Sample records for proposed method compares

  1. Fusion of PAN and multispectral remote sensing images in shearlet domain by considering regional metrics

    NASA Astrophysics Data System (ADS)

    Poobalasubramanian, Mangalraj; Agrawal, Anupam

    2016-10-01

    The presented work proposes fusion of panchromatic and multispectral images in a shearlet domain. The proposed fusion rules rely on the regional considerations which makes the system efficient in terms of spatial enhancement. The luminance hue saturation-based color conversion system is utilized to avoid spectral distortions. The proposed fusion method is tested on Worldview2 and Ikonos datasets, and the proposed method is compared against other methodologies. The proposed fusion method performs well against the other compared methods in terms of subjective and objective evaluations.

  2. An individual and dynamic Body Segment Inertial Parameter validation method using ground reaction forces.

    PubMed

    Hansen, Clint; Venture, Gentiane; Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice

    2014-05-07

    Over the last decades a variety of research has been conducted with the goal to improve the Body Segment Inertial Parameters (BSIP) estimations but to our knowledge a real validation has never been completely successful, because no ground truth is available. The aim of this paper is to propose a validation method for a BSIP identification method (IM) and to confirm the results by comparing them with recalculated contact forces using inverse dynamics to those obtained by a force plate. Furthermore, the results are compared with the recently proposed estimation method by Dumas et al. (2007). Additionally, the results are cross validated with a high velocity overarm throwing movement. Throughout conditions higher correlations, smaller metrics and smaller RMSE can be found for the proposed BSIP estimation (IM) which shows its advantage compared to recently proposed methods as of Dumas et al. (2007). The purpose of the paper is to validate an already proposed method and to show that this method can be of significant advantage compared to conventional methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Robust sleep quality quantification method for a personal handheld device.

    PubMed

    Shin, Hangsik; Choi, Byunghun; Kim, Doyoon; Cho, Jaegeol

    2014-06-01

    The purpose of this study was to develop and validate a novel method for sleep quality quantification using personal handheld devices. The proposed method used 3- or 6-axes signals, including acceleration and angular velocity, obtained from built-in sensors in a smartphone and applied a real-time wavelet denoising technique to minimize the nonstationary noise. Sleep or wake status was decided on each axis, and the totals were finally summed to calculate sleep efficiency (SE), regarded as sleep quality in general. The sleep experiment was carried out for performance evaluation of the proposed method, and 14 subjects participated. An experimental protocol was designed for comparative analysis. The activity during sleep was recorded not only by the proposed method but also by well-known commercial applications simultaneously; moreover, activity was recorded on different mattresses and locations to verify the reliability in practical use. Every calculated SE was compared with the SE of a clinically certified medical device, the Philips (Amsterdam, The Netherlands) Actiwatch. In these experiments, the proposed method proved its reliability in quantifying sleep quality. Compared with the Actiwatch, accuracy and average bias error of SE calculated by the proposed method were 96.50% and -1.91%, respectively. The proposed method was vastly superior to other comparative applications with at least 11.41% in average accuracy and at least 6.10% in average bias; average accuracy and average absolute bias error of comparative applications were 76.33% and 17.52%, respectively.

  4. An Exact Model-Based Method for Near-Field Sources Localization with Bistatic MIMO System.

    PubMed

    Singh, Parth Raj; Wang, Yide; Chargé, Pascal

    2017-03-30

    In this paper, we propose an exact model-based method for near-field sources localization with a bistatic multiple input, multiple output (MIMO) radar system, and compare it with an approximated model-based method. The aim of this paper is to propose an efficient way to use the exact model of the received signals of near-field sources in order to eliminate the systematic error introduced by the use of approximated model in most existing near-field sources localization techniques. The proposed method uses parallel factor (PARAFAC) decomposition to deal with the exact model. Thanks to the exact model, the proposed method has better precision and resolution than the compared approximated model-based method. The simulation results show the performance of the proposed method.

  5. Robust range estimation with a monocular camera for vision-based forward collision warning system.

    PubMed

    Park, Ki-Yeong; Hwang, Sun-Young

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  6. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    PubMed Central

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344

  7. Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling.

    PubMed

    Tong, Tong; Wolz, Robin; Coupé, Pierrick; Hajnal, Joseph V; Rueckert, Daniel

    2013-08-01

    We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Analytical investigation of different mathematical approaches utilizing manipulation of ratio spectra

    NASA Astrophysics Data System (ADS)

    Osman, Essam Eldin A.

    2018-01-01

    This work represents a comparative study of different approaches of manipulating ratio spectra, applied on a binary mixture of ciprofloxacin HCl and dexamethasone sodium phosphate co-formulated as ear drops. The proposed new spectrophotometric methods are: ratio difference spectrophotometric method (RDSM), amplitude center method (ACM), first derivative of the ratio spectra (1DD) and mean centering of ratio spectra (MCR). The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitations and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.

  9. A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.

    PubMed

    Prakash, Jaya; Yalavarthy, Phaneendra K

    2013-03-01

    Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.

  10. Reference point detection for camera-based fingerprint image based on wavelet transformation.

    PubMed

    Khalil, Mohammed S

    2015-04-30

    Fingerprint recognition systems essentially require core-point detection prior to fingerprint matching. The core-point is used as a reference point to align the fingerprint with a template database. When processing a larger fingerprint database, it is necessary to consider the core-point during feature extraction. Numerous core-point detection methods are available and have been reported in the literature. However, these methods are generally applied to scanner-based images. Hence, this paper attempts to explore the feasibility of applying a core-point detection method to a fingerprint image obtained using a camera phone. The proposed method utilizes a discrete wavelet transform to extract the ridge information from a color image. The performance of proposed method is evaluated in terms of accuracy and consistency. These two indicators are calculated automatically by comparing the method's output with the defined core points. The proposed method is tested on two data sets, controlled and uncontrolled environment, collected from 13 different subjects. In the controlled environment, the proposed method achieved a detection rate 82.98%. In uncontrolled environment, the proposed method yield a detection rate of 78.21%. The proposed method yields promising results in a collected-image database. Moreover, the proposed method outperformed compare to existing method.

  11. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-02-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  12. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-06-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  13. Distributed processing of a GPS receiver network for a regional ionosphere map

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Ho; Hoo Lim, Joon; Yoo, Won Jae; Lee, Hyung Keun

    2018-01-01

    This paper proposes a distributed processing method applicable to GPS receivers in a network to generate a regional ionosphere map accurately and reliably. For accuracy, the proposed method is operated by multiple local Kalman filters and Kriging estimators. Each local Kalman filter is applied to a dual-frequency receiver to estimate the receiver’s differential code bias and vertical ionospheric delays (VIDs) at different ionospheric pierce points. The Kriging estimator selects and combines several VID estimates provided by the local Kalman filters to generate the VID estimate at each ionospheric grid point. For reliability, the proposed method uses receiver fault detectors and satellite fault detectors. Each receiver fault detector compares the VID estimates of the same local area provided by different local Kalman filters. Each satellite fault detector compares the VID estimate of each local area with that projected from the other local areas. Compared with the traditional centralized processing method, the proposed method is advantageous in that it considerably reduces the computational burden of each single Kalman filter and enables flexible fault detection, isolation, and reconfiguration capability. To evaluate the performance of the proposed method, several experiments with field collected measurements were performed.

  14. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.

    PubMed

    El-Bardini, Mohammad; El-Nagar, Ahmad M

    2014-05-01

    In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Research on segmentation based on multi-atlas in brain MR image

    NASA Astrophysics Data System (ADS)

    Qian, Yuejing

    2018-03-01

    Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.

  16. Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method

    NASA Astrophysics Data System (ADS)

    Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad

    2018-03-01

    An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.

  17. First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized Cartesian sampling.

    PubMed

    Zhou, Zhengwei; Bi, Xiaoming; Wei, Janet; Yang, Hsin-Jung; Dharmakumar, Rohan; Arsanjani, Reza; Bairey Merz, C Noel; Li, Debiao; Sharif, Behzad

    2017-02-01

    The presence of subendocardial dark-rim artifact (DRA) remains an ongoing challenge in first-pass perfusion (FPP) cardiac magnetic resonance imaging (MRI). We propose a free-breathing FPP imaging scheme with Cartesian sampling that is optimized to minimize the DRA and readily enables near-instantaneous image reconstruction. The proposed FPP method suppresses Gibbs ringing effects-a major underlying factor for the DRA-by "shaping" the underlying point spread function through a two-step process: 1) an undersampled Cartesian sampling scheme that widens the k-space coverage compared to the conventional scheme; and 2) a modified parallel-imaging scheme that incorporates optimized apodization (k-space data filtering) to suppress Gibbs-ringing effects. Healthy volunteer studies (n = 10) were performed to compare the proposed method against the conventional Cartesian technique-both using a saturation-recovery gradient-echo sequence at 3T. Furthermore, FPP imaging studies using the proposed method were performed in infarcted canines (n = 3), and in two symptomatic patients with suspected coronary microvascular dysfunction for assessment of myocardial hypoperfusion. Width of the DRA and the number of DRA-affected myocardial segments were significantly reduced in the proposed method compared to the conventional approach (width: 1.3 vs. 2.9 mm, P < 0.001; number of segments: 2.6 vs. 8.7; P < 0.0001). The number of slices with severe DRA was markedly lower for the proposed method (by 10-fold). The reader-assigned image quality scores were similar (P = 0.2), although the quantified myocardial signal-to-noise ratio was lower for the proposed method (P < 0.05). Animal studies showed that the proposed method can detect subendocardial perfusion defects and patient results were consistent with the gold-standard invasive test. The proposed free-breathing Cartesian FPP imaging method significantly reduces the prevalence of severe DRAs compared to the conventional approach while maintaining similar resolution and image quality. 2 J. Magn. Reson. Imaging 2017;45:542-555. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Guided SAR image despeckling with probabilistic non local weights

    NASA Astrophysics Data System (ADS)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  19. A comparative study of different aspects of manipulating ratio spectra applied for ternary mixtures: Derivative spectrophotometry versus wavelet transform

    NASA Astrophysics Data System (ADS)

    Salem, Hesham; Lotfy, Hayam M.; Hassan, Nagiba Y.; El-Zeiny, Mohamed B.; Saleh, Sarah S.

    2015-01-01

    This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.

  20. A comparative study of different aspects of manipulating ratio spectra applied for ternary mixtures: derivative spectrophotometry versus wavelet transform.

    PubMed

    Salem, Hesham; Lotfy, Hayam M; Hassan, Nagiba Y; El-Zeiny, Mohamed B; Saleh, Sarah S

    2015-01-25

    This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Reduced field-of-view imaging for single-shot MRI with an amplitude-modulated chirp pulse excitation and Fourier transform reconstruction.

    PubMed

    Li, Jing; Zhang, Miao; Chen, Lin; Cai, Congbo; Sun, Huijun; Cai, Shuhui

    2015-06-01

    We employ an amplitude-modulated chirp pulse to selectively excite spins in one or more regions of interest (ROIs) to realize reduced field-of-view (rFOV) imaging based on single-shot spatiotemporally encoded (SPEN) sequence and Fourier transform reconstruction. The proposed rFOV imaging method was theoretically analyzed and illustrated with numerical simulation and tested with phantom experiments and in vivo rat experiments. In addition, point spread function was applied to demonstrate the feasibility of the proposed method. To evaluate the proposed method, the rFOV results were compared with those obtained using the EPI method with orthogonal RF excitation. The simulation and experimental results show that the proposed method can image one or two separated ROIs along the SPEN dimension in a single shot with higher spatial resolution, less sensitive to field inhomogeneity, and practically no aliasing artifacts. In addition, the proposed method may produce rFOV images with comparable signal-to-noise ratio to the rFOV EPI images. The proposed method is promising for the applications under severe susceptibility heterogeneities and for imaging separate ROIs simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Robust digital image watermarking using distortion-compensated dither modulation

    NASA Astrophysics Data System (ADS)

    Li, Mianjie; Yuan, Xiaochen

    2018-04-01

    In this paper, we propose a robust feature extraction based digital image watermarking method using Distortion- Compensated Dither Modulation (DC-DM). Our proposed local watermarking method provides stronger robustness and better flexibility than traditional global watermarking methods. We improve robustness by introducing feature extraction and DC-DM method. To extract the robust feature points, we propose a DAISY-based Robust Feature Extraction (DRFE) method by employing the DAISY descriptor and applying the entropy calculation based filtering. The experimental results show that the proposed method achieves satisfactory robustness under the premise of ensuring watermark imperceptibility quality compared to other existing methods.

  3. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    NASA Astrophysics Data System (ADS)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  4. Functional magnetic resonance imaging activation detection: fuzzy cluster analysis in wavelet and multiwavelet domains.

    PubMed

    Jahanian, Hesamoddin; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali

    2005-09-01

    To present novel feature spaces, based on multiscale decompositions obtained by scalar wavelet and multiwavelet transforms, to remedy problems associated with high dimension of functional magnetic resonance imaging (fMRI) time series (when they are used directly in clustering algorithms) and their poor signal-to-noise ratio (SNR) that limits accurate classification of fMRI time series according to their activation contents. Using randomization, the proposed method finds wavelet/multiwavelet coefficients that represent the activation content of fMRI time series and combines them to define new feature spaces. Using simulated and experimental fMRI data sets, the proposed feature spaces are compared to the cross-correlation (CC) feature space and their performances are evaluated. In these studies, the false positive detection rate is controlled using randomization. To compare different methods, several points of the receiver operating characteristics (ROC) curves, using simulated data, are estimated and compared. The proposed features suppress the effects of confounding signals and improve activation detection sensitivity. Experimental results show improved sensitivity and robustness of the proposed method compared to the conventional CC analysis. More accurate and sensitive activation detection can be achieved using the proposed feature spaces compared to CC feature space. Multiwavelet features show superior detection sensitivity compared to the scalar wavelet features. (c) 2005 Wiley-Liss, Inc.

  5. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    PubMed

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  6. Metal artifact reduction using a patch-based reconstruction for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Borges, Lucas R.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2017-03-01

    Digital breast tomosynthesis (DBT) is rapidly emerging as the main clinical tool for breast cancer screening. Although several reconstruction methods for DBT are described by the literature, one common issue is the interplane artifacts caused by out-of-focus features. For breasts containing highly attenuating features, such as surgical clips and large calcifications, the artifacts are even more apparent and can limit the detection and characterization of lesions by the radiologist. In this work, we propose a novel method of combining backprojected data into tomographic slices using a patch-based approach, commonly used in denoising. Preliminary tests were performed on a geometry phantom and on an anthropomorphic phantom containing metal inserts. The reconstructed images were compared to a commercial reconstruction solution. Qualitative assessment of the reconstructed images provides evidence that the proposed method reduces artifacts while maintaining low noise levels. Objective assessment supports the visual findings. The artifact spread function shows that the proposed method is capable of suppressing artifacts generated by highly attenuating features. The signal difference to noise ratio shows that the noise levels of the proposed and commercial methods are comparable, even though the commercial method applies post-processing filtering steps, which were not implemented on the proposed method. Thus, the proposed method can produce tomosynthesis reconstructions with reduced artifacts and low noise levels.

  7. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    PubMed Central

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-01-01

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763

  8. A modified form of conjugate gradient method for unconstrained optimization problems

    NASA Astrophysics Data System (ADS)

    Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa

    2016-06-01

    Conjugate gradient (CG) methods have been recognized as an interesting technique to solve optimization problems, due to the numerical efficiency, simplicity and low memory requirements. In this paper, we propose a new CG method based on the study of Rivaie et al. [7] (Comparative study of conjugate gradient coefficient for unconstrained Optimization, Aus. J. Bas. Appl. Sci. 5(2011) 947-951). Then, we show that our method satisfies sufficient descent condition and converges globally with exact line search. Numerical results show that our proposed method is efficient for given standard test problems, compare to other existing CG methods.

  9. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures

    NASA Astrophysics Data System (ADS)

    Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Salem, Hesham

    2014-11-01

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.

  10. An efficient graph theory based method to identify every minimal reaction set in a metabolic network

    PubMed Central

    2014-01-01

    Background Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks are computationally expensive. Further, they identify only one of the several possible minimal reaction sets. Results In this paper, we propose an efficient graph theory based recursive optimization approach to identify all minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing 38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required only 4.5 hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in the solution time when compared to the existing methods for finding minimal reaction set. Conclusions Identification of all minimal reactions sets in metabolic networks is essential since different minimal reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to other methods for finding minimal reaction sets and useful to employ with genome-scale metabolic networks. PMID:24594118

  11. Empirical likelihood-based confidence intervals for mean medical cost with censored data.

    PubMed

    Jeyarajah, Jenny; Qin, Gengsheng

    2017-11-10

    In this paper, we propose empirical likelihood methods based on influence function and jackknife techniques for constructing confidence intervals for mean medical cost with censored data. We conduct a simulation study to compare the coverage probabilities and interval lengths of our proposed confidence intervals with that of the existing normal approximation-based confidence intervals and bootstrap confidence intervals. The proposed methods have better finite-sample performances than existing methods. Finally, we illustrate our proposed methods with a relevant example. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Application of empirical mode decomposition with local linear quantile regression in financial time series forecasting.

    PubMed

    Jaber, Abobaker M; Ismail, Mohd Tahir; Altaher, Alsaidi M

    2014-01-01

    This paper mainly forecasts the daily closing price of stock markets. We propose a two-stage technique that combines the empirical mode decomposition (EMD) with nonparametric methods of local linear quantile (LLQ). We use the proposed technique, EMD-LLQ, to forecast two stock index time series. Detailed experiments are implemented for the proposed method, in which EMD-LPQ, EMD, and Holt-Winter methods are compared. The proposed EMD-LPQ model is determined to be superior to the EMD and Holt-Winter methods in predicting the stock closing prices.

  13. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  14. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  15. Key frame extraction based on spatiotemporal motion trajectory

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzuo; Tao, Ran; Zhang, Feng

    2015-05-01

    Spatiotemporal motion trajectory can accurately reflect the changes of motion state. Motivated by this observation, this letter proposes a method for key frame extraction based on motion trajectory on the spatiotemporal slice. Different from the well-known motion related methods, the proposed method utilizes the inflexions of the motion trajectory on the spatiotemporal slice of all the moving objects. Experimental results show that although a similar performance is achieved in the single-objective screen, by comparing the proposed method to that achieved with the state-of-the-art methods based on motion energy or acceleration, the proposed method shows a better performance in a multiobjective video.

  16. Scalable parallel elastic-plastic finite element analysis using a quasi-Newton method with a balancing domain decomposition preconditioner

    NASA Astrophysics Data System (ADS)

    Yusa, Yasunori; Okada, Hiroshi; Yamada, Tomonori; Yoshimura, Shinobu

    2018-04-01

    A domain decomposition method for large-scale elastic-plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton-Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic-plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic-plastic analysis, the proposed method exhibits better convergence performance than the conventional method.

  17. Medical image segmentation by combining graph cuts and oriented active appearance models.

    PubMed

    Chen, Xinjian; Udupa, Jayaram K; Bagci, Ulas; Zhuge, Ying; Yao, Jianhua

    2012-04-01

    In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF > 94.3% and false positive volume fraction can be achieved; 2) the initialization performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.wordpress.com/research/.

  18. Simple adaptive sparse representation based classification schemes for EEG based brain-computer interface applications.

    PubMed

    Shin, Younghak; Lee, Seungchan; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan; Lee, Heung-No

    2015-11-01

    One of the main problems related to electroencephalogram (EEG) based brain-computer interface (BCI) systems is the non-stationarity of the underlying EEG signals. This results in the deterioration of the classification performance during experimental sessions. Therefore, adaptive classification techniques are required for EEG based BCI applications. In this paper, we propose simple adaptive sparse representation based classification (SRC) schemes. Supervised and unsupervised dictionary update techniques for new test data and a dictionary modification method by using the incoherence measure of the training data are investigated. The proposed methods are very simple and additional computation for the re-training of the classifier is not needed. The proposed adaptive SRC schemes are evaluated using two BCI experimental datasets. The proposed methods are assessed by comparing classification results with the conventional SRC and other adaptive classification methods. On the basis of the results, we find that the proposed adaptive schemes show relatively improved classification accuracy as compared to conventional methods without requiring additional computation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Sparse subspace clustering for data with missing entries and high-rank matrix completion.

    PubMed

    Fan, Jicong; Chow, Tommy W S

    2017-09-01

    Many methods have recently been proposed for subspace clustering, but they are often unable to handle incomplete data because of missing entries. Using matrix completion methods to recover missing entries is a common way to solve the problem. Conventional matrix completion methods require that the matrix should be of low-rank intrinsically, but most matrices are of high-rank or even full-rank in practice, especially when the number of subspaces is large. In this paper, a new method called Sparse Representation with Missing Entries and Matrix Completion is proposed to solve the problems of incomplete-data subspace clustering and high-rank matrix completion. The proposed algorithm alternately computes the matrix of sparse representation coefficients and recovers the missing entries of a data matrix. The proposed algorithm recovers missing entries through minimizing the representation coefficients, representation errors, and matrix rank. Thorough experimental study and comparative analysis based on synthetic data and natural images were conducted. The presented results demonstrate that the proposed algorithm is more effective in subspace clustering and matrix completion compared with other existing methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simplified welding distortion analysis for fillet welding using composite shell elements

    NASA Astrophysics Data System (ADS)

    Kim, Mingyu; Kang, Minseok; Chung, Hyun

    2015-09-01

    This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  1. Local Intrinsic Dimension Estimation by Generalized Linear Modeling.

    PubMed

    Hino, Hideitsu; Fujiki, Jun; Akaho, Shotaro; Murata, Noboru

    2017-07-01

    We propose a method for intrinsic dimension estimation. By fitting the power of distance from an inspection point and the number of samples included inside a ball with a radius equal to the distance, to a regression model, we estimate the goodness of fit. Then, by using the maximum likelihood method, we estimate the local intrinsic dimension around the inspection point. The proposed method is shown to be comparable to conventional methods in global intrinsic dimension estimation experiments. Furthermore, we experimentally show that the proposed method outperforms a conventional local dimension estimation method.

  2. Boundary conditions for simulating large SAW devices using ANSYS.

    PubMed

    Peng, Dasong; Yu, Fengqi; Hu, Jian; Li, Peng

    2010-08-01

    In this report, we propose improved substrate left and right boundary conditions for simulating SAW devices using ANSYS. Compared with the previous methods, the proposed method can greatly reduce computation time. Furthermore, the longer the distance from the first reflector to the last one, the more computation time can be reduced. To verify the proposed method, a design example is presented with device center frequency 971.14 MHz.

  3. Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models

    PubMed Central

    Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua

    2017-01-01

    In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be improved by combining AAM and LW. (c) The multi-object strategy greatly facilitates the initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method achieves comparable performance while running 12 times faster. (e) The performance of proposed method is comparable to the state of the art liver segmentation algorithm. The executable version of 3D shape constrained GC with user interface can be downloaded from website http://xinjianchen.wordpress.com/research/. PMID:22311862

  4. Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Ping; Li, Hongyu; Gan, Chun

    Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes itmore » very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.« less

  5. A measurement fusion method for nonlinear system identification using a cooperative learning algorithm.

    PubMed

    Xia, Youshen; Kamel, Mohamed S

    2007-06-01

    Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.

  6. A comparative study between three stability indicating spectrophotometric methods for the determination of diatrizoate sodium in presence of its cytotoxic degradation product based on two-wavelength selection

    NASA Astrophysics Data System (ADS)

    Riad, Safaa M.; El-Rahman, Mohamed K. Abd; Fawaz, Esraa M.; Shehata, Mostafa A.

    2015-06-01

    Three sensitive, selective, and precise stability indicating spectrophotometric methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA) in the presence of its acidic degradation product (highly cytotoxic 3,5-diamino metabolite) and in pharmaceutical formulation, were developed and validated. The first method is ratio difference, the second one is the bivariate method, and the third one is the dual wavelength method. The calibration curves for the three proposed methods are linear over a concentration range of 2-24 μg/mL. The selectivity of the proposed methods was tested using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed.

  7. A comparative study between three stability indicating spectrophotometric methods for the determination of diatrizoate sodium in presence of its cytotoxic degradation product based on two-wavelength selection.

    PubMed

    Riad, Safaa M; El-Rahman, Mohamed K Abd; Fawaz, Esraa M; Shehata, Mostafa A

    2015-06-15

    Three sensitive, selective, and precise stability indicating spectrophotometric methods for the determination of the X-ray contrast agent, diatrizoate sodium (DTA) in the presence of its acidic degradation product (highly cytotoxic 3,5-diamino metabolite) and in pharmaceutical formulation, were developed and validated. The first method is ratio difference, the second one is the bivariate method, and the third one is the dual wavelength method. The calibration curves for the three proposed methods are linear over a concentration range of 2-24 μg/mL. The selectivity of the proposed methods was tested using laboratory prepared mixtures. The proposed methods have been successfully applied to the analysis of DTA in pharmaceutical dosage forms without interference from other dosage form additives. The results were statistically compared with the official US pharmacopeial method. No significant difference for either accuracy or precision was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Comparing and combining biomarkers as principle surrogates for time-to-event clinical endpoints.

    PubMed

    Gabriel, Erin E; Sachs, Michael C; Gilbert, Peter B

    2015-02-10

    Principal surrogate endpoints are useful as targets for phase I and II trials. In many recent trials, multiple post-randomization biomarkers are measured. However, few statistical methods exist for comparison of or combination of biomarkers as principal surrogates, and none of these methods to our knowledge utilize time-to-event clinical endpoint information. We propose a Weibull model extension of the semi-parametric estimated maximum likelihood method that allows for the inclusion of multiple biomarkers in the same risk model as multivariate candidate principal surrogates. We propose several methods for comparing candidate principal surrogates and evaluating multivariate principal surrogates. These include the time-dependent and surrogate-dependent true and false positive fraction, the time-dependent and the integrated standardized total gain, and the cumulative distribution function of the risk difference. We illustrate the operating characteristics of our proposed methods in simulations and outline how these statistics can be used to evaluate and compare candidate principal surrogates. We use these methods to investigate candidate surrogates in the Diabetes Control and Complications Trial. Copyright © 2014 John Wiley & Sons, Ltd.

  9. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures.

    PubMed

    Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Salem, Hesham

    2014-11-11

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Gradient-based Electrical Properties Tomography (gEPT): a Robust Method for Mapping Electrical Properties of Biological Tissues In Vivo Using Magnetic Resonance Imaging

    PubMed Central

    Liu, Jiaen; Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortele, Pierre-Francois; He, Bin

    2014-01-01

    Purpose To develop high-resolution electrical properties tomography (EPT) methods and investigate a gradient-based EPT (gEPT) approach which aims to reconstruct the electrical properties (EP), including conductivity and permittivity, of an imaged sample from experimentally measured B1 maps with improved boundary reconstruction and robustness against measurement noise. Theory and Methods Using a multi-channel transmit/receive stripline head coil, with acquired B1 maps for each coil element, by assuming negligible Bz component compared to transverse B1 components, a theory describing the relationship between B1 field, EP value and their spatial gradient has been proposed. The final EP images were obtained through spatial integration over the reconstructed EP gradient. Numerical simulation, physical phantom and in vivo human experiments at 7 T have been conducted to evaluate the performance of the proposed methods. Results Reconstruction results were compared with target EP values in both simulations and phantom experiments. Human experimental results were compared with EP values in literature. Satisfactory agreement was observed with improved boundary reconstruction. Importantly, the proposed gEPT method proved to be more robust against noise when compared to previously described non-gradient-based EPT approaches. Conclusion The proposed gEPT approach holds promises to improve EP mapping quality by recovering the boundary information and enhancing robustness against noise. PMID:25213371

  11. Innovative methods for calculation of freeway travel time using limited data : final report.

    DOT National Transportation Integrated Search

    2008-01-01

    Description: Travel time estimations created by processing of simulated freeway loop detector data using proposed method have been compared with travel times reported from VISSIM model. An improved methodology was proposed to estimate freeway corrido...

  12. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    PubMed

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  13. Efficient sidelobe ASK based dual-function radar-communications

    NASA Astrophysics Data System (ADS)

    Hassanien, Aboulnasr; Amin, Moeness G.; Zhang, Yimin D.; Ahmad, Fauzia

    2016-05-01

    Recently, dual-function radar-communications (DFRC) has been proposed as means to mitigate the spectrum congestion problem. Existing amplitude-shift keying (ASK) methods for information embedding do not take full advantage of the highest permissable sidelobe level. In this paper, a new ASK-based signaling strategy for enhancing the signal-to-noise ratio (SNR) at the communication receiver is proposed. The proposed method employs one reference waveform and simultaneously transmits a number of orthogonal waveforms equals to the number of 1's in the binary sequence being embedded. 3 dB SNR gain is achieved using the proposed method as compared to existing sidelobe ASK methods. The effectiveness of the proposed information embedding strategy is verified using simulations examples.

  14. Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.

    2011-01-01

    A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.

  15. Objectification of perceptual image quality for mobile video

    NASA Astrophysics Data System (ADS)

    Lee, Seon-Oh; Sim, Dong-Gyu

    2011-06-01

    This paper presents an objective video quality evaluation method for quantifying the subjective quality of digital mobile video. The proposed method aims to objectify the subjective quality by extracting edgeness and blockiness parameters. To evaluate the performance of the proposed algorithms, we carried out subjective video quality tests with the double-stimulus continuous quality scale method and obtained differential mean opinion score values for 120 mobile video clips. We then compared the performance of the proposed methods with that of existing methods in terms of the differential mean opinion score with 120 mobile video clips. Experimental results showed that the proposed methods were approximately 10% better than the edge peak signal-to-noise ratio of the J.247 method in terms of the Pearson correlation.

  16. Wavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation

    PubMed Central

    Adib, Mani; Cretu, Edmond

    2013-01-01

    We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to eliminate this artifact to be able to analyze the EEG signals during GVS. We propose a novel method to estimate the contribution of the GVS current in the EEG signals at each electrode by combining time-series regression methods with wavelet decomposition methods. We use wavelet transform to project the recorded EEG signal into various frequency bands and then estimate the GVS current distribution in each frequency band. The proposed method was optimized using simulated signals, and its performance was compared to well-accepted artifact removal methods such as ICA-based methods and adaptive filters. The results show that the proposed method has better performance in removing GVS artifacts, compared to the others. Using the proposed method, a higher signal to artifact ratio of −1.625 dB was achieved, which outperformed other methods such as ICA-based methods, regression methods, and adaptive filters. PMID:23956786

  17. Horizontal decomposition of data table for finding one reduct

    NASA Astrophysics Data System (ADS)

    Hońko, Piotr

    2018-04-01

    Attribute reduction, being one of the most essential tasks in rough set theory, is a challenge for data that does not fit in the available memory. This paper proposes new definitions of attribute reduction using horizontal data decomposition. Algorithms for computing superreduct and subsequently exact reducts of a data table are developed and experimentally verified. In the proposed approach, the size of subtables obtained during the decomposition can be arbitrarily small. Reducts of the subtables are computed independently from one another using any heuristic method for finding one reduct. Compared with standard attribute reduction methods, the proposed approach can produce superreducts that usually inconsiderably differ from an exact reduct. The approach needs comparable time and much less memory to reduce the attribute set. The method proposed for removing unnecessary attributes from superreducts executes relatively fast for bigger databases.

  18. Q-Method Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Ainscough, Thomas; Christian, John; Spanos, Pol D.

    2012-01-01

    A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations.

  19. Comparison as an Approach to the Experimental Method

    ERIC Educational Resources Information Center

    Turner, David A.

    2017-01-01

    In his proposal for comparative education, Marc Antoinne Jullien de Paris argues that the comparative method offers a viable alternative to the experimental method. In an experiment, the scientist can manipulate the variables in such a way that he or she can see any possible combination of variables at will. In comparative education, or in…

  20. Contrast-dependent saturation adjustment for outdoor image enhancement.

    PubMed

    Wang, Shuhang; Cho, Woon; Jang, Jinbeum; Abidi, Mongi A; Paik, Joonki

    2017-01-01

    Outdoor images captured in bad-weather conditions usually have poor intensity contrast and color saturation since the light arriving at the camera is severely scattered or attenuated. The task of improving image quality in poor conditions remains a challenge. Existing methods of image quality improvement are usually effective for a small group of images but often fail to produce satisfactory results for a broader variety of images. In this paper, we propose an image enhancement method, which makes it applicable to enhance outdoor images by using content-adaptive contrast improvement as well as contrast-dependent saturation adjustment. The main contribution of this work is twofold: (1) we propose the content-adaptive histogram equalization based on the human visual system to improve the intensity contrast; and (2) we introduce a simple yet effective prior for adjusting the color saturation depending on the intensity contrast. The proposed method is tested with different kinds of images, compared with eight state-of-the-art methods: four enhancement methods and four haze removal methods. Experimental results show the proposed method can more effectively improve the visibility and preserve the naturalness of the images, as opposed to the compared methods.

  1. A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.

    PubMed

    Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

    2014-01-01

    Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  2. Comparative study of signalling methods for high-speed backplane transceiver

    NASA Astrophysics Data System (ADS)

    Wu, Kejun

    2017-11-01

    A combined analysis of transient simulation and statistical method is proposed for comparative study of signalling methods applied to high-speed backplane transceivers. This method enables fast and accurate signal-to-noise ratio and symbol error rate estimation of a serial link based on a four-dimension design space, including channel characteristics, noise scenarios, equalisation schemes, and signalling methods. The proposed combined analysis method chooses an efficient sampling size for performance evaluation. A comparative study of non-return-to-zero (NRZ), PAM-4, and four-phase shifted sinusoid symbol (PSS-4) using parameterised behaviour-level simulation shows PAM-4 and PSS-4 has substantial advantages over conventional NRZ in most of the cases. A comparison between PAM-4 and PSS-4 shows PAM-4 gets significant bit error rate degradation when noise level is enhanced.

  3. Inventory Management for Irregular Shipment of Goods in Distribution Centre

    NASA Astrophysics Data System (ADS)

    Takeda, Hitoshi; Kitaoka, Masatoshi; Usuki, Jun

    2016-01-01

    The shipping amount of commodity goods (Foods, confectionery, dairy products, such as public cosmetic pharmaceutical products) changes irregularly at the distribution center dealing with the general consumer goods. Because the shipment time and the amount of the shipment are irregular, the demand forecast becomes very difficult. For this, the inventory control becomes difficult, too. It cannot be applied to the shipment of the commodity by the conventional inventory control methods. This paper proposes the method for inventory control by cumulative flow curve method. It proposed the method of deciding the order quantity of the inventory control by the cumulative flow curve. Here, it proposes three methods. 1) Power method,2) Polynomial method and 3)Revised Holt's linear method that forecasts data with trends that is a kind of exponential smoothing method. This paper compares the economics of the conventional method, which is managed by the experienced and three new proposed methods. And, the effectiveness of the proposal method is verified from the numerical calculations.

  4. Background estimation and player detection in badminton video clips using histogram of pixel values along temporal dimension

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu

    2015-12-01

    Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.

  5. A Bayesian sequential design with adaptive randomization for 2-sided hypothesis test.

    PubMed

    Yu, Qingzhao; Zhu, Lin; Zhu, Han

    2017-11-01

    Bayesian sequential and adaptive randomization designs are gaining popularity in clinical trials thanks to their potentials to reduce the number of required participants and save resources. We propose a Bayesian sequential design with adaptive randomization rates so as to more efficiently attribute newly recruited patients to different treatment arms. In this paper, we consider 2-arm clinical trials. Patients are allocated to the 2 arms with a randomization rate to achieve minimum variance for the test statistic. Algorithms are presented to calculate the optimal randomization rate, critical values, and power for the proposed design. Sensitivity analysis is implemented to check the influence on design by changing the prior distributions. Simulation studies are applied to compare the proposed method and traditional methods in terms of power and actual sample sizes. Simulations show that, when total sample size is fixed, the proposed design can obtain greater power and/or cost smaller actual sample size than the traditional Bayesian sequential design. Finally, we apply the proposed method to a real data set and compare the results with the Bayesian sequential design without adaptive randomization in terms of sample sizes. The proposed method can further reduce required sample size. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Improving the performances of autofocus based on adaptive retina-like sampling model

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Xiao, Yuqing; Cao, Jie; Cheng, Yang; Sun, Ce

    2018-03-01

    An adaptive retina-like sampling model (ARSM) is proposed to balance autofocusing accuracy and efficiency. Based on the model, we carry out comparative experiments between the proposed method and the traditional method in terms of accuracy, the full width of the half maxima (FWHM) and time consumption. Results show that the performances of our method are better than that of the traditional method. Meanwhile, typical autofocus functions, including sum-modified-Laplacian (SML), Laplacian (LAP), Midfrequency-DCT (MDCT) and Absolute Tenengrad (ATEN) are compared through comparative experiments. The smallest FWHM is obtained by the use of LAP, which is more suitable for evaluating accuracy than other autofocus functions. The autofocus function of MDCT is most suitable to evaluate the real-time ability.

  7. CW-SSIM kernel based random forest for image classification

    NASA Astrophysics Data System (ADS)

    Fan, Guangzhe; Wang, Zhou; Wang, Jiheng

    2010-07-01

    Complex wavelet structural similarity (CW-SSIM) index has been proposed as a powerful image similarity metric that is robust to translation, scaling and rotation of images, but how to employ it in image classification applications has not been deeply investigated. In this paper, we incorporate CW-SSIM as a kernel function into a random forest learning algorithm. This leads to a novel image classification approach that does not require a feature extraction or dimension reduction stage at the front end. We use hand-written digit recognition as an example to demonstrate our algorithm. We compare the performance of the proposed approach with random forest learning based on other kernels, including the widely adopted Gaussian and the inner product kernels. Empirical evidences show that the proposed method is superior in its classification power. We also compared our proposed approach with the direct random forest method without kernel and the popular kernel-learning method support vector machine. Our test results based on both simulated and realworld data suggest that the proposed approach works superior to traditional methods without the feature selection procedure.

  8. Perceptual video quality assessment in H.264 video coding standard using objective modeling.

    PubMed

    Karthikeyan, Ramasamy; Sainarayanan, Gopalakrishnan; Deepa, Subramaniam Nachimuthu

    2014-01-01

    Since usage of digital video is wide spread nowadays, quality considerations have become essential, and industry demand for video quality measurement is rising. This proposal provides a method of perceptual quality assessment in H.264 standard encoder using objective modeling. For this purpose, quality impairments are calculated and a model is developed to compute the perceptual video quality metric based on no reference method. Because of the shuttle difference between the original video and the encoded video the quality of the encoded picture gets degraded, this quality difference is introduced by the encoding process like Intra and Inter prediction. The proposed model takes into account of the artifacts introduced by these spatial and temporal activities in the hybrid block based coding methods and an objective modeling of these artifacts into subjective quality estimation is proposed. The proposed model calculates the objective quality metric using subjective impairments; blockiness, blur and jerkiness compared to the existing bitrate only calculation defined in the ITU G 1070 model. The accuracy of the proposed perceptual video quality metrics is compared against popular full reference objective methods as defined by VQEG.

  9. The Method of Immersion the Problem of Comparing Technical Objects in an Expert Shell in the Class of Artificial Intelligence Algorithms

    NASA Astrophysics Data System (ADS)

    Sergey Vasilievich, Buharin; Aleksandr Vladimirovich, Melnikov; Svetlana Nikolaevna, Chernyaeva; Lyudmila Anatolievna, Korobova

    2017-08-01

    The method of dip of the underlying computational problem of comparing technical object in an expert shell in the class of data mining methods is examined. An example of using the proposed method is given.

  10. Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method

    PubMed Central

    Alguliyev, Rasim M.; Aliguliyev, Ramiz M.; Mahmudova, Rasmiyya S.

    2015-01-01

    Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM) model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method. PMID:26516634

  11. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    PubMed

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared with the low dose FDK reconstruction. The proposed method is expected to reduce the radiation dose by a factor of 8 for CBCT, considering the voted strongly discriminated low contrast tissues.

  12. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.

    PubMed

    Kumar, Shiu; Mamun, Kabir; Sharma, Alok

    2017-12-01

    Classification of electroencephalography (EEG) signals for motor imagery based brain computer interface (MI-BCI) is an exigent task and common spatial pattern (CSP) has been extensively explored for this purpose. In this work, we focused on developing a new framework for classification of EEG signals for MI-BCI. We propose a single band CSP framework for MI-BCI that utilizes the concept of tangent space mapping (TSM) in the manifold of covariance matrices. The proposed method is named CSP-TSM. Spatial filtering is performed on the bandpass filtered MI EEG signal. Riemannian tangent space is utilized for extracting features from the spatial filtered signal. The TSM features are then fused with the CSP variance based features and feature selection is performed using Lasso. Linear discriminant analysis (LDA) is then applied to the selected features and finally classification is done using support vector machine (SVM) classifier. The proposed framework gives improved performance for MI EEG signal classification in comparison with several competing methods. Experiments conducted shows that the proposed framework reduces the overall classification error rate for MI-BCI by 3.16%, 5.10% and 1.70% (for BCI Competition III dataset IVa, BCI Competition IV Dataset I and BCI Competition IV Dataset IIb, respectively) compared to the conventional CSP method under the same experimental settings. The proposed CSP-TSM method produces promising results when compared with several competing methods in this paper. In addition, the computational complexity is less compared to that of TSM method. Our proposed CSP-TSM framework can be potentially used for developing improved MI-BCI systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sliding-mode control combined with improved adaptive feedforward for wafer scanner

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Yiguang

    2018-03-01

    In this paper, a sliding-mode control method combined with improved adaptive feedforward is proposed for wafer scanner to improve the tracking performance of the closed-loop system. Particularly, In addition to the inverse model, the nonlinear force ripple effect which may degrade the tracking accuracy of permanent magnet linear motor (PMLM) is considered in the proposed method. The dominant position periodicity of force ripple is determined by using the Fast Fourier Transform (FFT) analysis for experimental data and the improved feedforward control is achieved by the online recursive least-squares (RLS) estimation of the inverse model and the force ripple. The improved adaptive feedforward is given in a general form of nth-order model with force ripple effect. This proposed method is motivated by the motion controller design of the long-stroke PMLM and short-stroke voice coil motor for wafer scanner. The stability of the closed-loop control system and the convergence of the motion tracking are guaranteed by the proposed sliding-mode feedback and adaptive feedforward methods theoretically. Comparative experiments on a precision linear motion platform can verify the correctness and effectiveness of the proposed method. The experimental results show that comparing to traditional method the proposed one has better performance of rapidity and robustness, especially for high speed motion trajectory. And, the improvements on both tracking accuracy and settling time can be achieved.

