (RMS) optimization criterion to treat compression. Image encryption is realized at different security levels. Firstly, we add a specific encryption level which is related to the different areas of the spectral plane, and then, we make use of several random phase keys. An in-depth analysis at the spectral fusion methodology is done in order to find a good trade-off between the compression rate and the quality of the reconstructed images. Our new proposal spectral shift allows us to minimize the image overlap. We further analyze the influence of the spectral shift on the reconstructed image quality and compression rate. The performance of the multiple-image optical compression and encryption method is verified by analyzing several video sequences and polarimetric images.

  13. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  14. Securing While Sampling in Wireless Body Area Networks With Application to Electrocardiography.

    PubMed

    Dautov, Ruslan; Tsouri, Gill R

    2016-01-01

    Stringent resource constraints and broadcast transmission in wireless body area network raise serious security concerns when employed in biomedical applications. Protecting data transmission where any minor alteration is potentially harmful is of significant importance in healthcare. Traditional security methods based on public or private key infrastructure require considerable memory and computational resources, and present an implementation obstacle in compact sensor nodes. This paper proposes a lightweight encryption framework augmenting compressed sensing with wireless physical layer security. Augmenting compressed sensing to secure information is based on the use of the measurement matrix as an encryption key, and allows for incorporating security in addition to compression at the time of sampling an analog signal. The proposed approach eliminates the need for a separate encryption algorithm, as well as the predeployment of a key thereby conserving sensor node's limited resources. The proposed framework is evaluated using analysis, simulation, and experimentation applied to a wireless electrocardiogram setup consisting of a sensor node, an access point, and an eavesdropper performing a proximity attack. Results show that legitimate communication is reliable and secure given that the eavesdropper is located at a reasonable distance from the sensor node and the access point.

  15. Training-free compressed sensing for wireless neural recording using analysis model and group weighted {{\\ell}_{1}} -minimization

    NASA Astrophysics Data System (ADS)

    Sun, Biao; Zhao, Wenfeng; Zhu, Xinshan

    2017-06-01

    Objective. Data compression is crucial for resource-constrained wireless neural recording applications with limited data bandwidth, and compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, an analytical, training-free CS recovery method, termed group weighted analysis {{\\ell}1} -minimization (GWALM), is proposed for wireless neural recording. Approach. The GWALM method consists of three parts: (1) the analysis model is adopted to enforce sparsity of the neural signals, therefore overcoming the drawbacks of conventional synthesis models and enhancing the recovery performance. (2) A multi-fractional-order difference matrix is constructed as the analysis operator, thus avoiding the dictionary learning procedure and reducing the need for previously acquired data and computational complexities. (3) By exploiting the statistical properties of the analysis coefficients, a group weighting approach is developed to enhance the performance of analysis {{\\ell}1} -minimization. Main results. Experimental results on synthetic and real datasets reveal that the proposed approach outperforms state-of-the-art CS-based methods in terms of both spike recovery quality and classification accuracy. Significance. Energy and area efficiency of the GWALM make it an ideal candidate for resource-constrained, large scale wireless neural recording applications. The training-free feature of the GWALM further improves its robustness to spike shape variation, thus making it more practical for long term wireless neural recording.

  16. Training-free compressed sensing for wireless neural recording using analysis model and group weighted [Formula: see text]-minimization.

    PubMed

    Sun, Biao; Zhao, Wenfeng; Zhu, Xinshan

    2017-06-01

    Data compression is crucial for resource-constrained wireless neural recording applications with limited data bandwidth, and compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, an analytical, training-free CS recovery method, termed group weighted analysis [Formula: see text]-minimization (GWALM), is proposed for wireless neural recording. The GWALM method consists of three parts: (1) the analysis model is adopted to enforce sparsity of the neural signals, therefore overcoming the drawbacks of conventional synthesis models and enhancing the recovery performance. (2) A multi-fractional-order difference matrix is constructed as the analysis operator, thus avoiding the dictionary learning procedure and reducing the need for previously acquired data and computational complexities. (3) By exploiting the statistical properties of the analysis coefficients, a group weighting approach is developed to enhance the performance of analysis [Formula: see text]-minimization. Experimental results on synthetic and real datasets reveal that the proposed approach outperforms state-of-the-art CS-based methods in terms of both spike recovery quality and classification accuracy. Energy and area efficiency of the GWALM make it an ideal candidate for resource-constrained, large scale wireless neural recording applications. The training-free feature of the GWALM further improves its robustness to spike shape variation, thus making it more practical for long term wireless neural recording.

  17. FRESCO: Referential compression of highly similar sequences.

    PubMed

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  18. Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow

    NASA Technical Reports Server (NTRS)

    Berger, Marsha; Aftosmis, Michael J.

    2011-01-01

    The proposed paper reports advances in developing a method for high Reynolds number compressible viscous flow simulations using a Cartesian cut-cell method with embedded boundaries. This preliminary work focuses on accuracy of the discretization near solid wall boundaries. A model problem is used to investigate the accuracy of various difference stencils for second derivatives and to guide development of the discretization of the viscous terms in the Navier-Stokes equations. Near walls, quadratic reconstruction in the wall-normal direction is used to mitigate mesh irregularity and yields smooth skin friction distributions along the body. Multigrid performance is demonstrated using second-order coarse grid operators combined with second-order restriction and prolongation operators. Preliminary verification and validation for the method is demonstrated using flat-plate and airfoil examples at compressible Mach numbers. Simulations of flow on laminar and turbulent flat plates show skin friction and velocity profiles compared with those from boundary-layer theory. Airfoil simulations are performed at laminar and turbulent Reynolds numbers with results compared to both other simulations and experimental data

  19. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing.

    PubMed

    Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting

    2018-03-18

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  20. Towards a new tool for the evaluation of the quality of ultrasound compressed images.

    PubMed

    Delgorge, Cécile; Rosenberger, Christophe; Poisson, Gérard; Vieyres, Pierre

    2006-11-01

    This paper presents a new tool for the evaluation of ultrasound image compression. The goal is to measure the image quality as easily as with a statistical criterion, and with the same reliability as the one provided by the medical assessment. An initial experiment is proposed to medical experts and represents our reference value for the comparison of evaluation criteria. Twenty-one statistical criteria are selected from the literature. A cumulative absolute similarity measure is defined as a distance between the criterion to evaluate and the reference value. A first fusion method based on a linear combination of criteria is proposed to improve the results obtained by each of them separately. The second proposed approach combines different statistical criteria and uses the medical assessment in a training phase with a support vector machine. Some experimental results are given and show the benefit of fusion.

  1. Compression of Encrypted Images Using Set Partitioning In Hierarchical Trees Algorithm

    NASA Astrophysics Data System (ADS)

    Sarika, G.; Unnithan, Harikuttan; Peter, Smitha

    2011-10-01

    When it is desired to transmit redundant data over an insecure channel, it is customary to encrypt the data. For encrypted real world sources such as images, the use of Markova properties in the slepian-wolf decoder does not work well for gray scale images. Here in this paper we propose a method of compression of an encrypted image. In the encoder section, the image is first encrypted and then it undergoes compression in resolution. The cipher function scrambles only the pixel values, but does not shuffle the pixel locations. After down sampling, each sub-image is encoded independently and the resulting syndrome bits are transmitted. The received image undergoes a joint decryption and decompression in the decoder section. By using the local statistics based on the image, it is recovered back. Here the decoder gets only lower resolution version of the image. In addition, this method provides only partial access to the current source at the decoder side, which improves the decoder's learning of the source statistics. The source dependency is exploited to improve the compression efficiency. This scheme provides better coding efficiency and less computational complexity.

  2. Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong

    2016-08-01

    Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.

  3. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  4. Acoustic emission signal processing for rolling bearing running state assessment using compressive sensing

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Wu, Xing; Mao, Jianlin; Liu, Xiaoqin

    2017-07-01

    In the signal processing domain, there has been growing interest in using acoustic emission (AE) signals for the fault diagnosis and condition assessment instead of vibration signals, which has been advocated as an effective technique for identifying fracture, crack or damage. The AE signal has high frequencies up to several MHz which can avoid some signals interference, such as the parts of bearing (i.e. rolling elements, ring and so on) and other rotating parts of machine. However, acoustic emission signal necessitates advanced signal sampling capabilities and requests ability to deal with large amounts of sampling data. In this paper, compressive sensing (CS) is introduced as a processing framework, and then a compressive features extraction method is proposed. We use it for extracting the compressive features from compressively-sensed data directly, and also prove the energy preservation properties. First, we study the AE signals under the CS framework. The sparsity of AE signal of the rolling bearing is checked. The observation and reconstruction of signal is also studied. Second, we present a method of extraction AE compressive feature (AECF) from compressively-sensed data directly. We demonstrate the energy preservation properties and the processing of the extracted AECF feature. We assess the running state of the bearing using the AECF trend. The AECF trend of the running state of rolling bearings is consistent with the trend of traditional features. Thus, the method is an effective way to evaluate the running trend of rolling bearings. The results of the experiments have verified that the signal processing and the condition assessment based on AECF is simpler, the amount of data required is smaller, and the amount of computation is greatly reduced.

  5. MIMO channel estimation and evaluation for airborne traffic surveillance in cellular networks

    NASA Astrophysics Data System (ADS)

    Vahidi, Vahid; Saberinia, Ebrahim

    2018-01-01

    A channel estimation (CE) procedure based on compressed sensing is proposed to estimate the multiple-input multiple-output sparse channel for traffic data transmission from drones to ground stations. The proposed procedure consists of an offline phase and a real-time phase. In the offline phase, a pilot arrangement method, which considers the interblock and block mutual coherence simultaneously, is proposed. The real-time phase contains three steps. At the first step, it obtains the priori estimate of the channel by block orthogonal matching pursuit; afterward, it utilizes that estimated channel to calculate the linear minimum mean square error of the received pilots. Finally, the block compressive sampling matching pursuit utilizes the enhanced received pilots to estimate the channel more accurately. The performance of the CE procedure is evaluated by simulating the transmission of traffic data through the communication channel and evaluating its fidelity for car detection after demodulation. Simulation results indicate that the proposed CE technique enhances the performance of the car detection in a traffic image considerably.

  6. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    PubMed

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  7. Evaluation of the robustness of the preprocessing technique improving reversible compressibility of CT images: Tested on various CT examinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung

    2013-10-15

    Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique wasmore » developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.« less

  8. Deep learning with domain adaptation for accelerated projection-reconstruction MR.

    PubMed

    Han, Yoseob; Yoo, Jaejun; Kim, Hak Hee; Shin, Hee Jung; Sung, Kyunghyun; Ye, Jong Chul

    2018-09-01

    The radial k-space trajectory is a well-established sampling trajectory used in conjunction with magnetic resonance imaging. However, the radial k-space trajectory requires a large number of radial lines for high-resolution reconstruction. Increasing the number of radial lines causes longer acquisition time, making it more difficult for routine clinical use. On the other hand, if we reduce the number of radial lines, streaking artifact patterns are unavoidable. To solve this problem, we propose a novel deep learning approach with domain adaptation to restore high-resolution MR images from under-sampled k-space data. The proposed deep network removes the streaking artifacts from the artifact corrupted images. To address the situation given the limited available data, we propose a domain adaptation scheme that employs a pre-trained network using a large number of X-ray computed tomography (CT) or synthesized radial MR datasets, which is then fine-tuned with only a few radial MR datasets. The proposed method outperforms existing compressed sensing algorithms, such as the total variation and PR-FOCUSS methods. In addition, the calculation time is several orders of magnitude faster than the total variation and PR-FOCUSS methods. Moreover, we found that pre-training using CT or MR data from similar organ data is more important than pre-training using data from the same modality for different organ. We demonstrate the possibility of a domain-adaptation when only a limited amount of MR data is available. The proposed method surpasses the existing compressed sensing algorithms in terms of the image quality and computation time. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Observer detection of image degradation caused by irreversible data compression processes

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David

    1991-05-01

    Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.

  10. Network Compression as a Quality Measure for Protein Interaction Networks

    PubMed Central

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  11. Chest compression rate measurement from smartphone video.

    PubMed

    Engan, Kjersti; Hinna, Thomas; Ryen, Tom; Birkenes, Tonje S; Myklebust, Helge

    2016-08-11

    Out-of-hospital cardiac arrest is a life threatening situation where the first person performing cardiopulmonary resuscitation (CPR) most often is a bystander without medical training. Some existing smartphone apps can call the emergency number and provide for example global positioning system (GPS) location like Hjelp 113-GPS App by the Norwegian air ambulance. We propose to extend functionality of such apps by using the built in camera in a smartphone to capture video of the CPR performed, primarily to estimate the duration and rate of the chest compression executed, if any. All calculations are done in real time, and both the caller and the dispatcher will receive the compression rate feedback when detected. The proposed algorithm is based on finding a dynamic region of interest in the video frames, and thereafter evaluating the power spectral density by computing the fast fourier transform over sliding windows. The power of the dominating frequencies is compared to the power of the frequency area of interest. The system is tested on different persons, male and female, in different scenarios addressing target compression rates, background disturbances, compression with mouth-to-mouth ventilation, various background illuminations and phone placements. All tests were done on a recording Laerdal manikin, providing true compression rates for comparison. Overall, the algorithm is seen to be promising, and it manages a number of disturbances and light situations. For target rates at 110 cpm, as recommended during CPR, the mean error in compression rate (Standard dev. over tests in parentheses) is 3.6 (0.8) for short hair bystanders, and 8.7 (6.0) including medium and long haired bystanders. The presented method shows that it is feasible to detect the compression rate of chest compressions performed by a bystander by placing the smartphone close to the patient, and using the built-in camera combined with a video processing algorithm performed real-time on the device.

  12. SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo

    2017-03-01

    State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.

  13. About a method for compressing x-ray computed microtomography data

    NASA Astrophysics Data System (ADS)

    Mancini, Lucia; Kourousias, George; Billè, Fulvio; De Carlo, Francesco; Fidler, Aleš

    2018-04-01

    The management of scientific data is of high importance especially for experimental techniques that produce big data volumes. Such a technique is x-ray computed tomography (CT) and its community has introduced advanced data formats which allow for better management of experimental data. Rather than the organization of the data and the associated meta-data, the main topic on this work is data compression and its applicability to experimental data collected from a synchrotron-based CT beamline at the Elettra-Sincrotrone Trieste facility (Italy) and studies images acquired from various types of samples. This study covers parallel beam geometry, but it could be easily extended to a cone-beam one. The reconstruction workflow used is the one currently in operation at the beamline. Contrary to standard image compression studies, this manuscript proposes a systematic framework and workflow for the critical examination of different compression techniques and does so by applying it to experimental data. Beyond the methodology framework, this study presents and examines the use of JPEG-XR in combination with HDF5 and TIFF formats providing insights and strategies on data compression and image quality issues that can be used and implemented at other synchrotron facilities and laboratory systems. In conclusion, projection data compression using JPEG-XR appears as a promising, efficient method to reduce data file size and thus to facilitate data handling and image reconstruction.

  14. A new hyperspectral image compression paradigm based on fusion

    NASA Astrophysics Data System (ADS)

    Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.

  15. Novel modes and adaptive block scanning order for intra prediction in AV1

    NASA Astrophysics Data System (ADS)

    Hadar, Ofer; Shleifer, Ariel; Mukherjee, Debargha; Joshi, Urvang; Mazar, Itai; Yuzvinsky, Michael; Tavor, Nitzan; Itzhak, Nati; Birman, Raz

    2017-09-01

    The demand for streaming video content is on the rise and growing exponentially. Networks bandwidth is very costly and therefore there is a constant effort to improve video compression rates and enable the sending of reduced data volumes while retaining quality of experience (QoE). One basic feature that utilizes the spatial correlation of pixels for video compression is Intra-Prediction, which determines the codec's compression efficiency. Intra prediction enables significant reduction of the Intra-Frame (I frame) size and, therefore, contributes to efficient exploitation of bandwidth. In this presentation, we propose new Intra-Prediction algorithms that improve the AV1 prediction model and provide better compression ratios. Two (2) types of methods are considered: )1( New scanning order method that maximizes spatial correlation in order to reduce prediction error; and )2( New Intra-Prediction modes implementation in AVI. Modern video coding standards, including AVI codec, utilize fixed scan orders in processing blocks during intra coding. The fixed scan orders typically result in residual blocks with high prediction error mainly in blocks with edges. This means that the fixed scan orders cannot fully exploit the content-adaptive spatial correlations between adjacent blocks, thus the bitrate after compression tends to be large. To reduce the bitrate induced by inaccurate intra prediction, the proposed approach adaptively chooses the scanning order of blocks according to criteria of firstly predicting blocks with maximum number of surrounding, already Inter-Predicted blocks. Using the modified scanning order method and the new modes has reduced the MSE by up to five (5) times when compared to conventional TM mode / Raster scan and up to two (2) times when compared to conventional CALIC mode / Raster scan, depending on the image characteristics (which determines the percentage of blocks predicted with Inter-Prediction, which in turn impacts the efficiency of the new scanning method). For the same cases, the PSNR was shown to improve by up to 7.4dB and up to 4 dB, respectively. The new modes have yielded 5% improvement in BD-Rate over traditionally used modes, when run on K-Frame, which is expected to yield 1% of overall improvement.

