Sample records for proposed method effectively

  1. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    PubMed

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  2. Total Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise

    PubMed Central

    Liu, Gang; Huang, Ting-Zhu; Liu, Jun; Lv, Xiao-Guang

    2015-01-01

    The total variation (TV) regularization method is an effective method for image deblurring in preserving edges. However, the TV based solutions usually have some staircase effects. In order to alleviate the staircase effects, we propose a new model for restoring blurred images under impulse noise. The model consists of an ℓ1-fidelity term and a TV with overlapping group sparsity (OGS) regularization term. Moreover, we impose a box constraint to the proposed model for getting more accurate solutions. The solving algorithm for our model is under the framework of the alternating direction method of multipliers (ADMM). We use an inner loop which is nested inside the majorization minimization (MM) iteration for the subproblem of the proposed method. Compared with other TV-based methods, numerical results illustrate that the proposed method can significantly improve the restoration quality, both in terms of peak signal-to-noise ratio (PSNR) and relative error (ReE). PMID:25874860

  3. Treatment selection in a randomized clinical trial via covariate-specific treatment effect curves.

    PubMed

    Ma, Yunbei; Zhou, Xiao-Hua

    2017-02-01

    For time-to-event data in a randomized clinical trial, we proposed two new methods for selecting an optimal treatment for a patient based on the covariate-specific treatment effect curve, which is used to represent the clinical utility of a predictive biomarker. To select an optimal treatment for a patient with a specific biomarker value, we proposed pointwise confidence intervals for each covariate-specific treatment effect curve and the difference between covariate-specific treatment effect curves of two treatments. Furthermore, to select an optimal treatment for a future biomarker-defined subpopulation of patients, we proposed confidence bands for each covariate-specific treatment effect curve and the difference between each pair of covariate-specific treatment effect curve over a fixed interval of biomarker values. We constructed the confidence bands based on a resampling technique. We also conducted simulation studies to evaluate finite-sample properties of the proposed estimation methods. Finally, we illustrated the application of the proposed method in a real-world data set.

  4. A general method to determine sampling windows for nonlinear mixed effects models with an application to population pharmacokinetic studies.

    PubMed

    Foo, Lee Kien; McGree, James; Duffull, Stephen

    2012-01-01

    Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Single underwater image enhancement based on color cast removal and visibility restoration

    NASA Astrophysics Data System (ADS)

    Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian

    2016-05-01

    Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.

  6. Embedded System Implementation of Sound Localization in Proximal Region

    NASA Astrophysics Data System (ADS)

    Iwanaga, Nobuyuki; Matsumura, Tomoya; Yoshida, Akihiro; Kobayashi, Wataru; Onoye, Takao

    A sound localization method in the proximal region is proposed, which is based on a low-cost 3D sound localization algorithm with the use of head-related transfer functions (HRTFs). The auditory parallax model is applied to the current algorithm so that more accurate HRTFs can be used for sound localization in the proximal region. In addition, head-shadowing effects based on rigid-sphere model are reproduced in the proximal region by means of a second-order IIR filter. A subjective listening test demonstrates the effectiveness of the proposed method. Embedded system implementation of the proposed method is also described claiming that the proposed method improves sound effects in the proximal region only with 5.1% increase of memory capacity and 8.3% of computational costs.

  7. Proposal of Evolutionary Simplex Method for Global Optimization Problem

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki

    To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.

  8. Geometrical force constraint method for vessel and x-ray angiogram simulation.

    PubMed

    Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian

    2016-01-01

    This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method.

  9. Automatic quantification of morphological features for hepatic trabeculae analysis in stained liver specimens

    PubMed Central

    Ishikawa, Masahiro; Murakami, Yuri; Ahi, Sercan Taha; Yamaguchi, Masahiro; Kobayashi, Naoki; Kiyuna, Tomoharu; Yamashita, Yoshiko; Saito, Akira; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie

    2016-01-01

    Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear–cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade. PMID:27335894

  10. H∞ control of combustion in diesel engines using a discrete dynamics model

    NASA Astrophysics Data System (ADS)

    Hirata, Mitsuo; Ishizuki, Sota; Suzuki, Masayasu

    2016-09-01

    This paper proposes a control method for combustion in diesel engines using a discrete dynamics model. The proposed two-degree-of-freedom control scheme achieves not only good feedback properties such as disturbance suppression and robust stability but also a good transient response. The method includes a feedforward controller constructed from the inverse model of the plant, and a feedback controller designed by an Hcontrol method, which reduces the effect of the turbocharger lag. The effectiveness of the proposed method is evaluated via numerical simulations.

  11. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    PubMed

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.

  12. 3D digital image correlation using a single 3CCD colour camera and dichroic filter

    NASA Astrophysics Data System (ADS)

    Zhong, F. Q.; Shao, X. X.; Quan, C.

    2018-04-01

    In recent years, three-dimensional digital image correlation methods using a single colour camera have been reported. In this study, we propose a simplified system by employing a dichroic filter (DF) to replace the beam splitter and colour filters. The DF can be used to combine two views from different perspectives reflected by two planar mirrors and eliminate their interference. A 3CCD colour camera is then used to capture two different views simultaneously via its blue and red channels. Moreover, the measurement accuracy of the proposed method is higher since the effect of refraction is reduced. Experiments are carried out to verify the effectiveness of the proposed method. It is shown that the interference between the blue and red views is insignificant. In addition, the measurement accuracy of the proposed method is validated on the rigid body displacement. The experimental results demonstrate that the measurement accuracy of the proposed method is higher compared with the reported methods using a single colour camera. Finally, the proposed method is employed to measure the in- and out-of-plane displacements of a loaded plastic board. The re-projection errors of the proposed method are smaller than those of the reported methods using a single colour camera.

  13. Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients.

    PubMed

    Chen, Weitian; Sica, Christopher T; Meyer, Craig H

    2008-11-01

    Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.

  14. Staff Study on Cost and Training Effectiveness of Proposed Training Systems. TAEG Report 1.

    ERIC Educational Resources Information Center

    Naval Training Equipment Center, Orlando, FL. Training Analysis and Evaluation Group.

    A study began the development and initial testing of a method for predicting cost and training effectiveness of proposed training programs. A prototype Training Effectiveness and Cost Effectiveness Prediction (TECEP) model was developed and tested. The model was a method for optimization of training media allocation on the basis of fixed training…

  15. Numerical solution of sixth-order boundary-value problems using Legendre wavelet collocation method

    NASA Astrophysics Data System (ADS)

    Sohaib, Muhammad; Haq, Sirajul; Mukhtar, Safyan; Khan, Imad

    2018-03-01

    An efficient method is proposed to approximate sixth order boundary value problems. The proposed method is based on Legendre wavelet in which Legendre polynomial is used. The mechanism of the method is to use collocation points that converts the differential equation into a system of algebraic equations. For validation two test problems are discussed. The results obtained from proposed method are quite accurate, also close to exact solution, and other different methods. The proposed method is computationally more effective and leads to more accurate results as compared to other methods from literature.

  16. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  17. Effectiveness Evaluation Method of Anti-Radiation Missile against Active Decoy

    NASA Astrophysics Data System (ADS)

    Tang, Junyao; Cao, Fei; Li, Sijia

    2017-06-01

    In the problem of anti-radiation missile against active decoy, whether the ARM can effectively kill the target radiation source and bait is an important index for evaluating the operational effectiveness of the missile. Aiming at this problem, this paper proposes a method to evaluate the effect of ARM against active decoy. Based on the calculation of ARM’s ability to resist the decoy, the paper proposes a method to evaluate the decoy resistance based on the key components of the hitting radar. The method has the advantages of scientific and reliability.

  18. Proposal on Calculation of Ventilation Threshold Using Non-contact Respiration Measurement with Pattern Light Projection

    NASA Astrophysics Data System (ADS)

    Aoki, Hirooki; Ichimura, Shiro; Fujiwara, Toyoki; Kiyooka, Satoru; Koshiji, Kohji; Tsuzuki, Keishi; Nakamura, Hidetoshi; Fujimoto, Hideo

    We proposed a calculation method of the ventilation threshold using the non-contact respiration measurement with dot-matrix pattern light projection under pedaling exercise. The validity and effectiveness of our proposed method is examined by simultaneous measurement with the expiration gas analyzer. The experimental result showed that the correlation existed between the quasi ventilation thresholds calculated by our proposed method and the ventilation thresholds calculated by the expiration gas analyzer. This result indicates the possibility of the non-contact measurement of the ventilation threshold by the proposed method.

  19. Mapping Urban Environmental Noise Using Smartphones.

    PubMed

    Zuo, Jinbo; Xia, Hao; Liu, Shuo; Qiao, Yanyou

    2016-10-13

    Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution.

  20. Mapping Urban Environmental Noise Using Smartphones

    PubMed Central

    Zuo, Jinbo; Xia, Hao; Liu, Shuo; Qiao, Yanyou

    2016-01-01

    Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution. PMID:27754359

  1. A simple method for assessing occupational exposure via the one-way random effects model.

    PubMed

    Krishnamoorthy, K; Mathew, Thomas; Peng, Jie

    2016-11-01

    A one-way random effects model is postulated for the log-transformed shift-long personal exposure measurements, where the random effect in the model represents an effect due to the worker. Simple closed-form confidence intervals are proposed for the relevant parameters of interest using the method of variance estimates recovery (MOVER). The performance of the confidence bounds is evaluated and compared with those based on the generalized confidence interval approach. Comparison studies indicate that the proposed MOVER confidence bounds are better than the generalized confidence bounds for the overall mean exposure and an upper percentile of the exposure distribution. The proposed methods are illustrated using a few examples involving industrial hygiene data.

  2. Improved remote gaze estimation using corneal reflection-adaptive geometric transforms

    NASA Astrophysics Data System (ADS)

    Ma, Chunfei; Baek, Seung-Jin; Choi, Kang-A.; Ko, Sung-Jea

    2014-05-01

    Recently, the remote gaze estimation (RGE) technique has been widely applied to consumer devices as a more natural interface. In general, the conventional RGE method estimates a user's point of gaze using a geometric transform, which represents the relationship between several infrared (IR) light sources and their corresponding corneal reflections (CRs) in the eye image. Among various methods, the homography normalization (HN) method achieves state-of-the-art performance. However, the geometric transform of the HN method requiring four CRs is infeasible for the case when fewer than four CRs are available. To solve this problem, this paper proposes a new RGE method based on three alternative geometric transforms, which are adaptive to the number of CRs. Unlike the HN method, the proposed method not only can operate with two or three CRs, but can also provide superior accuracy. To further enhance the performance, an effective error correction method is also proposed. By combining the introduced transforms with the error-correction method, the proposed method not only provides high accuracy and robustness for gaze estimation, but also allows for a more flexible system setup with a different number of IR light sources. Experimental results demonstrate the effectiveness of the proposed method.

  3. Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery.

    PubMed

    Fu, Szu-Wei; Li, Pei-Chun; Lai, Ying-Hui; Yang, Cheng-Chien; Hsieh, Li-Chun; Tsao, Yu

    2017-11-01

    Objective: This paper focuses on machine learning based voice conversion (VC) techniques for improving the speech intelligibility of surgical patients who have had parts of their articulators removed. Because of the removal of parts of the articulator, a patient's speech may be distorted and difficult to understand. To overcome this problem, VC methods can be applied to convert the distorted speech such that it is clear and more intelligible. To design an effective VC method, two key points must be considered: 1) the amount of training data may be limited (because speaking for a long time is usually difficult for postoperative patients); 2) rapid conversion is desirable (for better communication). Methods: We propose a novel joint dictionary learning based non-negative matrix factorization (JD-NMF) algorithm. Compared to conventional VC techniques, JD-NMF can perform VC efficiently and effectively with only a small amount of training data. Results: The experimental results demonstrate that the proposed JD-NMF method not only achieves notably higher short-time objective intelligibility (STOI) scores (a standardized objective intelligibility evaluation metric) than those obtained using the original unconverted speech but is also significantly more efficient and effective than a conventional exemplar-based NMF VC method. Conclusion: The proposed JD-NMF method may outperform the state-of-the-art exemplar-based NMF VC method in terms of STOI scores under the desired scenario. Significance: We confirmed the advantages of the proposed joint training criterion for the NMF-based VC. Moreover, we verified that the proposed JD-NMF can effectively improve the speech intelligibility scores of oral surgery patients. Objective: This paper focuses on machine learning based voice conversion (VC) techniques for improving the speech intelligibility of surgical patients who have had parts of their articulators removed. Because of the removal of parts of the articulator, a patient's speech may be distorted and difficult to understand. To overcome this problem, VC methods can be applied to convert the distorted speech such that it is clear and more intelligible. To design an effective VC method, two key points must be considered: 1) the amount of training data may be limited (because speaking for a long time is usually difficult for postoperative patients); 2) rapid conversion is desirable (for better communication). Methods: We propose a novel joint dictionary learning based non-negative matrix factorization (JD-NMF) algorithm. Compared to conventional VC techniques, JD-NMF can perform VC efficiently and effectively with only a small amount of training data. Results: The experimental results demonstrate that the proposed JD-NMF method not only achieves notably higher short-time objective intelligibility (STOI) scores (a standardized objective intelligibility evaluation metric) than those obtained using the original unconverted speech but is also significantly more efficient and effective than a conventional exemplar-based NMF VC method. Conclusion: The proposed JD-NMF method may outperform the state-of-the-art exemplar-based NMF VC method in terms of STOI scores under the desired scenario. Significance: We confirmed the advantages of the proposed joint training criterion for the NMF-based VC. Moreover, we verified that the proposed JD-NMF can effectively improve the speech intelligibility scores of oral surgery patients.

  4. Color transfer method preserving perceived lightness

    NASA Astrophysics Data System (ADS)

    Ueda, Chiaki; Azetsu, Tadahiro; Suetake, Noriaki; Uchino, Eiji

    2016-06-01

    Color transfer originally proposed by Reinhard et al. is a method to change the color appearance of an input image by using the color information of a reference image. The purpose of this study is to modify color transfer so that it works well even when the scenes of the input and reference images are not similar. Concretely, a color transfer method with lightness correction and color gamut adjustment is proposed. The lightness correction is applied to preserve the perceived lightness which is explained by the Helmholtz-Kohlrausch (H-K) effect. This effect is the phenomenon that vivid colors are perceived as brighter than dull colors with the same lightness. Hence, when the chroma is changed by image processing, the perceived lightness is also changed even if the physical lightness is preserved after the image processing. In the proposed method, by considering the H-K effect, color transfer that preserves the perceived lightness after processing is realized. Furthermore, color gamut adjustment is introduced to address the color gamut problem, which is caused by color space conversion. The effectiveness of the proposed method is verified by performing some experiments.

  5. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols.

    PubMed

    Yoon, Ki Young; Park, Chul Woo; Byeon, Jeong Hoon; Hwang, Jungho

    2010-03-01

    We proposed a rapid method to estimate the efficacies of air controlling devices in situ using ATP bioluminescence in combination with an inertial impactor. The inertial impactor was designed to have 1 mum of cutoff diameter, and its performance was estimated analytically, numerically, and experimentally. The proposed method was characterized using Staphylococcus epidermidis, which was aerosolized with a nebulizer. The bioaerosol concentrations were estimated within 25 min using the proposed method without a culturing process, which requires several days for colony formation. A linear relationship was obtained between the results of the proposed ATP method (RLU/m(3)) and the conventional culture-based method (CFU/m(3)), with R(2) 0.9283. The proposed method was applied to estimate the concentration of indoor bioaerosols, which were identified as a mixture of various microbial species including bacteria, fungi, and actinomycetes, in an occupational indoor environment, controlled by mechanical ventilation and an air cleaner. Consequently, the proposed method showed a linearity with the culture-based method for indoor bioaerosols with R(2) 0.8189, even though various kinds of microorganisms existed in the indoor air. The proposed method may be effective in monitoring the changes of relative concentration of indoor bioaerosols and estimating the effectiveness of air control devices in indoor environments.

  6. A spatial scan statistic for multiple clusters.

    PubMed

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2011-10-01

    Spatial scan statistics are commonly used for geographical disease surveillance and cluster detection. While there are multiple clusters coexisting in the study area, they become difficult to detect because of clusters' shadowing effect to each other. The recently proposed sequential method showed its better power for detecting the second weaker cluster, but did not improve the ability of detecting the first stronger cluster which is more important than the second one. We propose a new extension of the spatial scan statistic which could be used to detect multiple clusters. Through constructing two or more clusters in the alternative hypothesis, our proposed method accounts for other coexisting clusters in the detecting and evaluating process. The performance of the proposed method is compared to the sequential method through an intensive simulation study, in which our proposed method shows better power in terms of both rejecting the null hypothesis and accurately detecting the coexisting clusters. In the real study of hand-foot-mouth disease data in Pingdu city, a true cluster town is successfully detected by our proposed method, which cannot be evaluated to be statistically significant by the standard method due to another cluster's shadowing effect. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A unified frame of predicting side effects of drugs by using linear neighborhood similarity.

    PubMed

    Zhang, Wen; Yue, Xiang; Liu, Feng; Chen, Yanlin; Tu, Shikui; Zhang, Xining

    2017-12-14

    Drug side effects are one of main concerns in the drug discovery, which gains wide attentions. Investigating drug side effects is of great importance, and the computational prediction can help to guide wet experiments. As far as we known, a great number of computational methods have been proposed for the side effect predictions. The assumption that similar drugs may induce same side effects is usually employed for modeling, and how to calculate the drug-drug similarity is critical in the side effect predictions. In this paper, we present a novel measure of drug-drug similarity named "linear neighborhood similarity", which is calculated in a drug feature space by exploring linear neighborhood relationship. Then, we transfer the similarity from the feature space into the side effect space, and predict drug side effects by propagating known side effect information through a similarity-based graph. Under a unified frame based on the linear neighborhood similarity, we propose method "LNSM" and its extension "LNSM-SMI" to predict side effects of new drugs, and propose the method "LNSM-MSE" to predict unobserved side effect of approved drugs. We evaluate the performances of LNSM and LNSM-SMI in predicting side effects of new drugs, and evaluate the performances of LNSM-MSE in predicting missing side effects of approved drugs. The results demonstrate that the linear neighborhood similarity can improve the performances of side effect prediction, and the linear neighborhood similarity-based methods can outperform existing side effect prediction methods. More importantly, the proposed methods can predict side effects of new drugs as well as unobserved side effects of approved drugs under a unified frame.

  8. Fast conjugate phase image reconstruction based on a Chebyshev approximation to correct for B0 field inhomogeneity and concomitant gradients

    PubMed Central

    Chen, Weitian; Sica, Christopher T.; Meyer, Craig H.

    2008-01-01

    Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method. PMID:18956462

  9. Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.

    PubMed

    Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin

    2014-08-01

    The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.

  10. Guided SAR image despeckling with probabilistic non local weights

    NASA Astrophysics Data System (ADS)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  11. A Method to Analyze How Various Parts of Clouds Influence Each Other's Brightness

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Lau, William (Technical Monitor)

    2001-01-01

    This paper proposes a method for obtaining new information on 3D radiative effects that arise from horizontal radiative interactions in heterogeneous clouds. Unlike current radiative transfer models, it can not only calculate how 3D effects change radiative quantities at any given point, but can also determine which areas contribute to these 3D effects, to what degree, and through what mechanisms. After describing the proposed method, the paper illustrates its new capabilities both for detailed case studies and for the statistical processing of large datasets. Because the proposed method makes it possible, for the first time, to link a particular change in cloud properties to the resulting 3D effect, in future studies it can be used to develop new radiative transfer parameterizations that would consider 3D effects in practical applications currently limited to 1D theory-such as remote sensing of cloud properties and dynamical cloud modeling.

  12. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation.

    PubMed

    Blessy, S A Praylin Selva; Sulochana, C Helen

    2015-01-01

    Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.

  13. Multi-type sensor placement and response reconstruction for building structures: Experimental investigations

    NASA Astrophysics Data System (ADS)

    Hu, Rong-Pan; Xu, You-Lin; Zhan, Sheng

    2018-01-01

    Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.

  14. Contrast-dependent saturation adjustment for outdoor image enhancement.

    PubMed

    Wang, Shuhang; Cho, Woon; Jang, Jinbeum; Abidi, Mongi A; Paik, Joonki

    2017-01-01

    Outdoor images captured in bad-weather conditions usually have poor intensity contrast and color saturation since the light arriving at the camera is severely scattered or attenuated. The task of improving image quality in poor conditions remains a challenge. Existing methods of image quality improvement are usually effective for a small group of images but often fail to produce satisfactory results for a broader variety of images. In this paper, we propose an image enhancement method, which makes it applicable to enhance outdoor images by using content-adaptive contrast improvement as well as contrast-dependent saturation adjustment. The main contribution of this work is twofold: (1) we propose the content-adaptive histogram equalization based on the human visual system to improve the intensity contrast; and (2) we introduce a simple yet effective prior for adjusting the color saturation depending on the intensity contrast. The proposed method is tested with different kinds of images, compared with eight state-of-the-art methods: four enhancement methods and four haze removal methods. Experimental results show the proposed method can more effectively improve the visibility and preserve the naturalness of the images, as opposed to the compared methods.

  15. Sliding-mode control combined with improved adaptive feedforward for wafer scanner

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Yiguang

    2018-03-01

    In this paper, a sliding-mode control method combined with improved adaptive feedforward is proposed for wafer scanner to improve the tracking performance of the closed-loop system. Particularly, In addition to the inverse model, the nonlinear force ripple effect which may degrade the tracking accuracy of permanent magnet linear motor (PMLM) is considered in the proposed method. The dominant position periodicity of force ripple is determined by using the Fast Fourier Transform (FFT) analysis for experimental data and the improved feedforward control is achieved by the online recursive least-squares (RLS) estimation of the inverse model and the force ripple. The improved adaptive feedforward is given in a general form of nth-order model with force ripple effect. This proposed method is motivated by the motion controller design of the long-stroke PMLM and short-stroke voice coil motor for wafer scanner. The stability of the closed-loop control system and the convergence of the motion tracking are guaranteed by the proposed sliding-mode feedback and adaptive feedforward methods theoretically. Comparative experiments on a precision linear motion platform can verify the correctness and effectiveness of the proposed method. The experimental results show that comparing to traditional method the proposed one has better performance of rapidity and robustness, especially for high speed motion trajectory. And, the improvements on both tracking accuracy and settling time can be achieved.

  16. Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors

    PubMed Central

    Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442

  17. Infrared and visible image fusion with spectral graph wavelet transform.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Zong, Jing-guo

    2015-09-01

    Infrared and visible image fusion technique is a popular topic in image analysis because it can integrate complementary information and obtain reliable and accurate description of scenes. Multiscale transform theory as a signal representation method is widely used in image fusion. In this paper, a novel infrared and visible image fusion method is proposed based on spectral graph wavelet transform (SGWT) and bilateral filter. The main novelty of this study is that SGWT is used for image fusion. On the one hand, source images are decomposed by SGWT in its transform domain. The proposed approach not only effectively preserves the details of different source images, but also excellently represents the irregular areas of the source images. On the other hand, a novel weighted average method based on bilateral filter is proposed to fuse low- and high-frequency subbands by taking advantage of spatial consistency of natural images. Experimental results demonstrate that the proposed method outperforms seven recently proposed image fusion methods in terms of both visual effect and objective evaluation metrics.

  18. A BiCGStab2 variant of the IDR(s) method for solving linear equations

    NASA Astrophysics Data System (ADS)

    Abe, Kuniyoshi; Sleijpen, Gerard L. G.

    2012-09-01

    The hybrid Bi-Conjugate Gradient (Bi-CG) methods, such as the BiCG STABilized (BiCGSTAB), BiCGstab(l), BiCGStab2 and BiCG×MR2 methods are well-known solvers for solving a linear equation with a nonsymmetric matrix. The Induced Dimension Reduction (IDR)(s) method has recently been proposed, and it has been reported that IDR(s) is often more effective than the hybrid BiCG methods. IDR(s) combining the stabilization polynomial of BiCGstab(l) has been designed to improve the convergence of the original IDR(s) method. We therefore propose IDR(s) combining the stabilization polynomial of BiCGStab2. Numerical experiments show that our proposed variant of IDR(s) is more effective than the original IDR(s) and BiCGStab2 methods.

  19. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    PubMed

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  20. A temperature compensation methodology for piezoelectric based sensor devices

    NASA Astrophysics Data System (ADS)

    Wang, Dong F.; Lou, Xueqiao; Bao, Aijian; Yang, Xu; Zhao, Ji

    2017-08-01

    A temperature compensation methodology comprising a negative temperature coefficient thermistor with the temperature characteristics of a piezoelectric material is proposed to improve the measurement accuracy of piezoelectric sensing based devices. The piezoelectric disk is characterized by using a disk-shaped structure and is also used to verify the effectiveness of the proposed compensation method. The measured output voltage shows a nearly linear relationship with respect to the applied pressure by introducing the proposed temperature compensation method in a temperature range of 25-65 °C. As a result, the maximum measurement accuracy is observed to be improved by 40%, and the higher the temperature, the more effective the method. The effective temperature range of the proposed method is theoretically analyzed by introducing the constant coefficient of the thermistor (B), the resistance of initial temperature (R0), and the paralleled resistance (Rx). The proposed methodology can not only eliminate the influence of piezoelectric temperature dependent characteristics on the sensing accuracy but also decrease the power consumption of piezoelectric sensing based devices by the simplified sensing structure.

  1. Source separation of municipal solid waste: The effects of different separation methods and citizens' inclination-case study of Changsha, China.

    PubMed

    Chen, Haibin; Yang, Yan; Jiang, Wei; Song, Mengjie; Wang, Ying; Xiang, Tiantian

    2017-02-01

    A case study on the source separation of municipal solid waste (MSW) was performed in Changsha, the capital city of Hunan Province, China. The objective of this study is to analyze the effects of different separation methods and compare their effects with citizens' attitudes and inclination. An effect evaluation method based on accuracy rate and miscellany rate was proposed to study the performance of different separation methods. A large-scale questionnaire survey was conducted to determine citizens' attitudes and inclination toward source separation. Survey result shows that the vast majority of respondents hold consciously positive attitudes toward participation in source separation. Moreover, the respondents ignore the operability of separation methods and would rather choose the complex separation method involving four or more subclassed categories. For the effects of separation methods, the site experiment result demonstrates that the relatively simple separation method involving two categories (food waste and other waste) achieves the best effect with the highest accuracy rate (83.1%) and the lowest miscellany rate (16.9%) among the proposed experimental alternatives. The outcome reflects the inconsistency between people's environmental awareness and behavior. Such inconsistency and conflict may be attributed to the lack of environmental knowledge. Environmental education is assumed to be a fundamental solution to improve the effect of source separation of MSW in Changsha. Important management tips on source separation, including the reformation of the current pay-as-you-throw (PAYT) system, are presented in this work. A case study on the source separation of municipal solid waste was performed in Changsha. An effect evaluation method based on accuracy rate and miscellany rate was proposed to study the performance of different separation methods. The site experiment result demonstrates that the two-category (food waste and other waste) method achieves the best effect. The inconsistency between people's inclination and the effect of source separation exists. The proposed method can be expanded to other cities to determine the most effective separation method during planning stages or to evaluate the performance of running source separation systems.

  2. A Two-Stage Estimation Method for Random Coefficient Differential Equation Models with Application to Longitudinal HIV Dynamic Data.

    PubMed

    Fang, Yun; Wu, Hulin; Zhu, Li-Xing

    2011-07-01

    We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.

  3. Near-Infrared Spectrum Detection of Wheat Gluten Protein Content Based on a Combined Filtering Method.

    PubMed

    Cai, Jian-Hua

    2017-09-01

    To eliminate the random error of the derivative near-IR (NIR) spectrum and to improve model stability and the prediction accuracy of the gluten protein content, a combined method is proposed for pretreatment of the NIR spectrum based on both empirical mode decomposition and the wavelet soft-threshold method. The principle and the steps of the method are introduced and the denoising effect is evaluated. The wheat gluten protein content is calculated based on the denoised spectrum, and the results are compared with those of the nine-point smoothing method and the wavelet soft-threshold method. Experimental results show that the proposed combined method is effective in completing pretreatment of the NIR spectrum, and the proposed method improves the accuracy of detection of wheat gluten protein content from the NIR spectrum.

  4. Artificial Neural Network with Regular Graph for Maximum Air Temperature Forecasting:. the Effect of Decrease in Nodes Degree on Learning

    NASA Astrophysics Data System (ADS)

    Ghaderi, A. H.; Darooneh, A. H.

    The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.

  5. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  6. Exploiting salient semantic analysis for information retrieval

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Meng, Bo; Quan, Changqin; Tu, Xinhui

    2016-11-01

    Recently, many Wikipedia-based methods have been proposed to improve the performance of different natural language processing (NLP) tasks, such as semantic relatedness computation, text classification and information retrieval. Among these methods, salient semantic analysis (SSA) has been proven to be an effective way to generate conceptual representation for words or documents. However, its feasibility and effectiveness in information retrieval is mostly unknown. In this paper, we study how to efficiently use SSA to improve the information retrieval performance, and propose a SSA-based retrieval method under the language model framework. First, SSA model is adopted to build conceptual representations for documents and queries. Then, these conceptual representations and the bag-of-words (BOW) representations can be used in combination to estimate the language models of queries and documents. The proposed method is evaluated on several standard text retrieval conference (TREC) collections. Experiment results on standard TREC collections show the proposed models consistently outperform the existing Wikipedia-based retrieval methods.

  7. Max-margin multiattribute learning with low-rank constraint.

    PubMed

    Zhang, Qiang; Chen, Lin; Li, Baoxin

    2014-07-01

    Attribute learning has attracted a lot of interests in recent years for its advantage of being able to model high-level concepts with a compact set of midlevel attributes. Real-world objects often demand multiple attributes for effective modeling. Most existing methods learn attributes independently without explicitly considering their intrinsic relatedness. In this paper, we propose max margin multiattribute learning with low-rank constraint, which learns a set of attributes simultaneously, using only relative ranking of the attributes for the data. By learning all the attributes simultaneously through low-rank constraint, the proposed method is able to capture their intrinsic correlation for improved learning; by requiring only relative ranking, the method avoids restrictive binary labels of attributes that are often assumed by many existing techniques. The proposed method is evaluated on both synthetic data and real visual data including a challenging video data set. Experimental results demonstrate the effectiveness of the proposed method.

  8. Simplified paraboloid phase model-based phase tracker for demodulation of a single complex fringe.

    PubMed

    He, A; Deepan, B; Quan, C

    2017-09-01

    A regularized phase tracker (RPT) is an effective method for demodulation of single closed-fringe patterns. However, lengthy calculation time, specially designed scanning strategy, and sign-ambiguity problems caused by noise and saddle points reduce its effectiveness, especially for demodulating large and complex fringe patterns. In this paper, a simplified paraboloid phase model-based regularized phase tracker (SPRPT) is proposed. In SPRPT, first and second phase derivatives are pre-determined by the density-direction-combined method and discrete higher-order demodulation algorithm, respectively. Hence, cost function is effectively simplified to reduce the computation time significantly. Moreover, pre-determined phase derivatives improve the robustness of the demodulation of closed, complex fringe patterns. Thus, no specifically designed scanning strategy is needed; nevertheless, it is robust against the sign-ambiguity problem. The paraboloid phase model also assures better accuracy and robustness against noise. Both the simulated and experimental fringe patterns (obtained using electronic speckle pattern interferometry) are used to validate the proposed method, and a comparison of the proposed method with existing RPT methods is carried out. The simulation results show that the proposed method has achieved the highest accuracy with less computational time. The experimental result proves the robustness and the accuracy of the proposed method for demodulation of noisy fringe patterns and its feasibility for static and dynamic applications.

  9. Bayesian dynamic mediation analysis.

    PubMed

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Estimating Clothing Thermal Insulation Using an Infrared Camera

    PubMed Central

    Lee, Jeong-Hoon; Kim, Young-Keun; Kim, Kyung-Soo; Kim, Soohyun

    2016-01-01

    In this paper, a novel algorithm for estimating clothing insulation is proposed to assess thermal comfort, based on the non-contact and real-time measurements of the face and clothing temperatures by an infrared camera. The proposed method can accurately measure the clothing insulation of various garments under different clothing fit and sitting postures. The proposed estimation method is investigated to be effective to measure its clothing insulation significantly in different seasonal clothing conditions using a paired t-test in 99% confidence interval. Temperatures simulated with the proposed estimated insulation value show closer to the values of actual temperature than those with individual clothing insulation values. Upper clothing’s temperature is more accurate within 3% error and lower clothing’s temperature is more accurate by 3.7%~6.2% error in indoor working scenarios. The proposed algorithm can reflect the effect of air layer which makes insulation different in the calculation to estimate clothing insulation using the temperature of the face and clothing. In future, the proposed method is expected to be applied to evaluate the customized passenger comfort effectively. PMID:27005625

  11. Underwater image enhancement based on the dark channel prior and attenuation compensation

    NASA Astrophysics Data System (ADS)

    Guo, Qingwen; Xue, Lulu; Tang, Ruichun; Guo, Lingrui

    2017-10-01

    Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior (ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.

  12. MO-FG-CAMPUS-IeP2-04: Multiple Penalties with Different Orders for Structure Adaptive CBCT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Q; Cheng, P; Tan, S

    2016-06-15

    Purpose: To combine total variation (TV) and Hessian penalty in a structure adaptive way for cone-beam CT (CBCT) reconstruction. Methods: TV is a widely used first order penalty with good ability in suppressing noise and preserving edges but leads to the staircase effect in regions with smooth intensity transition. The second order Hessian penalty can effectively suppress the staircase effect with extra cost of blurring object edges. To take the best of both penalties we proposed a novel method to combine both for CBCT reconstruction in a structure adaptive way. The proposed method adaptively determined the weight of each penaltymore » according to the geometry of local regions. An specially-designed exponent term with image gradient involved was used to characterize the local geometry such that the weights for Hessian and TV were 1 and 0 respectively at uniform local regions and 0 and 1 at edge regions. For other local regions the weights varied from 0 to 1. The objective functional was minimized using the majorzationminimization approach. We evaluated the proposed method on a modified 3D shepp-logan and a CatPhan 600 phantom. The full-width-at-halfmaximum (FWHM) and contrast-to-noise (CNR) were calculated. Results: For 3D shepp-logan the reconstructed images using TV had an obvious staircase effect while those using the proposed method and Hessian preserved the smooth transition regions well. FWHMs of the proposed method TV and Hessian penalty were 1.75 1.61 and 3.16 respectively, indicating that both TV and the proposed method is able to preserve edges. For CatPhan 600 CNR values of the proposed method were similar to those of TV and Hessian. Conclusion: The proposed method retains favorable properties of TV like preserving edges and also has the ability in better preserving gradual transition structure as Hessian does. All methods performs similarly in suppressing noise. This work was supported in part by National Natural Science Foundation of China (NNSFC) under Grant Nos.60971112 and 61375018 grants from the Cancer Prevention and Research Institute of Texas (RP130109 and RP110562-P2) National Institute of Biomedical Imaging and Bioengineering (R01 EB020366) and a grant from the American Cancer Society (RSG-13-326-01-CCE).« less

  13. Unsupervised Learning —A Novel Clustering Method for Rolling Bearing Faults Identification

    NASA Astrophysics Data System (ADS)

    Kai, Li; Bo, Luo; Tao, Ma; Xuefeng, Yang; Guangming, Wang

    2017-12-01

    To promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rolling bearing. Among these studies, such as artificial neural networks, support vector machines, decision trees and other supervised learning methods are used commonly. These methods can detect the failure of rolling bearing effectively, but to achieve better detection results, it often requires a lot of training samples. Based on above, a novel clustering method is proposed in this paper. This novel method is able to find the correct number of clusters automatically the effectiveness of the proposed method is validated using datasets from rolling element bearings. The diagnosis results show that the proposed method can accurately detect the fault types of small samples. Meanwhile, the diagnosis results are also relative high accuracy even for massive samples.

  14. Multiple-algorithm parallel fusion of infrared polarization and intensity images based on algorithmic complementarity and synergy

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng

    2018-01-01

    Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.

  15. Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.

    PubMed

    Rajan, Jeny; Veraart, Jelle; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan

    2012-12-01

    Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Study on coupled shock absorber system using four electromagnetic dampers

    NASA Astrophysics Data System (ADS)

    Fukumori, Y.; Hayashi, R.; Okano, H.; Suda, Y.; Nakano, K.

    2016-09-01

    Recently, the electromagnetic damper, which is composed of an electric motor, a ball screw, and a nut, was proposed. The electromagnetic damper has high responsiveness, controllability, and energy saving performance. It has been reported that it improved ride comfort and drivability. In addition, the authors have proposed a coupling method of two electromagnetic dampers. The method enables the characteristics of bouncing and rolling or pitching motion of a vehicle to be tuned independently. In this study, the authors increase the number of coupling of electromagnetic dampers from two to four, and propose a method to couple four electromagnetic dampers. The proposed method enables the characteristics of bouncing, rolling and pitching motion of a vehicle to be tuned independently. Basic experiments using proposed circuit and motors and numerical simulations of an automobile equipped with the proposed coupling electromagnetic damper are carried out. The results indicate the proposed method is effective.

  17. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan

    2018-01-01

    In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.

  18. Crystallization mosaic effect generation by superpixels

    NASA Astrophysics Data System (ADS)

    Xie, Yuqi; Bo, Pengbo; Yuan, Ye; Wang, Kuanquan

    2015-03-01

    Art effect generation from digital images using computational tools has been a hot research topic in recent years. We propose a new method for generating crystallization mosaic effects from color images. Two key problems in generating pleasant mosaic effect are studied: grouping pixels into mosaic tiles and arrangement of mosaic tiles adapting to image features. To give visually pleasant mosaic effect, we propose to create mosaic tiles by pixel clustering in feature space of color information, taking compactness of tiles into consideration as well. Moreover, we propose a method for processing feature boundaries in images which gives guidance for arranging mosaic tiles near image features. This method gives nearly uniform shape of mosaic tiles, adapting to feature lines in an esthetic way. The new approach considers both color distance and Euclidean distance of pixels, and thus is capable of giving mosaic tiles in a more pleasing manner. Some experiments are included to demonstrate the computational efficiency of the present method and its capability of generating visually pleasant mosaic tiles. Comparisons with existing approaches are also included to show the superiority of the new method.

  19. Graphic report of the results from propensity score method analyses.

    PubMed

    Shrier, Ian; Pang, Menglan; Platt, Robert W

    2017-08-01

    To increase transparency in studies reporting propensity scores by using graphical methods that clearly illustrate (1) the number of participant exclusions that occur as a consequence of the analytic strategy and (2) whether treatment effects are constant or heterogeneous across propensity scores. We applied graphical methods to a real-world pharmacoepidemiologic study that evaluated the effect of initiating statin medication on the 1-year all-cause mortality post-myocardial infarction. We propose graphical methods to show the consequences of trimming and matching on the exclusion of participants from the analysis. We also propose the use of meta-analytical forest plots to show the magnitude of effect heterogeneity. A density plot with vertical lines demonstrated the proportion of subjects excluded because of trimming. A frequency plot with horizontal lines demonstrated the proportion of subjects excluded because of matching. An augmented forest plot illustrates the amount of effect heterogeneity present in the data. Our proposed techniques present additional and useful information that helps readers understand the sample that is analyzed with propensity score methods and whether effect heterogeneity is present. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Double inverse-weighted estimation of cumulative treatment effects under nonproportional hazards and dependent censoring.

    PubMed

    Schaubel, Douglas E; Wei, Guanghui

    2011-03-01

    In medical studies of time-to-event data, nonproportional hazards and dependent censoring are very common issues when estimating the treatment effect. A traditional method for dealing with time-dependent treatment effects is to model the time-dependence parametrically. Limitations of this approach include the difficulty to verify the correctness of the specified functional form and the fact that, in the presence of a treatment effect that varies over time, investigators are usually interested in the cumulative as opposed to instantaneous treatment effect. In many applications, censoring time is not independent of event time. Therefore, we propose methods for estimating the cumulative treatment effect in the presence of nonproportional hazards and dependent censoring. Three measures are proposed, including the ratio of cumulative hazards, relative risk, and difference in restricted mean lifetime. For each measure, we propose a double inverse-weighted estimator, constructed by first using inverse probability of treatment weighting (IPTW) to balance the treatment-specific covariate distributions, then using inverse probability of censoring weighting (IPCW) to overcome the dependent censoring. The proposed estimators are shown to be consistent and asymptotically normal. We study their finite-sample properties through simulation. The proposed methods are used to compare kidney wait-list mortality by race. © 2010, The International Biometric Society.

  1. Inventory Management for Irregular Shipment of Goods in Distribution Centre

    NASA Astrophysics Data System (ADS)

    Takeda, Hitoshi; Kitaoka, Masatoshi; Usuki, Jun

    2016-01-01

    The shipping amount of commodity goods (Foods, confectionery, dairy products, such as public cosmetic pharmaceutical products) changes irregularly at the distribution center dealing with the general consumer goods. Because the shipment time and the amount of the shipment are irregular, the demand forecast becomes very difficult. For this, the inventory control becomes difficult, too. It cannot be applied to the shipment of the commodity by the conventional inventory control methods. This paper proposes the method for inventory control by cumulative flow curve method. It proposed the method of deciding the order quantity of the inventory control by the cumulative flow curve. Here, it proposes three methods. 1) Power method,2) Polynomial method and 3)Revised Holt's linear method that forecasts data with trends that is a kind of exponential smoothing method. This paper compares the economics of the conventional method, which is managed by the experienced and three new proposed methods. And, the effectiveness of the proposal method is verified from the numerical calculations.