  14. Separation of fNIRS Signals into Functional and Systemic Components Based on Differences in Hemodynamic Modalities

    PubMed Central

    Yamada, Toru; Umeyama, Shinji; Matsuda, Keiji

    2012-01-01

    In conventional functional near-infrared spectroscopy (fNIRS), systemic physiological fluctuations evoked by a body's motion and psychophysiological changes often contaminate fNIRS signals. We propose a novel method for separating functional and systemic signals based on their hemodynamic differences. Considering their physiological origins, we assumed a negative and positive linear relationship between oxy- and deoxyhemoglobin changes of functional and systemic signals, respectively. Their coefficients are determined by an empirical procedure. The proposed method was compared to conventional and multi-distance NIRS. The results were as follows: (1) Nonfunctional tasks evoked substantial oxyhemoglobin changes, and comparatively smaller deoxyhemoglobin changes, in the same direction by conventional NIRS. The systemic components estimated by the proposed method were similar to the above finding. The estimated functional components were very small. (2) During finger-tapping tasks, laterality in the functional component was more distinctive using our proposed method than that by conventional fNIRS. The systemic component indicated task-evoked changes, regardless of the finger used to perform the task. (3) For all tasks, the functional components were highly coincident with signals estimated by multi-distance NIRS. These results strongly suggest that the functional component obtained by the proposed method originates in the cerebral cortical layer. We believe that the proposed method could improve the reliability of fNIRS measurements without any modification in commercially available instruments. PMID:23185590

  15. Target deception jamming method against spaceborne synthetic aperture radar using electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Qingyang; Shu, Ting; Tang, Bin; Yu, Wenxian

    2018-01-01

    A method is proposed to perform target deception jamming against spaceborne synthetic aperture radar. Compared with the traditional jamming methods using deception templates to cover the target or region of interest, the proposed method aims to generate a verisimilar deceptive target in various attitude with high fidelity using the electromagnetic (EM) scattering. Based on the geometrical model for target deception jamming, the EM scattering data from the deceptive target was first simulated by applying an EM calculation software. Then, the proposed jamming frequency response (JFR) is calculated offline by further processing. Finally, the deception jamming is achieved in real time by a multiplication between the proposed JFR and the spectrum of intercepted radar signals. The practical implementation is presented. The simulation results prove the validity of the proposed method.

  16. A new distributed systems scheduling algorithm: a swarm intelligence approach

    NASA Astrophysics Data System (ADS)

    Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi

    2011-12-01

    The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.

  17. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    PubMed Central

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  18. An Adaptive Orientation Estimation Method for Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances

    PubMed Central

    Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao

    2017-01-01

    Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858

  19. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    PubMed Central

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  20. Comparison of power curve monitoring methods

    NASA Astrophysics Data System (ADS)

    Cambron, Philippe; Masson, Christian; Tahan, Antoine; Torres, David; Pelletier, Francis

    2017-11-01

    Performance monitoring is an important aspect of operating wind farms. This can be done through the power curve monitoring (PCM) of wind turbines (WT). In the past years, important work has been conducted on PCM. Various methodologies have been proposed, each one with interesting results. However, it is difficult to compare these methods because they have been developed using their respective data sets. The objective of this actual work is to compare some of the proposed PCM methods using common data sets. The metric used to compare the PCM methods is the time needed to detect a change in the power curve. Two power curve models will be covered to establish the effect the model type has on the monitoring outcomes. Each model was tested with two control charts. Other methodologies and metrics proposed in the literature for power curve monitoring such as areas under the power curve and the use of statistical copulas have also been covered. Results demonstrate that model-based PCM methods are more reliable at the detecting a performance change than other methodologies and that the effectiveness of the control chart depends on the types of shift observed.

  1. A novel method for unsteady flow field segmentation based on stochastic similarity of direction

    NASA Astrophysics Data System (ADS)

    Omata, Noriyasu; Shirayama, Susumu

    2018-04-01

    Recent developments in fluid dynamics research have opened up the possibility for the detailed quantitative understanding of unsteady flow fields. However, the visualization techniques currently in use generally provide only qualitative insights. A method for dividing the flow field into physically relevant regions of interest can help researchers quantify unsteady fluid behaviors. Most methods at present compare the trajectories of virtual Lagrangian particles. The time-invariant features of an unsteady flow are also frequently of interest, but the Lagrangian specification only reveals time-variant features. To address these challenges, we propose a novel method for the time-invariant spatial segmentation of an unsteady flow field. This segmentation method does not require Lagrangian particle tracking but instead quantitatively compares the stochastic models of the direction of the flow at each observed point. The proposed method is validated with several clustering tests for 3D flows past a sphere. Results show that the proposed method reveals the time-invariant, physically relevant structures of an unsteady flow.

  2. $n$ -Dimensional Discrete Cat Map Generation Using Laplace Expansions.

    PubMed

    Wu, Yue; Hua, Zhongyun; Zhou, Yicong

    2016-11-01

    Different from existing methods that use matrix multiplications and have high computation complexity, this paper proposes an efficient generation method of n -dimensional ( [Formula: see text]) Cat maps using Laplace expansions. New parameters are also introduced to control the spatial configurations of the [Formula: see text] Cat matrix. Thus, the proposed method provides an efficient way to mix dynamics of all dimensions at one time. To investigate its implementations and applications, we further introduce a fast implementation algorithm of the proposed method with time complexity O(n 4 ) and a pseudorandom number generator using the Cat map generated by the proposed method. The experimental results show that, compared with existing generation methods, the proposed method has a larger parameter space and simpler algorithm complexity, generates [Formula: see text] Cat matrices with a lower inner correlation, and thus yields more random and unpredictable outputs of [Formula: see text] Cat maps.

  3. Tchebichef moment based restoration of Gaussian blurred images.

    PubMed

    Kumar, Ahlad; Paramesran, Raveendran; Lim, Chern-Loon; Dass, Sarat C

    2016-11-10

    With the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation. The estimated blur parameters from the proposed method are used in the split Bregman-based image restoration algorithm. A comparative analysis of the proposed method with three existing methods using all the images from the LIVE database is carried out. The results show that the proposed method in most of the cases performs better than the three existing methods in terms of the visual quality evaluated using the structural similarity index.

  4. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm

    PubMed Central

    Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396

  5. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    PubMed

    Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  6. Smartphone-Based Accurate Analysis of Retinal Vasculature towards Point-of-Care Diagnostics

    PubMed Central

    Xu, Xiayu; Ding, Wenxiang; Wang, Xuemin; Cao, Ruofan; Zhang, Maiye; Lv, Peilin; Xu, Feng

    2016-01-01

    Retinal vasculature analysis is important for the early diagnostics of various eye and systemic diseases, making it a potentially useful biomarker, especially for resource-limited regions and countries. Here we developed a smartphone-based retinal image analysis system for point-of-care diagnostics that is able to load a fundus image, segment retinal vessels, analyze individual vessel width, and store or uplink results. The proposed system was not only evaluated on widely used public databases and compared with the state-of-the-art methods, but also validated on clinical images directly acquired with a smartphone. An Android app is also developed to facilitate on-site application of the proposed methods. Both visual assessment and quantitative assessment showed that the proposed methods achieved comparable results to the state-of-the-art methods that require high-standard workstations. The proposed system holds great potential for the early diagnostics of various diseases, such as diabetic retinopathy, for resource-limited regions and countries. PMID:27698369

  7. An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes

    PubMed Central

    2013-01-01

    Background Gene expression data could likely be a momentous help in the progress of proficient cancer diagnoses and classification platforms. Lately, many researchers analyze gene expression data using diverse computational intelligence methods, for selecting a small subset of informative genes from the data for cancer classification. Many computational methods face difficulties in selecting small subsets due to the small number of samples compared to the huge number of genes (high-dimension), irrelevant genes, and noisy genes. Methods We propose an enhanced binary particle swarm optimization to perform the selection of small subsets of informative genes which is significant for cancer classification. Particle speed, rule, and modified sigmoid function are introduced in this proposed method to increase the probability of the bits in a particle’s position to be zero. The method was empirically applied to a suite of ten well-known benchmark gene expression data sets. Results The performance of the proposed method proved to be superior to other previous related works, including the conventional version of binary particle swarm optimization (BPSO) in terms of classification accuracy and the number of selected genes. The proposed method also requires lower computational time compared to BPSO. PMID:23617960

  8. Single Anisotropic 3-D MR Image Upsampling via Overcomplete Dictionary Trained From In-Plane High Resolution Slices.

    PubMed

    Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K

    2016-11-01

    In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.

  9. RRCRank: a fusion method using rank strategy for residue-residue contact prediction.

    PubMed

    Jing, Xiaoyang; Dong, Qiwen; Lu, Ruqian

    2017-09-02

    In structural biology area, protein residue-residue contacts play a crucial role in protein structure prediction. Some researchers have found that the predicted residue-residue contacts could effectively constrain the conformational search space, which is significant for de novo protein structure prediction. In the last few decades, related researchers have developed various methods to predict residue-residue contacts, especially, significant performance has been achieved by using fusion methods in recent years. In this work, a novel fusion method based on rank strategy has been proposed to predict contacts. Unlike the traditional regression or classification strategies, the contact prediction task is regarded as a ranking task. First, two kinds of features are extracted from correlated mutations methods and ensemble machine-learning classifiers, and then the proposed method uses the learning-to-rank algorithm to predict contact probability of each residue pair. First, we perform two benchmark tests for the proposed fusion method (RRCRank) on CASP11 dataset and CASP12 dataset respectively. The test results show that the RRCRank method outperforms other well-developed methods, especially for medium and short range contacts. Second, in order to verify the superiority of ranking strategy, we predict contacts by using the traditional regression and classification strategies based on the same features as ranking strategy. Compared with these two traditional strategies, the proposed ranking strategy shows better performance for three contact types, in particular for long range contacts. Third, the proposed RRCRank has been compared with several state-of-the-art methods in CASP11 and CASP12. The results show that the RRCRank could achieve comparable prediction precisions and is better than three methods in most assessment metrics. The learning-to-rank algorithm is introduced to develop a novel rank-based method for the residue-residue contact prediction of proteins, which achieves state-of-the-art performance based on the extensive assessment.

  10. A Coarse-Alignment Method Based on the Optimal-REQUEST Algorithm

    PubMed Central

    Zhu, Yongyun

    2018-01-01

    In this paper, we proposed a coarse-alignment method for strapdown inertial navigation systems based on attitude determination. The observation vectors, which can be obtained by inertial sensors, usually contain various types of noise, which affects the convergence rate and the accuracy of the coarse alignment. Given this drawback, we studied an attitude-determination method named optimal-REQUEST, which is an optimal method for attitude determination that is based on observation vectors. Compared to the traditional attitude-determination method, the filtering gain of the proposed method is tuned autonomously; thus, the convergence rate of the attitude determination is faster than in the traditional method. Within the proposed method, we developed an iterative method for determining the attitude quaternion. We carried out simulation and turntable tests, which we used to validate the proposed method’s performance. The experiment’s results showed that the convergence rate of the proposed optimal-REQUEST algorithm is faster and that the coarse alignment’s stability is higher. In summary, the proposed method has a high applicability to practical systems. PMID:29337895

  11. Spatiotemporal Interpolation for Environmental Modelling

    PubMed Central

    Susanto, Ferry; de Souza, Paulo; He, Jing

    2016-01-01

    A variation of the reduction-based approach to spatiotemporal interpolation (STI), in which time is treated independently from the spatial dimensions, is proposed in this paper. We reviewed and compared three widely-used spatial interpolation techniques: ordinary kriging, inverse distance weighting and the triangular irregular network. We also proposed a new distribution-based distance weighting (DDW) spatial interpolation method. In this study, we utilised one year of Tasmania’s South Esk Hydrology model developed by CSIRO. Root mean squared error statistical methods were performed for performance evaluations. Our results show that the proposed reduction approach is superior to the extension approach to STI. However, the proposed DDW provides little benefit compared to the conventional inverse distance weighting (IDW) method. We suggest that the improved IDW technique, with the reduction approach used for the temporal dimension, is the optimal combination for large-scale spatiotemporal interpolation within environmental modelling applications. PMID:27509497

  12. Intelligent control for PMSM based on online PSO considering parameters change

    NASA Astrophysics Data System (ADS)

    Song, Zhengqiang; Yang, Huiling

    2018-03-01

    A novel online particle swarm optimization method is proposed to design speed and current controllers of vector controlled interior permanent magnet synchronous motor drives considering stator resistance variation. In the proposed drive system, the space vector modulation technique is employed to generate the switching signals for a two-level voltage-source inverter. The nonlinearity of the inverter is also taken into account due to the dead-time, threshold and voltage drop of the switching devices in order to simulate the system in the practical condition. Speed and PI current controller gains are optimized with PSO online, and the fitness function is changed according to the system dynamic and steady states. The proposed optimization algorithm is compared with conventional PI control method in the condition of step speed change and stator resistance variation, showing that the proposed online optimization method has better robustness and dynamic characteristics compared with conventional PI controller design.

  13. Proposing a sequential comparative analysis for assessing multilateral health agency transformation and sustainable capacity: exploring the advantages of institutional theory

    PubMed Central

    2014-01-01

    Background This article proposes an approach to comparing and assessing the adaptive capacity of multilateral health agencies in meeting country and individual healthcare needs. Most studies comparing multilateral health agencies have failed to clearly propose a method for conducting agency comparisons. Methods This study conducted a qualitative case study methodological approach, such that secondary and primary case study literature was used to conduct case study comparisons of multilateral health agencies. Results Through the proposed Sequential Comparative Analysis (SCA), the author found a more effective way to justify the selection of cases, compare and assess organizational transformative capacity, and to learn from agency success in policy sustainability processes. Conclusions To more affectively understand and explain why some multilateral health agencies are more capable of adapting to country and individual healthcare needs, SCA provides a methodological approach that may help to better understand why these agencies are so different and what we can learn from successful reform processes. As funding challenges continue to hamper these agencies' adaptive capacity, learning from each other will become increasingly important. PMID:24886283

  14. A general probabilistic model for group independent component analysis and its estimation methods

    PubMed Central

    Guo, Ying

    2012-01-01

    SUMMARY Independent component analysis (ICA) has become an important tool for analyzing data from functional magnetic resonance imaging (fMRI) studies. ICA has been successfully applied to single-subject fMRI data. The extension of ICA to group inferences in neuroimaging studies, however, is challenging due to the unavailability of a pre-specified group design matrix and the uncertainty in between-subjects variability in fMRI data. We present a general probabilistic ICA (PICA) model that can accommodate varying group structures of multi-subject spatio-temporal processes. An advantage of the proposed model is that it can flexibly model various types of group structures in different underlying neural source signals and under different experimental conditions in fMRI studies. A maximum likelihood method is used for estimating this general group ICA model. We propose two EM algorithms to obtain the ML estimates. The first method is an exact EM algorithm which provides an exact E-step and an explicit noniterative M-step. The second method is an variational approximation EM algorithm which is computationally more efficient than the exact EM. In simulation studies, we first compare the performance of the proposed general group PICA model and the existing probabilistic group ICA approach. We then compare the two proposed EM algorithms and show the variational approximation EM achieves comparable accuracy to the exact EM with significantly less computation time. An fMRI data example is used to illustrate application of the proposed methods. PMID:21517789

  15. Online selective kernel-based temporal difference learning.

    PubMed

    Chen, Xingguo; Gao, Yang; Wang, Ruili

    2013-12-01

    In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.

  16. Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring

    PubMed Central

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. PMID:27540353

  17. A method of solid-solid phase equilibrium calculation by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Karavaev, A. V.; Dremov, V. V.

    2016-12-01

    A method for evaluation of solid-solid phase equilibrium curves in molecular dynamics simulation for a given model of interatomic interaction is proposed. The method allows to calculate entropies of crystal phases and provides an accuracy comparable with that of the thermodynamic integration method by Frenkel and Ladd while it is much simpler in realization and less intense computationally. The accuracy of the proposed method was demonstrated in MD calculations of entropies for EAM potential for iron and for MEAM potential for beryllium. The bcc-hcp equilibrium curves for iron calculated for the EAM potential by the thermodynamic integration method and by the proposed one agree quite well.

  18. Recursive feature selection with significant variables of support vectors.

    PubMed

    Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh

    2012-01-01

    The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

  19. Wind profiling for a coherent wind Doppler lidar by an auto-adaptive background subtraction approach.

    PubMed

    Wu, Yanwei; Guo, Pan; Chen, Siying; Chen, He; Zhang, Yinchao

    2017-04-01

    Auto-adaptive background subtraction (AABS) is proposed as a denoising method for data processing of the coherent Doppler lidar (CDL). The method is proposed specifically for a low-signal-to-noise-ratio regime, in which the drifting power spectral density of CDL data occurs. Unlike the periodogram maximum (PM) and adaptive iteratively reweighted penalized least squares (airPLS), the proposed method presents reliable peaks and is thus advantageous in identifying peak locations. According to the analysis results of simulated and actually measured data, the proposed method outperforms the airPLS method and the PM algorithm in the furthest detectable range. The proposed method improves the detection range approximately up to 16.7% and 40% when compared to the airPLS method and the PM method, respectively. It also has smaller mean wind velocity and standard error values than the airPLS and PM methods. The AABS approach improves the quality of Doppler shift estimates and can be applied to obtain the whole wind profiling by the CDL.

  20. CNV-TV: a robust method to discover copy number variation from short sequencing reads.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Deng, Hong-Wen; Wang, Yu-Ping

    2013-05-02

    Copy number variation (CNV) is an important structural variation (SV) in human genome. Various studies have shown that CNVs are associated with complex diseases. Traditional CNV detection methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) suffer from low resolution. The next generation sequencing (NGS) technique promises a higher resolution detection of CNVs and several methods were recently proposed for realizing such a promise. However, the performances of these methods are not robust under some conditions, e.g., some of them may fail to detect CNVs of short sizes. There has been a strong demand for reliable detection of CNVs from high resolution NGS data. A novel and robust method to detect CNV from short sequencing reads is proposed in this study. The detection of CNV is modeled as a change-point detection from the read depth (RD) signal derived from the NGS, which is fitted with a total variation (TV) penalized least squares model. The performance (e.g., sensitivity and specificity) of the proposed approach are evaluated by comparison with several recently published methods on both simulated and real data from the 1000 Genomes Project. The experimental results showed that both the true positive rate and false positive rate of the proposed detection method do not change significantly for CNVs with different copy numbers and lengthes, when compared with several existing methods. Therefore, our proposed approach results in a more reliable detection of CNVs than the existing methods.

  1. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach.

    PubMed

    Yang, Jun; Zolotas, Argyrios; Chen, Wen-Hua; Michail, Konstantinos; Li, Shihua

    2011-07-01

    Robust control of a class of uncertain systems that have disturbances and uncertainties not satisfying "matching" condition is investigated in this paper via a disturbance observer based control (DOBC) approach. In the context of this paper, "matched" disturbances/uncertainties stand for the disturbances/uncertainties entering the system through the same channels as control inputs. By properly designing a disturbance compensation gain, a novel composite controller is proposed to counteract the "mismatched" lumped disturbances from the output channels. The proposed method significantly extends the applicability of the DOBC methods. Rigorous stability analysis of the closed-loop system with the proposed method is established under mild assumptions. The proposed method is applied to a nonlinear MAGnetic LEViation (MAGLEV) suspension system. Simulation shows that compared to the widely used integral control method, the proposed method provides significantly improved disturbance rejection and robustness against load variation. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  2. An algorithm to track laboratory zebrafish shoals.

    PubMed

    Feijó, Gregory de Oliveira; Sangalli, Vicenzo Abichequer; da Silva, Isaac Newton Lima; Pinho, Márcio Sarroglia

    2018-05-01

    In this paper, a semi-automatic multi-object tracking method to track a group of unmarked zebrafish is proposed. This method can handle partial occlusion cases, maintaining the correct identity of each individual. For every object, we extracted a set of geometric features to be used in the two main stages of the algorithm. The first stage selected the best candidate, based both on the blobs identified in the image and the estimate generated by a Kalman Filter instance. In the second stage, if the same candidate-blob is selected by two or more instances, a blob-partitioning algorithm takes place in order to split this blob and reestablish the instances' identities. If the algorithm cannot determine the identity of a blob, a manual intervention is required. This procedure was compared against a manual labeled ground truth on four video sequences with different numbers of fish and spatial resolution. The performance of the proposed method is then compared against two well-known zebrafish tracking methods found in the literature: one that treats occlusion scenarios and one that only track fish that are not in occlusion. Based on the data set used, the proposed method outperforms the first method in correctly separating fish in occlusion, increasing its efficiency by at least 8.15% of the cases. As for the second, the proposed method's overall performance outperformed the second in some of the tested videos, especially those with lower image quality, because the second method requires high-spatial resolution images, which is not a requirement for the proposed method. Yet, the proposed method was able to separate fish involved in occlusion and correctly assign its identity in up to 87.85% of the cases, without accounting for user intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Augmented Lagrange Hopfield network for solving economic dispatch problem in competitive environment

    NASA Astrophysics Data System (ADS)

    Vo, Dieu Ngoc; Ongsakul, Weerakorn; Nguyen, Khai Phuc

    2012-11-01

    This paper proposes an augmented Lagrange Hopfield network (ALHN) for solving economic dispatch (ED) problem in the competitive environment. The proposed ALHN is a continuous Hopfield network with its energy function based on augmented Lagrange function for efficiently dealing with constrained optimization problems. The ALHN method can overcome the drawbacks of the conventional Hopfield network such as local optimum, long computational time, and linear constraints. The proposed method is used for solving the ED problem with two revenue models of revenue based on payment for power delivered and payment for reserve allocated. The proposed ALHN has been tested on two systems of 3 units and 10 units for the two considered revenue models. The obtained results from the proposed methods are compared to those from differential evolution (DE) and particle swarm optimization (PSO) methods. The result comparison has indicated that the proposed method is very efficient for solving the problem. Therefore, the proposed ALHN could be a favorable tool for ED problem in the competitive environment.

  4. Stripe nonuniformity correction for infrared imaging system based on single image optimization

    NASA Astrophysics Data System (ADS)

    Hua, Weiping; Zhao, Jufeng; Cui, Guangmang; Gong, Xiaoli; Ge, Peng; Zhang, Jiang; Xu, Zhihai

    2018-06-01

    Infrared imaging is often disturbed by stripe nonuniformity noise. Scene-based correction method can effectively reduce the impact of stripe noise. In this paper, a stripe nonuniformity correction method based on differential constraint is proposed. Firstly, the gray distribution of stripe nonuniformity is analyzed and the penalty function is constructed by the difference of horizontal gradient and vertical gradient. With the weight function, the penalty function is optimized to obtain the corrected image. Comparing with other single-frame approaches, experiments show that the proposed method performs better in both subjective and objective analysis, and does less damage to edge and detail. Meanwhile, the proposed method runs faster. We have also discussed the differences between the proposed idea and multi-frame methods. Our method is finally well applied in hardware system.

  5. A Cost Effective Block Framing Scheme for Underwater Communication

    PubMed Central

    Shin, Soo-Young; Park, Soo-Hyun

    2011-01-01

    In this paper, the Selective Multiple Acknowledgement (SMA) method, based on Multiple Acknowledgement (MA), is proposed to efficiently reduce the amount of data transmission by redesigning the transmission frame structure and taking into consideration underwater transmission characteristics. The method is suited to integrated underwater system models, as the proposed method can handle the same amount of data in a much more compact frame structure without any appreciable loss of reliability. Herein, the performance of the proposed SMA method was analyzed and compared to those of the conventional Automatic Repeat-reQuest (ARQ), Block Acknowledgement (BA), block response, and MA methods. The efficiency of the underwater sensor network, which forms a large cluster and mostly contains uplink data, is expected to be improved by the proposed method. PMID:22247689

  6. Improved Variable Selection Algorithm Using a LASSO-Type Penalty, with an Application to Assessing Hepatitis B Infection Relevant Factors in Community Residents

    PubMed Central

    Guo, Pi; Zeng, Fangfang; Hu, Xiaomin; Zhang, Dingmei; Zhu, Shuming; Deng, Yu; Hao, Yuantao

    2015-01-01

    Objectives In epidemiological studies, it is important to identify independent associations between collective exposures and a health outcome. The current stepwise selection technique ignores stochastic errors and suffers from a lack of stability. The alternative LASSO-penalized regression model can be applied to detect significant predictors from a pool of candidate variables. However, this technique is prone to false positives and tends to create excessive biases. It remains challenging to develop robust variable selection methods and enhance predictability. Material and methods Two improved algorithms denoted the two-stage hybrid and bootstrap ranking procedures, both using a LASSO-type penalty, were developed for epidemiological association analysis. The performance of the proposed procedures and other methods including conventional LASSO, Bolasso, stepwise and stability selection models were evaluated using intensive simulation. In addition, methods were compared by using an empirical analysis based on large-scale survey data of hepatitis B infection-relevant factors among Guangdong residents. Results The proposed procedures produced comparable or less biased selection results when compared to conventional variable selection models. In total, the two newly proposed procedures were stable with respect to various scenarios of simulation, demonstrating a higher power and a lower false positive rate during variable selection than the compared methods. In empirical analysis, the proposed procedures yielding a sparse set of hepatitis B infection-relevant factors gave the best predictive performance and showed that the procedures were able to select a more stringent set of factors. The individual history of hepatitis B vaccination, family and individual history of hepatitis B infection were associated with hepatitis B infection in the studied residents according to the proposed procedures. Conclusions The newly proposed procedures improve the identification of significant variables and enable us to derive a new insight into epidemiological association analysis. PMID:26214802

  7. Image Retrieval using Integrated Features of Binary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Agarwal, Megha; Maheshwari, R. P.

    2011-12-01

    In this paper a new approach for image retrieval is proposed with the application of binary wavelet transform. This new approach facilitates the feature calculation with the integration of histogram and correlogram features extracted from binary wavelet subbands. Experiments are performed to evaluate and compare the performance of proposed method with the published literature. It is verified that average precision and average recall of proposed method (69.19%, 41.78%) is significantly improved compared to optimal quantized wavelet correlogram (OQWC) [6] (64.3%, 38.00%) and Gabor wavelet correlogram (GWC) [10] (64.1%, 40.6%). All the experiments are performed on Corel 1000 natural image database [20].

  8. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections.

    PubMed

    Stacul, Stefano; Squeglia, Nunziante

    2018-02-15

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ.

  9. Analysis Method for Laterally Loaded Pile Groups Using an Advanced Modeling of Reinforced Concrete Sections

    PubMed Central

    2018-01-01

    A Boundary Element Method (BEM) approach was developed for the analysis of pile groups. The proposed method includes: the non-linear behavior of the soil by a hyperbolic modulus reduction curve; the non-linear response of reinforced concrete pile sections, also taking into account the influence of tension stiffening; the influence of suction by increasing the stiffness of shallow portions of soil and modeled using the Modified Kovacs model; pile group shadowing effect, modeled using an approach similar to that proposed in the Strain Wedge Model for pile groups analyses. The proposed BEM method saves computational effort compared to more sophisticated codes such as VERSAT-P3D, PLAXIS 3D and FLAC-3D, and provides reliable results using input data from a standard site investigation. The reliability of this method was verified by comparing results from data from full scale and centrifuge tests on single piles and pile groups. A comparison is presented between measured and computed data on a laterally loaded fixed-head pile group composed by reinforced concrete bored piles. The results of the proposed method are shown to be in good agreement with those obtained in situ. PMID:29462857

  10. Evaluation method on steering for the shape-shifting robot in different configurations

    NASA Astrophysics Data System (ADS)

    Chang, Jian; Li, Bin; Wang, Chong; Zheng, Huaibing; Li, Zhiqiang

    2016-01-01

    The evaluation method on steering is based on qualitative manner in existence, which causes the result inaccurate and fuzziness. It reduces the efficiency of process execution. So the method by quantitative manner for the shape-shifting robot in different configurations is proposed. Comparing to traditional evaluation method, the most important aspects which can influence the steering abilities of the robot in different configurations are researched in detail, including the energy, angular velocity, time and space. In order to improve the robustness of system, the ideal and slippage conditions are all considered by mathematical model. Comparing to the traditional weighting confirming method, the extent of robot steering method is proposed by the combination of subjective and objective weighting method. The subjective weighting method can show more preferences of the experts and is based on five-grade scale. The objective weighting method is based on information entropy to determine the factors. By the sensors fixed on the robot, the contract force between track grouser and ground, the intrinsic motion characteristics of robot are obtained and the experiment is done to prove the algorithm which is proposed as the robot in different common configurations. Through the method proposed in the article, fuzziness and inaccurate of the evaluation method has been solved, so the operators can choose the most suitable configuration of the robot to fulfil the different tasks more quickly and simply.

  11. Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient

    NASA Astrophysics Data System (ADS)

    Gilev, S. D.; Prokopiev, V. S.

    2017-07-01

    A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.

  12. A Proposal of Operational Risk Management Method Using FMEA for Drug Manufacturing Computerized System

    NASA Astrophysics Data System (ADS)

    Takahashi, Masakazu; Nanba, Reiji; Fukue, Yoshinori

    This paper proposes operational Risk Management (RM) method using Failure Mode and Effects Analysis (FMEA) for drug manufacturing computerlized system (DMCS). The quality of drug must not be influenced by failures and operational mistakes of DMCS. To avoid such situation, DMCS has to be conducted enough risk assessment and taken precautions. We propose operational RM method using FMEA for DMCS. To propose the method, we gathered and compared the FMEA results of DMCS, and develop a list that contains failure modes, failures and countermeasures. To apply this list, we can conduct RM in design phase, find failures, and conduct countermeasures efficiently. Additionally, we can find some failures that have not been found yet.

  13. Determining osmotic pressure of drug solutions by air humidity in equilibrium method.

    PubMed

    Zhan, Xiancheng; Li, Hui; Yu, Lan; Wei, Guocui; Li, Chengrong

    2014-06-01

    To establish a new osmotic pressure measuring method with a wide measuring range. The osmotic pressure of drug solutions is determined by measuring the relative air humidity in equilibrium with the solution. The freezing point osmometry is used as a control. The data obtained by the proposed method are comparable to those by the control method, and the measuring range of the proposed method is significantly wider than that of the control method. The proposed method is performed in an isothermal and equilibrium state, so it overcomes the defects of the freezing point and dew point osmometries which result from the heterothermal process in the measurement, and therefore is not limited to diluted solutions.

  14. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.

    PubMed

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng

    To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.

  15. WE-FG-207B-05: Iterative Reconstruction Via Prior Image Constrained Total Generalized Variation for Spectral CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, S; Zhang, Y; Ma, J

    Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less

  16. Modified slanted-edge method for camera modulation transfer function measurement using nonuniform fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin

    2018-01-01

    ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.

  17. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form

    NASA Astrophysics Data System (ADS)

    Salem, Hesham; Mohamed, Dalia

    2015-04-01

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision.

  18. Universal method for constructing N-port non-blocking optical router based on 2 × 2 optical switch for photonic networks-on-chip.

    PubMed

    Chen, Qiaoshan; Zhang, Fanfan; Ji, Ruiqiang; Zhang, Lei; Yang, Lin

    2014-05-19

    We propose a universal method for constructing N-port non-blocking optical router for photonic networks-on-chip, in which all microring (MR) optical switches or Mach-Zehnder (M-Z) optical switches behave as 2 × 2 optical switches. The optical router constructed by the proposed method has minimum optical switches, in which the number of the optical switches is reduced about 50% compared to the reported optical routers based on MR optical switches and more than 30% compared to the reported optical routers based on M-Z optical switches, and therefore is more compact in footprint and more power-efficient. We also present a strict mathematical proof of the non-blocking routing of the proposed N-port optical router.

  19. Effective description of a 3D object for photon transportation in Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Suganuma, R.; Ogawa, K.

    2000-06-01

    Photon transport simulation by means of the Monte Carlo method is an indispensable technique for examining scatter and absorption correction methods in SPECT and PET. The authors have developed a method for object description with maximum size regions (maximum rectangular regions: MRRs) to speed up photon transport simulation, and compared the computation time with that for conventional object description methods, a voxel-based (VB) method and an octree method, in the simulations of two kinds of phantoms. The simulation results showed that the computation time with the proposed method became about 50% of that with the VD method and about 70% of that with the octree method for a high resolution MCAT phantom. Here, details of the expansion of the MRR method to three dimensions are given. Moreover, the effectiveness of the proposed method was compared with the VB and octree methods.

  20. Using Variable-Length Aligned Fragment Pairs and an Improved Transition Function for Flexible Protein Structure Alignment.

    PubMed

    Cao, Hu; Lu, Yonggang

    2017-01-01

    With the rapid growth of known protein 3D structures in number, how to efficiently compare protein structures becomes an essential and challenging problem in computational structural biology. At present, many protein structure alignment methods have been developed. Among all these methods, flexible structure alignment methods are shown to be superior to rigid structure alignment methods in identifying structure similarities between proteins, which have gone through conformational changes. It is also found that the methods based on aligned fragment pairs (AFPs) have a special advantage over other approaches in balancing global structure similarities and local structure similarities. Accordingly, we propose a new flexible protein structure alignment method based on variable-length AFPs. Compared with other methods, the proposed method possesses three main advantages. First, it is based on variable-length AFPs. The length of each AFP is separately determined to maximally represent a local similar structure fragment, which reduces the number of AFPs. Second, it uses local coordinate systems, which simplify the computation at each step of the expansion of AFPs during the AFP identification. Third, it decreases the number of twists by rewarding the situation where nonconsecutive AFPs share the same transformation in the alignment, which is realized by dynamic programming with an improved transition function. The experimental data show that compared with FlexProt, FATCAT, and FlexSnap, the proposed method can achieve comparable results by introducing fewer twists. Meanwhile, it can generate results similar to those of the FATCAT method in much less running time due to the reduced number of AFPs.

  1. Mass type-specific sparse representation for mass classification in computer-aided detection on mammograms

    PubMed Central

    2013-01-01

    Background Breast cancer is the leading cause of both incidence and mortality in women population. For this reason, much research effort has been devoted to develop Computer-Aided Detection (CAD) systems for early detection of the breast cancers on mammograms. In this paper, we propose a new and novel dictionary configuration underpinning sparse representation based classification (SRC). The key idea of the proposed algorithm is to improve the sparsity in terms of mass margins for the purpose of improving classification performance in CAD systems. Methods The aim of the proposed SRC framework is to construct separate dictionaries according to the types of mass margins. The underlying idea behind our method is that the separated dictionaries can enhance the sparsity of mass class (true-positive), leading to an improved performance for differentiating mammographic masses from normal tissues (false-positive). When a mass sample is given for classification, the sparse solutions based on corresponding dictionaries are separately solved and combined at score level. Experiments have been performed on both database (DB) named as Digital Database for Screening Mammography (DDSM) and clinical Full Field Digital Mammogram (FFDM) DBs. In our experiments, sparsity concentration in the true class (SCTC) and area under the Receiver operating characteristic (ROC) curve (AUC) were measured for the comparison between the proposed method and a conventional single dictionary based approach. In addition, a support vector machine (SVM) was used for comparing our method with state-of-the-arts classifier extensively used for mass classification. Results Comparing with the conventional single dictionary configuration, the proposed approach is able to improve SCTC of up to 13.9% and 23.6% on DDSM and FFDM DBs, respectively. Moreover, the proposed method is able to improve AUC with 8.2% and 22.1% on DDSM and FFDM DBs, respectively. Comparing to SVM classifier, the proposed method improves AUC with 2.9% and 11.6% on DDSM and FFDM DBs, respectively. Conclusions The proposed dictionary configuration is found to well improve the sparsity of dictionaries, resulting in an enhanced classification performance. Moreover, the results show that the proposed method is better than conventional SVM classifier for classifying breast masses subject to various margins from normal tissues. PMID:24564973

  2. Continuous Human Action Recognition Using Depth-MHI-HOG and a Spotter Model

    PubMed Central

    Eum, Hyukmin; Yoon, Changyong; Lee, Heejin; Park, Mignon

    2015-01-01

    In this paper, we propose a new method for spotting and recognizing continuous human actions using a vision sensor. The method is comprised of depth-MHI-HOG (DMH), action modeling, action spotting, and recognition. First, to effectively separate the foreground from background, we propose a method called DMH. It includes a standard structure for segmenting images and extracting features by using depth information, MHI, and HOG. Second, action modeling is performed to model various actions using extracted features. The modeling of actions is performed by creating sequences of actions through k-means clustering; these sequences constitute HMM input. Third, a method of action spotting is proposed to filter meaningless actions from continuous actions and to identify precise start and end points of actions. By employing the spotter model, the proposed method improves action recognition performance. Finally, the proposed method recognizes actions based on start and end points. We evaluate recognition performance by employing the proposed method to obtain and compare probabilities by applying input sequences in action models and the spotter model. Through various experiments, we demonstrate that the proposed method is efficient for recognizing continuous human actions in real environments. PMID:25742172

  3. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network

    PubMed Central

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-01-01

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods. PMID:28677638

  4. ECG fiducial point extraction using switching Kalman filter.

    PubMed

    Akhbari, Mahsa; Ghahjaverestan, Nasim Montazeri; Shamsollahi, Mohammad B; Jutten, Christian

    2018-04-01

    In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry's model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete state variable called "switch" is considered that affects only the observation equations. We denote a mode as a specific observation equation and switch changes between 7 modes and corresponds to different segments of an ECG beat. At each time instant, the probability of each mode is calculated and compared among two consecutive modes and a path is estimated, which shows the relation of each part of the ECG signal to the mode with the maximum probability. ECG FPs are found from the estimated path. For performance evaluation, the Physionet QT database is used and the proposed method is compared with methods based on wavelet transform, partially collapsed Gibbs sampler (PCGS) and extended Kalman filter. For our proposed method, the mean error and the root mean square error across all FPs are 2 ms (i.e. less than one sample) and 14 ms, respectively. These errors are significantly smaller than those obtained using other methods. The proposed method achieves lesser RMSE and smaller variability with respect to others. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.

    PubMed

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-07-04

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.

  6. Brain Network Regional Synchrony Analysis in Deafness

    PubMed Central

    Xu, Lei; Liang, Mao-Jin

    2018-01-01

    Deafness, the most common auditory disease, has greatly affected people for a long time. The major treatment for deafness is cochlear implantation (CI). However, till today, there is still a lack of objective and precise indicator serving as evaluation of the effectiveness of the cochlear implantation. The goal of this EEG-based study is to effectively distinguish CI children from those prelingual deafened children without cochlear implantation. The proposed method is based on the functional connectivity analysis, which focuses on the brain network regional synchrony. Specifically, we compute the functional connectivity between each channel pair first. Then, we quantify the brain network synchrony among regions of interests (ROIs), where both intraregional synchrony and interregional synchrony are computed. And finally the synchrony values are concatenated to form the feature vector for the SVM classifier. What is more, we develop a new ROI partition method of 128-channel EEG recording system. That is, both the existing ROI partition method and the proposed ROI partition method are used in the experiments. Compared with the existing EEG signal classification methods, our proposed method has achieved significant improvements as large as 87.20% and 86.30% when the existing ROI partition method and the proposed ROI partition method are used, respectively. It further demonstrates that the new ROI partition method is comparable to the existing ROI partition method. PMID:29854776

  7. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.

    PubMed

    Yu, Fang; Chen, Ming-Hui; Kuo, Lynn; Talbott, Heather; Davis, John S

    2015-08-07

    Recently, the Bayesian method becomes more popular for analyzing high dimensional gene expression data as it allows us to borrow information across different genes and provides powerful estimators for evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting differentially expressed (DE) genes based on the Bayesian estimators. In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387-404), we propose two new gene selection algorithms for general Bayesian models and name these new methods as the confident difference criterion methods. One is based on the standardized differences between two mean expression values among genes; the other adds the differences between two variances to it. The proposed confident difference criterion methods first evaluate the posterior probability of a gene having different gene expressions between competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F, Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:783-802) is established under the normal-normal-model with equal variances between two samples. The empirical performance of the proposed methods is examined and compared to those of several existing methods via several simulations. The results from these simulation studies show that the proposed confident difference criterion methods outperform the existing methods when comparing gene expressions across different conditions for both microarray studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed methodology. In the real data application, the confident difference criterion methods successfully identified more clinically important DE genes than the other methods. The confident difference criterion method proposed in this paper provides a new efficient approach for both microarray studies and sequence-based high-throughput studies to identify differentially expressed genes.

  8. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mao, Cuili; Lu, Rongsheng; Liu, Zhijian

    2018-07-01

    In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.

  9. A Gradient Taguchi Method for Engineering Optimization

    NASA Astrophysics Data System (ADS)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  10. Wave propagation modeling in composites reinforced by randomly oriented fibers

    NASA Astrophysics Data System (ADS)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2018-02-01

    A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.

  11. A simple method for determining stress intensity factors for a crack in bi-material interface

    NASA Astrophysics Data System (ADS)

    Morioka, Yuta

    Because of violently oscillating nature of stress and displacement fields near the crack tip, it is difficult to obtain stress intensity factors for a crack between two dis-similar media. For a crack in a homogeneous medium, it is a common practice to find stress intensity factors through strain energy release rates. However, individual strain energy release rates do not exist for bi-material interface crack. Hence it is necessary to find alternative methods to evaluate stress intensity factors. Several methods have been proposed in the past. However they involve mathematical complexity and sometimes require additional finite element analysis. The purpose of this research is to develop a simple method to find stress intensity factors in bi-material interface cracks. A finite element based projection method is proposed in the research. It is shown that the projection method yields very accurate stress intensity factors for a crack in isotropic and anisotropic bi-material interfaces. The projection method is also compared to displacement ratio method and energy method proposed by other authors. Through comparison it is found that projection method is much simpler to apply with its accuracy comparable to that of displacement ratio method.