  16. Compressed-sensing-based content-driven hierarchical reconstruction: Theory and application to C-arm cone-beam tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langet, Hélène; Laboratoire des Signaux et Systèmes, CentraleSupélec, Gif-sur-Yvette F-91192; Center for Visual Computing, CentraleSupélec, Châtenay-Malabry F-92295

    2015-09-15

    Purpose: This paper addresses the reconstruction of x-ray cone-beam computed tomography (CBCT) for interventional C-arm systems. Subsampling of CBCT is a significant issue with C-arms due to their slow rotation and to the low frame rate of their flat panel x-ray detectors. The aim of this work is to propose a novel method able to handle the subsampling artifacts generally observed with analytical reconstruction, through a content-driven hierarchical reconstruction based on compressed sensing. Methods: The central idea is to proceed with a hierarchical method where the most salient features (high intensities or gradients) are reconstructed first to reduce the artifactsmore » these features induce. These artifacts are addressed first because their presence contaminates less salient features. Several hierarchical schemes aiming at streak artifacts reduction are introduced for C-arm CBCT: the empirical orthogonal matching pursuit approach with the ℓ{sub 0} pseudonorm for reconstructing sparse vessels; a convex variant using homotopy with the ℓ{sub 1}-norm constraint of compressed sensing, for reconstructing sparse vessels over a nonsparse background; homotopy with total variation (TV); and a novel empirical extension to nonlinear diffusion (NLD). Such principles are implemented with penalized iterative filtered backprojection algorithms. For soft-tissue imaging, the authors compare the use of TV and NLD filters as sparsity constraints, both optimized with the alternating direction method of multipliers, using a threshold for TV and a nonlinear weighting for NLD. Results: The authors show on simulated data that their approach provides fast convergence to good approximations of the solution of the TV-constrained minimization problem introduced by the compressed sensing theory. Using C-arm CBCT clinical data, the authors show that both TV and NLD can deliver improved image quality by reducing streaks. Conclusions: A flexible compressed-sensing-based algorithmic approach is proposed that is able to accommodate for a wide range of constraints. It is successfully applied to C-arm CBCT images that may not be so well approximated by piecewise constant functions.« less

  17. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks

    PubMed Central

    Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-01-01

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152

  18. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    PubMed

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  19. Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.

    PubMed

    Yang, Yimin; Wu, Q M Jonathan

    2016-11-01

    The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.

  20. Data compression strategies for ptychographic diffraction imaging

    NASA Astrophysics Data System (ADS)

    Loetgering, Lars; Rose, Max; Treffer, David; Vartanyants, Ivan A.; Rosenhahn, Axel; Wilhein, Thomas

    2017-12-01

    Ptychography is a computational imaging method for solving inverse scattering problems. To date, the high amount of redundancy present in ptychographic data sets requires computer memory that is orders of magnitude larger than the retrieved information. Here, we propose and compare data compression strategies that significantly reduce the amount of data required for wavefield inversion. Information metrics are used to measure the amount of data redundancy present in ptychographic data. Experimental results demonstrate the technique to be memory efficient and stable in the presence of systematic errors such as partial coherence and noise.

  1. Current Results and Proposed Activities in Microgravity Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Polezhaev, V. I.

    1996-01-01

    The Institute for Problems in Mechanics' Laboratory work in mathematical and physical modelling of fluid mechanics develops models, methods, and software for analysis of fluid flow, instability analysis, direct numerical modelling and semi-empirical models of turbulence, as well as experimental research and verification of these models and their applications in technological fluid dynamics, microgravity fluid mechanics, geophysics, and a number of engineering problems. This paper presents an overview of the results in microgravity fluid dynamics research during the last two years. Nonlinear problems of weakly compressible and compressible fluid flows are discussed.

  2. MacCormack's technique-based pressure reconstruction approach for PIV data in compressible flows with shocks

    NASA Astrophysics Data System (ADS)

    Liu, Shun; Xu, Jinglei; Yu, Kaikai

    2017-06-01

    This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.

  3. Near-wall modeling of compressible turbulent flow

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.

    1991-01-01

    A near-wall two-equation model for compressible flows is proposed. The model is formulated by relaxing the assumption of dynamic field similarity between compressible and incompressible flows. A postulate is made to justify the extension of incompressible models to ammount for compressibility effects. This requires formulation the turbulent kinetic energy equation in a form similar to its incompressible counterpart. As a result, the compressible dissipation function has to be split into a solenoidal part, which is not sensitive to changes of compressibility indicators, and a dilatational part, which is directly affected by these changes. A model with an explicit dependence on the turbulent Mach number is proposed for the dilatational dissipation rate.

  4. Adaptive bit plane quadtree-based block truncation coding for image compression

    NASA Astrophysics Data System (ADS)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  5. NIR hyperspectral compressive imager based on a modified Fabry–Perot resonator

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac; Blumberg, Dan G.; Stern, Adrian

    2018-04-01

    The acquisition of hyperspectral (HS) image datacubes with available 2D sensor arrays involves a time consuming scanning process. In the last decade, several compressive sensing (CS) techniques were proposed to reduce the HS acquisition time. In this paper, we present a method for near-infrared (NIR) HS imaging which relies on our rapid CS resonator spectroscopy technique. Within the framework of CS, and by using a modified Fabry–Perot resonator, a sequence of spectrally modulated images is used to recover NIR HS datacubes. Owing to the innovative CS design, we demonstrate the ability to reconstruct NIR HS images with hundreds of spectral bands from an order of magnitude fewer measurements, i.e. with a compression ratio of about 10:1. This high compression ratio, together with the high optical throughput of the system, facilitates fast acquisition of large HS datacubes.

  6. Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements

    DOE PAGES

    Wang, Liming; Huang, Jiaji; Yuan, Xin; ...

    2015-09-17

    The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are establishedmore » based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.« less

  7. Fast Compressive Tracking.

    PubMed

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  8. Quantum thermostatted disordered systems and sensitivity under compression

    NASA Astrophysics Data System (ADS)

    Vanzan, Tommaso; Rondoni, Lamberto

    2018-03-01

    A one-dimensional quantum system with off diagonal disorder, consisting of a sample of conducting regions randomly interspersed within potential barriers is considered. Results mainly concerning the large N limit are presented. In particular, the effect of compression on the transmission coefficient is investigated. A numerical method to simulate such a system, for a physically relevant number of barriers, is proposed. It is shown that the disordered model converges to the periodic case as N increases, with a rate of convergence which depends on the disorder degree. Compression always leads to a decrease of the transmission coefficient which may be exploited to design nano-technological sensors. Effective choices for the physical parameters to improve the sensitivity are provided. Eventually large fluctuations and rate functions are analysed.

  9. Cloud solution for histopathological image analysis using region of interest based compression.

    PubMed

    Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana

    2017-07-01

    Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.

  10. The analysis and modelling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1991-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  11. The analysis and modeling of dilatational terms in compressible turbulence

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.; Kreiss, H. O.

    1989-01-01

    It is shown that the dilatational terms that need to be modeled in compressible turbulence include not only the pressure-dilatation term but also another term - the compressible dissipation. The nature of these dilatational terms in homogeneous turbulence is explored by asymptotic analysis of the compressible Navier-Stokes equations. A non-dimensional parameter which characterizes some compressible effects in moderate Mach number, homogeneous turbulence is identified. Direct numerical simulations (DNS) of isotropic, compressible turbulence are performed, and their results are found to be in agreement with the theoretical analysis. A model for the compressible dissipation is proposed; the model is based on the asymptotic analysis and the direct numerical simulations. This model is calibrated with reference to the DNS results regarding the influence of compressibility on the decay rate of isotropic turbulence. An application of the proposed model to the compressible mixing layer has shown that the model is able to predict the dramatically reduced growth rate of the compressible mixing layer.

  12. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620

  13. An Adaptive Data Gathering Scheme for Multi-Hop Wireless Sensor Networks Based on Compressed Sensing and Network Coding.

    PubMed

    Yin, Jun; Yang, Yuwang; Wang, Lei

    2016-04-01

    Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.

  14. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    PubMed

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  15. Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video

    NASA Astrophysics Data System (ADS)

    Yeo, Boon-Lock; Liu, Bede

    1996-03-01

    Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.

  16. Radiological Image Compression

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  17. Resource efficient data compression algorithms for demanding, WSN based biomedical applications.

    PubMed

    Antonopoulos, Christos P; Voros, Nikolaos S

    2016-02-01

    During the last few years, medical research areas of critical importance such as Epilepsy monitoring and study, increasingly utilize wireless sensor network technologies in order to achieve better understanding and significant breakthroughs. However, the limited memory and communication bandwidth offered by WSN platforms comprise a significant shortcoming to such demanding application scenarios. Although, data compression can mitigate such deficiencies there is a lack of objective and comprehensive evaluation of relative approaches and even more on specialized approaches targeting specific demanding applications. The research work presented in this paper focuses on implementing and offering an in-depth experimental study regarding prominent, already existing as well as novel proposed compression algorithms. All algorithms have been implemented in a common Matlab framework. A major contribution of this paper, that differentiates it from similar research efforts, is the employment of real world Electroencephalography (EEG) and Electrocardiography (ECG) datasets comprising the two most demanding Epilepsy modalities. Emphasis is put on WSN applications, thus the respective metrics focus on compression rate and execution latency for the selected datasets. The evaluation results reveal significant performance and behavioral characteristics of the algorithms related to their complexity and the relative negative effect on compression latency as opposed to the increased compression rate. It is noted that the proposed schemes managed to offer considerable advantage especially aiming to achieve the optimum tradeoff between compression rate-latency. Specifically, proposed algorithm managed to combine highly completive level of compression while ensuring minimum latency thus exhibiting real-time capabilities. Additionally, one of the proposed schemes is compared against state-of-the-art general-purpose compression algorithms also exhibiting considerable advantages as far as the compression rate is concerned. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Resistance Curves in the Tensile and Compressive Longitudinal Failure of Composites

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Catalanotti, Giuseppe; Davila, Carlos G.; Lopes, Claudio S.; Bessa, Miguel A.; Xavier, Jose C.

    2010-01-01

    This paper presents a new methodology to measure the crack resistance curves associated with fiber-dominated failure modes in polymer-matrix composites. These crack resistance curves not only characterize the fracture toughness of the material, but are also the basis for the identification of the parameters of the softening laws used in the analytical and numerical simulation of fracture in composite materials. The method proposed is based on the identification of the crack tip location by the use of Digital Image Correlation and the calculation of the J-integral directly from the test data using a simple expression derived for cross-ply composite laminates. It is shown that the results obtained using the proposed methodology yield crack resistance curves similar to those obtained using FEM-based methods in compact tension carbon-epoxy specimens. However, it is also shown that the Digital Image Correlation based technique can be used to extract crack resistance curves in compact compression tests for which FEM-based techniques are inadequate.

  19. An implicit numerical model for multicomponent compressible two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Firoozabadi, Abbas

    2015-11-01

    We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.

  20. Application of a dual-resolution voxelization scheme to compressed-sensing (CS)-based iterative reconstruction in digital tomosynthesis (DTS)

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.

    2018-02-01

    In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).

  1. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua

    2014-10-01

    The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.

  2. SeqCompress: an algorithm for biological sequence compression.

    PubMed

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Competitive Parallel Processing For Compression Of Data

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Fender, Antony R. H.

    1990-01-01

    Momentarily-best compression algorithm selected. Proposed competitive-parallel-processing system compresses data for transmission in channel of limited band-width. Likely application for compression lies in high-resolution, stereoscopic color-television broadcasting. Data from information-rich source like color-television camera compressed by several processors, each operating with different algorithm. Referee processor selects momentarily-best compressed output.

  4. A theoretical approach to quantify the effect of random cracks on rock deformation in uniaxial compression

    NASA Astrophysics Data System (ADS)

    Zhou, Shuwei; Xia, Caichu; Zhou, Yu

    2018-06-01

    Cracks have a significant effect on the uniaxial compression of rocks. Thus, a theoretically analytical approach was proposed to assess the effects of randomly distributed cracks on the effective Young’s modulus during the uniaxial compression of rocks. Each stage of the rock failure during uniaxial compression was analyzed and classified. The analytical approach for the effective Young’s modulus of a rock with only a single crack was derived while considering the three crack states under stress, namely, opening, closure-sliding, and closure-nonsliding. The rock was then assumed to have many cracks with randomly distributed direction, and the effect of crack shape and number during each stage of the uniaxial compression on the effective Young’s modulus was considered. Thus, the approach for the effective Young’s modulus was used to obtain the whole stress-strain process of uniaxial compression. Afterward, the proposed approach was employed to analyze the effects of related parameters on the whole stress-stain curve. The proposed approach was eventually compared with some existing rock tests to validate its applicability and feasibility. The proposed approach has clear physical meaning and shows favorable agreement with the rock test results.

  5. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.

    PubMed

    Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A

    2018-01-01

    Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).

  6. Multiple-image hiding using super resolution reconstruction in high-frequency domains

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua

    2017-12-01

    In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.

  7. Detection of Copy-Rotate-Move Forgery Using Zernike Moments

    NASA Astrophysics Data System (ADS)

    Ryu, Seung-Jin; Lee, Min-Jeong; Lee, Heung-Kyu

    As forgeries have become popular, the importance of forgery detection is much increased. Copy-move forgery, one of the most commonly used methods, copies a part of the image and pastes it into another part of the the image. In this paper, we propose a detection method of copy-move forgery that localizes duplicated regions using Zernike moments. Since the magnitude of Zernike moments is algebraically invariant against rotation, the proposed method can detect a forged region even though it is rotated. Our scheme is also resilient to the intentional distortions such as additive white Gaussian noise, JPEG compression, and blurring. Experimental results demonstrate that the proposed scheme is appropriate to identify the forged region by copy-rotate-move forgery.

  8. Determination of Compressive Properties of Fibre Composites in the In-plane Direction According to ISO 14126. Part 1: A Round Robin Test

    NASA Astrophysics Data System (ADS)

    Schneider, Konrad

    2007-01-01

    Over the years different tests are established to characterise the compressive properties of composites in the in-plane direction. The international standard ISO 14126 (2000) (Fibre-reinforced plastic composites — determination of compressive properties in the in-plane direction, ISO 14126: 1999 (E), Faserverstärkte Kunststoffe, Bestimmung der Druckeigenschaften in der Laminatebene, DIN EN ISO 14126: 2000-12) tries to standardise these tests. The described wide range of arrangements enables to continue with the present practice to a large extent. But the standard doesn’t say anything about the precision of the method. Four labs performed a round robin test to check the precision and reproducibility of the Celanese-type arrangement for different composite materials, structures and dimensions. The test procedure is critically discussed and some proposals for the applicability of the method are derived. Mainly the advantages of optical monitoring the overall as well as the local strain of the specimen are demonstrated for the characterisation the failure process. By this method some of the reasons of unsatisfying reproducibility can be cleared up.

  9. Interior region-of-interest reconstruction using a small, nearly piecewise constant subregion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, Katsuyuki; Xu Jingyan; Srivastava, Somesh

    2011-03-15

    Purpose: To develop a method to reconstruct an interior region-of-interest (ROI) image with sufficient accuracy that uses differentiated backprojection (DBP) projection onto convex sets (POCS) [H. Kudo et al., ''Tiny a priori knowledge solves the interior problem in computed tomography'', Phys. Med. Biol. 53, 2207-2231 (2008)] and a tiny knowledge that there exists a nearly piecewise constant subregion. Methods: The proposed method first employs filtered backprojection to reconstruct an image on which a tiny region P with a small variation in the pixel values is identified inside the ROI. Total variation minimization [H. Yu and G. Wang, ''Compressed sensing basedmore » interior tomography'', Phys. Med. Biol. 54, 2791-2805 (2009); W. Han et al., ''A general total variation minimization theorem for compressed sensing based interior tomography'', Int. J. Biomed. Imaging 2009, Article 125871 (2009)] is then employed to obtain pixel values in the subregion P, which serve as a priori knowledge in the next step. Finally, DBP-POCS is performed to reconstruct f(x,y) inside the ROI. Clinical data and the reconstructed image obtained by an x-ray computed tomography system (SOMATOM Definition; Siemens Healthcare) were used to validate the proposed method. The detector covers an object with a diameter of {approx}500 mm. The projection data were truncated either moderately to limit the detector coverage to diameter 350 mm of the object or severely to cover diameter 199 mm. Images were reconstructed using the proposed method. Results: The proposed method provided ROI images with correct pixel values in all areas except near the edge of the ROI. The coefficient of variation, i.e., the root mean square error divided by the mean pixel values, was less than 2.0% or 4.5% with the moderate or severe truncation cases, respectively, except near the boundary of the ROI. Conclusions: The proposed method allows for reconstructing interior ROI images with sufficient accuracy with a tiny knowledge that there exists a nearly piecewise constant subregion.« less

  10. Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition

    NASA Astrophysics Data System (ADS)

    Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.