  2. Effective dimension reduction for sparse functional data

    PubMed Central

    YAO, F.; LEI, E.; WU, Y.

    2015-01-01

    Summary We propose a method of effective dimension reduction for functional data, emphasizing the sparse design where one observes only a few noisy and irregular measurements for some or all of the subjects. The proposed method borrows strength across the entire sample and provides a way to characterize the effective dimension reduction space, via functional cumulative slicing. Our theoretical study reveals a bias-variance trade-off associated with the regularizing truncation and decaying structures of the predictor process and the effective dimension reduction space. A simulation study and an application illustrate the superior finite-sample performance of the method. PMID:26566293

  3. Robust finger vein ROI localization based on flexible segmentation.

    PubMed

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-10-24

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.

  4. Robust Finger Vein ROI Localization Based on Flexible Segmentation

    PubMed Central

    Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun

    2013-01-01

    Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769

  5. Talker Localization Based on Interference between Transmitted and Reflected Audible Sound

    NASA Astrophysics Data System (ADS)

    Nakayama, Masato; Nakasako, Noboru; Shinohara, Toshihiro; Uebo, Tetsuji

    In many engineering fields, distance to targets is very important. General distance measurement method uses a time delay between transmitted and reflected waves, but it is difficult to estimate the short distance. On the other hand, the method using phase interference to measure the short distance has been known in the field of microwave radar. Therefore, we have proposed the distance estimation method based on interference between transmitted and reflected audible sound, which can measure the distance between microphone and target with one microphone and one loudspeaker. In this paper, we propose talker localization method based on distance estimation using phase interference. We expand the distance estimation method using phase interference into two microphones (microphone array) in order to estimate talker position. The proposed method can estimate talker position by measuring the distance and direction between target and microphone array. In addition, talker's speech is regarded as a noise in the proposed method. Therefore, we also propose combination of the proposed method and CSP (Cross-power Spectrum Phase analysis) method which is one of the DOA (Direction Of Arrival) estimation methods. We evaluated the performance of talker localization in real environments. The experimental result shows the effectiveness of the proposed method.

  6. Efficient sidelobe ASK based dual-function radar-communications

    NASA Astrophysics Data System (ADS)

    Hassanien, Aboulnasr; Amin, Moeness G.; Zhang, Yimin D.; Ahmad, Fauzia

    2016-05-01

    Recently, dual-function radar-communications (DFRC) has been proposed as means to mitigate the spectrum congestion problem. Existing amplitude-shift keying (ASK) methods for information embedding do not take full advantage of the highest permissable sidelobe level. In this paper, a new ASK-based signaling strategy for enhancing the signal-to-noise ratio (SNR) at the communication receiver is proposed. The proposed method employs one reference waveform and simultaneously transmits a number of orthogonal waveforms equals to the number of 1's in the binary sequence being embedded. 3 dB SNR gain is achieved using the proposed method as compared to existing sidelobe ASK methods. The effectiveness of the proposed information embedding strategy is verified using simulations examples.

  7. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  8. [A retrieval method of drug molecules based on graph collapsing].

    PubMed

    Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z

    2018-04-18

    To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1.32% higher than WCSE on these metrics for top-10 retrieval results, respectively. Moreover, several retrieval cases were presented to intuitively compare with WCSE. The results of the above comparative study demonstrated that the proposed method outperformed the existing method with regard to accuracy and effectiveness. This paper proposes a graph-similarity-based retrieval approach for medicine information. To obtain satisfactory retrieval results, an isomorphism-based algorithm is proposed for dominant subgraph selection based on the subgraph overlapping analysis, as well as an effective and efficient hypergraph representation of molecules. Experiment results demonstrate the effectiveness of the proposed approach.

  9. Color image watermarking against fog effects

    NASA Astrophysics Data System (ADS)

    Chotikawanid, Piyanart; Amornraksa, Thumrongrat

    2017-07-01

    Fog effects in various computer and camera software can partially or fully damage the watermark information within the watermarked image. In this paper, we propose a color image watermarking based on the modification of reflectance component against fog effects. The reflectance component is extracted from the blue color channel in the RGB color space of a host image, and then used to carry a watermark signal. The watermark extraction is blindly achieved by subtracting the estimation of the original reflectance component from the watermarked component. The performance of the proposed watermarking method in terms of wPSNR and NC is evaluated, and then compared with the previous method. The experimental results on robustness against various levels of fog effect, from both computer software and mobile application, demonstrated a higher robustness of our proposed method, compared to the previous one.

  10. Simplified welding distortion analysis for fillet welding using composite shell elements

    NASA Astrophysics Data System (ADS)

    Kim, Mingyu; Kang, Minseok; Chung, Hyun

    2015-09-01

    This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  11. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  12. Smith predictor-based multiple periodic disturbance compensation for long dead-time processes

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Li, Han-Xiong; Shen, Ping

    2018-05-01

    Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.

  13. Switching non-local median filter

    NASA Astrophysics Data System (ADS)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2015-06-01

    This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.

  14. On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows

    NASA Astrophysics Data System (ADS)

    Weng, Chenyang; Boij, Susann; Hanifi, Ardeshir

    2015-10-01

    A numerical method for calculating the wavenumbers of axisymmetric plane waves in rigid-walled low-Mach-number turbulent flows is proposed, which is based on solving the linearized Navier-Stokes equations with an eddy-viscosity model. In addition, theoretical models for the wavenumbers are reviewed, and the main effects (the viscothermal effects, the mean flow convection and refraction effects, the turbulent absorption, and the moderate compressibility effects) which may influence the sound propagation are discussed. Compared to the theoretical models, the proposed numerical method has the advantage of potentially including more effects in the computed wavenumbers. The numerical results of the wavenumbers are compared with the reviewed theoretical models, as well as experimental data from the literature. It shows that the proposed numerical method can give satisfactory prediction of both the real part (phase shift) and the imaginary part (attenuation) of the measured wavenumbers, especially when the refraction effects or the turbulent absorption effects become important.

  15. Generalized disequilibrium test for association in qualitative traits incorporating imprinting effects based on extended pedigrees.

    PubMed

    Li, Jian-Long; Wang, Peng; Fung, Wing Kam; Zhou, Ji-Yuan

    2017-10-16

    For dichotomous traits, the generalized disequilibrium test with the moment estimate of the variance (GDT-ME) is a powerful family-based association method. Genomic imprinting is an important epigenetic phenomenon and currently, there has been increasing interest of incorporating imprinting to improve the test power of association analysis. However, GDT-ME does not take imprinting effects into account, and it has not been investigated whether it can be used for association analysis when the effects indeed exist. In this article, based on a novel decomposition of the genotype score according to the paternal or maternal source of the allele, we propose the generalized disequilibrium test with imprinting (GDTI) for complete pedigrees without any missing genotypes. Then, we extend GDTI and GDT-ME to accommodate incomplete pedigrees with some pedigrees having missing genotypes, by using a Monte Carlo (MC) sampling and estimation scheme to infer missing genotypes given available genotypes in each pedigree, denoted by MCGDTI and MCGDT-ME, respectively. The proposed GDTI and MCGDTI methods evaluate the differences of the paternal as well as maternal allele scores for all discordant relative pairs in a pedigree, including beyond first-degree relative pairs. Advantages of the proposed GDTI and MCGDTI test statistics over existing methods are demonstrated by simulation studies under various simulation settings and by application to the rheumatoid arthritis dataset. Simulation results show that the proposed tests control the size well under the null hypothesis of no association, and outperform the existing methods under various imprinting effect models. The existing GDT-ME and the proposed MCGDT-ME can be used to test for association even when imprinting effects exist. For the application to the rheumatoid arthritis data, compared to the existing methods, MCGDTI identifies more loci statistically significantly associated with the disease. Under complete and incomplete imprinting effect models, our proposed GDTI and MCGDTI methods, by considering the information on imprinting effects and all discordant relative pairs within each pedigree, outperform all the existing test statistics and MCGDTI can recapture much of the missing information. Therefore, MCGDTI is recommended in practice.

  16. Airplane detection in remote sensing images using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Ouyang, Chao; Chen, Zhong; Zhang, Feng; Zhang, Yifei

    2018-03-01

    Airplane detection in remote sensing images remains a challenging problem and has also been taking a great interest to researchers. In this paper we propose an effective method to detect airplanes in remote sensing images using convolutional neural networks. Deep learning methods show greater advantages than the traditional methods with the rise of deep neural networks in target detection, and we give an explanation why this happens. To improve the performance on detection of airplane, we combine a region proposal algorithm with convolutional neural networks. And in the training phase, we divide the background into multi classes rather than one class, which can reduce false alarms. Our experimental results show that the proposed method is effective and robust in detecting airplane.

  17. Tchebichef moment based restoration of Gaussian blurred images.

    PubMed

    Kumar, Ahlad; Paramesran, Raveendran; Lim, Chern-Loon; Dass, Sarat C

    2016-11-10

    With the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation. The estimated blur parameters from the proposed method are used in the split Bregman-based image restoration algorithm. A comparative analysis of the proposed method with three existing methods using all the images from the LIVE database is carried out. The results show that the proposed method in most of the cases performs better than the three existing methods in terms of the visual quality evaluated using the structural similarity index.

  18. A tuned mesh-generation strategy for image representation based on data-dependent triangulation.

    PubMed

    Li, Ping; Adams, Michael D

    2013-05-01

    A mesh-generation framework for image representation based on data-dependent triangulation is proposed. The proposed framework is a modified version of the frameworks of Rippa and Garland and Heckbert that facilitates the development of more effective mesh-generation methods. As the proposed framework has several free parameters, the effects of different choices of these parameters on mesh quality are studied, leading to the recommendation of a particular set of choices for these parameters. A mesh-generation method is then introduced that employs the proposed framework with these best parameter choices. This method is demonstrated to produce meshes of higher quality (both in terms of squared error and subjectively) than those generated by several competing approaches, at a relatively modest computational and memory cost.

  19. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    PubMed

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  20. A Predictive Model for Toxicity Effects Assessment of Biotransformed Hepatic Drugs Using Iterative Sampling Method.

    PubMed

    Tharwat, Alaa; Moemen, Yasmine S; Hassanien, Aboul Ella

    2016-12-09

    Measuring toxicity is one of the main steps in drug development. Hence, there is a high demand for computational models to predict the toxicity effects of the potential drugs. In this study, we used a dataset, which consists of four toxicity effects:mutagenic, tumorigenic, irritant and reproductive effects. The proposed model consists of three phases. In the first phase, rough set-based methods are used to select the most discriminative features for reducing the classification time and improving the classification performance. Due to the imbalanced class distribution, in the second phase, different sampling methods such as Random Under-Sampling, Random Over-Sampling and Synthetic Minority Oversampling Technique are used to solve the problem of imbalanced datasets. ITerative Sampling (ITS) method is proposed to avoid the limitations of those methods. ITS method has two steps. The first step (sampling step) iteratively modifies the prior distribution of the minority and majority classes. In the second step, a data cleaning method is used to remove the overlapping that is produced from the first step. In the third phase, Bagging classifier is used to classify an unknown drug into toxic or non-toxic. The experimental results proved that the proposed model performed well in classifying the unknown samples according to all toxic effects in the imbalanced datasets.

  1. Improved atmospheric effect elimination method for the roughness estimation of painted surfaces.

    PubMed

    Zhang, Ying; Xuan, Jiabin; Zhao, Huijie; Song, Ping; Zhang, Yi; Xu, Wujian

    2018-03-01

    We propose a method for eliminating the atmospheric effect in polarimetric imaging remote sensing by using polarimetric imagers to simultaneously detect ground targets and skylight, which does not need calibrated targets. In addition, calculation efficiencies are improved by the skylight division method without losing estimation accuracy. Outdoor experiments are performed to obtain the polarimetric bidirectional reflectance distribution functions of painted surfaces and skylight under different weather conditions. Finally, the roughness of the painted surfaces is estimated. We find that the estimation accuracy with the proposed method is 6% on cloudy weather, while it is 30.72% without atmospheric effect elimination.

  2. A phase match based frequency estimation method for sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao

    2015-04-01

    Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.

  3. Reverse matrix converter control method for PMSM drives using DPC

    NASA Astrophysics Data System (ADS)

    Bak, Yeongsu; Lee, Kyo-Beum

    2018-05-01

    This paper proposes a control method for a reverse matrix converter (RMC) that drives a three-phase permanent magnet synchronous motor (PMSM). In this proposed method, direct power control (DPC) is used to control the voltage source rectifier of the RMC. The RMC is an indirect matrix converter operating in the boost mode, in which the power-flow directions of the input and output are switched. It has a minimum voltage transfer ratio of 1/0.866 in a linear-modulation region. In this paper, a control method that uses DPC as an additional control method is proposed in order to control the RMC driving a PMSM in the output stage. Simulations and experimental results verify the effectiveness of the proposed control method.

  4. Dual energy approach for cone beam artifacts correction

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk

    2017-03-01

    Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.

  5. An adequacy-constrained integrated planning method for effective accommodation of DG and electric vehicles in smart distribution systems

    NASA Astrophysics Data System (ADS)

    Tan, Zhukui; Xie, Baiming; Zhao, Yuanliang; Dou, Jinyue; Yan, Tong; Liu, Bin; Zeng, Ming

    2018-06-01

    This paper presents a new integrated planning framework for effective accommodating electric vehicles in smart distribution systems (SDS). The proposed method incorporates various investment options available for the utility collectively, including distributed generation (DG), capacitors and network reinforcement. Using a back-propagation algorithm combined with cost-benefit analysis, the optimal network upgrade plan, allocation and sizing of the selected components are determined, with the purpose of minimizing the total system capital and operating costs of DG and EV accommodation. Furthermore, a new iterative reliability test method is proposed. It can check the optimization results by subsequently simulating the reliability level of the planning scheme, and modify the generation reserve margin to guarantee acceptable adequacy levels for each year of the planning horizon. Numerical results based on a 32-bus distribution system verify the effectiveness of the proposed method.

  6. A compensation controller based on a regional pole-assignment method for AMD control systems with a time-varying delay

    NASA Astrophysics Data System (ADS)

    Li, Zuohua; Chen, Chaojun; Teng, Jun; Wang, Ying

    2018-04-01

    Active mass damper/driver (AMD) control system has been proposed as an effective tool for high-rise buildings to resist strong dynamic loads. However, such disadvantage as time-varying delay in AMD control systems impedes their application in practices. Time-varying delay, which has an effect on the performance and stability of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) systems, is considered in the paper. In addition, a new time-delay compensation controller based on regional pole-assignment method is presented. To verify its effectiveness, the proposed method is applied to a numerical example of a ten-storey frame and an experiment of a single span four-storey steel frame. Both numerical and experimental results demonstrate that the proposed method can enhance the performances of an AMD control system with time-varying delays.

  7. Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction.

    PubMed

    Banić, Nikola; Lončarić, Sven

    2015-11-01

    Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.

  8. A weight modification sequential method for VSC-MTDC power system state estimation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaonan; Zhang, Hao; Li, Qiang; Guo, Ziming; Zhao, Kun; Li, Xinpeng; Han, Feng

    2017-06-01

    This paper presents an effective sequential approach based on weight modification for VSC-MTDC power system state estimation, called weight modification sequential method. The proposed approach simplifies the AC/DC system state estimation algorithm through modifying the weight of state quantity to keep the matrix dimension constant. The weight modification sequential method can also make the VSC-MTDC system state estimation calculation results more ccurate and increase the speed of calculation. The effectiveness of the proposed weight modification sequential method is demonstrated and validated in modified IEEE 14 bus system.

  9. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  10. Hypnosis control based on the minimum concentration of anesthetic drug for maintaining appropriate hypnosis.

    PubMed

    Furutani, Eiko; Nishigaki, Yuki; Kanda, Chiaki; Takeda, Toshihiro; Shirakami, Gotaro

    2013-01-01

    This paper proposes a novel hypnosis control method using Auditory Evoked Potential Index (aepEX) as a hypnosis index. In order to avoid side effects of an anesthetic drug, it is desirable to reduce the amount of an anesthetic drug during surgery. For this purpose many studies of hypnosis control systems have been done. Most of them use Bispectral Index (BIS), another hypnosis index, but it has problems of dependence on anesthetic drugs and nonsmooth change near some particular values. On the other hand, aepEX has an ability of clear distinction between patient consciousness and unconsciousness and independence of anesthetic drugs. The control method proposed in this paper consists of two elements: estimating the minimum effect-site concentration for maintaining appropriate hypnosis and adjusting infusion rate of an anesthetic drug, propofol, using model predictive control. The minimum effect-site concentration is estimated utilizing the property of aepEX pharmacodynamics. The infusion rate of propofol is adjusted so that effect-site concentration of propofol may be kept near and always above the minimum effect-site concentration. Simulation results of hypnosis control using the proposed method show that the minimum concentration can be estimated appropriately and that the proposed control method can maintain hypnosis adequately and reduce the total infusion amount of propofol.

  11. Sieve estimation of Cox models with latent structures.

    PubMed

    Cao, Yongxiu; Huang, Jian; Liu, Yanyan; Zhao, Xingqiu

    2016-12-01

    This article considers sieve estimation in the Cox model with an unknown regression structure based on right-censored data. We propose a semiparametric pursuit method to simultaneously identify and estimate linear and nonparametric covariate effects based on B-spline expansions through a penalized group selection method with concave penalties. We show that the estimators of the linear effects and the nonparametric component are consistent. Furthermore, we establish the asymptotic normality of the estimator of the linear effects. To compute the proposed estimators, we develop a modified blockwise majorization descent algorithm that is efficient and easy to implement. Simulation studies demonstrate that the proposed method performs well in finite sample situations. We also use the primary biliary cirrhosis data to illustrate its application. © 2016, The International Biometric Society.

  12. An Efficient Power Regeneration and Drive Method of an Induction Motor by Means of an Optimal Torque Derived by Variational Method

    NASA Astrophysics Data System (ADS)

    Inoue, Kaoru; Ogata, Kenji; Kato, Toshiji

    When the motor speed is reduced by using a regenerative brake, the mechanical energy of rotation is converted to the electrical energy. When the regenerative torque is large, the corresponding current increases so that the copper loss also becomes large. On the other hand, the damping effect of rotation increases according to the time elapse when the regenerative torque is small. In order to use the limited energy effectively, an optimal regenerative torque should be discussed in order to regenerate electrical energy as much as possible. This paper proposes a design methodology of a regenerative torque for an induction motor to maximize the regenerative electric energy by means of the variational method. Similarly, an optimal torque for acceleration is derived in order to minimize the energy to drive. Finally, an efficient motor drive system with the proposed optimal torque and the power storage system stabilizing the DC link voltage will be proposed. The effectiveness of the proposed methods are illustrated by both simulations and experiments.

  13. A Modified Kirchhoff plate theory for Free Vibration analysis of functionally graded material plates using meshfree method

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong

    2018-04-01

    In this paper, a modified Kirchhoff theory is presented for free vibration analyses of functionally graded material (FGM) plate based on modified radial point interpolation method (RPIM). The shear deformation effects are taken account into modified theory to ignore the locking phenomenon of thin plates. Due to the proposed refined plate theory, the number of independent unknowns reduces one variable and exists with four degrees of freedom per node. The simulated free vibration results employed by the modified RPIM are compared with the other analytical solutions to verify the effectiveness and the accuracy of the developed mesh-free method. Detail parametric studies of the proposed method are then conducted including the effectiveness of thickness ratio, boundary condition and material inhomogeneity on the sample problems of square plates. Results illustrated that the modified mesh-free RPIM can effectively predict the numerical calculation as compared to the exact solutions. The obtained numerical results are indicated that the proposed method are stable and well accurate prediction to evaluate with other published analyses.

  14. Adaptive identification of vessel's added moments of inertia with program motion

    NASA Astrophysics Data System (ADS)

    Alyshev, A. S.; Melnikov, V. G.

    2018-05-01

    In this paper, we propose a new experimental method for determining the moments of inertia of the ship model. The paper gives a brief review of existing methods, a description of the proposed method and experimental stand, test procedures and calculation formulas and experimental results. The proposed method is based on the energy approach with special program motions. The ship model is fixed in a special rack consisting of a torsion element and a set of additional servo drives with flywheels (reactive wheels), which correct the motion. The servo drives with an adaptive controller provide the symmetry of the motion, which is necessary for the proposed identification procedure. The effectiveness of the proposed approach is confirmed by experimental results.

  15. Symbiotic organisms search algorithm for dynamic economic dispatch with valve-point effects

    NASA Astrophysics Data System (ADS)

    Sonmez, Yusuf; Kahraman, H. Tolga; Dosoglu, M. Kenan; Guvenc, Ugur; Duman, Serhat

    2017-05-01

    In this study, symbiotic organisms search (SOS) algorithm is proposed to solve the dynamic economic dispatch with valve-point effects problem, which is one of the most important problems of the modern power system. Some practical constraints like valve-point effects, ramp rate limits and prohibited operating zones have been considered as solutions. Proposed algorithm was tested on five different test cases in 5 units, 10 units and 13 units systems. The obtained results have been compared with other well-known metaheuristic methods reported before. Results show that proposed algorithm has a good convergence and produces better results than other methods.

  16. Dynamic updating atlas for heart segmentation with a nonlinear field-based model.

    PubMed

    Cai, Ken; Yang, Rongqian; Yue, Hongwei; Li, Lihua; Ou, Shanxing; Liu, Feng

    2017-09-01

    Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences. Copyright © 2016 John Wiley & Sons, Ltd.

  17. A novel method for overlapping community detection using Multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa

    2018-09-01

    The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.

  18. Multi person detection and tracking based on hierarchical level-set method

    NASA Astrophysics Data System (ADS)

    Khraief, Chadia; Benzarti, Faouzi; Amiri, Hamid

    2018-04-01

    In this paper, we propose an efficient unsupervised method for mutli-person tracking based on hierarchical level-set approach. The proposed method uses both edge and region information in order to effectively detect objects. The persons are tracked on each frame of the sequence by minimizing an energy functional that combines color, texture and shape information. These features are enrolled in covariance matrix as region descriptor. The present method is fully automated without the need to manually specify the initial contour of Level-set. It is based on combined person detection and background subtraction methods. The edge-based is employed to maintain a stable evolution, guide the segmentation towards apparent boundaries and inhibit regions fusion. The computational cost of level-set is reduced by using narrow band technique. Many experimental results are performed on challenging video sequences and show the effectiveness of the proposed method.

  19. Two new modified Gauss-Seidel methods for linear system with M-matrices

    NASA Astrophysics Data System (ADS)

    Zheng, Bing; Miao, Shu-Xin

    2009-12-01

    In 2002, H. Kotakemori et al. proposed the modified Gauss-Seidel (MGS) method for solving the linear system with the preconditioner [H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner () J. Comput. Appl. Math. 145 (2002) 373-378]. Since this preconditioner is constructed by only the largest element on each row of the upper triangular part of the coefficient matrix, the preconditioning effect is not observed on the nth row. In the present paper, to deal with this drawback, we propose two new preconditioners. The convergence and comparison theorems of the modified Gauss-Seidel methods with these two preconditioners for solving the linear system are established. The convergence rates of the new proposed preconditioned methods are compared. In addition, numerical experiments are used to show the effectiveness of the new MGS methods.

  20. A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.

    PubMed

    Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

    2014-01-01

    Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  1. Generalized composite multiscale permutation entropy and Laplacian score based rolling bearing fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Yang, Shubao; Cheng, Junsheng

    2018-01-01

    Multiscale permutation entropy (MPE) is a recently proposed nonlinear dynamic method for measuring the randomness and detecting the nonlinear dynamic change of time series and can be used effectively to extract the nonlinear dynamic fault feature from vibration signals of rolling bearing. To solve the drawback of coarse graining process in MPE, an improved MPE method called generalized composite multiscale permutation entropy (GCMPE) was proposed in this paper. Also the influence of parameters on GCMPE and its comparison with the MPE are studied by analyzing simulation data. GCMPE was applied to the fault feature extraction from vibration signal of rolling bearing and then based on the GCMPE, Laplacian score for feature selection and the Particle swarm optimization based support vector machine, a new fault diagnosis method for rolling bearing was put forward in this paper. Finally, the proposed method was applied to analyze the experimental data of rolling bearing. The analysis results show that the proposed method can effectively realize the fault diagnosis of rolling bearing and has a higher fault recognition rate than the existing methods.

  2. Sensor Drift Compensation Algorithm based on PDF Distance Minimization

    NASA Astrophysics Data System (ADS)

    Kim, Namyong; Byun, Hyung-Gi; Persaud, Krishna C.; Huh, Jeung-Soo

    2009-05-01

    In this paper, a new unsupervised classification algorithm is introduced for the compensation of sensor drift effects of the odor sensing system using a conducting polymer sensor array. The proposed method continues updating adaptive Radial Basis Function Network (RBFN) weights in the testing phase based on minimizing Euclidian Distance between two Probability Density Functions (PDFs) of a set of training phase output data and another set of testing phase output data. The output in the testing phase using the fixed weights of the RBFN are significantly dispersed and shifted from each target value due mostly to sensor drift effect. In the experimental results, the output data by the proposed methods are observed to be concentrated closer again to their own target values significantly. This indicates that the proposed method can be effectively applied to improved odor sensing system equipped with the capability of sensor drift effect compensation

  3. Predicting drug side-effect profiles: a chemical fragment-based approach

    PubMed Central

    2011-01-01

    Background Drug side-effects, or adverse drug reactions, have become a major public health concern. It is one of the main causes of failure in the process of drug development, and of drug withdrawal once they have reached the market. Therefore, in silico prediction of potential side-effects early in the drug discovery process, before reaching the clinical stages, is of great interest to improve this long and expensive process and to provide new efficient and safe therapies for patients. Results In the present work, we propose a new method to predict potential side-effects of drug candidate molecules based on their chemical structures, applicable on large molecular databanks. A unique feature of the proposed method is its ability to extract correlated sets of chemical substructures (or chemical fragments) and side-effects. This is made possible using sparse canonical correlation analysis (SCCA). In the results, we show the usefulness of the proposed method by predicting 1385 side-effects in the SIDER database from the chemical structures of 888 approved drugs. These predictions are performed with simultaneous extraction of correlated ensembles formed by a set of chemical substructures shared by drugs that are likely to have a set of side-effects. We also conduct a comprehensive side-effect prediction for many uncharacterized drug molecules stored in DrugBank, and were able to confirm interesting predictions using independent source of information. Conclusions The proposed method is expected to be useful in various stages of the drug development process. PMID:21586169

  4. Analog self-powered harvester achieving switching pause control to increase harvested energy

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Asahina, Kei

    2017-05-01

    In this paper, we propose a self-powered analog controller circuit to increase the efficiency of electrical energy harvesting from vibrational energy using piezoelectric materials. Although the existing synchronized switch harvesting on inductor (SSHI) method is designed to produce efficient harvesting, its switching operation generates a vibration-suppression effect that reduces the harvested levels of electrical energy. To solve this problem, the authors proposed—in a previous paper—a switching method that takes this vibration-suppression effect into account. This method temporarily pauses the switching operation, allowing the recovery of the mechanical displacement and, therefore, of the piezoelectric voltage. In this paper, we propose a self-powered analog circuit to implement this switching control method. Self-powered vibration harvesting is achieved in this study by attaching a newly designed circuit to an existing analog controller for SSHI. This circuit aims to effectively implement the aforementioned new switching control strategy, where switching is paused in some vibration peaks, in order to allow motion recovery and a consequent increase in the harvested energy. Harvesting experiments performed using the proposed circuit reveal that the proposed method can increase the energy stored in the storage capacitor by a factor of 8.5 relative to the conventional SSHI circuit. This proposed technique is useful to increase the harvested energy especially for piezoelectric systems having large coupling factor.

  5. GEE-based SNP set association test for continuous and discrete traits in family-based association studies.

    PubMed

    Wang, Xuefeng; Lee, Seunggeun; Zhu, Xiaofeng; Redline, Susan; Lin, Xihong

    2013-12-01

    Family-based genetic association studies of related individuals provide opportunities to detect genetic variants that complement studies of unrelated individuals. Most statistical methods for family association studies for common variants are single marker based, which test one SNP a time. In this paper, we consider testing the effect of an SNP set, e.g., SNPs in a gene, in family studies, for both continuous and discrete traits. Specifically, we propose a generalized estimating equations (GEEs) based kernel association test, a variance component based testing method, to test for the association between a phenotype and multiple variants in an SNP set jointly using family samples. The proposed approach allows for both continuous and discrete traits, where the correlation among family members is taken into account through the use of an empirical covariance estimator. We derive the theoretical distribution of the proposed statistic under the null and develop analytical methods to calculate the P-values. We also propose an efficient resampling method for correcting for small sample size bias in family studies. The proposed method allows for easily incorporating covariates and SNP-SNP interactions. Simulation studies show that the proposed method properly controls for type I error rates under both random and ascertained sampling schemes in family studies. We demonstrate through simulation studies that our approach has superior performance for association mapping compared to the single marker based minimum P-value GEE test for an SNP-set effect over a range of scenarios. We illustrate the application of the proposed method using data from the Cleveland Family GWAS Study. © 2013 WILEY PERIODICALS, INC.

  6. Crowd density estimation based on convolutional neural networks with mixed pooling

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zheng, Hong; Zhang, Ying; Zhang, Dongming

    2017-09-01

    Crowd density estimation is an important topic in the fields of machine learning and video surveillance. Existing methods do not provide satisfactory classification accuracy; moreover, they have difficulty in adapting to complex scenes. Therefore, we propose a method based on convolutional neural networks (CNNs). The proposed method improves performance of crowd density estimation in two key ways. First, we propose a feature pooling method named mixed pooling to regularize the CNNs. It replaces deterministic pooling operations with a parameter that, by studying the algorithm, could combine the conventional max pooling with average pooling methods. Second, we present a classification strategy, in which an image is divided into two cells and respectively categorized. The proposed approach was evaluated on three datasets: two ground truth image sequences and the University of California, San Diego, anomaly detection dataset. The results demonstrate that the proposed approach performs more effectively and easily than other methods.

  7. Continuous Human Action Recognition Using Depth-MHI-HOG and a Spotter Model

    PubMed Central

    Eum, Hyukmin; Yoon, Changyong; Lee, Heejin; Park, Mignon

    2015-01-01

    In this paper, we propose a new method for spotting and recognizing continuous human actions using a vision sensor. The method is comprised of depth-MHI-HOG (DMH), action modeling, action spotting, and recognition. First, to effectively separate the foreground from background, we propose a method called DMH. It includes a standard structure for segmenting images and extracting features by using depth information, MHI, and HOG. Second, action modeling is performed to model various actions using extracted features. The modeling of actions is performed by creating sequences of actions through k-means clustering; these sequences constitute HMM input. Third, a method of action spotting is proposed to filter meaningless actions from continuous actions and to identify precise start and end points of actions. By employing the spotter model, the proposed method improves action recognition performance. Finally, the proposed method recognizes actions based on start and end points. We evaluate recognition performance by employing the proposed method to obtain and compare probabilities by applying input sequences in action models and the spotter model. Through various experiments, we demonstrate that the proposed method is efficient for recognizing continuous human actions in real environments. PMID:25742172

  8. Quantile Regression for Recurrent Gap Time Data

    PubMed Central

    Luo, Xianghua; Huang, Chiung-Yu; Wang, Lan

    2014-01-01

    Summary Evaluating covariate effects on gap times between successive recurrent events is of interest in many medical and public health studies. While most existing methods for recurrent gap time analysis focus on modeling the hazard function of gap times, a direct interpretation of the covariate effects on the gap times is not available through these methods. In this article, we consider quantile regression that can provide direct assessment of covariate effects on the quantiles of the gap time distribution. Following the spirit of the weighted risk-set method by Luo and Huang (2011, Statistics in Medicine 30, 301–311), we extend the martingale-based estimating equation method considered by Peng and Huang (2008, Journal of the American Statistical Association 103, 637–649) for univariate survival data to analyze recurrent gap time data. The proposed estimation procedure can be easily implemented in existing software for univariate censored quantile regression. Uniform consistency and weak convergence of the proposed estimators are established. Monte Carlo studies demonstrate the effectiveness of the proposed method. An application to data from the Danish Psychiatric Central Register is presented to illustrate the methods developed in this article. PMID:23489055

  9. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  10. Ensemble empirical mode decomposition based fluorescence spectral noise reduction for low concentration PAHs

    NASA Astrophysics Data System (ADS)

    Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian

    2017-11-01

    A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.

  11. Macroscopic relationship in primal-dual portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-02-01

    In the present paper, using a replica analysis, we examine the portfolio optimization problem handled in previous work and discuss the minimization of investment risk under constraints of budget and expected return for the case that the distribution of the hyperparameters of the mean and variance of the return rate of each asset are not limited to a specific probability family. Findings derived using our proposed method are compared with those in previous work to verify the effectiveness of our proposed method. Further, we derive a Pythagorean theorem of the Sharpe ratio and macroscopic relations of opportunity loss. Using numerical experiments, the effectiveness of our proposed method is demonstrated for a specific situation.

  12. An EMG-Based Control for an Upper-Limb Power-Assist Exoskeleton Robot.

    PubMed

    Kiguchi, K; Hayashi, Y

    2012-08-01

    Many kinds of power-assist robots have been developed in order to assist self-rehabilitation and/or daily life motions of physically weak persons. Several kinds of control methods have been proposed to control the power-assist robots according to user's motion intention. In this paper, an electromyogram (EMG)-based impedance control method for an upper-limb power-assist exoskeleton robot is proposed to control the robot in accordance with the user's motion intention. The proposed method is simple, easy to design, humanlike, and adaptable to any user. A neurofuzzy matrix modifier is applied to make the controller adaptable to any users. Not only the characteristics of EMG signals but also the characteristics of human body are taken into account in the proposed method. The effectiveness of the proposed method was evaluated by the experiments.

  13. Efficiency Improvement of Action Acquisition in Two-Link Robot Arm Using Fuzzy ART with Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Kotani, Naoki; Taniguchi, Kenji

    An efficient learning method using Fuzzy ART with Genetic Algorithm is proposed. The proposed method reduces the number of trials by using a policy acquired in other tasks because a reinforcement learning needs a lot of the number of trials until an agent acquires appropriate actions. Fuzzy ART is an incremental unsupervised learning algorithm in responce to arbitrary sequences of analog or binary input vectors. Our proposed method gives a policy by crossover or mutation when an agent observes unknown states. Selection controls the category proliferation problem of Fuzzy ART. The effectiveness of the proposed method was verified with the simulation of the reaching problem for the two-link robot arm. The proposed method achieves a reduction of both the number of trials and the number of states.

  14. Self-Organizing Hierarchical Particle Swarm Optimization with Time-Varying Acceleration Coefficients for Economic Dispatch with Valve Point Effects and Multifuel Options

    NASA Astrophysics Data System (ADS)

    Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc

    2011-06-01

    This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.

  15. Human region segmentation and description methods for domiciliary healthcare monitoring using chromatic methodology

    NASA Astrophysics Data System (ADS)

    Al-Temeemy, Ali A.

    2018-03-01

    A descriptor is proposed for use in domiciliary healthcare monitoring systems. The descriptor is produced from chromatic methodology to extract robust features from the monitoring system's images. It has superior discrimination capabilities, is robust to events that normally disturb monitoring systems, and requires less computational time and storage space to achieve recognition. A method of human region segmentation is also used with this descriptor. The performance of the proposed descriptor was evaluated using experimental data sets, obtained through a series of experiments performed in the Centre for Intelligent Monitoring Systems, University of Liverpool. The evaluation results show high recognition performance for the proposed descriptor in comparison to traditional descriptors, such as moments invariant. The results also show the effectiveness of the proposed segmentation method regarding distortion effects associated with domiciliary healthcare systems.

  16. Position Accuracy Analysis of a Robust Vision-Based Navigation

    NASA Astrophysics Data System (ADS)

    Gaglione, S.; Del Pizzo, S.; Troisi, S.; Angrisano, A.

    2018-05-01

    Using images to determine camera position and attitude is a consolidated method, very widespread for application like UAV navigation. In harsh environment, where GNSS could be degraded or denied, image-based positioning could represent a possible candidate for an integrated or alternative system. In this paper, such method is investigated using a system based on single camera and 3D maps. A robust estimation method is proposed in order to limit the effect of blunders or noisy measurements on position solution. The proposed approach is tested using images collected in an urban canyon, where GNSS positioning is very unaccurate. A previous photogrammetry survey has been performed to build the 3D model of tested area. The position accuracy analysis is performed and the effect of the robust method proposed is validated.

  17. Stripe nonuniformity correction for infrared imaging system based on single image optimization

    NASA Astrophysics Data System (ADS)

    Hua, Weiping; Zhao, Jufeng; Cui, Guangmang; Gong, Xiaoli; Ge, Peng; Zhang, Jiang; Xu, Zhihai

    2018-06-01

    Infrared imaging is often disturbed by stripe nonuniformity noise. Scene-based correction method can effectively reduce the impact of stripe noise. In this paper, a stripe nonuniformity correction method based on differential constraint is proposed. Firstly, the gray distribution of stripe nonuniformity is analyzed and the penalty function is constructed by the difference of horizontal gradient and vertical gradient. With the weight function, the penalty function is optimized to obtain the corrected image. Comparing with other single-frame approaches, experiments show that the proposed method performs better in both subjective and objective analysis, and does less damage to edge and detail. Meanwhile, the proposed method runs faster. We have also discussed the differences between the proposed idea and multi-frame methods. Our method is finally well applied in hardware system.

  18. [Joint correction for motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging].

    PubMed

    Wu, Wenchuan; Fang, Sheng; Guo, Hua

    2014-06-01

    Aiming at motion artifacts and off-resonance artifacts in multi-shot diffusion magnetic resonance imaging (MRI), we proposed a joint correction method in this paper to correct the two kinds of artifacts simultaneously without additional acquisition of navigation data and field map. We utilized the proposed method using multi-shot variable density spiral sequence to acquire MRI data and used auto-focusing technique for image deblurring. We also used direct method or iterative method to correct motion induced phase errors in the process of deblurring. In vivo MRI experiments demonstrated that the proposed method could effectively suppress motion artifacts and off-resonance artifacts and achieve images with fine structures. In addition, the scan time was not increased in applying the proposed method.

  19. A Cost Effective Block Framing Scheme for Underwater Communication

    PubMed Central

    Shin, Soo-Young; Park, Soo-Hyun

    2011-01-01

    In this paper, the Selective Multiple Acknowledgement (SMA) method, based on Multiple Acknowledgement (MA), is proposed to efficiently reduce the amount of data transmission by redesigning the transmission frame structure and taking into consideration underwater transmission characteristics. The method is suited to integrated underwater system models, as the proposed method can handle the same amount of data in a much more compact frame structure without any appreciable loss of reliability. Herein, the performance of the proposed SMA method was analyzed and compared to those of the conventional Automatic Repeat-reQuest (ARQ), Block Acknowledgement (BA), block response, and MA methods. The efficiency of the underwater sensor network, which forms a large cluster and mostly contains uplink data, is expected to be improved by the proposed method. PMID:22247689

  20. Standard addition with internal standardisation as an alternative to using stable isotope labelled internal standards to correct for matrix effects-Comparison and validation using liquid chromatography-​tandem mass spectrometric assay of vitamin D.

    PubMed

    Hewavitharana, Amitha K; Abu Kassim, Nur Sofiah; Shaw, Paul Nicholas

    2018-06-08

    With mass spectrometric detection in liquid chromatography, co-eluting impurities affect the analyte response due to ion suppression/enhancement. Internal standard calibration method, using co-eluting stable isotope labelled analogue of each analyte as the internal standard, is the most appropriate technique available to correct for these matrix effects. However, this technique is not without drawbacks, proved to be expensive because separate internal standard for each analyte is required, and the labelled compounds are expensive or require synthesising. Traditionally, standard addition method has been used to overcome the matrix effects in atomic spectroscopy and was a well-established method. This paper proposes the same for mass spectrometric detection, and demonstrates that the results are comparable to those with the internal standard method using labelled analogues, for vitamin D assay. As conventional standard addition procedure does not address procedural errors, we propose the inclusion of an additional internal standard (not co-eluting). Recoveries determined on human serum samples show that the proposed method of standard addition yields more accurate results than the internal standardisation using stable isotope labelled analogues. The precision of the proposed method of standard addition is superior to the conventional standard addition method. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method

    PubMed Central

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-01-01

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members. PMID:28773347

  2. Internal Stress Monitoring of In-Service Structural Steel Members with Ultrasonic Method.

    PubMed

    Li, Zuohua; He, Jingbo; Teng, Jun; Wang, Ying

    2016-03-23

    Internal stress in structural steel members is an important parameter for steel structures in their design, construction, and service stages. However, it is hard to measure via traditional approaches. Among the existing non-destructive testing (NDT) methods, the ultrasonic method has received the most research attention. Longitudinal critically refracted (Lcr) waves, which propagate parallel to the surface of the material within an effective depth, have shown great potential as an effective stress measurement approach. This paper presents a systematic non-destructive evaluation method to determine the internal stress in in-service structural steel members using Lcr waves. Based on theory of acoustoelasticity, a stress evaluation formula is derived. Factor of stress to acoustic time difference is used to describe the relationship between stress and measurable acoustic results. A testing facility is developed and used to demonstrate the performance of the proposed method. Two steel members are measured by using the proposed method and the traditional strain gauge method for verification. Parametric studies are performed on three steel members and the aluminum plate to investigate the factors that influence the testing results. The results show that the proposed method is effective and accurate for determining stress in in-service structural steel members.