  12. A New Moving Object Detection Method Based on Frame-difference and Background Subtraction

    NASA Astrophysics Data System (ADS)

    Guo, Jiajia; Wang, Junping; Bai, Ruixue; Zhang, Yao; Li, Yong

    2017-09-01

    Although many methods of moving object detection have been proposed, moving object extraction is still the core in video surveillance. However, with the complex scene in real world, false detection, missed detection and deficiencies resulting from cavities inside the body still exist. In order to solve the problem of incomplete detection for moving objects, a new moving object detection method combined an improved frame-difference and Gaussian mixture background subtraction is proposed in this paper. To make the moving object detection more complete and accurate, the image repair and morphological processing techniques which are spatial compensations are applied in the proposed method. Experimental results show that our method can effectively eliminate ghosts and noise and fill the cavities of the moving object. Compared to other four moving object detection methods which are GMM, VIBE, frame-difference and a literature's method, the proposed method improve the efficiency and accuracy of the detection.

  13. [Nonparametric method of estimating survival functions containing right-censored and interval-censored data].

    PubMed

    Xu, Yonghong; Gao, Xiaohuan; Wang, Zhengxi

    2014-04-01

    Missing data represent a general problem in many scientific fields, especially in medical survival analysis. Dealing with censored data, interpolation method is one of important methods. However, most of the interpolation methods replace the censored data with the exact data, which will distort the real distribution of the censored data and reduce the probability of the real data falling into the interpolation data. In order to solve this problem, we in this paper propose a nonparametric method of estimating the survival function of right-censored and interval-censored data and compare its performance to SC (self-consistent) algorithm. Comparing to the average interpolation and the nearest neighbor interpolation method, the proposed method in this paper replaces the right-censored data with the interval-censored data, and greatly improves the probability of the real data falling into imputation interval. Then it bases on the empirical distribution theory to estimate the survival function of right-censored and interval-censored data. The results of numerical examples and a real breast cancer data set demonstrated that the proposed method had higher accuracy and better robustness for the different proportion of the censored data. This paper provides a good method to compare the clinical treatments performance with estimation of the survival data of the patients. This pro vides some help to the medical survival data analysis.

  14. Anatomically-Aided PET Reconstruction Using the Kernel Method

    PubMed Central

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-01-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest (ROI) quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization (EM) algorithm. PMID:27541810

  15. Anatomically-aided PET reconstruction using the kernel method.

    PubMed

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  16. Anatomically-aided PET reconstruction using the kernel method

    NASA Astrophysics Data System (ADS)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-09-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  17. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.

    PubMed

    Lee, Hansang; Hong, Helen; Kim, Junmo; Jung, Dae Chul

    2018-04-01

    To develop an automatic deep feature classification (DFC) method for distinguishing benign angiomyolipoma without visible fat (AMLwvf) from malignant clear cell renal cell carcinoma (ccRCC) from abdominal contrast-enhanced computer tomography (CE CT) images. A dataset including 80 abdominal CT images of 39 AMLwvf and 41 ccRCC patients was used. We proposed a DFC method for differentiating the small renal masses (SRM) into AMLwvf and ccRCC using the combination of hand-crafted and deep features, and machine learning classifiers. First, 71-dimensional hand-crafted features (HCF) of texture and shape were extracted from the SRM contours. Second, 1000-4000-dimensional deep features (DF) were extracted from the ImageNet pretrained deep learning model with the SRM image patches. In DF extraction, we proposed the texture image patches (TIP) to emphasize the texture information inside the mass in DFs and reduce the mass size variability. Finally, the two features were concatenated and the random forest (RF) classifier was trained on these concatenated features to classify the types of SRMs. The proposed method was tested on our dataset using leave-one-out cross-validation and evaluated using accuracy, sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), and area under receiver operating characteristics curve (AUC). In experiments, the combinations of four deep learning models, AlexNet, VGGNet, GoogleNet, and ResNet, and four input image patches, including original, masked, mass-size, and texture image patches, were compared and analyzed. In qualitative evaluation, we observed the change in feature distributions between the proposed and comparative methods using tSNE method. In quantitative evaluation, we evaluated and compared the classification results, and observed that (a) the proposed HCF + DF outperformed HCF-only and DF-only, (b) AlexNet showed generally the best performances among the CNN models, and (c) the proposed TIPs not only achieved the competitive performances among the input patches, but also steady performance regardless of CNN models. As a result, the proposed method achieved the accuracy of 76.6 ± 1.4% for the proposed HCF + DF with AlexNet and TIPs, which improved the accuracy by 6.6%p and 8.3%p compared to HCF-only and DF-only, respectively. The proposed shape features and TIPs improved the HCFs and DFs, respectively, and the feature concatenation further enhanced the quality of features for differentiating AMLwvf from ccRCC in abdominal CE CT images. © 2018 American Association of Physicists in Medicine.

  18. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    PubMed Central

    Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.

    2009-01-01

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272

  19. Registration of prone and supine CT colonography scans using correlation optimized warping and canonical correlation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shijun; Yao Jianhua; Liu Jiamin

    Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less

  20. Comparative study of methods for recognition of an unknown person's action from a video sequence

    NASA Astrophysics Data System (ADS)

    Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun

    2009-02-01

    This paper proposes a Tensor Decomposition Based method that can recognize an unknown person's action from a video sequence, where the unknown person is not included in the database (tensor) used for the recognition. The tensor consists of persons, actions and time-series image features. For the observed unknown person's action, one of the actions stored in the tensor is assumed. Using the motion signature obtained from the assumption, the unknown person's actions are synthesized. The actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for the actions and persons. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. For the time-series image features to be stored in the tensor and to be extracted from the observed video sequence, the human body silhouette's contour shape based feature is used. To show the validity of our proposed method, our proposed method is experimentally compared with Nearest Neighbor rule and Principal Component analysis based method. Experiments using 33 persons' seven kinds of action show that our proposed method achieves better recognition accuracies for the seven actions than the other methods.

  1. Finding Dantzig Selectors with a Proximity Operator based Fixed-point Algorithm

    DTIC Science & Technology

    2014-11-01

    experiments showed that this method usually outperforms the method in [2] in terms of CPU time while producing solutions of comparable quality. The... method proposed in [19]. To alleviate the difficulty caused by the subprob- lem without a closed form solution , a linearized ADM was proposed for the...a closed form solution , but the β-related subproblem does not and is solved approximately by using the nonmonotone gradient method in [18]. The

  2. Comparing biomarkers as principal surrogate endpoints.

    PubMed

    Huang, Ying; Gilbert, Peter B

    2011-12-01

    Recently a new definition of surrogate endpoint, the "principal surrogate," was proposed based on causal associations between treatment effects on the biomarker and on the clinical endpoint. Despite its appealing interpretation, limited research has been conducted to evaluate principal surrogates, and existing methods focus on risk models that consider a single biomarker. How to compare principal surrogate value of biomarkers or general risk models that consider multiple biomarkers remains an open research question. We propose to characterize a marker or risk model's principal surrogate value based on the distribution of risk difference between interventions. In addition, we propose a novel summary measure (the standardized total gain) that can be used to compare markers and to assess the incremental value of a new marker. We develop a semiparametric estimated-likelihood method to estimate the joint surrogate value of multiple biomarkers. This method accommodates two-phase sampling of biomarkers and is more widely applicable than existing nonparametric methods by incorporating continuous baseline covariates to predict the biomarker(s), and is more robust than existing parametric methods by leaving the error distribution of markers unspecified. The methodology is illustrated using a simulated example set and a real data set in the context of HIV vaccine trials. © 2011, The International Biometric Society.

  3. The Artificial Neural Networks Based on Scalarization Method for a Class of Bilevel Biobjective Programming Problem

    PubMed Central

    Chen, Zhong; Liu, June; Li, Xiong

    2017-01-01

    A two-stage artificial neural network (ANN) based on scalarization method is proposed for bilevel biobjective programming problem (BLBOP). The induced set of the BLBOP is firstly expressed as the set of minimal solutions of a biobjective optimization problem by using scalar approach, and then the whole efficient set of the BLBOP is derived by the proposed two-stage ANN for exploring the induced set. In order to illustrate the proposed method, seven numerical examples are tested and compared with results in the classical literature. Finally, a practical problem is solved by the proposed algorithm. PMID:29312446

  4. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  5. Shielding of substations against direct lightning strokes by shield wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhuri, P.

    1994-01-01

    A new analysis for shielding outdoor substations against direct lightning strokes by shield wires is proposed. The basic assumption of this proposed method is that any lightning stroke which penetrates the shields will cause damage. The second assumption is that a certain level of risk of failure must be accepted, such as one or two failures per 100 years. The proposed method, using electrogeometric model, was applied to design shield wires for two outdoor substations: (1) 161-kV/69-kV station, and (2) 500-kV/161-kV station. The results of the proposed method were also compared with the shielding data of two other substations.

  6. Feature-level sentiment analysis by using comparative domain corpora

    NASA Astrophysics Data System (ADS)

    Quan, Changqin; Ren, Fuji

    2016-06-01

    Feature-level sentiment analysis (SA) is able to provide more fine-grained SA on certain opinion targets and has a wider range of applications on E-business. This study proposes an approach based on comparative domain corpora for feature-level SA. The proposed approach makes use of word associations for domain-specific feature extraction. First, we assign a similarity score for each candidate feature to denote its similarity extent to a domain. Then we identify domain features based on their similarity scores on different comparative domain corpora. After that, dependency grammar and a general sentiment lexicon are applied to extract and expand feature-oriented opinion words. Lastly, the semantic orientation of a domain-specific feature is determined based on the feature-oriented opinion lexicons. In evaluation, we compare the proposed method with several state-of-the-art methods (including unsupervised and semi-supervised) using a standard product review test collection. The experimental results demonstrate the effectiveness of using comparative domain corpora.

  7. Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-10-01

    We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.

  8. Structural modal parameter identification using local mean decomposition

    NASA Astrophysics Data System (ADS)

    Keyhani, Ali; Mohammadi, Saeed

    2018-02-01

    Modal parameter identification is the first step in structural health monitoring of existing structures. Already, many powerful methods have been proposed for this concept and each method has some benefits and shortcomings. In this study, a new method based on local mean decomposition is proposed for modal identification of civil structures from free or ambient vibration measurements. The ability of the proposed method was investigated using some numerical studies and the results compared with those obtained from the Hilbert-Huang transform (HHT). As a major advantage, the proposed method can extract natural frequencies and damping ratios of all active modes from only one measurement. The accuracy of the identified modes depends on their participation in the measured responses. Nevertheless, the identified natural frequencies have reasonable accuracy in both cases of free and ambient vibration measurements, even in the presence of noise. The instantaneous phase angle and the natural logarithm of instantaneous amplitude curves obtained from the proposed method have more linearity rather than those from the HHT algorithm. Also, the end effect is more restricted for the proposed method.

  9. An Improved Pansharpening Method for Misaligned Panchromatic and Multispectral Data

    PubMed Central

    Jing, Linhai; Tang, Yunwei; Ding, Haifeng

    2018-01-01

    Numerous pansharpening methods were proposed in recent decades for fusing low-spatial-resolution multispectral (MS) images with high-spatial-resolution (HSR) panchromatic (PAN) bands to produce fused HSR MS images, which are widely used in various remote sensing tasks. The effect of misregistration between MS and PAN bands on quality of fused products has gained much attention in recent years. An improved method for misaligned MS and PAN imagery is proposed, through two improvements made on a previously published method named RMI (reduce misalignment impact). The performance of the proposed method was assessed by comparing with some outstanding fusion methods, such as adaptive Gram-Schmidt and generalized Laplacian pyramid. Experimental results show that the improved version can reduce spectral distortions of fused dark pixels and sharpen boundaries between different image objects, as well as obtain similar quality indexes with the original RMI method. In addition, the proposed method was evaluated with respect to its sensitivity to misalignments between MS and PAN bands. It is certified that the proposed method is more robust to misalignments between MS and PAN bands than the other methods. PMID:29439502

  10. An Improved Pansharpening Method for Misaligned Panchromatic and Multispectral Data.

    PubMed

    Li, Hui; Jing, Linhai; Tang, Yunwei; Ding, Haifeng

    2018-02-11

    Numerous pansharpening methods were proposed in recent decades for fusing low-spatial-resolution multispectral (MS) images with high-spatial-resolution (HSR) panchromatic (PAN) bands to produce fused HSR MS images, which are widely used in various remote sensing tasks. The effect of misregistration between MS and PAN bands on quality of fused products has gained much attention in recent years. An improved method for misaligned MS and PAN imagery is proposed, through two improvements made on a previously published method named RMI (reduce misalignment impact). The performance of the proposed method was assessed by comparing with some outstanding fusion methods, such as adaptive Gram-Schmidt and generalized Laplacian pyramid. Experimental results show that the improved version can reduce spectral distortions of fused dark pixels and sharpen boundaries between different image objects, as well as obtain similar quality indexes with the original RMI method. In addition, the proposed method was evaluated with respect to its sensitivity to misalignments between MS and PAN bands. It is certified that the proposed method is more robust to misalignments between MS and PAN bands than the other methods.

  11. A coupling method for a cardiovascular simulation model which includes the Kalman filter.

    PubMed

    Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya

    2012-01-01

    Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.

  12. Incorporating spatial constraint in co-activation pattern analysis to explore the dynamics of resting-state networks: An application to Parkinson's disease.

    PubMed

    Zhuang, Xiaowei; Walsh, Ryan R; Sreenivasan, Karthik; Yang, Zhengshi; Mishra, Virendra; Cordes, Dietmar

    2018-05-15

    The dynamics of the brain's intrinsic networks have been recently studied using co-activation pattern (CAP) analysis. The CAP method relies on few model assumptions and CAP-based measurements provide quantitative information of network temporal dynamics. One limitation of existing CAP-related methods is that the computed CAPs share considerable spatial overlap that may or may not be functionally distinct relative to specific network dynamics. To more accurately describe network dynamics with spatially distinct CAPs, and to compare network dynamics between different populations, a novel data-driven CAP group analysis method is proposed in this study. In the proposed method, a dominant-CAP (d-CAP) set is synthesized across CAPs from multiple clustering runs for each group with the constraint of low spatial similarities among d-CAPs. Alternating d-CAPs with less overlapping spatial patterns can better capture overall network dynamics. The number of d-CAPs, the temporal fraction and spatial consistency of each d-CAP, and the subject-specific switching probability among all d-CAPs are then calculated for each group and used to compare network dynamics between groups. The spatial dissimilarities among d-CAPs computed with the proposed method were first demonstrated using simulated data. High consistency between simulated ground-truth and computed d-CAPs was achieved, and detailed comparisons between the proposed method and existing CAP-based methods were conducted using simulated data. In an effort to physiologically validate the proposed technique and investigate network dynamics in a relevant brain network disorder, the proposed method was then applied to data from the Parkinson's Progression Markers Initiative (PPMI) database to compare the network dynamics in Parkinson's disease (PD) and normal control (NC) groups. Fewer d-CAPs, skewed distribution of temporal fractions of d-CAPs, and reduced switching probabilities among final d-CAPs were found in most networks in the PD group, as compared to the NC group. Furthermore, an overall negative association between switching probability among d-CAPs and disease severity was observed in most networks in the PD group as well. These results expand upon previous findings from in vivo electrophysiological recording studies in PD. Importantly, this novel analysis also demonstrates that changes in network dynamics can be measured using resting-state fMRI data from subjects with early stage PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effectsmore » of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both correction methods compared to no correction, especially for the images of {sup 99m}Tc in dual-radionuclide imaging where there is heavy contamination from {sup 123}I. In this case, the nontransmural defect contrast was improved from 0.39 to 0.47 with the TEW method and to 0.51 with their proposed method and the transmural defect contrast was improved from 0.62 to 0.74 with the TEW method and to 0.73 with their proposed method. In the patient study, the proposed method provided higher myocardium-to-blood pool contrast than that of the TEW method. Similar to the phantom experiment, the improvement was the most substantial for the images of {sup 99m}Tc in dual-radionuclide imaging. In this case, the myocardium-to-blood pool ratio was improved from 7.0 to 38.3 with the TEW method and to 63.6 with their proposed method. Compared to the TEW method, the proposed method also provided higher count levels in the reconstructed images in both phantom and patient studies, indicating reduced overestimation of scatter. Using the proposed method, consistent reconstruction results were obtained for both single-radionuclide data with scatter correction and dual-radionuclide data with scatter and crosstalk corrections, in both phantom and human studies. Conclusions: The authors demonstrate that the TEW method leads to overestimation in scatter and crosstalk for the CZT-based imaging system while the proposed scatter and crosstalk correction method can provide more accurate self-scatter and down-scatter estimations for quantitative single-radionuclide and dual-radionuclide imaging.« less

  14. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.

    PubMed

    Mori, Yutaka; Nomura, Takanori

    2013-06-01

    In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

  15. Point cloud registration from local feature correspondences-Evaluation on challenging datasets.

    PubMed

    Petricek, Tomas; Svoboda, Tomas

    2017-01-01

    Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.

  16. A Low-Storage-Consumption XML Labeling Method for Efficient Structural Information Extraction

    NASA Astrophysics Data System (ADS)

    Liang, Wenxin; Takahashi, Akihiro; Yokota, Haruo

    Recently, labeling methods to extract and reconstruct the structural information of XML data, which are important for many applications such as XPath query and keyword search, are becoming more attractive. To achieve efficient structural information extraction, in this paper we propose C-DO-VLEI code, a novel update-friendly bit-vector encoding scheme, based on register-length bit operations combining with the properties of Dewey Order numbers, which cannot be implemented in other relevant existing schemes such as ORDPATH. Meanwhile, the proposed method also achieves lower storage consumption because it does not require either prefix schema or any reserved codes for node insertion. We performed experiments to evaluate and compare the performance and storage consumption of the proposed method with those of the ORDPATH method. Experimental results show that the execution times for extracting depth information and parent node labels using the C-DO-VLEI code are about 25% and 15% less, respectively, and the average label size using the C-DO-VLEI code is about 24% smaller, comparing with ORDPATH.

  17. Free vibration analysis of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses

    NASA Astrophysics Data System (ADS)

    Coral, W.; Rossi, C.; Curet, O. M.

    2015-12-01

    This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.

  18. Computation-aware algorithm selection approach for interlaced-to-progressive conversion

    NASA Astrophysics Data System (ADS)

    Park, Sang-Jun; Jeon, Gwanggil; Jeong, Jechang

    2010-05-01

    We discuss deinterlacing results in a computationally constrained and varied environment. The proposed computation-aware algorithm selection approach (CASA) for fast interlaced to progressive conversion algorithm consists of three methods: the line-averaging (LA) method for plain regions, the modified edge-based line-averaging (MELA) method for medium regions, and the proposed covariance-based adaptive deinterlacing (CAD) method for complex regions. The proposed CASA uses two criteria, mean-squared error (MSE) and CPU time, for assigning the method. We proposed a CAD method. The principle idea of CAD is based on the correspondence between the high and low-resolution covariances. We estimated the local covariance coefficients from an interlaced image using Wiener filtering theory and then used these optimal minimum MSE interpolation coefficients to obtain a deinterlaced image. The CAD method, though more robust than most known methods, was not found to be very fast compared to the others. To alleviate this issue, we proposed an adaptive selection approach using a fast deinterlacing algorithm rather than using only one CAD algorithm. The proposed hybrid approach of switching between the conventional schemes (LA and MELA) and our CAD was proposed to reduce the overall computational load. A reliable condition to be used for switching the schemes was presented after a wide set of initial training processes. The results of computer simulations showed that the proposed methods outperformed a number of methods presented in the literature.

  19. Region-based multi-step optic disk and cup segmentation from color fundus image

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Lock, Jane; Manresa, Javier Moreno; Vignarajan, Janardhan; Tay-Kearney, Mei-Ling; Kanagasingam, Yogesan

    2013-02-01

    Retinal optic cup-disk-ratio (CDR) is a one of important indicators of glaucomatous neuropathy. In this paper, we propose a novel multi-step 4-quadrant thresholding method for optic disk segmentation and a multi-step temporal-nasal segmenting method for optic cup segmentation based on blood vessel inpainted HSL lightness images and green images. The performance of the proposed methods was evaluated on a group of color fundus images and compared with the manual outlining results from two experts. Dice scores of detected disk and cup regions between the auto and manual results were computed and compared. Vertical CDRs were also compared among the three results. The preliminary experiment has demonstrated the robustness of the method for automatic optic disk and cup segmentation and its potential value for clinical application.

  20. Defect detection of castings in radiography images using a robust statistical feature.

    PubMed

    Zhao, Xinyue; He, Zaixing; Zhang, Shuyou

    2014-01-01

    One of the most commonly used optical methods for defect detection is radiographic inspection. Compared with methods that extract defects directly from the radiography image, model-based methods deal with the case of an object with complex structure well. However, detection of small low-contrast defects in nonuniformly illuminated images is still a major challenge for them. In this paper, we present a new method based on the grayscale arranging pairs (GAP) feature to detect casting defects in radiography images automatically. First, a model is built using pixel pairs with a stable intensity relationship based on the GAP feature from previously acquired images. Second, defects can be extracted by comparing the difference of intensity-difference signs between the input image and the model statistically. The robustness of the proposed method to noise and illumination variations has been verified on casting radioscopic images with defects. The experimental results showed that the average computation time of the proposed method in the testing stage is 28 ms per image on a computer with a Pentium Core 2 Duo 3.00 GHz processor. For the comparison, we also evaluated the performance of the proposed method as well as that of the mixture-of-Gaussian-based and crossing line profile methods. The proposed method achieved 2.7% and 2.0% false negative rates in the noise and illumination variation experiments, respectively.

  1. Feature selection method based on multi-fractal dimension and harmony search algorithm and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping; Tang, Na

    2016-10-01

    Feature selection is an important method of data preprocessing in data mining. In this paper, a novel feature selection method based on multi-fractal dimension and harmony search algorithm is proposed. Multi-fractal dimension is adopted as the evaluation criterion of feature subset, which can determine the number of selected features. An improved harmony search algorithm is used as the search strategy to improve the efficiency of feature selection. The performance of the proposed method is compared with that of other feature selection algorithms on UCI data-sets. Besides, the proposed method is also used to predict the daily average concentration of PM2.5 in China. Experimental results show that the proposed method can obtain competitive results in terms of both prediction accuracy and the number of selected features.

  2. Constitutive Modeling of Piezoelectric Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Tom (Technical Monitor)

    2003-01-01

    A new modeling approach is proposed for predicting the bulk electromechanical properties of piezoelectric composites. The proposed model offers the same level of convenience as the well-known Mori-Tanaka method. In addition, it is shown to yield predicted properties that are, in most cases, more accurate or equally as accurate as the Mori-Tanaka scheme. In particular, the proposed method is used to determine the electromechanical properties of four piezoelectric polymer composite materials as a function of inclusion volume fraction. The predicted properties are compared to those calculated using the Mori-Tanaka and finite element methods.

  3. Numerical simulation of the change characteristics of power dissipation coefficient of Ti-24Al-15Nb alloy in hot deformation

    NASA Astrophysics Data System (ADS)

    Wang, Kelu; Li, Xin; Zhang, Xiaobo

    2018-03-01

    The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.

  4. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  5. The Ultimate Pile Bearing Capacity from Conventional and Spectral Analysis of Surface Wave (SASW) Measurements

    NASA Astrophysics Data System (ADS)

    Faizah Bawadi, Nor; Anuar, Shamilah; Rahim, Mustaqqim A.; Mansor, A. Faizal

    2018-03-01

    A conventional and seismic method for determining the ultimate pile bearing capacity was proposed and compared. The Spectral Analysis of Surface Wave (SASW) method is one of the non-destructive seismic techniques that do not require drilling and sampling of soils, was used in the determination of shear wave velocity (Vs) and damping (D) profile of soil. The soil strength was found to be directly proportional to the Vs and its value has been successfully applied to obtain shallow bearing capacity empirically. A method is proposed in this study to determine the pile bearing capacity using Vs and D measurements for the design of pile and also as an alternative method to verify the bearing capacity from the other conventional methods of evaluation. The objectives of this study are to determine Vs and D profile through frequency response data from SASW measurements and to compare pile bearing capacities obtained from the method carried out and conventional methods. All SASW test arrays were conducted near the borehole and location of conventional pile load tests. In obtaining skin and end bearing pile resistance, the Hardin and Drnevich equation has been used with reference strains obtained from the method proposed by Abbiss. Back analysis results of pile bearing capacities from SASW were found to be 18981 kN and 4947 kN compared to 18014 kN and 4633 kN of IPLT with differences of 5% and 6% for Damansara and Kuala Lumpur test sites, respectively. The results of this study indicate that the seismic method proposed in this study has the potential to be used in estimating the pile bearing capacity.

  6. Qualitative Life-Grids: A Proposed Method for Comparative European Educational Research

    ERIC Educational Resources Information Center

    Abbas, Andrea; Ashwin, Paul; McLean, Monica

    2013-01-01

    Drawing upon their large three-year mixed-method study comparing four English university sociology departments, the authors demonstrate the benefits to be gained from concisely recording biographical stories on life-grids. They argue that life-grids have key benefits which are important for comparative European educational research. Some of these…

  7. Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system

    NASA Astrophysics Data System (ADS)

    Bai, Jianbo; Li, Yang; Chen, Jianhao

    2018-02-01

    The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.

  8. Joint Concept Correlation and Feature-Concept Relevance Learning for Multilabel Classification.

    PubMed

    Zhao, Xiaowei; Ma, Zhigang; Li, Zhi; Li, Zhihui

    2018-02-01

    In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.

  9. Competitive region orientation code for palmprint verification and identification

    NASA Astrophysics Data System (ADS)

    Tang, Wenliang

    2015-11-01

    Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.

  10. A biphasic parameter estimation method for quantitative analysis of dynamic renal scintigraphic data

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zhang, Jeff L.; Ong, C. K.; Shuter, B.

    2006-06-01

    Dynamic renal scintigraphy is an established method in nuclear medicine, commonly used for the assessment of renal function. In this paper, a biphasic model fitting method is proposed for simultaneous estimation of both vascular and parenchymal parameters from renal scintigraphic data. These parameters include the renal plasma flow, vascular and parenchymal mean transit times, and the glomerular extraction rate. Monte Carlo simulation was used to evaluate the stability and confidence of the parameter estimates obtained by the proposed biphasic method, before applying the method on actual patient study cases to compare with the conventional fitting approach and other established renal indices. The various parameter estimates obtained using the proposed method were found to be consistent with the respective pathologies of the study cases. The renal plasma flow and extraction rate estimated by the proposed method were in good agreement with those previously obtained using dynamic computed tomography and magnetic resonance imaging.

  11. Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording

    PubMed Central

    Eliseyev, Andrey; Aksenova, Tetiana

    2016-01-01

    In the current paper the decoding algorithms for motor-related BCI systems for continuous upper limb trajectory prediction are considered. Two methods for the smooth prediction, namely Sobolev and Polynomial Penalized Multi-Way Partial Least Squares (PLS) regressions, are proposed. The methods are compared to the Multi-Way Partial Least Squares and Kalman Filter approaches. The comparison demonstrated that the proposed methods combined the prediction accuracy of the algorithms of the PLS family and trajectory smoothness of the Kalman Filter. In addition, the prediction delay is significantly lower for the proposed algorithms than for the Kalman Filter approach. The proposed methods could be applied in a wide range of applications beyond neuroscience. PMID:27196417

  12. 3D digital image correlation using a single 3CCD colour camera and dichroic filter

    NASA Astrophysics Data System (ADS)

    Zhong, F. Q.; Shao, X. X.; Quan, C.

    2018-04-01

    In recent years, three-dimensional digital image correlation methods using a single colour camera have been reported. In this study, we propose a simplified system by employing a dichroic filter (DF) to replace the beam splitter and colour filters. The DF can be used to combine two views from different perspectives reflected by two planar mirrors and eliminate their interference. A 3CCD colour camera is then used to capture two different views simultaneously via its blue and red channels. Moreover, the measurement accuracy of the proposed method is higher since the effect of refraction is reduced. Experiments are carried out to verify the effectiveness of the proposed method. It is shown that the interference between the blue and red views is insignificant. In addition, the measurement accuracy of the proposed method is validated on the rigid body displacement. The experimental results demonstrate that the measurement accuracy of the proposed method is higher compared with the reported methods using a single colour camera. Finally, the proposed method is employed to measure the in- and out-of-plane displacements of a loaded plastic board. The re-projection errors of the proposed method are smaller than those of the reported methods using a single colour camera.

  13. Modeling and Calibration of a Novel One-Mirror Galvanometric Laser Scanner

    PubMed Central

    Yu, Chengyi; Chen, Xiaobo; Xi, Juntong

    2017-01-01

    A laser stripe sensor has limited application when a point cloud of geometric samples on the surface of the object needs to be collected, so a galvanometric laser scanner is designed by using a one-mirror galvanometer element as its mechanical device to drive the laser stripe to sweep along the object. A novel mathematical model is derived for the proposed galvanometer laser scanner without any position assumptions and then a model-driven calibration procedure is proposed. Compared with available model-driven approaches, the influence of machining and assembly errors is considered in the proposed model. Meanwhile, a plane-constraint-based approach is proposed to extract a large number of calibration points effectively and accurately to calibrate the galvanometric laser scanner. Repeatability and accuracy of the galvanometric laser scanner are evaluated on the automobile production line to verify the efficiency and accuracy of the proposed calibration method. Experimental results show that the proposed calibration approach yields similar measurement performance compared with a look-up table calibration method. PMID:28098844

  14. Model-based inference for small area estimation with sampling weights

    PubMed Central

    Vandendijck, Y.; Faes, C.; Kirby, R.S.; Lawson, A.; Hens, N.

    2017-01-01

    Obtaining reliable estimates about health outcomes for areas or domains where only few to no samples are available is the goal of small area estimation (SAE). Often, we rely on health surveys to obtain information about health outcomes. Such surveys are often characterised by a complex design, stratification, and unequal sampling weights as common features. Hierarchical Bayesian models are well recognised in SAE as a spatial smoothing method, but often ignore the sampling weights that reflect the complex sampling design. In this paper, we focus on data obtained from a health survey where the sampling weights of the sampled individuals are the only information available about the design. We develop a predictive model-based approach to estimate the prevalence of a binary outcome for both the sampled and non-sampled individuals, using hierarchical Bayesian models that take into account the sampling weights. A simulation study is carried out to compare the performance of our proposed method with other established methods. The results indicate that our proposed method achieves great reductions in mean squared error when compared with standard approaches. It performs equally well or better when compared with more elaborate methods when there is a relationship between the responses and the sampling weights. The proposed method is applied to estimate asthma prevalence across districts. PMID:28989860

  15. A new method to address verification bias in studies of clinical screening tests: cervical cancer screening assays as an example.

    PubMed

    Xue, Xiaonan; Kim, Mimi Y; Castle, Philip E; Strickler, Howard D

    2014-03-01

    Studies to evaluate clinical screening tests often face the problem that the "gold standard" diagnostic approach is costly and/or invasive. It is therefore common to verify only a subset of negative screening tests using the gold standard method. However, undersampling the screen negatives can lead to substantial overestimation of the sensitivity and underestimation of the specificity of the diagnostic test. Our objective was to develop a simple and accurate statistical method to address this "verification bias." We developed a weighted generalized estimating equation approach to estimate, in a single model, the accuracy (eg, sensitivity/specificity) of multiple assays and simultaneously compare results between assays while addressing verification bias. This approach can be implemented using standard statistical software. Simulations were conducted to assess the proposed method. An example is provided using a cervical cancer screening trial that compared the accuracy of human papillomavirus and Pap tests, with histologic data as the gold standard. The proposed approach performed well in estimating and comparing the accuracy of multiple assays in the presence of verification bias. The proposed approach is an easy to apply and accurate method for addressing verification bias in studies of multiple screening methods. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.

    PubMed

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-07-19

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

  17. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    PubMed Central

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-01-01

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631

  18. Experimental validation of spatial Fourier transform-based multiple sound zone generation with a linear loudspeaker array.

    PubMed

    Okamoto, Takuma; Sakaguchi, Atsushi

    2017-03-01

    Generating acoustically bright and dark zones using loudspeakers is gaining attention as one of the most important acoustic communication techniques for such uses as personal sound systems and multilingual guide services. Although most conventional methods are based on numerical solutions, an analytical approach based on the spatial Fourier transform with a linear loudspeaker array has been proposed, and its effectiveness has been compared with conventional acoustic energy difference maximization and presented by computer simulations. To describe the effectiveness of the proposal in actual environments, this paper investigates the experimental validation of the proposed approach with rectangular and Hann windows and compared it with three conventional methods: simple delay-and-sum beamforming, contrast maximization, and least squares-based pressure matching using an actually implemented linear array of 64 loudspeakers in an anechoic chamber. The results of both the computer simulations and the actual experiments show that the proposed approach with a Hann window more accurately controlled the bright and dark zones than the conventional methods.

  19. Memory-optimized shift operator alternating direction implicit finite difference time domain method for plasma

    NASA Astrophysics Data System (ADS)

    Song, Wanjun; Zhang, Hou

    2017-11-01

    Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.

  20. Color image watermarking against fog effects

    NASA Astrophysics Data System (ADS)

    Chotikawanid, Piyanart; Amornraksa, Thumrongrat

    2017-07-01

    Fog effects in various computer and camera software can partially or fully damage the watermark information within the watermarked image. In this paper, we propose a color image watermarking based on the modification of reflectance component against fog effects. The reflectance component is extracted from the blue color channel in the RGB color space of a host image, and then used to carry a watermark signal. The watermark extraction is blindly achieved by subtracting the estimation of the original reflectance component from the watermarked component. The performance of the proposed watermarking method in terms of wPSNR and NC is evaluated, and then compared with the previous method. The experimental results on robustness against various levels of fog effect, from both computer software and mobile application, demonstrated a higher robustness of our proposed method, compared to the previous one.

  1. Comparing the Performance of Two Dynamic Load Distribution Methods

    NASA Technical Reports Server (NTRS)

    Kale, L. V.

    1987-01-01

    Parallel processing of symbolic computations on a message-passing multi-processor presents one challenge: To effectively utilize the available processors, the load must be distributed uniformly to all the processors. However, the structure of these computations cannot be predicted in advance. go, static scheduling methods are not applicable. In this paper, we compare the performance of two dynamic, distributed load balancing methods with extensive simulation studies. The two schemes are: the Contracting Within a Neighborhood (CWN) scheme proposed by us, and the Gradient Model proposed by Lin and Keller. We conclude that although simpler, the CWN is significantly more effective at distributing the work than the Gradient model.

  2. Verification of an Analytical Method for Measuring Crystal Nucleation Rates in Glasses from DTA Data

    NASA Technical Reports Server (NTRS)

    Ranasinghe, K. S.; Wei, P. F.; Kelton, K. F.; Ray, C. S.; Day, D. E.

    2004-01-01

    A recently proposed analytical (DTA) method for estimating the nucleation rates in glasses has been evaluated by comparing experimental data with numerically computed nucleation rates for a model lithium disilicate glass. The time and temperature dependent nucleation rates were predicted using the model and compared with those values from an analysis of numerically calculated DTA curves. The validity of the numerical approach was demonstrated earlier by a comparison with experimental data. The excellent agreement between the nucleation rates from the model calculations and fiom the computer generated DTA data demonstrates the validity of the proposed analytical DTA method.

  3. [A retrieval method of drug molecules based on graph collapsing].

    PubMed

    Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z

    2018-04-18

    To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1.32% higher than WCSE on these metrics for top-10 retrieval results, respectively. Moreover, several retrieval cases were presented to intuitively compare with WCSE. The results of the above comparative study demonstrated that the proposed method outperformed the existing method with regard to accuracy and effectiveness. This paper proposes a graph-similarity-based retrieval approach for medicine information. To obtain satisfactory retrieval results, an isomorphism-based algorithm is proposed for dominant subgraph selection based on the subgraph overlapping analysis, as well as an effective and efficient hypergraph representation of molecules. Experiment results demonstrate the effectiveness of the proposed approach.

  4. Dual energy approach for cone beam artifacts correction

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk

    2017-03-01

    Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.

  5. A hybrid technique for speech segregation and classification using a sophisticated deep neural network

    PubMed Central

    Nawaz, Tabassam; Mehmood, Zahid; Rashid, Muhammad; Habib, Hafiz Adnan

    2018-01-01

    Recent research on speech segregation and music fingerprinting has led to improvements in speech segregation and music identification algorithms. Speech and music segregation generally involves the identification of music followed by speech segregation. However, music segregation becomes a challenging task in the presence of noise. This paper proposes a novel method of speech segregation for unlabelled stationary noisy audio signals using the deep belief network (DBN) model. The proposed method successfully segregates a music signal from noisy audio streams. A recurrent neural network (RNN)-based hidden layer segregation model is applied to remove stationary noise. Dictionary-based fisher algorithms are employed for speech classification. The proposed method is tested on three datasets (TIMIT, MIR-1K, and MusicBrainz), and the results indicate the robustness of proposed method for speech segregation. The qualitative and quantitative analysis carried out on three datasets demonstrate the efficiency of the proposed method compared to the state-of-the-art speech segregation and classification-based methods. PMID:29558485

  6. Combined magnitude and phase-based segmentation of the cerebral cortex in 7T MR images of the elderly.

    PubMed

    Doan, Nhat Trung; van Rooden, Sanneke; Versluis, Maarten J; Webb, Andrew G; van der Grond, Jeroen; van Buchem, Mark A; Reiber, Johan H C; Milles, Julien

    2012-07-01

    To propose a new method that integrates both magnitude and phase information obtained from magnetic resonance (MR) T*(2) -weighted scans for cerebral cortex segmentation of the elderly. This method makes use of K-means clustering on magnitude and phase images to compute an initial segmentation, which is further refined by means of transformation with reconstruction criteria. The method was evaluated against the manual segmentation of 7T in vivo MR data of 20 elderly subjects (age = 67.7 ± 10.9). The added value of combining magnitude and phase was also evaluated by comparing the performance of the proposed method with the results obtained when limiting the available data to either magnitude or phase. The proposed method shows good overlap agreement, as quantified by the Dice Index (0.79 ± 0.04), limited bias (average relative volume difference = 2.94%), and reasonable volumetric correlation (R = 0.555, p = 0.011). Using the combined magnitude and phase information significantly improves the segmentation accuracy compared with using either magnitude or phase. This study suggests that the proposed method is an accurate and robust approach for cerebral cortex segmentation in datasets presenting low gray/white matter contrast. Copyright © 2012 Wiley Periodicals, Inc.

  7. Towards discrete wavelet transform-based human activity recognition

    NASA Astrophysics Data System (ADS)

    Khare, Manish; Jeon, Moongu

    2017-06-01

    Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.

  8. Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA

    PubMed Central

    Ma, Xiaoqi

    2015-01-01

    A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867

  9. Automatic tracking of labeled red blood cells in microchannels.

    PubMed

    Pinho, Diana; Lima, Rui; Pereira, Ana I; Gayubo, Fernando

    2013-09-01

    The current study proposes an automatic method for the segmentation and tracking of red blood cells flowing through a 100- μm glass capillary. The original images were obtained by means of a confocal system and then processed in MATLAB using the Image Processing Toolbox. The measurements obtained with the proposed automatic method were compared with the results determined by a manual tracking method. The comparison was performed by using both linear regressions and Bland-Altman analysis. The results have shown a good agreement between the two methods. Therefore, the proposed automatic method is a powerful way to provide rapid and accurate measurements for in vitro blood experiments in microchannels. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Doubly stochastic radial basis function methods

    NASA Astrophysics Data System (ADS)

    Yang, Fenglian; Yan, Liang; Ling, Leevan

    2018-06-01

    We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).

  11. Object-Based Dense Matching Method for Maintaining Structure Characteristics of Linear Buildings

    PubMed Central

    Yan, Yiming; Qiu, Mingjie; Zhao, Chunhui; Wang, Liguo

    2018-01-01

    In this paper, we proposed a novel object-based dense matching method specially for the high-precision disparity map of building objects in urban areas, which can maintain accurate object structure characteristics. The proposed framework mainly includes three stages. Firstly, an improved edge line extraction method is proposed for the edge segments to fit closely to building outlines. Secondly, a fusion method is proposed for the outlines under the constraint of straight lines, which can maintain the building structural attribute with parallel or vertical edges, which is very useful for the dense matching method. Finally, we proposed an edge constraint and outline compensation (ECAOC) dense matching method to maintain building object structural characteristics in the disparity map. In the proposed method, the improved edge lines are used to optimize matching search scope and matching template window, and the high-precision building outlines are used to compensate the shape feature of building objects. Our method can greatly increase the matching accuracy of building objects in urban areas, especially at building edges. For the outline extraction experiments, our fusion method verifies the superiority and robustness on panchromatic images of different satellites and different resolutions. For the dense matching experiments, our ECOAC method shows great advantages for matching accuracy of building objects in urban areas compared with three other methods. PMID:29596393

  12. Shack-Hartmann wavefront sensor with large dynamic range by adaptive spot search method.

    PubMed

    Shinto, Hironobu; Saita, Yusuke; Nomura, Takanori

    2016-07-10

    A Shack-Hartmann wavefront sensor (SHWFS) that consists of a microlens array and an image sensor has been used to measure the wavefront aberrations of human eyes. However, a conventional SHWFS has finite dynamic range depending on the diameter of the each microlens. The dynamic range cannot be easily expanded without a decrease of the spatial resolution. In this study, an adaptive spot search method to expand the dynamic range of an SHWFS is proposed. In the proposed method, spots are searched with the help of their approximate displacements measured with low spatial resolution and large dynamic range. By the proposed method, a wavefront can be correctly measured even if the spot is beyond the detection area. The adaptive spot search method is realized by using the special microlens array that generates both spots and discriminable patterns. The proposed method enables expanding the dynamic range of an SHWFS with a single shot and short processing time. The performance of the proposed method is compared with that of a conventional SHWFS by optical experiments. Furthermore, the dynamic range of the proposed method is quantitatively evaluated by numerical simulations.