    2015-04-01

    Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.

  11. 2D-pattern matching image and video compression: theory, algorithms, and experiments.

    PubMed

    Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth

    2002-01-01

    In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.

  12. Quality Scalability Aware Watermarking for Visual Content.

    PubMed

    Bhowmik, Deepayan; Abhayaratne, Charith

    2016-11-01

    Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.

  13. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing

    PubMed Central

    2018-01-01

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642

  14. Embedded function methods for supersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    He, J.; Kazakia, J. Y.; Walker, J. D. A.

    1990-01-01

    The development of embedded functions to represent the mean velocity and total enthalpy distributions in the wall layer of a supersonic turbulent boundary layer is considered. The asymptotic scaling laws (in the limit of large Reynolds number) for high speed compressible flows are obtained to facilitate eventual implementation of the embedded functions in a general prediction method. A self-consistent asymptotic structure is derived, as well as a compressible law of the wall in which the velocity and total enthalpy are logarithmic within the overlap zone, but in the Howarth-Dorodnitsyn variable. Simple outer region turbulence models are proposed (some of which are modifications of existing incompressible models) to reflect the effects of compressibility. As a test of the methodology and the new turbulence models, a set of self-similar outer region profiles is obtained for constant pressure flow; these are then coupled with embedded functions in the wall layer. The composite profiles thus obtained are compared directly with experimental data and good agreement is obtained for flows with Mach numbers up to 10.

  15. Sparse signals recovered by non-convex penalty in quasi-linear systems.

    PubMed

    Cui, Angang; Li, Haiyang; Wen, Meng; Peng, Jigen

    2018-01-01

    The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonlinear compressed sensing is much more difficult, in fact also NP-hard, combinatorial problem, because of the discrete and discontinuous nature of the [Formula: see text]-norm and the nonlinearity. In order to get a convenience for sparse signal recovery, we set the nonlinear models have a smooth quasi-linear nature in this paper, and study a non-convex fraction function [Formula: see text] in this quasi-linear compressed sensing. We propose an iterative fraction thresholding algorithm to solve the regularization problem [Formula: see text] for all [Formula: see text]. With the change of parameter [Formula: see text], our algorithm could get a promising result, which is one of the advantages for our algorithm compared with some state-of-art algorithms. Numerical experiments show that our method performs much better than some state-of-the-art methods.

  16. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  17. ChIPWig: a random access-enabling lossless and lossy compression method for ChIP-seq data.

    PubMed

    Ravanmehr, Vida; Kim, Minji; Wang, Zhiying; Milenkovic, Olgica

    2018-03-15

    Chromatin immunoprecipitation sequencing (ChIP-seq) experiments are inexpensive and time-efficient, and result in massive datasets that introduce significant storage and maintenance challenges. To address the resulting Big Data problems, we propose a lossless and lossy compression framework specifically designed for ChIP-seq Wig data, termed ChIPWig. ChIPWig enables random access, summary statistics lookups and it is based on the asymptotic theory of optimal point density design for nonuniform quantizers. We tested the ChIPWig compressor on 10 ChIP-seq datasets generated by the ENCODE consortium. On average, lossless ChIPWig reduced the file sizes to merely 6% of the original, and offered 6-fold compression rate improvement compared to bigWig. The lossy feature further reduced file sizes 2-fold compared to the lossless mode, with little or no effects on peak calling and motif discovery using specialized NarrowPeaks methods. The compression and decompression speed rates are of the order of 0.2 sec/MB using general purpose computers. The source code and binaries are freely available for download at https://github.com/vidarmehr/ChIPWig-v2, implemented in C ++. milenkov@illinois.edu. Supplementary data are available at Bioinformatics online.

  18. Application of wavefield compressive sensing in surface wave tomography

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongwen; Li, Qingyang; Huang, Jianping

    2018-06-01

    Dense arrays allow sampling of seismic wavefield without significant aliasing, and surface wave tomography has benefitted from exploiting wavefield coherence among neighbouring stations. However, explicit or implicit assumptions about wavefield, irregular station spacing and noise still limit the applicability and resolution of current surface wave methods. Here, we propose to apply the theory of compressive sensing (CS) to seek a sparse representation of the surface wavefield using a plane-wave basis. Then we reconstruct the continuous surface wavefield on a dense regular grid before applying any tomographic methods. Synthetic tests demonstrate that wavefield CS improves robustness and resolution of Helmholtz tomography and wavefield gradiometry, especially when traditional approaches have difficulties due to sub-Nyquist sampling or complexities in wavefield.

  19. Lattice Anharmonicity and Thermal Conductivity from Compressive Sensing of First-Principles Calculations

    DOE PAGES

    Zhou, Fei; Nielson, Weston; Xia, Yi; ...

    2014-10-27

    First-principles prediction of lattice thermal conductivity K L of strongly anharmonic crystals is a long-standing challenge in solid state physics. Using recent advances in information science, we propose a systematic and rigorous approach to this problem, compressive sensing lattice dynamics (CSLD). Compressive sensing is used to select the physically important terms in the lattice dynamics model and determine their values in one shot. Non-intuitively, high accuracy is achieved when the model is trained on first-principles forces in quasi-random atomic configurations. The method is demonstrated for Si, NaCl, and Cu 12Sb 4S 13, an earth-abundant thermoelectric with strong phononphonon interactions thatmore » limit the room-temperature K L to values near the amorphous limit.« less

  20. An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal

    NASA Astrophysics Data System (ADS)

    Chen, Yong-fei; Gao, Hong-xia; Wu, Zi-ling; Kang, Hui

    2018-01-01

    Compressed sensing (CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation (NCSR), in terms of both visual results and quantitative measures.

  1. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries.

    PubMed

    Vasco, Enrique; Polop, Celia

    2017-12-22

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  2. Fuzzy Relational Compression Applied on Feature Vectors for Infant Cry Recognition

    NASA Astrophysics Data System (ADS)

    Reyes-Galaviz, Orion Fausto; Reyes-García, Carlos Alberto

    Data compression is always advisable when it comes to handling and processing information quickly and efficiently. There are two main problems that need to be solved when it comes to handling data; store information in smaller spaces and processes it in the shortest possible time. When it comes to infant cry analysis (ICA), there is always the need to construct large sound repositories from crying babies. Samples that have to be analyzed and be used to train and test pattern recognition algorithms; making this a time consuming task when working with uncompressed feature vectors. In this work, we show a simple, but efficient, method that uses Fuzzy Relational Product (FRP) to compresses the information inside a feature vector, building with this a compressed matrix that will help us recognize two kinds of pathologies in infants; Asphyxia and Deafness. We describe the sound analysis, which consists on the extraction of Mel Frequency Cepstral Coefficients that generate vectors which will later be compressed by using FRP. There is also a description of the infant cry database used in this work, along with the training and testing of a Time Delay Neural Network with the compressed features, which shows a performance of 96.44% with our proposed feature vector compression.

  3. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Vasco, Enrique; Polop, Celia

    2017-12-01

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  4. Lagrangian particle method for compressible fluid dynamics

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin-Chiang

    2018-06-01

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface/multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremal points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free interfaces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order. The method is generalizable to coupled hyperbolic-elliptic systems. Numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.

  5. iDoComp: a compression scheme for assembled genomes

    PubMed Central

    Ochoa, Idoia; Hernaez, Mikel; Weissman, Tsachy

    2015-01-01

    Motivation: With the release of the latest next-generation sequencing (NGS) machine, the HiSeq X by Illumina, the cost of sequencing a Human has dropped to a mere $4000. Thus we are approaching a milestone in the sequencing history, known as the $1000 genome era, where the sequencing of individuals is affordable, opening the doors to effective personalized medicine. Massive generation of genomic data, including assembled genomes, is expected in the following years. There is crucial need for compression of genomes guaranteed of performing well simultaneously on different species, from simple bacteria to humans, which will ease their transmission, dissemination and analysis. Further, most of the new genomes to be compressed will correspond to individuals of a species from which a reference already exists on the database. Thus, it is natural to propose compression schemes that assume and exploit the availability of such references. Results: We propose iDoComp, a compressor of assembled genomes presented in FASTA format that compresses an individual genome using a reference genome for both the compression and the decompression. In terms of compression efficiency, iDoComp outperforms previously proposed algorithms in most of the studied cases, with comparable or better running time. For example, we observe compression gains of up to 60% in several cases, including H.sapiens data, when comparing with the best compression performance among the previously proposed algorithms. Availability: iDoComp is written in C and can be downloaded from: http://www.stanford.edu/~iochoa/iDoComp.html (We also provide a full explanation on how to run the program and an example with all the necessary files to run it.). Contact: iochoa@stanford.edu Supplementary information: Supplementary Data are available at Bioinformatics online. PMID:25344501

  6. GPU-accelerated element-free reverse-time migration with Gauss points partition

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Jia, Xiaofeng; Qiang, Xiaodong

    2018-06-01

    An element-free method (EFM) has been demonstrated successfully in elasticity, heat conduction and fatigue crack growth problems. We present the theory of EFM and its numerical applications in seismic modelling and reverse time migration (RTM). Compared with the finite difference method and the finite element method, the EFM has unique advantages: (1) independence of grids in computation and (2) lower expense and more flexibility (because only the information of the nodes and the boundary of the concerned area is required). However, in EFM, due to improper computation and storage of some large sparse matrices, such as the mass matrix and the stiffness matrix, the method is difficult to apply to seismic modelling and RTM for a large velocity model. To solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition and utilise the graphics processing unit to improve the computational efficiency. We employ the compressed sparse row format to compress the intermediate large sparse matrices and attempt to simplify the operations by solving the linear equations with CULA solver. To improve the computation efficiency further, we introduce the concept of the lumped mass matrix. Numerical experiments indicate that the proposed method is accurate and more efficient than the regular EFM.

  7. A Compressed Sensing Based Method for Reducing the Sampling Time of A High Resolution Pressure Sensor Array System

    PubMed Central

    Sun, Chenglu; Li, Wei; Chen, Wei

    2017-01-01

    For extracting the pressure distribution image and respiratory waveform unobtrusively and comfortably, we proposed a smart mat which utilized a flexible pressure sensor array, printed electrodes and novel soft seven-layer structure to monitor those physiological information. However, in order to obtain high-resolution pressure distribution and more accurate respiratory waveform, it needs more time to acquire the pressure signal of all the pressure sensors embedded in the smart mat. In order to reduce the sampling time while keeping the same resolution and accuracy, a novel method based on compressed sensing (CS) theory was proposed. By utilizing the CS based method, 40% of the sampling time can be decreased by means of acquiring nearly one-third of original sampling points. Then several experiments were carried out to validate the performance of the CS based method. While less than one-third of original sampling points were measured, the correlation degree coefficient between reconstructed respiratory waveform and original waveform can achieve 0.9078, and the accuracy of the respiratory rate (RR) extracted from the reconstructed respiratory waveform can reach 95.54%. The experimental results demonstrated that the novel method can fit the high resolution smart mat system and be a viable option for reducing the sampling time of the pressure sensor array. PMID:28796188

  8. Investigation of Non-linear Chirp Coding for Improved Second Harmonic Pulse Compression.

    PubMed

    Arif, Muhammad; Ali, Muhammad Asim; Shaikh, Muhammad Mujtaba; Freear, Steven

    2017-08-01

    Non-linear frequency-modulated (NLFM) chirp coding was investigated to improve the pulse compression of the second harmonic chirp signal by reducing the range side lobe level. The problem of spectral overlap between the fundamental component and second harmonic component (SHC) was also investigated. Therefore, two methods were proposed: method I for the non-overlap condition and method II with the pulse inversion technique for the overlap harmonic condition. In both methods, the performance of the NLFM chirp was compared with that of the reference LFM chirp signals. Experiments were performed using a 2.25 MHz transducer mounted coaxially at a distance of 5 cm with a 1 mm hydrophone in a water tank, and the peak negative pressure of 300 kPa was set at the receiver. Both simulations and experimental results revealed that the peak side lobe level (PSL) of the compressed SHC of the NLFM chirp was improved by at least 13 dB in method I and 5 dB in method II when compared with the PSL of LFM chirps. Similarly, the integrated side lobe level (ISL) of the compressed SHC of the NLFM chirp was improved by at least 8 dB when compared with the ISL of LFM chirps. In both methods, the axial main lobe width of the compressed NLFM chirp was comparable to that of the LFM signals. The signal-to-noise ratio of the SHC of NLFM was improved by as much as 0.8 dB, when compared with the SHC of the LFM signal having the same energy level. The results also revealed the robustness of the NLFM chirp under a frequency-dependent attenuation of 0.5 dB/cm·MHz up to a penetration depth of 5 cm and a Doppler shift up to 12 kHz. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  9. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  10. A probabilistic mechanical model for prediction of aggregates’ size distribution effect on concrete compressive strength

    NASA Astrophysics Data System (ADS)

    Miled, Karim; Limam, Oualid; Sab, Karam

    2012-06-01

    To predict aggregates' size distribution effect on the concrete compressive strength, a probabilistic mechanical model is proposed. Within this model, a Voronoi tessellation of a set of non-overlapping and rigid spherical aggregates is used to describe the concrete microstructure. Moreover, aggregates' diameters are defined as statistical variables and their size distribution function is identified to the experimental sieve curve. Then, an inter-aggregate failure criterion is proposed to describe the compressive-shear crushing of the hardened cement paste when concrete is subjected to uniaxial compression. Using a homogenization approach based on statistical homogenization and on geometrical simplifications, an analytical formula predicting the concrete compressive strength is obtained. This formula highlights the effects of cement paste strength and aggregates' size distribution and volume fraction on the concrete compressive strength. According to the proposed model, increasing the concrete strength for the same cement paste and the same aggregates' volume fraction is obtained by decreasing both aggregates' maximum size and the percentage of coarse aggregates. Finally, the validity of the model has been discussed through a comparison with experimental results (15 concrete compressive strengths ranging between 46 and 106 MPa) taken from literature and showing a good agreement with the model predictions.

  11. On the Subgrid-Scale Modeling of Compressible Turbulence

    NASA Technical Reports Server (NTRS)

    Squires, Kyle; Zeman, Otto

    1990-01-01

    A new sub-grid scale model is presented for the large-eddy simulation of compressible turbulence. In the proposed model, compressibility contributions have been incorporated in the sub-grid scale eddy viscosity which, in the incompressible limit, reduce to a form originally proposed by Smagorinsky (1963). The model has been tested against a simple extension of the traditional Smagorinsky eddy viscosity model using simulations of decaying, compressible homogeneous turbulence. Simulation results show that the proposed model provides greater dissipation of the compressive modes of the resolved-scale velocity field than does the Smagorinsky eddy viscosity model. For an initial r.m.s. turbulence Mach number of 1.0, simulations performed using the Smagorinsky model become physically unrealizable (i.e., negative energies) because of the inability of the model to sufficiently dissipate fluctuations due to resolved scale velocity dilations. The proposed model is able to provide the necessary dissipation of this energy and maintain the realizability of the flow. Following Zeman (1990), turbulent shocklets are considered to dissipate energy independent of the Kolmogorov energy cascade. A possible parameterization of dissipation by turbulent shocklets for Large-Eddy Simulation is also presented.

  12. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    NASA Astrophysics Data System (ADS)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  13. Disk-based compression of data from genome sequencing.

    PubMed

    Grabowski, Szymon; Deorowicz, Sebastian; Roguski, Łukasz

    2015-05-01

    High-coverage sequencing data have significant, yet hard to exploit, redundancy. Most FASTQ compressors cannot efficiently compress the DNA stream of large datasets, since the redundancy between overlapping reads cannot be easily captured in the (relatively small) main memory. More interesting solutions for this problem are disk based, where the better of these two, from Cox et al. (2012), is based on the Burrows-Wheeler transform (BWT) and achieves 0.518 bits per base for a 134.0 Gbp human genome sequencing collection with almost 45-fold coverage. We propose overlapping reads compression with minimizers, a compression algorithm dedicated to sequencing reads (DNA only). Our method makes use of a conceptually simple and easily parallelizable idea of minimizers, to obtain 0.317 bits per base as the compression ratio, allowing to fit the 134.0 Gbp dataset into only 5.31 GB of space. http://sun.aei.polsl.pl/orcom under a free license. sebastian.deorowicz@polsl.pl Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing

    NASA Astrophysics Data System (ADS)

    Wan, Yuhong; Man, Tianlong; Wu, Fan; Kim, Myung K.; Wang, Dayong

    2016-11-01

    We present a new self-interference digital holographic approach that allows single-shot capturing three-dimensional intensity distribution of the spatially incoherent objects. The Fresnel incoherent correlation holographic microscopy is combined with parallel phase-shifting technique to instantaneously obtain spatially multiplexed phase-shifting holograms. The compressive-sensing-based reconstruction algorithm is implemented to reconstruct the original object from the under sampled demultiplexed holograms. The scheme is verified with simulations. The validity of the proposed method is experimentally demonstrated in an indirectly way by simulating the use of specific parallel phase-shifting recording device.

  15. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  16. Improving resolution of MR images with an adversarial network incorporating images with different contrast.