  3. Weighted Geometric Dilution of Precision Calculations with Matrix Multiplication

    PubMed Central

    Chen, Chien-Sheng

    2015-01-01

    To enhance the performance of location estimation in wireless positioning systems, the geometric dilution of precision (GDOP) is widely used as a criterion for selecting measurement units. Since GDOP represents the geometric effect on the relationship between measurement error and positioning determination error, the smallest GDOP of the measurement unit subset is usually chosen for positioning. The conventional GDOP calculation using matrix inversion method requires many operations. Because more and more measurement units can be chosen nowadays, an efficient calculation should be designed to decrease the complexity. Since the performance of each measurement unit is different, the weighted GDOP (WGDOP), instead of GDOP, is used to select the measurement units to improve the accuracy of location. To calculate WGDOP effectively and efficiently, the closed-form solution for WGDOP calculation is proposed when more than four measurements are available. In this paper, an efficient WGDOP calculation method applying matrix multiplication that is easy for hardware implementation is proposed. In addition, the proposed method can be used when more than exactly four measurements are available. Even when using all-in-view method for positioning, the proposed method still can reduce the computational overhead. The proposed WGDOP methods with less computation are compatible with global positioning system (GPS), wireless sensor networks (WSN) and cellular communication systems. PMID:25569755

  4. Method of Grassland Information Extraction Based on Multi-Level Segmentation and Cart Model

    NASA Astrophysics Data System (ADS)

    Qiao, Y.; Chen, T.; He, J.; Wen, Q.; Liu, F.; Wang, Z.

    2018-04-01

    It is difficult to extract grassland accurately by traditional classification methods, such as supervised method based on pixels or objects. This paper proposed a new method combing the multi-level segmentation with CART (classification and regression tree) model. The multi-level segmentation which combined the multi-resolution segmentation and the spectral difference segmentation could avoid the over and insufficient segmentation seen in the single segmentation mode. The CART model was established based on the spectral characteristics and texture feature which were excavated from training sample data. Xilinhaote City in Inner Mongolia Autonomous Region was chosen as the typical study area and the proposed method was verified by using visual interpretation results as approximate truth value. Meanwhile, the comparison with the nearest neighbor supervised classification method was obtained. The experimental results showed that the total precision of classification and the Kappa coefficient of the proposed method was 95 % and 0.9, respectively. However, the total precision of classification and the Kappa coefficient of the nearest neighbor supervised classification method was 80 % and 0.56, respectively. The result suggested that the accuracy of classification proposed in this paper was higher than the nearest neighbor supervised classification method. The experiment certificated that the proposed method was an effective extraction method of grassland information, which could enhance the boundary of grassland classification and avoid the restriction of grassland distribution scale. This method was also applicable to the extraction of grassland information in other regions with complicated spatial features, which could avoid the interference of woodland, arable land and water body effectively.

  5. 3D-Subspace-Based Auto-Paired Azimuth Angle, Elevation Angle, and Range Estimation for 24G FMCW Radar with an L-Shaped Array

    PubMed Central

    Nam, HyungSoo; Choi, ByungGil; Oh, Daegun

    2018-01-01

    In this paper, a three-dimensional (3D)-subspace-based azimuth angle, elevation angle, and range estimation method with auto-pairing is proposed for frequency-modulated continuous waveform (FMCW) radar with an L-shaped array. The proposed method is designed to exploit the 3D shift-invariant structure of the stacked Hankel snapshot matrix for auto-paired azimuth angle, elevation angle, and range estimation. The effectiveness of the proposed method is verified through a variety of experiments conducted in a chamber. For the realization of the proposed method, K-band FMCW radar is implemented with an L-shaped antenna. PMID:29621193

  6. Generation of electromagnetic energy in a magnetic cumulation generator with the use of inductively coupled circuits with a variable coupling coefficient

    NASA Astrophysics Data System (ADS)

    Gilev, S. D.; Prokopiev, V. S.

    2017-07-01

    A method of generation of electromagnetic energy and magnetic flux in a magnetic cumulation generator is proposed. The method is based on dynamic variation of the circuit coupling coefficient. This circuit is compared with other available circuits of magnetic energy generation with the help of magnetic cumulation (classical magnetic cumulation generator, generator with transformer coupling, and generator with a dynamic transformer). It is demonstrated that the proposed method allows obtaining high values of magnetic energy. The proposed circuit is found to be more effective than the known transformer circuit. Experiments on electromagnetic energy generation are performed, which demonstrate the efficiency of the proposed method.

  7. A Proposal of Operational Risk Management Method Using FMEA for Drug Manufacturing Computerized System

    NASA Astrophysics Data System (ADS)

    Takahashi, Masakazu; Nanba, Reiji; Fukue, Yoshinori

    This paper proposes operational Risk Management (RM) method using Failure Mode and Effects Analysis (FMEA) for drug manufacturing computerlized system (DMCS). The quality of drug must not be influenced by failures and operational mistakes of DMCS. To avoid such situation, DMCS has to be conducted enough risk assessment and taken precautions. We propose operational RM method using FMEA for DMCS. To propose the method, we gathered and compared the FMEA results of DMCS, and develop a list that contains failure modes, failures and countermeasures. To apply this list, we can conduct RM in design phase, find failures, and conduct countermeasures efficiently. Additionally, we can find some failures that have not been found yet.

  8. Identification of material constants for piezoelectric transformers by three-dimensional, finite-element method and a design-sensitivity method.

    PubMed

    Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo

    2003-08-01

    In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.

  9. Structural modal parameter identification using local mean decomposition

    NASA Astrophysics Data System (ADS)

    Keyhani, Ali; Mohammadi, Saeed

    2018-02-01

    Modal parameter identification is the first step in structural health monitoring of existing structures. Already, many powerful methods have been proposed for this concept and each method has some benefits and shortcomings. In this study, a new method based on local mean decomposition is proposed for modal identification of civil structures from free or ambient vibration measurements. The ability of the proposed method was investigated using some numerical studies and the results compared with those obtained from the Hilbert-Huang transform (HHT). As a major advantage, the proposed method can extract natural frequencies and damping ratios of all active modes from only one measurement. The accuracy of the identified modes depends on their participation in the measured responses. Nevertheless, the identified natural frequencies have reasonable accuracy in both cases of free and ambient vibration measurements, even in the presence of noise. The instantaneous phase angle and the natural logarithm of instantaneous amplitude curves obtained from the proposed method have more linearity rather than those from the HHT algorithm. Also, the end effect is more restricted for the proposed method.

  10. Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz

    This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledgemore » of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.« less

  11. An Improved Pansharpening Method for Misaligned Panchromatic and Multispectral Data

    PubMed Central

    Jing, Linhai; Tang, Yunwei; Ding, Haifeng

    2018-01-01

    Numerous pansharpening methods were proposed in recent decades for fusing low-spatial-resolution multispectral (MS) images with high-spatial-resolution (HSR) panchromatic (PAN) bands to produce fused HSR MS images, which are widely used in various remote sensing tasks. The effect of misregistration between MS and PAN bands on quality of fused products has gained much attention in recent years. An improved method for misaligned MS and PAN imagery is proposed, through two improvements made on a previously published method named RMI (reduce misalignment impact). The performance of the proposed method was assessed by comparing with some outstanding fusion methods, such as adaptive Gram-Schmidt and generalized Laplacian pyramid. Experimental results show that the improved version can reduce spectral distortions of fused dark pixels and sharpen boundaries between different image objects, as well as obtain similar quality indexes with the original RMI method. In addition, the proposed method was evaluated with respect to its sensitivity to misalignments between MS and PAN bands. It is certified that the proposed method is more robust to misalignments between MS and PAN bands than the other methods. PMID:29439502

  12. An Improved Pansharpening Method for Misaligned Panchromatic and Multispectral Data.

    PubMed

    Li, Hui; Jing, Linhai; Tang, Yunwei; Ding, Haifeng

    2018-02-11

    Numerous pansharpening methods were proposed in recent decades for fusing low-spatial-resolution multispectral (MS) images with high-spatial-resolution (HSR) panchromatic (PAN) bands to produce fused HSR MS images, which are widely used in various remote sensing tasks. The effect of misregistration between MS and PAN bands on quality of fused products has gained much attention in recent years. An improved method for misaligned MS and PAN imagery is proposed, through two improvements made on a previously published method named RMI (reduce misalignment impact). The performance of the proposed method was assessed by comparing with some outstanding fusion methods, such as adaptive Gram-Schmidt and generalized Laplacian pyramid. Experimental results show that the improved version can reduce spectral distortions of fused dark pixels and sharpen boundaries between different image objects, as well as obtain similar quality indexes with the original RMI method. In addition, the proposed method was evaluated with respect to its sensitivity to misalignments between MS and PAN bands. It is certified that the proposed method is more robust to misalignments between MS and PAN bands than the other methods.

  13. Fast cat-eye effect target recognition based on saliency extraction

    NASA Astrophysics Data System (ADS)

    Li, Li; Ren, Jianlin; Wang, Xingbin

    2015-09-01

    Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.

  14. Spatial resolution properties of motion-compensated tomographic image reconstruction methods.

    PubMed

    Chun, Se Young; Fessler, Jeffrey A

    2012-07-01

    Many motion-compensated image reconstruction (MCIR) methods have been proposed to correct for subject motion in medical imaging. MCIR methods incorporate motion models to improve image quality by reducing motion artifacts and noise. This paper analyzes the spatial resolution properties of MCIR methods and shows that nonrigid local motion can lead to nonuniform and anisotropic spatial resolution for conventional quadratic regularizers. This undesirable property is akin to the known effects of interactions between heteroscedastic log-likelihoods (e.g., Poisson likelihood) and quadratic regularizers. This effect may lead to quantification errors in small or narrow structures (such as small lesions or rings) of reconstructed images. This paper proposes novel spatial regularization design methods for three different MCIR methods that account for known nonrigid motion. We develop MCIR regularization designs that provide approximately uniform and isotropic spatial resolution and that match a user-specified target spatial resolution. Two-dimensional PET simulations demonstrate the performance and benefits of the proposed spatial regularization design methods.

  15. A New Moving Object Detection Method Based on Frame-difference and Background Subtraction

    NASA Astrophysics Data System (ADS)

    Guo, Jiajia; Wang, Junping; Bai, Ruixue; Zhang, Yao; Li, Yong

    2017-09-01

    Although many methods of moving object detection have been proposed, moving object extraction is still the core in video surveillance. However, with the complex scene in real world, false detection, missed detection and deficiencies resulting from cavities inside the body still exist. In order to solve the problem of incomplete detection for moving objects, a new moving object detection method combined an improved frame-difference and Gaussian mixture background subtraction is proposed in this paper. To make the moving object detection more complete and accurate, the image repair and morphological processing techniques which are spatial compensations are applied in the proposed method. Experimental results show that our method can effectively eliminate ghosts and noise and fill the cavities of the moving object. Compared to other four moving object detection methods which are GMM, VIBE, frame-difference and a literature's method, the proposed method improve the efficiency and accuracy of the detection.

  16. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    PubMed

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  17. A Novel Robot Visual Homing Method Based on SIFT Features

    PubMed Central

    Zhu, Qidan; Liu, Chuanjia; Cai, Chengtao

    2015-01-01

    Warping is an effective visual homing method for robot local navigation. However, the performance of the warping method can be greatly influenced by the changes of the environment in a real scene, thus resulting in lower accuracy. In order to solve the above problem and to get higher homing precision, a novel robot visual homing algorithm is proposed by combining SIFT (scale-invariant feature transform) features with the warping method. The algorithm is novel in using SIFT features as landmarks instead of the pixels in the horizon region of the panoramic image. In addition, to further improve the matching accuracy of landmarks in the homing algorithm, a novel mismatching elimination algorithm, based on the distribution characteristics of landmarks in the catadioptric panoramic image, is proposed. Experiments on image databases and on a real scene confirm the effectiveness of the proposed method. PMID:26473880

  18. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

    PubMed Central

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409

  19. Blind Channel Equalization with Colored Source Based on Constrained Optimization Methods

    NASA Astrophysics Data System (ADS)

    Wang, Yunhua; DeBrunner, Linda; DeBrunner, Victor; Zhou, Dayong

    2008-12-01

    Tsatsanis and Xu have applied the constrained minimum output variance (CMOV) principle to directly blind equalize a linear channel—a technique that has proven effective with white inputs. It is generally assumed in the literature that their CMOV method can also effectively equalize a linear channel with a colored source. In this paper, we prove that colored inputs will cause the equalizer to incorrectly converge due to inadequate constraints. We also introduce a new blind channel equalizer algorithm that is based on the CMOV principle, but with a different constraint that will correctly handle colored sources. Our proposed algorithm works for channels with either white or colored inputs and performs equivalently to the trained minimum mean-square error (MMSE) equalizer under high SNR. Thus, our proposed algorithm may be regarded as an extension of the CMOV algorithm proposed by Tsatsanis and Xu. We also introduce several methods to improve the performance of our introduced algorithm in the low SNR condition. Simulation results show the superior performance of our proposed methods.

  20. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-02-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  1. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-06-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  2. Cat-eye effect target recognition with single-pixel detectors

    NASA Astrophysics Data System (ADS)

    Jian, Weijian; Li, Li; Zhang, Xiaoyue

    2015-12-01

    A prototype of cat-eye effect target recognition with single-pixel detectors is proposed. Based on the framework of compressive sensing, it is possible to recognize cat-eye effect targets by projecting a series of known random patterns and measuring the backscattered light with three single-pixel detectors in different locations. The prototype only requires simpler, less expensive detectors and extends well beyond the visible spectrum. The simulations are accomplished to evaluate the feasibility of the proposed prototype. We compared our results to that obtained from conventional cat-eye effect target recognition methods using area array sensor. The experimental results show that this method is feasible and superior to the conventional method in dynamic and complicated backgrounds.

  3. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva-Rodríguez, Jesús, E-mail: jesus.silva.rodriguez@sergas.es; Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es; Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela

    Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manualmore » ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.« less

  4. Sparse Coding and Counting for Robust Visual Tracking

    PubMed Central

    Liu, Risheng; Wang, Jing; Shang, Xiaoke; Wang, Yiyang; Su, Zhixun; Cai, Yu

    2016-01-01

    In this paper, we propose a novel sparse coding and counting method under Bayesian framework for visual tracking. In contrast to existing methods, the proposed method employs the combination of L0 and L1 norm to regularize the linear coefficients of incrementally updated linear basis. The sparsity constraint enables the tracker to effectively handle difficult challenges, such as occlusion or image corruption. To achieve real-time processing, we propose a fast and efficient numerical algorithm for solving the proposed model. Although it is an NP-hard problem, the proposed accelerated proximal gradient (APG) approach is guaranteed to converge to a solution quickly. Besides, we provide a closed solution of combining L0 and L1 regularized representation to obtain better sparsity. Experimental results on challenging video sequences demonstrate that the proposed method achieves state-of-the-art results both in accuracy and speed. PMID:27992474

  5. A new method for tracking organ motion on diagnostic ultrasound images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Yoshiki, E-mail: y-kubota@gunma-u.ac.jp; Matsumura, Akihiko, E-mail: matchan.akihiko@gunma-u.ac.jp; Fukahori, Mai, E-mail: fukahori@nirs.go.jp

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather thanmore » organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large deformations and changing cross-sectional position using this method. Conclusions: The proposed method achieved real-time processing and continuous tracking of the target organ for about 5 min. It is expected that our method will enable more accurate radiation treatment than is the case using indirect observational methods, such as the respiratory sensor method, because of direct visualization of the tumor. Results show that this tracking system facilitates safe treatment in clinical practice.« less

  6. General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies

    PubMed Central

    Lee, Seunggeun; Teslovich, Tanya M.; Boehnke, Michael; Lin, Xihong

    2013-01-01

    We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels. PMID:23768515

  7. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines.

    PubMed

    Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo

    2016-12-13

    In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.

  8. A Small Leak Detection Method Based on VMD Adaptive De-Noising and Ambiguity Correlation Classification Intended for Natural Gas Pipelines

    PubMed Central

    Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo

    2016-01-01

    In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods. PMID:27983577

  9. Calibration method for a large-scale structured light measurement system.

    PubMed

    Wang, Peng; Wang, Jianmei; Xu, Jing; Guan, Yong; Zhang, Guanglie; Chen, Ken

    2017-05-10

    The structured light method is an effective non-contact measurement approach. The calibration greatly affects the measurement precision of structured light systems. To construct a large-scale structured light system with high accuracy, a large-scale and precise calibration gauge is always required, which leads to an increased cost. To this end, in this paper, a calibration method with a planar mirror is proposed to reduce the calibration gauge size and cost. An out-of-focus camera calibration method is also proposed to overcome the defocusing problem caused by the shortened distance during the calibration procedure. The experimental results verify the accuracy of the proposed calibration method.

  10. A hierarchical classification method for finger knuckle print recognition

    NASA Astrophysics Data System (ADS)

    Kong, Tao; Yang, Gongping; Yang, Lu

    2014-12-01

    Finger knuckle print has recently been seen as an effective biometric technique. In this paper, we propose a hierarchical classification method for finger knuckle print recognition, which is rooted in traditional score-level fusion methods. In the proposed method, we firstly take Gabor feature as the basic feature for finger knuckle print recognition and then a new decision rule is defined based on the predefined threshold. Finally, the minor feature speeded-up robust feature is conducted for these users, who cannot be recognized by the basic feature. Extensive experiments are performed to evaluate the proposed method, and experimental results show that it can achieve a promising performance.

  11. Finger Vein Recognition Based on a Personalized Best Bit Map

    PubMed Central

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition. PMID:22438735

  12. Finger vein recognition based on a personalized best bit map.

    PubMed

    Yang, Gongping; Xi, Xiaoming; Yin, Yilong

    2012-01-01

    Finger vein patterns have recently been recognized as an effective biometric identifier. In this paper, we propose a finger vein recognition method based on a personalized best bit map (PBBM). Our method is rooted in a local binary pattern based method and then inclined to use the best bits only for matching. We first present the concept of PBBM and the generating algorithm. Then we propose the finger vein recognition framework, which consists of preprocessing, feature extraction, and matching. Finally, we design extensive experiments to evaluate the effectiveness of our proposal. Experimental results show that PBBM achieves not only better performance, but also high robustness and reliability. In addition, PBBM can be used as a general framework for binary pattern based recognition.

  13. A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing

    2015-09-01

    The accuracy of metamodelling is determined by both the sampling and approximation. This article proposes a new sampling method based on the zeros of Chebyshev polynomials to capture the sampling information effectively. First, the zeros of one-dimensional Chebyshev polynomials are applied to construct Chebyshev tensor product (CTP) sampling, and the CTP is then used to construct high-order multi-dimensional metamodels using the 'hypercube' polynomials. Secondly, the CTP sampling is further enhanced to develop Chebyshev collocation method (CCM) sampling, to construct the 'simplex' polynomials. The samples of CCM are randomly and directly chosen from the CTP samples. Two widely studied sampling methods, namely the Smolyak sparse grid and Hammersley, are used to demonstrate the effectiveness of the proposed sampling method. Several numerical examples are utilized to validate the approximation accuracy of the proposed metamodel under different dimensions.

  14. Incorrect Match Detection Method for Arctic Sea-Ice Reconstruction Using Uav Images

    NASA Astrophysics Data System (ADS)

    Kim, J.-I.; Kim, H.-C.

    2018-05-01

    Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.

  15. Prestack density inversion using the Fatti equation constrained by the P- and S-wave impedance and density

    NASA Astrophysics Data System (ADS)

    Liang, Li-Feng; Zhang, Hong-Bing; Dan, Zhi-Wei; Xu, Zi-Qiang; Liu, Xiu-Juan; Cao, Cheng-Hao

    2017-03-01

    Simultaneous prestack inversion is based on the modified Fatti equation and uses the ratio of the P- and S-wave velocity as constraints. We use the relation of P-wave impedance and density (PID) and S-wave impedance and density (SID) to replace the constant Vp/Vs constraint, and we propose the improved constrained Fatti equation to overcome the effect of P-wave impedance on density. We compare the sensitivity of both methods using numerical simulations and conclude that the density inversion sensitivity improves when using the proposed method. In addition, the random conjugate-gradient method is used in the inversion because it is fast and produces global solutions. The use of synthetic and field data suggests that the proposed inversion method is effective in conventional and nonconventional lithologies.

  16. Effective Heart Disease Detection Based on Quantitative Computerized Traditional Chinese Medicine Using Representation Based Classifiers.

    PubMed

    Shu, Ting; Zhang, Bob; Tang, Yuan Yan

    2017-01-01

    At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy compared with other classifiers and is proven to be effective at heart disease detection.

  17. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.

    PubMed

    Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A

    2012-02-01

    Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.

  18. The Research on Automatic Construction of Domain Model Based on Deep Web Query Interfaces

    NASA Astrophysics Data System (ADS)

    JianPing, Gu

    The integration of services is transparent, meaning that users no longer face the millions of Web services, do not care about the required data stored, but do not need to learn how to obtain these data. In this paper, we analyze the uncertainty of schema matching, and then propose a series of similarity measures. To reduce the cost of execution, we propose the type-based optimization method and schema matching pruning method of numeric data. Based on above analysis, we propose the uncertain schema matching method. The experiments prove the effectiveness and efficiency of our method.

  19. Inter-Vehicle Communication System Utilizing Autonomous Distributed Transmit Power Control

    NASA Astrophysics Data System (ADS)

    Hamada, Yuji; Sawa, Yoshitsugu; Goto, Yukio; Kumazawa, Hiroyuki

    In ad-hoc network such as inter-vehicle communication (IVC) system, safety applications that vehicles broadcast the information such as car velocity, position and so on periodically are considered. In these applications, if there are many vehicles broadcast data in a communication area, congestion incurs a problem decreasing communication reliability. We propose autonomous distributed transmit power control method to keep high communication reliability. In this method, each vehicle controls its transmit power using feed back control. Furthermore, we design a communication protocol to realize the proposed method, and we evaluate the effectiveness of proposed method using computer simulation.

  20. Preprocessing method to correct illumination pattern in sinusoidal-based structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Doblas, A.; Saavedra, G.; Preza, C.

    2018-02-01

    The restored images in structured illumination microscopy (SIM) can be affected by residual fringes due to a mismatch between the illumination pattern and the sinusoidal model assumed by the restoration method. When a Fresnel biprism is used to generate a structured pattern, this pattern cannot be described by a pure sinusoidal function since it is distorted by an envelope due to the biprism's edge. In this contribution, we have investigated the effect of the envelope on the restored SIM images and propose a computational method in order to address it. The proposed approach to reduce the effect of the envelope consists of two parts. First, the envelope of the structured pattern, determined through calibration data, is removed from the raw SIM data via a preprocessing step. In the second step, a notch filter is applied to the images, which are restored using the well-known generalized Wiener filter, to filter any residual undesired fringes. The performance of our approach has been evaluated numerically by simulating the effect of the envelope on synthetic forward images of a 6-μm spherical bead generated using the real pattern and then restored using the SIM approach that is based on an ideal pure sinusoidal function before and after our proposed correction method. The simulation result shows 74% reduction in the contrast of the residual pattern when the proposed method is applied. Experimental results from a pollen grain sample also validate the proposed approach.

  1. Competitive region orientation code for palmprint verification and identification

    NASA Astrophysics Data System (ADS)

    Tang, Wenliang

    2015-11-01

    Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.

  2. Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system.

    PubMed

    El-Bardini, Mohammad; El-Nagar, Ahmad M

    2014-05-01

    In this paper, the interval type-2 fuzzy proportional-integral-derivative controller (IT2F-PID) is proposed for controlling an inverted pendulum on a cart system with an uncertain model. The proposed controller is designed using a new method of type-reduction that we have proposed, which is called the simplified type-reduction method. The proposed IT2F-PID controller is able to handle the effect of structure uncertainties due to the structure of the interval type-2 fuzzy logic system (IT2-FLS). The results of the proposed IT2F-PID controller using a new method of type-reduction are compared with the other proposed IT2F-PID controller using the uncertainty bound method and the type-1 fuzzy PID controller (T1F-PID). The simulation and practical results show that the performance of the proposed controller is significantly improved compared with the T1F-PID controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Intelligent Method for Diagnosing Structural Faults of Rotating Machinery Using Ant Colony Optimization

    PubMed Central

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called “relative ratio symptom parameters” are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks. PMID:22163833

  4. Intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization.

    PubMed

    Li, Ke; Chen, Peng

    2011-01-01

    Structural faults, such as unbalance, misalignment and looseness, etc., often occur in the shafts of rotating machinery. These faults may cause serious machine accidents and lead to great production losses. This paper proposes an intelligent method for diagnosing structural faults of rotating machinery using ant colony optimization (ACO) and relative ratio symptom parameters (RRSPs) in order to detect faults and distinguish fault types at an early stage. New symptom parameters called "relative ratio symptom parameters" are defined for reflecting the features of vibration signals measured in each state. Synthetic detection index (SDI) using statistical theory has also been defined to evaluate the applicability of the RRSPs. The SDI can be used to indicate the fitness of a RRSP for ACO. Lastly, this paper also compares the proposed method with the conventional neural networks (NN) method. Practical examples of fault diagnosis for a centrifugal fan are provided to verify the effectiveness of the proposed method. The verification results show that the structural faults often occurring in the centrifugal fan, such as unbalance, misalignment and looseness states are effectively identified by the proposed method, while these faults are difficult to detect using conventional neural networks.

  5. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  6. Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Zhao; Xie, Zhipeng; Zhang, Jian

    2018-05-01

    The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.

  7. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network

    PubMed Central

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-01-01

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods. PMID:28677638

  8. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network.

    PubMed

    He, Jun; Yang, Shixi; Gan, Chunbiao

    2017-07-04

    Artificial intelligence (AI) techniques, which can effectively analyze massive amounts of fault data and automatically provide accurate diagnosis results, have been widely applied to fault diagnosis of rotating machinery. Conventional AI methods are applied using features selected by a human operator, which are manually extracted based on diagnostic techniques and field expertise. However, developing robust features for each diagnostic purpose is often labour-intensive and time-consuming, and the features extracted for one specific task may be unsuitable for others. In this paper, a novel AI method based on a deep belief network (DBN) is proposed for the unsupervised fault diagnosis of a gear transmission chain, and the genetic algorithm is used to optimize the structural parameters of the network. Compared to the conventional AI methods, the proposed method can adaptively exploit robust features related to the faults by unsupervised feature learning, thus requires less prior knowledge about signal processing techniques and diagnostic expertise. Besides, it is more powerful at modelling complex structured data. The effectiveness of the proposed method is validated using datasets from rolling bearings and gearbox. To show the superiority of the proposed method, its performance is compared with two well-known classifiers, i.e., back propagation neural network (BPNN) and support vector machine (SVM). The fault classification accuracies are 99.26% for rolling bearings and 100% for gearbox when using the proposed method, which are much higher than that of the other two methods.

  9. Application of preconditioned alternating direction method of multipliers in depth from focal stack

    NASA Astrophysics Data System (ADS)

    Javidnia, Hossein; Corcoran, Peter

    2018-03-01

    Postcapture refocusing effect in smartphone cameras is achievable using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map, which has been an open issue for decades. To tackle this issue, a framework is proposed based on a preconditioned alternating direction method of multipliers for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy, the optimization function of the proposed framework can, in fact, converge faster and better than state-of-the-art methods. The qualitative evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against five other methods. Later, 10 light field image sets have been transformed into focal stacks for quantitative evaluation purposes. Preliminary results indicate that the proposed framework has a better performance in terms of structural accuracy and optimization in comparison to the current state-of-the-art methods.

  10. Research on segmentation based on multi-atlas in brain MR image

    NASA Astrophysics Data System (ADS)

    Qian, Yuejing

    2018-03-01

    Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.

  11. Modeling the magnetoelectric effect in laminated composites using Hamilton’s principle

    NASA Astrophysics Data System (ADS)

    Zhang, Shengyao; Zhang, Ru; Jiang, Jiqing

    2018-01-01

    Mathematical modeling of the magnetoelectric (ME) effect has been established for some rectangular and disk laminate structures. However, these methods are difficult in other cases, particularly for complex structures. In this work, a new method for the analysis of the ME effect is proposed using a generalized Hamilton’s principle, which is conveniently applicable to various laminate structures. As an example, the performance of the rectangular ME laminated composite is analyzed and the equivalent circuit model for the laminate is obtained directly from the analysis. The experimental data is also obtained to compare with the theoretical calculations and to validate the new method. Compared with Dong’s method, the new method is more accurate and convenient. In particular, the equivalent circuit for the rectangular laminated composite can be obtained more easily by the proposed method as it does not require the complex treatment used in Dong’s method.

  12. Robust estimation of the proportion of treatment effect explained by surrogate marker information.

    PubMed

    Parast, Layla; McDermott, Mary M; Tian, Lu

    2016-05-10

    In randomized treatment studies where the primary outcome requires long follow-up of patients and/or expensive or invasive obtainment procedures, the availability of a surrogate marker that could be used to estimate the treatment effect and could potentially be observed earlier than the primary outcome would allow researchers to make conclusions regarding the treatment effect with less required follow-up time and resources. The Prentice criterion for a valid surrogate marker requires that a test for treatment effect on the surrogate marker also be a valid test for treatment effect on the primary outcome of interest. Based on this criterion, methods have been developed to define and estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate marker. These methods aim to identify useful statistical surrogates that capture a large proportion of the treatment effect. However, current methods to estimate this proportion usually require restrictive model assumptions that may not hold in practice and thus may lead to biased estimates of this quantity. In this paper, we propose a nonparametric procedure to estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on a potential surrogate marker and extend this procedure to a setting with multiple surrogate markers. We compare our approach with previously proposed model-based approaches and propose a variance estimation procedure based on a perturbation-resampling method. Simulation studies demonstrate that the procedure performs well in finite samples and outperforms model-based procedures when the specified models are not correct. We illustrate our proposed procedure using a data set from a randomized study investigating a group-mediated cognitive behavioral intervention for peripheral artery disease participants. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Experimental study of assistant aids and new nursing method in nursing care work.

    PubMed

    Motegi, Nobuyuki; Matsuda, Fumiko; Takeuchi, Yuriko; Misawa, Tetsuo

    2012-01-01

    This study seeks to evaluate the effect of regular and new nursing methods in nursing care work. Nursing care work often causes low back pain in nursing care worker. The principle of not lifting when transferring patients has been proposed as one way to prevent low back pain. This principle incorporates the use of the patient's strength and assistant aids. A sliding seats and transfer boards have been proposed as assistant aids for the transferring patients. It is necessary to evaluate the effectiveness of these assistant aids in preventing low back pain. Ten subjects performed two tasks in this experiment. Five were nursing experienced persons and five were the inexperienced. EMG results indicated that the new nursing method was less stressful than the methods. A questionnaire revealed that the new method was evaluated more highly than the regular method. Based on these results, we propose that a sliding seats and transfer boards be used in nursing care work.

  14. Object-based change detection method using refined Markov random field

    NASA Astrophysics Data System (ADS)

    Peng, Daifeng; Zhang, Yongjun

    2017-01-01

    In order to fully consider the local spatial constraints between neighboring objects in object-based change detection (OBCD), an OBCD approach is presented by introducing a refined Markov random field (MRF). First, two periods of images are stacked and segmented to produce image objects. Second, object spectral and textual histogram features are extracted and G-statistic is implemented to measure the distance among different histogram distributions. Meanwhile, object heterogeneity is calculated by combining spectral and textual histogram distance using adaptive weight. Third, an expectation-maximization algorithm is applied for determining the change category of each object and the initial change map is then generated. Finally, a refined change map is produced by employing the proposed refined object-based MRF method. Three experiments were conducted and compared with some state-of-the-art unsupervised OBCD methods to evaluate the effectiveness of the proposed method. Experimental results demonstrate that the proposed method obtains the highest accuracy among the methods used in this paper, which confirms its validness and effectiveness in OBCD.

  15. Spatially adapted second-order total generalized variational image deblurring model under impulse noise

    NASA Astrophysics Data System (ADS)

    Zhong, Qiu-Xiang; Wu, Chuan-Sheng; Shu, Qiao-Ling; Liu, Ryan Wen

    2018-04-01

    Image deblurring under impulse noise is a typical ill-posed problem which requires regularization methods to guarantee high-quality imaging. L1-norm data-fidelity term and total variation (TV) regularizer have been combined to contribute the popular regularization method. However, the TV-regularized variational image deblurring model often suffers from the staircase-like artifacts leading to image quality degradation. To enhance image quality, the detailpreserving total generalized variation (TGV) was introduced to replace TV to eliminate the undesirable artifacts. The resulting nonconvex optimization problem was effectively solved using the alternating direction method of multipliers (ADMM). In addition, an automatic method for selecting spatially adapted regularization parameters was proposed to further improve deblurring performance. Our proposed image deblurring framework is able to remove blurring and impulse noise effects while maintaining the image edge details. Comprehensive experiments have been conducted to demonstrate the superior performance of our proposed method over several state-of-the-art image deblurring methods.

  16. Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi

    This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.

  17. Brain Network Regional Synchrony Analysis in Deafness

    PubMed Central

    Xu, Lei; Liang, Mao-Jin

    2018-01-01

    Deafness, the most common auditory disease, has greatly affected people for a long time. The major treatment for deafness is cochlear implantation (CI). However, till today, there is still a lack of objective and precise indicator serving as evaluation of the effectiveness of the cochlear implantation. The goal of this EEG-based study is to effectively distinguish CI children from those prelingual deafened children without cochlear implantation. The proposed method is based on the functional connectivity analysis, which focuses on the brain network regional synchrony. Specifically, we compute the functional connectivity between each channel pair first. Then, we quantify the brain network synchrony among regions of interests (ROIs), where both intraregional synchrony and interregional synchrony are computed. And finally the synchrony values are concatenated to form the feature vector for the SVM classifier. What is more, we develop a new ROI partition method of 128-channel EEG recording system. That is, both the existing ROI partition method and the proposed ROI partition method are used in the experiments. Compared with the existing EEG signal classification methods, our proposed method has achieved significant improvements as large as 87.20% and 86.30% when the existing ROI partition method and the proposed ROI partition method are used, respectively. It further demonstrates that the new ROI partition method is comparable to the existing ROI partition method. PMID:29854776

  18. Space debris detection in optical image sequences.

    PubMed

    Xi, Jiangbo; Wen, Desheng; Ersoy, Okan K; Yi, Hongwei; Yao, Dalei; Song, Zongxi; Xi, Shaobo

    2016-10-01

    We present a high-accuracy, low false-alarm rate, and low computational-cost methodology for removing stars and noise and detecting space debris with low signal-to-noise ratio (SNR) in optical image sequences. First, time-index filtering and bright star intensity enhancement are implemented to remove stars and noise effectively. Then, a multistage quasi-hypothesis-testing method is proposed to detect the pieces of space debris with continuous and discontinuous trajectories. For this purpose, a time-index image is defined and generated. Experimental results show that the proposed method can detect space debris effectively without any false alarms. When the SNR is higher than or equal to 1.5, the detection probability can reach 100%, and when the SNR is as low as 1.3, 1.2, and 1, it can still achieve 99%, 97%, and 85% detection probabilities, respectively. Additionally, two large sets of image sequences are tested to show that the proposed method performs stably and effectively.

  19. Implementation of an effective hybrid GA for large-scale traveling salesman problems.

    PubMed

    Nguyen, Hung Dinh; Yoshihara, Ikuo; Yamamori, Kunihito; Yasunaga, Moritoshi

    2007-02-01

    This correspondence describes a hybrid genetic algorithm (GA) to find high-quality solutions for the traveling salesman problem (TSP). The proposed method is based on a parallel implementation of a multipopulation steady-state GA involving local search heuristics. It uses a variant of the maximal preservative crossover and the double-bridge move mutation. An effective implementation of the Lin-Kernighan heuristic (LK) is incorporated into the method to compensate for the GA's lack of local search ability. The method is validated by comparing it with the LK-Helsgaun method (LKH), which is one of the most effective methods for the TSP. Experimental results with benchmarks having up to 316228 cities show that the proposed method works more effectively and efficiently than LKH when solving large-scale problems. Finally, the method is used together with the implementation of the iterated LK to find a new best tour (as of June 2, 2003) for a 1904711-city TSP challenge.

  20. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  1. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  2. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Elder, E; Roper, J

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less

  3. High accurate interpolation of NURBS tool path for CNC machine tools

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Huan; Yuan, Songmei

    2016-09-01

    Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.

  4. A dimension-wise analysis method for the structural-acoustic system with interval parameters

    NASA Astrophysics Data System (ADS)

    Xu, Menghui; Du, Jianke; Wang, Chong; Li, Yunlong

    2017-04-01

    The interval structural-acoustic analysis is mainly accomplished by interval and subinterval perturbation methods. Potential limitations for these intrusive methods include overestimation or interval translation effect for the former and prohibitive computational cost for the latter. In this paper, a dimension-wise analysis method is thus proposed to overcome these potential limitations. In this method, a sectional curve of the system response surface along each input dimensionality is firstly extracted, the minimal and maximal points of which are identified based on its Legendre polynomial approximation. And two input vectors, i.e. the minimal and maximal input vectors, are dimension-wisely assembled by the minimal and maximal points of all sectional curves. Finally, the lower and upper bounds of system response are computed by deterministic finite element analysis at the two input vectors. Two numerical examples are studied to demonstrate the effectiveness of the proposed method and show that, compared to the interval and subinterval perturbation method, a better accuracy is achieved without much compromise on efficiency by the proposed method, especially for nonlinear problems with large interval parameters.

  5. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery.

    PubMed

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-07-19

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

  6. A Robust Gradient Based Method for Building Extraction from LiDAR and Photogrammetric Imagery

    PubMed Central

    Siddiqui, Fasahat Ullah; Teng, Shyh Wei; Awrangjeb, Mohammad; Lu, Guojun

    2016-01-01

    Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics. PMID:27447631

  7. Numerical simulation of the change characteristics of power dissipation coefficient of Ti-24Al-15Nb alloy in hot deformation

    NASA Astrophysics Data System (ADS)

    Wang, Kelu; Li, Xin; Zhang, Xiaobo

    2018-03-01

    The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.

  8. Bidirectional extreme learning machine for regression problem and its learning effectiveness.

    PubMed

    Yang, Yimin; Wang, Yaonan; Yuan, Xiaofang

    2012-09-01

    It is clear that the learning effectiveness and learning speed of neural networks are in general far slower than required, which has been a major bottleneck for many applications. Recently, a simple and efficient learning method, referred to as extreme learning machine (ELM), was proposed by Huang , which has shown that, compared to some conventional methods, the training time of neural networks can be reduced by a thousand times. However, one of the open problems in ELM research is whether the number of hidden nodes can be further reduced without affecting learning effectiveness. This brief proposes a new learning algorithm, called bidirectional extreme learning machine (B-ELM), in which some hidden nodes are not randomly selected. In theory, this algorithm tends to reduce network output error to 0 at an extremely early learning stage. Furthermore, we find a relationship between the network output error and the network output weights in the proposed B-ELM. Simulation results demonstrate that the proposed method can be tens to hundreds of times faster than other incremental ELM algorithms.

  9. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators.

    PubMed

    Sanada, Akira; Tanaka, Nobuo

    2012-08-01

    This study deals with the feedforward active control of sound transmission through a simply supported rectangular panel using vibration actuators. The control effect largely depends on the excitation method, including the number and locations of actuators. In order to obtain a large control effect at low frequencies over a wide frequency, an active transmission control method based on single structural mode actuation is proposed. Then, with the goal of examining the feasibility of the proposed method, the (1, 3) mode is selected as the target mode and a modal actuation method in combination with six point force actuators is considered. Assuming that a single input single output feedforward control is used, sound transmission in the case minimizing the transmitted sound power is calculated for some actuation methods. Simulation results showed that the (1, 3) modal actuation is globally effective at reducing the sound transmission by more than 10 dB in the low-frequency range for both normal and oblique incidences. Finally, experimental results also showed that a large reduction could be achieved in the low-frequency range, which proves the validity and feasibility of the proposed method.

  10. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies.

    PubMed

    Silva-Rodríguez, Jesús; Aguiar, Pablo; Sánchez, Manuel; Mosquera, Javier; Luna-Vega, Víctor; Cortés, Julia; Garrido, Miguel; Pombar, Miguel; Ruibal, Alvaro

    2014-05-01

    Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.

  11. Excitation of plasmonic waves in metal-dielectric structures by a laser beam using holography principles

    NASA Astrophysics Data System (ADS)

    Ignatov, A. I.; Merzlikin, A. M.

    2018-03-01

    A method for development of gratings for effective excitation of surface plasmonic waves using holography principles has been proposed and theoretically analyzed. For the case of a plasmonic wave in a dielectric layer on metal, the proposed volume hologram is 1.7 times more effective than the simple grating of slits in the dielectric layer with the optimized period and slits' width. The advantage of the hologram over the optimized grating is in the refractive index distribution that accounts phase relationships between an exciting and an excited waves more correctly. The proposed holographic method is universal. As expected, this can be extended for effective excitation of different types of optical surface waves and modes of optical waveguides.

  12. Robust gene selection methods using weighting schemes for microarray data analysis.

    PubMed

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  13. First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized Cartesian sampling.