  13. Metrics in method engineering

    NASA Astrophysics Data System (ADS)

    Brinkkemper, S.; Rossi, M.

    1994-12-01

    As customizable computer aided software engineering (CASE) tools, or CASE shells, have been introduced in academia and industry, there has been a growing interest into the systematic construction of methods and their support environments, i.e. method engineering. To aid the method developers and method selectors in their tasks, we propose two sets of metrics, which measure the complexity of diagrammatic specification techniques on the one hand, and of complete systems development methods on the other hand. Proposed metrics provide a relatively fast and simple way to analyze the technique (or method) properties, and when accompanied with other selection criteria, can be used for estimating the cost of learning the technique and the relative complexity of a technique compared to others. To demonstrate the applicability of the proposed metrics, we have applied them to 34 techniques and 15 methods.

  14. Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers.

    PubMed

    Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á

    2018-03-01

    This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.

  15. Model-based multi-fringe interferometry using Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan

    2018-06-01

    In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.

  16. Acoustic contrast control in an arc-shaped area using a linear loudspeaker array.

    PubMed

    Zhao, Sipei; Qiu, Xiaojun; Burnett, Ian

    2015-02-01

    This paper proposes a method of creating acoustic contrast control in an arc-shaped area using a linear loudspeaker array. The boundary of the arc-shaped area is treated as the envelope of the tangent lines that can be formed by manipulating the phase profile of the loudspeakers in the array. When compared with the existing acoustic contrast control method, the proposed method is able to generate sound field inside an arc-shaped area and achieve a trade-off between acoustic uniformity and acoustic contrast. The acoustic contrast created by the proposed method increases while the acoustic uniformity decreases with frequency.

  17. Information Theory for Gabor Feature Selection for Face Recognition

    NASA Astrophysics Data System (ADS)

    Shen, Linlin; Bai, Li

    2006-12-01

    A discriminative and robust feature—kernel enhanced informative Gabor feature—is proposed in this paper for face recognition. Mutual information is applied to select a set of informative and nonredundant Gabor features, which are then further enhanced by kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition (FVC2004), our methods demonstrate a clear advantage over existing methods in accuracy, computation efficiency, and memory cost. The proposed method has been fully tested on the FERET database using the FERET evaluation protocol. Significant improvements on three of the test data sets are observed. Compared with the classical Gabor wavelet-based approaches using a huge number of features, our method requires less than 4 milliseconds to retrieve a few hundreds of features. Due to the substantially reduced feature dimension, only 4 seconds are required to recognize 200 face images. The paper also unified different Gabor filter definitions and proposed a training sample generation algorithm to reduce the effects caused by unbalanced number of samples available in different classes.

  18. A novel non-uniform control vector parameterization approach with time grid refinement for flight level tracking optimal control problems.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao; Xiao, Long; Wang, Yalin; Yang, Chunhua; Gui, Weihua

    2018-02-01

    High quality control method is essential for the implementation of aircraft autopilot system. An optimal control problem model considering the safe aerodynamic envelop is therefore established to improve the control quality of aircraft flight level tracking. A novel non-uniform control vector parameterization (CVP) method with time grid refinement is then proposed for solving the optimal control problem. By introducing the Hilbert-Huang transform (HHT) analysis, an efficient time grid refinement approach is presented and an adaptive time grid is automatically obtained. With this refinement, the proposed method needs fewer optimization parameters to achieve better control quality when compared with uniform refinement CVP method, whereas the computational cost is lower. Two well-known flight level altitude tracking problems and one minimum time cost problem are tested as illustrations and the uniform refinement control vector parameterization method is adopted as the comparative base. Numerical results show that the proposed method achieves better performances in terms of optimization accuracy and computation cost; meanwhile, the control quality is efficiently improved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. The combination of the error correction methods of GAFCHROMIC EBT3 film

    PubMed Central

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Liu, Xiaowei

    2017-01-01

    Purpose The aim of this study was to combine a set of methods for use of radiochromic film dosimetry, including calibration, correction for lateral effects and a proposed triple-channel analysis. These methods can be applied to GAFCHROMIC EBT3 film dosimetry for radiation field analysis and verification of IMRT plans. Methods A single-film exposure was used to achieve dose calibration, and the accuracy was verified based on comparisons with the square-field calibration method. Before performing the dose analysis, the lateral effects on pixel values were corrected. The position dependence of the lateral effect was fitted by a parabolic function, and the curvature factors of different dose levels were obtained using a quadratic formula. After lateral effect correction, a triple-channel analysis was used to reduce disturbances and convert scanned images from films into dose maps. The dose profiles of open fields were measured using EBT3 films and compared with the data obtained using an ionization chamber. Eighteen IMRT plans with different field sizes were measured and verified with EBT3 films, applying our methods, and compared to TPS dose maps, to check correct implementation of film dosimetry proposed here. Results The uncertainty of lateral effects can be reduced to ±1 cGy. Compared with the results of Micke A et al., the residual disturbances of the proposed triple-channel method at 48, 176 and 415 cGy are 5.3%, 20.9% and 31.4% smaller, respectively. Compared with the ionization chamber results, the difference in the off-axis ratio and percentage depth dose are within 1% and 2%, respectively. For the application of IMRT verification, there were no difference between two triple-channel methods. Compared with only corrected by triple-channel method, the IMRT results of the combined method (include lateral effect correction and our present triple-channel method) show a 2% improvement for large IMRT fields with the criteria 3%/3 mm. PMID:28750023

  20. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Elder, E; Roper, J

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less

  1. Robustness of S1 statistic with Hodges-Lehmann for skewed distributions

    NASA Astrophysics Data System (ADS)

    Ahad, Nor Aishah; Yahaya, Sharipah Soaad Syed; Yin, Lee Ping

    2016-10-01

    Analysis of variance (ANOVA) is a common use parametric method to test the differences in means for more than two groups when the populations are normally distributed. ANOVA is highly inefficient under the influence of non- normal and heteroscedastic settings. When the assumptions are violated, researchers are looking for alternative such as Kruskal-Wallis under nonparametric or robust method. This study focused on flexible method, S1 statistic for comparing groups using median as the location estimator. S1 statistic was modified by substituting the median with Hodges-Lehmann and the default scale estimator with the variance of Hodges-Lehmann and MADn to produce two different test statistics for comparing groups. Bootstrap method was used for testing the hypotheses since the sampling distributions of these modified S1 statistics are unknown. The performance of the proposed statistic in terms of Type I error was measured and compared against the original S1 statistic, ANOVA and Kruskal-Wallis. The propose procedures show improvement compared to the original statistic especially under extremely skewed distribution.

  2. Robust and fast-converging level set method for side-scan sonar image segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Li, Qingwu; Huo, Guanying

    2017-11-01

    A robust and fast-converging level set method is proposed for side-scan sonar (SSS) image segmentation. First, the noise in each sonar image is removed using the adaptive nonlinear complex diffusion filter. Second, k-means clustering is used to obtain the initial presegmentation image from the denoised image, and then the distance maps of the initial contours are reinitialized to guarantee the accuracy of the numerical calculation used in the level set evolution. Finally, the satisfactory segmentation is achieved using a robust variational level set model, where the evolution control parameters are generated by the presegmentation. The proposed method is successfully applied to both synthetic image with speckle noise and real SSS images. Experimental results show that the proposed method needs much less iteration and therefore is much faster than the fuzzy local information c-means clustering method, the level set method using a gamma observation model, and the enhanced region-scalable fitting method. Moreover, the proposed method can usually obtain more accurate segmentation results compared with other methods.

  3. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.

    PubMed

    Park, Sang-Hoon; Lee, David; Lee, Sang-Goog

    2018-02-01

    For the last few years, many feature extraction methods have been proposed based on biological signals. Among these, the brain signals have the advantage that they can be obtained, even by people with peripheral nervous system damage. Motor imagery electroencephalograms (EEG) are inexpensive to measure, offer a high temporal resolution, and are intuitive. Therefore, these have received a significant amount of attention in various fields, including signal processing, cognitive science, and medicine. The common spatial pattern (CSP) algorithm is a useful method for feature extraction from motor imagery EEG. However, performance degradation occurs in a small-sample setting (SSS), because the CSP depends on sample-based covariance. Since the active frequency range is different for each subject, it is also inconvenient to set the frequency range to be different every time. In this paper, we propose the feature extraction method based on a filter bank to solve these problems. The proposed method consists of five steps. First, motor imagery EEG is divided by a using filter bank. Second, the regularized CSP (R-CSP) is applied to the divided EEG. Third, we select the features according to mutual information based on the individual feature algorithm. Fourth, parameter sets are selected for the ensemble. Finally, we classify using ensemble based on features. The brain-computer interface competition III data set IVa is used to evaluate the performance of the proposed method. The proposed method improves the mean classification accuracy by 12.34%, 11.57%, 9%, 4.95%, and 4.47% compared with CSP, SR-CSP, R-CSP, filter bank CSP (FBCSP), and SR-FBCSP. Compared with the filter bank R-CSP ( , ), which is a parameter selection version of the proposed method, the classification accuracy is improved by 3.49%. In particular, the proposed method shows a large improvement in performance in the SSS.

  4. PRIM: An Efficient Preconditioning Iterative Reweighted Least Squares Method for Parallel Brain MRI Reconstruction.

    PubMed

    Xu, Zheng; Wang, Sheng; Li, Yeqing; Zhu, Feiyun; Huang, Junzhou

    2018-02-08

    The most recent history of parallel Magnetic Resonance Imaging (pMRI) has in large part been devoted to finding ways to reduce acquisition time. While joint total variation (JTV) regularized model has been demonstrated as a powerful tool in increasing sampling speed for pMRI, however, the major bottleneck is the inefficiency of the optimization method. While all present state-of-the-art optimizations for the JTV model could only reach a sublinear convergence rate, in this paper, we squeeze the performance by proposing a linear-convergent optimization method for the JTV model. The proposed method is based on the Iterative Reweighted Least Squares algorithm. Due to the complexity of the tangled JTV objective, we design a novel preconditioner to further accelerate the proposed method. Extensive experiments demonstrate the superior performance of the proposed algorithm for pMRI regarding both accuracy and efficiency compared with state-of-the-art methods.

  5. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  6. Total Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise

    PubMed Central

    Liu, Gang; Huang, Ting-Zhu; Liu, Jun; Lv, Xiao-Guang

    2015-01-01

    The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In order to alleviate the staircase effects, we propose a new model for restoring blurred images under impulse noise. The model consists of an ℓ1-fidelity term and a TV with overlapping group sparsity (OGS) regularization term. Moreover, we impose a box constraint to the proposed model for getting more accurate solutions. The solving algorithm for our model is under the framework of the alternating direction method of multipliers (ADMM). We use an inner loop which is nested inside the majorization minimization (MM) iteration for the subproblem of the proposed method. Compared with other TV-based methods, numerical results illustrate that the proposed method can significantly improve the restoration quality, both in terms of peak signal-to-noise ratio (PSNR) and relative error (ReE). PMID:25874860

  7. Comparative Evaluations of Four Specification Methods for Real-Time Systems

    DTIC Science & Technology

    1989-12-01

    December 1989 Comparative Evaluations of Four Specification Methods for Real - Time Systems David P. Wood William G. Wood Specification and Design Methods...Methods for Real - Time Systems Abstract: A number of methods have been proposed in the last decade for the specification of system and software requirements...and software specification for real - time systems . Our process for the identification of methods that meet the above criteria is described in greater

  8. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation.

    PubMed

    Blessy, S A Praylin Selva; Sulochana, C Helen

    2015-01-01

    Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.

  9. A comparative study of smart spectrophotometric methods for simultaneous determination of a skeletal muscle relaxant and an analgesic in combined dosage form.

    PubMed

    Salem, Hesham; Mohamed, Dalia

    2015-04-05

    Six simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the analgesic drug; paracetamol (PARA) and the skeletal muscle relaxant; dantrolene sodium (DANT). Three methods are manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and mean centering (MC). The other three methods are utilizing the isoabsorptive point either at zero order namely; absorbance ratio (AR) and absorbance subtraction (AS) or at ratio spectrum namely; amplitude modulation (AM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined dosage form. Standard deviation values are less than 1.5 in the assay of raw materials and capsules. The obtained results were statistically compared with each other and with those of reported spectrophotometric ones. The comparison showed that there is no significant difference between the proposed methods and the reported methods regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optical image encryption by random shifting in fractional Fourier domains

    NASA Astrophysics Data System (ADS)

    Hennelly, B.; Sheridan, J. T.

    2003-02-01

    A number of methods have recently been proposed in the literature for the encryption of two-dimensional information by use of optical systems based on the fractional Fourier transform. Typically, these methods require random phase screen keys for decrypting the data, which must be stored at the receiver and must be carefully aligned with the received encrypted data. A new technique based on a random shifting, or jigsaw, algorithm is proposed. This method does not require the use of phase keys. The image is encrypted by juxtaposition of sections of the image in fractional Fourier domains. The new method has been compared with existing methods and shows comparable or superior robustness to blind decryption. Optical implementation is discussed, and the sensitivity of the various encryption keys to blind decryption is examined.

  11. Nonlocal means-based speckle filtering for ultrasound images

    PubMed Central

    Coupé, Pierrick; Hellier, Pierre; Kervrann, Charles; Barillot, Christian

    2009-01-01

    In image processing, restoration is expected to improve the qualitative inspection of the image and the performance of quantitative image analysis techniques. In this paper, an adaptation of the Non Local (NL-) means filter is proposed for speckle reduction in ultrasound (US) images. Originally developed for additive white Gaussian noise, we propose to use a Bayesian framework to derive a NL-means filter adapted to a relevant ultrasound noise model. Quantitative results on synthetic data show the performances of the proposed method compared to well-established and state-of-the-art methods. Results on real images demonstrate that the proposed method is able to preserve accurately edges and structural details of the image. PMID:19482578

  12. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    NASA Astrophysics Data System (ADS)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  13. Design of two-channel filter bank using nature inspired optimization based fractional derivative constraints.

    PubMed

    Kuldeep, B; Singh, V K; Kumar, A; Singh, G K

    2015-01-01

    In this article, a novel approach for 2-channel linear phase quadrature mirror filter (QMF) bank design based on a hybrid of gradient based optimization and optimization of fractional derivative constraints is introduced. For the purpose of this work, recently proposed nature inspired optimization techniques such as cuckoo search (CS), modified cuckoo search (MCS) and wind driven optimization (WDO) are explored for the design of QMF bank. 2-Channel QMF is also designed with particle swarm optimization (PSO) and artificial bee colony (ABC) nature inspired optimization techniques. The design problem is formulated in frequency domain as sum of L2 norm of error in passband, stopband and transition band at quadrature frequency. The contribution of this work is the novel hybrid combination of gradient based optimization (Lagrange multiplier method) and nature inspired optimization (CS, MCS, WDO, PSO and ABC) and its usage for optimizing the design problem. Performance of the proposed method is evaluated by passband error (ϕp), stopband error (ϕs), transition band error (ϕt), peak reconstruction error (PRE), stopband attenuation (As) and computational time. The design examples illustrate the ingenuity of the proposed method. Results are also compared with the other existing algorithms, and it was found that the proposed method gives best result in terms of peak reconstruction error and transition band error while it is comparable in terms of passband and stopband error. Results show that the proposed method is successful for both lower and higher order 2-channel QMF bank design. A comparative study of various nature inspired optimization techniques is also presented, and the study singles out CS as a best QMF optimization technique. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Visualizing Similarity of Appearance by Arrangement of Cards

    PubMed Central

    Nakatsuji, Nao; Ihara, Hisayasu; Seno, Takeharu; Ito, Hiroshi

    2016-01-01

    This study proposes a novel method to extract the configuration of the psychological space by directly measuring subjects' similarity rating without computational work. Although multidimensional scaling (MDS) is well-known as a conventional method for extracting the psychological space, the method requires many pairwise evaluations. The times taken for evaluations increase in proportion to the square of the number of objects in MDS. The proposed method asks subjects to arrange cards on a poster sheet according to the degree of similarity of the objects. To compare the performance of the proposed method with the conventional one, we developed similarity maps of typefaces through the proposed method and through non-metric MDS. We calculated the trace correlation coefficient among all combinations of the configuration for both methods to evaluate the degree of similarity in the obtained configurations. The threshold value of trace correlation coefficient for statistically discriminating similar configuration was decided based on random data. The ratio of the trace correlation coefficient exceeding the threshold value was 62.0% so that the configurations of the typefaces obtained by the proposed method closely resembled those obtained by non-metric MDS. The required duration for the proposed method was approximately one third of the non-metric MDS's duration. In addition, all distances between objects in all the data for both methods were calculated. The frequency for the short distance in the proposed method was lower than that of the non-metric MDS so that a relatively small difference was likely to be emphasized among objects in the configuration by the proposed method. The card arrangement method we here propose, thus serves as a easier and time-saving tool to obtain psychological structures in the fields related to similarity of appearance. PMID:27242611

  15. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  16. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  17. An integral equation method for calculating sound field diffracted by a rigid barrier on an impedance ground.

    PubMed

    Zhao, Sipei; Qiu, Xiaojun; Cheng, Jianchun

    2015-09-01

    This paper proposes a different method for calculating a sound field diffracted by a rigid barrier based on the integral equation method, where a virtual boundary is assumed above the rigid barrier to divide the whole space into two subspaces. Based on the Kirchhoff-Helmholtz equation, the sound field in each subspace is determined with the source inside and the boundary conditions on the surface, and then the diffracted sound field is obtained by using the continuation conditions on the virtual boundary. Simulations are carried out to verify the feasibility of the proposed method. Compared to the MacDonald method and other existing methods, the proposed method is a rigorous solution for whole space and is also much easier to understand.

  18. Pairwise Classifier Ensemble with Adaptive Sub-Classifiers for fMRI Pattern Analysis.

    PubMed

    Kim, Eunwoo; Park, HyunWook

    2017-02-01

    The multi-voxel pattern analysis technique is applied to fMRI data for classification of high-level brain functions using pattern information distributed over multiple voxels. In this paper, we propose a classifier ensemble for multiclass classification in fMRI analysis, exploiting the fact that specific neighboring voxels can contain spatial pattern information. The proposed method converts the multiclass classification to a pairwise classifier ensemble, and each pairwise classifier consists of multiple sub-classifiers using an adaptive feature set for each class-pair. Simulated and real fMRI data were used to verify the proposed method. Intra- and inter-subject analyses were performed to compare the proposed method with several well-known classifiers, including single and ensemble classifiers. The comparison results showed that the proposed method can be generally applied to multiclass classification in both simulations and real fMRI analyses.

  19. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator.

    PubMed

    Zheng, Yinfei; Zhou, Yali; Zhou, Hao; Gong, Xiaohong

    2015-07-01

    To achieve the fast and accurate segmentation of ultrasound image, a novel edge detection method for speckle noised ultrasound images was proposed, which was based on the traditional Canny and a novel multiplicative gradient operator. The proposed technique combines a new multiplicative gradient operator of non-Newtonian type with the traditional Canny operator to generate the initial edge map, which is subsequently optimized by the following edge tracing step. To verify the proposed method, we compared it with several other edge detection methods that had good robustness to noise, with experiments on the simulated and in vivo medical ultrasound image. Experimental results showed that the proposed algorithm has higher speed for real-time processing, and the edge detection accuracy could be 75% or more. Thus, the proposed method is very suitable for fast and accurate edge detection of medical ultrasound images. © The Author(s) 2014.

  20. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    PubMed

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  1. Three-Class Mammogram Classification Based on Descriptive CNN Features

    PubMed Central

    Zhang, Qianni; Jadoon, Adeel

    2017-01-01

    In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases). In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW) and convolutional neural network-curvelet transform (CNN-CT). An augmented data set is generated by using mammogram patches. To enhance the contrast of mammogram images, the data set is filtered by contrast limited adaptive histogram equalization (CLAHE). In the CNN-DW method, enhanced mammogram images are decomposed as its four subbands by means of two-dimensional discrete wavelet transform (2D-DWT), while in the second method discrete curvelet transform (DCT) is used. In both methods, dense scale invariant feature (DSIFT) for all subbands is extracted. Input data matrix containing these subband features of all the mammogram patches is created that is processed as input to convolutional neural network (CNN). Softmax layer and support vector machine (SVM) layer are used to train CNN for classification. Proposed methods have been compared with existing methods in terms of accuracy rate, error rate, and various validation assessment measures. CNN-DW and CNN-CT have achieved accuracy rate of 81.83% and 83.74%, respectively. Simulation results clearly validate the significance and impact of our proposed model as compared to other well-known existing techniques. PMID:28191461

  2. Three-Class Mammogram Classification Based on Descriptive CNN Features.

    PubMed

    Jadoon, M Mohsin; Zhang, Qianni; Haq, Ihsan Ul; Butt, Sharjeel; Jadoon, Adeel

    2017-01-01

    In this paper, a novel classification technique for large data set of mammograms using a deep learning method is proposed. The proposed model targets a three-class classification study (normal, malignant, and benign cases). In our model we have presented two methods, namely, convolutional neural network-discrete wavelet (CNN-DW) and convolutional neural network-curvelet transform (CNN-CT). An augmented data set is generated by using mammogram patches. To enhance the contrast of mammogram images, the data set is filtered by contrast limited adaptive histogram equalization (CLAHE). In the CNN-DW method, enhanced mammogram images are decomposed as its four subbands by means of two-dimensional discrete wavelet transform (2D-DWT), while in the second method discrete curvelet transform (DCT) is used. In both methods, dense scale invariant feature (DSIFT) for all subbands is extracted. Input data matrix containing these subband features of all the mammogram patches is created that is processed as input to convolutional neural network (CNN). Softmax layer and support vector machine (SVM) layer are used to train CNN for classification. Proposed methods have been compared with existing methods in terms of accuracy rate, error rate, and various validation assessment measures. CNN-DW and CNN-CT have achieved accuracy rate of 81.83% and 83.74%, respectively. Simulation results clearly validate the significance and impact of our proposed model as compared to other well-known existing techniques.

  3. Low Cost Design of an Advanced Encryption Standard (AES) Processor Using a New Common-Subexpression-Elimination Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chih; Hsiao, Shen-Fu

    In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.

  4. Multilevel segmentation of intracranial aneurysms in CT angiography images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Zhang, Yue, E-mail: y.zhang525@gmail.com; Navarro, Laurent

    Purpose: Segmentation of aneurysms plays an important role in interventional planning. Yet, the segmentation of both the lumen and the thrombus of an intracranial aneurysm in computed tomography angiography (CTA) remains a challenge. This paper proposes a multilevel segmentation methodology for efficiently segmenting intracranial aneurysms in CTA images. Methods: The proposed methodology first uses the lattice Boltzmann method (LBM) to extract the lumen part directly from the original image. Then, the LBM is applied again on an intermediate image whose lumen part is filled by the mean gray-level value outside the lumen, to yield an image region containing part ofmore » the aneurysm boundary. After that, an expanding disk is introduced to estimate the complete contour of the aneurysm. Finally, the contour detected is used as the initial contour of the level set with ellipse to refine the aneurysm. Results: The results obtained on 11 patients from different hospitals showed that the proposed segmentation was comparable with manual segmentation, and that quantitatively, the average segmentation matching factor (SMF) reached 86.99%, demonstrating good segmentation accuracy. Chan–Vese method, Sen’s model, and Luca’s model were used to compare the proposed method and their average SMF values were 39.98%, 40.76%, and 77.11%, respectively. Conclusions: The authors have presented a multilevel segmentation method based on the LBM and level set with ellipse for accurate segmentation of intracranial aneurysms. Compared to three existing methods, for all eleven patients, the proposed method can successfully segment the lumen with the highest SMF values for nine patients and second highest SMF values for the two. It also segments the entire aneurysm with the highest SMF values for ten patients and second highest SMF value for the one. This makes it potential for clinical assessment of the volume and aspect ratio of the intracranial aneurysms.« less

  5. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T; Zhu, L

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less

  6. A spatial scan statistic for multiple clusters.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2011-10-01

    Spatial scan statistics are commonly used for geographical disease surveillance and cluster detection. While there are multiple clusters coexisting in the study area, they become difficult to detect because of clusters' shadowing effect to each other. The recently proposed sequential method showed its better power for detecting the second weaker cluster, but did not improve the ability of detecting the first stronger cluster which is more important than the second one. We propose a new extension of the spatial scan statistic which could be used to detect multiple clusters. Through constructing two or more clusters in the alternative hypothesis, our proposed method accounts for other coexisting clusters in the detecting and evaluating process. The performance of the proposed method is compared to the sequential method through an intensive simulation study, in which our proposed method shows better power in terms of both rejecting the null hypothesis and accurately detecting the coexisting clusters. In the real study of hand-foot-mouth disease data in Pingdu city, a true cluster town is successfully detected by our proposed method, which cannot be evaluated to be statistically significant by the standard method due to another cluster's shadowing effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Real-Time GNSS-Based Attitude Determination in the Measurement Domain.

    PubMed

    Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun

    2017-02-05

    A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance.

  8. Parameter estimation using weighted total least squares in the two-compartment exchange model.

    PubMed

    Garpebring, Anders; Löfstedt, Tommy

    2018-01-01

    The linear least squares (LLS) estimator provides a fast approach to parameter estimation in the linearized two-compartment exchange model. However, the LLS method may introduce a bias through correlated noise in the system matrix of the model. The purpose of this work is to present a new estimator for the linearized two-compartment exchange model that takes this noise into account. To account for the noise in the system matrix, we developed an estimator based on the weighted total least squares (WTLS) method. Using simulations, the proposed WTLS estimator was compared, in terms of accuracy and precision, to an LLS estimator and a nonlinear least squares (NLLS) estimator. The WTLS method improved the accuracy compared to the LLS method to levels comparable to the NLLS method. This improvement was at the expense of increased computational time; however, the WTLS was still faster than the NLLS method. At high signal-to-noise ratio all methods provided similar precisions while inconclusive results were observed at low signal-to-noise ratio. The proposed method provides improvements in accuracy compared to the LLS method, however, at an increased computational cost. Magn Reson Med 79:561-567, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    NASA Astrophysics Data System (ADS)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  10. Modeling the magnetoelectric effect in laminated composites using Hamilton’s principle

    NASA Astrophysics Data System (ADS)

    Zhang, Shengyao; Zhang, Ru; Jiang, Jiqing

    2018-01-01

    Mathematical modeling of the magnetoelectric (ME) effect has been established for some rectangular and disk laminate structures. However, these methods are difficult in other cases, particularly for complex structures. In this work, a new method for the analysis of the ME effect is proposed using a generalized Hamilton’s principle, which is conveniently applicable to various laminate structures. As an example, the performance of the rectangular ME laminated composite is analyzed and the equivalent circuit model for the laminate is obtained directly from the analysis. The experimental data is also obtained to compare with the theoretical calculations and to validate the new method. Compared with Dong’s method, the new method is more accurate and convenient. In particular, the equivalent circuit for the rectangular laminated composite can be obtained more easily by the proposed method as it does not require the complex treatment used in Dong’s method.

  11. Comparative study on the selectivity of various spectrophotometric techniques for the determination of binary mixture of fenbendazole and rafoxanide.

    PubMed

    Saad, Ahmed S; Attia, Ali K; Alaraki, Manal S; Elzanfaly, Eman S

    2015-11-05

    Five different spectrophotometric methods were applied for simultaneous determination of fenbendazole and rafoxanide in their binary mixture; namely first derivative, derivative ratio, ratio difference, dual wavelength and H-point standard addition spectrophotometric methods. Different factors affecting each of the applied spectrophotometric methods were studied and the selectivity of the applied methods was compared. The applied methods were validated as per the ICH guidelines and good accuracy; specificity and precision were proven within the concentration range of 5-50 μg/mL for both drugs. Statistical analysis using one-way ANOVA proved no significant differences among the proposed methods for the determination of the two drugs. The proposed methods successfully determined both drugs in laboratory prepared and commercially available binary mixtures, and were found applicable for the routine analysis in quality control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Metaheuristic Algorithms for Convolution Neural Network

    PubMed Central

    Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent). PMID:27375738

  13. Metaheuristic Algorithms for Convolution Neural Network.

    PubMed

    Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

    2016-01-01

    A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).

  14. Mass preserving registration for lung CT

    NASA Astrophysics Data System (ADS)

    Gorbunova, Vladlena; Lo, Pechin; Loeve, Martine; Tiddens, Harm A.; Sporring, Jon; Nielsen, Mads; de Bruijne, Marleen

    2009-02-01

    In this paper, we evaluate a novel image registration method on a set of expiratory-inspiratory pairs of computed tomography (CT) lung scans. A free-form multi resolution image registration technique is used to match two scans of the same subject. To account for the differences in the lung intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger differences between these regions in the case of mass preserving image registration, indicating that mass preserving registration is better at capturing localized differences in lung deformation.

  15. Using Kriging with a heterogeneous measurement error to improve the accuracy of extreme precipitation return level estimation

    NASA Astrophysics Data System (ADS)

    Yin, Shui-qing; Wang, Zhonglei; Zhu, Zhengyuan; Zou, Xu-kai; Wang, Wen-ting

    2018-07-01

    Extreme precipitation can cause flooding and may result in great economic losses and deaths. The return level is a commonly used measure of extreme precipitation events and is required for hydrological engineer designs, including those of sewerage systems, dams, reservoirs and bridges. In this paper, we propose a two-step method to estimate the return level and its uncertainty for a study region. In the first step, we use the generalized extreme value distribution, the L-moment method and the stationary bootstrap to estimate the return level and its uncertainty at the site with observations. In the second step, a spatial model incorporating the heterogeneous measurement errors and covariates is trained to estimate return levels at sites with no observations and to improve the estimates at sites with limited information. The proposed method is applied to the daily rainfall data from 273 weather stations in the Haihe river basin of North China. We compare the proposed method with two alternatives: the first one is based on the ordinary Kriging method without measurement error, and the second one smooths the estimated location and scale parameters of the generalized extreme value distribution by the universal Kriging method. Results show that the proposed method outperforms its counterparts. We also propose a novel approach to assess the two-step method by comparing it with the at-site estimation method with a series of reduced length of observations. Estimates of the 2-, 5-, 10-, 20-, 50- and 100-year return level maps and the corresponding uncertainties are provided for the Haihe river basin, and a comparison with those released by the Hydrology Bureau of Ministry of Water Resources of China is made.

  16. Robust volcano plot: identification of differential metabolites in the presence of outliers.

    PubMed

    Kumar, Nishith; Hoque, Md Aminul; Sugimoto, Masahiro

    2018-04-11

    The identification of differential metabolites in metabolomics is still a big challenge and plays a prominent role in metabolomics data analyses. Metabolomics datasets often contain outliers because of analytical, experimental, and biological ambiguity, but the currently available differential metabolite identification techniques are sensitive to outliers. We propose a kernel weight based outlier-robust volcano plot for identifying differential metabolites from noisy metabolomics datasets. Two numerical experiments are used to evaluate the performance of the proposed technique against nine existing techniques, including the t-test and the Kruskal-Wallis test. Artificially generated data with outliers reveal that the proposed method results in a lower misclassification error rate and a greater area under the receiver operating characteristic curve compared with existing methods. An experimentally measured breast cancer dataset to which outliers were artificially added reveals that our proposed method produces only two non-overlapping differential metabolites whereas the other nine methods produced between seven and 57 non-overlapping differential metabolites. Our data analyses show that the performance of the proposed differential metabolite identification technique is better than that of existing methods. Thus, the proposed method can contribute to analysis of metabolomics data with outliers. The R package and user manual of the proposed method are available at https://github.com/nishithkumarpaul/Rvolcano .

  17. Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features.

    PubMed

    Kushibar, Kaisar; Valverde, Sergi; González-Villà, Sandra; Bernal, Jose; Cabezas, Mariano; Oliver, Arnau; Lladó, Xavier

    2018-06-15

    Sub-cortical brain structure segmentation in Magnetic Resonance Images (MRI) has attracted the interest of the research community for a long time as morphological changes in these structures are related to different neurodegenerative disorders. However, manual segmentation of these structures can be tedious and prone to variability, highlighting the need for robust automated segmentation methods. In this paper, we present a novel convolutional neural network based approach for accurate segmentation of the sub-cortical brain structures that combines both convolutional and prior spatial features for improving the segmentation accuracy. In order to increase the accuracy of the automated segmentation, we propose to train the network using a restricted sample selection to force the network to learn the most difficult parts of the structures. We evaluate the accuracy of the proposed method on the public MICCAI 2012 challenge and IBSR 18 datasets, comparing it with different traditional and deep learning state-of-the-art methods. On the MICCAI 2012 dataset, our method shows an excellent performance comparable to the best participant strategy on the challenge, while performing significantly better than state-of-the-art techniques such as FreeSurfer and FIRST. On the IBSR 18 dataset, our method also exhibits a significant increase in the performance with respect to not only FreeSurfer and FIRST, but also comparable or better results than other recent deep learning approaches. Moreover, our experiments show that both the addition of the spatial priors and the restricted sampling strategy have a significant effect on the accuracy of the proposed method. In order to encourage the reproducibility and the use of the proposed method, a public version of our approach is available to download for the neuroimaging community. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Rate-distortion analysis of dead-zone plus uniform threshold scalar quantization and its application--part II: two-pass VBR coding for H.264/AVC.

    PubMed

    Sun, Jun; Duan, Yizhou; Li, Jiangtao; Liu, Jiaying; Guo, Zongming

    2013-01-01

    In the first part of this paper, we derive a source model describing the relationship between the rate, distortion, and quantization steps of the dead-zone plus uniform threshold scalar quantizers with nearly uniform reconstruction quantizers for generalized Gaussian distribution. This source model consists of rate-quantization, distortion-quantization (D-Q), and distortion-rate (D-R) models. In this part, we first rigorously confirm the accuracy of the proposed source model by comparing the calculated results with the coding data of JM 16.0. Efficient parameter estimation strategies are then developed to better employ this source model in our two-pass rate control method for H.264 variable bit rate coding. Based on our D-Q and D-R models, the proposed method is of high stability, low complexity and is easy to implement. Extensive experiments demonstrate that the proposed method achieves: 1) average peak signal-to-noise ratio variance of only 0.0658 dB, compared to 1.8758 dB of JM 16.0's method, with an average rate control error of 1.95% and 2) significant improvement in smoothing the video quality compared with the latest two-pass rate control method.

  19. A propagation method with adaptive mesh grid based on wave characteristics for wave optics simulation

    NASA Astrophysics Data System (ADS)

    Tang, Qiuyan; Wang, Jing; Lv, Pin; Sun, Quan

    2015-10-01

    Propagation simulation method and choosing mesh grid are both very important to get the correct propagation results in wave optics simulation. A new angular spectrum propagation method with alterable mesh grid based on the traditional angular spectrum method and the direct FFT method is introduced. With this method, the sampling space after propagation is not limited to propagation methods no more, but freely alterable. However, choosing mesh grid on target board influences the validity of simulation results directly. So an adaptive mesh choosing method based on wave characteristics is proposed with the introduced propagation method. We can calculate appropriate mesh grids on target board to get satisfying results. And for complex initial wave field or propagation through inhomogeneous media, we can also calculate and set the mesh grid rationally according to above method. Finally, though comparing with theoretical results, it's shown that the simulation result with the proposed method coinciding with theory. And by comparing with the traditional angular spectrum method and the direct FFT method, it's known that the proposed method is able to adapt to a wider range of Fresnel number conditions. That is to say, the method can simulate propagation results efficiently and correctly with propagation distance of almost zero to infinity. So it can provide better support for more wave propagation applications such as atmospheric optics, laser propagation and so on.

  20. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.

    PubMed

    Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue

    2018-05-15

    Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.

  1. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    PubMed

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adaptive error covariances estimation methods for ensemble Kalman filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhen, Yicun, E-mail: zhen@math.psu.edu; Harlim, John, E-mail: jharlim@psu.edu

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for usingmore » information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.« less

  3. Low-complexity object detection with deep convolutional neural network for embedded systems

    NASA Astrophysics Data System (ADS)

    Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong

    2017-09-01

    We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.

  4. 3D Markov Process for Traffic Flow Prediction in Real-Time.

    PubMed

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-25

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further.

  5. 3D Markov Process for Traffic Flow Prediction in Real-Time

    PubMed Central

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-01

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025

  6. Single underwater image enhancement based on color cast removal and visibility restoration

    NASA Astrophysics Data System (ADS)

    Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian

    2016-05-01

    Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.

  7. Spectral-Spatial Shared Linear Regression for Hyperspectral Image Classification.

    PubMed

    Haoliang Yuan; Yuan Yan Tang

    2017-04-01

    Classification of the pixels in hyperspectral image (HSI) is an important task and has been popularly applied in many practical applications. Its major challenge is the high-dimensional small-sized problem. To deal with this problem, lots of subspace learning (SL) methods are developed to reduce the dimension of the pixels while preserving the important discriminant information. Motivated by ridge linear regression (RLR) framework for SL, we propose a spectral-spatial shared linear regression method (SSSLR) for extracting the feature representation. Comparing with RLR, our proposed SSSLR has the following two advantages. First, we utilize a convex set to explore the spatial structure for computing the linear projection matrix. Second, we utilize a shared structure learning model, which is formed by original data space and a hidden feature space, to learn a more discriminant linear projection matrix for classification. To optimize our proposed method, an efficient iterative algorithm is proposed. Experimental results on two popular HSI data sets, i.e., Indian Pines and Salinas demonstrate that our proposed methods outperform many SL methods.

  8. Near-Infrared Spectrum Detection of Wheat Gluten Protein Content Based on a Combined Filtering Method.

    PubMed

    Cai, Jian-Hua

    2017-09-01

    To eliminate the random error of the derivative near-IR (NIR) spectrum and to improve model stability and the prediction accuracy of the gluten protein content, a combined method is proposed for pretreatment of the NIR spectrum based on both empirical mode decomposition and the wavelet soft-threshold method. The principle and the steps of the method are introduced and the denoising effect is evaluated. The wheat gluten protein content is calculated based on the denoised spectrum, and the results are compared with those of the nine-point smoothing method and the wavelet soft-threshold method. Experimental results show that the proposed combined method is effective in completing pretreatment of the NIR spectrum, and the proposed method improves the accuracy of detection of wheat gluten protein content from the NIR spectrum.

  9. Simultaneous determination of some cholesterol-lowering drugs in their binary mixture by novel spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Hegazy, Maha Abdel Monem

    2013-09-01

    Four simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra were developed and validated for simultaneous determination of simvastatin (SM) and ezetimibe (EZ) namely; extended ratio subtraction (EXRSM), simultaneous ratio subtraction (SRSM), ratio difference (RDSM) and absorption factor (AFM). The proposed spectrophotometric procedures do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated and the specificity was assessed by analyzing synthetic mixtures containing the cited drugs. The four methods were applied for the determination of the cited drugs in tablets and the obtained results were statistically compared with each other and with those of a reported HPLC method. The comparison showed that there is no significant difference between the proposed methods and the reported method regarding both accuracy and precision.

  10. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    PubMed Central

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-01-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images. PMID:26980176

  11. [A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].

    PubMed

    Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong

    2011-06-01

    For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.

  12. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  13. Acoustic vector tomography and its application to magnetoacoustic tomography with magnetic induction (MAT-MI).

    PubMed

    Li, Xu; Xia, Rongmin; He, Bin

    2008-01-01

    A new tomographic algorithm for reconstructing a curl-free vector field, whose divergence serves as acoustic source is proposed. It is shown that under certain conditions, the scalar acoustic measurements obtained from a surface enclosing the source area can be vectorized according to the known measurement geometry and then be used to reconstruct the vector field. The proposed method is validated by numerical experiments. This method can be easily applied to magnetoacoustic tomography with magnetic induction (MAT-MI). A simulation study of applying this method to MAT-MI shows that compared to existing methods, the proposed method can give an accurate estimation of the induced current distribution and a better reconstruction of electrical conductivity within an object.

  14. Lipid-anthropometric index optimization for insulin sensitivity estimation

    NASA Astrophysics Data System (ADS)

    Velásquez, J.; Wong, S.; Encalada, L.; Herrera, H.; Severeyn, E.

    2015-12-01

    Insulin sensitivity (IS) is the ability of cells to react due to insulińs presence; when this ability is diminished, low insulin sensitivity or insulin resistance (IR) is considered. IR had been related to other metabolic disorders as metabolic syndrome (MS), obesity, dyslipidemia and diabetes. IS can be determined using direct or indirect methods. The indirect methods are less accurate and invasive than direct and they use glucose and insulin values from oral glucose tolerance test (OGTT). The accuracy is established by comparison using spearman rank correlation coefficient between direct and indirect method. This paper aims to propose a lipid-anthropometric index which offers acceptable correlation to insulin sensitivity index for different populations (DB1=MS subjects, DB2=sedentary without MS subjects and DB3=marathoners subjects) without to use OGTT glucose and insulin values. The proposed method is parametrically optimized through a random cross-validation, using the spearman rank correlation as comparator with CAUMO method. CAUMO is an indirect method designed from a simplification of the minimal model intravenous glucose tolerance test direct method (MINMOD-IGTT) and with acceptable correlation (0.89). The results show that the proposed optimized method got a better correlation with CAUMO in all populations compared to non-optimized. On the other hand, it was observed that the optimized method has better correlation with CAUMO in DB2 and DB3 groups than HOMA-IR method, which is the most widely used for diagnosing insulin resistance. The optimized propose method could detect incipient insulin resistance, when classify as insulin resistant subjects that present impaired postprandial insulin and glucose values.