    PubMed

    Kim, Ki Hwan; Do, Won-Joon; Park, Sung-Hong

    2018-05-04

    The routine MRI scan protocol consists of multiple pulse sequences that acquire images of varying contrast. Since high frequency contents such as edges are not significantly affected by image contrast, down-sampled images in one contrast may be improved by high resolution (HR) images acquired in another contrast, reducing the total scan time. In this study, we propose a new deep learning framework that uses HR MR images in one contrast to generate HR MR images from highly down-sampled MR images in another contrast. The proposed convolutional neural network (CNN) framework consists of two CNNs: (a) a reconstruction CNN for generating HR images from the down-sampled images using HR images acquired with a different MRI sequence and (b) a discriminator CNN for improving the perceptual quality of the generated HR images. The proposed method was evaluated using a public brain tumor database and in vivo datasets. The performance of the proposed method was assessed in tumor and no-tumor cases separately, with perceptual image quality being judged by a radiologist. To overcome the challenge of training the network with a small number of available in vivo datasets, the network was pretrained using the public database and then fine-tuned using the small number of in vivo datasets. The performance of the proposed method was also compared to that of several compressed sensing (CS) algorithms. Incorporating HR images of another contrast improved the quantitative assessments of the generated HR image in reference to ground truth. Also, incorporating a discriminator CNN yielded perceptually higher image quality. These results were verified in regions of normal tissue as well as tumors for various MRI sequences from pseudo k-space data generated from the public database. The combination of pretraining with the public database and fine-tuning with the small number of real k-space datasets enhanced the performance of CNNs in in vivo application compared to training CNNs from scratch. The proposed method outperformed the compressed sensing methods. The proposed method can be a good strategy for accelerating routine MRI scanning. © 2018 American Association of Physicists in Medicine.

  17. Low dose reconstruction algorithm for differential phase contrast imaging.

    PubMed

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  18. Estimates of the effective compressive strength

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Osipenko, N. M.

    2017-07-01

    One problem encountered when determining the effective mechanical properties of large-scale objects, which requires calculating their strength in processes of mechanical interaction with other objects, is related to the possible variability in their local properties including those due to the action of external physical factors. Such problems comprise the determination of the effective strength of bodies one of whose dimensions (thickness) is significantly less than the others and whose properties and/or composition can vary with the thickness. A method for estimating the effective strength of such bodies is proposed and illustrated with example of ice cover strength under longitudinal compression with regard to a partial loss of the ice bearing capacity in deformation. The role of failure localization processes is shown. It is demonstrated that the proposed approach can be used in other problems of fracture mechanics.

  19. Brace Compression for Treatment of Pectus Carinatum

    PubMed Central

    Jung, Joonho; Chung, Sang Ho; Cho, Jin Kyoung; Park, Soo-Jin; Choi, Ho

    2012-01-01

    Background Surgery has been the classical treatment of pectus carinatum (PC), though compressive orthotic braces have shown successful results in recent years. We propose a non-operative approach using a lightweight, patient-controlled dynamic chest-bracing device. Materials and Methods Eighteen patients with PC were treated between July 2008 and June 2009. The treatment involved fitting of the brace, which was worn for at least 20 hours per day for 6 months. Their degree of satisfaction (1, no correction; 4, remarkable correction) was measured at 12 months after the initiation of the treatment. Results Thirteen (72.2%) patients completed the treatment (mean time, 4.9±1.4 months). In patients who completed the treatment, the mean overall satisfaction score was 3.73±0.39. The mean satisfaction score was 4, and there was no recurrence of pectus carinatum in patients who underwent the treatment for at least 6 months. Minimal recurrence of pectus carinatum after removal of the compressive brace occurred in 5 (38.5%) patients who stopped wearing the compressive brace at 4 months. Conclusion Compressive bracing results in a significant improvement in PC appearance in patients with an immature skeleton. However, patient compliance and diligent follow-up appear to be paramount for the success of this method of treatment. We currently offer this approach as a first-line treatment for PC. PMID:23275922

  20. Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.

    PubMed

    Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang

    2017-04-10

    In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.

  1. WE-EF-210-06: Ultrasound 2D Strain Measurement of Radiation-Induced Toxicity: Phantom and Ex Vivo Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T; Torres, M; Rossi, P

    Purpose: Radiation-induced fibrosis is a common long-term complication affecting many patients following cancer radiotherapy. Standard clinical assessment of subcutaneous fibrosis is subjective and often limited to visual inspection and palpation. Ultrasound strain imaging describes the compressibility (elasticity) of biological tissues. This study’s purpose is to develop a quantitative ultrasound strain imaging that can consistently and accurately characterize radiation-induce fibrosis. Methods: In this study, we propose a 2D strain imaging method based on deformable image registration. A combined affine and B-spline transformation model is used to calculate the displacement of tissue between pre-stress and post-stress B-mode image sequences. The 2D displacementmore » is estimated through a hybrid image similarity measure metric, which is a combination of the normalized mutual information (NMI) and normalized sum-of-squared-differences (NSSD). And 2D strain is obtained from the gradient of the local displacement. We conducted phantom experiments under various compressions and compared the performance of our proposed method with the standard cross-correlation (CC)- based method using the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. In addition, we conducted ex-vivo beef muscle experiment to further validate the proposed method. Results: For phantom study, the SNR and CNS values of the proposed method were significantly higher than those calculated from the CC-based method under different strains. The SNR and CNR increased by a factor of 1.9 and 2.7 comparing to the CC-based method. For the ex-vivo experiment, the CC-based method failed to work due to large deformation (6.7%), while our proposed method could accurately detect the stiffness change. Conclusion: We have developed a 2D strain imaging technique based on the deformable image registration, validated its accuracy and feasibility with phantom and ex-vivo data. This 2D ultrasound strain imaging technology may be valuable as physicians try to eliminate radiation-induce fibrosis and improve the therapeutic ratio of cancer radiotherapy. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313.« less

  2. An alternative noninvasive technique for the treatment of iatrogenic femoral pseudoaneurysms: stethoscope-guided compression.

    PubMed

    Korkmaz, Ahmet; Duyuler, Serkan; Kalayci, Süleyman; Türker, Pinar; Sahan, Ekrem; Maden, Orhan; Selçuk, Mehmet Timur

    2013-06-01

    latrogenic femoral pseudoaneurysm is a well-known vascular access site complication. Many invasive and noninvasive techniques have been proposed for the management of this relatively common complication. In this study, we aimed to evaluate efficiency and safety of stethoscope-guided compression as a novel noninvasive technique in the femoral pseudoaneurysm treatment. We prospectively included 29 consecutive patients with the diagnosis of femoral pseudoaneurysm who underwent coronary angiography. Patients with a clinical suspicion of femoral pseudoaneurysm were referred to colour Doppler ultrasound evaluation. The adult (large) side of the stethoscope was used to determine the location where the bruit was best heard. Then compression with the paediatric (small) side of the stethoscope was applied until the bruit could no longer be heard and compression was maintained for at least two sessions. Once the bruit disappeared, a 12-hour bed rest with external elastic compression was advised to the patients, in order to prevent disintegration of newly formed thrombosis. Mean pseudoaneurysm size was 1.7 +/- 0.4 cmx 3.0 +/- 0.9 cm and the mean duration of compression was 36.2 +/- 8.5 minutes.Twenty-six (89.6%) of these 29 patients were successfully treated with stethoscope-guided compression. In 18 patients (62%), the pseuodoaneurysms were successfully closed after 2 sessions of 15-minute compression. No severe complication was observed. Stethoscope-guided compression of femoral pseudoaneurysms is a safe and effective novel technique which requires less equipment and expertise than other contemporary methods.

  3. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    PubMed

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  4. Design and fabrication of a large area freestanding compressive stress SiO2 optical window

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Sangu, Suguru; Ono, Takahito

    2016-07-01

    This paper reports the design and fabrication of a 7.2 mm  ×  9.6 mm freestanding compressive stress SiO2 optical window without buckling. An application of the SiO2 optical window with and without liquid penetration has been demonstrated for an optical modulator and its optical characteristic is evaluated by using an image sensor. Two methods for SiO2 optical window fabrication have been presented. The first method is a combination of silicon etching and a thermal oxidation process. Silicon capillaries fabricated by deep reactive ion etching (deep RIE) are completely oxidized to form the SiO2 capillaries. The large compressive stress of the oxide causes buckling of the optical window, which is reduced by optimizing the design of the device structure. A magnetron-type RIE, which is investigated for deep SiO2 etching, is the second method. This method achieves deep SiO2 etching together with smooth surfaces, vertical shapes and a high aspect ratio. Additionally, in order to avoid a wrinkling optical window, the idea of a Peano curve structure has been proposed to achieve a freestanding compressive stress SiO2 optical window. A 7.2 mm  ×  9.6 mm optical window area without buckling integrated with an image sensor for an optical modulator has been successfully fabricated. The qualitative and quantitative evaluations have been performed in cases with and without liquid penetration.

  5. Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging

    PubMed Central

    Ravishankar, Saiprasad; Moore, Brian E.; Nadakuditi, Raj Rao; Fessler, Jeffrey A.

    2017-01-01

    Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery from undersampled measurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method. PMID:28092528

  6. Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.

    PubMed

    Ravishankar, Saiprasad; Moore, Brian E; Nadakuditi, Raj Rao; Fessler, Jeffrey A

    2017-05-01

    Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.

  7. Newmark-Beta-FDTD method for super-resolution analysis of time reversal waves

    NASA Astrophysics Data System (ADS)

    Shi, Sheng-Bing; Shao, Wei; Ma, Jing; Jin, Congjun; Wang, Xiao-Hua

    2017-09-01

    In this work, a new unconditionally stable finite-difference time-domain (FDTD) method with the split-field perfectly matched layer (PML) is proposed for the analysis of time reversal (TR) waves. The proposed method is very suitable for multiscale problems involving microstructures. The spatial and temporal derivatives in this method are discretized by the central difference technique and Newmark-Beta algorithm, respectively, and the derivation results in the calculation of a banded-sparse matrix equation. Since the coefficient matrix keeps unchanged during the whole simulation process, the lower-upper (LU) decomposition of the matrix needs to be performed only once at the beginning of the calculation. Moreover, the reverse Cuthill-Mckee (RCM) technique, an effective preprocessing technique in bandwidth compression of sparse matrices, is used to improve computational efficiency. The super-resolution focusing of TR wave propagation in two- and three-dimensional spaces is included to validate the accuracy and efficiency of the proposed method.

  8. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    NASA Astrophysics Data System (ADS)

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  9. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI.

    PubMed

    Chen, Feiyu; Zhang, Tao; Cheng, Joseph Y; Shi, Xinwei; Pauly, John M; Vasanawala, Shreyas S

    2017-11-01

    To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. On the use of adaptive multiresolution method with time-varying tolerance for compressible fluid flows

    NASA Astrophysics Data System (ADS)

    Soni, V.; Hadjadj, A.; Roussel, O.

    2017-12-01

    In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.

  11. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Deng, Xiao-Long

    2016-04-01

    In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.

  12. Stereo sequence transmission via conventional transmission channel

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Keun; Kim, Chul-Hwan; Han, Kyu-Phil; Ha, Yeong-Ho

    2003-05-01

    This paper proposes a new stereo sequence transmission technique using digital watermarking for compatibility with conventional 2D digital TV. We, generally, compress and transmit image sequence using temporal-spatial redundancy between stereo images. It is difficult for users with conventional digital TV to watch the transmitted 3D image sequence because many 3D image compression methods are different. To solve such a problem, in this paper, we perceive the concealment of new information of digital watermarking and conceal information of the other stereo image into three channels of the reference image. The main target of the technique presented is to let the people who have conventional DTV watch stereo movies at the same time. This goal is reached by considering the response of human eyes to color information and by using digital watermarking. To hide right images into left images effectively, bit-change in 3 color channels and disparity estimation according to the value of estimated disparity are performed. The proposed method assigns the displacement information of right image to each channel of YCbCr on DCT domain. Each LSB bit on YCbCr channels is changed according to the bits of disparity information. The performance of the presented methods is confirmed by several computer experiments.

  13. Evolution of saturated hydraulic conductivity with compression and degradation for municipal solid waste.

    PubMed

    Ke, Han; Hu, Jie; Xu, Xiao Bing; Wang, Wen Fang; Chen, Yun Min; Zhan, Liang Tong

    2017-07-01

    Municipal solid waste (MSW) specimens were created from synthetic fresh MSW degraded in a laboratory scale enhanced degradation reactor. The degree of degradation and saturated hydraulic conductivity k s were measured to study the effects of compression and degradation on k s of MSW. The degree of degradation was characterized through the ratio of cellulose content to lignin content (i.e., C/L) and the loss ratio of volatile solid (i.e., DOD). k s of MSW specimens with different degrees of degradation was measured through triaxial permeameter tests under different confining pressures. It was found that, when the degradation time increased from 0month to 18months, k s decreased less than 1 order of magnitude for specimens with the same porosity (i.e., n=0.63 or 0.69). However, for specimens with the same degradation time, the decrease of k s could reach 2 orders of magnitude with n decreasing from 0.8 to 0.6. It indicates that compression has much greater influence on the reduction of k s than that of degradation. Based on the Kozeny-Carman model and first-order kinetics, a prediction model related to n and C/L (or DOD) of MSW was proposed to analyze the evolution of k s with compression and biodegradation. The methods to determine the values of model parameters were also proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A compressibility correction of the pressure strain correlation model in turbulent flow

    NASA Astrophysics Data System (ADS)

    Klifi, Hechmi; Lili, Taieb

    2013-07-01

    This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the main one responsible for the changes of the turbulence structures that arise from structural compressibility effects. From the analysis and DNS results of Simone et al. and Sarkar, the compressibility effects on the homogeneous turbulence shear flow are parameterized by the gradient Mach number. Several experiment and DNS results suggest that the convective Mach number is appropriate to study the compressibility effects on the mixing layers. The extension of the LRR model recently proposed by Marzougui, Khlifi and Lili for the pressure-strain correlation gives results that are in disagreement with the DNS results of Sarkar for high-speed shear flows. This extension is revised to derive a turbulence model for the pressure-strain correlation in which the compressibility is included in the turbulent Mach number, the gradient Mach number and then the convective Mach number. The behavior of the proposed model is compared to the compressible model of Adumitroiae et al. for the pressure-strain correlation in two turbulent compressible flows: homogeneous shear flow and mixing layers. In compressible homogeneous shear flows, the predicted results are compared with the DNS data of Simone et al. and those of Sarkar. For low compressibility, the two compressible models are similar, but they become substantially different at high compressibilities. The proposed model shows good agreement with all cases of DNS results. Those of Adumitroiae et al. do not reflect any effect of a change in the initial value of the gradient Mach number on the Reynolds stress anisotropy. The models are used to simulate compressible mixing layers. Comparison of our predictions with those of Adumitroiae et al. and with the experimental results of Goebel et al. shows good qualitative agreement.

  15. A novel color image compression algorithm using the human visual contrast sensitivity characteristics

    NASA Astrophysics Data System (ADS)

    Yao, Juncai; Liu, Guizhong

    2017-03-01

    In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.

  16. On Chorin's Method for Stationary Solutions of the Oberbeck-Boussinesq Equation

    NASA Astrophysics Data System (ADS)

    Kagei, Yoshiyuki; Nishida, Takaaki

    2017-06-01

    Stability of stationary solutions of the Oberbeck-Boussinesq system (OB) and the corresponding artificial compressible system is considered. The latter system is obtained by adding the time derivative of the pressure with small parameter ɛ > 0 to the continuity equation of (OB), which was proposed by A. Chorin to find stationary solutions of (OB) numerically. Both systems have the same sets of stationary solutions and the system (OB) is obtained from the artificial compressible one as the limit ɛ \\to 0 which is a singular limit. It is proved that if a stationary solution of the artificial compressible system is stable for sufficiently small ɛ > 0, then it is also stable as a solution of (OB). The converse is proved provided that the velocity field of the stationary solution satisfies some smallness condition.

  17. View compensated compression of volume rendered images for remote visualization.

    PubMed

    Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S

    2009-07-01

    Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.

  18. Simulation study on compressive laminar optical tomography for cardiac action potential propagation

    PubMed Central

    Harada, Takumi; Tomii, Naoki; Manago, Shota; Kobayashi, Etsuko; Sakuma, Ichiro

    2017-01-01

    To measure the activity of tissue at the microscopic level, laminar optical tomography (LOT), which is a microscopic form of diffuse optical tomography, has been developed. However, obtaining sufficient recording speed to determine rapidly changing dynamic activity remains major challenges. For a high frame rate of the reconstructed data, we here propose a new LOT method using compressed sensing theory, called compressive laminar optical tomography (CLOT), in which novel digital micromirror device-based illumination and data reduction in a single reconstruction are applied. In the simulation experiments, the reconstructed volumetric images of the action potentials that were acquired from 5 measured images with random pattern featured a wave border at least to a depth of 2.5 mm. Consequently, it was shown that CLOT has potential for over 200 fps required for the cardiac electrophysiological phenomena. PMID:28736675

  19. Matched field localization based on CS-MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Shuangle; Tang, Ruichun; Peng, Linhui; Ji, Xiaopeng

    2016-04-01

    The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.