    PubMed

    Zhou, Zhengwei; Bi, Xiaoming; Wei, Janet; Yang, Hsin-Jung; Dharmakumar, Rohan; Arsanjani, Reza; Bairey Merz, C Noel; Li, Debiao; Sharif, Behzad

    2017-02-01

    The presence of subendocardial dark-rim artifact (DRA) remains an ongoing challenge in first-pass perfusion (FPP) cardiac magnetic resonance imaging (MRI). We propose a free-breathing FPP imaging scheme with Cartesian sampling that is optimized to minimize the DRA and readily enables near-instantaneous image reconstruction. The proposed FPP method suppresses Gibbs ringing effects-a major underlying factor for the DRA-by "shaping" the underlying point spread function through a two-step process: 1) an undersampled Cartesian sampling scheme that widens the k-space coverage compared to the conventional scheme; and 2) a modified parallel-imaging scheme that incorporates optimized apodization (k-space data filtering) to suppress Gibbs-ringing effects. Healthy volunteer studies (n = 10) were performed to compare the proposed method against the conventional Cartesian technique-both using a saturation-recovery gradient-echo sequence at 3T. Furthermore, FPP imaging studies using the proposed method were performed in infarcted canines (n = 3), and in two symptomatic patients with suspected coronary microvascular dysfunction for assessment of myocardial hypoperfusion. Width of the DRA and the number of DRA-affected myocardial segments were significantly reduced in the proposed method compared to the conventional approach (width: 1.3 vs. 2.9 mm, P < 0.001; number of segments: 2.6 vs. 8.7; P < 0.0001). The number of slices with severe DRA was markedly lower for the proposed method (by 10-fold). The reader-assigned image quality scores were similar (P = 0.2), although the quantified myocardial signal-to-noise ratio was lower for the proposed method (P < 0.05). Animal studies showed that the proposed method can detect subendocardial perfusion defects and patient results were consistent with the gold-standard invasive test. The proposed free-breathing Cartesian FPP imaging method significantly reduces the prevalence of severe DRAs compared to the conventional approach while maintaining similar resolution and image quality. 2 J. Magn. Reson. Imaging 2017;45:542-555. © 2016 International Society for Magnetic Resonance in Medicine.

  14. An efficient genome-wide association test for mixed binary and continuous phenotypes with applications to substance abuse research.

    PubMed

    Buu, Anne; Williams, L Keoki; Yang, James J

    2018-03-01

    We propose a new genome-wide association test for mixed binary and continuous phenotypes that uses an efficient numerical method to estimate the empirical distribution of the Fisher's combination statistic under the null hypothesis. Our simulation study shows that the proposed method controls the type I error rate and also maintains its power at the level of the permutation method. More importantly, the computational efficiency of the proposed method is much higher than the one of the permutation method. The simulation results also indicate that the power of the test increases when the genetic effect increases, the minor allele frequency increases, and the correlation between responses decreases. The statistical analysis on the database of the Study of Addiction: Genetics and Environment demonstrates that the proposed method combining multiple phenotypes can increase the power of identifying markers that may not be, otherwise, chosen using marginal tests.

  15. An automatic step adjustment method for average power analysis technique used in fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Ming

    2006-04-01

    An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

  16. a Method of Time-Series Change Detection Using Full Polsar Images from Different Sensors

    NASA Astrophysics Data System (ADS)

    Liu, W.; Yang, J.; Zhao, J.; Shi, H.; Yang, L.

    2018-04-01

    Most of the existing change detection methods using full polarimetric synthetic aperture radar (PolSAR) are limited to detecting change between two points in time. In this paper, a novel method was proposed to detect the change based on time-series data from different sensors. Firstly, the overall difference image of a time-series PolSAR was calculated by ominous statistic test. Secondly, difference images between any two images in different times ware acquired by Rj statistic test. Generalized Gaussian mixture model (GGMM) was used to obtain time-series change detection maps in the last step for the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection by using the time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can detect the time-series change from different sensors.

  17. Quantitative prediction of drug side effects based on drug-related features.

    PubMed

    Niu, Yanqing; Zhang, Wen

    2017-09-01

    Unexpected side effects of drugs are great concern in the drug development, and the identification of side effects is an important task. Recently, machine learning methods are proposed to predict the presence or absence of interested side effects for drugs, but it is difficult to make the accurate prediction for all of them. In this paper, we transform side effect profiles of drugs as their quantitative scores, by summing up their side effects with weights. The quantitative scores may measure the dangers of drugs, and thus help to compare the risk of different drugs. Here, we attempt to predict quantitative scores of drugs, namely the quantitative prediction. Specifically, we explore a variety of drug-related features and evaluate their discriminative powers for the quantitative prediction. Then, we consider several feature combination strategies (direct combination, average scoring ensemble combination) to integrate three informative features: chemical substructures, targets, and treatment indications. Finally, the average scoring ensemble model which produces the better performances is used as the final quantitative prediction model. Since weights for side effects are empirical values, we randomly generate different weights in the simulation experiments. The experimental results show that the quantitative method is robust to different weights, and produces satisfying results. Although other state-of-the-art methods cannot make the quantitative prediction directly, the prediction results can be transformed as the quantitative scores. By indirect comparison, the proposed method produces much better results than benchmark methods in the quantitative prediction. In conclusion, the proposed method is promising for the quantitative prediction of side effects, which may work cooperatively with existing state-of-the-art methods to reveal dangers of drugs.

  18. Bayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol data.

    PubMed

    Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie

    2017-08-01

    Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.

  19. Effective Alternating Direction Optimization Methods for Sparsity-Constrained Blind Image Deblurring.

    PubMed

    Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi

    2017-01-18

    Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.

  20. Statistical methods to estimate treatment effects from multichannel electroencephalography (EEG) data in clinical trials.

    PubMed

    Ma, Junshui; Wang, Shubing; Raubertas, Richard; Svetnik, Vladimir

    2010-07-15

    With the increasing popularity of using electroencephalography (EEG) to reveal the treatment effect in drug development clinical trials, the vast volume and complex nature of EEG data compose an intriguing, but challenging, topic. In this paper the statistical analysis methods recommended by the EEG community, along with methods frequently used in the published literature, are first reviewed. A straightforward adjustment of the existing methods to handle multichannel EEG data is then introduced. In addition, based on the spatial smoothness property of EEG data, a new category of statistical methods is proposed. The new methods use a linear combination of low-degree spherical harmonic (SPHARM) basis functions to represent a spatially smoothed version of the EEG data on the scalp, which is close to a sphere in shape. In total, seven statistical methods, including both the existing and the newly proposed methods, are applied to two clinical datasets to compare their power to detect a drug effect. Contrary to the EEG community's recommendation, our results suggest that (1) the nonparametric method does not outperform its parametric counterpart; and (2) including baseline data in the analysis does not always improve the statistical power. In addition, our results recommend that (3) simple paired statistical tests should be avoided due to their poor power; and (4) the proposed spatially smoothed methods perform better than their unsmoothed versions. Copyright 2010 Elsevier B.V. All rights reserved.

  1. A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data.

    PubMed

    Agogo, George O; van der Voet, Hilko; van 't Veer, Pieter; Ferrari, Pietro; Muller, David C; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A; Boshuizen, Hendriek C

    2016-10-13

    Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data. We proposed a method to adjust for the bias in the diet-disease association (hereafter, association), due to measurement error in dietary intake and a mismeasured confounder, when there is no internal validation data. The method combines prior information on the validity of the self-report instrument with the observed data to adjust for the bias in the association. We compared the proposed method with the method that ignores the confounder effect, and with the method that ignores measurement errors completely. We assessed the sensitivity of the estimates to various magnitudes of measurement error, error correlations and uncertainty in the literature-reported validation data. We applied the methods to fruits and vegetables (FV) intakes, cigarette smoking (confounder) and all-cause mortality data from the European Prospective Investigation into Cancer and Nutrition study. Using the proposed method resulted in about four times increase in the strength of association between FV intake and mortality. For weakly correlated errors, measurement error in the confounder minimally affected the hazard ratio estimate for FV intake. The effect was more pronounced for strong error correlations. The proposed method permits sensitivity analysis on measurement error structures and accounts for uncertainties in the reported validity coefficients. The method is useful in assessing the direction and quantifying the magnitude of bias in the association due to measurement errors in the confounders.

  2. Effective description of a 3D object for photon transportation in Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Suganuma, R.; Ogawa, K.

    2000-06-01

    Photon transport simulation by means of the Monte Carlo method is an indispensable technique for examining scatter and absorption correction methods in SPECT and PET. The authors have developed a method for object description with maximum size regions (maximum rectangular regions: MRRs) to speed up photon transport simulation, and compared the computation time with that for conventional object description methods, a voxel-based (VB) method and an octree method, in the simulations of two kinds of phantoms. The simulation results showed that the computation time with the proposed method became about 50% of that with the VD method and about 70% of that with the octree method for a high resolution MCAT phantom. Here, details of the expansion of the MRR method to three dimensions are given. Moreover, the effectiveness of the proposed method was compared with the VB and octree methods.

  3. A Decision Support System for Evaluating and Selecting Information Systems Projects

    NASA Astrophysics Data System (ADS)

    Deng, Hepu; Wibowo, Santoso

    2009-01-01

    This chapter presents a decision support system (DSS) for effectively solving the information systems (IS) project selection problem. The proposed DSS recognizes the multidimensional nature of the IS project selection problem, the availability of multicriteria analysis (MA) methods, and the preferences of the decision-maker (DM) on the use of specific MA methods in a given situation. A knowledge base consisting of IF-THEN production rules is developed for assisting the DM with a systematic adoption of the most appropriate method with the efficient use of the powerful reasoning and explanation capabilities of intelligent DSS. The idea of letting the problem to be solved determines the method to be used is incorporated into the proposed DSS. As a result, effective decisions can be made for solving the IS project selection problem. An example is presented to demonstrate the applicability of the proposed DSS for solving the problem of selecting IS projects in real world situations.

  4. Dynamic path planning for mobile robot based on particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Cai, Feng; Wang, Ying

    2017-08-01

    In the contemporary, robots are used in many fields, such as cleaning, medical treatment, space exploration, disaster relief and so on. The dynamic path planning of robot without collision is becoming more and more the focus of people's attention. A new method of path planning is proposed in this paper. Firstly, the motion space model of the robot is established by using the MAKLINK graph method. Then the A* algorithm is used to get the shortest path from the start point to the end point. Secondly, this paper proposes an effective method to detect and avoid obstacles. When an obstacle is detected on the shortest path, the robot will choose the nearest safety point to move. Moreover, calculate the next point which is nearest to the target. Finally, the particle swarm optimization algorithm is used to optimize the path. The experimental results can prove that the proposed method is more effective.

  5. Interquantile Shrinkage in Regression Models

    PubMed Central

    Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.

    2012-01-01

    Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546

  6. Estimation of Comfort/Disconfort Based on EEG in Massage by Use of Clustering according to Correration and Incremental Learning type NN

    NASA Astrophysics Data System (ADS)

    Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira

    Authors proposed the estimation method combining k-means algorithm and NN for evaluating massage. However, this estimation method has a problem that discrimination ratio is decreased to new user. There are two causes of this problem. One is that generalization of NN is bad. Another one is that clustering result by k-means algorithm has not high correlation coefficient in a class. Then, this research proposes k-means algorithm according to correlation coefficient and incremental learning for NN. The proposed k-means algorithm is method included evaluation function based on correlation coefficient. Incremental learning is method that NN is learned by new data and initialized weight based on the existing data. The effect of proposed methods are verified by estimation result using EEG data when testee is given massage.

  7. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction

    PubMed Central

    Lu, Hongyang; Wei, Jingbo; Wang, Yuhao; Deng, Xiaohua

    2016-01-01

    Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values. PMID:27110235

  8. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction.

    PubMed

    Lu, Hongyang; Wei, Jingbo; Liu, Qiegen; Wang, Yuhao; Deng, Xiaohua

    2016-01-01

    Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.

  9. An improved method for pancreas segmentation using SLIC and interactive region merging

    NASA Astrophysics Data System (ADS)

    Zhang, Liyuan; Yang, Huamin; Shi, Weili; Miao, Yu; Li, Qingliang; He, Fei; He, Wei; Li, Yanfang; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2017-03-01

    Considering the weak edges in pancreas segmentation, this paper proposes a new solution which integrates more features of CT images by combining SLIC superpixels and interactive region merging. In the proposed method, Mahalanobis distance is first utilized in SLIC method to generate better superpixel images. By extracting five texture features and one gray feature, the similarity measure between two superpixels becomes more reliable in interactive region merging. Furthermore, object edge blocks are accurately addressed by re-segmentation merging process. Applying the proposed method to four cases of abdominal CT images, we segment pancreatic tissues to verify the feasibility and effectiveness. The experimental results show that the proposed method can make segmentation accuracy increase to 92% on average. This study will boost the application process of pancreas segmentation for computer-aided diagnosis system.

  10. Uncertainty-based Estimation of the Secure Range for ISO New England Dynamic Interchange Adjustment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etingov, Pavel V.; Makarov, Yuri V.; Wu, Di

    2014-04-14

    The paper proposes an approach to estimate the secure range for dynamic interchange adjustment, which assists system operators in scheduling the interchange with neighboring control areas. Uncertainties associated with various sources are incorporated. The proposed method is implemented in the dynamic interchange adjustment (DINA) tool developed by Pacific Northwest National Laboratory (PNNL) for ISO New England. Simulation results are used to validate the effectiveness of the proposed method.

  11. Construction of Pancreatic Cancer Classifier Based on SVM Optimized by Improved FOA

    PubMed Central

    Ma, Xiaoqi

    2015-01-01

    A novel method is proposed to establish the pancreatic cancer classifier. Firstly, the concept of quantum and fruit fly optimal algorithm (FOA) are introduced, respectively. Then FOA is improved by quantum coding and quantum operation, and a new smell concentration determination function is defined. Finally, the improved FOA is used to optimize the parameters of support vector machine (SVM) and the classifier is established by optimized SVM. In order to verify the effectiveness of the proposed method, SVM and other classification methods have been chosen as the comparing methods. The experimental results show that the proposed method can improve the classifier performance and cost less time. PMID:26543867

  12. Investigation of methods to search for the boundaries on the image and their use on lung hardware of methods finding saliency map

    NASA Astrophysics Data System (ADS)

    Semenishchev, E. A.; Marchuk, V. I.; Fedosov, V. P.; Stradanchenko, S. G.; Ruslyakov, D. V.

    2015-05-01

    This work aimed to study computationally simple method of saliency map calculation. Research in this field received increasing interest for the use of complex techniques in portable devices. A saliency map allows increasing the speed of many subsequent algorithms and reducing the computational complexity. The proposed method of saliency map detection based on both image and frequency space analysis. Several examples of test image from the Kodak dataset with different detalisation considered in this paper demonstrate the effectiveness of the proposed approach. We present experiments which show that the proposed method providing better results than the framework Salience Toolbox in terms of accuracy and speed.

  13. A powerful approach for association analysis incorporating imprinting effects

    PubMed Central

    Xia, Fan; Zhou, Ji-Yuan; Fung, Wing Kam

    2011-01-01

    Motivation: For a diallelic marker locus, the transmission disequilibrium test (TDT) is a simple and powerful design for genetic studies. The TDT was originally proposed for use in families with both parents available (complete nuclear families) and has further been extended to 1-TDT for use in families with only one of the parents available (incomplete nuclear families). Currently, the increasing interest of the influence of parental imprinting on heritability indicates the importance of incorporating imprinting effects into the mapping of association variants. Results: In this article, we extend the TDT-type statistics to incorporate imprinting effects and develop a series of new test statistics in a general two-stage framework for association studies. Our test statistics enjoy the nature of family-based designs that need no assumption of Hardy–Weinberg equilibrium. Also, the proposed methods accommodate complete and incomplete nuclear families with one or more affected children. In the simulation study, we verify the validity of the proposed test statistics under various scenarios, and compare the powers of the proposed statistics with some existing test statistics. It is shown that our methods greatly improve the power for detecting association in the presence of imprinting effects. We further demonstrate the advantage of our methods by the application of the proposed test statistics to a rheumatoid arthritis dataset. Contact: wingfung@hku.hk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21798962

  14. A powerful approach for association analysis incorporating imprinting effects.

    PubMed

    Xia, Fan; Zhou, Ji-Yuan; Fung, Wing Kam

    2011-09-15

    For a diallelic marker locus, the transmission disequilibrium test (TDT) is a simple and powerful design for genetic studies. The TDT was originally proposed for use in families with both parents available (complete nuclear families) and has further been extended to 1-TDT for use in families with only one of the parents available (incomplete nuclear families). Currently, the increasing interest of the influence of parental imprinting on heritability indicates the importance of incorporating imprinting effects into the mapping of association variants. In this article, we extend the TDT-type statistics to incorporate imprinting effects and develop a series of new test statistics in a general two-stage framework for association studies. Our test statistics enjoy the nature of family-based designs that need no assumption of Hardy-Weinberg equilibrium. Also, the proposed methods accommodate complete and incomplete nuclear families with one or more affected children. In the simulation study, we verify the validity of the proposed test statistics under various scenarios, and compare the powers of the proposed statistics with some existing test statistics. It is shown that our methods greatly improve the power for detecting association in the presence of imprinting effects. We further demonstrate the advantage of our methods by the application of the proposed test statistics to a rheumatoid arthritis dataset. wingfung@hku.hk Supplementary data are available at Bioinformatics online.

  15. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  16. Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models

    PubMed Central

    Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua

    2017-01-01

    In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be improved by combining AAM and LW. (c) The multi-object strategy greatly facilitates the initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method achieves comparable performance while running 12 times faster. (e) The performance of proposed method is comparable to the state of the art liver segmentation algorithm. The executable version of 3D shape constrained GC with user interface can be downloaded from website http://xinjianchen.wordpress.com/research/. PMID:22311862

  17. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  18. Paule‐Mandel estimators for network meta‐analysis with random inconsistency effects

    PubMed Central

    Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose

    2017-01-01

    Network meta‐analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta‐analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between‐study heterogeneity. Models for network meta‐analysis with random inconsistency effects have the dual aim of allowing for inconsistencies and estimating average treatment effects across the whole network. To date, two classical estimation methods for fitting this type of model have been developed: a method of moments that extends DerSimonian and Laird's univariate method and maximum likelihood estimation. However, the Paule and Mandel estimator is another recommended classical estimation method for univariate meta‐analysis. In this paper, we extend the Paule and Mandel method so that it can be used to fit models for network meta‐analysis with random inconsistency effects. We apply all three estimation methods to a variety of examples that have been used previously and we also examine a challenging new dataset that is highly heterogenous. We perform a simulation study based on this new example. We find that the proposed Paule and Mandel method performs satisfactorily and generally better than the previously proposed method of moments because it provides more accurate inferences. Furthermore, the Paule and Mandel method possesses some advantages over likelihood‐based methods because it is both semiparametric and requires no convergence diagnostics. Although restricted maximum likelihood estimation remains the gold standard, the proposed methodology is a fully viable alternative to this and other estimation methods. PMID:28585257

  19. A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation

    NASA Astrophysics Data System (ADS)

    Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen

    2014-02-01

    High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.

  20. Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers.

    PubMed

    Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á

    2018-03-01

    This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.

  1. Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.

    PubMed

    Zhang, Jianguang; Jiang, Jianmin

    2018-02-01

    While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.

  2. Effective elastic moduli of triangular lattice material with defects

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Liang, Naigang

    2012-10-01

    This paper presents an attempt to extend homogenization analysis for the effective elastic moduli of triangular lattice materials with microstructural defects. The proposed homogenization method adopts a process based on homogeneous strain boundary conditions, the micro-scale constitutive law and the micro-to-macro static operator to establish the relationship between the macroscopic properties of a given lattice material to its micro-discrete behaviors and structures. Further, the idea behind Eshelby's equivalent eigenstrain principle is introduced to replace a defect distribution by an imagining displacement field (eigendisplacement) with the equivalent mechanical effect, and the triangular lattice Green's function technique is developed to solve the eigendisplacement field. The proposed method therefore allows handling of different types of microstructural defects as well as its arbitrary spatial distribution within a general and compact framework. Analytical closed-form estimations are derived, in the case of the dilute limit, for all the effective elastic moduli of stretch-dominated triangular lattices containing fractured cell walls and missing cells, respectively. Comparison with numerical results, the Hashin-Shtrikman upper bounds and uniform strain upper bounds are also presented to illustrate the predictive capability of the proposed method for lattice materials. Based on this work, we propose that not only the effective Young's and shear moduli but also the effective Poisson's ratio of triangular lattice materials depend on the number density of fractured cell walls and their spatial arrangements.

  3. Scaffolding Wiki-Supported Collaborative Learning for Small-Group Projects and Whole-Class Collaborative Knowledge Building

    ERIC Educational Resources Information Center

    Lin, C-Y.; Reigeluth, C. M.

    2016-01-01

    While educators value wikis' potential, wikis may fail to support collaborative constructive learning without careful scaffolding. This article proposes literature-based instructional methods, revised based on two expert instructors' input, presents the collected empirical evidence on the effects of these methods and proposes directions for future…

  4. A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro

    Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.

  5. Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator

    NASA Astrophysics Data System (ADS)

    Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi

    Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.

  6. Improved Genetic Algorithm Based on the Cooperation of Elite and Inverse-elite

    NASA Astrophysics Data System (ADS)

    Kanakubo, Masaaki; Hagiwara, Masafumi

    In this paper, we propose an improved genetic algorithm based on the combination of Bee system and Inverse-elitism, both are effective strategies for the improvement of GA. In the Bee system, in the beginning, each chromosome tries to find good solution individually as global search. When some chromosome is regarded as superior one, the other chromosomes try to find solution around there. However, since chromosomes for global search are generated randomly, Bee system lacks global search ability. On the other hand, in the Inverse-elitism, an inverse-elite whose gene values are reversed from the corresponding elite is produced. This strategy greatly contributes to diversification of chromosomes, but it lacks local search ability. In the proposed method, the Inverse-elitism with Pseudo-simplex method is employed for global search of Bee system in order to strengthen global search ability. In addition, it also has strong local search ability. The proposed method has synergistic effects of the three strategies. We confirmed validity and superior performance of the proposed method by computer simulations.

  7. Tracking Multiple Video Targets with an Improved GM-PHD Tracker

    PubMed Central

    Zhou, Xiaolong; Yu, Hui; Liu, Honghai; Li, Youfu

    2015-01-01

    Tracking multiple moving targets from a video plays an important role in many vision-based robotic applications. In this paper, we propose an improved Gaussian mixture probability hypothesis density (GM-PHD) tracker with weight penalization to effectively and accurately track multiple moving targets from a video. First, an entropy-based birth intensity estimation method is incorporated to eliminate the false positives caused by noisy video data. Then, a weight-penalized method with multi-feature fusion is proposed to accurately track the targets in close movement. For targets without occlusion, a weight matrix that contains all updated weights between the predicted target states and the measurements is constructed, and a simple, but effective method based on total weight and predicted target state is proposed to search the ambiguous weights in the weight matrix. The ambiguous weights are then penalized according to the fused target features that include spatial-colour appearance, histogram of oriented gradient and target area and further re-normalized to form a new weight matrix. With this new weight matrix, the tracker can correctly track the targets in close movement without occlusion. For targets with occlusion, a robust game-theoretical method is used. Finally, the experiments conducted on various video scenarios validate the effectiveness of the proposed penalization method and show the superior performance of our tracker over the state of the art. PMID:26633422

  8. Linearized image reconstruction method for ultrasound modulated electrical impedance tomography based on power density distribution

    NASA Astrophysics Data System (ADS)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2017-04-01

    Electrical resistance tomography (ERT) is a promising measurement technique with important industrial and clinical applications. However, with limited effective measurements, it suffers from poor spatial resolution due to the ill-posedness of the inverse problem. Recently, there has been an increasing research interest in hybrid imaging techniques, utilizing couplings of physical modalities, because these techniques obtain much more effective measurement information and promise high resolution. Ultrasound modulated electrical impedance tomography (UMEIT) is one of the newly developed hybrid imaging techniques, which combines electric and acoustic modalities. A linearized image reconstruction method based on power density is proposed for UMEIT. The interior data, power density distribution, is adopted to reconstruct the conductivity distribution with the proposed image reconstruction method. At the same time, relating the power density change to the change in conductivity, the Jacobian matrix is employed to make the nonlinear problem into a linear one. The analytic formulation of this Jacobian matrix is derived and its effectiveness is also verified. In addition, different excitation patterns are tested and analyzed, and opposite excitation provides the best performance with the proposed method. Also, multiple power density distributions are combined to implement image reconstruction. Finally, image reconstruction is implemented with the linear back-projection (LBP) algorithm. Compared with ERT, with the proposed image reconstruction method, UMEIT can produce reconstructed images with higher quality and better quantitative evaluation results.

  9. Calibration-independent measurement of complex permittivity of liquids using a coaxial transmission line

    NASA Astrophysics Data System (ADS)

    Guoxin, Cheng

    2015-01-01

    In recent years, several calibration-independent transmission/reflection methods have been developed to determine the complex permittivity of liquid materials. However, these methods experience their own respective defects, such as the requirement of multi measurement cells, or the presence of air gap effect. To eliminate these drawbacks, a fast calibration-independent method is proposed in this paper. There are two main advantages of the present method over those in the literature. First, only one measurement cell is required. The cell is measured when it is empty and when it is filled with liquid. This avoids the air gap effect in the approach, in which the structure with two reference ports connected with each other is needed to be measured. Second, it eliminates the effects of uncalibrated coaxial cables, adaptors, and plug sections; systematic errors caused by the experimental setup are avoided by the wave cascading matrix manipulations. Using this method, three dielectric reference liquids, i.e., ethanol, ethanediol, and pure water, and low-loss transformer oil are measured over a wide frequency range to validate the proposed method. Their accuracy is assessed by comparing the results with those obtained from the other well known techniques. It is demonstrated that this proposed method can be used as a robust approach for fast complex permittivity determination of liquid materials.

  10. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    NASA Astrophysics Data System (ADS)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  11. Elimination of RF inhomogeneity effects in segmentation.

    PubMed

    Agus, Onur; Ozkan, Mehmed; Aydin, Kubilay

    2007-01-01

    There are various methods proposed for the segmentation and analysis of MR images. However the efficiency of these techniques is effected by various artifacts that occur in the imaging system. One of the most encountered problems is the intensity variation across an image. To overcome this problem different methods are used. In this paper we propose a method for the elimination of intensity artifacts in segmentation of MRI images. Inter imager variations are also minimized to produce the same tissue segmentation for the same patient. A well-known multivariate classification algorithm, maximum likelihood is employed to illustrate the enhancement in segmentation.

  12. Multiple targets detection method in detection of UWB through-wall radar

    NASA Astrophysics Data System (ADS)

    Yang, Xiuwei; Yang, Chuanfa; Zhao, Xingwen; Tian, Xianzhong

    2017-11-01

    In this paper, the problems and difficulties encountered in the detection of multiple moving targets by UWB radar are analyzed. The experimental environment and the penetrating radar system are established. An adaptive threshold method based on local area is proposed to effectively filter out clutter interference The objective of the moving target is analyzed, and the false target is further filtered out by extracting the target feature. Based on the correlation between the targets, the target matching algorithm is proposed to improve the detection accuracy. Finally, the effectiveness of the above method is verified by practical experiment.

  13. A non-iterative extension of the multivariate random effects meta-analysis.

    PubMed

    Makambi, Kepher H; Seung, Hyunuk

    2015-01-01

    Multivariate methods in meta-analysis are becoming popular and more accepted in biomedical research despite computational issues in some of the techniques. A number of approaches, both iterative and non-iterative, have been proposed including the multivariate DerSimonian and Laird method by Jackson et al. (2010), which is non-iterative. In this study, we propose an extension of the method by Hartung and Makambi (2002) and Makambi (2001) to multivariate situations. A comparison of the bias and mean square error from a simulation study indicates that, in some circumstances, the proposed approach perform better than the multivariate DerSimonian-Laird approach. An example is presented to demonstrate the application of the proposed approach.

  14. Real-time identification of vehicle motion-modes using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, Lifu; Zhang, Nong; Du, Haiping

    2015-01-01

    A four-wheel ground vehicle has three body-dominated motion-modes, that is, bounce, roll, and pitch motion-modes. Real-time identification of these motion-modes can make vehicle suspensions, in particular, active suspensions, target on the dominant motion-mode and apply appropriate control strategies to improve its performance with less power consumption. Recently, a motion-mode energy method (MEM) was developed to identify the vehicle body motion-modes. However, this method requires the measurement of full vehicle states and road inputs, which are not always available in practice. This paper proposes an alternative approach to identify vehicle primary motion-modes with acceptable accuracy by employing neural networks (NNs). The effectiveness of the trained NNs is verified on a 10-DOF full-car model under various types of excitation inputs. The results confirm that the proposed method is effective in determining vehicle primary motion-modes with comparable accuracy to the MEM method. Experimental data is further used to validate the proposed method.

  15. An integrated condition-monitoring method for a milling process using reduced decomposition features

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin

    2017-08-01

    Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.

  16. A Novel Clustering Method Curbing the Number of States in Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Kotani, Naoki; Nunobiki, Masayuki; Taniguchi, Kenji

    We propose an efficient state-space construction method for a reinforcement learning. Our method controls the number of categories with improving the clustering method of Fuzzy ART which is an autonomous state-space construction method. The proposed method represents weight vector as the mean value of input vectors in order to curb the number of new categories and eliminates categories whose state values are low to curb the total number of categories. As the state value is updated, the size of category becomes small to learn policy strictly. We verified the effectiveness of the proposed method with simulations of a reaching problem for a two-link robot arm. We confirmed that the number of categories was reduced and the agent achieved the complex task quickly.

  17. New algorithms to compute the nearness symmetric solution of the matrix equation.

    PubMed

    Peng, Zhen-Yun; Fang, Yang-Zhi; Xiao, Xian-Wei; Du, Dan-Dan

    2016-01-01

    In this paper we consider the nearness symmetric solution of the matrix equation AXB = C to a given matrix [Formula: see text] in the sense of the Frobenius norm. By discussing equivalent form of the considered problem, we derive some necessary and sufficient conditions for the matrix [Formula: see text] is a solution of the considered problem. Based on the idea of the alternating variable minimization with multiplier method, we propose two iterative methods to compute the solution of the considered problem, and analyze the global convergence results of the proposed algorithms. Numerical results illustrate the proposed methods are more effective than the existing two methods proposed in Peng et al. (Appl Math Comput 160:763-777, 2005) and Peng (Int J Comput Math 87: 1820-1830, 2010).

  18. Accounting for dropout in xenografted tumour efficacy studies: integrated endpoint analysis, reduced bias and better use of animals.

    PubMed

    Martin, Emma C; Aarons, Leon; Yates, James W T

    2016-07-01

    Xenograft studies are commonly used to assess the efficacy of new compounds and characterise their dose-response relationship. Analysis often involves comparing the final tumour sizes across dose groups. This can cause bias, as often in xenograft studies a tumour burden limit (TBL) is imposed for ethical reasons, leading to the animals with the largest tumours being excluded from the final analysis. This means the average tumour size, particularly in the control group, is underestimated, leading to an underestimate of the treatment effect. Four methods to account for dropout due to the TBL are proposed, which use all the available data instead of only final observations: modelling, pattern mixture models, treating dropouts as censored using the M3 method and joint modelling of tumour growth and dropout. The methods were applied to both a simulated data set and a real example. All four proposed methods led to an improvement in the estimate of treatment effect in the simulated data. The joint modelling method performed most strongly, with the censoring method also providing a good estimate of the treatment effect, but with higher uncertainty. In the real data example, the dose-response estimated using the censoring and joint modelling methods was higher than the very flat curve estimated from average final measurements. Accounting for dropout using the proposed censoring or joint modelling methods allows the treatment effect to be recovered in studies where it may have been obscured due to dropout caused by the TBL.

  19. Deblurring traffic sign images based on exemplars

    PubMed Central

    Qiu, Tianshuang; Luan, Shengyang; Song, Haiyu; Wu, Linxiu

    2018-01-01

    Motion blur appearing in traffic sign images may lead to poor recognition results, and therefore it is of great significance to study how to deblur the images. In this paper, a novel method for deblurring traffic sign is proposed based on exemplars and several related approaches are also made. First, an exemplar dataset construction method is proposed based on multiple-size partition strategy to lower calculation cost of exemplar matching. Second, a matching criterion based on gradient information and entropy correlation coefficient is also proposed to enhance the matching accuracy. Third, L0.5-norm is introduced as the regularization item to maintain the sparsity of blur kernel. Experiments verify the superiority of the proposed approaches and extensive evaluations against state-of-the-art methods demonstrate the effectiveness of the proposed algorithm. PMID:29513677

  20. Market-oriented Programming Using Small-world Networks for Controlling Building Environments

    NASA Astrophysics Data System (ADS)

    Shigei, Noritaka; Miyajima, Hiromi; Osako, Tsukasa

    The market model, which is one of the economic activity models, is modeled as an agent system, and applying the model to the resource allocation problem has been studied. For air conditioning control of building, which is one of the resource allocation problems, an effective method based on the agent system using auction has been proposed for traditional PID controller. On the other hand, it has been considered that this method is performed by decentralized control. However, its decentralization is not perfect, and its performace is not enough. In this paper, firstly, we propose a perfectly decentralized agent model and show its performance. Secondly, in order to improve the model, we propose the agent model based on small-world model. The effectiveness of the proposed model is shown by simulation.

  1. 3D Markov Process for Traffic Flow Prediction in Real-Time.

    PubMed

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-25

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further.

  2. 3D Markov Process for Traffic Flow Prediction in Real-Time

    PubMed Central

    Ko, Eunjeong; Ahn, Jinyoung; Kim, Eun Yi

    2016-01-01

    Recently, the correct estimation of traffic flow has begun to be considered an essential component in intelligent transportation systems. In this paper, a new statistical method to predict traffic flows using time series analyses and geometric correlations is proposed. The novelty of the proposed method is two-fold: (1) a 3D heat map is designed to describe the traffic conditions between roads, which can effectively represent the correlations between spatially- and temporally-adjacent traffic states; and (2) the relationship between the adjacent roads on the spatiotemporal domain is represented by cliques in MRF and the clique parameters are obtained by example-based learning. In order to assess the validity of the proposed method, it is tested using data from expressway traffic that are provided by the Korean Expressway Corporation, and the performance of the proposed method is compared with existing approaches. The results demonstrate that the proposed method can predict traffic conditions with an accuracy of 85%, and this accuracy can be improved further. PMID:26821025

  3. Statistical inference for the additive hazards model under outcome-dependent sampling.

    PubMed

    Yu, Jichang; Liu, Yanyan; Sandler, Dale P; Zhou, Haibo

    2015-09-01

    Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer.

  4. Statistical inference for the additive hazards model under outcome-dependent sampling

    PubMed Central

    Yu, Jichang; Liu, Yanyan; Sandler, Dale P.; Zhou, Haibo

    2015-01-01

    Cost-effective study design and proper inference procedures for data from such designs are always of particular interests to study investigators. In this article, we propose a biased sampling scheme, an outcome-dependent sampling (ODS) design for survival data with right censoring under the additive hazards model. We develop a weighted pseudo-score estimator for the regression parameters for the proposed design and derive the asymptotic properties of the proposed estimator. We also provide some suggestions for using the proposed method by evaluating the relative efficiency of the proposed method against simple random sampling design and derive the optimal allocation of the subsamples for the proposed design. Simulation studies show that the proposed ODS design is more powerful than other existing designs and the proposed estimator is more efficient than other estimators. We apply our method to analyze a cancer study conducted at NIEHS, the Cancer Incidence and Mortality of Uranium Miners Study, to study the risk of radon exposure to cancer. PMID:26379363

  5. A deblocking algorithm based on color psychology for display quality enhancement

    NASA Astrophysics Data System (ADS)

    Yeh, Chia-Hung; Tseng, Wen-Yu; Huang, Kai-Lin

    2012-12-01

    This article proposes a post-processing deblocking filter to reduce blocking effects. The proposed algorithm detects blocking effects by fusing the results of Sobel edge detector and wavelet-based edge detector. The filtering stage provides four filter modes to eliminate blocking effects at different color regions according to human color vision and color psychology analysis. Experimental results show that the proposed algorithm has better subjective and objective qualities for H.264/AVC reconstructed videos when compared to several existing methods.

  6. Social Image Tag Ranking by Two-View Learning

    NASA Astrophysics Data System (ADS)

    Zhuang, Jinfeng; Hoi, Steven C. H.

    Tags play a central role in text-based social image retrieval and browsing. However, the tags annotated by web users could be noisy, irrelevant, and often incomplete for describing the image contents, which may severely deteriorate the performance of text-based image retrieval models. In order to solve this problem, researchers have proposed techniques to rank the annotated tags of a social image according to their relevance to the visual content of the image. In this paper, we aim to overcome the challenge of social image tag ranking for a corpus of social images with rich user-generated tags by proposing a novel two-view learning approach. It can effectively exploit both textual and visual contents of social images to discover the complicated relationship between tags and images. Unlike the conventional learning approaches that usually assumes some parametric models, our method is completely data-driven and makes no assumption about the underlying models, making the proposed solution practically more effective. We formulate our method as an optimization task and present an efficient algorithm to solve it. To evaluate the efficacy of our method, we conducted an extensive set of experiments by applying our technique to both text-based social image retrieval and automatic image annotation tasks. Our empirical results showed that the proposed method can be more effective than the conventional approaches.

  7. Experimental Investigation on the Detection of Multiple Surface Cracks Using Vibrothermography with a Low-Power Piezoceramic Actuator.

    PubMed

    Xu, Changhang; Xie, Jing; Zhang, Wuyang; Kong, Qingzhao; Chen, Guoming; Song, Gangbing

    2017-11-23

    Vibrothermography often employs a high-power actuator to generate heat on a specimen to reveal damage, however, the high-power actuator brings inconvenience to the application and possibly introduces additional damage to the inspected objects. This study uses a low-power piezoceramic transducer as the actuator of vibrothermography and explores its ability to detect multiple surface cracks in a metal part. Experiments were conducted on a thin aluminum beam with three cracks in different orientations. Detailed analyses of both thermograms and temperature data are presented to validate the proposed vibrothermography method. To further investigate the performance of the proposed vibrothermography method, we experimentally studied the effects of several critical factors, including the amplitude of excitation signal, specimen constraints, relative position between the transducer and cracks (the transducer is mounted on the same or the opposite side with the cracks). The results demonstrate that all cracks can be detected conveniently and simultaneously by using the proposed low-power vibrothermography. We also found that the magnitude of excitation signal and the specimen constraints have a great influence on detection results. Combined with effective data processing methods, such as Fourier transformation employed in this study, the proposed method provides a promising potential to detect multiple cracks on a metal surface in a safe and effective manner.

  8. Identifying partial topology of complex dynamical networks via a pinning mechanism

    NASA Astrophysics Data System (ADS)

    Zhu, Shuaibing; Zhou, Jin; Lu, Jun-an

    2018-04-01

    In this paper, we study the problem of identifying the partial topology of complex dynamical networks via a pinning mechanism. By using the network synchronization theory and the adaptive feedback controlling method, we propose a method which can greatly reduce the number of nodes and observers in the response network. Particularly, this method can also identify the whole topology of complex networks. A theorem is established rigorously, from which some corollaries are also derived in order to make our method more cost-effective. Several numerical examples are provided to verify the effectiveness of the proposed method. In the simulation, an approach is also given to avoid possible identification failure caused by inner synchronization of the drive network.

  9. Study on Privacy Protection Algorithm Based on K-Anonymity

    NASA Astrophysics Data System (ADS)

    FeiFei, Zhao; LiFeng, Dong; Kun, Wang; Yang, Li

    Basing on the study of K-Anonymity algorithm in privacy protection issue, this paper proposed a "Degree Priority" method of visiting Lattice nodes on the generalization tree to improve the performance of K-Anonymity algorithm. This paper also proposed a "Two Times K-anonymity" methods to reduce the information loss in the process of K-Anonymity. Finally, we used experimental results to demonstrate the effectiveness of these methods.

  10. Bias correction for estimated QTL effects using the penalized maximum likelihood method.

    PubMed

    Zhang, J; Yue, C; Zhang, Y-M

    2012-04-01

    A penalized maximum likelihood method has been proposed as an important approach to the detection of epistatic quantitative trait loci (QTL). However, this approach is not optimal in two special situations: (1) closely linked QTL with effects in opposite directions and (2) small-effect QTL, because the method produces downwardly biased estimates of QTL effects. The present study aims to correct the bias by using correction coefficients and shifting from the use of a uniform prior on the variance parameter of a QTL effect to that of a scaled inverse chi-square prior. The results of Monte Carlo simulation experiments show that the improved method increases the power from 25 to 88% in the detection of two closely linked QTL of equal size in opposite directions and from 60 to 80% in the identification of QTL with small effects (0.5% of the total phenotypic variance). We used the improved method to detect QTL responsible for the barley kernel weight trait using 145 doubled haploid lines developed in the North American Barley Genome Mapping Project. Application of the proposed method to other shrinkage estimation of QTL effects is discussed.

  11. Vibration Sensor Data Denoising Using a Time-Frequency Manifold for Machinery Fault Diagnosis

    PubMed Central

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2014-01-01

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods. PMID:24379045

  12. An Unsupervised Change Detection Method Using Time-Series of PolSAR Images from Radarsat-2 and GaoFen-3.

    PubMed

    Liu, Wensong; Yang, Jie; Zhao, Jinqi; Shi, Hongtao; Yang, Le

    2018-02-12

    The traditional unsupervised change detection methods based on the pixel level can only detect the changes between two different times with same sensor, and the results are easily affected by speckle noise. In this paper, a novel method is proposed to detect change based on time-series data from different sensors. Firstly, the overall difference image of the time-series PolSAR is calculated by omnibus test statistics, and difference images between any two images in different times are acquired by R j test statistics. Secondly, the difference images are segmented with a Generalized Statistical Region Merging (GSRM) algorithm which can suppress the effect of speckle noise. Generalized Gaussian Mixture Model (GGMM) is then used to obtain the time-series change detection maps in the final step of the proposed method. To verify the effectiveness of the proposed method, we carried out the experiment of change detection using time-series PolSAR images acquired by Radarsat-2 and Gaofen-3 over the city of Wuhan, in China. Results show that the proposed method can not only detect the time-series change from different sensors, but it can also better suppress the influence of speckle noise and improve the overall accuracy and Kappa coefficient.