  15. Multi-label spacecraft electrical signal classification method based on DBN and random forest

    PubMed Central

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data. PMID:28486479

  16. Multi-label spacecraft electrical signal classification method based on DBN and random forest.

    PubMed

    Li, Ke; Yu, Nan; Li, Pengfei; Song, Shimin; Wu, Yalei; Li, Yang; Liu, Meng

    2017-01-01

    In spacecraft electrical signal characteristic data, there exists a large amount of data with high-dimensional features, a high computational complexity degree, and a low rate of identification problems, which causes great difficulty in fault diagnosis of spacecraft electronic load systems. This paper proposes a feature extraction method that is based on deep belief networks (DBN) and a classification method that is based on the random forest (RF) algorithm; The proposed algorithm mainly employs a multi-layer neural network to reduce the dimension of the original data, and then, classification is applied. Firstly, we use the method of wavelet denoising, which was used to pre-process the data. Secondly, the deep belief network is used to reduce the feature dimension and improve the rate of classification for the electrical characteristics data. Finally, we used the random forest algorithm to classify the data and comparing it with other algorithms. The experimental results show that compared with other algorithms, the proposed method shows excellent performance in terms of accuracy, computational efficiency, and stability in addressing spacecraft electrical signal data.

  17. A Modified Kirchhoff plate theory for Free Vibration analysis of functionally graded material plates using meshfree method

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong

    2018-04-01

    In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.

  18. A study on the dependence of exposure dose reduction and image evaluation on the distance from the dental periapical X-ray machine

    NASA Astrophysics Data System (ADS)

    Joo, Kyu-Ji; Shin, Jae-Woo; Dong, Kyung-Rae; Lim, Chang-Seon; Chung, Woon-Kwan; Kim, Young-Jae

    2013-11-01

    Reducing the exposure dose from a periapical X-ray machine is an important aim in dental radiography. Although the radiation exposure dose is generally low, any radiation exposure is harmful to the human body. Therefore, this study developed a method that reduces the exposure dose significantly compared to that encountered in a normal procedure, but still produces an image with a similar resolution. The correlation between the image resolution and the exposure dose of the proposed method was examined with increasing distance between the dosimeter and the X-ray tube. The results were compared with those obtained from the existing radiography method. When periapical radiography was performed once according to the recommendations of the International Commission on Radiological Protection (ICRP), the measured skin surface dose was low at 7 mGy or below. In contrast, the skin surface dose measured using the proposed method was only 1.57 mGy, showing a five-fold reduction. These results suggest that further decreases in dose might be achieved using the proposed method.

  19. Standardless quantification by parameter optimization in electron probe microanalysis

    NASA Astrophysics Data System (ADS)

    Limandri, Silvina P.; Bonetto, Rita D.; Josa, Víctor Galván; Carreras, Alejo C.; Trincavelli, Jorge C.

    2012-11-01

    A method for standardless quantification by parameter optimization in electron probe microanalysis is presented. The method consists in minimizing the quadratic differences between an experimental spectrum and an analytical function proposed to describe it, by optimizing the parameters involved in the analytical prediction. This algorithm, implemented in the software POEMA (Parameter Optimization in Electron Probe Microanalysis), allows the determination of the elemental concentrations, along with their uncertainties. The method was tested in a set of 159 elemental constituents corresponding to 36 spectra of standards (mostly minerals) that include trace elements. The results were compared with those obtained with the commercial software GENESIS Spectrum® for standardless quantification. The quantifications performed with the method proposed here are better in the 74% of the cases studied. In addition, the performance of the method proposed is compared with the first principles standardless analysis procedure DTSA for a different data set, which excludes trace elements. The relative deviations with respect to the nominal concentrations are lower than 0.04, 0.08 and 0.35 for the 66% of the cases for POEMA, GENESIS and DTSA, respectively.

  20. Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 2: application to experimental IV measurements and comparison with other methods

    NASA Astrophysics Data System (ADS)

    Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; Jiménez-Olarte, Daniel; Sastré-Hernández, Jorge; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio

    2018-04-01

    In this Part 2 of this series of articles, the procedure proposed in Part 1, namely a new parameter extraction technique of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is applied to CdS-CdTe and CIGS-CdS solar cells. First, the Cheung method is used to obtain the series resistance (R s ) and the ideality factor n. Afterwards, procedures A and B proposed in Part 1 are used to obtain R sh and I sat . The procedure is compared with two other commonly used procedures. Better accuracy on the simulated I-V curves used with the parameters extracted by our method is obtained. Also, the integral percentage errors from the simulated I-V curves using the method proposed in this study are one order of magnitude smaller compared with the integral percentage errors using the other two methods.

  1. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. A New Multiconstraint Method for Determining the Optimal Cable Stresses in Cable-Stayed Bridges

    PubMed Central

    Asgari, B.; Osman, S. A.; Adnan, A.

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method. PMID:25050400

  3. A new multiconstraint method for determining the optimal cable stresses in cable-stayed bridges.

    PubMed

    Asgari, B; Osman, S A; Adnan, A

    2014-01-01

    Cable-stayed bridges are one of the most popular types of long-span bridges. The structural behaviour of cable-stayed bridges is sensitive to the load distribution between the girder, pylons, and cables. The determination of pretensioning cable stresses is critical in the cable-stayed bridge design procedure. By finding the optimum stresses in cables, the load and moment distribution of the bridge can be improved. In recent years, different research works have studied iterative and modern methods to find optimum stresses of cables. However, most of the proposed methods have limitations in optimising the structural performance of cable-stayed bridges. This paper presents a multiconstraint optimisation method to specify the optimum cable forces in cable-stayed bridges. The proposed optimisation method produces less bending moments and stresses in the bridge members and requires shorter simulation time than other proposed methods. The results of comparative study show that the proposed method is more successful in restricting the deck and pylon displacements and providing uniform deck moment distribution than unit load method (ULM). The final design of cable-stayed bridges can be optimised considerably through proposed multiconstraint optimisation method.

  4. A Hybrid Method for Endocardial Contour Extraction of Right Ventricle in 4-Slices from 3D Echocardiography Dataset.

    PubMed

    Dawood, Faten A; Rahmat, Rahmita W; Kadiman, Suhaini B; Abdullah, Lili N; Zamrin, Mohd D

    2014-01-01

    This paper presents a hybrid method to extract endocardial contour of the right ventricular (RV) in 4-slices from 3D echocardiography dataset. The overall framework comprises four processing phases. In Phase I, the region of interest (ROI) is identified by estimating the cavity boundary. Speckle noise reduction and contrast enhancement were implemented in Phase II as preprocessing tasks. In Phase III, the RV cavity region was segmented by generating intensity threshold which was used for once for all frames. Finally, Phase IV is proposed to extract the RV endocardial contour in a complete cardiac cycle using a combination of shape-based contour detection and improved radial search algorithm. The proposed method was applied to 16 datasets of 3D echocardiography encompassing the RV in long-axis view. The accuracy of experimental results obtained by the proposed method was evaluated qualitatively and quantitatively. It has been done by comparing the segmentation results of RV cavity based on endocardial contour extraction with the ground truth. The comparative analysis results show that the proposed method performs efficiently in all datasets with overall performance of 95% and the root mean square distances (RMSD) measure in terms of mean ± SD was found to be 2.21 ± 0.35 mm for RV endocardial contours.

  5. Ultra-Short-Term Wind Power Prediction Using a Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.

  6. Density-based empirical likelihood procedures for testing symmetry of data distributions and K-sample comparisons.

    PubMed

    Vexler, Albert; Tanajian, Hovig; Hutson, Alan D

    In practice, parametric likelihood-ratio techniques are powerful statistical tools. In this article, we propose and examine novel and simple distribution-free test statistics that efficiently approximate parametric likelihood ratios to analyze and compare distributions of K groups of observations. Using the density-based empirical likelihood methodology, we develop a Stata package that applies to a test for symmetry of data distributions and compares K -sample distributions. Recognizing that recent statistical software packages do not sufficiently address K -sample nonparametric comparisons of data distributions, we propose a new Stata command, vxdbel, to execute exact density-based empirical likelihood-ratio tests using K samples. To calculate p -values of the proposed tests, we use the following methods: 1) a classical technique based on Monte Carlo p -value evaluations; 2) an interpolation technique based on tabulated critical values; and 3) a new hybrid technique that combines methods 1 and 2. The third, cutting-edge method is shown to be very efficient in the context of exact-test p -value computations. This Bayesian-type method considers tabulated critical values as prior information and Monte Carlo generations of test statistic values as data used to depict the likelihood function. In this case, a nonparametric Bayesian method is proposed to compute critical values of exact tests.

  7. Sample size for post-marketing safety studies based on historical controls.

    PubMed

    Wu, Yu-te; Makuch, Robert W

    2010-08-01

    As part of a drug's entire life cycle, post-marketing studies are an important part in the identification of rare, serious adverse events. Recently, the US Food and Drug Administration (FDA) has begun to implement new post-marketing safety mandates as a consequence of increased emphasis on safety. The purpose of this research is to provide exact sample size formula for the proposed hybrid design, based on a two-group cohort study with incorporation of historical external data. Exact sample size formula based on the Poisson distribution is developed, because the detection of rare events is our outcome of interest. Performance of exact method is compared to its approximate large-sample theory counterpart. The proposed hybrid design requires a smaller sample size compared to the standard, two-group prospective study design. In addition, the exact method reduces the number of subjects required in the treatment group by up to 30% compared to the approximate method for the study scenarios examined. The proposed hybrid design satisfies the advantages and rationale of the two-group design with smaller sample sizes generally required. 2010 John Wiley & Sons, Ltd.

  8. A Penalized Likelihood Framework For High-Dimensional Phylogenetic Comparative Methods And An Application To New-World Monkeys Brain Evolution.

    PubMed

    Julien, Clavel; Leandro, Aristide; Hélène, Morlon

    2018-06-19

    Working with high-dimensional phylogenetic comparative datasets is challenging because likelihood-based multivariate methods suffer from low statistical performances as the number of traits p approaches the number of species n and because some computational complications occur when p exceeds n. Alternative phylogenetic comparative methods have recently been proposed to deal with the large p small n scenario but their use and performances are limited. Here we develop a penalized likelihood framework to deal with high-dimensional comparative datasets. We propose various penalizations and methods for selecting the intensity of the penalties. We apply this general framework to the estimation of parameters (the evolutionary trait covariance matrix and parameters of the evolutionary model) and model comparison for the high-dimensional multivariate Brownian (BM), Early-burst (EB), Ornstein-Uhlenbeck (OU) and Pagel's lambda models. We show using simulations that our penalized likelihood approach dramatically improves the estimation of evolutionary trait covariance matrices and model parameters when p approaches n, and allows for their accurate estimation when p equals or exceeds n. In addition, we show that penalized likelihood models can be efficiently compared using Generalized Information Criterion (GIC). We implement these methods, as well as the related estimation of ancestral states and the computation of phylogenetic PCA in the R package RPANDA and mvMORPH. Finally, we illustrate the utility of the new proposed framework by evaluating evolutionary models fit, analyzing integration patterns, and reconstructing evolutionary trajectories for a high-dimensional 3-D dataset of brain shape in the New World monkeys. We find a clear support for an Early-burst model suggesting an early diversification of brain morphology during the ecological radiation of the clade. Penalized likelihood offers an efficient way to deal with high-dimensional multivariate comparative data.

  9. Underground Mining Method Selection Using WPM and PROMETHEE

    NASA Astrophysics Data System (ADS)

    Balusa, Bhanu Chander; Singam, Jayanthu

    2018-04-01

    The aim of this paper is to represent the solution to the problem of selecting suitable underground mining method for the mining industry. It is achieved by using two multi-attribute decision making techniques. These two techniques are weighted product method (WPM) and preference ranking organization method for enrichment evaluation (PROMETHEE). In this paper, analytic hierarchy process is used for weight's calculation of the attributes (i.e. parameters which are used in this paper). Mining method selection depends on physical parameters, mechanical parameters, economical parameters and technical parameters. WPM and PROMETHEE techniques have the ability to consider the relationship between the parameters and mining methods. The proposed techniques give higher accuracy and faster computation capability when compared with other decision making techniques. The proposed techniques are presented to determine the effective mining method for bauxite mine. The results of these techniques are compared with methods used in the earlier research works. The results show, conventional cut and fill method is the most suitable mining method.

  10. Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach

    PubMed Central

    Kang, Le; Chen, Weijie; Petrick, Nicholas A.; Gallas, Brandon D.

    2014-01-01

    The area under the receiver operating characteristic (ROC) curve (AUC) is often used as a summary index of the diagnostic ability in evaluating biomarkers when the clinical outcome (truth) is binary. When the clinical outcome is right-censored survival time, the C index, motivated as an extension of AUC, has been proposed by Harrell as a measure of concordance between a predictive biomarker and the right-censored survival outcome. In this work, we investigate methods for statistical comparison of two diagnostic or predictive systems, of which they could either be two biomarkers or two fixed algorithms, in terms of their C indices. We adopt a U-statistics based C estimator that is asymptotically normal and develop a nonparametric analytical approach to estimate the variance of the C estimator and the covariance of two C estimators. A z-score test is then constructed to compare the two C indices. We validate our one-shot nonparametric method via simulation studies in terms of the type I error rate and power. We also compare our one-shot method with resampling methods including the jackknife and the bootstrap. Simulation results show that the proposed one-shot method provides almost unbiased variance estimations and has satisfactory type I error control and power. Finally, we illustrate the use of the proposed method with an example from the Framingham Heart Study. PMID:25399736

  11. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  12. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-01-01

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241

  13. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-11-10

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.

  14. Android malware detection based on evolutionary super-network

    NASA Astrophysics Data System (ADS)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  15. Efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Bhrawy, A. H.; Baleanu, D.; Hafez, R. M.

    2013-09-01

    In this paper, we propose the shifted Jacobi-Gauss collocation spectral method for solving initial value problems of Bratu type, which is widely applicable in fuel ignition of the combustion theory and heat transfer. The spatial approximation is based on shifted Jacobi polynomials J {/n (α,β)}( x) with α, β ∈ (-1, ∞), x ∈ [0, 1] and n the polynomial degree. The shifted Jacobi-Gauss points are used as collocation nodes. Illustrative examples have been discussed to demonstrate the validity and applicability of the proposed technique. Comparing the numerical results of the proposed method with some well-known results show that the method is efficient and gives excellent numerical results.

  16. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Zuo, Chao; Idir, Mourad

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  17. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGES

    Huang, Lei; Zuo, Chao; Idir, Mourad; ...

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  18. Detecting text in natural scenes with multi-level MSER and SWT

    NASA Astrophysics Data System (ADS)

    Lu, Tongwei; Liu, Renjun

    2018-04-01

    The detection of the characters in the natural scene is susceptible to factors such as complex background, variable viewing angle and diverse forms of language, which leads to poor detection results. Aiming at these problems, a new text detection method was proposed, which consisted of two main stages, candidate region extraction and text region detection. At first stage, the method used multiple scale transformations of original image and multiple thresholds of maximally stable extremal regions (MSER) to detect the text regions which could detect character regions comprehensively. At second stage, obtained SWT maps by using the stroke width transform (SWT) algorithm to compute the candidate regions, then using cascaded classifiers to propose non-text regions. The proposed method was evaluated on the standard benchmark datasets of ICDAR2011 and the datasets that we made our own data sets. The experiment results showed that the proposed method have greatly improved that compared to other text detection methods.

  19. An opinion formation based binary optimization approach for feature selection

    NASA Astrophysics Data System (ADS)

    Hamedmoghadam, Homayoun; Jalili, Mahdi; Yu, Xinghuo

    2018-02-01

    This paper proposed a novel optimization method based on opinion formation in complex network systems. The proposed optimization technique mimics human-human interaction mechanism based on a mathematical model derived from social sciences. Our method encodes a subset of selected features to the opinion of an artificial agent and simulates the opinion formation process among a population of agents to solve the feature selection problem. The agents interact using an underlying interaction network structure and get into consensus in their opinions, while finding better solutions to the problem. A number of mechanisms are employed to avoid getting trapped in local minima. We compare the performance of the proposed method with a number of classical population-based optimization methods and a state-of-the-art opinion formation based method. Our experiments on a number of high dimensional datasets reveal outperformance of the proposed algorithm over others.

  20. Hybrid recommendation methods in complex networks.

    PubMed

    Fiasconaro, A; Tumminello, M; Nicosia, V; Latora, V; Mantegna, R N

    2015-07-01

    We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.

  1. Multilayer Extreme Learning Machine With Subnetwork Nodes for Representation Learning.

    PubMed

    Yang, Yimin; Wu, Q M Jonathan

    2016-11-01

    The extreme learning machine (ELM), which was originally proposed for "generalized" single-hidden layer feedforward neural networks, provides efficient unified learning solutions for the applications of clustering, regression, and classification. It presents competitive accuracy with superb efficiency in many applications. However, ELM with subnetwork nodes architecture has not attracted much research attentions. Recently, many methods have been proposed for supervised/unsupervised dimension reduction or representation learning, but these methods normally only work for one type of problem. This paper studies the general architecture of multilayer ELM (ML-ELM) with subnetwork nodes, showing that: 1) the proposed method provides a representation learning platform with unsupervised/supervised and compressed/sparse representation learning and 2) experimental results on ten image datasets and 16 classification datasets show that, compared to other conventional feature learning methods, the proposed ML-ELM with subnetwork nodes performs competitively or much better than other feature learning methods.

  2. Saving in cycles: how to get people to save more money.

    PubMed

    Tam, Leona; Dholakia, Utpal

    2014-02-01

    Low personal savings rates are an important social issue in the United States. We propose and test one particular method to get people to save more money that is based on the cyclical time orientation. In contrast to conventional, popular methods that encourage individuals to ignore past mistakes, focus on the future, and set goals to save money, our proposed method frames the savings task in cyclical terms, emphasizing the present. Across the studies, individuals who used our proposed cyclical savings method, compared with individuals who used a linear savings method, provided an average of 74% higher savings estimates and saved an average of 78% more money. We also found that the cyclical savings method was more efficacious because it increased implementation planning and lowered future optimism regarding saving money.

  3. Modulated Hebb-Oja learning rule--a method for principal subspace analysis.

    PubMed

    Jankovic, Marko V; Ogawa, Hidemitsu

    2006-03-01

    This paper presents analysis of the recently proposed modulated Hebb-Oja (MHO) method that performs linear mapping to a lower-dimensional subspace. Principal component subspace is the method that will be analyzed. Comparing to some other well-known methods for yielding principal component subspace (e.g., Oja's Subspace Learning Algorithm), the proposed method has one feature that could be seen as desirable from the biological point of view--synaptic efficacy learning rule does not need the explicit information about the value of the other efficacies to make individual efficacy modification. Also, the simplicity of the "neural circuits" that perform global computations and a fact that their number does not depend on the number of input and output neurons, could be seen as good features of the proposed method.

  4. Reinforcement learning algorithms for robotic navigation in dynamic environments.

    PubMed

    Yen, Gary G; Hickey, Travis W

    2004-04-01

    The purpose of this study was to examine improvements to reinforcement learning (RL) algorithms in order to successfully interact within dynamic environments. The scope of the research was that of RL algorithms as applied to robotic navigation. Proposed improvements include: addition of a forgetting mechanism, use of feature based state inputs, and hierarchical structuring of an RL agent. Simulations were performed to evaluate the individual merits and flaws of each proposal, to compare proposed methods to prior established methods, and to compare proposed methods to theoretically optimal solutions. Incorporation of a forgetting mechanism did considerably improve the learning times of RL agents in a dynamic environment. However, direct implementation of a feature-based RL agent did not result in any performance enhancements, as pure feature-based navigation results in a lack of positional awareness, and the inability of the agent to determine the location of the goal state. Inclusion of a hierarchical structure in an RL agent resulted in significantly improved performance, specifically when one layer of the hierarchy included a feature-based agent for obstacle avoidance, and a standard RL agent for global navigation. In summary, the inclusion of a forgetting mechanism, and the use of a hierarchically structured RL agent offer substantially increased performance when compared to traditional RL agents navigating in a dynamic environment.

  5. Artifacts Quantification of Metal Implants in MRI

    NASA Astrophysics Data System (ADS)

    Vrachnis, I. N.; Vlachopoulos, G. F.; Maris, T. G.; Costaridou, L. I.

    2017-11-01

    The presence of materials with different magnetic properties, such as metal implants, causes distortion of the magnetic field locally, resulting in signal voids and pile ups, i.e. susceptibility artifacts in MRI. Quantitative and unbiased measurement of the artifact is prerequisite for optimization of acquisition parameters. In this study an image gradient based segmentation method is proposed for susceptibility artifact quantification. The method captures abrupt signal alterations by calculation of the image gradient. Then the artifact is quantified in terms of its extent by an automated cross entropy thresholding method as image area percentage. The proposed method for artifact quantification was tested in phantoms containing two orthopedic implants with significantly different magnetic permeabilities. The method was compared against a method proposed in the literature, considered as a reference, demonstrating moderate to good correlation (Spearman’s rho = 0.62 and 0.802 in case of titanium and stainless steel implants). The automated character of the proposed quantification method seems promising towards MRI acquisition parameter optimization.

  6. Robust signal recovery using the prolate spherical wave functions and maximum correntropy criterion

    NASA Astrophysics Data System (ADS)

    Zou, Cuiming; Kou, Kit Ian

    2018-05-01

    Signal recovery is one of the most important problem in signal processing. This paper proposes a novel signal recovery method based on prolate spherical wave functions (PSWFs). PSWFs are a kind of special functions, which have been proved having good performance in signal recovery. However, the existing PSWFs based recovery methods used the mean square error (MSE) criterion, which depends on the Gaussianity assumption of the noise distributions. For the non-Gaussian noises, such as impulsive noise or outliers, the MSE criterion is sensitive, which may lead to large reconstruction error. Unlike the existing PSWFs based recovery methods, our proposed PSWFs based recovery method employs the maximum correntropy criterion (MCC), which is independent of the noise distribution. The proposed method can reduce the impact of the large and non-Gaussian noises. The experimental results on synthetic signals with various types of noises show that the proposed MCC based signal recovery method has better robust property against various noises compared to other existing methods.

  7. A novel scene-based non-uniformity correction method for SWIR push-broom hyperspectral sensors

    NASA Astrophysics Data System (ADS)

    Hu, Bin-Lin; Hao, Shi-Jing; Sun, De-Xin; Liu, Yin-Nian

    2017-09-01

    A novel scene-based non-uniformity correction (NUC) method for short-wavelength infrared (SWIR) push-broom hyperspectral sensors is proposed and evaluated. This method relies on the assumption that for each band there will be ground objects with similar reflectance to form uniform regions when a sufficient number of scanning lines are acquired. The uniform regions are extracted automatically through a sorting algorithm, and are used to compute the corresponding NUC coefficients. SWIR hyperspectral data from airborne experiment are used to verify and evaluate the proposed method, and results show that stripes in the scenes have been well corrected without any significant information loss, and the non-uniformity is less than 0.5%. In addition, the proposed method is compared to two other regular methods, and they are evaluated based on their adaptability to the various scenes, non-uniformity, roughness and spectral fidelity. It turns out that the proposed method shows strong adaptability, high accuracy and efficiency.

  8. A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir; The Laboratory of Quantum Information Processing, Yazd University, Yazd; Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir

    2014-08-01

    In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show themore » accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.« less

  9. Garment sizes in perception of body size.

    PubMed

    Fan, Jintu; Newton, Edward; Lau, Lilian; Liu, Fu

    2003-06-01

    This paper reports an experimental investigation of the effect of garment size on perceived body size. The perceived body sizes of three Chinese men (thin, medium, and obese build) wearing different sizes of white T-shirts were assessed using Thompson and Gray's 1995 Nine-figural Scale in 1 (thinnest) to 9 (obese) grade and a newly-proposed method. Within the limit of commercially available T-shirt sizes, for thin and medium persons, perceived body sizes are bigger when wearing T-shirts of larger sizes. For an obese person, however, wearing a large size T-shirt tends to make him look thinner. The study also showed that the newly proposed comparative method is more reliable in comparing body size perception but without measuring the magnitude of the change in body-size grade. The figural scale and the comparative method can be complementary.

  10. All-Systolic Non-ECG-gated Myocardial Perfusion MRI: Feasibility of Multi-Slice Continuous First-Pass Imaging

    PubMed Central

    Sharif, Behzad; Arsanjani, Reza; Dharmakumar, Rohan; Bairey Merz, C. Noel; Berman, Daniel S.; Li, Debiao

    2015-01-01

    Purpose To develop and test the feasibility of a new method for non-ECG-gated first-pass perfusion (FPP) cardiac MR capable of imaging multiple short-axis slices at the same systolic cardiac phase. Methods A magnetization-driven pulse sequence was developed for non-ECG-gated FPP imaging without saturation-recovery preparation using continuous slice-interleaved radial sampling. The image reconstruction method, dubbed TRACE, employed self-gating based on reconstruction of a real-time image-based navigator combined with reference-constrained compressed sensing. Data from ischemic animal studies (n=5) was used in a simulation framework to evaluate temporal fidelity. Healthy subjects (n=5) were studied using both the proposed and conventional method to compare the myocardial contrast-to-noise ratio (CNR). Patients (n=2) underwent adenosine stress studies using the proposed method. Results Temporal fidelity of the developed method was shown to be sufficient at high heart-rates. The healthy volunteers studies demonstrated normal perfusion and no artifacts. Compared to the conventional scheme, myocardial CNR for the proposed method was slightly higher (8.6±0.6 vs. 8.0±0.7). Patient studies showed stress-induced perfusion defects consistent with invasive angiography. Conclusions The presented methods and results demonstrate feasibility of the proposed approach for high-resolution non-ECG-gated FPP imaging and indicate its potential for achieving desirable image quality (high CNR, no dark-rim artifacts) with a 3-slice spatial coverage, all imaged at the same systolic phase. PMID:26052843

  11. Spectra resolution for simultaneous spectrophotometric determination of lamivudine and zidovudine components in pharmaceutical formulation of human immunodeficiency virus drug based on using continuous wavelet transform and derivative transform techniques.

    PubMed

    Sohrabi, Mahmoud Reza; Tayefeh Zarkesh, Mahshid

    2014-05-01

    In the present paper, two spectrophotometric methods based on signal processing are proposed for the simultaneous determination of two components of an anti-HIV drug called lamivudine (LMV) and zidovudine (ZDV). The proposed methods are applied to synthetic binary mixtures and commercial pharmaceutical tablets without the need for any chemical separation procedures. The developed methods are based on the application of Continuous Wavelet Transform (CWT) and Derivative Spectrophotometry (DS) combined with the zero cross point technique. The Daubechies (db5) wavelet family (242 nm) and Dmey wavelet family (236 nm) were found to give the best results under optimum conditions for simultaneous analysis of lamivudine and zidovudine, respectively. In addition, the first derivative absorption spectra were selected for the determination of lamivudine and zidovudine at 266 nm and 248 nm, respectively. Assaying various synthetic mixtures of the components validated the presented methods. Mean recovery values were found to be between 100.31% and 100.2% for CWT and 99.42% and 97.37% for DS, respectively for determination of LMV and ZDV. The results obtained from analyzing the real samples by the proposed methods were compared to the HPLC reference method. One-way ANOVA test at 95% confidence level was applied to the results. The statistical data from comparing the proposed methods with the reference method showed no significant differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.; Le, Hanh N. D.; Kang, Jin U.; Roland, Per E.; Wong, Dean F.; Rahmim, Arman

    2017-02-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT effects could be exploited, traditional compressive-sensing methods cannot be directly applied as the system matrix in FMT is highly coherent. To overcome these issues, we propose and assess a three-step reconstruction method. First, truncated singular value decomposition is applied on the data to reduce matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via l1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1, absorption coefficient: 0.1 cm-1 and tomographic measurements made using pixelated detectors. In different experiments, fluorescent sources of varying size and intensity were simulated. The proposed reconstruction method provided accurate estimates of the fluorescent source intensity, with a 20% lower root mean square error on average compared to the pure-homotopy method for all considered source intensities and sizes. Further, compared with conventional l2 regularized algorithm, overall, the proposed method reconstructed substantially more accurate fluorescence distribution. The proposed method shows considerable promise and will be tested using more realistic simulations and experimental setups.

  13. Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem

    NASA Astrophysics Data System (ADS)

    Omagari, Hiroki; Higashino, Shin-Ichiro

    2018-04-01

    In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.

  14. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  15. A comparative study of the novel spectrophotometric methods versus conventional ones for the simultaneous determination of Esomeprazole magnesium trihydrate and Naproxen in their binary mixture.

    PubMed

    Lotfy, Hayam M; Amer, Sawsan M; Zaazaa, Hala E; Mostafa, Noha S

    2015-01-01

    Two novel simple, specific, accurate and precise spectrophotometric methods manipulating ratio spectra are developed and validated for simultaneous determination of Esomeprazole magnesium trihydrate (ESO) and Naproxen (NAP) namely; absorbance subtraction and ratio difference. The results were compared to that of the conventional spectrophotometric methods namely; dual wavelength and isoabsorptive point coupled with first derivative of ratio spectra and derivative ratio. The suggested methods were validated in compliance with the ICH guidelines and were successfully applied for determination of ESO and NAP in their laboratory prepared mixtures and pharmaceutical preparation. No preliminary separation steps are required for the proposed spectrophotometeric procedures. The statistical comparison showed that there is no significant difference between the proposed methods and the reported method with respect to both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A consensus algorithm for approximate string matching and its application to QRS complex detection

    NASA Astrophysics Data System (ADS)

    Alba, Alfonso; Mendez, Martin O.; Rubio-Rincon, Miguel E.; Arce-Santana, Edgar R.

    2016-08-01

    In this paper, a novel algorithm for approximate string matching (ASM) is proposed. The novelty resides in the fact that, unlike most other methods, the proposed algorithm is not based on the Hamming or Levenshtein distances, but instead computes a score for each symbol in the search text based on a consensus measure. Those symbols with sufficiently high scores will likely correspond to approximate instances of the pattern string. To demonstrate the usefulness of the proposed method, it has been applied to the detection of QRS complexes in electrocardiographic signals with competitive results when compared against the classic Pan-Tompkins (PT) algorithm. The proposed method outperformed PT in 72% of the test cases, with no extra computational cost.

  17. Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing

    2016-04-14

    In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method.

  18. An Adaptation of the Distance Driven Projection Method for Single Pinhole Collimators in SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Ihsani, Alvin; Farncombe, Troy

    2016-02-01

    The modelling of the projection operator in tomographic imaging is of critical importance especially when working with algebraic methods of image reconstruction. This paper proposes a distance-driven projection method which is targeted to single-pinhole single-photon emission computed tomograghy (SPECT) imaging since it accounts for the finite size of the pinhole, and the possible tilting of the detector surface in addition to other collimator-specific factors such as geometric sensitivity. The accuracy and execution time of the proposed method is evaluated by comparing to a ray-driven approach where the pinhole is sub-sampled with various sampling schemes. A point-source phantom whose projections were generated using OpenGATE was first used to compare the resolution of reconstructed images with each method using the full width at half maximum (FWHM). Furthermore, a high-activity Mini Deluxe Phantom (Data Spectrum Corp., Durham, NC, USA) SPECT resolution phantom was scanned using a Gamma Medica X-SPECT system and the signal-to-noise ratio (SNR) and structural similarity of reconstructed images was compared at various projection counts. Based on the reconstructed point-source phantom, the proposed distance-driven approach results in a lower FWHM than the ray-driven approach even when using a smaller detector resolution. Furthermore, based on the Mini Deluxe Phantom, it is shown that the distance-driven approach has consistently higher SNR and structural similarity compared to the ray-driven approach as the counts in measured projections deteriorates.

  19. Efficient parallel reconstruction for high resolution multishot spiral diffusion data with low rank constraint.

    PubMed

    Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui

    2017-03-01

    To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. Evaluating the efficiency of spectral resolution of univariate methods manipulating ratio spectra and comparing to multivariate methods: An application to ternary mixture in common cold preparation

    NASA Astrophysics Data System (ADS)

    Moustafa, Azza Aziz; Salem, Hesham; Hegazy, Maha; Ali, Omnia

    2015-02-01

    Simple, accurate, and selective methods have been developed and validated for simultaneous determination of a ternary mixture of Chlorpheniramine maleate (CPM), Pseudoephedrine HCl (PSE) and Ibuprofen (IBF), in tablet dosage form. Four univariate methods manipulating ratio spectra were applied, method A is the double divisor-ratio difference spectrophotometric method (DD-RD). Method B is double divisor-derivative ratio spectrophotometric method (DD-RD). Method C is derivative ratio spectrum-zero crossing method (DRZC), while method D is mean centering of ratio spectra (MCR). Two multivariate methods were also developed and validated, methods E and F are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods have the advantage of simultaneous determination of the mentioned drugs without prior separation steps. They were successfully applied to laboratory-prepared mixtures and to commercial pharmaceutical preparation without any interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with the official methods where no significant difference was observed regarding both accuracy and precision.

  1. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  3. An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty

    NASA Astrophysics Data System (ADS)

    Fu, Chao; Ren, Xingmin; Yang, Yongfeng; Xia, Yebao; Deng, Wangqun

    2018-07-01

    A non-intrusive interval precise integration method (IPIM) is proposed in this paper to analyze the transient unbalance response of uncertain rotor systems. The transfer matrix method (TMM) is used to derive the deterministic equations of motion of a hollow-shaft overhung rotor. The uncertain transient dynamic problem is solved by combing the Chebyshev approximation theory with the modified precise integration method (PIM). Transient response bounds are calculated by interval arithmetic of the expansion coefficients. Theoretical error analysis of the proposed method is provided briefly, and its accuracy is further validated by comparing with the scanning method in simulations. Numerical results show that the IPIM can keep good accuracy in vibration prediction of the start-up transient process. Furthermore, the proposed method can also provide theoretical guidance to other transient dynamic mechanical systems with uncertainties.

  4. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  5. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  6. A diagram retrieval method with multi-label learning

    NASA Astrophysics Data System (ADS)

    Fu, Songping; Lu, Xiaoqing; Liu, Lu; Qu, Jingwei; Tang, Zhi

    2015-01-01

    In recent years, the retrieval of plane geometry figures (PGFs) has attracted increasing attention in the fields of mathematics education and computer science. However, the high cost of matching complex PGF features leads to the low efficiency of most retrieval systems. This paper proposes an indirect classification method based on multi-label learning, which improves retrieval efficiency by reducing the scope of compare operation from the whole database to small candidate groups. Label correlations among PGFs are taken into account for the multi-label classification task. The primitive feature selection for multi-label learning and the feature description of visual geometric elements are conducted individually to match similar PGFs. The experiment results show the competitive performance of the proposed method compared with existing PGF retrieval methods in terms of both time consumption and retrieval quality.

  7. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.

    PubMed

    Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.

  8. Sorting protein decoys by machine-learning-to-rank

    PubMed Central

    Jing, Xiaoyang; Wang, Kai; Lu, Ruqian; Dong, Qiwen

    2016-01-01

    Much progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided into three categories: the single-model methods, clustering-based methods and quasi single-model methods. In this study, we develop a single-model method MQAPRank based on the learning-to-rank algorithm firstly, and then implement a quasi single-model method Quasi-MQAPRank. The proposed methods are benchmarked on the 3DRobot and CASP11 dataset. The five-fold cross-validation on the 3DRobot dataset shows the proposed single model method outperforms other methods whose outputs are taken as features of the proposed method, and the quasi single-model method can further enhance the performance. On the CASP11 dataset, the proposed methods also perform well compared with other leading methods in corresponding categories. In particular, the Quasi-MQAPRank method achieves a considerable performance on the CASP11 Best150 dataset. PMID:27530967

  9. Sorting protein decoys by machine-learning-to-rank.

    PubMed

    Jing, Xiaoyang; Wang, Kai; Lu, Ruqian; Dong, Qiwen

    2016-08-17

    Much progress has been made in Protein structure prediction during the last few decades. As the predicted models can span a broad range of accuracy spectrum, the accuracy of quality estimation becomes one of the key elements of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, and these methods could be roughly divided into three categories: the single-model methods, clustering-based methods and quasi single-model methods. In this study, we develop a single-model method MQAPRank based on the learning-to-rank algorithm firstly, and then implement a quasi single-model method Quasi-MQAPRank. The proposed methods are benchmarked on the 3DRobot and CASP11 dataset. The five-fold cross-validation on the 3DRobot dataset shows the proposed single model method outperforms other methods whose outputs are taken as features of the proposed method, and the quasi single-model method can further enhance the performance. On the CASP11 dataset, the proposed methods also perform well compared with other leading methods in corresponding categories. In particular, the Quasi-MQAPRank method achieves a considerable performance on the CASP11 Best150 dataset.

  10. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  11. Radiofrequency pulse design using nonlinear gradient magnetic fields.

    PubMed

    Kopanoglu, Emre; Constable, R Todd

    2015-09-01

    An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.

  12. Fast Markerless Tracking for Augmented Reality in Planar Environment

    NASA Astrophysics Data System (ADS)

    Basori, Ahmad Hoirul; Afif, Fadhil Noer; Almazyad, Abdulaziz S.; AbuJabal, Hamza Ali S.; Rehman, Amjad; Alkawaz, Mohammed Hazim

    2015-12-01

    Markerless tracking for augmented reality should not only be accurate but also fast enough to provide a seamless synchronization between real and virtual beings. Current reported methods showed that a vision-based tracking is accurate but requires high computational power. This paper proposes a real-time hybrid-based method for tracking unknown environments in markerless augmented reality. The proposed method provides collaboration of vision-based approach with accelerometers and gyroscopes sensors as camera pose predictor. To align the augmentation relative to camera motion, the tracking method is done by substituting feature-based camera estimation with combination of inertial sensors with complementary filter to provide more dynamic response. The proposed method managed to track unknown environment with faster processing time compared to available feature-based approaches. Moreover, the proposed method can sustain its estimation in a situation where feature-based tracking loses its track. The collaboration of sensor tracking managed to perform the task for about 22.97 FPS, up to five times faster than feature-based tracking method used as comparison. Therefore, the proposed method can be used to track unknown environments without depending on amount of features on scene, while requiring lower computational cost.

  13. Fabric defect detection based on faster R-CNN

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Liu, Xianghui; Li, Chunlei; Li, Bicao; Wang, Baorui

    2018-04-01

    In order to effectively detect the defects for fabric image with complex texture, this paper proposed a novel detection algorithm based on an end-to-end convolutional neural network. First, the proposal regions are generated by RPN (regional proposal Network). Then, Fast Region-based Convolutional Network method (Fast R-CNN) is adopted to determine whether the proposal regions extracted by RPN is a defect or not. Finally, Soft-NMS (non-maximum suppression) and data augmentation strategies are utilized to improve the detection precision. Experimental results demonstrate that the proposed method can locate the fabric defect region with higher accuracy compared with the state-of- art, and has better adaptability to all kinds of the fabric image.

  14. A social choice-based methodology for treated wastewater reuse in urban and suburban areas.

    PubMed

    Mahjouri, Najmeh; Pourmand, Ehsan

    2017-07-01

    Reusing treated wastewater for supplying water demands such as landscape and agricultural irrigation in urban and suburban areas has become a major water supply approach especially in regions struggling with water shortage. Due to limited available treated wastewater to satisfy all water demands, conflicts may arise in allocating treated wastewater to water users. Since there is usually more than one decision maker and more than one criterion to measure the impact of each water allocation scenario, effective tools are needed to combine individual preferences to reach a collective decision. In this paper, a new social choice (SC) method, which can consider some indifference thresholds for decision makers, is proposed for evaluating and ranking treated wastewater and urban runoff allocation scenarios to water users in urban and suburban areas. Some SC methods, namely plurality voting, Borda count, pairwise comparisons, Hare system, dictatorship, and approval voting, are applied for comparing and evaluating the results. Different scenarios are proposed for allocating treated wastewater and urban runoff to landscape irrigation, agricultural lands as well as artificial recharge of aquifer in the Tehran metropolitan Area, Iran. The main stakeholders rank the proposed scenarios based on their utilities using two different approaches. The proposed method suggests ranking of the scenarios based on the stakeholders' utilities and considering the scores they assigned to each scenario. Comparing the results of the proposed method with those of six different SC methods shows that the obtained ranks are mostly in compliance with the social welfare.

  15. Security Analysis and Improvements to the PsychoPass Method

    PubMed Central

    2013-01-01

    Background In a recent paper, Pietro Cipresso et al proposed the PsychoPass method, a simple way to create strong passwords that are easy to remember. However, the method has some security issues that need to be addressed. Objective To perform a security analysis on the PsychoPass method and outline the limitations of and possible improvements to the method. Methods We used the brute force analysis and dictionary attack analysis of the PsychoPass method to outline its weaknesses. Results The first issue with the Psychopass method is that it requires the password reproduction on the same keyboard layout as was used to generate the password. The second issue is a security weakness: although the produced password is 24 characters long, the password is still weak. We elaborate on the weakness and propose a solution that produces strong passwords. The proposed version first requires the use of the SHIFT and ALT-GR keys in combination with other keys, and second, the keys need to be 1-2 distances apart. Conclusions The proposed improved PsychoPass method yields passwords that can be broken only in hundreds of years based on current computing powers. The proposed PsychoPass method requires 10 keys, as opposed to 20 keys in the original method, for comparable password strength. PMID:23942458

  16. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  17. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  18. IMPROVEMENT OF EFFICIENCY OF CUT AND OVERLAY ASPHALT WORKS BY USING MOBILE MAPPING SYSTEM

    NASA Astrophysics Data System (ADS)

    Yabuki, Nobuyoshi; Nakaniwa, Kazuhide; Kidera, Hiroki; Nishi, Daisuke

    When the cut-and-overlay asphalt work is done for improving road pavement, conventional road surface elevation survey with levels often requires traffic regulation and takes much time and effort. Recently, although new surveying methods using non-prismatic total stations or fixed 3D laser scanners have been proposed in industry, they have not been adopted much due to their high cost. In this research, we propose a new method using Mobile Mapping Systems (MMS) in order to increase the efficiency and to reduce the cost. In this method, small white marks are painted at the intervals of 10m along the road to identify cross sections and to modify the elevations of the white marks with accurate survey data. To verify this proposed method, we executed an experiment and compared this method with the conventional level survey method and the fixed 3D laser scanning method at a road of Osaka University. The result showed that the proposed method had a similar accuracy with other methods and it was more efficient.