  20. Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares.

    PubMed

    Zhang, Cheng; Zhang, Tao; Li, Ming; Peng, Chengtao; Liu, Zhaobang; Zheng, Jian

    2016-06-18

    In order to reduce the radiation dose of CT (computed tomography), compressed sensing theory has been a hot topic since it provides the possibility of a high quality recovery from the sparse sampling data. Recently, the algorithm based on DL (dictionary learning) was developed to deal with the sparse CT reconstruction problem. However, the existing DL algorithm focuses on the minimization problem with the L2-norm regularization term, which leads to reconstruction quality deteriorating while the sampling rate declines further. Therefore, it is essential to improve the DL method to meet the demand of more dose reduction. In this paper, we replaced the L2-norm regularization term with the L1-norm one. It is expected that the proposed L1-DL method could alleviate the over-smoothing effect of the L2-minimization and reserve more image details. The proposed algorithm solves the L1-minimization problem by a weighting strategy, solving the new weighted L2-minimization problem based on IRLS (iteratively reweighted least squares). Through the numerical simulation, the proposed algorithm is compared with the existing DL method (adaptive dictionary based statistical iterative reconstruction, ADSIR) and other two typical compressed sensing algorithms. It is revealed that the proposed algorithm is more accurate than the other algorithms especially when further reducing the sampling rate or increasing the noise. The proposed L1-DL algorithm can utilize more prior information of image sparsity than ADSIR. By transforming the L2-norm regularization term of ADSIR with the L1-norm one and solving the L1-minimization problem by IRLS strategy, L1-DL could reconstruct the image more exactly.

  1. Methods of Investigation of Equations that Describe Waves in Tubes with Elastic Walls and Application of the Theory of Reversible and Weak Dissipative Shocks

    NASA Astrophysics Data System (ADS)

    Bakholdin, Igor

    2018-02-01

    Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.

  2. Rate and power efficient image compressed sensing and transmission

    NASA Astrophysics Data System (ADS)

    Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan

    2016-01-01

    This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.

  3. A guided wave dispersion compensation method based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Xu, Cai-bin; Yang, Zhi-bo; Chen, Xue-feng; Tian, Shao-hua; Xie, Yong

    2018-03-01

    The ultrasonic guided wave has emerged as a promising tool for structural health monitoring (SHM) and nondestructive testing (NDT) due to their capability to propagate over long distances with minimal loss and sensitivity to both surface and subsurface defects. The dispersion effect degrades the temporal and spatial resolution of guided waves. A novel ultrasonic guided wave processing method for both single mode and multi-mode guided waves dispersion compensation is proposed in this work based on compressed sensing, in which a dispersion signal dictionary is built by utilizing the dispersion curves of the guided wave modes in order to sparsely decompose the recorded dispersive guided waves. Dispersion-compensated guided waves are obtained by utilizing a non-dispersion signal dictionary and the results of sparse decomposition. Numerical simulations and experiments are implemented to verify the effectiveness of the developed method for both single mode and multi-mode guided waves.

  4. Cat-eye effect target recognition with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Jian, Weijian; Li, Li; Zhang, Xiaoyue

    2015-12-01

    A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.

  5. Research on lossless compression of true color RGB image with low time and space complexity

    NASA Astrophysics Data System (ADS)

    Pan, ShuLin; Xie, ChengJun; Xu, Lin

    2008-12-01

    Eliminating correlated redundancy of space and energy by using a DWT lifting scheme and reducing the complexity of the image by using an algebraic transform among the RGB components. An improved Rice Coding algorithm, in which presents an enumerating DWT lifting scheme that fits any size images by image renormalization has been proposed in this paper. This algorithm has a coding and decoding process without backtracking for dealing with the pixels of an image. It support LOCO-I and it can also be applied to Coder / Decoder. Simulation analysis indicates that the proposed method can achieve a high image compression. Compare with Lossless-JPG, PNG(Microsoft), PNG(Rene), PNG(Photoshop), PNG(Anix PicViewer), PNG(ACDSee), PNG(Ulead photo Explorer), JPEG2000, PNG(KoDa Inc), SPIHT and JPEG-LS, the lossless image compression ratio improved 45%, 29%, 25%, 21%, 19%, 17%, 16%, 15%, 11%, 10.5%, 10% separately with 24 pieces of RGB image provided by KoDa Inc. Accessing the main memory in Pentium IV,CPU2.20GHZ and 256MRAM, the coding speed of the proposed coder can be increased about 21 times than the SPIHT and the efficiency of the performance can be increased 166% or so, the decoder's coding speed can be increased about 17 times than the SPIHT and the efficiency of the performance can be increased 128% or so.

  6. Simultaneous compression and encryption for secure real-time secure transmission of sensitive video transmission

    NASA Astrophysics Data System (ADS)

    Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.

    2014-05-01

    Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.

  7. Dynamic storage in resource-scarce browsing multimedia applications

    NASA Astrophysics Data System (ADS)

    Elenbaas, Herman; Dimitrova, Nevenka

    1998-10-01

    In the convergence of information and entertainment there is a conflict between the consumer's expectation of fast access to high quality multimedia content through narrow bandwidth channels versus the size of this content. During the retrieval and information presentation of a multimedia application there are two problems that have to be solved: the limited bandwidth during transmission of the retrieved multimedia content and the limited memory for temporary caching. In this paper we propose an approach for latency optimization in information browsing applications. We proposed a method for flattening hierarchically linked documents in a manner convenient for network transport over slow channels to minimize browsing latency. Flattening of the hierarchy involves linearization, compression and bundling of the document nodes. After the transfer, the compressed hierarchy is stored on a local device where it can be partly unbundled to fit the caching limits at the local site while giving the user availability to the content.

  8. Entropy-aware projected Landweber reconstruction for quantized block compressive sensing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Kangda; Wang, Bing; Tang, Hainie; Gong, Xiaohui

    2017-01-01

    A quantized block compressive sensing (QBCS) framework, which incorporates the universal measurement, quantization/inverse quantization, entropy coder/decoder, and iterative projected Landweber reconstruction, is summarized. Under the QBCS framework, this paper presents an improved reconstruction algorithm for aerial imagery, QBCS, with entropy-aware projected Landweber (QBCS-EPL), which leverages the full-image sparse transform without Wiener filter and an entropy-aware thresholding model for wavelet-domain image denoising. Through analyzing the functional relation between the soft-thresholding factors and entropy-based bitrates for different quantization methods, the proposed model can effectively remove wavelet-domain noise of bivariate shrinkage and achieve better image reconstruction quality. For the overall performance of QBCS reconstruction, experimental results demonstrate that the proposed QBCS-EPL algorithm significantly outperforms several existing algorithms. With the experiment-driven methodology, the QBCS-EPL algorithm can obtain better reconstruction quality at a relatively moderate computational cost, which makes it more desirable for aerial imagery applications.

  9. A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding

    NASA Astrophysics Data System (ADS)

    Ji, Xiao-yong; Bai, Sen; Guo, Yu; Guo, Hui

    2015-05-01

    Though JPEG is an excellent compression standard of images, it does not provide any security performance. Thus, a security solution to JPEG was proposed in Zhang et al. (2014). But there are some flaws in Zhang's scheme and in this paper we propose a new scheme based on discrete hyper-chaotic system and modified zigzag scan coding. By shuffling the identifiers of zigzag scan encoded sequence with hyper-chaotic sequence and accurately encrypting the certain coefficients which have little relationship with the correlation of the plain image in zigzag scan encoded domain, we achieve high compression performance and robust security simultaneously. Meanwhile we present and analyze the flaws in Zhang's scheme through theoretical analysis and experimental verification, and give the comparisons between our scheme and Zhang's. Simulation results verify that our method has better performance in security and efficiency.

  10. Region-Based Prediction for Image Compression in the Cloud.

    PubMed

    Begaint, Jean; Thoreau, Dominique; Guillotel, Philippe; Guillemot, Christine

    2018-04-01

    Thanks to the increasing number of images stored in the cloud, external image similarities can be leveraged to efficiently compress images by exploiting inter-images correlations. In this paper, we propose a novel image prediction scheme for cloud storage. Unlike current state-of-the-art methods, we use a semi-local approach to exploit inter-image correlation. The reference image is first segmented into multiple planar regions determined from matched local features and super-pixels. The geometric and photometric disparities between the matched regions of the reference image and the current image are then compensated. Finally, multiple references are generated from the estimated compensation models and organized in a pseudo-sequence to differentially encode the input image using classical video coding tools. Experimental results demonstrate that the proposed approach yields significant rate-distortion performance improvements compared with the current image inter-coding solutions such as high efficiency video coding.

  11. Detecting subsurface fluid leaks in real-time using injection and production rates

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Huerta, Nicolas J.

    2017-12-01

    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to detecting the time when a leak is activated and the volume of that leakage, this method provides an insight about the leak location, and reservoir connectivity. We are proposing this as a complementary method that can be used with other, more expensive, methods early on in the injection process. This will allow an operator to conduct more expensive surveys less often because the proposed method can show if there are no leaks on a monthly basis that is cheap and fast.

  12. Optics-based compressibility parameter for pharmaceutical tablets obtained with the aid of the terahertz refractive index.

    PubMed

    Chakraborty, Mousumi; Ridgway, Cathy; Bawuah, Prince; Markl, Daniel; Gane, Patrick A C; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik

    2017-06-15

    The objective of this study is to propose a novel optical compressibility parameter for porous pharmaceutical tablets. This parameter is defined with the aid of the effective refractive index of a tablet that is obtained from non-destructive and contactless terahertz (THz) time-delay transmission measurement. The optical compressibility parameter of two training sets of pharmaceutical tablets with a priori known porosity and mass fraction of a drug was investigated. Both pharmaceutical sets were compressed with one of the most commonly used excipients, namely microcrystalline cellulose (MCC) and drug Indomethacin. The optical compressibility clearly correlates with the skeletal bulk modulus determined by mercury porosimetry and the recently proposed terahertz lumped structural parameter calculated from terahertz measurements. This lumped structural parameter can be used to analyse the pattern of arrangement of excipient and drug particles in porous pharmaceutical tablets. Therefore, we propose that the optical compressibility can serve as a quality parameter of a pharmaceutical tablet corresponding with the skeletal bulk modulus of the porous tablet, which is related to structural arrangement of the powder particles in the tablet. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets (ODT) using novel disintegration apparatus.

    PubMed

    Brniak, Witold; Jachowicz, Renata; Krupa, Anna; Skorka, Tomasz; Niwinski, Krzysztof

    2013-01-01

    The compendial method of evaluation of orodispersible tablets (ODT) is the same disintegration test as for conventional tablets. Since it does not reflect the disintegration process in the oral cavity, alternative methods are proposed that are more related to in vivo conditions, e.g. modified dissolution paddle apparatus, texture analyzer, rotating shaft apparatus, CCD camera application, or wetting time and water absorption ratio measurement. In this study, three different co-processed excipients for direct compression of orally disintegrating tablets were compared (Ludiflash, Pharmaburst, F-Melt). The properties of the prepared tablets such as tensile strength, friability, wetting time and water absorption ratio were evaluated. Disintegration time was measured using the pharmacopoeial method and the novel apparatus constructed by the authors. The apparatus was based on the idea of Narazaki et al., however it has been modified. Magnetic resonance imaging (MRI) was applied for the analysis of the disintegration mechanism of prepared tablets. The research has shown the significant effect of excipients, compression force, temperature, volume and kind of medium on the disintegration process. The novel apparatus features better correlation of disintegration time with in vivo results (R(2) = 0.9999) than the compendial method (R(2) = 0.5788), and presents additional information on the disintegration process, e.g. swelling properties.

  14. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant Time Series.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2016-07-01

    A new signal reconstruction algorithm for compressive sensing based on the minimization of a pseudonorm which promotes block-sparse structure on the first-order difference of the signal is proposed. Involved optimization is carried out by using a sequential version of Fletcher-Reeves' conjugate-gradient algorithm, and the line search is based on Banach's fixed-point theorem. The algorithm is suitable for the reconstruction of foot gait signals which admit block-sparse structure on the first-order difference. An additional algorithm for the estimation of stride-interval, swing-interval, and stance-interval time series from the reconstructed foot gait signals is also proposed. This algorithm is based on finding zero crossing indices of the foot gait signal and using the resulting indices for the computation of time series. Extensive simulation results demonstrate that the proposed signal reconstruction algorithm yields improved signal-to-noise ratio and requires significantly reduced computational effort relative to several competing algorithms over a wide range of compression ratio. For a compression ratio in the range from 88% to 94%, the proposed algorithm is found to offer improved accuracy for the estimation of clinically relevant time-series parameters, namely, the mean value, variance, and spectral index of stride-interval, stance-interval, and swing-interval time series, relative to its nearest competitor algorithm. The improvement in performance for compression ratio as high as 94% indicates that the proposed algorithms would be useful for designing compressive sensing-based systems for long-term telemonitoring of human gait signals.

  15. Wavelet-based scalable L-infinity-oriented compression.

    PubMed

    Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter

    2006-09-01

    Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.

  16. System and Method for Monitoring Distributed Asset Data

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2015-01-01

    A computer-based monitoring system and monitoring method implemented in computer software for detecting, estimating, and reporting the condition states, their changes, and anomalies for many assets. The assets are of same type, are operated over a period of time, and outfitted with data collection systems. The proposed monitoring method accounts for variability of working conditions for each asset by using regression model that characterizes asset performance. The assets are of the same type but not identical. The proposed monitoring method accounts for asset-to-asset variability; it also accounts for drifts and trends in the asset condition and data. The proposed monitoring system can perform distributed processing of massive amounts of historical data without discarding any useful information where moving all the asset data into one central computing system might be infeasible. The overall processing is includes distributed preprocessing data records from each asset to produce compressed data.

  17. An Efficient Audio Watermarking Algorithm in Frequency Domain for Copyright Protection

    NASA Astrophysics Data System (ADS)

    Dhar, Pranab Kumar; Khan, Mohammad Ibrahim; Kim, Cheol-Hong; Kim, Jong-Myon

    Digital Watermarking plays an important role for copyright protection of multimedia data. This paper proposes a new watermarking system in frequency domain for copyright protection of digital audio. In our proposed watermarking system, the original audio is segmented into non-overlapping frames. Watermarks are then embedded into the selected prominent peaks in the magnitude spectrum of each frame. Watermarks are extracted by performing the inverse operation of watermark embedding process. Simulation results indicate that the proposed watermarking system is highly robust against various kinds of attacks such as noise addition, cropping, re-sampling, re-quantization, MP3 compression, and low-pass filtering. Our proposed watermarking system outperforms Cox's method in terms of imperceptibility, while keeping comparable robustness with the Cox's method. Our proposed system achieves SNR (signal-to-noise ratio) values ranging from 20 dB to 28 dB, in contrast to Cox's method which achieves SNR values ranging from only 14 dB to 23 dB.

  18. Binary video codec for data reduction in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias

    2013-02-01

    Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.

  19. Lossless medical image compression with a hybrid coder

    NASA Astrophysics Data System (ADS)

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  20. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    PubMed Central

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-01-01

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures. PMID:28788011

  1. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  2. Influence of chest compression artefact on capnogram-based ventilation detection during out-of-hospital cardiopulmonary resuscitation.

    PubMed

    Leturiondo, Mikel; Ruiz de Gauna, Sofía; Ruiz, Jesus M; Julio Gutiérrez, J; Leturiondo, Luis A; González-Otero, Digna M; Russell, James K; Zive, Dana; Daya, Mohamud

    2018-03-01

    Capnography has been proposed as a method for monitoring the ventilation rate during cardiopulmonary resuscitation (CPR). A high incidence (above 70%) of capnograms distorted by chest compression induced oscillations has been previously reported in out-of-hospital (OOH) CPR. The aim of the study was to better characterize the chest compression artefact and to evaluate its influence on the performance of a capnogram-based ventilation detector during OOH CPR. Data from the MRx monitor-defibrillator were extracted from OOH cardiac arrest episodes. For each episode, presence of chest compression artefact was annotated in the capnogram. Concurrent compression depth and transthoracic impedance signals were used to identify chest compressions and to annotate ventilations, respectively. We designed a capnogram-based ventilation detection algorithm and tested its performance with clean and distorted episodes. Data were collected from 232 episodes comprising 52 654 ventilations, with a mean (±SD) of 227 (±118) per episode. Overall, 42% of the capnograms were distorted. Presence of chest compression artefact degraded algorithm performance in terms of ventilation detection, estimation of ventilation rate, and the ability to detect hyperventilation. Capnogram-based ventilation detection during CPR using our algorithm was compromised by the presence of chest compression artefact. In particular, artefact spanning from the plateau to the baseline strongly degraded ventilation detection, and caused a high number of false hyperventilation alarms. Further research is needed to reduce the impact of chest compression artefact on capnographic ventilation monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Generalised Category Attack—Improving Histogram-Based Attack on JPEG LSB Embedding

    NASA Astrophysics Data System (ADS)

    Lee, Kwangsoo; Westfeld, Andreas; Lee, Sangjin

    We present a generalised and improved version of the category attack on LSB steganography in JPEG images with straddled embedding path. It detects more reliably low embedding rates and is also less disturbed by double compressed images. The proposed methods are evaluated on several thousand images. The results are compared to both recent blind and specific attacks for JPEG embedding. The proposed attack permits a more reliable detection, although it is based on first order statistics only. Its simple structure makes it very fast.