  13. Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators.

    PubMed

    Huang, Yen-Tsung; Pan, Wen-Chi

    2016-06-01

    Causal mediation modeling has become a popular approach for studying the effect of an exposure on an outcome through a mediator. However, current methods are not applicable to the setting with a large number of mediators. We propose a testing procedure for mediation effects of high-dimensional continuous mediators. We characterize the marginal mediation effect, the multivariate component-wise mediation effects, and the L2 norm of the component-wise effects, and develop a Monte-Carlo procedure for evaluating their statistical significance. To accommodate the setting with a large number of mediators and a small sample size, we further propose a transformation model using the spectral decomposition. Under the transformation model, mediation effects can be estimated using a series of regression models with a univariate transformed mediator, and examined by our proposed testing procedure. Extensive simulation studies are conducted to assess the performance of our methods for continuous and dichotomous outcomes. We apply the methods to analyze genomic data investigating the effect of microRNA miR-223 on a dichotomous survival status of patients with glioblastoma multiforme (GBM). We identify nine gene ontology sets with expression values that significantly mediate the effect of miR-223 on GBM survival. © 2015, The International Biometric Society.

  14. Survival analysis using inverse probability of treatment weighted methods based on the generalized propensity score.

    PubMed

    Sugihara, Masahiro

    2010-01-01

    In survival analysis, treatment effects are commonly evaluated based on survival curves and hazard ratios as causal treatment effects. In observational studies, these estimates may be biased due to confounding factors. The inverse probability of treatment weighted (IPTW) method based on the propensity score is one of the approaches utilized to adjust for confounding factors between binary treatment groups. As a generalization of this methodology, we developed an exact formula for an IPTW log-rank test based on the generalized propensity score for survival data. This makes it possible to compare the group differences of IPTW Kaplan-Meier estimators of survival curves using an IPTW log-rank test for multi-valued treatments. As causal treatment effects, the hazard ratio can be estimated using the IPTW approach. If the treatments correspond to ordered levels of a treatment, the proposed method can be easily extended to the analysis of treatment effect patterns with contrast statistics. In this paper, the proposed method is illustrated with data from the Kyushu Lipid Intervention Study (KLIS), which investigated the primary preventive effects of pravastatin on coronary heart disease (CHD). The results of the proposed method suggested that pravastatin treatment reduces the risk of CHD and that compliance to pravastatin treatment is important for the prevention of CHD. (c) 2009 John Wiley & Sons, Ltd.

  15. A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations

    NASA Astrophysics Data System (ADS)

    Ramli, Liyana; Mohamed, Z.; Jaafar, H. I.

    2018-07-01

    This paper proposes an improved input shaping for minimising payload swing of an overhead crane with payload hoisting and payload mass variations. A real time unity magnitude zero vibration (UMZV) shaper is designed by using an artificial neural network trained by particle swarm optimisation. The proposed technique could predict and directly update the shaper's parameters in real time to handle the effects of time-varying parameters during the crane operation with hoisting. To evaluate the performances of the proposed method, experiments are conducted on a laboratory overhead crane with a payload hoisting, different payload masses and two different crane motions. The superiority of the proposed method is confirmed by reductions of at least 38.9% and 91.3% in the overall and residual swing responses, respectively over a UMZV shaper designed using an average operating frequency and a robust shaper namely Zero Vibration Derivative-Derivative (ZVDD). The proposed method also demonstrates a significant residual swing suppression as compared to a ZVDD shaper designed based on varying frequency. In addition, the significant reductions are achieved with a less shaper duration resulting in a satisfactory speed of response. It is envisaged that the proposed method can be used for designing effective input shapers for payload swing suppression of a crane with time-varying parameters and for a crane that employ finite actuation states.

  16. Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems

    PubMed Central

    Kimura, Shuhei; Sato, Masanao; Okada-Hatakeyama, Mariko

    2013-01-01

    The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský's model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský's model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský's models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations. PMID:24386175

  17. Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters

    NASA Astrophysics Data System (ADS)

    Vasumathi, B.; Moorthi, S.

    2011-11-01

    In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.

  18. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  19. Sensing Urban Land-Use Patterns by Integrating Google Tensorflow and Scene-Classification Models

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liang, H.; Li, X.; Zhang, J.; He, J.

    2017-09-01

    With the rapid progress of China's urbanization, research on the automatic detection of land-use patterns in Chinese cities is of substantial importance. Deep learning is an effective method to extract image features. To take advantage of the deep-learning method in detecting urban land-use patterns, we applied a transfer-learning-based remote-sensing image approach to extract and classify features. Using the Google Tensorflow framework, a powerful convolution neural network (CNN) library was created. First, the transferred model was previously trained on ImageNet, one of the largest object-image data sets, to fully develop the model's ability to generate feature vectors of standard remote-sensing land-cover data sets (UC Merced and WHU-SIRI). Then, a random-forest-based classifier was constructed and trained on these generated vectors to classify the actual urban land-use pattern on the scale of traffic analysis zones (TAZs). To avoid the multi-scale effect of remote-sensing imagery, a large random patch (LRP) method was used. The proposed method could efficiently obtain acceptable accuracy (OA = 0.794, Kappa = 0.737) for the study area. In addition, the results show that the proposed method can effectively overcome the multi-scale effect that occurs in urban land-use classification at the irregular land-parcel level. The proposed method can help planners monitor dynamic urban land use and evaluate the impact of urban-planning schemes.

  20. Experimental validation of spatial Fourier transform-based multiple sound zone generation with a linear loudspeaker array.

    PubMed

    Okamoto, Takuma; Sakaguchi, Atsushi

    2017-03-01

    Generating acoustically bright and dark zones using loudspeakers is gaining attention as one of the most important acoustic communication techniques for such uses as personal sound systems and multilingual guide services. Although most conventional methods are based on numerical solutions, an analytical approach based on the spatial Fourier transform with a linear loudspeaker array has been proposed, and its effectiveness has been compared with conventional acoustic energy difference maximization and presented by computer simulations. To describe the effectiveness of the proposal in actual environments, this paper investigates the experimental validation of the proposed approach with rectangular and Hann windows and compared it with three conventional methods: simple delay-and-sum beamforming, contrast maximization, and least squares-based pressure matching using an actually implemented linear array of 64 loudspeakers in an anechoic chamber. The results of both the computer simulations and the actual experiments show that the proposed approach with a Hann window more accurately controlled the bright and dark zones than the conventional methods.

  1. A refined method for multivariate meta-analysis and meta-regression.

    PubMed

    Jackson, Daniel; Riley, Richard D

    2014-02-20

    Making inferences about the average treatment effect using the random effects model for meta-analysis is problematic in the common situation where there is a small number of studies. This is because estimates of the between-study variance are not precise enough to accurately apply the conventional methods for testing and deriving a confidence interval for the average effect. We have found that a refined method for univariate meta-analysis, which applies a scaling factor to the estimated effects' standard error, provides more accurate inference. We explain how to extend this method to the multivariate scenario and show that our proposal for refined multivariate meta-analysis and meta-regression can provide more accurate inferences than the more conventional approach. We explain how our proposed approach can be implemented using standard output from multivariate meta-analysis software packages and apply our methodology to two real examples. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Modelling nonlinearity in superconducting split ring resonator and its effects on metamaterial structures

    NASA Astrophysics Data System (ADS)

    Mazdouri, Behnam; Mohammad Hassan Javadzadeh, S.

    2017-09-01

    Superconducting materials are intrinsically nonlinear, because of nonlinear Meissner effect (NLME). Considering nonlinear behaviors, such as harmonic generation and intermodulation distortion (IMD) in superconducting structures, are very important. In this paper, we proposed distributed nonlinear circuit model for superconducting split ring resonators (SSRRs). This model can be analyzed by using Harmonic Balance method (HB) as a nonlinear solver. Thereafter, we considered a superconducting metamaterial filter which was based on split ring resonators and we calculated fundamental and third-order IMD signals. There are good agreement between nonlinear results from proposed model and measured ones. Additionally, based on the proposed nonlinear model and by using a novel method, we considered nonlinear effects on main parameters in the superconducting metamaterial structures such as phase constant (β) and attenuation factor (α).

  3. Relevant Feature Set Estimation with a Knock-out Strategy and Random Forests

    PubMed Central

    Ganz, Melanie; Greve, Douglas N.; Fischl, Bruce; Konukoglu, Ender

    2015-01-01

    Group analysis of neuroimaging data is a vital tool for identifying anatomical and functional variations related to diseases as well as normal biological processes. The analyses are often performed on a large number of highly correlated measurements using a relatively smaller number of samples. Despite the correlation structure, the most widely used approach is to analyze the data using univariate methods followed by post-hoc corrections that try to account for the data’s multivariate nature. Although widely used, this approach may fail to recover from the adverse effects of the initial analysis when local effects are not strong. Multivariate pattern analysis (MVPA) is a powerful alternative to the univariate approach for identifying relevant variations. Jointly analyzing all the measures, MVPA techniques can detect global effects even when individual local effects are too weak to detect with univariate analysis. Current approaches are successful in identifying variations that yield highly predictive and compact models. However, they suffer from lessened sensitivity and instabilities in identification of relevant variations. Furthermore, current methods’ user-defined parameters are often unintuitive and difficult to determine. In this article, we propose a novel MVPA method for group analysis of high-dimensional data that overcomes the drawbacks of the current techniques. Our approach explicitly aims to identify all relevant variations using a “knock-out” strategy and the Random Forest algorithm. In evaluations with synthetic datasets the proposed method achieved substantially higher sensitivity and accuracy than the state-of-the-art MVPA methods, and outperformed the univariate approach when the effect size is low. In experiments with real datasets the proposed method identified regions beyond the univariate approach, while other MVPA methods failed to replicate the univariate results. More importantly, in a reproducibility study with the well-known ADNI dataset the proposed method yielded higher stability and power than the univariate approach. PMID:26272728

  4. Local coding based matching kernel method for image classification.

    PubMed

    Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong

    2014-01-01

    This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.

  5. Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Oyadiji, S. Olutunde; Ding, Kang

    2008-04-01

    This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical simulation. For real cases, experimental noise is expected to corrupt the response data and, ultimately, the natural frequencies of beam-like structures. Therefore, the response data with a normally distributed random noise is also studied. Also, the effects of crack depth, auxiliary mass and damping ratios on the proposed method are investigated. From the simulated results, the efficiency and robustness of the proposed method is demonstrated. The results show that the proposed method has low computational cost and high precision.

  6. Genotype-Based Association Mapping of Complex Diseases: Gene-Environment Interactions with Multiple Genetic Markers and Measurement Error in Environmental Exposures

    PubMed Central

    Lobach, Irvna; Fan, Ruzone; Carroll, Raymond T.

    2011-01-01

    With the advent of dense single nucleotide polymorphism genotyping, population-based association studies have become the major tools for identifying human disease genes and for fine gene mapping of complex traits. We develop a genotype-based approach for association analysis of case-control studies of gene-environment interactions in the case when environmental factors are measured with error and genotype data are available on multiple genetic markers. To directly use the observed genotype data, we propose two genotype-based models: genotype effect and additive effect models. Our approach offers several advantages. First, the proposed risk functions can directly incorporate the observed genotype data while modeling the linkage disequihbrium information in the regression coefficients, thus eliminating the need to infer haplotype phase. Compared with the haplotype-based approach, an estimating procedure based on the proposed methods can be much simpler and significantly faster. In addition, there is no potential risk due to haplotype phase estimation. Further, by fitting the proposed models, it is possible to analyze the risk alleles/variants of complex diseases, including their dominant or additive effects. To model measurement error, we adopt the pseudo-likelihood method by Lobach et al. [2008]. Performance of the proposed method is examined using simulation experiments. An application of our method is illustrated using a population-based case-control study of association between calcium intake with the risk of colorectal adenoma development. PMID:21031455

  7. Testing for intracycle determinism in pseudoperiodic time series.

    PubMed

    Coelho, Mara C S; Mendes, Eduardo M A M; Aguirre, Luis A

    2008-06-01

    A determinism test is proposed based on the well-known method of the surrogate data. Assuming predictability to be a signature of determinism, the proposed method checks for intracycle (e.g., short-term) determinism in the pseudoperiodic time series for which standard methods of surrogate analysis do not apply. The approach presented is composed of two steps. First, the data are preprocessed to reduce the effects of seasonal and trend components. Second, standard tests of surrogate analysis can then be used. The determinism test is applied to simulated and experimental pseudoperiodic time series and the results show the applicability of the proposed test.

  8. An Approach for Transmission Loss and Cost Allocation by Loss Allocation Index and Co-operative Game Theory

    NASA Astrophysics Data System (ADS)

    Khan, Baseem; Agnihotri, Ganga; Mishra, Anuprita S.

    2016-03-01

    In the present work authors proposed a novel method for transmission loss and cost allocation to users (generators and loads). In the developed methodology transmission losses are allocated to users based on their usage of the transmission line. After usage allocation, particular loss allocation indices (PLAI) are evaluated for loads and generators. Also Cooperative game theory approach is applied for comparison of results. The proposed method is simple and easy to implement on the practical power system. Sample 6 bus and IEEE 14 bus system is used for showing the effectiveness of proposed method.

  9. Slip Ratio Estimation and Regenerative Brake Control for Decelerating Electric Vehicles without Detection of Vehicle Velocity and Acceleration

    NASA Astrophysics Data System (ADS)

    Suzuki, Toru; Fujimoto, Hiroshi

    In slip ratio control systems, it is necessary to detect the vehicle velocity in order to obtain the slip ratio. However, it is very difficult to measure this velocity directly. We have proposed slip ratio estimation and control methods that do not require the vehicle velocity with acceleration. In this paper, the slip ratio estimation and control methods are proposed without detecting the vehicle velocity and acceleration when it is decelerating. We carried out simulations and experiments by using an electric vehicle to verify the effectiveness of the proposed method.

  10. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Zuo, Chao; Idir, Mourad

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  11. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE PAGES

    Huang, Lei; Zuo, Chao; Idir, Mourad; ...

    2015-04-21

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore » distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  12. 3D inversion of full gravity gradient tensor data in spherical coordinate system using local north-oriented frame

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue

    2018-04-01

    In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.

  13. An innovative method for offshore wind farm site selection based on the interval number with probability distribution

    NASA Astrophysics Data System (ADS)

    Wu, Yunna; Chen, Kaifeng; Xu, Hu; Xu, Chuanbo; Zhang, Haobo; Yang, Meng

    2017-12-01

    There is insufficient research relating to offshore wind farm site selection in China. The current methods for site selection have some defects. First, information loss is caused by two aspects: the implicit assumption that the probability distribution on the interval number is uniform; and ignoring the value of decision makers' (DMs') common opinion on the criteria information evaluation. Secondly, the difference in DMs' utility function has failed to receive attention. An innovative method is proposed in this article to solve these drawbacks. First, a new form of interval number and its weighted operator are proposed to reflect the uncertainty and reduce information loss. Secondly, a new stochastic dominance degree is proposed to quantify the interval number with a probability distribution. Thirdly, a two-stage method integrating the weighted operator with stochastic dominance degree is proposed to evaluate the alternatives. Finally, a case from China proves the effectiveness of this method.

  14. Frequency-varying synchronous micro-vibration suppression for a MSFW with application of small-gain theorem

    NASA Astrophysics Data System (ADS)

    Peng, Cong; Fan, Yahong; Huang, Ziyuan; Han, Bangcheng; Fang, Jiancheng

    2017-01-01

    This paper presents a novel synchronous micro-vibration suppression method on the basis of the small gain theorem to reduce the frequency-varying synchronous micro-vibration forces for a magnetically suspended flywheel (MSFW). The proposed synchronous micro-vibration suppression method not only eliminates the synchronous current fluctuations to force the rotor spinning around the inertia axis, but also considers the compensation caused by the displacement stiffness in the permanent-magnet (PM)-biased magnetic bearings. Moreover, the stability of the proposed control system is exactly analyzed by using small gain theorem. The effectiveness of the proposed micro-vibration suppression method is demonstrated via the direct measurement of the disturbance forces for a MSFW. The main merit of the proposed method is that it provides a simple and practical method in suppressing the frequency varying micro-vibration forces and preserving the nominal performance of the baseline control system.

  15. Hybrid recommendation methods in complex networks.

    PubMed

    Fiasconaro, A; Tumminello, M; Nicosia, V; Latora, V; Mantegna, R N

    2015-07-01

    We propose two recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three data sets, and we compare the performance of our methods to other recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow us to attain an improvement of performances of up to 20% with respect to existing nonparametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we study how an increasing presence of random links in the network affects the recommendation scores, finding that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.

  16. A high order semi-Lagrangian discontinuous Galerkin method for Vlasov-Poisson simulations without operator splitting

    NASA Astrophysics Data System (ADS)

    Cai, Xiaofeng; Guo, Wei; Qiu, Jing-Mei

    2018-02-01

    In this paper, we develop a high order semi-Lagrangian (SL) discontinuous Galerkin (DG) method for nonlinear Vlasov-Poisson (VP) simulations without operator splitting. In particular, we combine two recently developed novel techniques: one is the high order non-splitting SLDG transport method (Cai et al. (2017) [4]), and the other is the high order characteristics tracing technique proposed in Qiu and Russo (2017) [29]. The proposed method with up to third order accuracy in both space and time is locally mass conservative, free of splitting error, positivity-preserving, stable and robust for large time stepping size. The SLDG VP solver is applied to classic benchmark test problems such as Landau damping and two-stream instabilities for VP simulations. Efficiency and effectiveness of the proposed scheme is extensively tested. Tremendous CPU savings are shown by comparisons between the proposed SL DG scheme and the classical Runge-Kutta DG method.

  17. A novel approach to calibrate the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements.

    PubMed

    Khoram, Nafiseh; Zayane, Chadia; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2016-03-15

    The calibration of the hemodynamic model that describes changes in blood flow and blood oxygenation during brain activation is a crucial step for successfully monitoring and possibly predicting brain activity. This in turn has the potential to provide diagnosis and treatment of brain diseases in early stages. We propose an efficient numerical procedure for calibrating the hemodynamic model using some fMRI measurements. The proposed solution methodology is a regularized iterative method equipped with a Kalman filtering-type procedure. The Newton component of the proposed method addresses the nonlinear aspect of the problem. The regularization feature is used to ensure the stability of the algorithm. The Kalman filter procedure is incorporated here to address the noise in the data. Numerical results obtained with synthetic data as well as with real fMRI measurements are presented to illustrate the accuracy, robustness to the noise, and the cost-effectiveness of the proposed method. We present numerical results that clearly demonstrate that the proposed method outperforms the Cubature Kalman Filter (CKF), one of the most prominent existing numerical methods. We have designed an iterative numerical technique, called the TNM-CKF algorithm, for calibrating the mathematical model that describes the single-event related brain response when fMRI measurements are given. The method appears to be highly accurate and effective in reconstructing the BOLD signal even when the measurements are tainted with high noise level (as high as 30%). Published by Elsevier B.V.

  18. Deep learning and texture-based semantic label fusion for brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Vidyaratne, L.; Alam, M.; Shboul, Z.; Iftekharuddin, K. M.

    2018-02-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  19. Deep Learning and Texture-Based Semantic Label Fusion for Brain Tumor Segmentation.

    PubMed

    Vidyaratne, L; Alam, M; Shboul, Z; Iftekharuddin, K M

    2018-01-01

    Brain tumor segmentation is a fundamental step in surgical treatment and therapy. Many hand-crafted and learning based methods have been proposed for automatic brain tumor segmentation from MRI. Studies have shown that these approaches have their inherent advantages and limitations. This work proposes a semantic label fusion algorithm by combining two representative state-of-the-art segmentation algorithms: texture based hand-crafted, and deep learning based methods to obtain robust tumor segmentation. We evaluate the proposed method using publicly available BRATS 2017 brain tumor segmentation challenge dataset. The results show that the proposed method offers improved segmentation by alleviating inherent weaknesses: extensive false positives in texture based method, and the false tumor tissue classification problem in deep learning method, respectively. Furthermore, we investigate the effect of patient's gender on the segmentation performance using a subset of validation dataset. Note the substantial improvement in brain tumor segmentation performance proposed in this work has recently enabled us to secure the first place by our group in overall patient survival prediction task at the BRATS 2017 challenge.

  20. Performance of a proposed determinative method for p-TSA in rainbow trout fillet tissue and bridging the proposed method with a method for total chloramine-T residues in rainbow trout fillet tissue

    USGS Publications Warehouse

    Meinertz, J.R.; Stehly, G.R.; Gingerich, W.H.; Greseth, Shari L.

    2001-01-01

    Chloramine-T is an effective drug for controlling fish mortality caused by bacterial gill disease. As part of the data required for approval of chloramine-T use in aquaculture, depletion of the chloramine-T marker residue (para-toluenesulfonamide; p-TSA) from edible fillet tissue of fish must be characterized. Declaration of p-TSA as the marker residue for chloramine-T in rainbow trout was based on total residue depletion studies using a method that used time consuming and cumbersome techniques. A simple and robust method recently developed is being proposed as a determinative method for p-TSA in fish fillet tissue. The proposed determinative method was evaluated by comparing accuracy and precision data with U.S. Food and Drug Administration criteria and by bridging the method to the former method for chloramine-T residues. The method accuracy and precision fulfilled the criteria for determinative methods; accuracy was 92.6, 93.4, and 94.6% with samples fortified at 0.5X, 1X, and 2X the expected 1000 ng/g tolerance limit for p-TSA, respectively. Method precision with tissue containing incurred p-TSA at a nominal concentration of 1000 ng/g ranged from 0.80 to 8.4%. The proposed determinative method was successfully bridged with the former method. The concentrations of p-TSA developed with the proposed method were not statistically different at p < 0.05 from p-TSA concentrations developed with the former method.

  1. Estimation of source location and ground impedance using a hybrid multiple signal classification and Levenberg-Marquardt approach

    NASA Astrophysics Data System (ADS)

    Tam, Kai-Chung; Lau, Siu-Kit; Tang, Shiu-Keung

    2016-07-01

    A microphone array signal processing method for locating a stationary point source over a locally reactive ground and for estimating ground impedance is examined in detail in the present study. A non-linear least square approach using the Levenberg-Marquardt method is proposed to overcome the problem of unknown ground impedance. The multiple signal classification method (MUSIC) is used to give the initial estimation of the source location, while the technique of forward backward spatial smoothing is adopted as a pre-processer of the source localization to minimize the effects of source coherence. The accuracy and robustness of the proposed signal processing method are examined. Results show that source localization in the horizontal direction by MUSIC is satisfactory. However, source coherence reduces drastically the accuracy in estimating the source height. The further application of Levenberg-Marquardt method with the results from MUSIC as the initial inputs improves significantly the accuracy of source height estimation. The present proposed method provides effective and robust estimation of the ground surface impedance.

  2. A Sea-Sky Line Detection Method for Unmanned Surface Vehicles Based on Gradient Saliency.

    PubMed

    Wang, Bo; Su, Yumin; Wan, Lei

    2016-04-15

    Special features in real marine environments such as cloud clutter, sea glint and weather conditions always result in various kinds of interference in optical images, which make it very difficult for unmanned surface vehicles (USVs) to detect the sea-sky line (SSL) accurately. To solve this problem a saliency-based SSL detection method is proposed. Through the computation of gradient saliency the line features of SSL are enhanced effectively, while other interference factors are relatively suppressed, and line support regions are obtained by a region growing method on gradient orientation. The SSL identification is achieved according to region contrast, line segment length and orientation features, and optimal state estimation of SSL detection is implemented by introducing a cubature Kalman filter (CKF). In the end, the proposed method is tested on a benchmark dataset from the "XL" USV in a real marine environment, and the experimental results demonstrate that the proposed method is significantly superior to other state-of-the-art methods in terms of accuracy rate and real-time performance, and its accuracy and stability are effectively improved by the CKF.

  3. Functional Mixed Effects Model for Small Area Estimation.

    PubMed

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  4. An Improved Image Ringing Evaluation Method with Weighted Sum of Gray Extreme Value

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Meng, Yanhua; Wang, Bo; Bai, Xu

    2018-03-01

    Blind image restoration algorithm usually produces ringing more obvious at the edges. Ringing phenomenon is mainly affected by noise, species of restoration algorithm, and the impact of the blur kernel estimation during restoration. Based on the physical mechanism of ringing, a method of evaluating the ringing on blind restoration images is proposed. The method extracts the ringing image overshooting and ripple region to make the weighted statistics for the regional gradient value. According to the weights set by multiple experiments, the edge information is used to characterize the details of the edge to determine the weight, quantify the seriousness of the ring effect, and propose the evaluation method of the ringing caused by blind restoration. The experimental results show that the method can effectively evaluate the ring effect in the restoration images under different restoration algorithms and different restoration parameters. The evaluation results are consistent with the visual evaluation results.

  5. Analysis of Vibration and Noise of Construction Machinery Based on Ensemble Empirical Mode Decomposition and Spectral Correlation Analysis Method

    NASA Astrophysics Data System (ADS)

    Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan

    In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.

  6. An Information Transmission Measure for the Analysis of Effective Connectivity among Cortical Neurons

    PubMed Central

    Law, Andrew J.; Sharma, Gaurav; Schieber, Marc H.

    2014-01-01

    We present a methodology for detecting effective connections between simultaneously recorded neurons using an information transmission measure to identify the presence and direction of information flow from one neuron to another. Using simulated and experimentally-measured data, we evaluate the performance of our proposed method and compare it to the traditional transfer entropy approach. In simulations, our measure of information transmission outperforms transfer entropy in identifying the effective connectivity structure of a neuron ensemble. For experimentally recorded data, where ground truth is unavailable, the proposed method also yields a more plausible connectivity structure than transfer entropy. PMID:21096617

  7. The combination of the error correction methods of GAFCHROMIC EBT3 film

    PubMed Central

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Liu, Xiaowei

    2017-01-01

    Purpose The aim of this study was to combine a set of methods for use of radiochromic film dosimetry, including calibration, correction for lateral effects and a proposed triple-channel analysis. These methods can be applied to GAFCHROMIC EBT3 film dosimetry for radiation field analysis and verification of IMRT plans. Methods A single-film exposure was used to achieve dose calibration, and the accuracy was verified based on comparisons with the square-field calibration method. Before performing the dose analysis, the lateral effects on pixel values were corrected. The position dependence of the lateral effect was fitted by a parabolic function, and the curvature factors of different dose levels were obtained using a quadratic formula. After lateral effect correction, a triple-channel analysis was used to reduce disturbances and convert scanned images from films into dose maps. The dose profiles of open fields were measured using EBT3 films and compared with the data obtained using an ionization chamber. Eighteen IMRT plans with different field sizes were measured and verified with EBT3 films, applying our methods, and compared to TPS dose maps, to check correct implementation of film dosimetry proposed here. Results The uncertainty of lateral effects can be reduced to ±1 cGy. Compared with the results of Micke A et al., the residual disturbances of the proposed triple-channel method at 48, 176 and 415 cGy are 5.3%, 20.9% and 31.4% smaller, respectively. Compared with the ionization chamber results, the difference in the off-axis ratio and percentage depth dose are within 1% and 2%, respectively. For the application of IMRT verification, there were no difference between two triple-channel methods. Compared with only corrected by triple-channel method, the IMRT results of the combined method (include lateral effect correction and our present triple-channel method) show a 2% improvement for large IMRT fields with the criteria 3%/3 mm. PMID:28750023

  8. Supervised multiblock sparse multivariable analysis with application to multimodal brain imaging genetics.

    PubMed

    Kawaguchi, Atsushi; Yamashita, Fumio

    2017-10-01

    This article proposes a procedure for describing the relationship between high-dimensional data sets, such as multimodal brain images and genetic data. We propose a supervised technique to incorporate the clinical outcome to determine a score, which is a linear combination of variables with hieratical structures to multimodalities. This approach is expected to obtain interpretable and predictive scores. The proposed method was applied to a study of Alzheimer's disease (AD). We propose a diagnostic method for AD that involves using whole-brain magnetic resonance imaging (MRI) and positron emission tomography (PET), and we select effective brain regions for the diagnostic probability and investigate the genome-wide association with the regions using single nucleotide polymorphisms (SNPs). The two-step dimension reduction method, which we previously introduced, was considered applicable to such a study and allows us to partially incorporate the proposed method. We show that the proposed method offers classification functions with feasibility and reasonable prediction accuracy based on the receiver operating characteristic (ROC) analysis and reasonable regions of the brain and genomes. Our simulation study based on the synthetic structured data set showed that the proposed method outperformed the original method and provided the characteristic for the supervised feature. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  10. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network

    NASA Astrophysics Data System (ADS)

    Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke

    2018-06-01

    Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.

  11. GPU accelerated edge-region based level set evolution constrained by 2D gray-scale histogram.

    PubMed

    Balla-Arabé, Souleymane; Gao, Xinbo; Wang, Bin

    2013-07-01

    Due to its intrinsic nature which allows to easily handle complex shapes and topological changes, the level set method (LSM) has been widely used in image segmentation. Nevertheless, LSM is computationally expensive, which limits its applications in real-time systems. For this purpose, we propose a new level set algorithm, which uses simultaneously edge, region, and 2D histogram information in order to efficiently segment objects of interest in a given scene. The computational complexity of the proposed LSM is greatly reduced by using the highly parallelizable lattice Boltzmann method (LBM) with a body force to solve the level set equation (LSE). The body force is the link with image data and is defined from the proposed LSE. The proposed LSM is then implemented using an NVIDIA graphics processing units to fully take advantage of the LBM local nature. The new algorithm is effective, robust against noise, independent to the initial contour, fast, and highly parallelizable. The edge and region information enable to detect objects with and without edges, and the 2D histogram information enable the effectiveness of the method in a noisy environment. Experimental results on synthetic and real images demonstrate subjectively and objectively the performance of the proposed method.

  12. Multi-linear model set design based on the nonlinearity measure and H-gap metric.

    PubMed

    Shaghaghi, Davood; Fatehi, Alireza; Khaki-Sedigh, Ali

    2017-05-01

    This paper proposes a model bank selection method for a large class of nonlinear systems with wide operating ranges. In particular, nonlinearity measure and H-gap metric are used to provide an effective algorithm to design a model bank for the system. Then, the proposed model bank is accompanied with model predictive controllers to design a high performance advanced process controller. The advantage of this method is the reduction of excessive switch between models and also decrement of the computational complexity in the controller bank that can lead to performance improvement of the control system. The effectiveness of the method is verified by simulations as well as experimental studies on a pH neutralization laboratory apparatus which confirms the efficiency of the proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Lightness modification of color image for protanopia and deuteranopia

    NASA Astrophysics Data System (ADS)

    Tanaka, Go; Suetake, Noriaki; Uchino, Eiji

    2010-01-01

    In multimedia content, colors play important roles in conveying visual information. However, color information cannot always be perceived uniformly by all people. People with a color vision deficiency, such as dichromacy, cannot recognize and distinguish certain color combinations. In this paper, an effective lightness modification method, which enables barrier-free color vision for people with dichromacy, especially protanopia or deuteranopia, while preserving the color information in the original image for people with standard color vision, is proposed. In the proposed method, an optimization problem concerning lightness components is first defined by considering color differences in an input image. Then a perceptible and comprehensible color image for both protanopes and viewers with no color vision deficiency or both deuteranopes and viewers with no color vision deficiency is obtained by solving the optimization problem. Through experiments, the effectiveness of the proposed method is illustrated.

  14. Cell tracking for cell image analysis

    NASA Astrophysics Data System (ADS)

    Bise, Ryoma; Sato, Yoichi

    2017-04-01

    Cell image analysis is important for research and discovery in biology and medicine. In this paper, we present our cell tracking methods, which is capable of obtaining fine-grain cell behavior metrics. In order to address difficulties under dense culture conditions, where cell detection cannot be done reliably since cell often touch with blurry intercellular boundaries, we proposed two methods which are global data association and jointly solving cell detection and association. We also show the effectiveness of the proposed methods by applying the method to the biological researches.

  15. Effective Solar Indices for Ionospheric Modeling: A Review and a Proposal for a Real-Time Regional IRI

    NASA Astrophysics Data System (ADS)

    Pignalberi, A.; Pezzopane, M.; Rizzi, R.; Galkin, I.

    2018-01-01

    The first part of this paper reviews methods using effective solar indices to update a background ionospheric model focusing on those employing the Kriging method to perform the spatial interpolation. Then, it proposes a method to update the International Reference Ionosphere (IRI) model through the assimilation of data collected by a European ionosonde network. The method, called International Reference Ionosphere UPdate (IRI UP), that can potentially operate in real time, is mathematically described and validated for the period 9-25 March 2015 (a time window including the well-known St. Patrick storm occurred on 17 March), using IRI and IRI Real Time Assimilative Model (IRTAM) models as the reference. It relies on foF2 and M(3000)F2 ionospheric characteristics, recorded routinely by a network of 12 European ionosonde stations, which are used to calculate for each station effective values of IRI indices IG_{12} and R_{12} (identified as IG_{{12{eff}}} and R_{{12{eff}}}); then, starting from this discrete dataset of values, two-dimensional (2D) maps of IG_{{12{eff}}} and R_{{12{eff}}} are generated through the universal Kriging method. Five variogram models are proposed and tested statistically to select the best performer for each effective index. Then, computed maps of IG_{{12{eff}}} and R_{{12{eff}}} are used in the IRI model to synthesize updated values of foF2 and hmF2. To evaluate the ability of the proposed method to reproduce rapid local changes that are common under disturbed conditions, quality metrics are calculated for two test stations whose measurements were not assimilated in IRI UP, Fairford (51.7°N, 1.5°W) and San Vito (40.6°N, 17.8°E), for IRI, IRI UP, and IRTAM models. The proposed method turns out to be very effective under highly disturbed conditions, with significant improvements of the foF2 representation and noticeable improvements of the hmF2 one. Important improvements have been verified also for quiet and moderately disturbed conditions. A visual analysis of foF2 and hmF2 maps highlights the ability of the IRI UP method to catch small-scale changes occurring under disturbed conditions which are not seen by IRI.

  16. Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.

    PubMed

    Cheng, Ching-Hsue; Liu, Wei-Xiang

    2018-05-28

    Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.

  17. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  18. Effective augmentation of networked systems and enhancing pinning controllability

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2018-06-01

    Controlling dynamics of networked systems to a reference state, known as pinning control, has many applications in science and engineering. In this paper, we introduce a method for effective augmentation of networked systems, while also providing high levels of pinning controllability for the final augmented network. The problem is how to connect a sub-network to an already existing network such that the pinning controllability is maximised. We consider the eigenratio of the augmented Laplacian matrix as a pinning controllability metric, and use graph perturbation theory to approximate the influence of edge addition on the eigenratio. The proposed metric can be effectively used to find the inter-network links connecting the disjoint networks. Also, an efficient link rewiring approach is proposed to further optimise the pinning controllability of the augmented network. We provide numerical simulations on synthetic networks and show that the proposed method is more effective than heuristic ones.

  19. Linear and nonlinear variable selection in competing risks data.

    PubMed

    Ren, Xiaowei; Li, Shanshan; Shen, Changyu; Yu, Zhangsheng

    2018-06-15

    Subdistribution hazard model for competing risks data has been applied extensively in clinical researches. Variable selection methods of linear effects for competing risks data have been studied in the past decade. There is no existing work on selection of potential nonlinear effects for subdistribution hazard model. We propose a two-stage procedure to select the linear and nonlinear covariate(s) simultaneously and estimate the selected covariate effect(s). We use spectral decomposition approach to distinguish the linear and nonlinear parts of each covariate and adaptive LASSO to select each of the 2 components. Extensive numerical studies are conducted to demonstrate that the proposed procedure can achieve good selection accuracy in the first stage and small estimation biases in the second stage. The proposed method is applied to analyze a cardiovascular disease data set with competing death causes. Copyright © 2018 John Wiley & Sons, Ltd.

  20. A robust two-way semi-linear model for normalization of cDNA microarray data

    PubMed Central

    Wang, Deli; Huang, Jian; Xie, Hehuang; Manzella, Liliana; Soares, Marcelo Bento

    2005-01-01

    Background Normalization is a basic step in microarray data analysis. A proper normalization procedure ensures that the intensity ratios provide meaningful measures of relative expression values. Methods We propose a robust semiparametric method in a two-way semi-linear model (TW-SLM) for normalization of cDNA microarray data. This method does not make the usual assumptions underlying some of the existing methods. For example, it does not assume that: (i) the percentage of differentially expressed genes is small; or (ii) the numbers of up- and down-regulated genes are about the same, as required in the LOWESS normalization method. We conduct simulation studies to evaluate the proposed method and use a real data set from a specially designed microarray experiment to compare the performance of the proposed method with that of the LOWESS normalization approach. Results The simulation results show that the proposed method performs better than the LOWESS normalization method in terms of mean square errors for estimated gene effects. The results of analysis of the real data set also show that the proposed method yields more consistent results between the direct and the indirect comparisons and also can detect more differentially expressed genes than the LOWESS method. Conclusions Our simulation studies and the real data example indicate that the proposed robust TW-SLM method works at least as well as the LOWESS method and works better when the underlying assumptions for the LOWESS method are not satisfied. Therefore, it is a powerful alternative to the existing normalization methods. PMID:15663789

  1. Skin Effect Modeling in Conductors of Arbitrary Shape Through a Surface Admittance Operator and the Contour Integral Method

    NASA Astrophysics Data System (ADS)

    Patel, Utkarsh R.; Triverio, Piero

    2016-09-01

    An accurate modeling of skin effect inside conductors is of capital importance to solve transmission line and scattering problems. This paper presents a surface-based formulation to model skin effect in conductors of arbitrary cross section, and compute the per-unit-length impedance of a multiconductor transmission line. The proposed formulation is based on the Dirichlet-Neumann operator that relates the longitudinal electric field to the tangential magnetic field on the boundary of a conductor. We demonstrate how the surface operator can be obtained through the contour integral method for conductors of arbitrary shape. The proposed algorithm is simple to implement, efficient, and can handle arbitrary cross-sections, which is a main advantage over the existing approach based on eigenfunctions, which is available only for canonical conductor's shapes. The versatility of the method is illustrated through a diverse set of examples, which includes transmission lines with trapezoidal, curved, and V-shaped conductors. Numerical results demonstrate the accuracy, versatility, and efficiency of the proposed technique.

  2. Long-term effects of user preference-oriented recommendation method on the evolution of online system

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyu; Shang, Ming-Sheng; Luo, Xin; Khushnood, Abbas; Li, Jian

    2017-02-01

    As the explosion growth of Internet economy, recommender system has become an important technology to solve the problem of information overload. However, recommenders are not one-size-fits-all, different recommenders have different virtues, making them be suitable for different users. In this paper, we propose a novel personalized recommender based on user preferences, which allows multiple recommenders to exist in E-commerce system simultaneously. We find that output of a recommender to each user is quite different when using different recommenders, the recommendation accuracy can be significantly improved if each user is assigned with his/her optimal personalized recommender. Furthermore, different from previous works focusing on short-term effects on recommender, we also evaluate the long-term effect of the proposed method by modeling the evolution of mutual feedback between user and online system. Finally, compared with single recommender running on the online system, the proposed method can improve the accuracy of recommendation significantly and get better trade-offs between short- and long-term performances of recommendation.

  3. Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement.

    PubMed

    Li, Haiyan; Wu, Jun; Miao, Aimin; Yu, Pengfei; Chen, Jianhua; Zhang, Yufeng

    2017-04-17

    Ultrasound imaging plays an important role in computer diagnosis since it is non-invasive and cost-effective. However, ultrasound images are inevitably contaminated by noise and speckle during acquisition. Noise and speckle directly impact the physician to interpret the images and decrease the accuracy in clinical diagnosis. Denoising method is an important component to enhance the quality of ultrasound images; however, several limitations discourage the results because current denoising methods can remove noise while ignoring the statistical characteristics of speckle and thus undermining the effectiveness of despeckling, or vice versa. In addition, most existing algorithms do not identify noise, speckle or edge before removing noise or speckle, and thus they reduce noise and speckle while blurring edge details. Therefore, it is a challenging issue for the traditional methods to effectively remove noise and speckle in ultrasound images while preserving edge details. To overcome the above-mentioned limitations, a novel method, called Rayleigh-maximum-likelihood switching bilateral filter (RSBF) is proposed to enhance ultrasound images by two steps: noise, speckle and edge detection followed by filtering. Firstly, a sorted quadrant median vector scheme is utilized to calculate the reference median in a filtering window in comparison with the central pixel to classify the target pixel as noise, speckle or noise-free. Subsequently, the noise is removed by a bilateral filter and the speckle is suppressed by a Rayleigh-maximum-likelihood filter while the noise-free pixels are kept unchanged. To quantitatively evaluate the performance of the proposed method, synthetic ultrasound images contaminated by speckle are simulated by using the speckle model that is subjected to Rayleigh distribution. Thereafter, the corrupted synthetic images are generated by the original image multiplied with the Rayleigh distributed speckle of various signal to noise ratio (SNR) levels and added with Gaussian distributed noise. Meanwhile clinical breast ultrasound images are used to visually evaluate the effectiveness of the method. To examine the performance, comparison tests between the proposed RSBF and six state-of-the-art methods for ultrasound speckle removal are performed on simulated ultrasound images with various noise and speckle levels. The results of the proposed RSBF are satisfying since the Gaussian noise and the Rayleigh speckle are greatly suppressed. The proposed method can improve the SNRs of the enhanced images to nearly 15 and 13 dB compared with images corrupted by speckle as well as images contaminated by speckle and noise under various SNR levels, respectively. The RSBF is effective in enhancing edge while smoothing the speckle and noise in clinical ultrasound images. In the comparison experiments, the proposed method demonstrates its superiority in accuracy and robustness for denoising and edge preserving under various levels of noise and speckle in terms of visual quality as well as numeric metrics, such as peak signal to noise ratio, SNR and root mean squared error. The experimental results show that the proposed method is effective for removing the speckle and the background noise in ultrasound images. The main reason is that it performs a "detect and replace" two-step mechanism. The advantages of the proposed RBSF lie in two aspects. Firstly, each central pixel is classified as noise, speckle or noise-free texture according to the absolute difference between the target pixel and the reference median. Subsequently, the Rayleigh-maximum-likelihood filter and the bilateral filter are switched to eliminate speckle and noise, respectively, while the noise-free pixels are unaltered. Therefore, it is implemented with better accuracy and robustness than the traditional methods. Generally, these traits declare that the proposed RSBF would have significant clinical application.