  19. High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yaoling; Wu, Zhong

    2018-03-01

    The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.

  20. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    NASA Astrophysics Data System (ADS)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  1. A novel load balanced energy conservation approach in WSN using biogeography based optimization

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajay; Indu, S.; Gupta, Daya

    2017-09-01

    Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN

  2. All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid.

    PubMed

    Zhang, Junying; Qiao, Xueguang; Yang, Hangzhou; Wang, Ruohui; Rong, Qiangzhou; Lim, Kok-Sing; Ahmad, Harith

    2017-01-10

    A method for the measurement of a magnetic field by combining a tapered thin-core fiber (TTCF) and magnetic fluid is proposed and experimentally demonstrated. The modal interference effect is caused by the core mode and excited eigenmodes in the TTCF cladding. The transmission spectra of the proposed sensor are measured and theoretically analyzed at different magnetic field strengths. The results field show that the magnetic sensitivity reaches up to -0.1039  dB/Oe in the range of 40-1600 e. The proposed method possesses high sensitivity and low cost compared with other expensive methods.

  3. Hyperspectral interventional imaging for enhanced tissue visualization and discrimination combining band selection methods.

    PubMed

    Nouri, Dorra; Lucas, Yves; Treuillet, Sylvie

    2016-12-01

    Hyperspectral imaging is an emerging technology recently introduced in medical applications inasmuch as it provides a powerful tool for noninvasive tissue characterization. In this context, a new system was designed to be easily integrated in the operating room in order to detect anatomical tissues hardly noticed by the surgeon's naked eye. Our LCTF-based spectral imaging system is operative over visible, near- and middle-infrared spectral ranges (400-1700 nm). It is dedicated to enhance critical biological tissues such as the ureter and the facial nerve. We aim to find the best three relevant bands to create a RGB image to display during the intervention with maximal contrast between the target tissue and its surroundings. A comparative study is carried out between band selection methods and band transformation methods. Combined band selection methods are proposed. All methods are compared using different evaluation criteria. Experimental results show that the proposed combined band selection methods provide the best performance with rich information, high tissue separability and short computational time. These methods yield a significant discrimination between biological tissues. We developed a hyperspectral imaging system in order to enhance some biological tissue visualization. The proposed methods provided an acceptable trade-off between the evaluation criteria especially in SWIR spectral band that outperforms the naked eye's capacities.

  4. Iterative image-domain decomposition for dual-energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Tianye; Dong, Xue; Petrongolo, Michael

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm ismore » formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the proposed method but with an edge-preserving regularization term. Results: On the Catphan phantom, the method maintains the same spatial resolution on the decomposed images as that of the CT images before decomposition (8 pairs/cm) while significantly reducing their noise standard deviation. Compared to that obtained by the direct matrix inversion, the noise standard deviation in the images decomposed by the proposed algorithm is reduced by over 98%. Without considering the noise correlation properties in the formulation, the denoising scheme degrades the spatial resolution to 6 pairs/cm for the same level of noise suppression. Compared to the edge-preserving algorithm, the method achieves better low-contrast detectability. A quantitative study is performed on the contrast-rod slice of Catphan phantom. The proposed method achieves lower electron density measurement error as compared to that by the direct matrix inversion, and significantly reduces the error variation by over 97%. On the head phantom, the method reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusions: The authors propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. By exploring the full variance-covariance properties of the decomposed images and utilizing the edge predetection, the proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability.« less

  5. Instrumental variables vs. grouping approach for reducing bias due to measurement error.

    PubMed

    Batistatou, Evridiki; McNamee, Roseanne

    2008-01-01

    Attenuation of the exposure-response relationship due to exposure measurement error is often encountered in epidemiology. Given that error cannot be totally eliminated, bias correction methods of analysis are needed. Many methods require more than one exposure measurement per person to be made, but the `group mean OLS method,' in which subjects are grouped into several a priori defined groups followed by ordinary least squares (OLS) regression on the group means, can be applied with one measurement. An alternative approach is to use an instrumental variable (IV) method in which both the single error-prone measure and an IV are used in IV analysis. In this paper we show that the `group mean OLS' estimator is equal to an IV estimator with the group mean used as IV, but that the variance estimators for the two methods are different. We derive a simple expression for the bias in the common estimator which is a simple function of group size, reliability and contrast of exposure between groups, and show that the bias can be very small when group size is large. We compare this method with a new proposal (group mean ranking method), also applicable with a single exposure measurement, in which the IV is the rank of the group means. When there are two independent exposure measurements per subject, we propose a new IV method (EVROS IV) and compare it with Carroll and Stefanski's (CS IV) proposal in which the second measure is used as an IV; the new IV estimator combines aspects of the `group mean' and `CS' strategies. All methods are evaluated in terms of bias, precision and root mean square error via simulations and a dataset from occupational epidemiology. The `group mean ranking method' does not offer much improvement over the `group mean method.' Compared with the `CS' method, the `EVROS' method is less affected by low reliability of exposure. We conclude that the group IV methods we propose may provide a useful way to handle mismeasured exposures in epidemiology with or without replicate measurements. Our finding may also have implications for the use of aggregate variables in epidemiology to control for unmeasured confounding.

  6. Wavelet-based image compression using shuffling and bit plane correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seungjong; Jeong, Jechang

    2000-12-01

    In this paper, we propose a wavelet-based image compression method using shuffling and bit plane correlation. The proposed method improves coding performance in two steps: (1) removing the sign bit plane by shuffling process on quantized coefficients, (2) choosing the arithmetic coding context according to maximum correlation direction. The experimental results are comparable or superior for some images with low correlation, to existing coders.

  7. Soil erosion assessment on hillslope of GCE using RUSLE model

    NASA Astrophysics Data System (ADS)

    Islam, Md. Rabiul; Jaafar, Wan Zurina Wan; Hin, Lai Sai; Osman, Normaniza; Din, Moktar Aziz Mohd; Zuki, Fathiah Mohamed; Srivastava, Prashant; Islam, Tanvir; Adham, Md. Ibrahim

    2018-06-01

    A new method for obtaining the C factor (i.e., vegetation cover and management factor) of the RUSLE model is proposed. The method focuses on the derivation of the C factor based on the vegetation density to obtain a more reliable erosion prediction. Soil erosion that occurs on the hillslope along the highway is one of the major problems in Malaysia, which is exposed to a relatively high amount of annual rainfall due to the two different monsoon seasons. As vegetation cover is one of the important factors in the RUSLE model, a new method that accounts for a vegetation density is proposed in this study. A hillslope near the Guthrie Corridor Expressway (GCE), Malaysia, is chosen as an experimental site whereby eight square plots with the size of 8× 8 and 5× 5 m are set up. A vegetation density available on these plots is measured by analyzing the taken image followed by linking the C factor with the measured vegetation density using several established formulas. Finally, erosion prediction is computed based on the RUSLE model in the Geographical Information System (GIS) platform. The C factor obtained by the proposed method is compared with that of the soil erosion guideline Malaysia, thereby predicted erosion is determined by both the C values. Result shows that the C value from the proposed method varies from 0.0162 to 0.125, which is lower compared to the C value from the soil erosion guideline, i.e., 0.8. Meanwhile predicted erosion computed from the proposed C value is between 0.410 and 3.925 t ha^{-1 } yr^{-1} compared to 9.367 to 34.496 t ha^{-1} yr^{-1 } range based on the C value of 0.8. It can be concluded that the proposed method of obtaining a reasonable C value is acceptable as the computed predicted erosion is found to be classified as a very low zone, i.e. less than 10 t ha^{-1 } yr^{-1} whereas the predicted erosion based on the guideline has classified the study area as a low zone of erosion, i.e., between 10 and 50 t ha^{-1 } yr^{-1}.

  8. Adaptive target binarization method based on a dual-camera system

    NASA Astrophysics Data System (ADS)

    Lei, Jing; Zhang, Ping; Xu, Jiangtao; Gao, Zhiyuan; Gao, Jing

    2018-01-01

    An adaptive target binarization method based on a dual-camera system that contains two dynamic vision sensors was proposed. First, a preprocessing procedure of denoising is introduced to remove the noise events generated by the sensors. Then, the complete edge of the target is retrieved and represented by events based on an event mosaicking method. Third, the region of the target is confirmed by an event-to-event method. Finally, a postprocessing procedure of image open and close operations of morphology methods is adopted to remove the artifacts caused by event-to-event mismatching. The proposed binarization method has been extensively tested on numerous degraded images with nonuniform illumination, low contrast, noise, or light spots and successfully compared with other well-known binarization methods. The experimental results, which are based on visual and misclassification error criteria, show that the proposed method performs well and has better robustness on the binarization of degraded images.

  9. Development and validation of multivariate calibration methods for simultaneous estimation of Paracetamol, Enalapril maleate and hydrochlorothiazide in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Singh, Veena D.; Daharwal, Sanjay J.

    2017-01-01

    Three multivariate calibration spectrophotometric methods were developed for simultaneous estimation of Paracetamol (PARA), Enalapril maleate (ENM) and Hydrochlorothiazide (HCTZ) in tablet dosage form; namely multi-linear regression calibration (MLRC), trilinear regression calibration method (TLRC) and classical least square (CLS) method. The selectivity of the proposed methods were studied by analyzing the laboratory prepared ternary mixture and successfully applied in their combined dosage form. The proposed methods were validated as per ICH guidelines and good accuracy; precision and specificity were confirmed within the concentration range of 5-35 μg mL- 1, 5-40 μg mL- 1 and 5-40 μg mL- 1of PARA, HCTZ and ENM, respectively. The results were statistically compared with reported HPLC method. Thus, the proposed methods can be effectively useful for the routine quality control analysis of these drugs in commercial tablet dosage form.

  10. Rolling bearing fault diagnosis based on information fusion using Dempster-Shafer evidence theory

    NASA Astrophysics Data System (ADS)

    Pei, Di; Yue, Jianhai; Jiao, Jing

    2017-10-01

    This paper presents a fault diagnosis method for rolling bearing based on information fusion. Acceleration sensors are arranged at different position to get bearing vibration data as diagnostic evidence. The Dempster-Shafer (D-S) evidence theory is used to fuse multi-sensor data to improve diagnostic accuracy. The efficiency of the proposed method is demonstrated by the high speed train transmission test bench. The results of experiment show that the proposed method in this paper improves the rolling bearing fault diagnosis accuracy compared with traditional signal analysis methods.

  11. Multiview road sign detection via self-adaptive color model and shape context matching

    NASA Astrophysics Data System (ADS)

    Liu, Chunsheng; Chang, Faliang; Liu, Chengyun

    2016-09-01

    The multiview appearance of road signs in uncontrolled environments has made the detection of road signs a challenging problem in computer vision. We propose a road sign detection method to detect multiview road signs. This method is based on several algorithms, including the classical cascaded detector, the self-adaptive weighted Gaussian color model (SW-Gaussian model), and a shape context matching method. The classical cascaded detector is used to detect the frontal road signs in video sequences and obtain the parameters for the SW-Gaussian model. The proposed SW-Gaussian model combines the two-dimensional Gaussian model and the normalized red channel together, which can largely enhance the contrast between the red signs and background. The proposed shape context matching method can match shapes with big noise, which is utilized to detect road signs in different directions. The experimental results show that compared with previous detection methods, the proposed multiview detection method can reach higher detection rate in detecting signs with different directions.

  12. Reducing the width of confidence intervals for the difference between two population means by inverting adaptive tests.

    PubMed

    O'Gorman, Thomas W

    2018-05-01

    In the last decade, it has been shown that an adaptive testing method could be used, along with the Robbins-Monro search procedure, to obtain confidence intervals that are often narrower than traditional confidence intervals. However, these confidence interval limits require a great deal of computation and some familiarity with stochastic search methods. We propose a method for estimating the limits of confidence intervals that uses only a few tests of significance. We compare these limits to those obtained by a lengthy Robbins-Monro stochastic search and find that the proposed method is nearly as accurate as the Robbins-Monro search. Adaptive confidence intervals that are produced by the proposed method are often narrower than traditional confidence intervals when the distributions are long-tailed, skewed, or bimodal. Moreover, the proposed method of estimating confidence interval limits is easy to understand, because it is based solely on the p-values from a few tests of significance.

  13. Fast single image dehazing based on image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  14. A Fuzzy-Based Control Method for Smoothing Power Fluctuations in Substations along High-Speed Railways

    NASA Astrophysics Data System (ADS)

    Sugio, Tetsuya; Yamamoto, Masayoshi; Funabiki, Shigeyuki

    The use of an SMES (Superconducting Magnetic Energy Storage) for smoothing power fluctuations in a railway substation has been discussed. This paper proposes a smoothing control method based on fuzzy reasoning for reducing the SMES capacity at substations along high-speed railways. The proposed smoothing control method comprises three countermeasures for reduction of the SMES capacity. The first countermeasure involves modification of rule 1 for smoothing out the fluctuating electric power to its average value. The other countermeasures involve the modification of the central value of the stored energy control in the SMES and revision of the membership function in rule 2 for reduction of the SMES capacity. The SMES capacity in the proposed smoothing control method is reduced by 49.5% when compared to that in the nonrevised control method. It is confirmed by computer simulations that the proposed control method is suitable for smoothing out power fluctuations in substations along high-speed railways and for reducing the SMES capacity.

  15. Comparative Validation of the Determination of Sofosbuvir in Pharmaceuticals by Several Inexpensive Ecofriendly Chromatographic, Electrophoretic, and Spectrophotometric Methods.

    PubMed

    El-Yazbi, Amira F

    2017-07-01

    Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virus infection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with P-value > 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.

  16. A Comparison of Two Methods for Boolean Query Relevancy Feedback.

    ERIC Educational Resources Information Center

    Salton, G.; And Others

    1984-01-01

    Evaluates and compares two recently proposed automatic methods for relevance feedback of Boolean queries (Dillon method, which uses probabilistic approach as basis, and disjunctive normal form method). Conclusions are drawn concerning the use of effective feedback methods in a Boolean query environment. Nineteen references are included. (EJS)

  17. Real-Time GNSS-Based Attitude Determination in the Measurement Domain

    PubMed Central

    Zhao, Lin; Li, Na; Li, Liang; Zhang, Yi; Cheng, Chun

    2017-01-01

    A multi-antenna-based GNSS receiver is capable of providing high-precision and drift-free attitude solution. Carrier phase measurements need be utilized to achieve high-precision attitude. The traditional attitude determination methods in the measurement domain and the position domain resolve the attitude and the ambiguity sequentially. The redundant measurements from multiple baselines have not been fully utilized to enhance the reliability of attitude determination. A multi-baseline-based attitude determination method in the measurement domain is proposed to estimate the attitude parameters and the ambiguity simultaneously. Meanwhile, the redundancy of attitude resolution has also been increased so that the reliability of ambiguity resolution and attitude determination can be enhanced. Moreover, in order to further improve the reliability of attitude determination, we propose a partial ambiguity resolution method based on the proposed attitude determination model. The static and kinematic experiments were conducted to verify the performance of the proposed method. When compared with the traditional attitude determination methods, the static experimental results show that the proposed method can improve the accuracy by at least 0.03° and enhance the continuity by 18%, at most. The kinematic result has shown that the proposed method can obtain an optimal balance between accuracy and reliability performance. PMID:28165434

  18. Automatic building extraction from LiDAR data fusion of point and grid-based features

    NASA Astrophysics Data System (ADS)

    Du, Shouji; Zhang, Yunsheng; Zou, Zhengrong; Xu, Shenghua; He, Xue; Chen, Siyang

    2017-08-01

    This paper proposes a method for extracting buildings from LiDAR point cloud data by combining point-based and grid-based features. To accurately discriminate buildings from vegetation, a point feature based on the variance of normal vectors is proposed. For a robust building extraction, a graph cuts algorithm is employed to combine the used features and consider the neighbor contexture information. As grid feature computing and a graph cuts algorithm are performed on a grid structure, a feature-retained DSM interpolation method is proposed in this paper. The proposed method is validated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction and compared to the state-art-of-the methods. The evaluation shows that the proposed method can obtain a promising result both at area-level and at object-level. The method is further applied to the entire ISPRS dataset and to a real dataset of the Wuhan City. The results show a completeness of 94.9% and a correctness of 92.2% at the per-area level for the former dataset and a completeness of 94.4% and a correctness of 95.8% for the latter one. The proposed method has a good potential for large-size LiDAR data.

  19. Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.

    PubMed

    Cheng, Ching-Hsue; Liu, Wei-Xiang

    2018-05-28

    Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.

  20. Security analysis and improvements to the PsychoPass method.

    PubMed

    Brumen, Bostjan; Heričko, Marjan; Rozman, Ivan; Hölbl, Marko

    2013-08-13

    In a recent paper, Pietro Cipresso et al proposed the PsychoPass method, a simple way to create strong passwords that are easy to remember. However, the method has some security issues that need to be addressed. To perform a security analysis on the PsychoPass method and outline the limitations of and possible improvements to the method. We used the brute force analysis and dictionary attack analysis of the PsychoPass method to outline its weaknesses. The first issue with the Psychopass method is that it requires the password reproduction on the same keyboard layout as was used to generate the password. The second issue is a security weakness: although the produced password is 24 characters long, the password is still weak. We elaborate on the weakness and propose a solution that produces strong passwords. The proposed version first requires the use of the SHIFT and ALT-GR keys in combination with other keys, and second, the keys need to be 1-2 distances apart. The proposed improved PsychoPass method yields passwords that can be broken only in hundreds of years based on current computing powers. The proposed PsychoPass method requires 10 keys, as opposed to 20 keys in the original method, for comparable password strength.

  1. System identification through nonstationary data using Time-Frequency Blind Source Separation

    NASA Astrophysics Data System (ADS)

    Guo, Yanlin; Kareem, Ahsan

    2016-06-01

    Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the proposed method is evaluated using a full-scale non-stationary response of a tall building during an earthquake and found it to perform satisfactorily.

  2. Human factors in cockpit input and display for data link.

    DOT National Transportation Integrated Search

    1971-01-01

    Problems associated with the entry of air-ground-air : messages via keyboard for transmission by Data Link : are discussed. The ARINC proposal for a keyboard is : presented, and an alternative method for coding keys : is proposed for comparative eval...

  3. Robust rotational-velocity-Verlet integration methods.

    PubMed

    Rozmanov, Dmitri; Kusalik, Peter G

    2010-05-01

    Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.

  4. Robust rotational-velocity-Verlet integration methods

    NASA Astrophysics Data System (ADS)

    Rozmanov, Dmitri; Kusalik, Peter G.

    2010-05-01

    Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.

  5. Handwritten digits recognition using HMM and PSO based on storks

    NASA Astrophysics Data System (ADS)

    Yan, Liao; Jia, Zhenhong; Yang, Jie; Pang, Shaoning

    2010-07-01

    A new method for handwritten digits recognition based on hidden markov model (HMM) and particle swarm optimization (PSO) is proposed. This method defined 24 strokes with the sense of directional, to make up for the shortage that is sensitive in choice of stating point in traditional methods, but also reduce the ambiguity caused by shakes. Make use of excellent global convergence of PSO; improving the probability of finding the optimum and avoiding local infinitesimal obviously. Experimental results demonstrate that compared with the traditional methods, the proposed method can make most of the recognition rate of handwritten digits improved.

  6. A BHR Composite Network-Based Visualization Method for Deformation Risk Level of Underground Space

    PubMed Central

    Zheng, Wei; Zhang, Xiaoya; Lu, Qi

    2015-01-01

    This study proposes a visualization processing method for the deformation risk level of underground space. The proposed method is based on a BP-Hopfield-RGB (BHR) composite network. Complex environmental factors are integrated in the BP neural network. Dynamic monitoring data are then automatically classified in the Hopfield network. The deformation risk level is combined with the RGB color space model and is displayed visually in real time, after which experiments are conducted with the use of an ultrasonic omnidirectional sensor device for structural deformation monitoring. The proposed method is also compared with some typical methods using a benchmark dataset. Results show that the BHR composite network visualizes the deformation monitoring process in real time and can dynamically indicate dangerous zones. PMID:26011618

  7. A Web service substitution method based on service cluster nets

    NASA Astrophysics Data System (ADS)

    Du, YuYue; Gai, JunJing; Zhou, MengChu

    2017-11-01

    Service substitution is an important research topic in the fields of Web services and service-oriented computing. This work presents a novel method to analyse and substitute Web services. A new concept, called a Service Cluster Net Unit, is proposed based on Web service clusters. A service cluster is converted into a Service Cluster Net Unit. Then it is used to analyse whether the services in the cluster can satisfy some service requests. Meanwhile, the substitution methods of an atomic service and a composite service are proposed. The correctness of the proposed method is proved, and the effectiveness is shown and compared with the state-of-the-art method via an experiment. It can be readily applied to e-commerce service substitution to meet the business automation needs.

  8. CERES: A new cerebellum lobule segmentation method.

    PubMed

    Romero, Jose E; Coupé, Pierrick; Giraud, Rémi; Ta, Vinh-Thong; Fonov, Vladimir; Park, Min Tae M; Chakravarty, M Mallar; Voineskos, Aristotle N; Manjón, Jose V

    2017-02-15

    The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-of-the-art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Low cost and efficient kurtosis-based deflationary ICA method: application to MRS sources separation problem.

    PubMed

    Saleh, M; Karfoul, A; Kachenoura, A; Senhadji, L; Albera, L

    2016-08-01

    Improving the execution time and the numerical complexity of the well-known kurtosis-based maximization method, the RobustICA, is investigated in this paper. A Newton-based scheme is proposed and compared to the conventional RobustICA method. A new implementation using the nonlinear Conjugate Gradient one is investigated also. Regarding the Newton approach, an exact computation of the Hessian of the considered cost function is provided. The proposed approaches and the considered implementations inherit the global plane search of the initial RobustICA method for which a better convergence speed for a given direction is still guaranteed. Numerical results on Magnetic Resonance Spectroscopy (MRS) source separation show the efficiency of the proposed approaches notably the quasi-Newton one using the BFGS method.

  10. A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.

    PubMed

    Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar

    2017-03-01

    The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Estimating nonrigid motion from inconsistent intensity with robust shape features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Ruan, Dan, E-mail: druan@mednet.ucla.edu; Department of Radiation Oncology, University of California, Los Angeles, California 90095

    2013-12-15

    Purpose: To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Methods: Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, andmore » regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. Results: To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. Conclusions: The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.« less

  12. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

    PubMed

    Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

    2015-02-01

    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.

  13. Conjugate gradient method for phase retrieval based on the Wirtinger derivative.

    PubMed

    Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong

    2017-05-01

    A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.

  14. New optical frequency domain differential mode delay measurement method for a multimode optical fiber.

    PubMed

    Ahn, T; Moon, S; Youk, Y; Jung, Y; Oh, K; Kim, D

    2005-05-30

    A novel mode analysis method and differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry has been proposed for the first time. We have used a conventional OFDR with a tunable external cavity laser and a Michelson interferometer. A few-mode optical multimode fiber was prepared to test our proposed measurement technique. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method.

  15. On the use of interaction error potentials for adaptive brain computer interfaces.

    PubMed

    Llera, A; van Gerven, M A J; Gómez, V; Jensen, O; Kappen, H J

    2011-12-01

    We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and MEG data. We show that the proposed adaptive framework significantly improves the static classification methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A novel recurrent neural network with finite-time convergence for linear programming.

    PubMed

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  17. Dynamic deformation image de-blurring and image processing for digital imaging correlation measurement

    NASA Astrophysics Data System (ADS)

    Guo, X.; Li, Y.; Suo, T.; Liu, H.; Zhang, C.

    2017-11-01

    This paper proposes a method for de-blurring of images captured in the dynamic deformation of materials. De-blurring is achieved based on the dynamic-based approach, which is used to estimate the Point Spread Function (PSF) during the camera exposure window. The deconvolution process involving iterative matrix calculations of pixels, is then performed on the GPU to decrease the time cost. Compared to the Gauss method and the Lucy-Richardson method, it has the best result of the image restoration. The proposed method has been evaluated by using the Hopkinson bar loading system. In comparison to the blurry image, the proposed method has successfully restored the image. It is also demonstrated from image processing applications that the de-blurring method can improve the accuracy and the stability of the digital imaging correlation measurement.

  18. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  19. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

    NASA Astrophysics Data System (ADS)

    Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

    This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

  20. Performance of a proposed determinative method for p-TSA in rainbow trout fillet tissue and bridging the proposed method with a method for total chloramine-T residues in rainbow trout fillet tissue

    USGS Publications Warehouse

    Meinertz, J.R.; Stehly, G.R.; Gingerich, W.H.; Greseth, Shari L.

    2001-01-01

    Chloramine-T is an effective drug for controlling fish mortality caused by bacterial gill disease. As part of the data required for approval of chloramine-T use in aquaculture, depletion of the chloramine-T marker residue (para-toluenesulfonamide; p-TSA) from edible fillet tissue of fish must be characterized. Declaration of p-TSA as the marker residue for chloramine-T in rainbow trout was based on total residue depletion studies using a method that used time consuming and cumbersome techniques. A simple and robust method recently developed is being proposed as a determinative method for p-TSA in fish fillet tissue. The proposed determinative method was evaluated by comparing accuracy and precision data with U.S. Food and Drug Administration criteria and by bridging the method to the former method for chloramine-T residues. The method accuracy and precision fulfilled the criteria for determinative methods; accuracy was 92.6, 93.4, and 94.6% with samples fortified at 0.5X, 1X, and 2X the expected 1000 ng/g tolerance limit for p-TSA, respectively. Method precision with tissue containing incurred p-TSA at a nominal concentration of 1000 ng/g ranged from 0.80 to 8.4%. The proposed determinative method was successfully bridged with the former method. The concentrations of p-TSA developed with the proposed method were not statistically different at p < 0.05 from p-TSA concentrations developed with the former method.

  1. Comparing an Atomic Model or Structure to a Corresponding Cryo-electron Microscopy Image at the Central Axis of a Helix.

    PubMed

    Zeil, Stephanie; Kovacs, Julio; Wriggers, Willy; He, Jing

    2017-01-01

    Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM maps at 6.4-7.7 Å resolution. The arc-length association method is then compared to three existing measures that evaluate the separation of two helical axes: a two-way distance between point sets, the length difference between two axes, and the individual amino acid detection accuracy. The results show that our proposed method sensitively distinguishes lateral and longitudinal discrepancies between the two axes, which makes the method particularly suitable for the systematic investigation of cryo-EM map-model pairs.

  2. Comparing an Atomic Model or Structure to a Corresponding Cryo-electron Microscopy Image at the Central Axis of a Helix

    PubMed Central

    Zeil, Stephanie; Kovacs, Julio; Wriggers, Willy

    2017-01-01

    Abstract Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM maps at 6.4–7.7 Å resolution. The arc-length association method is then compared to three existing measures that evaluate the separation of two helical axes: a two-way distance between point sets, the length difference between two axes, and the individual amino acid detection accuracy. The results show that our proposed method sensitively distinguishes lateral and longitudinal discrepancies between the two axes, which makes the method particularly suitable for the systematic investigation of cryo-EM map–model pairs. PMID:27936925

  3. A new local-global approach for classification.

    PubMed

    Peres, R T; Pedreira, C E

    2010-09-01

    In this paper, we propose a new local-global pattern classification scheme that combines supervised and unsupervised approaches, taking advantage of both, local and global environments. We understand as global methods the ones concerned with the aim of constructing a model for the whole problem space using the totality of the available observations. Local methods focus into sub regions of the space, possibly using an appropriately selected subset of the sample. In the proposed method, the sample is first divided in local cells by using a Vector Quantization unsupervised algorithm, the LBG (Linde-Buzo-Gray). In a second stage, the generated assemblage of much easier problems is locally solved with a scheme inspired by Bayes' rule. Four classification methods were implemented for comparison purposes with the proposed scheme: Learning Vector Quantization (LVQ); Feedforward Neural Networks; Support Vector Machine (SVM) and k-Nearest Neighbors. These four methods and the proposed scheme were implemented in eleven datasets, two controlled experiments, plus nine public available datasets from the UCI repository. The proposed method has shown a quite competitive performance when compared to these classical and largely used classifiers. Our method is simple concerning understanding and implementation and is based on very intuitive concepts. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  5. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  6. A Novel Multilayered RFID Tagged Cargo Integrity Assurance Scheme

    PubMed Central

    Yang, Ming Hour; Luo, Jia Ning; Lu, Shao Yong

    2015-01-01

    To minimize cargo theft during transport, mobile radio frequency identification (RFID) grouping proof methods are generally employed to ensure the integrity of entire cargo loads. However, conventional grouping proofs cannot simultaneously generate grouping proofs for a specific group of RFID tags. The most serious problem of these methods is that nonexistent tags are included in the grouping proofs because of the considerable amount of time it takes to scan a high number of tags. Thus, applying grouping proof methods in the current logistics industry is difficult. To solve this problem, this paper proposes a method for generating multilayered offline grouping proofs. The proposed method provides tag anonymity; moreover, resolving disputes between recipients and transporters over the integrity of cargo deliveries can be expedited by generating grouping proofs and automatically authenticating the consistency between the receipt proof and pick proof. The proposed method can also protect against replay attacks, multi-session attacks, and concurrency attacks. Finally, experimental results verify that, compared with other methods for generating grouping proofs, the proposed method can efficiently generate offline grouping proofs involving several parties in a supply chain using mobile RFID. PMID:26512673

  7. Comparison between Two Linear Supervised Learning Machines' Methods with Principle Component Based Methods for the Spectrofluorimetric Determination of Agomelatine and Its Degradants.

    PubMed

    Elkhoudary, Mahmoud M; Naguib, Ibrahim A; Abdel Salam, Randa A; Hadad, Ghada M

    2017-05-01

    Four accurate, sensitive and reliable stability indicating chemometric methods were developed for the quantitative determination of Agomelatine (AGM) whether in pure form or in pharmaceutical formulations. Two supervised learning machines' methods; linear artificial neural networks (PC-linANN) preceded by principle component analysis and linear support vector regression (linSVR), were compared with two principle component based methods; principle component regression (PCR) as well as partial least squares (PLS) for the spectrofluorimetric determination of AGM and its degradants. The results showed the benefits behind using linear learning machines' methods and the inherent merits of their algorithms in handling overlapped noisy spectral data especially during the challenging determination of AGM alkaline and acidic degradants (DG1 and DG2). Relative mean squared error of prediction (RMSEP) for the proposed models in the determination of AGM were 1.68, 1.72, 0.68 and 0.22 for PCR, PLS, SVR and PC-linANN; respectively. The results showed the superiority of supervised learning machines' methods over principle component based methods. Besides, the results suggested that linANN is the method of choice for determination of components in low amounts with similar overlapped spectra and narrow linearity range. Comparison between the proposed chemometric models and a reported HPLC method revealed the comparable performance and quantification power of the proposed models.

  8. A method to reproduce alpha-particle spectra measured with semiconductor detectors.

    PubMed

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín

    2010-01-01

    A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Enhanced facial texture illumination normalization for face recognition.

    PubMed

    Luo, Yong; Guan, Ye-Peng

    2015-08-01

    An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.

  10. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Hui, E-mail: corinna@seu.edu.cn; Key Laboratory of Computer Network and Information Integration; Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimagesmore » using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.« less

  11. Intelligent estimation of noise and blur variances using ANN for the restoration of ultrasound images.

    PubMed

    Uddin, Muhammad Shahin; Halder, Kalyan Kumar; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain

    2016-11-01

    Ultrasound (US) imaging is a widely used clinical diagnostic tool in medical imaging techniques. It is a comparatively safe, economical, painless, portable, and noninvasive real-time tool compared to the other imaging modalities. However, the image quality of US imaging is severely affected by the presence of speckle noise and blur during the acquisition process. In order to ensure a high-quality clinical diagnosis, US images must be restored by reducing their speckle noise and blur. In general, speckle noise is modeled as a multiplicative noise following a Rayleigh distribution and blur as a Gaussian function. Hereto, we propose an intelligent estimator based on artificial neural networks (ANNs) to estimate the variances of noise and blur, which, in turn, are used to obtain an image without discernible distortions. A set of statistical features computed from the image and its complex wavelet sub-bands are used as input to the ANN. In the proposed method, we solve the inverse Rayleigh function numerically for speckle reduction and use the Richardson-Lucy algorithm for de-blurring. The performance of this method is compared with that of the traditional methods by applying them to a synthetic, physical phantom and clinical data, which confirms better restoration results by the proposed method.

  12. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J; Sawant, Amit; Ruan, Dan

    2015-11-01

    To accurately and efficiently reconstruct a continuous surface from noisy point clouds captured by a surface photogrammetry system (VisionRT). The authors have developed a level-set based surface reconstruction method on point clouds captured by a surface photogrammetry system (VisionRT). The proposed method reconstructs an implicit and continuous representation of the underlying patient surface by optimizing a regularized fitting energy, offering extra robustness to noise and missing measurements. By contrast to explicit/discrete meshing-type schemes, their continuous representation is particularly advantageous for subsequent surface registration and motion tracking by eliminating the need for maintaining explicit point correspondences as in discrete models. The authors solve the proposed method with an efficient narrowband evolving scheme. The authors evaluated the proposed method on both phantom and human subject data with two sets of complementary experiments. In the first set of experiment, the authors generated a series of surfaces each with different black patches placed on one chest phantom. The resulting VisionRT measurements from the patched area had different degree of noise and missing levels, since VisionRT has difficulties in detecting dark surfaces. The authors applied the proposed method to point clouds acquired under these different configurations, and quantitatively evaluated reconstructed surfaces by comparing against a high-quality reference surface with respect to root mean squared error (RMSE). In the second set of experiment, the authors applied their method to 100 clinical point clouds acquired from one human subject. In the absence of ground-truth, the authors qualitatively validated reconstructed surfaces by comparing the local geometry, specifically mean curvature distributions, against that of the surface extracted from a high-quality CT obtained from the same patient. On phantom point clouds, their method achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μrecon=-2.7×10(-3) mm(-1), σrecon=7.0×10(-3) mm(-1)) and (μCT=-2.5×10(-3) mm(-1), σCT=5.3×10(-3) mm(-1)), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  13. TH-CD-207A-07: Prediction of High Dimensional State Subject to Respiratory Motion: A Manifold Learning Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit moremore » descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction reliability in such low dimensional manifold. The fixed-point iterative approach turns out to work well practically for the pre-image recovery. Our approach is particularly suitable to facilitate managing respiratory motion in image-guide radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  14. A new frequency approach for light flicker evaluation in electric power systems

    NASA Astrophysics Data System (ADS)

    Feola, Luigi; Langella, Roberto; Testa, Alfredo

    2015-12-01

    In this paper, a new analytical estimator for light flicker in frequency domain, which is able to take into account also the frequency components neglected by the classical methods proposed in literature, is proposed. The analytical solutions proposed apply for any generic stationary signal affected by interharmonic distortion. The light flicker analytical estimator proposed is applied to numerous numerical case studies with the goal of showing i) the correctness and the improvements of the analytical approach proposed with respect to the other methods proposed in literature and ii) the accuracy of the results compared to those obtained by means of the classical International Electrotechnical Commission (IEC) flickermeter. The usefulness of the proposed analytical approach is that it can be included in signal processing tools for interharmonic penetration studies for the integration of renewable energy sources in future smart grids.

  15. A robust two-way semi-linear model for normalization of cDNA microarray data

    PubMed Central

    Wang, Deli; Huang, Jian; Xie, Hehuang; Manzella, Liliana; Soares, Marcelo Bento

    2005-01-01

    Background Normalization is a basic step in microarray data analysis. A proper normalization procedure ensures that the intensity ratios provide meaningful measures of relative expression values. Methods We propose a robust semiparametric method in a two-way semi-linear model (TW-SLM) for normalization of cDNA microarray data. This method does not make the usual assumptions underlying some of the existing methods. For example, it does not assume that: (i) the percentage of differentially expressed genes is small; or (ii) the numbers of up- and down-regulated genes are about the same, as required in the LOWESS normalization method. We conduct simulation studies to evaluate the proposed method and use a real data set from a specially designed microarray experiment to compare the performance of the proposed method with that of the LOWESS normalization approach. Results The simulation results show that the proposed method performs better than the LOWESS normalization method in terms of mean square errors for estimated gene effects. The results of analysis of the real data set also show that the proposed method yields more consistent results between the direct and the indirect comparisons and also can detect more differentially expressed genes than the LOWESS method. Conclusions Our simulation studies and the real data example indicate that the proposed robust TW-SLM method works at least as well as the LOWESS method and works better when the underlying assumptions for the LOWESS method are not satisfied. Therefore, it is a powerful alternative to the existing normalization methods. PMID:15663789

  16. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale.

    PubMed

    Obuchowski, Nancy A

    2006-02-15

    ROC curves and summary measures of accuracy derived from them, such as the area under the ROC curve, have become the standard for describing and comparing the accuracy of diagnostic tests. Methods for estimating ROC curves rely on the existence of a gold standard which dichotomizes patients into disease present or absent. There are, however, many examples of diagnostic tests whose gold standards are not binary-scale, but rather continuous-scale. Unnatural dichotomization of these gold standards leads to bias and inconsistency in estimates of diagnostic accuracy. In this paper, we propose a non-parametric estimator of diagnostic test accuracy which does not require dichotomization of the gold standard. This estimator has an interpretation analogous to the area under the ROC curve. We propose a confidence interval for test accuracy and a statistical test for comparing accuracies of tests from paired designs. We compare the performance (i.e. CI coverage, type I error rate, power) of the proposed methods with several alternatives. An example is presented where the accuracies of two quick blood tests for measuring serum iron concentrations are estimated and compared.

  17. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients.

    PubMed

    Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders

    2013-10-03

    Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.

  18. Coil compression in simultaneous multislice functional MRI with concentric ring slice-GRAPPA and SENSE.

    PubMed

    Chu, Alan; Noll, Douglas C

    2016-10-01

    Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing

    2016-01-01

    In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method. PMID:27089345

  20. Cluster Correspondence Analysis.

    PubMed

    van de Velden, M; D'Enza, A Iodice; Palumbo, F

    2017-03-01

    A method is proposed that combines dimension reduction and cluster analysis for categorical data by simultaneously assigning individuals to clusters and optimal scaling values to categories in such a way that a single between variance maximization objective is achieved. In a unified framework, a brief review of alternative methods is provided and we show that the proposed method is equivalent to GROUPALS applied to categorical data. Performance of the methods is appraised by means of a simulation study. The results of the joint dimension reduction and clustering methods are compared with the so-called tandem approach, a sequential analysis of dimension reduction followed by cluster analysis. The tandem approach is conjectured to perform worse when variables are added that are unrelated to the cluster structure. Our simulation study confirms this conjecture. Moreover, the results of the simulation study indicate that the proposed method also consistently outperforms alternative joint dimension reduction and clustering methods.

  1. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  2. An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method

    NASA Astrophysics Data System (ADS)

    Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo

    2018-05-01

    The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.

  3. Crowd motion segmentation and behavior recognition fusing streak flow and collectiveness

    NASA Astrophysics Data System (ADS)

    Gao, Mingliang; Jiang, Jun; Shen, Jin; Zou, Guofeng; Fu, Guixia

    2018-04-01

    Crowd motion segmentation and crowd behavior recognition are two hot issues in computer vision. A number of methods have been proposed to tackle these two problems. Among the methods, flow dynamics is utilized to model the crowd motion, with little consideration of collective property. Moreover, the traditional crowd behavior recognition methods treat the local feature and dynamic feature separately and overlook the interconnection of topological and dynamical heterogeneity in complex crowd processes. A crowd motion segmentation method and a crowd behavior recognition method are proposed based on streak flow and crowd collectiveness. The streak flow is adopted to reveal the dynamical property of crowd motion, and the collectiveness is incorporated to reveal the structure property. Experimental results show that the proposed methods improve the crowd motion segmentation accuracy and the crowd recognition rates compared with the state-of-the-art methods.

  4. [Biometric identification method for ECG based on the piecewise linear representation (PLR) and dynamic time warping (DTW)].

    PubMed

    Yang, Licai; Shen, Jun; Bao, Shudi; Wei, Shoushui

    2013-10-01

    To treat the problem of identification performance and the complexity of the algorithm, we proposed a piecewise linear representation and dynamic time warping (PLR-DTW) method for ECG biometric identification. Firstly we detected R peaks to get the heartbeats after denoising preprocessing. Then we used the PLR method to keep important information of an ECG signal segment while reducing the data dimension at the same time. The improved DTW method was used for similarity measurements between the test data and the templates. The performance evaluation was carried out on the two ECG databases: PTB and MIT-BIH. The analystic results showed that compared to the discrete wavelet transform method, the proposed PLR-DTW method achieved a higher accuracy rate which is nearly 8% of rising, and saved about 30% operation time, and this demonstrated that the proposed method could provide a better performance.

  5. Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits.

    PubMed

    Bernhardt, Paul W; Wang, Huixia J; Zhang, Daowen

    2015-05-01

    Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.

  6. Determination of trace nickel in hydrogenated cottonseed oil by electrothermal atomic absorption spectrometry after microwave-assisted digestion.