  4. Digital image modification detection using color information and its histograms.

    PubMed

    Zhou, Haoyu; Shen, Yue; Zhu, Xinghui; Liu, Bo; Fu, Zigang; Fan, Na

    2016-09-01

    The rapid development of many open source and commercial image editing software makes the authenticity of the digital images questionable. Copy-move forgery is one of the most widely used tampering techniques to create desirable objects or conceal undesirable objects in a scene. Existing techniques reported in the literature to detect such tampering aim to improve the robustness of these methods against the use of JPEG compression, blurring, noise, or other types of post processing operations. These post processing operations are frequently used with the intention to conceal tampering and reduce tampering clues. A robust method based on the color moments and other five image descriptors is proposed in this paper. The method divides the image into fixed size overlapping blocks. Clustering operation divides entire search space into smaller pieces with similar color distribution. Blocks from the tampered regions will reside within the same cluster since both copied and moved regions have similar color distributions. Five image descriptors are used to extract block features, which makes the method more robust to post processing operations. An ensemble of deep compositional pattern-producing neural networks are trained with these extracted features. Similarity among feature vectors in clusters indicates possible forged regions. Experimental results show that the proposed method can detect copy-move forgery even if an image was distorted by gamma correction, addictive white Gaussian noise, JPEG compression, or blurring. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Lossless Video Sequence Compression Using Adaptive Prediction

    NASA Technical Reports Server (NTRS)

    Li, Ying; Sayood, Khalid

    2007-01-01

    We present an adaptive lossless video compression algorithm based on predictive coding. The proposed algorithm exploits temporal, spatial, and spectral redundancies in a backward adaptive fashion with extremely low side information. The computational complexity is further reduced by using a caching strategy. We also study the relationship between the operational domain for the coder (wavelet or spatial) and the amount of temporal and spatial redundancy in the sequence being encoded. Experimental results show that the proposed scheme provides significant improvements in compression efficiencies.

  6. Dynamic video encryption algorithm for H.264/AVC based on a spatiotemporal chaos system.

    PubMed

    Xu, Hui; Tong, Xiao-Jun; Zhang, Miao; Wang, Zhu; Li, Ling-Hao

    2016-06-01

    Video encryption schemes mostly employ the selective encryption method to encrypt parts of important and sensitive video information, aiming to ensure the real-time performance and encryption efficiency. The classic block cipher is not applicable to video encryption due to the high computational overhead. In this paper, we propose the encryption selection control module to encrypt video syntax elements dynamically which is controlled by the chaotic pseudorandom sequence. A novel spatiotemporal chaos system and binarization method is used to generate a key stream for encrypting the chosen syntax elements. The proposed scheme enhances the resistance against attacks through the dynamic encryption process and high-security stream cipher. Experimental results show that the proposed method exhibits high security and high efficiency with little effect on the compression ratio and time cost.

  7. Storage, retrieval, and edit of digital video using Motion JPEG

    NASA Astrophysics Data System (ADS)

    Sudharsanan, Subramania I.; Lee, D. H.

    1994-04-01

    In a companion paper we describe a Micro Channel adapter card that can perform real-time JPEG (Joint Photographic Experts Group) compression of a 640 by 480 24-bit image within 1/30th of a second. Since this corresponds to NTSC video rates at considerably good perceptual quality, this system can be used for real-time capture and manipulation of continuously fed video. To facilitate capturing the compressed video in a storage medium, an IBM Bus master SCSI adapter with cache is utilized. Efficacy of the data transfer mechanism is considerably improved using the System Control Block architecture, an extension to Micro Channel bus masters. We show experimental results that the overall system can perform at compressed data rates of about 1.5 MBytes/second sustained and with sporadic peaks to about 1.8 MBytes/second depending on the image sequence content. We also describe mechanisms to access the compressed data very efficiently through special file formats. This in turn permits creation of simpler sequence editors. Another advantage of the special file format is easy control of forward, backward and slow motion playback. The proposed method can be extended for design of a video compression subsystem for a variety of personal computing systems.

  8. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    PubMed Central

    Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-01

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892

  9. Use of phase change materials during compressed air expansion for isothermal CAES plants

    NASA Astrophysics Data System (ADS)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  10. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    PubMed

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  11. Analysis-Preserving Video Microscopy Compression via Correlation and Mathematical Morphology

    PubMed Central

    Shao, Chong; Zhong, Alfred; Cribb, Jeremy; Osborne, Lukas D.; O’Brien, E. Timothy; Superfine, Richard; Mayer-Patel, Ketan; Taylor, Russell M.

    2015-01-01

    The large amount video data produced by multi-channel, high-resolution microscopy system drives the need for a new high-performance domain-specific video compression technique. We describe a novel compression method for video microscopy data. The method is based on Pearson's correlation and mathematical morphology. The method makes use of the point-spread function (PSF) in the microscopy video acquisition phase. We compare our method to other lossless compression methods and to lossy JPEG, JPEG2000 and H.264 compression for various kinds of video microscopy data including fluorescence video and brightfield video. We find that for certain data sets, the new method compresses much better than lossless compression with no impact on analysis results. It achieved a best compressed size of 0.77% of the original size, 25× smaller than the best lossless technique (which yields 20% for the same video). The compressed size scales with the video's scientific data content. Further testing showed that existing lossy algorithms greatly impacted data analysis at similar compression sizes. PMID:26435032

  12. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    NASA Astrophysics Data System (ADS)

    Muralidharan, Balaji; Menon, Suresh

    2018-03-01

    A high-order adaptive Cartesian cut-cell method, developed in the past by the authors [1] for simulation of compressible viscous flow over static embedded boundaries, is now extended for reacting flow simulations over moving interfaces. The main difficulty related to simulation of moving boundary problems using immersed boundary techniques is the loss of conservation of mass, momentum and energy during the transition of numerical grid cells from solid to fluid and vice versa. Gas phase reactions near solid boundaries can produce huge source terms to the governing equations, which if not properly treated for moving boundaries, can result in inaccuracies in numerical predictions. The small cell clustering algorithm proposed in our previous work is now extended to handle moving boundaries enforcing strict conservation. In addition, the cell clustering algorithm also preserves the smoothness of solution near moving surfaces. A second order Runge-Kutta scheme where the boundaries are allowed to change during the sub-time steps is employed. This scheme improves the time accuracy of the calculations when the body motion is driven by hydrodynamic forces. Simple one dimensional reacting and non-reacting studies of moving piston are first performed in order to demonstrate the accuracy of the proposed method. Results are then reported for flow past moving cylinders at subsonic and supersonic velocities in a viscous compressible flow and are compared with theoretical and previously available experimental data. The ability of the scheme to handle deforming boundaries and interaction of hydrodynamic forces with rigid body motion is demonstrated using different test cases. Finally, the method is applied to investigate the detonation initiation and stabilization mechanisms on a cylinder and a sphere, when they are launched into a detonable mixture. The effect of the filling pressure on the detonation stabilization mechanisms over a hyper-velocity sphere launched into a hydrogen-oxygen-argon mixture is studied and a qualitative comparison of the results with the experimental data are made. Results indicate that the current method is able to correctly reproduce the different regimes of combustion observed in the experiments. Through the various examples it is demonstrated that our method is robust and accurate for simulation of compressible viscous reacting flow problems with moving/deforming boundaries.

  13. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  14. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  15. Compression embedding

    DOEpatents

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  16. Compression embedding

    DOEpatents

    Sandford, II, Maxwell T.; Handel, Theodore G.; Bradley, Jonathan N.

    1998-01-01

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  17. Implementation of a compressive sampling scheme for wireless sensors to achieve energy efficiency in a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    O'Connor, Sean M.; Lynch, Jerome P.; Gilbert, Anna C.

    2013-04-01

    Wireless sensors have emerged to offer low-cost sensors with impressive functionality (e.g., data acquisition, computing, and communication) and modular installations. Such advantages enable higher nodal densities than tethered systems resulting in increased spatial resolution of the monitoring system. However, high nodal density comes at a cost as huge amounts of data are generated, weighing heavy on power sources, transmission bandwidth, and data management requirements, often making data compression necessary. The traditional compression paradigm consists of high rate (>Nyquist) uniform sampling and storage of the entire target signal followed by some desired compression scheme prior to transmission. The recently proposed compressed sensing (CS) framework combines the acquisition and compression stage together, thus removing the need for storage and operation of the full target signal prior to transmission. The effectiveness of the CS approach hinges on the presence of a sparse representation of the target signal in a known basis, similarly exploited by several traditional compressive sensing applications today (e.g., imaging, MRI). Field implementations of CS schemes in wireless SHM systems have been challenging due to the lack of commercially available sensing units capable of sampling methods (e.g., random) consistent with the compressed sensing framework, often moving evaluation of CS techniques to simulation and post-processing. The research presented here describes implementation of a CS sampling scheme to the Narada wireless sensing node and the energy efficiencies observed in the deployed sensors. Of interest in this study is the compressibility of acceleration response signals collected from a multi-girder steel-concrete composite bridge. The study shows the benefit of CS in reducing data requirements while ensuring data analysis on compressed data remain accurate.

  18. A Metastability-Exchange Optical Pumping and Compression System using Polarized 3 He for a Proposed Laboratory Search for Neutron Monopole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Smith, Erick; Ariadne Collaboration

    2015-04-01

    3 He nuclei polarized using the metastability-exchange optical pumping (MEOP) method have been used for scientific applications such as magnetometry in space, neutron polarization and analysis, and medical imaging. In this talk we explain how this technique is also well-suited for a proposed experiment to search for possible monopole-dipole interactions of polarized 3 He nuclei with matter. The P-odd and T-odd monopole-dipole potential proposed by Moody and Wilczek is proportional to s-> . r-> where s-> is the 3 He spin and r-> is the separation between the particles. It can be induced by axions, and ARIADNE proposes to perform NMR on a polarized 3 He ensemble at 4K with a radially-slotted tungsten disk spinning at a multiple of the 3 He Larmour frequency to induce a resonant monopole-dipole perturbation. The radial slot length variations are chosen to maximize sensitivity to a monopole-dipole interaction range corresponding to the axion window. We describe the advantages that MEOP presents for this experiment and describe the MEOP-based polarized 3 He gas compression system at Indiana University.

  19. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    NASA Astrophysics Data System (ADS)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.

    2017-06-01

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.

  20. A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu

    Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less

  1. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  2. Layered compression for high-precision depth data.

    PubMed

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.

  3. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  4. [Physical fingerprint for quality control of traditional Chinese medicine extract powders].

    PubMed

    Zhang, Yi; Xu, Bing; Sun, Fei; Wang, Xin; Zhang, Na; Shi, Xin-Yuan; Qiao, Yan-Jiang

    2016-06-01

    The physical properties of both raw materials and excipients are closely correlated with the quality of traditional Chinese medicine preparations in oral solid dosage forms. In this paper, based on the concept of the chemical fingerprint for quality control of traditional Chinese medicine products, the method of physical fingerprint for quality evaluation of traditional Chinese medicine extract powders was proposed. This novel physical fingerprint was built by the radar map, and consisted of five primary indexes (i.e. stackablity, homogeneity, flowability, compressibility and stability) and 12 secondary indexes (i.e. bulk density, tap density, particle size<50 μm percentage, relative homogeneity index, hausner ratio, angle of repose, powder flow time, inter-particle porosity, Carr index, cohesion index, loss on drying, hygroscopicity). Panax notoginseng saponins (PNS) extract was taken for an example. This paper introduced the application of physical fingerprint in the evaluation of source-to-source and batch-to-batch quality consistence of PNS extract powders. Moreover, the physical fingerprint of PNS was built by calculating the index of parameters, the index of parametric profile and the index of good compressibility, in order to successfully predict the compressibility of the PNS extract powder and relevant formulations containing PNS extract powder and conventional pharmaceutical excipients. The results demonstrated that the proposed method could not only provide new insights into the development and process control of traditional Chinese medicine solid dosage forms. Copyright© by the Chinese Pharmaceutical Association.

  5. Numerical simulation of unmanned aerial vehicle under centrifugal load and optimization of milling and planing

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng; Lu, Xinghua

    2018-05-01

    The mechanical parts of the fuselage surface of the UAV are easily fractured by the action of the centrifugal load. In order to improve the compressive strength of UAV and guide the milling and planing of mechanical parts, a numerical simulation method of UAV fuselage compression under centrifugal load based on discrete element analysis method is proposed. The three-dimensional discrete element method is used to establish the splitting tensile force analysis model of the UAV fuselage under centrifugal loading. The micro-contact connection parameters of the UAV fuselage are calculated, and the yield tensile model of the mechanical components is established. The dynamic and static mechanical model of the aircraft fuselage milling is analyzed by the axial amplitude vibration frequency combined method. The correlation parameters of the cutting depth on the tool wear are obtained. The centrifugal load stress spectrum of the surface of the UAV is calculated. The meshing and finite element simulation of the rotor blade of the unmanned aerial vehicle is carried out to optimize the milling process. The test results show that the accuracy of the anti - compression numerical test of the UAV is higher by adopting the method, and the anti - fatigue damage capability of the unmanned aerial vehicle body is improved through the milling and processing optimization, and the mechanical strength of the unmanned aerial vehicle can be effectively improved.

  6. Methods for compressible multiphase flows and their applications

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  7. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  8. Image quality (IQ) guided multispectral image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  9. A GPU-accelerated implicit meshless method for compressible flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  10. Approximate equiangular tight frames for compressed sensing and CDMA applications

    NASA Astrophysics Data System (ADS)

    Tsiligianni, Evaggelia; Kondi, Lisimachos P.; Katsaggelos, Aggelos K.

    2017-12-01

    Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this paper, we construct frames that are close to ETFs. According to results from frame and graph theory, the existence of an ETF depends on the existence of its signature matrix, that is, a symmetric matrix with certain structure and spectrum consisting of two distinct eigenvalues. We view the construction of a signature matrix as an inverse eigenvalue problem and propose a method that produces frames of any dimensions that are close to ETFs. Due to the achieved equiangularity property, the so obtained frames can be employed as spreading sequences in synchronous code-division multiple access (s-CDMA) systems, besides compressed sensing.

  11. Bonded-cell model for particle fracture.

    PubMed

    Nguyen, Duc-Hanh; Azéma, Emilien; Sornay, Philippe; Radjai, Farhang

    2015-02-01

    Particle degradation and fracture play an important role in natural granular flows and in many applications of granular materials. We analyze the fracture properties of two-dimensional disklike particles modeled as aggregates of rigid cells bonded along their sides by a cohesive Mohr-Coulomb law and simulated by the contact dynamics method. We show that the compressive strength scales with tensile strength between cells but depends also on the friction coefficient and a parameter describing cell shape distribution. The statistical scatter of compressive strength is well described by the Weibull distribution function with a shape parameter varying from 6 to 10 depending on cell shape distribution. We show that this distribution may be understood in terms of percolating critical intercellular contacts. We propose a random-walk model of critical contacts that leads to particle size dependence of the compressive strength in good agreement with our simulation data.

  12. Accelerating oxygen reduction on Pt monolayer via substrate compression

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Chen, Yue; Yang, Zongxian; Lu, Zhansheng

    2017-11-01

    Many methods have been proposed to accelerate the oxygen reduction and save the dosage of Pt. Here, we report a promising way in fulfilling these purposes by applying substrate strain on the supported Pt monolayer. The compressive strain would modify the geometric and electronic structures of tungsten carbide (WC) substrate, changing the interaction nature between substrate and Pt monolayer and resulting in a downward shift of the d-band center of surface Pt atoms. The activity of Pt monolayer on the compressed WC is further evaluated from the kinetics of the dissociation and protonation of O2. The dissociation barrier of O2 is increased and the hydrogenation barrier of O atom is decreased, indicating that the recovery of the catalytically active sites is accelerated and the deactivation by oxygen poison is alleviated. The present study provides an effective way in tuning the activity of Pt-based catalysts by applying the substrate strain.

  13. Equation of state for shock compression of distended solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis; Fenton, Gregg; Vogler, Tracy

    2014-05-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.

  14. Equation of State for Shock Compression of High Distension Solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2013-06-01

    Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.