  4. A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.

    PubMed

    Prakash, Jaya; Yalavarthy, Phaneendra K

    2013-03-01

    Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.

  5. Monte Carlo based statistical power analysis for mediation models: methods and software.

    PubMed

    Zhang, Zhiyong

    2014-12-01

    The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.

  6. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-01-01

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241

  7. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-11-10

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.

  8. A self-recalibration method based on scale-invariant registration for structured light measurement systems

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Xu, Jing; Zhang, Song; Chen, Heping; Guan, Yong; Chen, Ken

    2017-01-01

    The accuracy of structured light measurement depends on delicate offline calibration. However, in some practical applications, the system is supposed to be reconfigured so frequently to track the target that an online calibration is required. To this end, this paper proposes a rapid and autonomous self-recalibration method. For the proposed method, first, the rotation matrix and the normalized translation vector are attained from the fundamental matrix; second, the scale factor is acquired based on scale-invariant registration such that the actual translation vector is obtained. Experiments have been conducted to verify the effectiveness of our proposed method and the results indicate a high degree of accuracy.

  9. Android malware detection based on evolutionary super-network

    NASA Astrophysics Data System (ADS)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  10. Depth compensating calculation method of computer-generated holograms using symmetry and similarity of zone plates

    NASA Astrophysics Data System (ADS)

    Wei, Hui; Gong, Guanghong; Li, Ni

    2017-10-01

    Computer-generated hologram (CGH) is a promising 3D display technology while it is challenged by heavy computation load and vast memory requirement. To solve these problems, a depth compensating CGH calculation method based on symmetry and similarity of zone plates is proposed and implemented on graphics processing unit (GPU). An improved LUT method is put forward to compute the distances between object points and hologram pixels in the XY direction. The concept of depth compensating factor is defined and used for calculating the holograms of points with different depth positions instead of layer-based methods. The proposed method is suitable for arbitrary sampling objects with lower memory usage and higher computational efficiency compared to other CGH methods. The effectiveness of the proposed method is validated by numerical and optical experiments.

  11. Renal cortex segmentation using optimal surface search with novel graph construction.

    PubMed

    Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie

    2011-01-01

    In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which has rarely been studied. In this study, the renal cortex segmentation problem is handled as a multiple-surfaces extraction problem, which is solved using the optimal surface search method. We propose a novel graph construction scheme in the optimal surface search to better accommodate multiple surfaces. Different surface sub-graphs are constructed according to their properties, and inter-surface relationships are also modeled in the graph. The proposed method was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results demonstrate the effectiveness of the proposed method.

  12. Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing

    2016-04-14

    In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method.

  13. A semiparametric graphical modelling approach for large-scale equity selection.

    PubMed

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  14. The Teacher's Guide to Winning Grants.

    ERIC Educational Resources Information Center

    Bauer, David G.

    This step-by-step primer helps teachers develop effective grantseeking methods that will enable them to secure funds. It shows teachers how to select the right funding sources, organize proposal ideas, write a convincing and well-prepared proposal, identify who will evaluate the proposal and the scoring system they will use, and efficiently…

  15. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution

    PubMed Central

    Jia, Feng; Lei, Yaguo; Shan, Hongkai; Lin, Jing

    2015-01-01

    The early fault characteristics of rolling element bearings carried by vibration signals are quite weak because the signals are generally masked by heavy background noise. To extract the weak fault characteristics of bearings from the signals, an improved spectral kurtosis (SK) method is proposed based on maximum correlated kurtosis deconvolution (MCKD). The proposed method combines the ability of MCKD in indicating the periodic fault transients and the ability of SK in locating these transients in the frequency domain. A simulation signal overwhelmed by heavy noise is used to demonstrate the effectiveness of the proposed method. The results show that MCKD is beneficial to clarify the periodic impulse components of the bearing signals, and the method is able to detect the resonant frequency band of the signal and extract its fault characteristic frequency. Through analyzing actual vibration signals collected from wind turbines and hot strip rolling mills, we confirm that by using the proposed method, it is possible to extract fault characteristics and diagnose early faults of rolling element bearings. Based on the comparisons with the SK method, it is verified that the proposed method is more suitable to diagnose early faults of rolling element bearings. PMID:26610501

  16. An augmented classical least squares method for quantitative Raman spectral analysis against component information loss.

    PubMed

    Zhou, Yan; Cao, Hui

    2013-01-01

    We propose an augmented classical least squares (ACLS) calibration method for quantitative Raman spectral analysis against component information loss. The Raman spectral signals with low analyte concentration correlations were selected and used as the substitutes for unknown quantitative component information during the CLS calibration procedure. The number of selected signals was determined by using the leave-one-out root-mean-square error of cross-validation (RMSECV) curve. An ACLS model was built based on the augmented concentration matrix and the reference spectral signal matrix. The proposed method was compared with partial least squares (PLS) and principal component regression (PCR) using one example: a data set recorded from an experiment of analyte concentration determination using Raman spectroscopy. A 2-fold cross-validation with Venetian blinds strategy was exploited to evaluate the predictive power of the proposed method. The one-way variance analysis (ANOVA) was used to access the predictive power difference between the proposed method and existing methods. Results indicated that the proposed method is effective at increasing the robust predictive power of traditional CLS model against component information loss and its predictive power is comparable to that of PLS or PCR.

  17. PSQP: Puzzle Solving by Quadratic Programming.

    PubMed

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome

    2017-02-01

    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  18. Comparing the Performance of Two Dynamic Load Distribution Methods

    NASA Technical Reports Server (NTRS)

    Kale, L. V.

    1987-01-01

    Parallel processing of symbolic computations on a message-passing multi-processor presents one challenge: To effectively utilize the available processors, the load must be distributed uniformly to all the processors. However, the structure of these computations cannot be predicted in advance. go, static scheduling methods are not applicable. In this paper, we compare the performance of two dynamic, distributed load balancing methods with extensive simulation studies. The two schemes are: the Contracting Within a Neighborhood (CWN) scheme proposed by us, and the Gradient Model proposed by Lin and Keller. We conclude that although simpler, the CWN is significantly more effective at distributing the work than the Gradient model.

  19. Ensemble Deep Learning for Biomedical Time Series Classification

    PubMed Central

    2016-01-01

    Ensemble learning has been proved to improve the generalization ability effectively in both theory and practice. In this paper, we briefly outline the current status of research on it first. Then, a new deep neural network-based ensemble method that integrates filtering views, local views, distorted views, explicit training, implicit training, subview prediction, and Simple Average is proposed for biomedical time series classification. Finally, we validate its effectiveness on the Chinese Cardiovascular Disease Database containing a large number of electrocardiogram recordings. The experimental results show that the proposed method has certain advantages compared to some well-known ensemble methods, such as Bagging and AdaBoost. PMID:27725828

  20. Bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chan; Jin, Shiqun; Xia, Guo

    2017-10-01

    Light emitting diode (LED) is widely employed in industrial applications and scientific researches. With a spectrometer, the chromaticity of LED can be measured. However, chromaticity shift will occur due to the broadening effects of the spectrometer. In this paper, an approach is put forward to bandwidth correction for LED chromaticity based on Levenberg-Marquardt algorithm. We compare chromaticity of simulated LED spectra by using the proposed method and differential operator method to bandwidth correction. The experimental results show that the proposed approach achieves an excellent performance in bandwidth correction which proves the effectiveness of the approach. The method has also been tested on true blue LED spectra.

  1. Fatigue Level Estimation of Bill Based on Acoustic Signal Feature by Supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.

  2. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  3. Partially linear mixed-effects joint models for skewed and missing longitudinal competing risks outcomes.

    PubMed

    Lu, Tao; Lu, Minggen; Wang, Min; Zhang, Jun; Dong, Guang-Hui; Xu, Yong

    2017-12-18

    Longitudinal competing risks data frequently arise in clinical studies. Skewness and missingness are commonly observed for these data in practice. However, most joint models do not account for these data features. In this article, we propose partially linear mixed-effects joint models to analyze skew longitudinal competing risks data with missingness. In particular, to account for skewness, we replace the commonly assumed symmetric distributions by asymmetric distribution for model errors. To deal with missingness, we employ an informative missing data model. The joint models that couple the partially linear mixed-effects model for the longitudinal process, the cause-specific proportional hazard model for competing risks process and missing data process are developed. To estimate the parameters in the joint models, we propose a fully Bayesian approach based on the joint likelihood. To illustrate the proposed model and method, we implement them to an AIDS clinical study. Some interesting findings are reported. We also conduct simulation studies to validate the proposed method.

  4. An improved swarm optimization for parameter estimation and biological model selection.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail

    2013-01-01

    One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.

  5. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  6. The algorithm for duration acceleration of repetitive projects considering the learning effect

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Wang, Keke; Du, Yang; Wang, Liwan

    2018-03-01

    Repetitive project optimization problem is common in project scheduling. Repetitive Scheduling Method (RSM) has many irreplaceable advantages in the field of repetitive projects. As the same or similar work is repeated, the proficiency of workers will be correspondingly low to high, and workers will gain experience and improve the efficiency of operations. This is learning effect. Learning effect is one of the important factors affecting the optimization results in repetitive project scheduling. This paper analyzes the influence of the learning effect on the controlling path in RSM from two aspects: one is that the learning effect changes the controlling path, the other is that the learning effect doesn't change the controlling path. This paper proposes corresponding methods to accelerate duration for different types of critical activities and proposes the algorithm for duration acceleration based on the learning effect in RSM. And the paper chooses graphical method to identity activities' types and considers the impacts of the learning effect on duration. The method meets the requirement of duration while ensuring the lowest acceleration cost. A concrete bridge construction project is given to verify the effectiveness of the method. The results of this study will help project managers understand the impacts of the learning effect on repetitive projects, and use the learning effect to optimize project scheduling.

  7. Evaluations and Comparisons of Treatment Effects Based on Best Combinations of Biomarkers with Applications to Biomedical Studies

    PubMed Central

    Chen, Xiwei; Yu, Jihnhee

    2014-01-01

    Abstract Many clinical and biomedical studies evaluate treatment effects based on multiple biomarkers that commonly consist of pre- and post-treatment measurements. Some biomarkers can show significant positive treatment effects, while other biomarkers can reflect no effects or even negative effects of the treatments, giving rise to a necessity to develop methodologies that may correctly and efficiently evaluate the treatment effects based on multiple biomarkers as a whole. In the setting of pre- and post-treatment measurements of multiple biomarkers, we propose to apply a receiver operating characteristic (ROC) curve methodology based on the best combination of biomarkers maximizing the area under the receiver operating characteristic curve (AUC)-type criterion among all possible linear combinations. In the particular case with independent pre- and post-treatment measurements, we show that the proposed method represents the well-known Su and Liu's (1993) result. Further, proceeding from derived best combinations of biomarkers' measurements, we propose an efficient technique via likelihood ratio tests to compare treatment effects. We show an extensive Monte Carlo study that confirms the superiority of the proposed test in comparison with treatment effects based on multiple biomarkers in a paired data setting. For practical applications, the proposed method is illustrated with a randomized trial of chlorhexidine gluconate on oral bacterial pathogens in mechanically ventilated patients as well as a treatment study for children with attention deficit-hyperactivity disorder and severe mood dysregulation. PMID:25019920

  8. Development and validation of multivariate calibration methods for simultaneous estimation of Paracetamol, Enalapril maleate and hydrochlorothiazide in pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Singh, Veena D.; Daharwal, Sanjay J.

    2017-01-01

    Three multivariate calibration spectrophotometric methods were developed for simultaneous estimation of Paracetamol (PARA), Enalapril maleate (ENM) and Hydrochlorothiazide (HCTZ) in tablet dosage form; namely multi-linear regression calibration (MLRC), trilinear regression calibration method (TLRC) and classical least square (CLS) method. The selectivity of the proposed methods were studied by analyzing the laboratory prepared ternary mixture and successfully applied in their combined dosage form. The proposed methods were validated as per ICH guidelines and good accuracy; precision and specificity were confirmed within the concentration range of 5-35 μg mL- 1, 5-40 μg mL- 1 and 5-40 μg mL- 1of PARA, HCTZ and ENM, respectively. The results were statistically compared with reported HPLC method. Thus, the proposed methods can be effectively useful for the routine quality control analysis of these drugs in commercial tablet dosage form.

  9. Distortion correction in EPI at ultra-high-field MRI using PSF mapping with optimal combination of shift detection dimension.

    PubMed

    Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee

    2012-10-01

    Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. Copyright © 2011 Wiley Periodicals, Inc.

  10. Discovery of Boolean metabolic networks: integer linear programming based approach.

    PubMed

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  11. Image dehazing based on non-local saturation

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Zhang, Qian; Yang, Deyun; Hou, Yingkun; He, Xiaoting

    2018-04-01

    In this paper, a method based on non-local saturation algorithm is proposed to avoid block and halo effect for single image dehazing with dark channel prior. First we convert original image from RGB color space into HSV color space with the idea of non-local method. Image saturation is weighted equally by the size of fixed window according to image resolution. Second we utilize the saturation to estimate the atmospheric light value and transmission rate. Then through the function of saturation and transmission, the haze-free image is obtained based on the atmospheric scattering model. Comparing the results of existing methods, our method can restore image color and enhance contrast. We guarantee the proposed method with quantitative and qualitative evaluation respectively. Experiments show the better visual effect with high efficiency.

  12. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics

    NASA Astrophysics Data System (ADS)

    Guo, Tian; Xu, Zili

    2018-03-01

    Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.

  13. Improved Simplified Methods for Effective Seismic Analysis and Design of Isolated and Damped Bridges in Western and Eastern North America

    NASA Astrophysics Data System (ADS)

    Koval, Viacheslav

    The seismic design provisions of the CSA-S6 Canadian Highway Bridge Design Code and the AASHTO LRFD Seismic Bridge Design Specifications have been developed primarily based on historical earthquake events that have occurred along the west coast of North America. For the design of seismic isolation systems, these codes include simplified analysis and design methods. The appropriateness and range of application of these methods are investigated through extensive parametric nonlinear time history analyses in this thesis. It was found that there is a need to adjust existing design guidelines to better capture the expected nonlinear response of isolated bridges. For isolated bridges located in eastern North America, new damping coefficients are proposed. The applicability limits of the code-based simplified methods have been redefined to ensure that the modified method will lead to conservative results and that a wider range of seismically isolated bridges can be covered by this method. The possibility of further improving current simplified code methods was also examined. By transforming the quantity of allocated energy into a displacement contribution, an idealized analytical solution is proposed as a new simplified design method. This method realistically reflects the effects of ground-motion and system design parameters, including the effects of a drifted oscillation center. The proposed method is therefore more appropriate than current existing simplified methods and can be applicable to isolation systems exhibiting a wider range of properties. A multi-level-hazard performance matrix has been adopted by different seismic provisions worldwide and will be incorporated into the new edition of the Canadian CSA-S6-14 Bridge Design code. However, the combined effect and optimal use of isolation and supplemental damping devices in bridges have not been fully exploited yet to achieve enhanced performance under different levels of seismic hazard. A novel Dual-Level Seismic Protection (DLSP) concept is proposed and developed in this thesis which permits to achieve optimum seismic performance with combined isolation and supplemental damping devices in bridges. This concept is shown to represent an attractive design approach for both the upgrade of existing seismically deficient bridges and the design of new isolated bridges.

  14. Fabric defect detection based on faster R-CNN

    NASA Astrophysics Data System (ADS)

    Liu, Zhoufeng; Liu, Xianghui; Li, Chunlei; Li, Bicao; Wang, Baorui

    2018-04-01

    In order to effectively detect the defects for fabric image with complex texture, this paper proposed a novel detection algorithm based on an end-to-end convolutional neural network. First, the proposal regions are generated by RPN (regional proposal Network). Then, Fast Region-based Convolutional Network method (Fast R-CNN) is adopted to determine whether the proposal regions extracted by RPN is a defect or not. Finally, Soft-NMS (non-maximum suppression) and data augmentation strategies are utilized to improve the detection precision. Experimental results demonstrate that the proposed method can locate the fabric defect region with higher accuracy compared with the state-of- art, and has better adaptability to all kinds of the fabric image.

  15. Generalized semiparametric varying-coefficient models for longitudinal data

    NASA Astrophysics Data System (ADS)

    Qi, Li

    In this dissertation, we investigate the generalized semiparametric varying-coefficient models for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects, i.e., the covariate effects that depend on other possibly time-dependent exposure variables. First, we consider the model that assumes the time-varying effects are unspecified functions of time while the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedures are developed using multivariate local linear smoothing and generalized weighted least squares estimation techniques. The asymptotic properties of the proposed estimators are established. The simulation studies show that the proposed methods have satisfactory finite sample performance. ACTG 244 clinical trial of HIV infected patients are applied to examine the effects of antiretroviral treatment switching before and after HIV developing the 215-mutation. Our analysis shows benefit of treatment switching before developing the 215-mutation. The proposed methods are also applied to the STEP study with MITT cases showing that they have broad applications in medical research.

  16. Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun

    2008-11-01

    A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.

  17. An enhanced data visualization method for diesel engine malfunction classification using multi-sensor signals.

    PubMed

    Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan

    2015-10-21

    The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine.

  18. An Enhanced Data Visualization Method for Diesel Engine Malfunction Classification Using Multi-Sensor Signals

    PubMed Central

    Li, Yiqing; Wang, Yu; Zi, Yanyang; Zhang, Mingquan

    2015-01-01

    The various multi-sensor signal features from a diesel engine constitute a complex high-dimensional dataset. The non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), provides an effective way to implement data visualization for complex high-dimensional data. However, irrelevant features can deteriorate the performance of data visualization, and thus, should be eliminated a priori. This paper proposes a feature subset score based t-SNE (FSS-t-SNE) data visualization method to deal with the high-dimensional data that are collected from multi-sensor signals. In this method, the optimal feature subset is constructed by a feature subset score criterion. Then the high-dimensional data are visualized in 2-dimension space. According to the UCI dataset test, FSS-t-SNE can effectively improve the classification accuracy. An experiment was performed with a large power marine diesel engine to validate the proposed method for diesel engine malfunction classification. Multi-sensor signals were collected by a cylinder vibration sensor and a cylinder pressure sensor. Compared with other conventional data visualization methods, the proposed method shows good visualization performance and high classification accuracy in multi-malfunction classification of a diesel engine. PMID:26506347

  19. High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection.

    PubMed

    Ma, Junshui; Bayram, Sevinç; Tao, Peining; Svetnik, Vladimir

    2011-03-15

    After a review of the ocular artifact reduction literature, a high-throughput method designed to reduce the ocular artifacts in multichannel continuous EEG recordings acquired at clinical EEG laboratories worldwide is proposed. The proposed method belongs to the category of component-based methods, and does not rely on any electrooculography (EOG) signals. Based on a concept that all ocular artifact components exist in a signal component subspace, the method can uniformly handle all types of ocular artifacts, including eye-blinks, saccades, and other eye movements, by automatically identifying ocular components from decomposed signal components. This study also proposes an improved strategy to objectively and quantitatively evaluate artifact reduction methods. The evaluation strategy uses real EEG signals to synthesize realistic simulated datasets with different amounts of ocular artifacts. The simulated datasets enable us to objectively demonstrate that the proposed method outperforms some existing methods when no high-quality EOG signals are available. Moreover, the results of the simulated datasets improve our understanding of the involved signal decomposition algorithms, and provide us with insights into the inconsistency regarding the performance of different methods in the literature. The proposed method was also applied to two independent clinical EEG datasets involving 28 volunteers and over 1000 EEG recordings. This effort further confirms that the proposed method can effectively reduce ocular artifacts in large clinical EEG datasets in a high-throughput fashion. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Nonparametric estimation and testing of fixed effects panel data models

    PubMed Central

    Henderson, Daniel J.; Carroll, Raymond J.; Li, Qi

    2009-01-01

    In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics. PMID:19444335

  1. Variational method based on Retinex with double-norm hybrid constraints for uneven illumination correction

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Wang, Hui; Wang, Liyong; Yu, Xiangzhou; Yang, Le

    2018-01-01

    The uneven illumination phenomenon reduces the quality of remote sensing image and causes interference in the subsequent processing and applications. A variational method based on Retinex with double-norm hybrid constraints for uneven illumination correction is proposed. The L1 norm and the L2 norm are adopted to constrain the textures and details of reflectance image and the smoothness of the illumination image, respectively. The problem of separating the illumination image from the reflectance image is transformed into the optimal solution of the variational model. In order to accelerate the solution, the split Bregman method is used to decompose the variational model into three subproblems, which are calculated by alternate iteration. Two groups of experiments are implemented on two synthetic images and three real remote sensing images. Compared with the variational Retinex method with single-norm constraint and the Mask method, the proposed method performs better in both visual evaluation and quantitative measurements. The proposed method can effectively eliminate the uneven illumination while maintaining the textures and details of the remote sensing image. Moreover, the proposed method using split Bregman method is more than 10 times faster than the method with the steepest descent method.

  2. Deep Constrained Siamese Hash Coding Network and Load-Balanced Locality-Sensitive Hashing for Near Duplicate Image Detection.

    PubMed

    Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen

    2018-09-01

    We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.

  3. Visual improvement for bad handwriting based on Monte-Carlo method

    NASA Astrophysics Data System (ADS)

    Shi, Cao; Xiao, Jianguo; Xu, Canhui; Jia, Wenhua

    2014-03-01

    A visual improvement algorithm based on Monte Carlo simulation is proposed in this paper, in order to enhance visual effects for bad handwriting. The whole improvement process is to use well designed typeface so as to optimize bad handwriting image. In this process, a series of linear operators for image transformation are defined for transforming typeface image to approach handwriting image. And specific parameters of linear operators are estimated by Monte Carlo method. Visual improvement experiments illustrate that the proposed algorithm can effectively enhance visual effect for handwriting image as well as maintain the original handwriting features, such as tilt, stroke order and drawing direction etc. The proposed visual improvement algorithm, in this paper, has a huge potential to be applied in tablet computer and Mobile Internet, in order to improve user experience on handwriting.

  4. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions.

    PubMed

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-06-20

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions.

  5. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Li, Kun; Zhao, Dong-Dong; Huang, Xing-Xing

    2015-09-01

    We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.

  6. An Improved Time-Frequency Analysis Method in Interference Detection for GNSS Receivers

    PubMed Central

    Sun, Kewen; Jin, Tian; Yang, Dongkai

    2015-01-01

    In this paper, an improved joint time-frequency (TF) analysis method based on a reassigned smoothed pseudo Wigner–Ville distribution (RSPWVD) has been proposed in interference detection for Global Navigation Satellite System (GNSS) receivers. In the RSPWVD, the two-dimensional low-pass filtering smoothing function is introduced to eliminate the cross-terms present in the quadratic TF distribution, and at the same time, the reassignment method is adopted to improve the TF concentration properties of the auto-terms of the signal components. This proposed interference detection method is evaluated by experiments on GPS L1 signals in the disturbing scenarios compared to the state-of-the-art interference detection approaches. The analysis results show that the proposed interference detection technique effectively overcomes the cross-terms problem and also preserves good TF localization properties, which has been proven to be effective and valid to enhance the interference detection performance of the GNSS receivers, particularly in the jamming environments. PMID:25905704

  7. Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions

    PubMed Central

    Xue, Lang; Li, Naipeng; Lei, Yaguo; Li, Ningbo

    2017-01-01

    Varying speed conditions bring a huge challenge to incipient fault detection of rolling element bearings because both the change of speed and faults could lead to the amplitude fluctuation of vibration signals. Effective detection methods need to be developed to eliminate the influence of speed variation. This paper proposes an incipient fault detection method for bearings under varying speed conditions. Firstly, relative residual (RR) features are extracted, which are insensitive to the varying speed conditions and are able to reflect the degradation trend of bearings. Then, a health indicator named selected negative log-likelihood probability (SNLLP) is constructed to fuse a feature set including RR features and non-dimensional features. Finally, based on the constructed SNLLP health indicator, a novel alarm trigger mechanism is designed to detect the incipient fault. The proposed method is demonstrated using vibration signals from bearing tests and industrial wind turbines. The results verify the effectiveness of the proposed method for incipient fault detection of rolling element bearings under varying speed conditions. PMID:28773035

  8. Multi-Target State Extraction for the SMC-PHD Filter

    PubMed Central

    Si, Weijian; Wang, Liwei; Qu, Zhiyu

    2016-01-01

    The sequential Monte Carlo probability hypothesis density (SMC-PHD) filter has been demonstrated to be a favorable method for multi-target tracking. However, the time-varying target states need to be extracted from the particle approximation of the posterior PHD, which is difficult to implement due to the unknown relations between the large amount of particles and the PHD peaks representing potential target locations. To address this problem, a novel multi-target state extraction algorithm is proposed in this paper. By exploiting the information of measurements and particle likelihoods in the filtering stage, we propose a validation mechanism which aims at selecting effective measurements and particles corresponding to detected targets. Subsequently, the state estimates of the detected and undetected targets are performed separately: the former are obtained from the particle clusters directed by effective measurements, while the latter are obtained from the particles corresponding to undetected targets via clustering method. Simulation results demonstrate that the proposed method yields better estimation accuracy and reliability compared to existing methods. PMID:27322274

  9. Soft sensor modelling by time difference, recursive partial least squares and adaptive model updating

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Yang, W.; Xu, O.; Zhou, L.; Wang, J.

    2017-04-01

    To investigate time-variant and nonlinear characteristics in industrial processes, a soft sensor modelling method based on time difference, moving-window recursive partial least square (PLS) and adaptive model updating is proposed. In this method, time difference values of input and output variables are used as training samples to construct the model, which can reduce the effects of the nonlinear characteristic on modelling accuracy and retain the advantages of recursive PLS algorithm. To solve the high updating frequency of the model, a confidence value is introduced, which can be updated adaptively according to the results of the model performance assessment. Once the confidence value is updated, the model can be updated. The proposed method has been used to predict the 4-carboxy-benz-aldehyde (CBA) content in the purified terephthalic acid (PTA) oxidation reaction process. The results show that the proposed soft sensor modelling method can reduce computation effectively, improve prediction accuracy by making use of process information and reflect the process characteristics accurately.

  10. Generating region proposals for histopathological whole slide image retrieval.

    PubMed

    Ma, Yibing; Jiang, Zhiguo; Zhang, Haopeng; Xie, Fengying; Zheng, Yushan; Shi, Huaqiang; Zhao, Yu; Shi, Jun

    2018-06-01

    Content-based image retrieval is an effective method for histopathological image analysis. However, given a database of huge whole slide images (WSIs), acquiring appropriate region-of-interests (ROIs) for training is significant and difficult. Moreover, histopathological images can only be annotated by pathologists, resulting in the lack of labeling information. Therefore, it is an important and challenging task to generate ROIs from WSI and retrieve image with few labels. This paper presents a novel unsupervised region proposing method for histopathological WSI based on Selective Search. Specifically, the WSI is over-segmented into regions which are hierarchically merged until the WSI becomes a single region. Nucleus-oriented similarity measures for region mergence and Nucleus-Cytoplasm color space for histopathological image are specially defined to generate accurate region proposals. Additionally, we propose a new semi-supervised hashing method for image retrieval. The semantic features of images are extracted with Latent Dirichlet Allocation and transformed into binary hashing codes with Supervised Hashing. The methods are tested on a large-scale multi-class database of breast histopathological WSIs. The results demonstrate that for one WSI, our region proposing method can generate 7.3 thousand contoured regions which fit well with 95.8% of the ROIs annotated by pathologists. The proposed hashing method can retrieve a query image among 136 thousand images in 0.29 s and reach precision of 91% with only 10% of images labeled. The unsupervised region proposing method can generate regions as predictions of lesions in histopathological WSI. The region proposals can also serve as the training samples to train machine-learning models for image retrieval. The proposed hashing method can achieve fast and precise image retrieval with small amount of labels. Furthermore, the proposed methods can be potentially applied in online computer-aided-diagnosis systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    PubMed

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  12. Blind motion image deblurring using nonconvex higher-order total variation model

    NASA Astrophysics Data System (ADS)

    Li, Weihong; Chen, Rui; Xu, Shangwen; Gong, Weiguo

    2016-09-01

    We propose a nonconvex higher-order total variation (TV) method for blind motion image deblurring. First, we introduce a nonconvex higher-order TV differential operator to define a new model of the blind motion image deblurring, which can effectively eliminate the staircase effect of the deblurred image; meanwhile, we employ an image sparse prior to improve the edge recovery quality. Second, to improve the accuracy of the estimated motion blur kernel, we use L1 norm and H1 norm as the blur kernel regularization term, considering the sparsity and smoothing of the motion blur kernel. Third, because it is difficult to solve the numerically computational complexity problem of the proposed model owing to the intrinsic nonconvexity, we propose a binary iterative strategy, which incorporates a reweighted minimization approximating scheme in the outer iteration, and a split Bregman algorithm in the inner iteration. And we also discuss the convergence of the proposed binary iterative strategy. Last, we conduct extensive experiments on both synthetic and real-world degraded images. The results demonstrate that the proposed method outperforms the previous representative methods in both quality of visual perception and quantitative measurement.

  13. Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data

    ERIC Educational Resources Information Center

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.

    2012-01-01

    We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…

  14. Double regions growing algorithm for automated satellite image mosaicking

    NASA Astrophysics Data System (ADS)

    Tan, Yihua; Chen, Chen; Tian, Jinwen

    2011-12-01

    Feathering is a most widely used method in seamless satellite image mosaicking. A simple but effective algorithm - double regions growing (DRG) algorithm, which utilizes the shape content of images' valid regions, is proposed for generating robust feathering-line before feathering. It works without any human intervention, and experiment on real satellite images shows the advantages of the proposed method.

  15. Identification-While-Scanning of a Multi-Aircraft Formation Based on Sparse Recovery for Narrowband Radar.

    PubMed

    Jiang, Yuan; Xu, Jia; Peng, Shi-Bao; Mao, Er-Ke; Long, Teng; Peng, Ying-Ning

    2016-11-23

    It is known that the identification performance of a multi-aircraft formation (MAF) of narrowband radar mainly depends on the time on target (TOT). To realize the identification task in one rotated scan with limited TOT, the paper proposes a novel identification-while-scanning (IWS) method based on sparse recovery to maintain high rotating speed and super-resolution for MAF identification, simultaneously. First, a multiple chirp signal model is established for MAF in a single scan, where different aircraft may have different Doppler centers and Doppler rates. Second, based on the sparsity of MAF in the Doppler parameter space, a novel hierarchical basis pursuit (HBP) method is proposed to obtain satisfactory sparse recovery performance as well as high computational efficiency. Furthermore, the parameter estimation performance of the proposed IWS identification method is analyzed with respect to recovery condition, signal-to-noise ratio and TOT. It is shown that an MAF can be effectively identified via HBP with a TOT of only about one hundred microseconds for IWS applications. Finally, some numerical experiment results are provided to demonstrate the effectiveness of the proposed method based on both simulated and real measured data.

  16. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.

    PubMed

    Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing

    2016-12-20

    Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Detection of the ice assertion on aircraft using empirical mode decomposition enhanced by multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Bagherzadeh, Seyed Amin; Asadi, Davood

    2017-05-01

    In search of a precise method for analyzing nonlinear and non-stationary flight data of an aircraft in the icing condition, an Empirical Mode Decomposition (EMD) algorithm enhanced by multi-objective optimization is introduced. In the proposed method, dissimilar IMF definitions are considered by the Genetic Algorithm (GA) in order to find the best decision parameters of the signal trend. To resolve disadvantages of the classical algorithm caused by the envelope concept, the signal trend is estimated directly in the proposed method. Furthermore, in order to simplify the performance and understanding of the EMD algorithm, the proposed method obviates the need for a repeated sifting process. The proposed enhanced EMD algorithm is verified by some benchmark signals. Afterwards, the enhanced algorithm is applied to simulated flight data in the icing condition in order to detect the ice assertion on the aircraft. The results demonstrate the effectiveness of the proposed EMD algorithm in aircraft ice detection by providing a figure of merit for the icing severity.

  18. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw

    NASA Astrophysics Data System (ADS)

    Liu, Binbin; Bruni, Stefano; Vollebregt, Edwin

    2016-09-01

    A novel approach is proposed in this paper to deal with non-Hertzian normal contact in wheel-rail interface, extending the widely used Kik-Piotrowski method. The new approach is able to consider the effect of the yaw angle of the wheelset against the rail on the shape of the contact patch and on pressure distribution. Furthermore, the method considers the variation of profile curvature across the contact patch, enhancing the correspondence to CONTACT for highly non-Hertzian contact conditions. The simulation results show that the proposed method can provide more accurate estimation than the original algorithm compared to Kalker's CONTACT, and that the influence of yaw on the contact results is significant under certain circumstances.

  19. Experimental Investigation on the Detection of Multiple Surface Cracks Using Vibrothermography with a Low-Power Piezoceramic Actuator

    PubMed Central

    Xu, Changhang; Xie, Jing; Zhang, Wuyang; Kong, Qingzhao; Chen, Guoming; Song, Gangbing

    2017-01-01

    Vibrothermography often employs a high-power actuator to generate heat on a specimen to reveal damage, however, the high-power actuator brings inconvenience to the application and possibly introduces additional damage to the inspected objects. This study uses a low-power piezoceramic transducer as the actuator of vibrothermography and explores its ability to detect multiple surface cracks in a metal part. Experiments were conducted on a thin aluminum beam with three cracks in different orientations. Detailed analyses of both thermograms and temperature data are presented to validate the proposed vibrothermography method. To further investigate the performance of the proposed vibrothermography method, we experimentally studied the effects of several critical factors, including the amplitude of excitation signal, specimen constraints, relative position between the transducer and cracks (the transducer is mounted on the same or the opposite side with the cracks). The results demonstrate that all cracks can be detected conveniently and simultaneously by using the proposed low-power vibrothermography. We also found that the magnitude of excitation signal and the specimen constraints have a great influence on detection results. Combined with effective data processing methods, such as Fourier transformation employed in this study, the proposed method provides a promising potential to detect multiple cracks on a metal surface in a safe and effective manner. PMID:29168759

  20. Hybrid ICA-Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals.

    PubMed

    Mannan, Malik M Naeem; Jeong, Myung Y; Kamran, Muhammad A

    2016-01-01

    Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG.

  1. Hybrid ICA—Regression: Automatic Identification and Removal of Ocular Artifacts from Electroencephalographic Signals

    PubMed Central

    Mannan, Malik M. Naeem; Jeong, Myung Y.; Kamran, Muhammad A.

    2016-01-01

    Electroencephalography (EEG) is a portable brain-imaging technique with the advantage of high-temporal resolution that can be used to record electrical activity of the brain. However, it is difficult to analyze EEG signals due to the contamination of ocular artifacts, and which potentially results in misleading conclusions. Also, it is a proven fact that the contamination of ocular artifacts cause to reduce the classification accuracy of a brain-computer interface (BCI). It is therefore very important to remove/reduce these artifacts before the analysis of EEG signals for applications like BCI. In this paper, a hybrid framework that combines independent component analysis (ICA), regression and high-order statistics has been proposed to identify and eliminate artifactual activities from EEG data. We used simulated, experimental and standard EEG signals to evaluate and analyze the effectiveness of the proposed method. Results demonstrate that the proposed method can effectively remove ocular artifacts as well as it can preserve the neuronal signals present in EEG data. A comparison with four methods from literature namely ICA, regression analysis, wavelet-ICA (wICA), and regression-ICA (REGICA) confirms the significantly enhanced performance and effectiveness of the proposed method for removal of ocular activities from EEG, in terms of lower mean square error and mean absolute error values and higher mutual information between reconstructed and original EEG. PMID:27199714

  2. Optimized hyperspectral band selection using hybrid genetic algorithm and gravitational search algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.

  3. An alternative empirical likelihood method in missing response problems and causal inference.

    PubMed

    Ren, Kaili; Drummond, Christopher A; Brewster, Pamela S; Haller, Steven T; Tian, Jiang; Cooper, Christopher J; Zhang, Biao

    2016-11-30

    Missing responses are common problems in medical, social, and economic studies. When responses are missing at random, a complete case data analysis may result in biases. A popular debias method is inverse probability weighting proposed by Horvitz and Thompson. To improve efficiency, Robins et al. proposed an augmented inverse probability weighting method. The augmented inverse probability weighting estimator has a double-robustness property and achieves the semiparametric efficiency lower bound when the regression model and propensity score model are both correctly specified. In this paper, we introduce an empirical likelihood-based estimator as an alternative to Qin and Zhang (2007). Our proposed estimator is also doubly robust and locally efficient. Simulation results show that the proposed estimator has better performance when the propensity score is correctly modeled. Moreover, the proposed method can be applied in the estimation of average treatment effect in observational causal inferences. Finally, we apply our method to an observational study of smoking, using data from the Cardiovascular Outcomes in Renal Atherosclerotic Lesions clinical trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography

    PubMed Central

    Yu, Chenglong; Yue, Shihong; Wang, Jianpei; Wang, Huaxiang

    2014-01-01

    As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes. PMID:25165735

  5. Sparse subspace clustering for data with missing entries and high-rank matrix completion.

    PubMed

    Fan, Jicong; Chow, Tommy W S

    2017-09-01

    Many methods have recently been proposed for subspace clustering, but they are often unable to handle incomplete data because of missing entries. Using matrix completion methods to recover missing entries is a common way to solve the problem. Conventional matrix completion methods require that the matrix should be of low-rank intrinsically, but most matrices are of high-rank or even full-rank in practice, especially when the number of subspaces is large. In this paper, a new method called Sparse Representation with Missing Entries and Matrix Completion is proposed to solve the problems of incomplete-data subspace clustering and high-rank matrix completion. The proposed algorithm alternately computes the matrix of sparse representation coefficients and recovers the missing entries of a data matrix. The proposed algorithm recovers missing entries through minimizing the representation coefficients, representation errors, and matrix rank. Thorough experimental study and comparative analysis based on synthetic data and natural images were conducted. The presented results demonstrate that the proposed algorithm is more effective in subspace clustering and matrix completion compared with other existing methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yaoling; Wu, Zhong

    2018-03-01

    The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.

  7. A novel load balanced energy conservation approach in WSN using biogeography based optimization

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajay; Indu, S.; Gupta, Daya

    2017-09-01

    Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN

  8. All-fiber magnetic field sensor based on tapered thin-core fiber and magnetic fluid.

    PubMed

    Zhang, Junying; Qiao, Xueguang; Yang, Hangzhou; Wang, Ruohui; Rong, Qiangzhou; Lim, Kok-Sing; Ahmad, Harith

    2017-01-10

    A method for the measurement of a magnetic field by combining a tapered thin-core fiber (TTCF) and magnetic fluid is proposed and experimentally demonstrated. The modal interference effect is caused by the core mode and excited eigenmodes in the TTCF cladding. The transmission spectra of the proposed sensor are measured and theoretically analyzed at different magnetic field strengths. The results field show that the magnetic sensitivity reaches up to -0.1039  dB/Oe in the range of 40-1600 e. The proposed method possesses high sensitivity and low cost compared with other expensive methods.

  9. A Web service substitution method based on service cluster nets

    NASA Astrophysics Data System (ADS)

    Du, YuYue; Gai, JunJing; Zhou, MengChu

    2017-11-01

    Service substitution is an important research topic in the fields of Web services and service-oriented computing. This work presents a novel method to analyse and substitute Web services. A new concept, called a Service Cluster Net Unit, is proposed based on Web service clusters. A service cluster is converted into a Service Cluster Net Unit. Then it is used to analyse whether the services in the cluster can satisfy some service requests. Meanwhile, the substitution methods of an atomic service and a composite service are proposed. The correctness of the proposed method is proved, and the effectiveness is shown and compared with the state-of-the-art method via an experiment. It can be readily applied to e-commerce service substitution to meet the business automation needs.