    PubMed

    Zhang, Gai

    2012-01-01

    Microwave digestion of hydrogenated cottonseed oil prior to trace nickel determination by electrothermal atomic absorption spectrometry (ETAAS) is proposed here for the first time. Currently, the methods outlined in U.S. Pharmacopeia 28 (USP28) or British Pharmacopeia (BP2003) are recommended as the official methods for analyzing nickel in hydrogenated cottonseed oil. With these methods the samples may be pre-treated by a silica or a platinum crucible. However, the samples were easily tarnished during sample pretreatment when using a silica crucible. In contrast, when using a platinum crucible, hydrogenated cottonseed oil acting as a reducing material may react with the platinum and destroy the crucible. The proposed microwave-assisted digestion avoided tarnishing of sample in the process of sample pretreatment and also reduced the cycle of analysis. The programs of microwave digestion and the parameters of ETAAS were optimized. The accuracy of the proposed method was investigated by analyzing real samples. The results were compared with the ones by pressurized-PTFE-bomb acid digestion and ones obtained by the U.S. Pharmacopeia 28 (USP28) method. The new method involves a relatively rapid matrix destruction technique compared with other present methods for the quantification of metals in oil. © 2011 Institute of Food Technologists®

  7. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  8. Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors

    PubMed Central

    Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech

    2011-01-01

    Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935

  9. Audio Watermark Embedding Technique Applying Auditory Stream Segregation: "G-encoder Mark" Able to Be Extracted by Mobile Phone

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    We are developing audio watermarking techniques which enable extraction of embedded data by cell phones. For that we have to embed data onto frequency ranges, where our auditory response is prominent, therefore data embedding will cause much auditory noises. Previously we have proposed applying a two-channel stereo play-back feature, where noises generated by a data embedded left-channel signal will be reduced by the other right-channel signal. However, this proposal has practical problems of restricting extracting terminal location. In this paper, we propose synthesizing the noise reducing right-channel signal with the left-signal and reduces noises completely by generating an auditory stream segregation phenomenon to users. This newly proposed makes the noise reducing right-channel signal unnecessary and supports monaural play-back operations. Moreover, we propose a wide-band embedding method causing dual auditory stream segregation phenomena, which enables data embedding on whole public phone frequency ranges and stable extractions with 3-G mobile phones. From these proposals, extraction precisions become higher than those by the previously proposed method whereas the quality damages of embedded signals become smaller. In this paper we present an abstract of our newly proposed method and experimental results comparing with those by the previously proposed method.

  10. Switching non-local median filter

    NASA Astrophysics Data System (ADS)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2015-06-01

    This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.

  11. Adaptive segmentation of nuclei in H&S stained tendon microscopy

    NASA Astrophysics Data System (ADS)

    Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien

    2015-12-01

    Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.

  12. Game Theory Based Trust Model for Cloud Environment

    PubMed Central

    Gokulnath, K.; Uthariaraj, Rhymend

    2015-01-01

    The aim of this work is to propose a method to establish trust at bootload level in cloud computing environment. This work proposes a game theoretic based approach for achieving trust at bootload level of both resources and users perception. Nash equilibrium (NE) enhances the trust evaluation of the first-time users and providers. It also restricts the service providers and the users to violate service level agreement (SLA). Significantly, the problem of cold start and whitewashing issues are addressed by the proposed method. In addition appropriate mapping of cloud user's application to cloud service provider for segregating trust level is achieved as a part of mapping. Thus, time complexity and space complexity are handled efficiently. Experiments were carried out to compare and contrast the performance of the conventional methods and the proposed method. Several metrics like execution time, accuracy, error identification, and undecidability of the resources were considered. PMID:26380365

  13. Personal sleep pattern visualization using sequence-based kernel self-organizing map on sound data.

    PubMed

    Wu, Hongle; Kato, Takafumi; Yamada, Tomomi; Numao, Masayuki; Fukui, Ken-Ichi

    2017-07-01

    We propose a method to discover sleep patterns via clustering of sound events recorded during sleep. The proposed method extends the conventional self-organizing map algorithm by kernelization and sequence-based technologies to obtain a fine-grained map that visualizes the distribution and changes of sleep-related events. We introduced features widely applied in sound processing and popular kernel functions to the proposed method to evaluate and compare performance. The proposed method provides a new aspect of sleep monitoring because the results demonstrate that sound events can be directly correlated to an individual's sleep patterns. In addition, by visualizing the transition of cluster dynamics, sleep-related sound events were found to relate to the various stages of sleep. Therefore, these results empirically warrant future study into the assessment of personal sleep quality using sound data. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A new modulated Hebbian learning rule--biologically plausible method for local computation of a principal subspace.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2003-08-01

    This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too.

  15. A nonlinear quality-related fault detection approach based on modified kernel partial least squares.

    PubMed

    Jiao, Jianfang; Zhao, Ning; Wang, Guang; Yin, Shen

    2017-01-01

    In this paper, a new nonlinear quality-related fault detection method is proposed based on kernel partial least squares (KPLS) model. To deal with the nonlinear characteristics among process variables, the proposed method maps these original variables into feature space in which the linear relationship between kernel matrix and output matrix is realized by means of KPLS. Then the kernel matrix is decomposed into two orthogonal parts by singular value decomposition (SVD) and the statistics for each part are determined appropriately for the purpose of quality-related fault detection. Compared with relevant existing nonlinear approaches, the proposed method has the advantages of simple diagnosis logic and stable performance. A widely used literature example and an industrial process are used for the performance evaluation for the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Ship Detection from Ocean SAR Image Based on Local Contrast Variance Weighted Information Entropy

    PubMed Central

    Huang, Yulin; Pei, Jifang; Zhang, Qian; Gu, Qin; Yang, Jianyu

    2018-01-01

    Ship detection from synthetic aperture radar (SAR) images is one of the crucial issues in maritime surveillance. However, due to the varying ocean waves and the strong echo of the sea surface, it is very difficult to detect ships from heterogeneous and strong clutter backgrounds. In this paper, an innovative ship detection method is proposed to effectively distinguish the vessels from complex backgrounds from a SAR image. First, the input SAR image is pre-screened by the maximally-stable extremal region (MSER) method, which can obtain the ship candidate regions with low computational complexity. Then, the proposed local contrast variance weighted information entropy (LCVWIE) is adopted to evaluate the complexity of those candidate regions and the dissimilarity between the candidate regions with their neighborhoods. Finally, the LCVWIE values of the candidate regions are compared with an adaptive threshold to obtain the final detection result. Experimental results based on measured ocean SAR images have shown that the proposed method can obtain stable detection performance both in strong clutter and heterogeneous backgrounds. Meanwhile, it has a low computational complexity compared with some existing detection methods. PMID:29652863

  17. An ICA-based method for the segmentation of pigmented skin lesions in macroscopic images.

    PubMed

    Cavalcanti, Pablo G; Scharcanski, Jacob; Di Persia, Leandro E; Milone, Diego H

    2011-01-01

    Segmentation is an important step in computer-aided diagnostic systems for pigmented skin lesions, since that a good definition of the lesion area and its boundary at the image is very important to distinguish benign from malignant cases. In this paper a new skin lesion segmentation method is proposed. This method uses Independent Component Analysis to locate skin lesions in the image, and this location information is further refined by a Level-set segmentation method. Our method was evaluated in 141 images and achieved an average segmentation error of 16.55%, lower than the results for comparable state-of-the-art methods proposed in literature.

  18. Variational method based on Retinex with double-norm hybrid constraints for uneven illumination correction

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Wang, Hui; Wang, Liyong; Yu, Xiangzhou; Yang, Le

    2018-01-01

    The uneven illumination phenomenon reduces the quality of remote sensing image and causes interference in the subsequent processing and applications. A variational method based on Retinex with double-norm hybrid constraints for uneven illumination correction is proposed. The L1 norm and the L2 norm are adopted to constrain the textures and details of reflectance image and the smoothness of the illumination image, respectively. The problem of separating the illumination image from the reflectance image is transformed into the optimal solution of the variational model. In order to accelerate the solution, the split Bregman method is used to decompose the variational model into three subproblems, which are calculated by alternate iteration. Two groups of experiments are implemented on two synthetic images and three real remote sensing images. Compared with the variational Retinex method with single-norm constraint and the Mask method, the proposed method performs better in both visual evaluation and quantitative measurements. The proposed method can effectively eliminate the uneven illumination while maintaining the textures and details of the remote sensing image. Moreover, the proposed method using split Bregman method is more than 10 times faster than the method with the steepest descent method.

  19. Coronary arteries segmentation based on the 3D discrete wavelet transform and 3D neutrosophic transform.

    PubMed

    Chen, Shuo-Tsung; Wang, Tzung-Dau; Lee, Wen-Jeng; Huang, Tsai-Wei; Hung, Pei-Kai; Wei, Cheng-Yu; Chen, Chung-Ming; Kung, Woon-Man

    2015-01-01

    Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.

  20. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture.

    PubMed

    Lotfy, Hayam M; Hegazy, Maha A; Rezk, Mamdouh R; Omran, Yasmin Rostom

    2015-09-05

    Smart spectrophotometric methods have been applied and validated for the simultaneous determination of a binary mixture of chloramphenicol (CPL) and prednisolone acetate (PA) without preliminary separation. Two novel methods have been developed; the first method depends upon advanced absorbance subtraction (AAS), while the other method relies on advanced amplitude modulation (AAM); in addition to the well established dual wavelength (DW), ratio difference (RD) and constant center coupled with spectrum subtraction (CC-SS) methods. Accuracy, precision and linearity ranges of these methods were determined. Moreover, selectivity was assessed by analyzing synthetic mixtures of both drugs. The proposed methods were successfully applied to the assay of drugs in their pharmaceutical formulations. No interference was observed from common additives and the validity of the methods was tested. The obtained results have been statistically compared to that of official spectrophotometric methods to give a conclusion that there is no significant difference between the proposed methods and the official ones with respect to accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A Bayesian sequential design using alpha spending function to control type I error.

    PubMed

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  2. Highly accurate adaptive TOF determination method for ultrasonic thickness measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Lianjie; Liu, Haibo; Lian, Meng; Ying, Yangwei; Li, Te; Wang, Yongqing

    2018-04-01

    Determining the time of flight (TOF) is very critical for precise ultrasonic thickness measurement. However, the relatively low signal-to-noise ratio (SNR) of the received signals would induce significant TOF determination errors. In this paper, an adaptive time delay estimation method has been developed to improve the TOF determination’s accuracy. An improved variable step size adaptive algorithm with comprehensive step size control function is proposed. Meanwhile, a cubic spline fitting approach is also employed to alleviate the restriction of finite sampling interval. Simulation experiments under different SNR conditions were conducted for performance analysis. Simulation results manifested the performance advantage of proposed TOF determination method over existing TOF determination methods. When comparing with the conventional fixed step size, and Kwong and Aboulnasr algorithms, the steady state mean square deviation of the proposed algorithm was generally lower, which makes the proposed algorithm more suitable for TOF determination. Further, ultrasonic thickness measurement experiments were performed on aluminum alloy plates with various thicknesses. They indicated that the proposed TOF determination method was more robust even under low SNR conditions, and the ultrasonic thickness measurement accuracy could be significantly improved.

  3. Time Reversal Acoustic Communication Using Filtered Multitone Modulation

    PubMed Central

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-01-01

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. PMID:26393586

  4. Time Reversal Acoustic Communication Using Filtered Multitone Modulation.

    PubMed

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-09-17

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process.

  5. Latent component-based gear tooth fault detection filter using advanced parametric modeling

    NASA Astrophysics Data System (ADS)

    Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.

    2009-10-01

    In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.

  6. Efficient discovery of risk patterns in medical data.

    PubMed

    Li, Jiuyong; Fu, Ada Wai-chee; Fahey, Paul

    2009-01-01

    This paper studies a problem of efficiently discovering risk patterns in medical data. Risk patterns are defined by a statistical metric, relative risk, which has been widely used in epidemiological research. To avoid fruitless search in the complete exploration of risk patterns, we define optimal risk pattern set to exclude superfluous patterns, i.e. complicated patterns with lower relative risk than their corresponding simpler form patterns. We prove that mining optimal risk pattern sets conforms an anti-monotone property that supports an efficient mining algorithm. We propose an efficient algorithm for mining optimal risk pattern sets based on this property. We also propose a hierarchical structure to present discovered patterns for the easy perusal by domain experts. The proposed approach is compared with two well-known rule discovery methods, decision tree and association rule mining approaches on benchmark data sets and applied to a real world application. The proposed method discovers more and better quality risk patterns than a decision tree approach. The decision tree method is not designed for such applications and is inadequate for pattern exploring. The proposed method does not discover a large number of uninteresting superfluous patterns as an association mining approach does. The proposed method is more efficient than an association rule mining method. A real world case study shows that the method reveals some interesting risk patterns to medical practitioners. The proposed method is an efficient approach to explore risk patterns. It quickly identifies cohorts of patients that are vulnerable to a risk outcome from a large data set. The proposed method is useful for exploratory study on large medical data to generate and refine hypotheses. The method is also useful for designing medical surveillance systems.

  7. Joint sparse reconstruction of multi-contrast MRI images with graph based redundant wavelet transform.

    PubMed

    Lai, Zongying; Zhang, Xinlin; Guo, Di; Du, Xiaofeng; Yang, Yonggui; Guo, Gang; Chen, Zhong; Qu, Xiaobo

    2018-05-03

    Multi-contrast images in magnetic resonance imaging (MRI) provide abundant contrast information reflecting the characteristics of the internal tissues of human bodies, and thus have been widely utilized in clinical diagnosis. However, long acquisition time limits the application of multi-contrast MRI. One efficient way to accelerate data acquisition is to under-sample the k-space data and then reconstruct images with sparsity constraint. However, images are compromised at high acceleration factor if images are reconstructed individually. We aim to improve the images with a jointly sparse reconstruction and Graph-based redundant wavelet transform (GBRWT). First, a sparsifying transform, GBRWT, is trained to reflect the similarity of tissue structures in multi-contrast images. Second, joint multi-contrast image reconstruction is formulated as a ℓ 2, 1 norm optimization problem under GBRWT representations. Third, the optimization problem is numerically solved using a derived alternating direction method. Experimental results in synthetic and in vivo MRI data demonstrate that the proposed joint reconstruction method can achieve lower reconstruction errors and better preserve image structures than the compared joint reconstruction methods. Besides, the proposed method outperforms single image reconstruction with joint sparsity constraint of multi-contrast images. The proposed method explores the joint sparsity of multi-contrast MRI images under graph-based redundant wavelet transform and realizes joint sparse reconstruction of multi-contrast images. Experiment demonstrate that the proposed method outperforms the compared joint reconstruction methods as well as individual reconstructions. With this high quality image reconstruction method, it is possible to achieve the high acceleration factors by exploring the complementary information provided by multi-contrast MRI.

  8. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  9. Efficient flow injection and sequential injection methods for spectrophotometric determination of oxybenzone in sunscreens based on reaction with Ni(II).

    PubMed

    Chisvert, A; Salvador, A; Pascual-Martí, M C; March, J G

    2001-04-01

    Spectrophotometric determination of a widely used UV-filter, such as oxybenzone, is proposed. The method is based on the complexation reaction between oxybenzone and Ni(II) in ammoniacal medium. The stoichiometry of the reaction, established by the Job method, was 1:1. Reaction conditions were studied and the experimental parameters were optimized, for both flow injection (FI) and sequential injection (SI) determinations, with comparative purposes. Sunscreen formulations containing oxybenzone were analyzed by the proposed methods and results compared with those obtained by HPLC. Data show that both FI and SI procedures provide accurate and precise results. The ruggedness, sensitivity and LOD are adequate to the analysis requirements. The sample frequency obtained by FI is three-fold higher than that of SI analysis. SI is less reagent-consuming than FI.

  10. Comparing two correlated C indices with right-censored survival outcome: a one-shot nonparametric approach.

    PubMed

    Kang, Le; Chen, Weijie; Petrick, Nicholas A; Gallas, Brandon D

    2015-02-20

    The area under the receiver operating characteristic curve is often used as a summary index of the diagnostic ability in evaluating biomarkers when the clinical outcome (truth) is binary. When the clinical outcome is right-censored survival time, the C index, motivated as an extension of area under the receiver operating characteristic curve, has been proposed by Harrell as a measure of concordance between a predictive biomarker and the right-censored survival outcome. In this work, we investigate methods for statistical comparison of two diagnostic or predictive systems, of which they could either be two biomarkers or two fixed algorithms, in terms of their C indices. We adopt a U-statistics-based C estimator that is asymptotically normal and develop a nonparametric analytical approach to estimate the variance of the C estimator and the covariance of two C estimators. A z-score test is then constructed to compare the two C indices. We validate our one-shot nonparametric method via simulation studies in terms of the type I error rate and power. We also compare our one-shot method with resampling methods including the jackknife and the bootstrap. Simulation results show that the proposed one-shot method provides almost unbiased variance estimations and has satisfactory type I error control and power. Finally, we illustrate the use of the proposed method with an example from the Framingham Heart Study. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Automatic QRS complex detection using two-level convolutional neural network.

    PubMed

    Xiang, Yande; Lin, Zhitao; Meng, Jianyi

    2018-01-29

    The QRS complex is the most noticeable feature in the electrocardiogram (ECG) signal, therefore, its detection is critical for ECG signal analysis. The existing detection methods largely depend on hand-crafted manual features and parameters, which may introduce significant computational complexity, especially in the transform domains. In addition, fixed features and parameters are not suitable for detecting various kinds of QRS complexes under different circumstances. In this study, based on 1-D convolutional neural network (CNN), an accurate method for QRS complex detection is proposed. The CNN consists of object-level and part-level CNNs for extracting different grained ECG morphological features automatically. All the extracted morphological features are used by multi-layer perceptron (MLP) for QRS complex detection. Additionally, a simple ECG signal preprocessing technique which only contains difference operation in temporal domain is adopted. Based on the MIT-BIH arrhythmia (MIT-BIH-AR) database, the proposed detection method achieves overall sensitivity Sen = 99.77%, positive predictivity rate PPR = 99.91%, and detection error rate DER = 0.32%. In addition, the performance variation is performed according to different signal-to-noise ratio (SNR) values. An automatic QRS detection method using two-level 1-D CNN and simple signal preprocessing technique is proposed for QRS complex detection. Compared with the state-of-the-art QRS complex detection approaches, experimental results show that the proposed method acquires comparable accuracy.

  12. Estimating nonrigid motion from inconsistent intensity with robust shape features.

    PubMed

    Liu, Wenyang; Ruan, Dan

    2013-12-01

    To develop a nonrigid motion estimation method that is robust to heterogeneous intensity inconsistencies amongst the image pairs or image sequence. Intensity and contrast variations, as in dynamic contrast enhanced magnetic resonance imaging, present a considerable challenge to registration methods based on general discrepancy metrics. In this study, the authors propose and validate a novel method that is robust to such variations by utilizing shape features. The geometry of interest (GOI) is represented with a flexible zero level set, segmented via well-behaved regularized optimization. The optimization energy drives the zero level set to high image gradient regions, and regularizes it with area and curvature priors. The resulting shape exhibits high consistency even in the presence of intensity or contrast variations. Subsequently, a multiscale nonrigid registration is performed to seek a regular deformation field that minimizes shape discrepancy in the vicinity of GOIs. To establish the working principle, realistic 2D and 3D images were subject to simulated nonrigid motion and synthetic intensity variations, so as to enable quantitative evaluation of registration performance. The proposed method was benchmarked against three alternative registration approaches, specifically, optical flow, B-spline based mutual information, and multimodality demons. When intensity consistency was satisfied, all methods had comparable registration accuracy for the GOIs. When intensities among registration pairs were inconsistent, however, the proposed method yielded pronounced improvement in registration accuracy, with an approximate fivefold reduction in mean absolute error (MAE = 2.25 mm, SD = 0.98 mm), compared to optical flow (MAE = 9.23 mm, SD = 5.36 mm), B-spline based mutual information (MAE = 9.57 mm, SD = 8.74 mm) and mutimodality demons (MAE = 10.07 mm, SD = 4.03 mm). Applying the proposed method on a real MR image sequence also provided qualitatively appealing results, demonstrating good feasibility and applicability of the proposed method. The authors have developed a novel method to estimate the nonrigid motion of GOIs in the presence of spatial intensity and contrast variations, taking advantage of robust shape features. Quantitative analysis and qualitative evaluation demonstrated good promise of the proposed method. Further clinical assessment and validation is being performed.

  13. An Investigation of Possible Hierarchical Dependency of Four Piaget-Type Tasks under Two Methods of Presentation to Third-, Fifth-, and Seventh-Grade Children.

    ERIC Educational Resources Information Center

    Phillips, Darrell Gordon

    The purpose of this study was to investigate a proposed model for the acquisition of the concept of displacement volume and to compare two methods of conservation task presentation. A 12-stage hierarchical model for the acquisition of the concept was proposed, based on four primary assumptions: (1) concept attainment can be measured by…

  14. Comparison of method using phase-sensitive motion estimator with speckle tracking method and application to measurement of arterial wall motion

    NASA Astrophysics Data System (ADS)

    Miyajo, Akira; Hasegawa, Hideyuki

    2018-07-01

    At present, the speckle tracking method is widely used as a two- or three-dimensional (2D or 3D) motion estimator for the measurement of cardiovascular dynamics. However, this method requires high-level interpolation of a function, which evaluates the similarity between ultrasonic echo signals in two frames, to estimate a subsample small displacement in high-frame-rate ultrasound, which results in a high computational cost. To overcome this problem, a 2D motion estimator using the 2D Fourier transform, which does not require any interpolation process, was proposed by our group. In this study, we compared the accuracies of the speckle tracking method and our method using a 2D motion estimator, and applied the proposed method to the measurement of motion of a human carotid arterial wall. The bias error and standard deviation in the lateral velocity estimates obtained by the proposed method were 0.048 and 0.282 mm/s, respectively, which were significantly better than those (‑0.366 and 1.169 mm/s) obtained by the speckle tracking method. The calculation time of the proposed phase-sensitive method was 97% shorter than the speckle tracking method. Furthermore, the in vivo experimental results showed that a characteristic change in velocity around the carotid bifurcation could be detected by the proposed method.

  15. An Approach to Evaluate Blurriness in Retinal Images with Vitreous Opacity for Cataract Diagnosis

    PubMed Central

    Xu, Liang

    2017-01-01

    Cataract is one of the leading causes of blindness in the world's population. A method to evaluate blurriness for cataract diagnosis in retinal images with vitreous opacity is proposed in this paper. Three types of features are extracted, which include pixel number of visible structures, mean contrast between vessels and background, and local standard deviation. To avoid the wrong detection of vitreous opacity as retinal structures, a morphological method is proposed to detect and remove such lesions from retinal visible structure segmentation. Based on the extracted features, a decision tree is trained to classify retinal images into five grades of blurriness. The proposed approach was tested using 1355 clinical retinal images, and the accuracies of two-class classification and five-grade grading compared with that of manual grading are 92.8% and 81.1%, respectively. The kappa value between automatic grading and manual grading is 0.74 in five-grade grading, in which both variance and P value are less than 0.001. Experimental results show that the grading difference between automatic grading and manual grading is all within 1 grade, which is much improvement compared with that of other available methods. The proposed grading method provides a universal measure of cataract severity and can facilitate the decision of cataract surgery. PMID:29065620

  16. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint

    PubMed Central

    Berger, M.; Müller, K.; Aichert, A.; Unberath, M.; Thies, J.; Choi, J.-H.; Fahrig, R.; Maier, A.

    2016-01-01

    Purpose: To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Methods: Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. Results: The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. Conclusions: The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management. PMID:26936708

  17. Rapid comparison of properties on protein surface

    PubMed Central

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-01-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM β/α barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure. PMID:18618695

  18. Rapid comparison of properties on protein surface.

    PubMed

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  19. New insights into soil temperature time series modeling: linear or nonlinear?

    NASA Astrophysics Data System (ADS)

    Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram

    2018-03-01

    Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and ANFIS (respectively) were optimized with the particle swarm optimization (PSO) algorithm in conjunction with the wavelet transform and nonlinear methods (Wavelet-MLP & Wavelet-ANFIS). A comparison of the proposed methodology with individual and hybrid nonlinear models in predicting DST time series indicates the lowest Akaike Information Criterion (AIC) index value, which considers model simplicity and accuracy simultaneously at different depths and stations. The methodology presented in this study can thus serve as an excellent alternative to complex nonlinear methods that are normally employed to examine DST.

  20. On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir

    2015-10-01

    A numerical method for calculating the wavenumbers of axisymmetric plane waves in rigid-walled low-Mach-number turbulent flows is proposed, which is based on solving the linearized Navier-Stokes equations with an eddy-viscosity model. In addition, theoretical models for the wavenumbers are reviewed, and the main effects (the viscothermal effects, the mean flow convection and refraction effects, the turbulent absorption, and the moderate compressibility effects) which may influence the sound propagation are discussed. Compared to the theoretical models, the proposed numerical method has the advantage of potentially including more effects in the computed wavenumbers. The numerical results of the wavenumbers are compared with the reviewed theoretical models, as well as experimental data from the literature. It shows that the proposed numerical method can give satisfactory prediction of both the real part (phase shift) and the imaginary part (attenuation) of the measured wavenumbers, especially when the refraction effects or the turbulent absorption effects become important.

  1. Estimation of the auto frequency response function at unexcited points using dummy masses

    NASA Astrophysics Data System (ADS)

    Hosoya, Naoki; Yaginuma, Shinji; Onodera, Hiroshi; Yoshimura, Takuya

    2015-02-01

    If structures with complex shapes have space limitations, vibration tests using an exciter or impact hammer for the excitation are difficult. Although measuring the auto frequency response function at an unexcited point may not be practical via a vibration test, it can be obtained by assuming that the inertia acting on a dummy mass is an external force on the target structure upon exciting a different excitation point. We propose a method to estimate the auto frequency response functions at unexcited points by attaching a small mass (dummy mass), which is comparable to the accelerometer mass. The validity of the proposed method is demonstrated by comparing the auto frequency response functions estimated at unexcited points in a beam structure to those obtained from numerical simulations. We also consider random measurement errors by finite element analysis and vibration tests, but not bias errors. Additionally, the applicability of the proposed method is demonstrated by applying it to estimate the auto frequency response function of the lower arm in a car suspension.

  2. Design of high-linear CMOS circuit using a constant transconductance method for gamma-ray spectroscopy system

    NASA Astrophysics Data System (ADS)

    Jung, I. I.; Lee, J. H.; Lee, C. S.; Choi, Y.-W.

    2011-02-01

    We propose a novel circuit to be applied to the front-end integrated circuits of gamma-ray spectroscopy systems. Our circuit is designed as a type of current conveyor (ICON) employing a constant- gm (transconductance) method which can significantly improve the linearity in the amplified signals by using a large time constant and the time-invariant characteristics of an amplifier. The constant- gm method is obtained by a feedback control which keeps the transconductance of the input transistor constant. To verify the performance of the propose circuit, the time constant variations for the channel resistances are simulated with the TSMC 0.18 μm transistor parameters using HSPICE, and then compared with those of a conventional ICON. As a result, the proposed ICON shows only 0.02% output linearity variation and 0.19% time constant variation for the input amplitude up to 100 mV. These are significantly small values compared to a conventional ICON's 1.39% and 19.43%, respectively, for the same conditions.

  3. Performance Enhancement for a GPS Vector-Tracking Loop Utilizing an Adaptive Iterated Extended Kalman Filter

    PubMed Central

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-01-01

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively. PMID:25502124

  4. Performance enhancement for a GPS vector-tracking loop utilizing an adaptive iterated extended Kalman filter.

    PubMed

    Chen, Xiyuan; Wang, Xiying; Xu, Yuan

    2014-12-09

    This paper deals with the problem of state estimation for the vector-tracking loop of a software-defined Global Positioning System (GPS) receiver. For a nonlinear system that has the model error and white Gaussian noise, a noise statistics estimator is used to estimate the model error, and based on this, a modified iterated extended Kalman filter (IEKF) named adaptive iterated Kalman filter (AIEKF) is proposed. A vector-tracking GPS receiver utilizing AIEKF is implemented to evaluate the performance of the proposed method. Through road tests, it is shown that the proposed method has an obvious accuracy advantage over the IEKF and Adaptive Extended Kalman filter (AEKF) in position determination. The results show that the proposed method is effective to reduce the root-mean-square error (RMSE) of position (including longitude, latitude and altitude). Comparing with EKF, the position RMSE values of AIEKF are reduced by about 45.1%, 40.9% and 54.6% in the east, north and up directions, respectively. Comparing with IEKF, the position RMSE values of AIEKF are reduced by about 25.7%, 19.3% and 35.7% in the east, north and up directions, respectively. Compared with AEKF, the position RMSE values of AIEKF are reduced by about 21.6%, 15.5% and 30.7% in the east, north and up directions, respectively.

  5. Multi-atlas label fusion using hybrid of discriminative and generative classifiers for segmentation of cardiac MR images.

    PubMed

    Sedai, Suman; Garnavi, Rahil; Roy, Pallab; Xi Liang

    2015-08-01

    Multi-atlas segmentation first registers each atlas image to the target image and transfers the label of atlas image to the coordinate system of the target image. The transferred labels are then combined, using a label fusion algorithm. In this paper, we propose a novel label fusion method which aggregates discriminative learning and generative modeling for segmentation of cardiac MR images. First, a probabilistic Random Forest classifier is trained as a discriminative model to obtain the prior probability of a label at the given voxel of the target image. Then, a probability distribution of image patches is modeled using Gaussian Mixture Model for each label, providing the likelihood of the voxel belonging to the label. The final label posterior is obtained by combining the classification score and the likelihood score under Bayesian rule. Comparative study performed on MICCAI 2013 SATA Segmentation Challenge demonstrates that our proposed hybrid label fusion algorithm is accurate than other five state-of-the-art label fusion methods. The proposed method obtains dice similarity coefficient of 0.94 and 0.92 in segmenting epicardium and endocardium respectively. Moreover, our label fusion method achieves more accurate segmentation results compared to four other label fusion methods.

  6. Cortical Enhanced Tissue Segmentation of Neonatal Brain MR Images Acquired by a Dedicated Phased Array Coil

    PubMed Central

    Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang

    2010-01-01

    The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268

  7. Precise Point Positioning with Partial Ambiguity Fixing.

    PubMed

    Li, Pan; Zhang, Xiaohong

    2015-06-10

    Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate.

  8. Precise Point Positioning with Partial Ambiguity Fixing

    PubMed Central

    Li, Pan; Zhang, Xiaohong

    2015-01-01

    Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate. PMID:26067196

  9. Interference correction by extracting the information of interference dominant regions: Application to near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Bi, Yiming; Tang, Liang; Shan, Peng; Xie, Qiong; Hu, Yong; Peng, Silong; Tan, Jie; Li, Changwen

    2014-08-01

    Interference such as baseline drift and light scattering can degrade the model predictability in multivariate analysis of near-infrared (NIR) spectra. Usually interference can be represented by an additive and a multiplicative factor. In order to eliminate these interferences, correction parameters are needed to be estimated from spectra. However, the spectra are often mixed of physical light scattering effects and chemical light absorbance effects, making it difficult for parameter estimation. Herein, a novel algorithm was proposed to find a spectral region automatically that the interesting chemical absorbance and noise are low, that is, finding an interference dominant region (IDR). Based on the definition of IDR, a two-step method was proposed to find the optimal IDR and the corresponding correction parameters estimated from IDR. Finally, the correction was performed to the full spectral range using previously obtained parameters for the calibration set and test set, respectively. The method can be applied to multi target systems with one IDR suitable for all targeted analytes. Tested on two benchmark data sets of near-infrared spectra, the performance of the proposed method provided considerable improvement compared with full spectral estimation methods and comparable with other state-of-art methods.

  10. Prediction of high-dimensional states subject to respiratory motion: a manifold learning approach

    NASA Astrophysics Data System (ADS)

    Liu, Wenyang; Sawant, Amit; Ruan, Dan

    2016-07-01

    The development of high-dimensional imaging systems in image-guided radiotherapy provides important pathways to the ultimate goal of real-time full volumetric motion monitoring. Effective motion management during radiation treatment usually requires prediction to account for system latency and extra signal/image processing time. It is challenging to predict high-dimensional respiratory motion due to the complexity of the motion pattern combined with the curse of dimensionality. Linear dimension reduction methods such as PCA have been used to construct a linear subspace from the high-dimensional data, followed by efficient predictions on the lower-dimensional subspace. In this study, we extend such rationale to a more general manifold and propose a framework for high-dimensional motion prediction with manifold learning, which allows one to learn more descriptive features compared to linear methods with comparable dimensions. Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where accurate and efficient prediction can be performed. A fixed-point iterative pre-image estimation method is used to recover the predicted value in the original state space. We evaluated and compared the proposed method with a PCA-based approach on level-set surfaces reconstructed from point clouds captured by a 3D photogrammetry system. The prediction accuracy was evaluated in terms of root-mean-squared-error. Our proposed method achieved consistent higher prediction accuracy (sub-millimeter) for both 200 ms and 600 ms lookahead lengths compared to the PCA-based approach, and the performance gain was statistically significant.

  11. Posture Detection Based on Smart Cushion for Wheelchair Users

    PubMed Central

    Ma, Congcong; Li, Wenfeng; Gravina, Raffaele; Fortino, Giancarlo

    2017-01-01

    The postures of wheelchair users can reveal their sitting habit, mood, and even predict health risks such as pressure ulcers or lower back pain. Mining the hidden information of the postures can reveal their wellness and general health conditions. In this paper, a cushion-based posture recognition system is used to process pressure sensor signals for the detection of user’s posture in the wheelchair. The proposed posture detection method is composed of three main steps: data level classification for posture detection, backward selection of sensor configuration, and recognition results compared with previous literature. Five supervised classification techniques—Decision Tree (J48), Support Vector Machines (SVM), Multilayer Perceptron (MLP), Naive Bayes, and k-Nearest Neighbor (k-NN)—are compared in terms of classification accuracy, precision, recall, and F-measure. Results indicate that the J48 classifier provides the highest accuracy compared to other techniques. The backward selection method was used to determine the best sensor deployment configuration of the wheelchair. Several kinds of pressure sensor deployments are compared and our new method of deployment is shown to better detect postures of the wheelchair users. Performance analysis also took into account the Body Mass Index (BMI), useful for evaluating the robustness of the method across individual physical differences. Results show that our proposed sensor deployment is effective, achieving 99.47% posture recognition accuracy. Our proposed method is very competitive for posture recognition and robust in comparison with other former research. Accurate posture detection represents a fundamental basic block to develop several applications, including fatigue estimation and activity level assessment. PMID:28353684

  12. Comparative study of performance of neutral axis tracking based damage detection

    NASA Astrophysics Data System (ADS)

    Soman, R.; Malinowski, P.; Ostachowicz, W.

    2015-07-01

    This paper presents a comparative study of a novel SHM technique for damage isolation. The performance of the Neutral Axis (NA) tracking based damage detection strategy is compared to other popularly used vibration based damage detection methods viz. ECOMAC, Mode Shape Curvature Method and Strain Flexibility Index Method. The sensitivity of the novel method is compared under changing ambient temperature conditions and in the presence of measurement noise. Finite Element Analysis (FEA) of the DTU 10 MW Wind Turbine was conducted to compare the local damage identification capability of each method and the results are presented. Under the conditions examined, the proposed method was found to be robust to ambient condition changes and measurement noise. The damage identification in some is either at par with the methods mentioned in the literature or better under the investigated damage scenarios.

  13. A novel minimum cost maximum power algorithm for future smart home energy management.

    PubMed

    Singaravelan, A; Kowsalya, M

    2017-11-01

    With the latest development of smart grid technology, the energy management system can be efficiently implemented at consumer premises. In this paper, an energy management system with wireless communication and smart meter are designed for scheduling the electric home appliances efficiently with an aim of reducing the cost and peak demand. For an efficient scheduling scheme, the appliances are classified into two types: uninterruptible and interruptible appliances. The problem formulation was constructed based on the practical constraints that make the proposed algorithm cope up with the real-time situation. The formulated problem was identified as Mixed Integer Linear Programming (MILP) problem, so this problem was solved by a step-wise approach. This paper proposes a novel Minimum Cost Maximum Power (MCMP) algorithm to solve the formulated problem. The proposed algorithm was simulated with input data available in the existing method. For validating the proposed MCMP algorithm, results were compared with the existing method. The compared results prove that the proposed algorithm efficiently reduces the consumer electricity consumption cost and peak demand to optimum level with 100% task completion without sacrificing the consumer comfort.

  14. Simultaneous and Comparable Numerical Indicators of International, National and Local Collaboration Practices in English-Medium Astrophysics Research Papers

    ERIC Educational Resources Information Center

    Méndez, David I.; Alcaraz, M. Ángeles

    2016-01-01

    Introduction: We report an investigation on collaboration practices in research papers published in the most prestigious English-medium astrophysics journals. Method: We propose an evaluation method based on three numerical indicators to study and compare, in absolute terms, three different types of collaboration (international, national and…

  15. A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models

    NASA Astrophysics Data System (ADS)

    Ding, Zhe; Li, Li; Hu, Yujin

    2018-01-01

    Sophisticated engineering systems are usually assembled by subcomponents with significantly different levels of energy dissipation. Therefore, these damping systems often contain multiple damping models and lead to great difficulties in analyzing. This paper aims at developing a time integration method for structural systems with multiple damping models. The dynamical system is first represented by a generally damped model. Based on this, a new extended state-space method for the damped system is derived. A modified precise integration method with Gauss-Legendre quadrature is then proposed. The numerical stability and accuracy of the proposed integration method are discussed in detail. It is verified that the method is conditionally stable and has inherent algorithmic damping, period error and amplitude decay. Numerical examples are provided to assess the performance of the proposed method compared with other methods. It is demonstrated that the method is more accurate than other methods with rather good efficiency and the stable condition is easy to be satisfied in practice.

  16. Secure multiparty computation of a comparison problem.

    PubMed

    Liu, Xin; Li, Shundong; Liu, Jian; Chen, Xiubo; Xu, Gang

    2016-01-01

    Private comparison is fundamental to secure multiparty computation. In this study, we propose novel protocols to privately determine [Formula: see text], or [Formula: see text] in one execution. First, a 0-1-vector encoding method is introduced to encode a number into a vector, and the Goldwasser-Micali encryption scheme is used to compare integers privately. Then, we propose a protocol by using a geometric method to compare rational numbers privately, and the protocol is information-theoretical secure. Using the simulation paradigm, we prove the privacy-preserving property of our protocols in the semi-honest model. The complexity analysis shows that our protocols are more efficient than previous solutions.

  17. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Brian; Scherzinger, William

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, andmore » compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  18. Mass determination with the magnetic levitation method—proposal for a new design of electromechanical system

    NASA Astrophysics Data System (ADS)

    Kajastie, H.; Riski, K.; Satrapinski, A.

    2009-06-01

    The method for realization of the kilogram using 'superconducting magnetic levitation' was re-evaluated at MIKES. The realization of the kilogram based on the traditional levitation method is limited by the imperfections of the superconducting materials and the indefinable dependence between supplied electrical energy and the gravitational potential energy of the superconducting mass. This indefiniteness is proportional to the applied magnetic field and is caused by increasing losses and trapped magnetic fluxes. A new design of an electromechanical system for the levitation method is proposed. In the proposed system the required magnetic field and the corresponding force are reduced, as the mass of the body (hanging from a mass comparator) is compensated by the reference weight on the mass comparator. The direction of the magnetic force can be upward (levitation force, when the body is over the coil) or downward (repulsive force, when the body is under the coil). The initial force to move the body from the coil is not needed and magnetic field sensitivity is increased, providing linearization of displacement versus applied current. This new construction allows a lower magnetic induction, reduces energy losses compared with previous designs of electromechanical system and reduces the corresponding systematic error.

  19. High-quality slab-based intermixing method for fusion rendering of multiple medical objects.

    PubMed

    Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil

    2016-01-01

    The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Unified Least Squares Methods for the Evaluation of Diagnostic Tests With the Gold Standard

    PubMed Central

    Tang, Liansheng Larry; Yuan, Ao; Collins, John; Che, Xuan; Chan, Leighton

    2017-01-01

    The article proposes a unified least squares method to estimate the receiver operating characteristic (ROC) parameters for continuous and ordinal diagnostic tests, such as cancer biomarkers. The method is based on a linear model framework using the empirically estimated sensitivities and specificities as input “data.” It gives consistent estimates for regression and accuracy parameters when the underlying continuous test results are normally distributed after some monotonic transformation. The key difference between the proposed method and the method of Tang and Zhou lies in the response variable. The response variable in the latter is transformed empirical ROC curves at different thresholds. It takes on many values for continuous test results, but few values for ordinal test results. The limited number of values for the response variable makes it impractical for ordinal data. However, the response variable in the proposed method takes on many more distinct values so that the method yields valid estimates for ordinal data. Extensive simulation studies are conducted to investigate and compare the finite sample performance of the proposed method with an existing method, and the method is then used to analyze 2 real cancer diagnostic example as an illustration. PMID:28469385

  1. A Machine Learning-based Method for Question Type Classification in Biomedical Question Answering.

    PubMed

    Sarrouti, Mourad; Ouatik El Alaoui, Said

    2017-05-18

    Biomedical question type classification is one of the important components of an automatic biomedical question answering system. The performance of the latter depends directly on the performance of its biomedical question type classification system, which consists of assigning a category to each question in order to determine the appropriate answer extraction algorithm. This study aims to automatically classify biomedical questions into one of the four categories: (1) yes/no, (2) factoid, (3) list, and (4) summary. In this paper, we propose a biomedical question type classification method based on machine learning approaches to automatically assign a category to a biomedical question. First, we extract features from biomedical questions using the proposed handcrafted lexico-syntactic patterns. Then, we feed these features for machine-learning algorithms. Finally, the class label is predicted using the trained classifiers. Experimental evaluations performed on large standard annotated datasets of biomedical questions, provided by the BioASQ challenge, demonstrated that our method exhibits significant improved performance when compared to four baseline systems. The proposed method achieves a roughly 10-point increase over the best baseline in terms of accuracy. Moreover, the obtained results show that using handcrafted lexico-syntactic patterns as features' provider of support vector machine (SVM) lead to the highest accuracy of 89.40 %. The proposed method can automatically classify BioASQ questions into one of the four categories: yes/no, factoid, list, and summary. Furthermore, the results demonstrated that our method produced the best classification performance compared to four baseline systems.