  15. Physics of spinning gases and plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geyko, Vasily I.

    Initially motivated by the problem of compression of spinning plasma in Z-pinch devices and related applications, the thesis explores a number of interesting smaller-scale problems related to physics of gas and plasma rotation. In particular, thermodynamics of ideal spinning gas is studied. It is found that rotation modifies the heat capacity of the gas and reduces the gas compressibility. It is also proposed that, by performing a series of measurement of external parameters of a spinning gas, one can infer the distribution of masses of gas constituents. It is also proposed how to use the rotation-dependent heat capacity for improvingmore » the thermodynamic efficiency of internal combustion engines. To that end, two possible engine embodiments are proposed and explored in detail. In addition, a transient piezothermal effect is discovered numerically and is given a theoretical explanation. The effect consists of the formation of a radial temperature gradient driven by gas heating or compression along the rotation axis. By elaborating on this idea, a theoretical explanation is proposed also for the operation of so-called vortex tubes, which so far have been lacking rigorous theory. Finally, adiabatic compression of spinning plasmas and ionized gases are considered, and the effect of the electrostatic interactions on the compressibility and heat capacity is predicted.« less

  16. Neural network for image compression

    NASA Astrophysics Data System (ADS)

    Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.

    1992-09-01

    In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.

  17. An improved Huffman coding with encryption for Radio Data System (RDS) for smart transportation

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Tseng, Kuo-Kun; Ng, C. K.; Ho, G. T. S.; Zeng, Fu-Fu; Tse, Y. K.

    2018-02-01

    As the development of Radio Data System (RDS) technology and its applications are getting more and more attention and promotion, people concern their personal privacy and communication efficiency, and therefore compression and encryption technologies are being more important for transferring RDS data. Unlike most of the current approaches which contain two stages, compression and encryption, we proposed a new algorithm called Swapped Huffman Table (SHT) based on Huffman algorithm to realise compression and encryption in a single process. In this paper, a good performance for both compression and encryption is obtained and a possible application of RDS with the proposed algorithm in smart transportation is illustrated.

  18. Fast generation of complex modulation video holograms using temporal redundancy compression and hybrid point-source/wave-field approaches

    NASA Astrophysics Data System (ADS)

    Gilles, Antonin; Gioia, Patrick; Cozot, Rémi; Morin, Luce

    2015-09-01

    The hybrid point-source/wave-field method is a newly proposed approach for Computer-Generated Hologram (CGH) calculation, based on the slicing of the scene into several depth layers parallel to the hologram plane. The complex wave scattered by each depth layer is then computed using either a wave-field or a point-source approach according to a threshold criterion on the number of points within the layer. Finally, the complex waves scattered by all the depth layers are summed up in order to obtain the final CGH. Although outperforming both point-source and wave-field methods without producing any visible artifact, this approach has not yet been used for animated holograms, and the possible exploitation of temporal redundancies has not been studied. In this paper, we propose a fast computation of video holograms by taking into account those redundancies. Our algorithm consists of three steps. First, intensity and depth data of the current 3D video frame are extracted and compared with those of the previous frame in order to remove temporally redundant data. Then the CGH pattern for this compressed frame is generated using the hybrid point-source/wave-field approach. The resulting CGH pattern is finally transmitted to the video output and stored in the previous frame buffer. Experimental results reveal that our proposed method is able to produce video holograms at interactive rates without producing any visible artifact.

  19. An accuracy aware low power wireless EEG unit with information content based adaptive data compression.

    PubMed

    Tolbert, Jeremy R; Kabali, Pratik; Brar, Simeranjit; Mukhopadhyay, Saibal

    2009-01-01

    We present a digital system for adaptive data compression for low power wireless transmission of Electroencephalography (EEG) data. The proposed system acts as a base-band processor between the EEG analog-to-digital front-end and RF transceiver. It performs a real-time accuracy energy trade-off for multi-channel EEG signal transmission by controlling the volume of transmitted data. We propose a multi-core digital signal processor for on-chip processing of EEG signals, to detect signal information of each channel and perform real-time adaptive compression. Our analysis shows that the proposed approach can provide significant savings in transmitter power with minimal impact on the overall signal accuracy.

  20. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

    PubMed Central

    Shih, Yi-Fan; Wang, Yu-Ren; Lin, Kuo-Liang; Chen, Chin-Wen

    2015-01-01

    Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs) for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method) yield better estimations than single NDT methods. The results also show that the SVMs model is more accurate than the statistical regression model. PMID:28793627

  1. Real-Time Aggressive Image Data Compression

    DTIC Science & Technology

    1990-03-31

    implemented with higher degrees of modularity, concurrency, and higher levels of machine intelligence , thereby providing higher data -throughput rates...Project Summary Project Title: Real-Time Aggressive Image Data Compression Principal Investigators: Dr. Yih-Fang Huang and Dr. Ruey-wen Liu Institution...Summary The objective of the proposed research is to develop reliable algorithms !.hat can achieve aggressive image data compression (with a compression

  2. Multispectral Image Compression Based on DSC Combined with CCSDS-IDC

    PubMed Central

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741

  3. Multispectral image compression based on DSC combined with CCSDS-IDC.

    PubMed

    Li, Jin; Xing, Fei; Sun, Ting; You, Zheng

    2014-01-01

    Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.

  4. Failure of a laminated composite under tension-compression fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1989-01-01

    The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.

  5. A high-order vertex-based central ENO finite-volume scheme for three-dimensional compressible flows

    DOE PAGES

    Charest, Marc R.J.; Canfield, Thomas R.; Morgan, Nathaniel R.; ...

    2015-03-11

    High-order discretization methods offer the potential to reduce the computational cost associated with modeling compressible flows. However, it is difficult to obtain accurate high-order discretizations of conservation laws that do not produce spurious oscillations near discontinuities, especially on multi-dimensional unstructured meshes. A novel, high-order, central essentially non-oscillatory (CENO) finite-volume method that does not have these difficulties is proposed for tetrahedral meshes. The proposed unstructured method is vertex-based, which differs from existing cell-based CENO formulations, and uses a hybrid reconstruction procedure that switches between two different solution representations. It applies a high-order k-exact reconstruction in smooth regions and a limited linearmore » reconstruction when discontinuities are encountered. Both reconstructions use a single, central stencil for all variables, making the application of CENO to arbitrary unstructured meshes relatively straightforward. The new approach was applied to the conservation equations governing compressible flows and assessed in terms of accuracy and computational cost. For all problems considered, which included various function reconstructions and idealized flows, CENO demonstrated excellent reliability and robustness. Up to fifth-order accuracy was achieved in smooth regions and essentially non-oscillatory solutions were obtained near discontinuities. The high-order schemes were also more computationally efficient for high-accuracy solutions, i.e., they took less wall time than the lower-order schemes to achieve a desired level of error. In one particular case, it took a factor of 24 less wall-time to obtain a given level of error with the fourth-order CENO scheme than to obtain the same error with the second-order scheme.« less

  6. An Efficient Data Compression Model Based on Spatial Clustering and Principal Component Analysis in Wireless Sensor Networks.

    PubMed

    Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong

    2015-08-07

    Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.

  7. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  8. Component analysis of somatosensory evoked potentials for identifying spinal cord injury location.

    PubMed

    Wang, Yazhou; Li, Guangsheng; Luk, Keith D K; Hu, Yong

    2017-05-24

    This study aims to determine whether the time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) can be used to identify the specific location of a compressive spinal cord injury using a classification technique. Waveforms of SEPs after compressive injuries at various locations (C4, C5 and C6) in rat spinal cords were decomposed into a series of TFCs using a high-resolution time-frequency analysis method. A classification method based on support vector machine (SVM) was applied to the distributions of these TFCs among different pathological locations. The difference among injury locations manifests itself in different categories of SEP TFCs. High-energy TFCs of normal-state SEPs have significantly higher power and frequency than those of injury-state SEPs. The location of C5 is characterized by a unique distribution pattern of middle-energy TFCs. The difference between C4 and C6 is evidenced by the distribution pattern of low-energy TFCs. The proposed classification method based on SEP TFCs offers a discrimination accuracy of 80.2%. In this study, meaningful information contained in various SEP components was investigated and used to propose a new application of SEPs for identification of the location of pathological changes in the cervical spinal cord.

  9. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-12-01

    While progress towards hot-spot ignition has been made achieving an alpha-heating dominated state in high-foot implosion experiments [Hurricane et al., Nat. Phys. 12, 800 (2016)] on the National Ignition Facility, improvements are needed to increase the fuel compression for the enhancement of the neutron yield. A strategy is proposed to improve the fuel compression through the recompression of a shock/compression wave generated by the end of the main drive portion of a high-foot pulse shape. Two methods for the peak pulse recompression, namely, the decompression-and-recompression (DR) and simple recompression schemes, are investigated and compared. Radiation hydrodynamic simulations confirm that the peak pulse recompression can clearly improve fuel compression without significantly compromising the implosion stability. In particular, when the convergent DR shock is tuned to encounter the divergent shock from the capsule center at a suitable position, not only the neutron yield but also the stability of stagnating hot-spot can be noticeably improved, compared to the conventional high-foot implosions [Hurricane et al., Phys. Plasmas 21, 056314 (2014)].

  10. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    PubMed

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Wavelet-based compression of M-FISH images.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Wu, Qiang; Castleman, Kenneth R

    2005-05-01

    Multiplex fluorescence in situ hybridization (M-FISH) is a recently developed technology that enables multi-color chromosome karyotyping for molecular cytogenetic analysis. Each M-FISH image set consists of a number of aligned images of the same chromosome specimen captured at different optical wavelength. This paper presents embedded M-FISH image coding (EMIC), where the foreground objects/chromosomes and the background objects/images are coded separately. We first apply critically sampled integer wavelet transforms to both the foreground and the background. We then use object-based bit-plane coding to compress each object and generate separate embedded bitstreams that allow continuous lossy-to-lossless compression of the foreground and the background. For efficient arithmetic coding of bit planes, we propose a method of designing an optimal context model that specifically exploits the statistical characteristics of M-FISH images in the wavelet domain. Our experiments show that EMIC achieves nearly twice as much compression as Lempel-Ziv-Welch coding. EMIC also performs much better than JPEG-LS and JPEG-2000 for lossless coding. The lossy performance of EMIC is significantly better than that of coding each M-FISH image with JPEG-2000.

  12. Simulation studies of hydrodynamic aspects of magneto-inertial fusion and high order adaptive algorithms for Maxwell equations

    NASA Astrophysics Data System (ADS)

    Wu, Lingling

    Three-dimensional simulations of the formation and implosion of plasma liners for the Plasma Jet Induced Magneto Inertial Fusion (PJMIF) have been performed using multiscale simulation technique based on the FronTier code. In the PJMIF concept, a plasma liner, formed by merging of a large number of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the nuclear fusion ignition. The propagation of a single jet with Mach number 60 from the plasma gun to the merging point was studied using the FronTier code. The simulation result was used as input to the 3D jet merger problem. The merger of 144, 125, and 625 jets and the formation and heating of plasma liner by compression waves have been studied and compared with recent theoretical predictions. The main result of the study is the prediction of the average Mach number reduction and the description of the liner structure and properties. We have also compared the effect of different merging radii. Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets have also been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium - xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, On the efficacy of imploding plasma liners for magnetized fusion target compression, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium - tritium targets compressed by Mach 60 deuterium liners. In the most optimal setup for a given chamber size that contained a target with the initial radius of 20 cm compressed by 10 cm thick, Mach 60 xenon liner, the target ignition and fusion energy gain of 10 was achieved. Simulations also showed that composite deuterium - xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated. The study of the dependence of the ram pressure amplification on radial compressibility showed a good agreement with the theory. The study concludes that a liner with higher Mach number and lower adiabatic index gamma (the radio of specific heats) will generate higher ram pressure amplification and higher fusion energy gain. We implemented a second order embedded boundary method for the Maxwell equations in geometrically complex domains. The numerical scheme is second order in both space and time. Comparing to the first order stair-step approximation of complex geometries within the FDTD method, this method can avoid spurious solution introduced by the stair step approximation. Unlike the finite element method and the FE-FD hybrid method, no triangulation is needed for this scheme. This method preserves the simplicity of the embedded boundary method and it is easy to implement. We will also propose a conservative (symplectic) fourth order scheme for uniform geometry boundary.

  13. A Robust Image Watermarking in the Joint Time-Frequency Domain

    NASA Astrophysics Data System (ADS)

    Öztürk, Mahmut; Akan, Aydın; Çekiç, Yalçın

    2010-12-01

    With the rapid development of computers and internet applications, copyright protection of multimedia data has become an important problem. Watermarking techniques are proposed as a solution to copyright protection of digital media files. In this paper, a new, robust, and high-capacity watermarking method that is based on spatiofrequency (SF) representation is presented. We use the discrete evolutionary transform (DET) calculated by the Gabor expansion to represent an image in the joint SF domain. The watermark is embedded onto selected coefficients in the joint SF domain. Hence, by combining the advantages of spatial and spectral domain watermarking methods, a robust, invisible, secure, and high-capacity watermarking method is presented. A correlation-based detector is also proposed to detect and extract any possible watermarks on an image. The proposed watermarking method was tested on some commonly used test images under different signal processing attacks like additive noise, Wiener and Median filtering, JPEG compression, rotation, and cropping. Simulation results show that our method is robust against all of the attacks.

  14. SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Rueff; Lyle Roybal; Denis Vollmer

    2013-01-01

    There is a significant need to protect the nation’s energy infrastructures from malicious actors using cyber methods. Supervisory, Control, and Data Acquisition (SCADA) systems may be vulnerable due to the insufficient security implemented during the design and deployment of these control systems. This is particularly true in older legacy SCADA systems that are still commonly in use. The purpose of INL’s research on the SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) project was to determine if and how data compression techniques could be used to identify and protect SCADA systems from cyber attacks. Initially, the concept was centered on howmore » to train a compression algorithm to recognize normal control system traffic versus hostile network traffic. Because large portions of the TCP/IP message traffic (called packets) are repetitive, the concept of using compression techniques to differentiate “non-normal” traffic was proposed. In this manner, malicious SCADA traffic could be identified at the packet level prior to completing its payload. Previous research has shown that SCADA network traffic has traits desirable for compression analysis. This work investigated three different approaches to identify malicious SCADA network traffic using compression techniques. The preliminary analyses and results presented herein are clearly able to differentiate normal from malicious network traffic at the packet level at a very high confidence level for the conditions tested. Additionally, the master dictionary approach used in this research appears to initially provide a meaningful way to categorize and compare packets within a communication channel.« less

  15. ERGC: an efficient referential genome compression algorithm

    PubMed Central

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-01-01

    Motivation: Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. Results: We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. Availability and implementation: The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. Contact: rajasek@engr.uconn.edu PMID:26139636

  16. A real-time chirp-coded imaging system with tissue attenuation compensation.

    PubMed

    Ramalli, A; Guidi, F; Boni, E; Tortoli, P

    2015-07-01

    In ultrasound imaging, pulse compression methods based on the transmission (TX) of long coded pulses and matched receive filtering can be used to improve the penetration depth while preserving the axial resolution (coded-imaging). The performance of most of these methods is affected by the frequency dependent attenuation of tissue, which causes mismatch of the receiver filter. This, together with the involved additional computational load, has probably so far limited the implementation of pulse compression methods in real-time imaging systems. In this paper, a real-time low-computational-cost coded-imaging system operating on the beamformed and demodulated data received by a linear array probe is presented. The system has been implemented by extending the firmware and the software of the ULA-OP research platform. In particular, pulse compression is performed by exploiting the computational resources of a single digital signal processor. Each image line is produced in less than 20 μs, so that, e.g., 192-line frames can be generated at up to 200 fps. Although the system may work with a large class of codes, this paper has been focused on the test of linear frequency modulated chirps. The new system has been used to experimentally investigate the effects of tissue attenuation so that the design of the receive compression filter can be accordingly guided. Tests made with different chirp signals confirm that, although the attainable compression gain in attenuating media is lower than the theoretical value expected for a given TX Time-Bandwidth product (BT), good SNR gains can be obtained. For example, by using a chirp signal having BT=19, a 13 dB compression gain has been measured. By adapting the frequency band of the receiver to the band of the received echo, the signal-to-noise ratio and the penetration depth have been further increased, as shown by real-time tests conducted on phantoms and in vivo. In particular, a 2.7 dB SNR increase has been measured through a novel attenuation compensation scheme, which only requires to shift the demodulation frequency by 1 MHz. The proposed method characterizes for its simplicity and easy implementation. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Rapid distortion analysis and direct simulation of compressible homogeneous turbulence at finite Mach number

    NASA Technical Reports Server (NTRS)

    Cambon, C.; Coleman, G. N.; Mansour, N. N.

    1992-01-01

    The effect of rapid mean compression on compressible turbulence at a range of turbulent Mach numbers is investigated. Rapid distortion theory (RDT) and direct numerical simulation results for the case of axial (one-dimensional) compression are used to illustrate the existence of two distinct rapid compression regimes. These regimes are set by the relationships between the timescales of the mean distortion, the turbulence, and the speed of sound. A general RDT formulation is developed and is proposed as a means of improving turbulence models for compressible flows.

  18. An h-p Taylor-Galerkin finite element method for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O.

    1991-01-01

    An extension of the familiar Taylor-Galerkin method to arbitrary h-p spatial approximations is proposed. Boundary conditions are analyzed, and a linear stability result for arbitrary meshes is given, showing the unconditional stability for the parameter of implicitness alpha not less than 0.5. The wedge and blunt body problems are solved with both linear, quadratic, and cubic elements and h-adaptivity, showing the feasibility of higher orders of approximation for problems with shocks.