  10. A VIKOR Technique with Applications Based on DEMATEL and ANP

    NASA Astrophysics Data System (ADS)

    Ou Yang, Yu-Ping; Shieh, How-Ming; Tzeng, Gwo-Hshiung

    In multiple criteria decision making (MCDM) methods, the compromise ranking method (named VIKOR) was introduced as one applicable technique to implement within MCDM. It was developed for multicriteria optimization of complex systems. However, few papers discuss conflicting (competing) criteria with dependence and feedback in the compromise solution method. Therefore, this study proposes and provides applications for a novel model using the VIKOR technique based on DEMATEL and the ANP to solve the problem of conflicting criteria with dependence and feedback. In addition, this research also uses DEMATEL to normalize the unweighted supermatrix of the ANP to suit the real world. An example is also presented to illustrate the proposed method with applications thereof. The results show the proposed method is suitable and effective in real-world applications.

  11. High-quality slab-based intermixing method for fusion rendering of multiple medical objects.

    PubMed

    Kim, Dong-Joon; Kim, Bohyoung; Lee, Jeongjin; Shin, Juneseuk; Kim, Kyoung Won; Shin, Yeong-Gil

    2016-01-01

    The visualization of multiple 3D objects has been increasingly required for recent applications in medical fields. Due to the heterogeneity in data representation or data configuration, it is difficult to efficiently render multiple medical objects in high quality. In this paper, we present a novel intermixing scheme for fusion rendering of multiple medical objects while preserving the real-time performance. First, we present an in-slab visibility interpolation method for the representation of subdivided slabs. Second, we introduce virtual zSlab, which extends an infinitely thin boundary (such as polygonal objects) into a slab with a finite thickness. Finally, based on virtual zSlab and in-slab visibility interpolation, we propose a slab-based visibility intermixing method with the newly proposed rendering pipeline. Experimental results demonstrate that the proposed method delivers more effective multiple-object renderings in terms of rendering quality, compared to conventional approaches. And proposed intermixing scheme provides high-quality intermixing results for the visualization of intersecting and overlapping surfaces by resolving aliasing and z-fighting problems. Moreover, two case studies are presented that apply the proposed method to the real clinical applications. These case studies manifest that the proposed method has the outstanding advantages of the rendering independency and reusability. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Detection of Suspicious Persons using Internet Camera

    NASA Astrophysics Data System (ADS)

    Terada, Kenji; Kamogashira, Daisuke

    Recently, many brutal crimes have shocked us. Therefore, the importance of security and self-defense have increased more and more. It is necessary to develop an automatic method of detecting suspicious persons. In this paper, we propose a method of detecting suspicious persons using the internet camera. An image sequence is obtained by the internet camera. By using these images, the recognition of suspicious persons is carried out. Our method classifies the condition of the target person into 3 postures: walking, staying and sitting. The system employs the subspace method which uses three features: the value of movement, the number of looking around restlessly, and the rate of stopping and going. Some experimental results using a simple experimental system are also reported, which indicate effectiveness of the proposed method. In most scenes, the suspicious persons are able to be detected by the proposed method.

  13. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

    NASA Astrophysics Data System (ADS)

    Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

    This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

  14. Phase unwrapping using region-based markov random field model.

    PubMed

    Dong, Ying; Ji, Jim

    2010-01-01

    Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.

  15. Outdoor Illegal Construction Identification Algorithm Based on 3D Point Cloud Segmentation

    NASA Astrophysics Data System (ADS)

    An, Lu; Guo, Baolong

    2018-03-01

    Recently, various illegal constructions occur significantly in our surroundings, which seriously restrict the orderly development of urban modernization. The 3D point cloud data technology is used to identify the illegal buildings, which could address the problem above effectively. This paper proposes an outdoor illegal construction identification algorithm based on 3D point cloud segmentation. Initially, in order to save memory space and reduce processing time, a lossless point cloud compression method based on minimum spanning tree is proposed. Then, a ground point removing method based on the multi-scale filtering is introduced to increase accuracy. Finally, building clusters on the ground can be obtained using a region growing method, as a result, the illegal construction can be marked. The effectiveness of the proposed algorithm is verified using a publicly data set collected from the International Society for Photogrammetry and Remote Sensing (ISPRS).

  16. Analysing the Image Building Effects of TV Advertisements Using Internet Community Data

    NASA Astrophysics Data System (ADS)

    Uehara, Hiroshi; Sato, Tadahiko; Yoshida, Kenichi

    This paper proposes a method to measure the effects of TV advertisements on the Internet bulletin boards. It aims to clarify how the viewes' interests on TV advertisements are reflected on their images on the promoted products. Two kinds of time series data are generated based on the proposed method. First one represents the time series fluctuation of the interests on the TV advertisements. Another one represents the time series fluctuation of the images on the products. By analysing the correlations between these two time series data, we try to clarify the implicit relationship between the viewer's interests on the TV advertisement and their images on the promoted products. By applying the proposed method to an Internet bulletin board that deals with certain cosmetic brand, we show that the images on the products vary depending on the difference of the interests on each TV advertisement.

  17. Method for Expressing Public Opinions Concerning the Introduction of an Emerging Technology to Society

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoshi; Ito, Kyoko; Ohnishi, Satoshi; Nishida, Shogo

    Emerging technology may have considerable social impact. Because emerging technology has not yet been introduced in society, it is needed general public express its opinions on emerging technology. It is important that expressing opinion must have social spirit. A method to limit facility of the Internet and activate social spirit is proposed. Evaluation experiment were conducted to test the effectiveness of the proposed method, and the participant could express opinion with social spirit.

  18. Offspring Generation Method for interactive Genetic Algorithm considering Multimodal Preference

    NASA Astrophysics Data System (ADS)

    Ito, Fuyuko; Hiroyasu, Tomoyuki; Miki, Mitsunori; Yokouchi, Hisatake

    In interactive genetic algorithms (iGAs), computer simulations prepare design candidates that are then evaluated by the user. Therefore, iGA can predict a user's preferences. Conventional iGA problems involve a search for a single optimum solution, and iGA were developed to find this single optimum. On the other hand, our target problems have several peaks in a function and there are small differences among these peaks. For such problems, it is better to show all the peaks to the user. Product recommendation in shopping sites on the web is one example of such problems. Several types of preference trend should be prepared for users in shopping sites. Exploitation and exploration are important mechanisms in GA search. To perform effective exploitation, the offspring generation method (crossover) is very important. Here, we introduced a new offspring generation method for iGA in multimodal problems. In the proposed method, individuals are clustered into subgroups and offspring are generated in each group. The proposed method was applied to an experimental iGA system to examine its effectiveness. In the experimental iGA system, users can decide on preferable t-shirts to buy. The results of the subjective experiment confirmed that the proposed method enables offspring generation with consideration of multimodal preferences, and the proposed mechanism was also shown not to adversely affect the performance of preference prediction.

  19. An efficient diagnosis system for Parkinson's disease using kernel-based extreme learning machine with subtractive clustering features weighting approach.

    PubMed

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua

    2014-01-01

    A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance.

  20. An Efficient Diagnosis System for Parkinson's Disease Using Kernel-Based Extreme Learning Machine with Subtractive Clustering Features Weighting Approach

    PubMed Central

    Ma, Chao; Ouyang, Jihong; Chen, Hui-Ling; Zhao, Xue-Hua

    2014-01-01

    A novel hybrid method named SCFW-KELM, which integrates effective subtractive clustering features weighting and a fast classifier kernel-based extreme learning machine (KELM), has been introduced for the diagnosis of PD. In the proposed method, SCFW is used as a data preprocessing tool, which aims at decreasing the variance in features of the PD dataset, in order to further improve the diagnostic accuracy of the KELM classifier. The impact of the type of kernel functions on the performance of KELM has been investigated in detail. The efficiency and effectiveness of the proposed method have been rigorously evaluated against the PD dataset in terms of classification accuracy, sensitivity, specificity, area under the receiver operating characteristic (ROC) curve (AUC), f-measure, and kappa statistics value. Experimental results have demonstrated that the proposed SCFW-KELM significantly outperforms SVM-based, KNN-based, and ELM-based approaches and other methods in the literature and achieved highest classification results reported so far via 10-fold cross validation scheme, with the classification accuracy of 99.49%, the sensitivity of 100%, the specificity of 99.39%, AUC of 99.69%, the f-measure value of 0.9964, and kappa value of 0.9867. Promisingly, the proposed method might serve as a new candidate of powerful methods for the diagnosis of PD with excellent performance. PMID:25484912

  1. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system.

    PubMed

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  2. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system

    NASA Astrophysics Data System (ADS)

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.

  3. Star tracking method based on multiexposure imaging for intensified star trackers.

    PubMed

    Yu, Wenbo; Jiang, Jie; Zhang, Guangjun

    2017-07-20

    The requirements for the dynamic performance of star trackers are rapidly increasing with the development of space exploration technologies. However, insufficient knowledge of the angular acceleration has largely decreased the performance of the existing star tracking methods, and star trackers may even fail to track under highly dynamic conditions. This study proposes a star tracking method based on multiexposure imaging for intensified star trackers. The accurate estimation model of the complete motion parameters, including the angular velocity and angular acceleration, is established according to the working characteristic of multiexposure imaging. The estimation of the complete motion parameters is utilized to generate the predictive star image accurately. Therefore, the correct matching and tracking between stars in the real and predictive star images can be reliably accomplished under highly dynamic conditions. Simulations with specific dynamic conditions are conducted to verify the feasibility and effectiveness of the proposed method. Experiments with real starry night sky observation are also conducted for further verification. Simulations and experiments demonstrate that the proposed method is effective and shows excellent performance under highly dynamic conditions.

  4. Comparison of power curve monitoring methods

    NASA Astrophysics Data System (ADS)

    Cambron, Philippe; Masson, Christian; Tahan, Antoine; Torres, David; Pelletier, Francis

    2017-11-01

    Performance monitoring is an important aspect of operating wind farms. This can be done through the power curve monitoring (PCM) of wind turbines (WT). In the past years, important work has been conducted on PCM. Various methodologies have been proposed, each one with interesting results. However, it is difficult to compare these methods because they have been developed using their respective data sets. The objective of this actual work is to compare some of the proposed PCM methods using common data sets. The metric used to compare the PCM methods is the time needed to detect a change in the power curve. Two power curve models will be covered to establish the effect the model type has on the monitoring outcomes. Each model was tested with two control charts. Other methodologies and metrics proposed in the literature for power curve monitoring such as areas under the power curve and the use of statistical copulas have also been covered. Results demonstrate that model-based PCM methods are more reliable at the detecting a performance change than other methodologies and that the effectiveness of the control chart depends on the types of shift observed.

  5. A new EEG synchronization strength analysis method: S-estimator based normalized weighted-permutation mutual information.

    PubMed

    Cui, Dong; Pu, Weiting; Liu, Jing; Bian, Zhijie; Li, Qiuli; Wang, Lei; Gu, Guanghua

    2016-10-01

    Synchronization is an important mechanism for understanding information processing in normal or abnormal brains. In this paper, we propose a new method called normalized weighted-permutation mutual information (NWPMI) for double variable signal synchronization analysis and combine NWPMI with S-estimator measure to generate a new method named S-estimator based normalized weighted-permutation mutual information (SNWPMI) for analyzing multi-channel electroencephalographic (EEG) synchronization strength. The performances including the effects of time delay, embedding dimension, coupling coefficients, signal to noise ratios (SNRs) and data length of the NWPMI are evaluated by using Coupled Henon mapping model. The results show that the NWPMI is superior in describing the synchronization compared with the normalized permutation mutual information (NPMI). Furthermore, the proposed SNWPMI method is applied to analyze scalp EEG data from 26 amnestic mild cognitive impairment (aMCI) subjects and 20 age-matched controls with normal cognitive function, who both suffer from type 2 diabetes mellitus (T2DM). The proposed methods NWPMI and SNWPMI are suggested to be an effective index to estimate the synchronization strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying

    2018-03-01

    In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.

  7. Classification of Hyperspectral Data Based on Guided Filtering and Random Forest

    NASA Astrophysics Data System (ADS)

    Ma, H.; Feng, W.; Cao, X.; Wang, L.

    2017-09-01

    Hyperspectral images usually consist of more than one hundred spectral bands, which have potentials to provide rich spatial and spectral information. However, the application of hyperspectral data is still challengeable due to "the curse of dimensionality". In this context, many techniques, which aim to make full use of both the spatial and spectral information, are investigated. In order to preserve the geometrical information, meanwhile, with less spectral bands, we propose a novel method, which combines principal components analysis (PCA), guided image filtering and the random forest classifier (RF). In detail, PCA is firstly employed to reduce the dimension of spectral bands. Secondly, the guided image filtering technique is introduced to smooth land object, meanwhile preserving the edge of objects. Finally, the features are fed into RF classifier. To illustrate the effectiveness of the method, we carry out experiments over the popular Indian Pines data set, which is collected by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor. By comparing the proposed method with the method of only using PCA or guided image filter, we find that effect of the proposed method is better.

  8. Improved patch-based learning for image deblurring

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Jiang, Zhiguo; Zhang, Haopeng

    2015-05-01

    Most recent image deblurring methods only use valid information found in input image as the clue to fill the deblurring region. These methods usually have the defects of insufficient prior information and relatively poor adaptiveness. Patch-based method not only uses the valid information of the input image itself, but also utilizes the prior information of the sample images to improve the adaptiveness. However the cost function of this method is quite time-consuming and the method may also produce ringing artifacts. In this paper, we propose an improved non-blind deblurring algorithm based on learning patch likelihoods. On one hand, we consider the effect of the Gaussian mixture model with different weights and normalize the weight values, which can optimize the cost function and reduce running time. On the other hand, a post processing method is proposed to solve the ringing artifacts produced by traditional patch-based method. Extensive experiments are performed. Experimental results verify that our method can effectively reduce the execution time, suppress the ringing artifacts effectively, and keep the quality of deblurred image.

  9. Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping

    2003-04-01

    A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.

  10. Collective feature selection to identify crucial epistatic variants.

    PubMed

    Verma, Shefali S; Lucas, Anastasia; Zhang, Xinyuan; Veturi, Yogasudha; Dudek, Scott; Li, Binglan; Li, Ruowang; Urbanowicz, Ryan; Moore, Jason H; Kim, Dokyoon; Ritchie, Marylyn D

    2018-01-01

    Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample size as input, thus leading to the so-called "short fat data" problem. The efficiency of machine learning methods can be increased by limiting the number of input features. Thus, it is very important to perform variable selection before searching for epistasis. Many methods have been evaluated and proposed to perform feature selection, but no single method works best in all scenarios. We demonstrate this by conducting two separate simulation analyses to evaluate the proposed collective feature selection approach. Through our simulation study we propose a collective feature selection approach to select features that are in the "union" of the best performing methods. We explored various parametric, non-parametric, and data mining approaches to perform feature selection. We choose our top performing methods to select the union of the resulting variables based on a user-defined percentage of variants selected from each method to take to downstream analysis. Our simulation analysis shows that non-parametric data mining approaches, such as MDR, may work best under one simulation criteria for the high effect size (penetrance) datasets, while non-parametric methods designed for feature selection, such as Ranger and Gradient boosting, work best under other simulation criteria. Thus, using a collective approach proves to be more beneficial for selecting variables with epistatic effects also in low effect size datasets and different genetic architectures. Following this, we applied our proposed collective feature selection approach to select the top 1% of variables to identify potential interacting variables associated with Body Mass Index (BMI) in ~ 44,000 samples obtained from Geisinger's MyCode Community Health Initiative (on behalf of DiscovEHR collaboration). In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.

  11. System identification through nonstationary data using Time-Frequency Blind Source Separation

    NASA Astrophysics Data System (ADS)

    Guo, Yanlin; Kareem, Ahsan

    2016-06-01

    Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the proposed method is evaluated using a full-scale non-stationary response of a tall building during an earthquake and found it to perform satisfactorily.

  12. Optimal Operation and Management for Smart Grid Subsumed High Penetration of Renewable Energy, Electric Vehicle, and Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Shigenobu, Ryuto; Noorzad, Ahmad Samim; Muarapaz, Cirio; Yona, Atsushi; Senjyu, Tomonobu

    2016-04-01

    Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer's electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.

  13. Evolutionary computing based approach for the removal of ECG artifact from the corrupted EEG signal.

    PubMed

    Priyadharsini, S Suja; Rajan, S Edward

    2014-01-01

    Electroencephalogram (EEG) is an important tool for clinical diagnosis of brain-related disorders and problems. However, it is corrupted by various biological artifacts, of which ECG is one among them that reduces the clinical importance of EEG especially for epileptic patients and patients with short neck. To remove the ECG artifact from the measured EEG signal using an evolutionary computing approach based on the concept of Hybrid Adaptive Neuro-Fuzzy Inference System, which helps the Neurologists in the diagnosis and follow-up of encephalopathy. The proposed hybrid learning methods are ANFIS-MA and ANFIS-GA, which uses Memetic Algorithm (MA) and Genetic algorithm (GA) for tuning the antecedent and consequent part of the ANFIS structure individually. The performances of the proposed methods are compared with that of ANFIS and adaptive Recursive Least Squares (RLS) filtering algorithm. The proposed methods are experimentally validated by applying it to the simulated data sets, subjected to non-linearity condition and real polysomonograph data sets. Performance metrics such as sensitivity, specificity and accuracy of the proposed method ANFIS-MA, in terms of correction rate are found to be 93.8%, 100% and 99% respectively, which is better than current state-of-the-art approaches. The evaluation process used and demonstrated effectiveness of the proposed method proves that ANFIS-MA is more effective in suppressing ECG artifacts from the corrupted EEG signals than ANFIS-GA, ANFIS and RLS algorithm.

  14. The review and results of different methods for facial recognition

    NASA Astrophysics Data System (ADS)

    Le, Yifan

    2017-09-01

    In recent years, facial recognition draws much attention due to its wide potential applications. As a unique technology in Biometric Identification, facial recognition represents a significant improvement since it could be operated without cooperation of people under detection. Hence, facial recognition will be taken into defense system, medical detection, human behavior understanding, etc. Several theories and methods have been established to make progress in facial recognition: (1) A novel two-stage facial landmark localization method is proposed which has more accurate facial localization effect under specific database; (2) A statistical face frontalization method is proposed which outperforms state-of-the-art methods for face landmark localization; (3) It proposes a general facial landmark detection algorithm to handle images with severe occlusion and images with large head poses; (4) There are three methods proposed on Face Alignment including shape augmented regression method, pose-indexed based multi-view method and a learning based method via regressing local binary features. The aim of this paper is to analyze previous work of different aspects in facial recognition, focusing on concrete method and performance under various databases. In addition, some improvement measures and suggestions in potential applications will be put forward.

  15. Model-based sphere localization (MBSL) in x-ray projections

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc

    2017-08-01

    The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.

  16. Normal response function method for mass and stiffness matrix updating using complex FRFs

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Modak, S. V.

    2012-10-01

    Quite often a structural dynamic finite element model is required to be updated so as to accurately predict the dynamic characteristics like natural frequencies and the mode shapes. Since in many situations undamped natural frequencies and mode shapes need to be predicted, it has generally been the practice in these situations to seek updating of only mass and stiffness matrix so as to obtain a reliable prediction model. Updating using frequency response functions (FRFs) has been one of the widely used approaches for updating, including updating of mass and stiffness matrices. However, the problem with FRF based methods, for updating mass and stiffness matrices, is that these methods are based on use of complex FRFs. Use of complex FRFs to update mass and stiffness matrices is not theoretically correct as complex FRFs are not only affected by these two matrices but also by the damping matrix. Therefore, in situations where updating of only mass and stiffness matrices using FRFs is required, the use of complex FRFs based updating formulation is not fully justified and would lead to inaccurate updated models. This paper addresses this difficulty and proposes an improved FRF based finite element model updating procedure using the concept of normal FRFs. The proposed method is a modified version of the existing response function method that is based on the complex FRFs. The effectiveness of the proposed method is validated through a numerical study of a simple but representative beam structure. The effect of coordinate incompleteness and robustness of method under presence of noise is investigated. The results of updating obtained by the improved method are compared with the existing response function method. The performance of the two approaches is compared for cases of light, medium and heavily damped structures. It is found that the proposed improved method is effective in updating of mass and stiffness matrices in all the cases of complete and incomplete data and with all levels and types of damping.

  17. Feature-Based Correlation and Topological Similarity for Interbeat Interval Estimation Using Ultrawideband Radar.

    PubMed

    Sakamoto, Takuya; Imasaka, Ryohei; Taki, Hirofumi; Sato, Toru; Yoshioka, Mototaka; Inoue, Kenichi; Fukuda, Takeshi; Sakai, Hiroyuki

    2016-04-01

    The objectives of this paper are to propose a method that can accurately estimate the human heart rate (HR) using an ultrawideband (UWB) radar system, and to determine the performance of the proposed method through measurements. The proposed method uses the feature points of a radar signal to estimate the HR efficiently and accurately. Fourier- and periodicity-based methods are inappropriate for estimation of instantaneous HRs in real time because heartbeat waveforms are highly variable, even within the beat-to-beat interval. We define six radar waveform features that enable correlation processing to be performed quickly and accurately. In addition, we propose a feature topology signal that is generated from a feature sequence without using amplitude information. This feature topology signal is used to find unreliable feature points, and thus, to suppress inaccurate HR estimates. Measurements were taken using UWB radar, while simultaneously performing electrocardiography measurements in an experiment that was conducted on nine participants. The proposed method achieved an average root-mean-square error in the interbeat interval of 7.17 ms for the nine participants. The results demonstrate the effectiveness and accuracy of the proposed method. The significance of this study for biomedical research is that the proposed method will be useful in the realization of a remote vital signs monitoring system that enables accurate estimation of HR variability, which has been used in various clinical settings for the treatment of conditions such as diabetes and arterial hypertension.

  18. Infrared dim small target segmentation method based on ALI-PCNN model

    NASA Astrophysics Data System (ADS)

    Zhao, Shangnan; Song, Yong; Zhao, Yufei; Li, Yun; Li, Xu; Jiang, Yurong; Li, Lin

    2017-10-01

    Pulse Coupled Neural Network (PCNN) is improved by Adaptive Lateral Inhibition (ALI), while a method of infrared (IR) dim small target segmentation based on ALI-PCNN model is proposed in this paper. Firstly, the feeding input signal is modulated by lateral inhibition network to suppress background. Then, the linking input is modulated by ALI, and linking weight matrix is generated adaptively by calculating ALI coefficient of each pixel. Finally, the binary image is generated through the nonlinear modulation and the pulse generator in PCNN. The experimental results show that the segmentation effect as well as the values of contrast across region and uniformity across region of the proposed method are better than the OTSU method, maximum entropy method, the methods based on conventional PCNN and visual attention, and the proposed method has excellent performance in extracting IR dim small target from complex background.

  19. Link prediction measures considering different neighbors’ effects and application in social networks

    NASA Astrophysics Data System (ADS)

    Luo, Peng; Wu, Chong; Li, Yongli

    Link prediction measures have been attracted particular attention in the field of mathematical physics. In this paper, we consider the different effects of neighbors in link prediction and focus on four different situations: only consider the individual’s own effects; consider the effects of individual, neighbors and neighbors’ neighbors; consider the effects of individual, neighbors, neighbors’ neighbors, neighbors’ neighbors’ neighbors and neighbors’ neighbors’ neighbors’ neighbors; consider the whole network participants’ effects. Then, according to the four situations, we present our link prediction models which also take the effects of social characteristics into consideration. An artificial network is adopted to illustrate the parameter estimation based on logistic regression. Furthermore, we compare our methods with the some other link prediction methods (LPMs) to examine the validity of our proposed model in online social networks. The results show the superior of our proposed link prediction methods compared with others. In the application part, our models are applied to study the social network evolution and used to recommend friends and cooperators in social networks.

  20. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less

  1. Steering Law Controlling the Constant Speeds of Control Moment Gyros

    NASA Astrophysics Data System (ADS)

    KOYASAKO, Y.; TAKAHASHI, M.

    2016-09-01

    To enable the agile control of satellites, using control moment gyros (CMGs) has become increasingly necessary because of their ability to generate large amounts of torque. However, CMGs have a singularity problem whereby the torque by the CMGs degenerates from three dimensions to two dimensions, affecting spacecraft attitude control performance. This study proposes a new steering control law for CMGs by controlling the constant speed of a CMG. The proposed method enables agile attitude changes, according to the required task, by managing the total angular momentum of the CMGs by considering the distance to external singularities. In the proposed method, the total angular momentum is biased in a specific direction and the angular momentum envelope is extended. The design method can increase the net angular momentum of CMGs which can be exchanged with the satellite. The effectiveness of the proposed method is demonstrated by numerical simulations.

  2. Correlation Filter Learning Toward Peak Strength for Visual Tracking.

    PubMed

    Sui, Yao; Wang, Guanghui; Zhang, Li

    2018-04-01

    This paper presents a novel visual tracking approach to correlation filter learning toward peak strength of correlation response. Previous methods leverage all features of the target and the immediate background to learn a correlation filter. Some features, however, may be distractive to tracking, like those from occlusion and local deformation, resulting in unstable tracking performance. This paper aims at solving this issue and proposes a novel algorithm to learn the correlation filter. The proposed approach, by imposing an elastic net constraint on the filter, can adaptively eliminate those distractive features in the correlation filtering. A new peak strength metric is proposed to measure the discriminative capability of the learned correlation filter. It is demonstrated that the proposed approach effectively strengthens the peak of the correlation response, leading to more discriminative performance than previous methods. Extensive experiments on a challenging visual tracking benchmark demonstrate that the proposed tracker outperforms most state-of-the-art methods.

  3. Detection of defects on apple using B-spline lighting correction method

    NASA Astrophysics Data System (ADS)

    Li, Jiangbo; Huang, Wenqian; Guo, Zhiming

    To effectively extract defective areas in fruits, the uneven intensity distribution that was produced by the lighting system or by part of the vision system in the image must be corrected. A methodology was used to convert non-uniform intensity distribution on spherical objects into a uniform intensity distribution. A basically plane image with the defective area having a lower gray level than this plane was obtained by using proposed algorithms. Then, the defective areas can be easily extracted by a global threshold value. The experimental results with a 94.0% classification rate based on 100 apple images showed that the proposed algorithm was simple and effective. This proposed method can be applied to other spherical fruits.

  4. Scatter and crosstalk corrections for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Peng; Hutton, Brian F.; Holstensson, Maria

    2015-12-15

    Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effectsmore » of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both correction methods compared to no correction, especially for the images of {sup 99m}Tc in dual-radionuclide imaging where there is heavy contamination from {sup 123}I. In this case, the nontransmural defect contrast was improved from 0.39 to 0.47 with the TEW method and to 0.51 with their proposed method and the transmural defect contrast was improved from 0.62 to 0.74 with the TEW method and to 0.73 with their proposed method. In the patient study, the proposed method provided higher myocardium-to-blood pool contrast than that of the TEW method. Similar to the phantom experiment, the improvement was the most substantial for the images of {sup 99m}Tc in dual-radionuclide imaging. In this case, the myocardium-to-blood pool ratio was improved from 7.0 to 38.3 with the TEW method and to 63.6 with their proposed method. Compared to the TEW method, the proposed method also provided higher count levels in the reconstructed images in both phantom and patient studies, indicating reduced overestimation of scatter. Using the proposed method, consistent reconstruction results were obtained for both single-radionuclide data with scatter correction and dual-radionuclide data with scatter and crosstalk corrections, in both phantom and human studies. Conclusions: The authors demonstrate that the TEW method leads to overestimation in scatter and crosstalk for the CZT-based imaging system while the proposed scatter and crosstalk correction method can provide more accurate self-scatter and down-scatter estimations for quantitative single-radionuclide and dual-radionuclide imaging.« less

  5. Detecting double compressed MPEG videos with the same quantization matrix and synchronized group of pictures structure

    NASA Astrophysics Data System (ADS)

    Aghamaleki, Javad Abbasi; Behrad, Alireza

    2018-01-01

    Double compression detection is a crucial stage in digital image and video forensics. However, the detection of double compressed videos is challenging when the video forger uses the same quantization matrix and synchronized group of pictures (GOP) structure during the recompression history to conceal tampering effects. A passive approach is proposed for detecting double compressed MPEG videos with the same quantization matrix and synchronized GOP structure. To devise the proposed algorithm, the effects of recompression on P frames are mathematically studied. Then, based on the obtained guidelines, a feature vector is proposed to detect double compressed frames on the GOP level. Subsequently, sparse representations of the feature vectors are used for dimensionality reduction and enrich the traces of recompression. Finally, a support vector machine classifier is employed to detect and localize double compression in temporal domain. The experimental results show that the proposed algorithm achieves the accuracy of more than 95%. In addition, the comparisons of the results of the proposed method with those of other methods reveal the efficiency of the proposed algorithm.

  6. White blood cell segmentation by color-space-based k-means clustering.

    PubMed

    Zhang, Congcong; Xiao, Xiaoyan; Li, Xiaomei; Chen, Ying-Jie; Zhen, Wu; Chang, Jun; Zheng, Chengyun; Liu, Zhi

    2014-09-01

    White blood cell (WBC) segmentation, which is important for cytometry, is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. This paper proposes a novel method for the nucleus and cytoplasm segmentation of WBCs for cytometry. A color adjustment step was also introduced before segmentation. Color space decomposition and k-means clustering were combined for segmentation. A database including 300 microscopic blood smear images were used to evaluate the performance of our method. The proposed segmentation method achieves 95.7% and 91.3% overall accuracy for nucleus segmentation and cytoplasm segmentation, respectively. Experimental results demonstrate that the proposed method can segment WBCs effectively with high accuracy.

  7. Enhanced facial texture illumination normalization for face recognition.

    PubMed

    Luo, Yong; Guan, Ye-Peng

    2015-08-01

    An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.

  8. Deep visual-semantic for crowded video understanding

    NASA Astrophysics Data System (ADS)

    Deng, Chunhua; Zhang, Junwen

    2018-03-01

    Visual-semantic features play a vital role for crowded video understanding. Convolutional Neural Networks (CNNs) have experienced a significant breakthrough in learning representations from images. However, the learning of visualsemantic features, and how it can be effectively extracted for video analysis, still remains a challenging task. In this study, we propose a novel visual-semantic method to capture both appearance and dynamic representations. In particular, we propose a spatial context method, based on the fractional Fisher vector (FV) encoding on CNN features, which can be regarded as our main contribution. In addition, to capture temporal context information, we also applied fractional encoding method on dynamic images. Experimental results on the WWW crowed video dataset demonstrate that the proposed method outperform the state of the art.

  9. Local Feature Selection for Data Classification.

    PubMed

    Armanfard, Narges; Reilly, James P; Komeili, Majid

    2016-06-01

    Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.

  10. An improved transmutation method for quantitative determination of the components in multicomponent overlapping chromatograms.

    PubMed

    Shao, Xueguang; Yu, Zhengliang; Ma, Chaoxiong

    2004-06-01

    An improved method is proposed for the quantitative determination of multicomponent overlapping chromatograms based on a known transmutation method. To overcome the main limitation of the transmutation method caused by the oscillation generated in the transmutation process, two techniques--wavelet transform smoothing and the cubic spline interpolation for reducing data points--were adopted, and a new criterion was also developed. By using the proposed algorithm, the oscillation can be suppressed effectively, and quantitative determination of the components in both the simulated and experimental overlapping chromatograms is successfully obtained.

  11. Alternative evaluation of innovations’ effectiveness in mechanical engineering

    NASA Astrophysics Data System (ADS)

    Puryaev, A. S.

    2017-09-01

    The aim of present work is approbation of the developed technique for assessing innovations’ effectiveness. We demonstrate an alternative assessment of innovations’ effectiveness (innovation projects) in mechanical engineering on illustrative example. It is proposed as an alternative to the traditional method technique based on the value concept and the method of “Cash flow”.

  12. An Ensemble Successive Project Algorithm for Liquor Detection Using Near Infrared Sensor.

    PubMed

    Qu, Fangfang; Ren, Dong; Wang, Jihua; Zhang, Zhong; Lu, Na; Meng, Lei

    2016-01-11

    Spectral analysis technique based on near infrared (NIR) sensor is a powerful tool for complex information processing and high precision recognition, and it has been widely applied to quality analysis and online inspection of agricultural products. This paper proposes a new method to address the instability of small sample sizes in the successive projections algorithm (SPA) as well as the lack of association between selected variables and the analyte. The proposed method is an evaluated bootstrap ensemble SPA method (EBSPA) based on a variable evaluation index (EI) for variable selection, and is applied to the quantitative prediction of alcohol concentrations in liquor using NIR sensor. In the experiment, the proposed EBSPA with three kinds of modeling methods are established to test their performance. In addition, the proposed EBSPA combined with partial least square is compared with other state-of-the-art variable selection methods. The results show that the proposed method can solve the defects of SPA and it has the best generalization performance and stability. Furthermore, the physical meaning of the selected variables from the near infrared sensor data is clear, which can effectively reduce the variables and improve their prediction accuracy.

  13. Rolling bearing fault diagnosis and health assessment using EEMD and the adjustment Mahalanobis-Taguchi system

    NASA Astrophysics Data System (ADS)