  2. Analysis of high-throughput biological data using their rank values.

    PubMed

    Dembélé, Doulaye

    2018-01-01

    High-throughput biological technologies are routinely used to generate gene expression profiling or cytogenetics data. To achieve high performance, methods available in the literature become more specialized and often require high computational resources. Here, we propose a new versatile method based on the data-ordering rank values. We use linear algebra, the Perron-Frobenius theorem and also extend a method presented earlier for searching differentially expressed genes for the detection of recurrent copy number aberration. A result derived from the proposed method is a one-sample Student's t-test based on rank values. The proposed method is to our knowledge the only that applies to gene expression profiling and to cytogenetics data sets. This new method is fast, deterministic, and requires a low computational load. Probabilities are associated with genes to allow a statistically significant subset selection in the data set. Stability scores are also introduced as quality parameters. The performance and comparative analyses were carried out using real data sets. The proposed method can be accessed through an R package available from the CRAN (Comprehensive R Archive Network) website: https://cran.r-project.org/web/packages/fcros .

  3. Assessment of optional sediment transport functions via the complex watershed simulation model SWAT

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool 2012 (SWAT2012) offers four sediment routing methods as optional alternatives to the default simplified Bagnold method. Previous studies compared only one of these alternative sediment routing methods with the default method. The proposed study evaluated the impac...

  4. A Hybrid Method for Pancreas Extraction from CT Image Based on Level Set Methods

    PubMed Central

    Tan, Hanqing; Fujita, Hiroshi

    2013-01-01

    This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction. PMID:24066016

  5. A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network

    PubMed Central

    Salari, Nader; Shohaimi, Shamarina; Najafi, Farid; Nallappan, Meenakshii; Karishnarajah, Isthrinayagy

    2014-01-01

    Among numerous artificial intelligence approaches, k-Nearest Neighbor algorithms, genetic algorithms, and artificial neural networks are considered as the most common and effective methods in classification problems in numerous studies. In the present study, the results of the implementation of a novel hybrid feature selection-classification model using the above mentioned methods are presented. The purpose is benefitting from the synergies obtained from combining these technologies for the development of classification models. Such a combination creates an opportunity to invest in the strength of each algorithm, and is an approach to make up for their deficiencies. To develop proposed model, with the aim of obtaining the best array of features, first, feature ranking techniques such as the Fisher's discriminant ratio and class separability criteria were used to prioritize features. Second, the obtained results that included arrays of the top-ranked features were used as the initial population of a genetic algorithm to produce optimum arrays of features. Third, using a modified k-Nearest Neighbor method as well as an improved method of backpropagation neural networks, the classification process was advanced based on optimum arrays of the features selected by genetic algorithms. The performance of the proposed model was compared with thirteen well-known classification models based on seven datasets. Furthermore, the statistical analysis was performed using the Friedman test followed by post-hoc tests. The experimental findings indicated that the novel proposed hybrid model resulted in significantly better classification performance compared with all 13 classification methods. Finally, the performance results of the proposed model was benchmarked against the best ones reported as the state-of-the-art classifiers in terms of classification accuracy for the same data sets. The substantial findings of the comprehensive comparative study revealed that performance of the proposed model in terms of classification accuracy is desirable, promising, and competitive to the existing state-of-the-art classification models. PMID:25419659

  6. New Internet search volume-based weighting method for integrating various environmental impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. Themore » resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.« less

  7. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint.

    PubMed

    Berger, M; Müller, K; Aichert, A; Unberath, M; Thies, J; Choi, J-H; Fahrig, R; Maier, A

    2016-03-01

    To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management.

  8. Sequence Based Prediction of DNA-Binding Proteins Based on Hybrid Feature Selection Using Random Forest and Gaussian Naïve Bayes

    PubMed Central

    Lou, Wangchao; Wang, Xiaoqing; Chen, Fan; Chen, Yixiao; Jiang, Bo; Zhang, Hua

    2014-01-01

    Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader) were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that the proposed DBPPred can be an alternative perspective predictor for large-scale determination of DNA-binding proteins. PMID:24475169

  9. Microaneurysm detection using fully convolutional neural networks.

    PubMed

    Chudzik, Piotr; Majumdar, Somshubra; Calivá, Francesco; Al-Diri, Bashir; Hunter, Andrew

    2018-05-01

    Diabetic retinopathy is a microvascular complication of diabetes that can lead to sight loss if treated not early enough. Microaneurysms are the earliest clinical signs of diabetic retinopathy. This paper presents an automatic method for detecting microaneurysms in fundus photographies. A novel patch-based fully convolutional neural network with batch normalization layers and Dice loss function is proposed. Compared to other methods that require up to five processing stages, it requires only three. Furthermore, to the best of the authors' knowledge, this is the first paper that shows how to successfully transfer knowledge between datasets in the microaneurysm detection domain. The proposed method was evaluated using three publicly available and widely used datasets: E-Ophtha, DIARETDB1, and ROC. It achieved better results than state-of-the-art methods using the FROC metric. The proposed algorithm accomplished highest sensitivities for low false positive rates, which is particularly important for screening purposes. Performance, simplicity, and robustness of the proposed method demonstrates its suitability for diabetic retinopathy screening applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Statistical Method to Overcome Overfitting Issue in Rational Function Models

    NASA Astrophysics Data System (ADS)

    Alizadeh Moghaddam, S. H.; Mokhtarzade, M.; Alizadeh Naeini, A.; Alizadeh Moghaddam, S. A.

    2017-09-01

    Rational function models (RFMs) are known as one of the most appealing models which are extensively applied in geometric correction of satellite images and map production. Overfitting is a common issue, in the case of terrain dependent RFMs, that degrades the accuracy of RFMs-derived geospatial products. This issue, resulting from the high number of RFMs' parameters, leads to ill-posedness of the RFMs. To tackle this problem, in this study, a fast and robust statistical approach is proposed and compared to Tikhonov regularization (TR) method, as a frequently-used solution to RFMs' overfitting. In the proposed method, a statistical test, namely, significance test is applied to search for the RFMs' parameters that are resistant against overfitting issue. The performance of the proposed method was evaluated for two real data sets of Cartosat-1 satellite images. The obtained results demonstrate the efficiency of the proposed method in term of the achievable level of accuracy. This technique, indeed, shows an improvement of 50-80% over the TR.

  11. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    PubMed

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  12. A swarm-trained k-nearest prototypes adaptive classifier with automatic feature selection for interval data.

    PubMed

    Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C

    2016-08-01

    Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Semiblind channel estimation for MIMO-OFDM systems

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Sheng; Song, Jyu-Han

    2012-12-01

    This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.

  14. A unified REC market and composite RPO scheme for promotion of renewable energy in India

    NASA Astrophysics Data System (ADS)

    Shereef, R. M.; Khaparde, S. A.

    2017-07-01

    In India, uniform price was assigned to renewable energy certificate (REC) irrespective of renewable energy (RE) type, technology, and location. Moreover REC price bands are higher than existing preferential tariff. There are distinct renewable purchase obligations (RPOs) specified for various RE types, whereas there is lack of efficient tools to check RPO compliance. Because of these reasons, REC market stabilisation is getting delayed. This paper proposes a method using plant performance multiplier to convert non-solar and solar REC to single equivalent REC with competitive REC pricing, which can be traded on unified REC market. The method combines solar and non-solar RPOs into a single composite RPO, to make RPO compliance and its checking simple and efficient. A sample illustration of the proposed method is given. The benefits offered by the proposed method in REC pricing, REC trading and RPO compliance are discussed. A comparative economic analysis of present and proposed method is reported.

  15. A 3D model retrieval approach based on Bayesian networks lightfield descriptor

    NASA Astrophysics Data System (ADS)

    Xiao, Qinhan; Li, Yanjun

    2009-12-01

    A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.

  16. Thermal residual stress evaluation based on phase-shift lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Xiangjun; Yun, Hai; Shao, Xinxing; Wang, Yanxia; Zhang, Donghuan; Yang, Fujun; He, Xiaoyuan

    2018-06-01

    An interesting phase-shift lateral shearing interferometry system was proposed to evaluate the thermal residual stress distribution in transparent specimen. The phase-shift interferograms was generated by moving a parallel plane plate. Based on analyzing the fringes deflected by deformation and refractive index change, the stress distribution can be obtained. To verify the validity of the proposed method, a typical experiment was elaborately designed to determine thermal residual stresses of a transparent PMMA plate subjected to the flame of a lighter. The sum of in-plane stress distribution was demonstrated. The experimental data were compared with values measured by digital gradient sensing method. Comparison of the results reveals the effectiveness and feasibility of the proposed method.

  17. A simple method for assessing occupational exposure via the one-way random effects model.

    PubMed

    Krishnamoorthy, K; Mathew, Thomas; Peng, Jie

    2016-11-01

    A one-way random effects model is postulated for the log-transformed shift-long personal exposure measurements, where the random effect in the model represents an effect due to the worker. Simple closed-form confidence intervals are proposed for the relevant parameters of interest using the method of variance estimates recovery (MOVER). The performance of the confidence bounds is evaluated and compared with those based on the generalized confidence interval approach. Comparison studies indicate that the proposed MOVER confidence bounds are better than the generalized confidence bounds for the overall mean exposure and an upper percentile of the exposure distribution. The proposed methods are illustrated using a few examples involving industrial hygiene data.

  18. Covariance Matrix Estimation for Massive MIMO

    NASA Astrophysics Data System (ADS)

    Upadhya, Karthik; Vorobyov, Sergiy A.

    2018-04-01

    We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.

  19. Macroscopic relationship in primal-dual portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-02-01

    In the present paper, using a replica analysis, we examine the portfolio optimization problem handled in previous work and discuss the minimization of investment risk under constraints of budget and expected return for the case that the distribution of the hyperparameters of the mean and variance of the return rate of each asset are not limited to a specific probability family. Findings derived using our proposed method are compared with those in previous work to verify the effectiveness of our proposed method. Further, we derive a Pythagorean theorem of the Sharpe ratio and macroscopic relations of opportunity loss. Using numerical experiments, the effectiveness of our proposed method is demonstrated for a specific situation.

  20. Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI.

    PubMed

    Guo, Yi; Lingala, Sajan Goud; Zhu, Yinghua; Lebel, R Marc; Nayak, Krishna S

    2017-10-01

    The purpose of this work was to develop and evaluate a T 1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to convert parameter maps to (k,t)-space, utilizing the Patlak TK model. The proposed scheme is compared against an indirect method that creates intermediate images by parallel imaging and compressed sensing before to TK modeling. Thirteen fully sampled brain tumor DCE-MRI scans with 5-second temporal resolution are retrospectively undersampled at rates R = 20, 40, 60, 80, and 100 for each dynamic frame. TK maps are quantitatively compared based on root mean-squared-error (rMSE) and Bland-Altman analysis. The approach is also applied to four prospectively R = 30 undersampled whole-brain DCE-MRI data sets. In the retrospective study, the proposed method performed statistically better than indirect method at R ≥ 80 for all 13 cases. This approach provided restoration of TK parameter values with less errors in tumor regions of interest, an improvement compared to a state-of-the-art indirect method. Applied prospectively, the proposed method provided whole-brain, high-resolution TK maps with good image quality. Model-based direct estimation of TK maps from k,t-space DCE-MRI data is feasible and is compatible up to 100-fold undersampling. Magn Reson Med 78:1566-1578, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections

    PubMed Central

    Li, Liang; Jia, Chun; Zhao, Lin; Cheng, Jianhua; Liu, Jianxu; Ding, Jicheng

    2016-01-01

    Real-time single frequency precise point positioning (PPP) is a promising technique for high-precision navigation with sub-meter or even centimeter-level accuracy because of its convenience and low cost. The navigation performance of single frequency PPP heavily depends on the real-time availability and quality of correction products for satellite orbits and satellite clocks. Satellite-based augmentation system (SBAS) provides the correction products in real-time, but they are intended to be used for wide area differential positioning at 1 meter level precision. By imposing the constraints for ionosphere error, we have developed a real-time single frequency PPP method by sufficiently utilizing SBAS correction products. The proposed PPP method are tested with static and kinematic data, respectively. The static experimental results show that the position accuracy of the proposed PPP method can reach decimeter level, and achieve an improvement of at least 30% when compared with the traditional SBAS method. The positioning convergence of the proposed PPP method can be achieved in 636 epochs at most in static mode. In the kinematic experiment, the position accuracy of the proposed PPP method can be improved by at least 20 cm relative to the SBAS method. Furthermore, it has revealed that the proposed PPP method can achieve decimeter level convergence within 500 s in the kinematic mode. PMID:27517930

  2. An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor.

    PubMed

    Qu, Fangfang; Ren, Dong; Wang, Jihua; Zhang, Zhong; Lu, Na; Meng, Lei

    2016-01-11

    Spectral analysis technique based on near infrared (NIR) sensor is a powerful tool for complex information processing and high precision recognition, and it has been widely applied to quality analysis and online inspection of agricultural products. This paper proposes a new method to address the instability of small sample sizes in the successive projections algorithm (SPA) as well as the lack of association between selected variables and the analyte. The proposed method is an evaluated bootstrap ensemble SPA method (EBSPA) based on a variable evaluation index (EI) for variable selection, and is applied to the quantitative prediction of alcohol concentrations in liquor using NIR sensor. In the experiment, the proposed EBSPA with three kinds of modeling methods are established to test their performance. In addition, the proposed EBSPA combined with partial least square is compared with other state-of-the-art variable selection methods. The results show that the proposed method can solve the defects of SPA and it has the best generalization performance and stability. Furthermore, the physical meaning of the selected variables from the near infrared sensor data is clear, which can effectively reduce the variables and improve their prediction accuracy.

  3. Rolling bearing fault diagnosis and health assessment using EEMD and the adjustment Mahalanobis-Taguchi system

    NASA Astrophysics Data System (ADS)

    Chen, Junxun; Cheng, Longsheng; Yu, Hui; Hu, Shaolin

    2018-01-01

    ABSTRACTSFor the timely identification of the potential faults of a rolling bearing and to observe its health condition intuitively and accurately, a novel fault diagnosis and health assessment model for a rolling bearing based on the ensemble empirical mode decomposition (EEMD) method and the adjustment Mahalanobis-Taguchi system (AMTS) method is proposed. The specific steps are as follows: First, the vibration signal of a rolling bearing is decomposed by EEMD, and the extracted features are used as the input vectors of AMTS. Then, the AMTS method, which is designed to overcome the shortcomings of the traditional Mahalanobis-Taguchi system and to extract the key features, is proposed for fault diagnosis. Finally, a type of HI concept is proposed according to the results of the fault diagnosis to accomplish the health assessment of a bearing in its life cycle. To validate the superiority of the developed method proposed approach, it is compared with other recent method and proposed methodology is successfully validated on a vibration data-set acquired from seeded defects and from an accelerated life test. The results show that this method represents the actual situation well and is able to accurately and effectively identify the fault type.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OptEn..54b3106P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OptEn..54b3106P"><span>Real-time line matching from stereo images using a nonparametric transform of spatial relations and texture information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Jonghee; Yoon, Kuk-Jin</p> <p>2015-02-01</p> <p>We propose a real-time line matching method for stereo systems. To achieve real-time performance while retaining a high level of matching precision, we first propose a nonparametric transform to represent the spatial relations between neighboring lines and nearby textures as a binary stream. Since the length of a line can vary across images, the matching costs between lines are computed within an overlap area (OA) based on the binary stream. The OA is determined for each line pair by employing the properties of a rectified image pair. Finally, the line correspondence is determined using a winner-takes-all method with a left-right consistency check. To reduce the computational time requirements further, we filter out unreliable matching candidates in advance based on their rectification properties. The performance of the proposed method was compared with state-of-the-art methods in terms of the computational time, matching precision, and recall. The proposed method required 47 ms to match lines from an image pair in the KITTI dataset with an average precision of 95%. We also verified the proposed method under image blur, illumination variation, and viewpoint changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27489729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27489729"><span>Optimal PMU placement using topology transformation method in power systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rahman, Nadia H A; Zobaa, Ahmed F</p> <p>2016-09-01</p> <p>Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5448783','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5448783"><span>Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain–computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method. PMID:28558002</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27175785','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27175785"><span>An improved parallel fuzzy connected image segmentation method based on CUDA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Liansheng; Li, Dong; Huang, Shaohui</p> <p>2016-05-12</p> <p>Fuzzy connectedness method (FC) is an effective method for extracting fuzzy objects from medical images. However, when FC is applied to large medical image datasets, its running time will be greatly expensive. Therefore, a parallel CUDA version of FC (CUDA-kFOE) was proposed by Ying et al. to accelerate the original FC. Unfortunately, CUDA-kFOE does not consider the edges between GPU blocks, which causes miscalculation of edge points. In this paper, an improved algorithm is proposed by adding a correction step on the edge points. The improved algorithm can greatly enhance the calculation accuracy. In the improved method, an iterative manner is applied. In the first iteration, the affinity computation strategy is changed and a look up table is employed for memory reduction. In the second iteration, the error voxels because of asynchronism are updated again. Three different CT sequences of hepatic vascular with different sizes were used in the experiments with three different seeds. NVIDIA Tesla C2075 is used to evaluate our improved method over these three data sets. Experimental results show that the improved algorithm can achieve a faster segmentation compared to the CPU version and higher accuracy than CUDA-kFOE. The calculation results were consistent with the CPU version, which demonstrates that it corrects the edge point calculation error of the original CUDA-kFOE. The proposed method has a comparable time cost and has less errors compared to the original CUDA-kFOE as demonstrated in the experimental results. In the future, we will focus on automatic acquisition method and automatic processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002601','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002601"><span>A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.</p> <p>2012-01-01</p> <p>The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1004a2005T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1004a2005T"><span>Marker Registration Technique for Handwritten Text Marker in Augmented Reality Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thanaborvornwiwat, N.; Patanukhom, K.</p> <p>2018-04-01</p> <p>Marker registration is a fundamental process to estimate camera poses in marker-based Augmented Reality (AR) systems. We developed AR system that creates correspondence virtual objects on handwritten text markers. This paper presents a new method for registration that is robust for low-content text markers, variation of camera poses, and variation of handwritten styles. The proposed method uses Maximally Stable Extremal Regions (MSER) and polygon simplification for a feature point extraction. The experiment shows that we need to extract only five feature points per image which can provide the best registration results. An exhaustive search is used to find the best matching pattern of the feature points in two images. We also compared performance of the proposed method to some existing registration methods and found that the proposed method can provide better accuracy and time efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23960787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23960787"><span>Portable system of programmable syringe pump with potentiometer for determination of promethazine in pharmaceutical applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saleh, Tawfik A; Abulkibash, A M; Ibrahim, Atta E</p> <p>2012-04-01</p> <p>A simple and fast-automated method was developed and validated for the assay of promethazine hydrochloride in pharmaceutical formulations, based on the oxidation of promethazine by cerium in an acidic medium. A portable system, consisting of a programmable syringe pump connected to a potentiometer, was constructed. The developed change in potential during promethazine oxidation was monitored. The related optimum working conditions, such as supporting electrolyte concentration, cerium(IV) concentration and flow rate were optimized. The proposed method was successfully applied to pharmaceutical samples as well as synthetic ones. The obtained results were realized by the official British pharmacopoeia (BP) method and comparable results were obtained. The obtained t-value indicates no significant differences between the results of the proposed and BP methods, with the advantages of the proposed method being simple, sensitive and cost effective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27869669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27869669"><span>Compressed Symmetric Nested Arrays and Their Application for Direction-of-Arrival Estimation of Near-Field Sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Shuang; Xie, Dongfeng</p> <p>2016-11-17</p> <p>In this paper, a new sensor array geometry, called a compressed symmetric nested array (CSNA), is designed to increase the degrees of freedom in the near field. As its name suggests, a CSNA is constructed by getting rid of some elements from two identical nested arrays. The closed form expressions are also presented for the sensor locations and the largest degrees of freedom obtainable as a function of the total number of sensors. Furthermore, a novel DOA estimation method is proposed by utilizing the CSNA in the near field. By employing this new array geometry, our method can identify more sources than sensors. Compared with other existing methods, the proposed method achieves higher resolution because of increased array aperture. Simulation results are demonstrated to verify the effectiveness of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29331255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29331255"><span>An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>M, Soorya; Issac, Ashish; Dutta, Malay Kishore</p> <p>2018-02-01</p> <p>Glaucoma is an ocular disease which can cause irreversible blindness. The disease is currently identified using specialized equipment operated by optometrists manually. The proposed work aims to provide an efficient imaging solution which can help in automating the process of Glaucoma diagnosis using computer vision techniques from digital fundus images. The proposed method segments the optic disc using a geometrical feature based strategic framework which improves the detection accuracy and makes the algorithm invariant to illumination and noise. Corner thresholding and point contour joining based novel methods are proposed to construct smooth contours of Optic Disc. Based on a clinical approach as used by ophthalmologist, the proposed algorithm tracks blood vessels inside the disc region and identifies the points at which first vessel bend from the optic disc boundary and connects them to obtain the contours of Optic Cup. The proposed method has been compared with the ground truth marked by the medical experts and the similarity parameters, used to determine the performance of the proposed method, have yield a high similarity of segmentation. The proposed method has achieved a macro-averaged f-score of 0.9485 and accuracy of 97.01% in correctly classifying fundus images. The proposed method is clinically significant and can be used for Glaucoma screening over a large population which will work in a real time. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10396E..0WH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10396E..0WH"><span>Intra prediction using face continuity in 360-degree video coding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanhart, Philippe; He, Yuwen; Ye, Yan</p> <p>2017-09-01</p> <p>This paper presents a new reference sample derivation method for intra prediction in 360-degree video coding. Unlike the conventional reference sample derivation method for 2D video coding, which uses the samples located directly above and on the left of the current block, the proposed method considers the spherical nature of 360-degree video when deriving reference samples located outside the current face to which the block belongs, and derives reference samples that are geometric neighbors on the sphere. The proposed reference sample derivation method was implemented in the Joint Exploration Model 3.0 (JEM-3.0) for the cubemap projection format. Simulation results for the all intra configuration show that, when compared with the conventional reference sample derivation method, the proposed method gives, on average, luma BD-rate reduction of 0.3% in terms of the weighted spherical PSNR (WS-PSNR) and spherical PSNR (SPSNR) metrics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..505..825E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..505..825E"><span>A novel method for overlapping community detection using Multi-objective optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa</p> <p>2018-09-01</p> <p>The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES..100a2163W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES..100a2163W"><span>Chaotic Signal Denoising Based on Hierarchical Threshold Synchrosqueezed Wavelet Transform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wen-Bo; Jing, Yun-yu; Zhao, Yan-chao; Zhang, Lian-Hua; Wang, Xiang-Li</p> <p>2017-12-01</p> <p>In order to overcoming the shortcoming of single threshold synchrosqueezed wavelet transform(SWT) denoising method, an adaptive hierarchical threshold SWT chaotic signal denoising method is proposed. Firstly, a new SWT threshold function is constructed based on Stein unbiased risk estimation, which is two order continuous derivable. Then, by using of the new threshold function, a threshold process based on the minimum mean square error was implemented, and the optimal estimation value of each layer threshold in SWT chaotic denoising is obtained. The experimental results of the simulating chaotic signal and measured sunspot signals show that, the proposed method can filter the noise of chaotic signal well, and the intrinsic chaotic characteristic of the original signal can be recovered very well. Compared with the EEMD denoising method and the single threshold SWT denoising method, the proposed method can obtain better denoising result for the chaotic signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JCoPh.281..876B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JCoPh.281..876B"><span>A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhrawy, A. H.; Zaky, M. A.</p> <p>2015-01-01</p> <p>In this paper, we propose and analyze an efficient operational formulation of spectral tau method for multi-term time-space fractional differential equation with Dirichlet boundary conditions. The shifted Jacobi operational matrices of Riemann-Liouville fractional integral, left-sided and right-sided Caputo fractional derivatives are presented. By using these operational matrices, we propose a shifted Jacobi tau method for both temporal and spatial discretizations, which allows us to present an efficient spectral method for solving such problem. Furthermore, the error is estimated and the proposed method has reasonable convergence rates in spatial and temporal discretizations. In addition, some known spectral tau approximations can be derived as special cases from our algorithm if we suitably choose the corresponding special cases of Jacobi parameters θ and ϑ. Finally, in order to demonstrate its accuracy, we compare our method with those reported in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JCoAM.233..922Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JCoAM.233..922Z"><span>Two new modified Gauss-Seidel methods for linear system with M-matrices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Bing; Miao, Shu-Xin</p> <p>2009-12-01</p> <p>In 2002, H. Kotakemori et al. proposed the modified Gauss-Seidel (MGS) method for solving the linear system with the preconditioner [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner () J. Comput. Appl. Math. 145 (2002) 373-378]. Since this preconditioner is constructed by only the largest element on each row of the upper triangular part of the coefficient matrix, the preconditioning effect is not observed on the nth row. In the present paper, to deal with this drawback, we propose two new preconditioners. The convergence and comparison theorems of the modified Gauss-Seidel methods with these two preconditioners for solving the linear system are established. The convergence rates of the new proposed preconditioned methods are compared. In addition, numerical experiments are used to show the effectiveness of the new MGS methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25004902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25004902"><span>Spectrofluorimetric determination of 3-methylflavone-8-carboxylic acid, the main active metabolite of flavoxate hydrochloride in human urine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zaazaa, Hala E; Mohamed, Afaf O; Hawwam, Maha A; Abdelkawy, Mohamed</p> <p>2015-01-05</p> <p>A simple, sensitive and selective spectrofluorimetric method has been developed for the determination of 3-methylflavone-8-carboxylic acid as the main active metabolite of flavoxate hydrochloride in human urine. The proposed method was based on the measurement of the native fluorescence of the metabolite in methanol at an emission wavelength 390 nm, upon excitation at 338 nm. Moreover, the urinary excretion pattern has been calculated using the proposed method. Taking the advantage that 3-methylflavone-8-carboxylic acid is also the alkaline degradate, the proposed method was applied to in vitro determination of flavoxate hydrochloride in tablets dosage form via the measurement of its corresponding degradate. The method was validated in accordance with the ICH requirements and statistically compared to the official method with no significant difference in performance. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23727675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23727675"><span>Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A</p> <p>2013-09-01</p> <p>Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016rewa.book..202M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016rewa.book..202M"><span>Critical Analysis of Existing Recyclability Assessment Methods for New Products in Order to Define a Reference Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maris, E.; Froelich, D.</p> <p></p> <p>The designers of products subject to the European regulations on waste have an obligation to improve the recyclability of their products from the very first design stages. The statutory texts refer to ISO standard 22 628, which proposes a method to calculate vehicle recyclability. There are several scientific studies that propose other calculation methods as well. Yet the feedback from the CREER club, a group of manufacturers and suppliers expert in ecodesign and recycling, is that the product recyclability calculation method proposed in this standard is not satisfactory, since only a mass indicator is used, the calculation scope is not clearly defined, and common data on the recycling industry does not exist to allow comparable calculations to be made for different products. For these reasons, it is difficult for manufacturers to have access to a method and common data for calculation purposes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10616E..0XZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10616E..0XZ"><span>Spatio-temporal alignment of multiple sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Tinghua; Ni, Guoqiang; Fan, Guihua; Sun, Huayan; Yang, Biao</p> <p>2018-01-01</p> <p>Aiming to achieve the spatio-temporal alignment of multi sensor on the same platform for space target observation, a joint spatio-temporal alignment method is proposed. To calibrate the parameters and measure the attitude of cameras, an astronomical calibration method is proposed based on star chart simulation and collinear invariant features of quadrilateral diagonal between the observed star chart. In order to satisfy a temporal correspondence and spatial alignment similarity simultaneously, the method based on the astronomical calibration and attitude measurement in this paper formulates the video alignment to fold the spatial and temporal alignment into a joint alignment framework. The advantage of this method is reinforced by exploiting the similarities and prior knowledge of velocity vector field between adjacent frames, which is calculated by the SIFT Flow algorithm. The proposed method provides the highest spatio-temporal alignment accuracy compared to the state-of-the-art methods on sequences recorded from multi sensor at different times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1004a2022Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1004a2022Z"><span>Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue</p> <p>2018-04-01</p> <p>The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OptCo.350...33L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OptCo.350...33L"><span>Fast cat-eye effect target recognition based on saliency extraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Li; Ren, Jianlin; Wang, Xingbin</p> <p>2015-09-01</p> <p>Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22247670','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22247670"><span>Finger vein recognition using local line binary pattern.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin</p> <p>2011-01-01</p> <p>In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.975a2033J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.975a2033J"><span>New method for characterization of retroreflective materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Junior, O. S.; Silva, E. S.; Barros, K. N.; Vitro, J. G.</p> <p>2018-03-01</p> <p>The present article aims to propose a new method of analyzing the properties of retroreflective materials using a goniophotometer. The aim is to establish a higher resolution test method with a wide range of viewing angles, taking into account a three-dimensional analysis of the retroreflection of the tested material. The validation was performed by collecting data from specimens collected from materials used in safety clothing and road signs. The approach showed that the results obtained by the proposed method are comparable to the results obtained by the normative protocols, representing an evolution for the metrology of these materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28074352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28074352"><span>Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aggarwal, Priya; Shrivastava, Parth; Kabra, Tanay; Gupta, Anubha</p> <p>2017-03-01</p> <p>This paper presents a new accelerated fMRI reconstruction method, namely, OptShrink LR + S method that reconstructs undersampled fMRI data using a linear combination of low-rank and sparse components. The low-rank component has been estimated using non-convex optimal singular value shrinkage algorithm, while the sparse component has been estimated using convex l 1 minimization. The performance of the proposed method is compared with the existing state-of-the-art algorithms on real fMRI dataset. The proposed OptShrink LR + S method yields good qualitative and quantitative results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28991172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28991172"><span>Improving the Accuracy and Training Speed of Motor Imagery Brain-Computer Interfaces Using Wavelet-Based Combined Feature Vectors and Gaussian Mixture Model-Supervectors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, David; Park, Sang-Hoon; Lee, Sang-Goog</p> <p>2017-10-07</p> <p>In this paper, we propose a set of wavelet-based combined feature vectors and a Gaussian mixture model (GMM)-supervector to enhance training speed and classification accuracy in motor imagery brain-computer interfaces. The proposed method is configured as follows: first, wavelet transforms are applied to extract the feature vectors for identification of motor imagery electroencephalography (EEG) and principal component analyses are used to reduce the dimensionality of the feature vectors and linearly combine them. Subsequently, the GMM universal background model is trained by the expectation-maximization (EM) algorithm to purify the training data and reduce its size. Finally, a purified and reduced GMM-supervector is used to train the support vector machine classifier. The performance of the proposed method was evaluated for three different motor imagery datasets in terms of accuracy, kappa, mutual information, and computation time, and compared with the state-of-the-art algorithms. The results from the study indicate that the proposed method achieves high accuracy with a small amount of training data compared with the state-of-the-art algorithms in motor imagery EEG classification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25880524','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25880524"><span>Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A</p> <p>2015-06-01</p> <p>Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptLE..88..167G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptLE..88..167G"><span>Single-step scanner-based digital image correlation (SB-DIC) method for large deformation mapping in rubber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goh, C. P.; Ismail, H.; Yen, K. S.; Ratnam, M. M.</p> <p>2017-01-01</p> <p>The incremental digital image correlation (DIC) method has been applied in the past to determine strain in large deformation materials like rubber. This method is, however, prone to cumulative errors since the total displacement is determined by combining the displacements in numerous stages of the deformation. In this work, a method of mapping large strains in rubber using DIC in a single-step without the need for a series of deformation images is proposed. The reference subsets were deformed using deformation factors obtained from the fitted mean stress-axial stretch ratio curve obtained experimentally and the theoretical Poisson function. The deformed reference subsets were then correlated with the deformed image after loading. The recently developed scanner-based digital image correlation (SB-DIC) method was applied on dumbbell rubber specimens to obtain the in-plane displacement fields up to 350% axial strain. Comparison of the mean axial strains determined from the single-step SB-DIC method with those from the incremental SB-DIC method showed an average difference of 4.7%. Two rectangular rubber specimens containing circular and square holes were deformed and analysed using the proposed method. The resultant strain maps from the single-step SB-DIC method were compared with the results of finite element modeling (FEM). The comparison shows that the proposed single-step SB-DIC method can be used to map the strain distribution accurately in large deformation materials like rubber at much shorter time compared to the incremental DIC method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25978011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25978011"><span>A comparative study of smart spectrophotometric methods for simultaneous determination of sitagliptin phosphate and metformin hydrochloride in their binary mixture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lotfy, Hayam M; Mohamed, Dalia; Mowaka, Shereen</p> <p>2015-01-01</p> <p>Simple, specific, accurate and precise spectrophotometric methods were developed and validated for the simultaneous determination of the oral antidiabetic drugs; sitagliptin phosphate (STG) and metformin hydrochloride (MET) in combined pharmaceutical formulations. Three methods were manipulating ratio spectra namely; ratio difference (RD), ratio subtraction (RS) and a novel approach of induced amplitude modulation (IAM) methods. The first two methods were used for determination of STG, while MET was directly determined by measuring its absorbance at λmax 232 nm. However, (IAM) was used for the simultaneous determination of both drugs. Moreover, another three methods were developed based on derivative spectroscopy followed by mathematical manipulation steps namely; amplitude factor (P-factor), amplitude subtraction (AS) and modified amplitude subtraction (MAS). In addition, in this work the novel sample enrichment technique named spectrum addition was adopted. The proposed spectrophotometric methods did not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined. The selectivity of the developed methods was investigated by analyzing laboratory prepared mixtures of the drugs and their combined pharmaceutical formulations. Standard deviation values were less than 1.5 in the assay of raw materials and tablets. The obtained results were statistically compared to that of a reported spectrophotometric method. The statistical comparison showed that there was no significant difference between the proposed methods and the reported one regarding both accuracy and precision. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1235674-calculation-grain-boundary-normals-directly-from-microstructure-images','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1235674-calculation-grain-boundary-normals-directly-from-microstructure-images"><span>Calculation of grain boundary normals directly from 3D microstructure images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; ...</p> <p>2015-03-11</p> <p>The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4299052','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4299052"><span>Study of the Algorithm of Backtracking Decoupling and Adaptive Extended Kalman Filter Based on the Quaternion Expanded to the State Variable for Underwater Glider Navigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping</p> <p>2014-01-01</p> <p>High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method. PMID:25479331</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25479331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25479331"><span>Study of the algorithm of backtracking decoupling and adaptive extended Kalman filter based on the quaternion expanded to the state variable for underwater glider navigation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Haoqian; Chen, Xiyuan; Zhou, Zhikai; Xu, Yuan; Lv, Caiping</p> <p>2014-12-03</p> <p>High accuracy attitude and position determination is very important for underwater gliders. The cross-coupling among three attitude angles (heading angle, pitch angle and roll angle) becomes more serious when pitch or roll motion occurs. This cross-coupling makes attitude angles inaccurate or even erroneous. Therefore, the high accuracy attitude and position determination becomes a difficult problem for a practical underwater glider. To solve this problem, this paper proposes backing decoupling and adaptive extended Kalman filter (EKF) based on the quaternion expanded to the state variable (BD-AEKF). The backtracking decoupling can eliminate effectively the cross-coupling among the three attitudes when pitch or roll motion occurs. After decoupling, the adaptive extended Kalman filter (AEKF) based on quaternion expanded to the state variable further smoothes the filtering output to improve the accuracy and stability of attitude and position determination. In order to evaluate the performance of the proposed BD-AEKF method, the pitch and roll motion are simulated and the proposed method performance is analyzed and compared with the traditional method. Simulation results demonstrate the proposed BD-AEKF performs better. Furthermore, for further verification, a new underwater navigation system is designed, and the three-axis non-magnetic turn table experiments and the vehicle experiments are done. The results show that the proposed BD-AEKF is effective in eliminating cross-coupling and reducing the errors compared with the conventional method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChJME..28..173J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChJME..28..173J"><span>New knowledge network evaluation method for design rationale management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jing, Shikai; Zhan, Hongfei; Liu, Jihong; Wang, Kuan; Jiang, Hao; Zhou, Jingtao</p> <p>2015-01-01</p> <p>Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAr.XL4c..63H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAr.XL4c..63H"><span>Key Spatial Relations-based Focused Crawling (KSRs-FC) for Borderlands Situation Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, D. Y.; Wu, H.; Chen, J.; Li, R.</p> <p>2013-11-01</p> <p>Place names play an important role in Borderlands Situation topics, while current focused crawling methods treat them in the same way as other common keywords, which may lead to the omission of many useful web pages. In the paper, place names in web pages and their spatial relations were firstly discussed. Then, a focused crawling method named KSRs-FC was proposed to deal with the collection of situation information about borderlands. In this method, place names and common keywords were represented separately, and some of the spatial relations related to web pages crawling were used in the relevance calculation between the given topic and web pages. Furthermore, an information collection system for borderlands situation analysis was developed based on KSRs-FC. Finally, F-Score method was adopted to quantitatively evaluate this method by comparing with traditional method. Experimental results showed that the F-Score value of the proposed method increased by 11% compared to traditional method with the same sample data. Obviously, KSRs-FC method can effectively reduce the misjudgement of relevant webpages.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4205230','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4205230"><span>Complex-Difference Constrained Compressed Sensing Reconstruction for Accelerated PRF Thermometry with Application to MRI Induced RF Heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cao, Zhipeng; Oh, Sukhoon; Otazo, Ricardo; Sica, Christopher T.; Griswold, Mark A.; Collins, Christopher M.</p> <p>2014-01-01</p> <p>Purpose Introduce a novel compressed sensing reconstruction method to accelerate proton resonance frequency (PRF) shift temperature imaging for MRI induced radiofrequency (RF) heating evaluation. Methods A compressed sensing approach that exploits sparsity of the complex difference between post-heating and baseline images is proposed to accelerate PRF temperature mapping. The method exploits the intra- and inter-image correlations to promote sparsity and remove shared aliasing artifacts. Validations were performed on simulations and retrospectively undersampled data acquired in ex-vivo and in-vivo studies by comparing performance with previously proposed techniques. Results The proposed complex difference constrained compressed sensing reconstruction method improved the reconstruction of smooth and local PRF temperature change images compared to various available reconstruction methods in a simulation study, a retrospective study with heating of a human forearm in vivo, and a retrospective study with heating of a sample of beef ex vivo . Conclusion Complex difference based compressed sensing with utilization of a fully-sampled baseline image improves the reconstruction accuracy for accelerated PRF thermometry. It can be used to improve the volumetric coverage and temporal resolution in evaluation of RF heating due to MRI, and may help facilitate and validate temperature-based methods for safety assurance. PMID:24753099</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27271626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27271626"><span>Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin</p> <p>2016-06-03</p> <p>This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934241','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4934241"><span>Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Son, Kyou Jung; Hong, Sung Hyeuck; Moon, Seong-Pil; Chang, Tae Gyu; Cho, Hanjin</p> <p>2016-01-01</p> <p>This paper proposed segmentized clear channel assessment (CCA) which increases the performance of IEEE 802.15.4 networks by improving carrier sense multiple access with collision avoidance (CSMA/CA). Improving CSMA/CA is important because the low-power consumption feature and throughput performance of IEEE 802.15.4 are greatly affected by CSMA/CA behavior. To improve the performance of CSMA/CA, this paper focused on increasing the chance to transmit a packet by assessing precise channel status. The previous method used in CCA, which is employed by CSMA/CA, assesses the channel by measuring the energy level of the channel. However, this method shows limited channel assessing behavior, which comes from simple threshold dependent channel busy evaluation. The proposed method solves this limited channel decision problem by dividing CCA into two groups. Two groups of CCA compare their energy levels to get precise channel status. To evaluate the performance of the segmentized CCA method, a Markov chain model has been developed. The validation of analytic results is confirmed by comparing them with simulation results. Additionally, simulation results show the proposed method is improving a maximum 8.76% of throughput and decreasing a maximum 3.9% of the average number of CCAs per packet transmission than the IEEE 802.15.4 CCA method. PMID:27271626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17443710','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17443710"><span>Improving estimates of genetic maps: a meta-analysis-based approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stewart, William C L</p> <p>2007-07-01</p> <p>Inaccurate genetic (or linkage) maps can reduce the power to detect linkage, increase type I error, and distort haplotype and relationship inference. To improve the accuracy of existing maps, I propose a meta-analysis-based method that combines independent map estimates into a single estimate of the linkage map. The method uses the variance of each independent map estimate to combine them efficiently, whether the map estimates use the same set of markers or not. As compared with a joint analysis of the pooled genotype data, the proposed method is attractive for three reasons: (1) it has comparable efficiency to the maximum likelihood map estimate when the pooled data are homogeneous; (2) relative to existing map estimation methods, it can have increased efficiency when the pooled data are heterogeneous; and (3) it avoids the practical difficulties of pooling human subjects data. On the basis of simulated data modeled after two real data sets, the proposed method can reduce the sampling variation of linkage maps commonly used in whole-genome linkage scans. Furthermore, when the independent map estimates are also maximum likelihood estimates, the proposed method performs as well as or better than when they are estimated by the program CRIMAP. Since variance estimates of maps may not always be available, I demonstrate the feasibility of three different variance estimators. Overall, the method should prove useful to investigators who need map positions for markers not contained in publicly available maps, and to those who wish to minimize the negative effects of inaccurate maps. Copyright 2007 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4240256','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4240256"><span>Design of k-Space Channel Combination Kernels and Integration with Parallel Imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Beatty, Philip J.; Chang, Shaorong; Holmes, James H.; Wang, Kang; Brau, Anja C. S.; Reeder, Scott B.; Brittain, Jean H.</p> <p>2014-01-01</p> <p>Purpose In this work, a new method is described for producing local k-space channel combination kernels using a small amount of low-resolution multichannel calibration data. Additionally, this work describes how these channel combination kernels can be combined with local k-space unaliasing kernels produced by the calibration phase of parallel imaging methods such as GRAPPA, PARS and ARC. Methods Experiments were conducted to evaluate both the image quality and computational efficiency of the proposed method compared to a channel-by-channel parallel imaging approach with image-space sum-of-squares channel combination. Results Results indicate comparable image quality overall, with some very minor differences seen in reduced field-of-view imaging. It was demonstrated that this method enables a speed up in computation time on the order of 3–16X for 32-channel data sets. Conclusion The proposed method enables high quality channel combination to occur earlier in the reconstruction pipeline, reducing computational and memory requirements for image reconstruction. PMID:23943602</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>