  19. Low rank approximation methods for MR fingerprinting with large scale dictionaries.

    PubMed

    Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra

    2018-04-01

    This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches. T 1 , T 2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence. The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Bunch length compression method for free electron lasers to avoid parasitic compressions

    DOEpatents

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  1. High spatial resolution compressed sensing (HSPARSE) functional MRI.

    PubMed

    Fang, Zhongnan; Van Le, Nguyen; Choy, ManKin; Lee, Jin Hyung

    2016-08-01

    To propose a novel compressed sensing (CS) high spatial resolution functional MRI (fMRI) method and demonstrate the advantages and limitations of using CS for high spatial resolution fMRI. A randomly undersampled variable density spiral trajectory enabling an acceleration factor of 5.3 was designed with a balanced steady state free precession sequence to achieve high spatial resolution data acquisition. A modified k-t SPARSE method was then implemented and applied with a strategy to optimize regularization parameters for consistent, high quality CS reconstruction. The proposed method improves spatial resolution by six-fold with 12 to 47% contrast-to-noise ratio (CNR), 33 to 117% F-value improvement and maintains the same temporal resolution. It also achieves high sensitivity of 69 to 99% compared the original ground-truth, small false positive rate of less than 0.05 and low hemodynamic response function distortion across a wide range of CNRs. The proposed method is robust to physiological noise and enables detection of layer-specific activities in vivo, which cannot be resolved using the highest spatial resolution Nyquist acquisition. The proposed method enables high spatial resolution fMRI that can resolve layer-specific brain activity and demonstrates the significant improvement that CS can bring to high spatial resolution fMRI. Magn Reson Med 76:440-455, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. Outdoor Illegal Construction Identification Algorithm Based on 3D Point Cloud Segmentation

    NASA Astrophysics Data System (ADS)

    An, Lu; Guo, Baolong

    2018-03-01

    Recently, various illegal constructions occur significantly in our surroundings, which seriously restrict the orderly development of urban modernization. The 3D point cloud data technology is used to identify the illegal buildings, which could address the problem above effectively. This paper proposes an outdoor illegal construction identification algorithm based on 3D point cloud segmentation. Initially, in order to save memory space and reduce processing time, a lossless point cloud compression method based on minimum spanning tree is proposed. Then, a ground point removing method based on the multi-scale filtering is introduced to increase accuracy. Finally, building clusters on the ground can be obtained using a region growing method, as a result, the illegal construction can be marked. The effectiveness of the proposed algorithm is verified using a publicly data set collected from the International Society for Photogrammetry and Remote Sensing (ISPRS).

  3. Multicontrast reconstruction using compressed sensing with low rank and spatially varying edge-preserving constraints for high-resolution MR characterization of myocardial infarction.

    PubMed

    Zhang, Li; Athavale, Prashant; Pop, Mihaela; Wright, Graham A

    2017-08-01

    To enable robust reconstruction for highly accelerated three-dimensional multicontrast late enhancement imaging to provide improved MR characterization of myocardial infarction with isotropic high spatial resolution. A new method using compressed sensing with low rank and spatially varying edge-preserving constraints (CS-LASER) is proposed to improve the reconstruction of fine image details from highly undersampled data. CS-LASER leverages the low rank feature of the multicontrast volume series in MR relaxation and integrates spatially varying edge preservation into the explicit low rank constrained compressed sensing framework using weighted total variation. With an orthogonal temporal basis pre-estimated, a multiscale iterative reconstruction framework is proposed to enable the practice of CS-LASER with spatially varying weights of appropriate accuracy. In in vivo pig studies with both retrospective and prospective undersamplings, CS-LASER preserved fine image details better and presented tissue characteristics with a higher degree of consistency with histopathology, particularly in the peri-infarct region, than an alternative technique for different acceleration rates. An isotropic resolution of 1.5 mm was achieved in vivo within a single breath-hold using the proposed techniques. Accelerated three-dimensional multicontrast late enhancement with CS-LASER can achieve improved MR characterization of myocardial infarction with high spatial resolution. Magn Reson Med 78:598-610, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. A head-mounted compressive three-dimensional display system with polarization-dependent focus switching

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho

    2016-10-01

    A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.

  5. Fast and efficient compression of floating-point data.

    PubMed

    Lindstrom, Peter; Isenburg, Martin

    2006-01-01

    Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however, are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained. We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.

  6. Probe-controlled soliton frequency shift in the regime of optical event horizon.

    PubMed

    Gu, Jie; Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2015-08-24

    In optical analogy of the event horizon, temporal pulse collision and mutual interactions are mainly between an intense solitary wave (soliton) and a dispersive probe wave. In such a regime, here we numerically investigate the probe-controlled soliton frequency shift as well as the soliton self-compression. In particular, in the dispersion landscape with multiple zero dispersion wavelengths, bi-directional soliton spectral tunneling effects is possible. Moreover, we propose a mid-infrared soliton self-compression to the generation of few-cycle ultrashort pulses, in a bulk of quadratic nonlinear crystals in contrast to optical fibers or cubic nonlinear media, which could contribute to the community with a simple and flexible method to experimental implementations.

  7. Effect of phase lag on cyclic durability of laminated composite

    NASA Astrophysics Data System (ADS)

    Andersons, Janis; Limonov, V.; Tamuzs, Vitants

    1992-07-01

    Theoretical and experimental results on fatigue of laminated fiber reinforced composites under out-of-phase, biaxial cyclic loading are presented. Experiments were carried out on tubular filament wound samples of epoxy matrix/organic (Kevlar type) fiber composites. Fatigue strength under two different loading modes, namely cyclic torsion combined with axial tension or compression, was investigated for phase lags psi = 0, pi/2, and pi. Durability was shown to decrease with increasing phase shift both for axial tension (R = 0.1) and compression (R = 10). A matrix failure criterion was proposed for a unidirectionally reinforced ply, and the ply discount method was modified to account for phase lag. Calculated S-N curves agree reasonably well with experimental data.

  8. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  9. A Fourier dimensionality reduction model for big data interferometric imaging

    NASA Astrophysics Data System (ADS)

    Vijay Kartik, S.; Carrillo, Rafael E.; Thiran, Jean-Philippe; Wiaux, Yves

    2017-06-01

    Data dimensionality reduction in radio interferometry can provide savings of computational resources for image reconstruction through reduced memory footprints and lighter computations per iteration, which is important for the scalability of imaging methods to the big data setting of the next-generation telescopes. This article sheds new light on dimensionality reduction from the perspective of the compressed sensing theory and studies its interplay with imaging algorithms designed in the context of convex optimization. We propose a post-gridding linear data embedding to the space spanned by the left singular vectors of the measurement operator, providing a dimensionality reduction below image size. This embedding preserves the null space of the measurement operator and hence its sampling properties are also preserved in light of the compressed sensing theory. We show that this can be approximated by first computing the dirty image and then applying a weighted subsampled discrete Fourier transform to obtain the final reduced data vector. This Fourier dimensionality reduction model ensures a fast implementation of the full measurement operator, essential for any iterative image reconstruction method. The proposed reduction also preserves the independent and identically distributed Gaussian properties of the original measurement noise. For convex optimization-based imaging algorithms, this is key to justify the use of the standard ℓ2-norm as the data fidelity term. Our simulations confirm that this dimensionality reduction approach can be leveraged by convex optimization algorithms with no loss in imaging quality relative to reconstructing the image from the complete visibility data set. Reconstruction results in simulation settings with no direction dependent effects or calibration errors show promising performance of the proposed dimensionality reduction. Further tests on real data are planned as an extension of the current work. matlab code implementing the proposed reduction method is available on GitHub.

  10. An image compression survey and algorithm switching based on scene activity

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Data compression techniques are presented. A description of these techniques is provided along with a performance evaluation. The complexity of the hardware resulting from their implementation is also addressed. The compression effect on channel distortion and the applicability of these algorithms to real-time processing are presented. Also included is a proposed new direction for an adaptive compression technique for real-time processing.

  11. QRFXFreeze: Queryable Compressor for RFX.

    PubMed

    Senthilkumar, Radha; Nandagopal, Gomathi; Ronald, Daphne

    2015-01-01

    The verbose nature of XML has been mulled over again and again and many compression techniques for XML data have been excogitated over the years. Some of the techniques incorporate support for querying the XML database in its compressed format while others have to be decompressed before they can be queried. XML compression in which querying is directly supported instantaneously with no compromise over time is forced to compromise over space. In this paper, we propose the compressor, QRFXFreeze, which not only reduces the space of storage but also supports efficient querying. The compressor does this without decompressing the compressed XML file. The compressor supports all kinds of XML documents along with insert, update, and delete operations. The forte of QRFXFreeze is that the textual data are semantically compressed and are indexed to reduce the querying time. Experimental results show that the proposed compressor performs much better than other well-known compressors.

  12. Comparison of chest compression quality between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method during CPR.

    PubMed

    Park, Sang-Sub

    2014-01-01

    The purpose of this study is to grasp difference in quality of chest compression accuracy between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method. Participants were progressed 64 people except 6 absentees among 70 people who agreed to participation with completing the CPR curriculum. In the classification of group in participants, the modified chest compression method was called as smartphone group (33 people). The standardized chest compression method was called as traditional group (31 people). The common equipments in both groups were used Manikin for practice and Manikin for evaluation. In the meantime, the smartphone group for application was utilized Android and iOS Operating System (OS) of 2 smartphone products (G, i). The measurement period was conducted from September 25th to 26th, 2012. Data analysis was used SPSS WIN 12.0 program. As a result of research, the proper compression depth (mm) was shown the proper compression depth (p< 0.01) in traditional group (53.77 mm) compared to smartphone group (48.35 mm). Even the proper chest compression (%) was formed suitably (p< 0.05) in traditional group (73.96%) more than smartphone group (60.51%). As for the awareness of chest compression accuracy, the traditional group (3.83 points) had the higher awareness of chest compression accuracy (p< 0.001) than the smartphone group (2.32 points). In the questionnaire that was additionally carried out 1 question only in smartphone group, the modified chest compression method with the use of smartphone had the high negative reason in rescuer for occurrence of hand back pain (48.5%) and unstable posture (21.2%).

  13. ECG biometric identification: A compression based approach.

    PubMed

    Bras, Susana; Pinho, Armando J

    2015-08-01

    Using the electrocardiogram signal (ECG) to identify and/or authenticate persons are problems still lacking satisfactory solutions. Yet, ECG possesses characteristics that are unique or difficult to get from other signals used in biometrics: (1) it requires contact and liveliness for acquisition (2) it changes under stress, rendering it potentially useless if acquired under threatening. Our main objective is to present an innovative and robust solution to the above-mentioned problem. To successfully conduct this goal, we rely on information-theoretic data models for data compression and on similarity metrics related to the approximation of the Kolmogorov complexity. The proposed measure allows the comparison of two (or more) ECG segments, without having to follow traditional approaches that require heartbeat segmentation (described as highly influenced by external or internal interferences). As a first approach, the method was able to cluster the data in three groups: identical record, same participant, different participant, by the stratification of the proposed measure with values near 0 for the same participant and closer to 1 for different participants. A leave-one-out strategy was implemented in order to identify the participant in the database based on his/her ECG. A 1NN classifier was implemented, using as distance measure the method proposed in this work. The classifier was able to identify correctly almost all participants, with an accuracy of 99% in the database used.

  14. A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation

    NASA Astrophysics Data System (ADS)

    Li, Yue-e.; Wang, Qiang

    2011-11-01

    This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.

  15. Development and evaluation of a novel lossless image compression method (AIC: artificial intelligence compression method) using neural networks as artificial intelligence.

    PubMed

    Fukatsu, Hiroshi; Naganawa, Shinji; Yumura, Shinnichiro

    2008-04-01

    This study was aimed to validate the performance of a novel image compression method using a neural network to achieve a lossless compression. The encoding consists of the following blocks: a prediction block; a residual data calculation block; a transformation and quantization block; an organization and modification block; and an entropy encoding block. The predicted image is divided into four macro-blocks using the original image for teaching; and then redivided into sixteen sub-blocks. The predicted image is compared to the original image to create the residual image. The spatial and frequency data of the residual image are compared and transformed. Chest radiography, computed tomography (CT), magnetic resonance imaging, positron emission tomography, radioisotope mammography, ultrasonography, and digital subtraction angiography images were compressed using the AIC lossless compression method; and the compression rates were calculated. The compression rates were around 15:1 for chest radiography and mammography, 12:1 for CT, and around 6:1 for other images. This method thus enables greater lossless compression than the conventional methods. This novel method should improve the efficiency of handling of the increasing volume of medical imaging data.

  16. Brace compression for treatment of pectus carinatum.

    PubMed

    Jung, Joonho; Chung, Sang Ho; Cho, Jin Kyoung; Park, Soo-Jin; Choi, Ho; Lee, Sungsoo

    2012-12-01

    Surgery has been the classical treatment of pectus carinatum (PC), though compressive orthotic braces have shown successful results in recent years. We propose a non-operative approach using a lightweight, patient-controlled dynamic chest-bracing device. Eighteen patients with PC were treated between July 2008 and June 2009. The treatment involved fitting of the brace, which was worn for at least 20 hours per day for 6 months. Their degree of satisfaction (1, no correction; 4, remarkable correction) was measured at 12 months after the initiation of the treatment. Thirteen (72.2%) patients completed the treatment (mean time, 4.9±1.4 months). In patients who completed the treatment, the mean overall satisfaction score was 3.73±0.39. The mean satisfaction score was 4, and there was no recurrence of pectus carinatum in patients who underwent the treatment for at least 6 months. Minimal recurrence of pectus carinatum after removal of the compressive brace occurred in 5 (38.5%) patients who stopped wearing the compressive brace at 4 months. Compressive bracing results in a significant improvement in PC appearance in patients with an immature skeleton. However, patient compliance and diligent follow-up appear to be paramount for the success of this method of treatment. We currently offer this approach as a first-line treatment for PC.

  17. A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging.

    PubMed

    Valvano, Giuseppe; Martini, Nicola; Santarelli, Maria Filomena; Chiappino, Dante; Landini, Luigi

    2015-01-01

    In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.

  18. Asymptotic analysis of stability for prismatic solids under axial loads

    NASA Astrophysics Data System (ADS)

    Scherzinger, W.; Triantafyllidis, N.

    1998-06-01

    This work addresses the stability of axially loaded prismatic beams with any simply connected crosssection. The solids obey a general class of rate-independent constitutive laws, and can sustain finite strains in either compression or tension. The proposed method is based on multiple scale asymptotic analysis, and starts with the full Lagrangian formulation for the three-dimensional stability problem, where the boundary conditions are chosen to avoid the formation of boundary layers. The calculations proceed by taking the limit of the beam's slenderness parameter, ɛ (ɛ 2 ≡ area/length 2), going to zero, thus resulting in asymptotic expressions for the critical loads and modes. The analysis presents a consistent and unified treatment for both compressive (buckling) and tensile (necking) instabilities, and is carried out explicitly up to o( ɛ4) in each case. The present method circumvents the standard structural mechanics approach for the stability problem of beams which requires the choice of displacement and stress field approximations in order to construct a nonlinear beam theory. Moreover, this work provides a consistent way to calculate the effect of the beam's slenderness on the critical load and mode to any order of accuracy required. In contrast, engineering theories give accurately the lowest order terms ( O( ɛ2)—Euler load—in compression or O(1)—maximum load—in tension) but give only approximately the next higher order terms, with the exception of simple section geometries where exact stability results are available. The proposed method is used to calculate the critical loads and eigenmodes for bars of several different cross-sections (circular, square, cruciform and L-shaped). Elastic beams are considered in compression and elastoplastic beams are considered in tension. The O( ɛ2) and O( ɛ4) asymptotic results are compared to the exact finite element calculations for the corresponding three-dimensional prismatic solids. The O( ɛ4) results give significant improvement over the O( ɛ2) results, even for extremely stubby beams, and in particular for the case of cross-sections with commensurate dimensions.

  19. Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; ...

    2015-03-02

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We find that the wakefields in the accelerator structures play an important role in the twin-bunchmore » compression, and through analysis show that they can be used to extend the available time delay range. As a result, based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  20. Design and fabrication of Rene 41 advanced structural panels. [their performance under axial compression, shear, and bending loads

    NASA Technical Reports Server (NTRS)

    Greene, B. E.; Northrup, R. F.

    1975-01-01

    The efficiency was investigated of curved elements in the design of lightweight structural panels under combined loads of axial compression, inplane shear, and bending. The application is described of technology generated in the initial aluminum program to the design and fabrication of Rene 41 panels for subsequent performance tests at elevated temperature. Optimum designs for two panel configurations are presented. The designs are applicable to hypersonic airplane wing structure, and are designed specifically for testing at elevated temperature in the hypersonic wing test structure located at the NASA Flight Research Center. Fabrication methods developed to produce the Rene panels are described, and test results of smaller structural element specimens are presented to verify the design and fabrication methods used. Predicted strengths of the panels under several proposed elevated temperature test load conditions are presented.

Top