    Chen, Junxun; Cheng, Longsheng; Yu, Hui; Hu, Shaolin

    2018-01-01

    ABSTRACTSFor the timely identification of the potential faults of a rolling bearing and to observe its health condition intuitively and accurately, a novel fault diagnosis and health assessment model for a rolling bearing based on the ensemble empirical mode decomposition (EEMD) method and the adjustment Mahalanobis-Taguchi system (AMTS) method is proposed. The specific steps are as follows: First, the vibration signal of a rolling bearing is decomposed by EEMD, and the extracted features are used as the input vectors of AMTS. Then, the AMTS method, which is designed to overcome the shortcomings of the traditional Mahalanobis-Taguchi system and to extract the key features, is proposed for fault diagnosis. Finally, a type of HI concept is proposed according to the results of the fault diagnosis to accomplish the health assessment of a bearing in its life cycle. To validate the superiority of the developed method proposed approach, it is compared with other recent method and proposed methodology is successfully validated on a vibration data-set acquired from seeded defects and from an accelerated life test. The results show that this method represents the actual situation well and is able to accurately and effectively identify the fault type.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27489729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27489729"><span>Optimal PMU placement using topology transformation method in power systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rahman, Nadia H A; Zobaa, Ahmed F</p> <p>2016-09-01</p> <p>Optimal phasor measurement units (PMUs) placement involves the process of minimizing the number of PMUs needed while ensuring the entire power system completely observable. A power system is identified observable when the voltages of all buses in the power system are known. This paper proposes selection rules for topology transformation method that involves a merging process of zero-injection bus with one of its neighbors. The result from the merging process is influenced by the selection of bus selected to merge with the zero-injection bus. The proposed method will determine the best candidate bus to merge with zero-injection bus according to the three rules created in order to determine the minimum number of PMUs required for full observability of the power system. In addition, this paper also considered the case of power flow measurements. The problem is formulated as integer linear programming (ILP). The simulation for the proposed method is tested by using MATLAB for different IEEE bus systems. The explanation of the proposed method is demonstrated by using IEEE 14-bus system. The results obtained in this paper proved the effectiveness of the proposed method since the number of PMUs obtained is comparable with other available techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5428623','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5428623"><span>Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wen, Tingxi; Zhang, Zhongnan</p> <p>2017-01-01</p> <p>Abstract In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy. PMID:28489789</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4020552','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4020552"><span>The Analysis of Surface EMG Signals with the Wavelet-Based Correlation Dimension Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Yanyan; Wang, Jue</p> <p>2014-01-01</p> <p>Many attempts have been made to effectively improve a prosthetic system controlled by the classification of surface electromyographic (SEMG) signals. Recently, the development of methodologies to extract the effective features still remains a primary challenge. Previous studies have demonstrated that the SEMG signals have nonlinear characteristics. In this study, by combining the nonlinear time series analysis and the time-frequency domain methods, we proposed the wavelet-based correlation dimension method to extract the effective features of SEMG signals. The SEMG signals were firstly analyzed by the wavelet transform and the correlation dimension was calculated to obtain the features of the SEMG signals. Then, these features were used as the input vectors of a Gustafson-Kessel clustering classifier to discriminate four types of forearm movements. Our results showed that there are four separate clusters corresponding to different forearm movements at the third resolution level and the resulting classification accuracy was 100%, when two channels of SEMG signals were used. This indicates that the proposed approach can provide important insight into the nonlinear characteristics and the time-frequency domain features of SEMG signals and is suitable for classifying different types of forearm movements. By comparing with other existing methods, the proposed method exhibited more robustness and higher classification accuracy. PMID:24868240</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28489789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28489789"><span>Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wen, Tingxi; Zhang, Zhongnan</p> <p>2017-05-01</p> <p>In this paper, genetic algorithm-based frequency-domain feature search (GAFDS) method is proposed for the electroencephalogram (EEG) analysis of epilepsy. In this method, frequency-domain features are first searched and then combined with nonlinear features. Subsequently, these features are selected and optimized to classify EEG signals. The extracted features are analyzed experimentally. The features extracted by GAFDS show remarkable independence, and they are superior to the nonlinear features in terms of the ratio of interclass distance and intraclass distance. Moreover, the proposed feature search method can search for features of instantaneous frequency in a signal after Hilbert transformation. The classification results achieved using these features are reasonable; thus, GAFDS exhibits good extensibility. Multiple classical classifiers (i.e., k-nearest neighbor, linear discriminant analysis, decision tree, AdaBoost, multilayer perceptron, and Naïve Bayes) achieve satisfactory classification accuracies by using the features generated by the GAFDS method and the optimized feature selection. The accuracies for 2-classification and 3-classification problems may reach up to 99% and 97%, respectively. Results of several cross-validation experiments illustrate that GAFDS is effective in the extraction of effective features for EEG classification. Therefore, the proposed feature selection and optimization model can improve classification accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MeScT..26a5007Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MeScT..26a5007Z"><span>Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin</p> <p>2015-01-01</p> <p>Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28090134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28090134"><span>Outcome-Dependent Sampling Design and Inference for Cox's Proportional Hazards Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Jichang; Liu, Yanyan; Cai, Jianwen; Sandler, Dale P; Zhou, Haibo</p> <p>2016-11-01</p> <p>We propose a cost-effective outcome-dependent sampling design for the failure time data and develop an efficient inference procedure for data collected with this design. To account for the biased sampling scheme, we derive estimators from a weighted partial likelihood estimating equation. The proposed estimators for regression parameters are shown to be consistent and asymptotically normally distributed. A criteria that can be used to optimally implement the ODS design in practice is proposed and studied. The small sample performance of the proposed method is evaluated by simulation studies. The proposed design and inference procedure is shown to be statistically more powerful than existing alternative designs with the same sample sizes. We illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality of Uranium Miners Study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..231a2065S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..231a2065S"><span>Research on Centralized Voltage and Effective Inequality Identification Based on Circuit Analysis Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Yi; Wang, Feifeng; Lu, Yufeng; Huang, Huimin; Xia, Xiaofei</p> <p>2017-09-01</p> <p>This paper is based on affine function equation of the grid and OPF problem, discusses the equivalent of some inequality constraints variables optimizing. Further, we propose the model of injection current and set up the constraint sensitivity index of affine characteristics. The index can be used to identify the central point voltage and effective inequality of the system automatically. And then we can know how to compensate reactive power of the corresponding generator node and control the voltage to ensure the quality of the system voltage. When checking the effective inequalities we introduce cross-solving method of power flow. This provide a different idea for solving the power flow. The paper uses the results of the IEEE5 node examples to illustrate the validity and practicality of the proposed method.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4851053','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4851053"><span>Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing</p> <p>2016-01-01</p> <p>In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method. PMID:27089345</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010fgcn.conf..180K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010fgcn.conf..180K"><span>3D Sound Techniques for Sound Source Elevation in a Loudspeaker Listening Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Yong Guk; Jo, Sungdong; Kim, Hong Kook; Jang, Sei-Jin; Lee, Seok-Pil</p> <p></p> <p>In this paper, we propose several 3D sound techniques for sound source elevation in stereo loudspeaker listening environments. The proposed method integrates a head-related transfer function (HRTF) for sound positioning and early reflection for adding reverberant circumstance. In addition, spectral notch filtering and directional band boosting techniques are also included for increasing elevation perception capability. In order to evaluate the elevation performance of the proposed method, subjective listening tests are conducted using several kinds of sound sources such as white noise, sound effects, speech, and music samples. It is shown from the tests that the degrees of perceived elevation by the proposed method are around the 17º to 21º when the stereo loudspeakers are located on the horizontal plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..301a2083Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..301a2083Z"><span>Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing</p> <p>2018-01-01</p> <p>In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1896f0001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1896f0001A"><span>A method of measuring the effective thermal conductivity of thermoplastic foams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asséko, André Chateau Akué; Cosson, Benoit; Chaki, Salim; Duborper, Clément; Lacrampe, Marie-France; Krawczak, Patricia</p> <p>2017-10-01</p> <p>An inverse method for determining the in-plane effective thermal conductivity of porous thermoplastics was implemented by coupling infrared thermography experiments and numerical solution of heat transfer in straight fins having temperature-dependent convective heat transfer coefficient. The obtained effective thermal conductivity values were compared with previous results obtained using a numerical solution based on periodic homogenization techniques (NSHT) in which the microstructure heterogeneity of extruded polymeric polyethylene (PE) foam in which pores are filled with air with different levels of open and closed porosity was taken into account and Transient Plane Source Technique (TPS) in order to verify the accuracy of the proposed method. The new method proposed in the present study is in good agreement with both NSHT and TPS. It is also applicable to structural materials such as composites, e.g. unidirectional fiber-reinforced plastics, where heat transfer is very different according to the fiber direction (parallel or transverse to the fibers).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1870d0077E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1870d0077E"><span>Effective quadrature formula in solving linear integro-differential equations of order two</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.</p> <p>2017-08-01</p> <p>In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89f3103L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89f3103L"><span>A method to eliminate the influence of incident light variations in spectral analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Yongshun; Li, Gang; Fu, Zhigang; Guan, Yang; Zhang, Shengzhao; Lin, Ling</p> <p>2018-06-01</p> <p>The intensity of the light source and consistency of the spectrum are the most important factors influencing the accuracy in quantitative spectrometric analysis. An efficient "measuring in layer" method was proposed in this paper to limit the influence of inconsistencies in the intensity and spectrum of the light source. In order to verify the effectiveness of this method, a light source with a variable intensity and spectrum was designed according to Planck's law and Wien's displacement law. Intra-lipid samples with 12 different concentrations were prepared and divided into modeling sets and prediction sets according to different incident lights and solution concentrations. The spectra of each sample were measured with five different light intensities. The experimental results showed that the proposed method was effective in eliminating the influence caused by incident light changes and was more effective than normalized processing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AcSpA..72..327A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AcSpA..72..327A"><span>A kinetic method for the determination of thiourea by its catalytic effect in micellar media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbasi, Shahryar; Khani, Hossein; Gholivand, Mohammad Bagher; Naghipour, Ali; Farmany, Abbas; Abbasi, Freshteh</p> <p>2009-03-01</p> <p>A highly sensitive, selective and simple kinetic method was developed for the determination of trace levels of thiourea based on its catalytic effect on the oxidation of janus green in phosphoric acid media and presence of Triton X-100 surfactant without any separation and pre-concentration steps. The reaction was monitored spectrophotometrically by tracing the formation of the green-colored oxidized product of janus green at 617 nm within 15 min of mixing the reagents. The effect of some factors on the reaction speed was investigated. Following the recommended procedure, thiourea could be determined with linear calibration graph in 0.03-10.00 μg/ml range. The detection limit of the proposed method is 0.02 μg/ml. Most of foreign species do not interfere with the determination. The high sensitivity and selectivity of the proposed method allowed its successful application to fruit juice and industrial waste water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29528650','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29528650"><span>Reproducing Quantum Probability Distributions at the Speed of Classical Dynamics: A New Approach for Developing Force-Field Functors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sundar, Vikram; Gelbwaser-Klimovsky, David; Aspuru-Guzik, Alán</p> <p>2018-04-05</p> <p>Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MeScT..29e5004L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MeScT..29e5004L"><span>Tilt measurement using inclinometer based on redundant configuration of MEMS accelerometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Jiazhen; Liu, Xuecong; Zhang, Hao</p> <p>2018-05-01</p> <p>Inclinometers are widely used in tilt measurement and their required accuracy is becoming ever higher. Most existing methods can effectively work only when the tilt is less than 60°, and the accuracy still can be improved. A redundant configuration of micro-electro mechanical system accelerometers is proposed in this paper and a least squares method and data processing normalization are used. A rigorous mathematical derivation is given. Simulation and experiment are used to verify its feasibility. The results of a Monte Carlo simulation, repeated 3000 times, and turntable reference experiments have shown that the tilt measure range can be expanded to 0°–90° by this method and that the measurement accuracy of θ can be improved by more than 10 times and the measurement accuracy of γ can be also improved effectively. The proposed method is proved to be effective and significant in practical application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23729942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23729942"><span>Empirical Likelihood-Based Estimation of the Treatment Effect in a Pretest-Posttest Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A</p> <p>2008-09-01</p> <p>The pretest-posttest study design is commonly used in medical and social science research to assess the effect of a treatment or an intervention. Recently, interest has been rising in developing inference procedures that improve efficiency while relaxing assumptions used in the pretest-posttest data analysis, especially when the posttest measurement might be missing. In this article we propose a semiparametric estimation procedure based on empirical likelihood (EL) that incorporates the common baseline covariate information to improve efficiency. The proposed method also yields an asymptotically unbiased estimate of the response distribution. Thus functions of the response distribution, such as the median, can be estimated straightforwardly, and the EL method can provide a more appealing estimate of the treatment effect for skewed data. We show that, compared with existing methods, the proposed EL estimator has appealing theoretical properties, especially when the working model for the underlying relationship between the pretest and posttest measurements is misspecified. A series of simulation studies demonstrates that the EL-based estimator outperforms its competitors when the working model is misspecified and the data are missing at random. We illustrate the methods by analyzing data from an AIDS clinical trial (ACTG 175).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3666595','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3666595"><span>Empirical Likelihood-Based Estimation of the Treatment Effect in a Pretest–Posttest Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.</p> <p>2013-01-01</p> <p>The pretest–posttest study design is commonly used in medical and social science research to assess the effect of a treatment or an intervention. Recently, interest has been rising in developing inference procedures that improve efficiency while relaxing assumptions used in the pretest–posttest data analysis, especially when the posttest measurement might be missing. In this article we propose a semiparametric estimation procedure based on empirical likelihood (EL) that incorporates the common baseline covariate information to improve efficiency. The proposed method also yields an asymptotically unbiased estimate of the response distribution. Thus functions of the response distribution, such as the median, can be estimated straightforwardly, and the EL method can provide a more appealing estimate of the treatment effect for skewed data. We show that, compared with existing methods, the proposed EL estimator has appealing theoretical properties, especially when the working model for the underlying relationship between the pretest and posttest measurements is misspecified. A series of simulation studies demonstrates that the EL-based estimator outperforms its competitors when the working model is misspecified and the data are missing at random. We illustrate the methods by analyzing data from an AIDS clinical trial (ACTG 175). PMID:23729942</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23757566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23757566"><span>Fuzzy neural network technique for system state forecasting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Dezhi; Wang, Wilson; Ismail, Fathy</p> <p>2013-10-01</p> <p>In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29124781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29124781"><span>Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B</p> <p>2018-06-01</p> <p>To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5283674','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5283674"><span>A New Variational Approach for Multiplicative Noise and Blur Removal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad; Sun, HongGuang</p> <p>2017-01-01</p> <p>This paper proposes a new variational model for joint multiplicative denoising and deblurring. It combines a total generalized variation filter (which has been proved to be able to reduce the blocky-effects by being aware of high-order smoothness) and shearlet transform (that effectively preserves anisotropic image features such as sharp edges, curves and so on). The new model takes the advantage of both regularizers since it is able to minimize the staircase effects while preserving sharp edges, textures and other fine image details. The existence and uniqueness of a solution to the proposed variational model is also discussed. The resulting energy functional is then solved by using alternating direction method of multipliers. Numerical experiments showing that the proposed model achieves satisfactory restoration results, both visually and quantitatively in handling the blur (motion, Gaussian, disk, and Moffat) and multiplicative noise (Gaussian, Gamma, or Rayleigh) reduction. A comparison with other recent methods in this field is provided as well. The proposed model can also be applied for restoring both single and multi-channel images contaminated with multiplicative noise, and permit cross-channel blurs when the underlying image has more than one channel. Numerical tests on color images are conducted to demonstrate the effectiveness of the proposed model. PMID:28141802</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24323067','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24323067"><span>Local linear estimation of concordance probability with application to covariate effects models on association for bivariate failure-time data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Aidong Adam; Hsieh, Jin-Jian; Wang, Weijing</p> <p>2015-01-01</p> <p>Bivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5354361','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5354361"><span>A semiparametric graphical modelling approach for large-scale equity selection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Han; Mulvey, John; Zhao, Tianqi</p> <p>2016-01-01</p> <p>We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption. PMID:28316507</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..559..461B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..559..461B"><span>Construction of prediction intervals for Palmer Drought Severity Index using bootstrap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beyaztas, Ufuk; Bickici Arikan, Bugrayhan; Beyaztas, Beste Hamiye; Kahya, Ercan</p> <p>2018-04-01</p> <p>In this study, we propose an approach based on the residual-based bootstrap method to obtain valid prediction intervals using monthly, short-term (three-months) and mid-term (six-months) drought observations. The effects of North Atlantic and Arctic Oscillation indexes on the constructed prediction intervals are also examined. Performance of the proposed approach is evaluated for the Palmer Drought Severity Index (PDSI) obtained from Konya closed basin located in Central Anatolia, Turkey. The finite sample properties of the proposed method are further illustrated by an extensive simulation study. Our results revealed that the proposed approach is capable of producing valid prediction intervals for future PDSI values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24782344','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24782344"><span>A new proportion measure of the treatment effect captured by candidate surrogate endpoints.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kobayashi, Fumiaki; Kuroki, Manabu</p> <p>2014-08-30</p> <p>The use of surrogate endpoints is expected to play an important role in the development of new drugs, as they can be used to reduce the sample size and/or duration of randomized clinical trials. Biostatistical researchers and practitioners have proposed various surrogacy measures; however, (i) most of these surrogacy measures often fall outside the range [0,1] without any assumptions, (ii) these surrogacy measures do not provide a cut-off value for judging a surrogacy level of candidate surrogate endpoints, and (iii) most surrogacy measures are highly variable; thus, the confidence intervals are often unacceptably wide. In order to solve problems (i) and (ii), we propose a new surrogacy measure, a proportion of the treatment effect captured by candidate surrogate endpoints (PCS), on the basis of the decomposition of the treatment effect into parts captured and non-captured by the candidate surrogate endpoints. In order to solve problem (iii), we propose an estimation method based on the half-range mode method with the bootstrap distribution of the estimated surrogacy measures. Finally, through numerical experiments and two empirical examples, we show that the PCS with the proposed estimation method overcomes these difficulties. The results of this paper contribute to the reliable evaluation of how much of the treatment effect is captured by candidate surrogate endpoints. Copyright © 2014 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JIEIB..98..171C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JIEIB..98..171C"><span>Analyzing the Effect of Multi-fuel and Practical Constraints on Realistic Economic Load Dispatch using Novel Two-stage PSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chintalapudi, V. S.; Sirigiri, Sivanagaraju</p> <p>2017-04-01</p> <p>In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSSP...98...16Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSSP...98...16Z"><span>Instantaneous speed jitter detection via encoder signal and its application for the diagnosis of planetary gearbox</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Ming; Jia, Xiaodong; Lin, Jing; Lei, Yaguo; Lee, Jay</p> <p>2018-01-01</p> <p>In modern rotating machinery, rotary encoders have been widely used for the purpose of positioning and dynamic control. The study in this paper indicates that, the encoder signal, after proper processing, can be also effectively used for the health monitoring of rotating machines. In this work, a Kurtosis-guided local polynomial differentiator (KLPD) is proposed to estimate the instantaneous angular speed (IAS) of rotating machines based on the encoder signal. Compared with the central difference method, the KLPD is more robust to noise and it is able to precisely capture the weak speed jitters introduced by mechanical defects. The fault diagnosis of planetary gearbox has proven to be a challenging issue in both industry and academia. Based on the proposed KLPD, a systematic method for the fault diagnosis of planetary gearbox is proposed. In this method, residual time synchronous time averaging (RTSA) is first employed to remove the operation-related IAS components that come from normal gear meshing and non-stationary load variations, KLPD is then utilized to detect and enhance the speed jitter from the IAS residual in a data-driven manner. The effectiveness of proposed method has been validated by both simulated data and experimental data. The results demonstrate that the proposed KLPD-RTSA could not only detect fault signatures but also identify defective components, thus providing a promising tool for the health monitoring of planetary gearbox.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcMSn.tmp..129Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcMSn.tmp..129Z"><span>A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Y.; Chen, J.</p> <p>2017-09-01</p> <p>A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JSV...370..394Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JSV...370..394Z"><span>EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Žvokelj, Matej; Zupan, Samo; Prebil, Ivan</p> <p>2016-05-01</p> <p>A novel multivariate and multiscale statistical process monitoring method is proposed with the aim of detecting incipient failures in large slewing bearings, where subjective influence plays a minor role. The proposed method integrates the strengths of the Independent Component Analysis (ICA) multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD), which adaptively decomposes signals into different time scales and can thus cope with multiscale system dynamics. The method, which was named EEMD-based multiscale ICA (EEMD-MSICA), not only enables bearing fault detection but also offers a mechanism of multivariate signal denoising and, in combination with the Envelope Analysis (EA), a diagnostic tool. The multiscale nature of the proposed approach makes the method convenient to cope with data which emanate from bearings in complex real-world rotating machinery and frequently represent the cumulative effect of many underlying phenomena occupying different regions in the time-frequency plane. The efficiency of the proposed method was tested on simulated as well as real vibration and Acoustic Emission (AE) signals obtained through conducting an accelerated run-to-failure lifetime experiment on a purpose-built laboratory slewing bearing test stand. The ability to detect and locate the early-stage rolling-sliding contact fatigue failure of the bearing indicates that AE and vibration signals carry sufficient information on the bearing condition and that the developed EEMD-MSICA method is able to effectively extract it, thereby representing a reliable bearing fault detection and diagnosis strategy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29162898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29162898"><span>Equivalent model optimization with cyclic correction approximation method considering parasitic effect for thermoelectric coolers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Ning; Chen, Jiajun; Zhang, Kun; Chen, Mingming; Jia, Hongzhi</p> <p>2017-11-21</p> <p>As thermoelectric coolers (TECs) have become highly integrated in high-heat-flux chips and high-power devices, the parasitic effect between component layers has become increasingly obvious. In this paper, a cyclic correction method for the TEC model is proposed using the equivalent parameters of the proposed simplified model, which were refined from the intrinsic parameters and parasitic thermal conductance. The results show that the simplified model agrees well with the data of a commercial TEC under different heat loads. Furthermore, the temperature difference of the simplified model is closer to the experimental data than the conventional model and the model containing parasitic thermal conductance at large heat loads. The average errors in the temperature difference between the proposed simplified model and the experimental data are no more than 1.6 K, and the error is only 0.13 K when the absorbed heat power Q c is equal to 80% of the maximum achievable absorbed heat power Q max . The proposed method and model provide a more accurate solution for integrated TECs that are small in size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26405958','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26405958"><span>An effective fuzzy kernel clustering analysis approach for gene expression data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao</p> <p>2015-01-01</p> <p>Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22392331-sensing-fluid-viscoelasticity-from-piezoelectric-actuation-cantilever-flexural-vibration','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22392331-sensing-fluid-viscoelasticity-from-piezoelectric-actuation-cantilever-flexural-vibration"><span>Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon</p> <p>2015-01-15</p> <p>An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of variousmore » non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26999140','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26999140"><span>Road-Aided Ground Slowly Moving Target 2D Motion Estimation for Single-Channel Synthetic Aperture Radar.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian</p> <p>2016-03-16</p> <p>To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10621E..0YG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10621E..0YG"><span>Glue detection based on teaching points constraint and tracking model of pixel convolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geng, Lei; Ma, Xiao; Xiao, Zhitao; Wang, Wen</p> <p>2018-01-01</p> <p>On-line glue detection based on machine version is significant for rust protection and strengthening in car production. Shadow stripes caused by reflect light and unevenness of inside front cover of car reduce the accuracy of glue detection. In this paper, we propose an effective algorithm to distinguish the edges of the glue and shadow stripes. Teaching points are utilized to calculate slope between the two adjacent points. Then a tracking model based on pixel convolution along motion direction is designed to segment several local rectangular regions using distance. The distance is the height of rectangular region. The pixel convolution along the motion direction is proposed to extract edges of gules in local rectangular region. A dataset with different illumination and complexity shape stripes are used to evaluate proposed method, which include 500 thousand images captured from the camera of glue gun machine. Experimental results demonstrate that the proposed method can detect the edges of glue accurately. The shadow stripes are distinguished and removed effectively. Our method achieves the 99.9% accuracies for the image dataset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NHESS..15..863L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NHESS..15..863L"><span>Group decision-making approach for flood vulnerability identification using the fuzzy VIKOR method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, G.; Jun, K. S.; Chung, E.-S.</p> <p>2015-04-01</p> <p>This study proposes an improved group decision making (GDM) framework that combines the VIKOR method with data fuzzification to quantify the spatial flood vulnerability including multiple criteria. In general, GDM method is an effective tool for formulating a compromise solution that involves various decision makers since various stakeholders may have different perspectives on their flood risk/vulnerability management responses. The GDM approach is designed to achieve consensus building that reflects the viewpoints of each participant. The fuzzy VIKOR method was developed to solve multi-criteria decision making (MCDM) problems with conflicting and noncommensurable criteria. This comprising method can be used to obtain a nearly ideal solution according to all established criteria. This approach effectively can propose some compromising decisions by combining the GDM method and fuzzy VIKOR method. The spatial flood vulnerability of the southern Han River using the GDM approach combined with the fuzzy VIKOR method was compared with the spatial flood vulnerability using general MCDM methods, such as the fuzzy TOPSIS and classical GDM methods (i.e., Borda, Condorcet, and Copeland). As a result, the proposed fuzzy GDM approach can reduce the uncertainty in the data confidence and weight derivation techniques. Thus, the combination of the GDM approach with the fuzzy VIKOR method can provide robust prioritization because it actively reflects the opinions of various groups and considers uncertainty in the input data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3913612','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3913612"><span>Study of Burn Scar Extraction Automatically Based on Level Set Method using Remote Sensing Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, Yang; Dai, Qin; Liu, JianBo; Liu, ShiBin; Yang, Jin</p> <p>2014-01-01</p> <p>Burn scar extraction using remote sensing data is an efficient way to precisely evaluate burn area and measure vegetation recovery. Traditional burn scar extraction methodologies have no well effect on burn scar image with blurred and irregular edges. To address these issues, this paper proposes an automatic method to extract burn scar based on Level Set Method (LSM). This method utilizes the advantages of the different features in remote sensing images, as well as considers the practical needs of extracting the burn scar rapidly and automatically. This approach integrates Change Vector Analysis (CVA), Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR) to obtain difference image and modifies conventional Level Set Method Chan-Vese (C-V) model with a new initial curve which results from a binary image applying K-means method on fitting errors of two near-infrared band images. Landsat 5 TM and Landsat 8 OLI data sets are used to validate the proposed method. Comparison with conventional C-V model, OSTU algorithm, Fuzzy C-mean (FCM) algorithm are made to show that the proposed approach can extract the outline curve of fire burn scar effectively and exactly. The method has higher extraction accuracy and less algorithm complexity than that of the conventional C-V model. PMID:24503563</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9684E..3IZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9684E..3IZ"><span>An adaptive block-based fusion method with LUE-SSIM for multi-focus images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Jianing; Guo, Yongcai; Huang, Yukun</p> <p>2016-09-01</p> <p>Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EJASP2012..212C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EJASP2012..212C"><span>Semiblind channel estimation for MIMO-OFDM systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yi-Sheng; Song, Jyu-Han</p> <p>2012-12-01</p> <p>This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7651E..1YX','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7651E..1YX"><span>A 3D model retrieval approach based on Bayesian networks lightfield descriptor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Qinhan; Li, Yanjun</p> <p>2009-12-01</p> <p>A new 3D model retrieval methodology is proposed by exploiting a novel Bayesian networks lightfield descriptor (BNLD). There are two key novelties in our approach: (1) a BN-based method for building lightfield descriptor; and (2) a 3D model retrieval scheme based on the proposed BNLD. To overcome the disadvantages of the existing 3D model retrieval methods, we explore BN for building a new lightfield descriptor. Firstly, 3D model is put into lightfield, about 300 binary-views can be obtained along a sphere, then Fourier descriptors and Zernike moments descriptors can be calculated out from binaryviews. Then shape feature sequence would be learned into a BN model based on BN learning algorithm; Secondly, we propose a new 3D model retrieval method by calculating Kullback-Leibler Divergence (KLD) between BNLDs. Beneficial from the statistical learning, our BNLD is noise robustness as compared to the existing methods. The comparison between our method and the lightfield descriptor-based approach is conducted to demonstrate the effectiveness of our proposed methodology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEI....26e1408N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEI....26e1408N"><span>Effective evaluation of privacy protection techniques in visible and thermal imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nawaz, Tahir; Berg, Amanda; Ferryman, James; Ahlberg, Jörgen; Felsberg, Michael</p> <p>2017-09-01</p> <p>Privacy protection may be defined as replacing the original content in an image region with a (less intrusive) content having modified target appearance information to make it less recognizable by applying a privacy protection technique. Indeed, the development of privacy protection techniques also needs to be complemented with an established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation methods rely on the use of subjective judgments or assume a specific target type in image data and use target detection and recognition accuracies to assess privacy protection. An annotation-free evaluation method that is neither subjective nor assumes a specific target type is proposed. It assesses two key aspects of privacy protection: "protection" and "utility." Protection is quantified as an appearance similarity, and utility is measured as a structural similarity between original and privacy-protected image regions. We performed an extensive experimentation using six challenging datasets (having 12 video sequences), including a new dataset (having six sequences) that contains visible and thermal imagery. The new dataset is made available online for the community. We demonstrate effectiveness of the proposed method by evaluating six image-based privacy protection techniques and also show comparisons of the proposed method over existing methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4158263','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4158263"><span>Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan</p> <p>2014-01-01</p> <p>Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W1...71Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W1...71Z"><span>Geometric Stitching Method for Double Cameras with Weak Convergence Geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, N.; He, H.; Bao, Y.; Yue, C.; Xing, K.; Cao, S.</p> <p>2017-05-01</p> <p>In this paper, a new geometric stitching method is proposed which utilizes digital elevation model (DEM)-aided block adjustment to solve relative orientation parameters for dual-camera with weak convergence geometry. A rational function model (RFM) with affine transformation is chosen as the relative orientation model. To deal with the weak geometry, a reference DEM is used in this method as an additional constraint in the block adjustment, which only calculates the planimetry coordinates of tie points (TPs). After that we can use the obtained affine transform coefficients to generate virtual grid, and update rational polynomial coefficients (RPCs) to complete the geometric stitching. Our proposed method was tested on GaoFen-2(GF-2) dual-camera panchromatic (PAN) images. The test results show that the proposed method can achieve an accuracy of better than 0.5 pixel in planimetry and have a seamless visual effect. For regions with small relief, when global DEM with 1 km grid, SRTM with 90 m grid and ASTER GDEM V2 with 30 m grid replaced DEM with 1m grid as elevation constraint it is almost no loss of accuracy. The test results proved the effectiveness and feasibility of the stitching method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...415...91X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...415...91X"><span>Effects of random tooth profile errors on the dynamic behaviors of planetary gears</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xun, Chao; Long, Xinhua; Hua, Hongxing</p> <p>2018-02-01</p> <p>In this paper, a nonlinear random model is built to describe the dynamics of planetary gear trains (PGTs), in which the time-varying mesh stiffness, tooth profile modification (TPM), tooth contact loss, and random tooth profile error are considered. A stochastic method based on the method of multiple scales (MMS) is extended to analyze the statistical property of the dynamic performance of PGTs. By the proposed multiple-scales based stochastic method, the distributions of the dynamic transmission errors (DTEs) are investigated, and the lower and upper bounds are determined based on the 3σ principle. Monte Carlo method is employed to verify the proposed method. Results indicate that the proposed method can be used to determine the distribution of the DTE of PGTs high efficiently and allow a link between the manufacturing precision and the dynamical response. In addition, the effects of tooth profile modification on the distributions of vibration amplitudes and the probability of tooth contact loss with different manufacturing tooth profile errors are studied. The results show that the manufacturing precision affects the distribution of dynamic transmission errors dramatically and appropriate TPMs are helpful to decrease the nominal value and the deviation of the vibration amplitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ChJME..28..173J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ChJME..28..173J"><span>New knowledge network evaluation method for design rationale management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jing, Shikai; Zhan, Hongfei; Liu, Jihong; Wang, Kuan; Jiang, Hao; Zhou, Jingtao</p> <p>2015-01-01</p> <p>Current design rationale (DR) systems have not demonstrated the value of the approach in practice since little attention is put to the evaluation method of DR knowledge. To systematize knowledge management process for future computer-aided DR applications, a prerequisite is to provide the measure for the DR knowledge. In this paper, a new knowledge network evaluation method for DR management is presented. The method characterizes the DR knowledge value from four perspectives, namely, the design rationale structure scale, association knowledge and reasoning ability, degree of design justification support and degree of knowledge representation conciseness. The DR knowledge comprehensive value is also measured by the proposed method. To validate the proposed method, different style of DR knowledge network and the performance of the proposed measure are discussed. The evaluation method has been applied in two realistic design cases and compared with the structural measures. The research proposes the DR knowledge evaluation method which can provide object metric and selection basis for the DR knowledge reuse during the product design process. In addition, the method is proved to be more effective guidance and support for the application and management of DR knowledge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25608287','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25608287"><span>Efficient l1 -norm-based low-rank matrix approximations for large-scale problems using alternating rectified gradient method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Eunwoo; Lee, Minsik; Choi, Chong-Ho; Kwak, Nojun; Oh, Songhwai</p> <p>2015-02-01</p> <p>Low-rank matrix approximation plays an important role in the area of computer vision and image processing. Most of the conventional low-rank matrix approximation methods are based on the l2 -norm (Frobenius norm) with principal component analysis (PCA) being the most popular among them. However, this can give a poor approximation for data contaminated by outliers (including missing data), because the l2 -norm exaggerates the negative effect of outliers. Recently, to overcome this problem, various methods based on the l1 -norm, such as robust PCA methods, have been proposed for low-rank matrix approximation. Despite the robustness of the methods, they require heavy computational effort and substantial memory for high-dimensional data, which is impractical for real-world problems. In this paper, we propose two efficient low-rank factorization methods based on the l1 -norm that find proper projection and coefficient matrices using the alternating rectified gradient method. The proposed methods are applied to a number of low-rank matrix approximation problems to demonstrate their efficiency and robustness. The experimental results show that our proposals are efficient in both execution time and reconstruction performance unlike other state-of-the-art methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20804382','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20804382"><span>A novel recurrent neural network with finite-time convergence for linear programming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Qingshan; Cao, Jinde; Chen, Guanrong</p> <p>2010-11-01</p> <p>In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23471814','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23471814"><span>Profile local linear estimation of generalized semiparametric regression model for longitudinal data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Yanqing; Sun, Liuquan; Zhou, Jie</p> <p>2013-07-01</p> <p>This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018APhy...64...83E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018APhy...64...83E"><span>Minimal Polynomial Method for Estimating Parameters of Signals Received by an Antenna Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ermolaev, V. T.; Flaksman, A. G.; Elokhin, A. V.; Kuptsov, V. V.</p> <p>2018-01-01</p> <p>The effectiveness of the projection minimal polynomial method for solving the problem of determining the number of sources of signals acting on an antenna array (AA) with an arbitrary configuration and their angular directions has been studied. The method proposes estimating the degree of the minimal polynomial of the correlation matrix (CM) of the input process in the AA on the basis of a statistically validated root-mean-square criterion. Special attention is paid to the case of the ultrashort sample of the input process when the number of samples is considerably smaller than the number of AA elements, which is important for multielement AAs. It is shown that the proposed method is more effective in this case than methods based on the AIC (Akaike's Information Criterion) or minimum description length (MDL) criterion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OptEn..53j2102Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OptEn..53j2102Z"><span>Fractional domain varying-order differential denoising method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yan-Shan; Zhang, Feng; Li, Bing-Zhao; Tao, Ran</p> <p>2014-10-01</p> <p>Removal of noise is an important step in the image restoration process, and it remains a challenging problem in image processing. Denoising is a process used to remove the noise from the corrupted image, while retaining the edges and other detailed features as much as possible. Recently, denoising in the fractional domain is a hot research topic. The fractional-order anisotropic diffusion method can bring a less blocky effect and preserve edges in image denoising, a method that has received much interest in the literature. Based on this method, we propose a new method for image denoising, in which fractional-varying-order differential, rather than constant-order differential, is used. The theoretical analysis and experimental results show that compared with the state-of-the-art fractional-order anisotropic diffusion method, the proposed fractional-varying-order differential denoising model can preserve structure and texture well, while quickly removing noise, and yields good visual effects and better peak signal-to-noise ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAG...107...25Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAG...107...25Z"><span>Time-frequency domain SNR estimation and its application in seismic data processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Yan; Liu, Yang; Li, Xuxuan; Jiang, Nansen</p> <p>2014-08-01</p> <p>Based on an approach estimating frequency domain signal-to-noise ratio (FSNR), we propose a method to evaluate time-frequency domain signal-to-noise ratio (TFSNR). This method adopts short-time Fourier transform (STFT) to estimate instantaneous power spectrum of signal and noise, and thus uses their ratio to compute TFSNR. Unlike FSNR describing the variation of SNR with frequency only, TFSNR depicts the variation of SNR with time and frequency, and thus better handles non-stationary seismic data. By considering TFSNR, we develop methods to improve the effects of inverse Q filtering and high frequency noise attenuation in seismic data processing. Inverse Q filtering considering TFSNR can better solve the problem of amplitude amplification of noise. The high frequency noise attenuation method considering TFSNR, different from other de-noising methods, distinguishes and suppresses noise using an explicit criterion. Examples of synthetic and real seismic data illustrate the correctness and effectiveness of the proposed methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28463337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28463337"><span>Conjugate gradient method for phase retrieval based on the Wirtinger derivative.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong</p> <p>2017-05-01</p> <p>A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780016256&hterms=rate+interest&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drate%2Binterest','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780016256&hterms=rate+interest&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drate%2Binterest"><span>The role of interest and inflation rates in life-cycle cost analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eisenberger, I.; Remer, D. S.; Lorden, G.</p> <p>1978-01-01</p> <p>The effect of projected interest and inflation rates on life cycle cost calculations is discussed and a method is proposed for making such calculations which replaces these rates by a single parameter. Besides simplifying the analysis, the method clarifies the roles of these rates. An analysis of historical interest and inflation rates from 1950 to 1976 shows that the proposed method can be expected to yield very good projections of life cycle cost even if the rates themselves fluctuate considerably.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22471987-alternative-method-evaluating-pair-energy-nucleons-nuclei','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22471987-alternative-method-evaluating-pair-energy-nucleons-nuclei"><span>Alternative method for evaluating the pair energy of nucleons in nuclei</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nurmukhamedov, A. M., E-mail: fattah52@mail.ru</p> <p>2015-12-15</p> <p>An alternative method for determining the odd–even effect parameter related to special features of the Casimir operator in Wigner’s mass formula for nuclei is proposed. A procedure for calculating this parameter is presented. The proposed method relies on a geometric interpretation of the Casimir operator, experimental data concerning the contribution of spin–orbit interaction to the nuclear mass for even–even and odd–odd nuclei, and systematics of energy gaps in the spectra of excited states of even–even nuclei.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EJASP2012..157M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EJASP2012..157M"><span>Significance of parametric spectral ratio methods in detection and recognition of whispered speech</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mathur, Arpit; Reddy, Shankar M.; Hegde, Rajesh M.</p> <p>2012-12-01</p> <p>In this article the significance of a new parametric spectral ratio method that can be used to detect whispered speech segments within normally phonated speech is described. Adaptation methods based on the maximum likelihood linear regression (MLLR) are then used to realize a mismatched train-test style speech recognition system. This proposed parametric spectral ratio method computes a ratio spectrum of the linear prediction (LP) and the minimum variance distortion-less response (MVDR) methods. The smoothed ratio spectrum is then used to detect whispered segments of speech within neutral speech segments effectively. The proposed LP-MVDR ratio method exhibits robustness at different SNRs as indicated by the whisper diarization experiments conducted on the CHAINS and the cell phone whispered speech corpus. The proposed method also performs reasonably better than the conventional methods for whisper detection. In order to integrate the proposed whisper detection method into a conventional speech recognition engine with minimal changes, adaptation methods based on the MLLR are used herein. The hidden Markov models corresponding to neutral mode speech are adapted to the whispered mode speech data in the whispered regions as detected by the proposed ratio method. The performance of this method is first evaluated on whispered speech data from the CHAINS corpus. The second set of experiments are conducted on the cell phone corpus of whispered speech. This corpus is collected using a set up that is used commercially for handling public transactions. The proposed whisper speech recognition system exhibits reasonably better performance when compared to several conventional methods. The results shown indicate the possibility of a whispered speech recognition system for cell phone based transactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006OExpr..14.1755S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006OExpr..14.1755S"><span>Experimental evaluation of fingerprint verification system based on double random phase encoding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, Hiroyuki; Yamaguchi, Masahiro; Yachida, Masuyoshi; Ohyama, Nagaaki; Tashima, Hideaki; Obi, Takashi</p> <p>2006-03-01</p> <p>We proposed a smart card holder authentication system that combines fingerprint verification with PIN verification by applying a double random phase encoding scheme. In this system, the probability of accurate verification of an authorized individual reduces when the fingerprint is shifted significantly. In this paper, a review of the proposed system is presented and preprocessing for improving the false rejection rate is proposed. In the proposed method, the position difference between two fingerprint images is estimated by using an optimized template for core detection. When the estimated difference exceeds the permissible level, the user inputs the fingerprint again. The effectiveness of the proposed method is confirmed by a computational experiment; its results show that the false rejection rate is improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyA..468..398Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyA..468..398Y"><span>Financial time series analysis based on effective phase transfer entropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Pengbo; Shang, Pengjian; Lin, Aijing</p> <p>2017-02-01</p> <p>Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27933728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27933728"><span>Sequential change detection and monitoring of temporal trends in random-effects meta-analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dogo, Samson Henry; Clark, Allan; Kulinskaya, Elena</p> <p>2017-06-01</p> <p>Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted based on the time it was conducted. The difficulties of sequential meta-analysis under the random-effects model are caused by dependencies in increments introduced by the estimation of the heterogeneity parameter τ 2 . In this paper, we propose the use of a retrospective cumulative sum (CUSUM)-type test with bootstrap critical values. This method allows retrospective analysis of the past trajectory of cumulative effects in random-effects meta-analysis and its visualization on a chart similar to CUSUM chart. Simulation results show that the new method demonstrates good control of Type I error regardless of the number or size of the studies and the amount of heterogeneity. Application of the new method is illustrated on two examples of medical meta-analyses. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. © 2016 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27751865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27751865"><span>A mixed methods approach to assess animal vaccination programmes: The case of rabies control in Bamako, Mali.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mosimann, Laura; Traoré, Abdallah; Mauti, Stephanie; Léchenne, Monique; Obrist, Brigit; Véron, René; Hattendorf, Jan; Zinsstag, Jakob</p> <p>2017-01-01</p> <p>In the framework of the research network on integrated control of zoonoses in Africa (ICONZ) a dog rabies mass vaccination campaign was carried out in two communes of Bamako (Mali) in September 2014. A mixed method approach, combining quantitative and qualitative tools, was developed to evaluate the effectiveness of the intervention towards optimization for future scale-up. Actions to control rabies occur on one level in households when individuals take the decision to vaccinate their dogs. However, control also depends on provision of vaccination services and community participation at the intermediate level of social resilience. Mixed methods seem necessary as the problem-driven transdisciplinary project includes epidemiological components in addition to social dynamics and cultural, political and institutional issues. Adapting earlier effectiveness models for health intervention to rabies control, we propose a mixed method assessment of individual effectiveness parameters like availability, affordability, accessibility, adequacy or acceptability. Triangulation of quantitative methods (household survey, empirical coverage estimation and spatial analysis) with qualitative findings (participant observation, focus group discussions) facilitate a better understanding of the weight of each effectiveness determinant, and the underlying reasons embedded in the local understandings, cultural practices, and social and political realities of the setting. Using this method, a final effectiveness of 33% for commune Five and 28% for commune Six was estimated, with vaccination coverage of 27% and 20%, respectively. Availability was identified as the most sensitive effectiveness parameter, attributed to lack of information about the campaign. We propose a mixed methods approach to optimize intervention design, using an "intervention effectiveness optimization cycle" with the aim of maximizing effectiveness. Empirical vaccination coverage estimation is compared to the effectiveness model with its determinants. In addition, qualitative data provide an explanatory framework for deeper insight, validation and interpretation of results which should improve the intervention design while involving all stakeholders and increasing community participation. This work contributes vital information for the optimization and scale-up of future vaccination campaigns in Bamako, Mali. The proposed mixed method, although incompletely applied in this case study, should be applicable to similar rabies interventions targeting elimination in other settings. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466550','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466550"><span>Use HypE to Hide Association Rules by Adding Items</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cheng, Peng; Lin, Chun-Wei; Pan, Jeng-Shyang</p> <p>2015-01-01</p> <p>During business collaboration, partners may benefit through sharing data. People may use data mining tools to discover useful relationships from shared data. However, some relationships are sensitive to the data owners and they hope to conceal them before sharing. In this paper, we address this problem in forms of association rule hiding. A hiding method based on evolutionary multi-objective optimization (EMO) is proposed, which performs the hiding task by selectively inserting items into the database to decrease the confidence of sensitive rules below specified thresholds. The side effects generated during the hiding process are taken as optimization goals to be minimized. HypE, a recently proposed EMO algorithm, is utilized to identify promising transactions for modification to minimize side effects. Results on real datasets demonstrate that the proposed method can effectively perform sanitization with fewer damages to the non-sensitive knowledge in most cases. PMID:26070130</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5876795','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5876795"><span>Underwater Turbulence Detection Using Gated Wavefront Sensing Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bi, Ying; Xu, Xiping; Chow, Eddy Mun Tik</p> <p>2018-01-01</p> <p>Laser sensing has been applied in various underwater applications, ranging from underwater detection to laser underwater communications. However, there are several great challenges when profiling underwater turbulence effects. Underwater detection is greatly affected by the turbulence effect, where the acquired image suffers excessive noise, blurring, and deformation. In this paper, we propose a novel underwater turbulence detection method based on a gated wavefront sensing technique. First, we elaborate on the operating principle of gated wavefront sensing and wavefront reconstruction. We then setup an experimental system in order to validate the feasibility of our proposed method. The effect of underwater turbulence on detection is examined at different distances, and under different turbulence levels. The experimental results obtained from our gated wavefront sensing system indicate that underwater turbulence can be detected and analyzed. The proposed gated wavefront sensing system has the advantage of a simple structure and high detection efficiency for underwater environments. PMID:29518889</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10609E..0EL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10609E..0EL"><span>Dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Li</p> <p>2018-03-01</p> <p>In order to extract target from complex background more quickly and accurately, and to further improve the detection effect of defects, a method of dual-threshold segmentation using Arimoto entropy based on chaotic bee colony optimization was proposed. Firstly, the method of single-threshold selection based on Arimoto entropy was extended to dual-threshold selection in order to separate the target from the background more accurately. Then intermediate variables in formulae of Arimoto entropy dual-threshold selection was calculated by recursion to eliminate redundant computation effectively and to reduce the amount of calculation. Finally, the local search phase of artificial bee colony algorithm was improved by chaotic sequence based on tent mapping. The fast search for two optimal thresholds was achieved using the improved bee colony optimization algorithm, thus the search could be accelerated obviously. A large number of experimental results show that, compared with the existing segmentation methods such as multi-threshold segmentation method using maximum Shannon entropy, two-dimensional Shannon entropy segmentation method, two-dimensional Tsallis gray entropy segmentation method and multi-threshold segmentation method using reciprocal gray entropy, the proposed method can segment target more quickly and accurately with superior segmentation effect. It proves to be an instant and effective method for image segmentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17535469','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17535469"><span>Message framing with respect to decisions about vaccination: the roles of frame valence, frame method and perceived risk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ferguson, Eamonn; Gallagher, Laura</p> <p>2007-11-01</p> <p>People respond differently when information is framed either positively or negatively (frame valence). Two prominent models propose that the effects of valence are moderated by (1) the method of framing (attributes vs. goals: Levin, Schneider, & Gaeth, 1998) and (2) perceived risk (Rothman & Salovey, 1997). This experiment (N=200) explores the joint influence of both of these moderators with respect to decisions about a flu vaccination. The study extends previous work by integrating these two models and exploring the moderating effects of two different aspects of perceived risk (personal outcome effectiveness and procedural risk). The results show that personal outcome effectiveness indirectly links frames to intentions. Procedural risk moderates the relationship between valence and method in a manner consistent with predictions from Levin et al.. Partial support for the model proposed by Rothman and Salovey are observed for goal frames only.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28813871','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28813871"><span>Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping</p> <p>2017-07-01</p> <p>Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive rehabilitation training in restoring motor skills after a stroke. This study focuses on the rehabilitation of fine hand motion skills due to their vital role in performing delicate activities of daily living (ADL) tasks. The proposed rehabilitation system combines an adaptive assist-as-needed (AAN) control algorithm and a Virtual Reality (VR) based rehabilitation gaming system (RGS). The developed system is described and its effectiveness is validated through clinical trials on a group of eight subacute stroke patients for a period of six weeks. The impact of the training is verified through standard clinical evaluation methods and measuring key kinematic parameters. A comparison of the pre- and post-training results indicates that the method proposed in this study can improve fine hand motion rehabilitation training effectiveness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApGeo..13..267J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApGeo..13..267J"><span>Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li</p> <p>2016-06-01</p> <p>Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24014201','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24014201"><span>Feature Grouping and Selection Over an Undirected Graph.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Sen; Yuan, Lei; Lai, Ying-Cheng; Shen, Xiaotong; Wonka, Peter; Ye, Jieping</p> <p>2012-01-01</p> <p>High-dimensional regression/classification continues to be an important and challenging problem, especially when features are highly correlated. Feature selection, combined with additional structure information on the features has been considered to be promising in promoting regression/classification performance. Graph-guided fused lasso (GFlasso) has recently been proposed to facilitate feature selection and graph structure exploitation, when features exhibit certain graph structures. However, the formulation in GFlasso relies on pairwise sample correlations to perform feature grouping, which could introduce additional estimation bias. In this paper, we propose three new feature grouping and selection methods to resolve this issue. The first method employs a convex function to penalize the pairwise l ∞ norm of connected regression/classification coefficients, achieving simultaneous feature grouping and selection. The second method improves the first one by utilizing a non-convex function to reduce the estimation bias. The third one is the extension of the second method using a truncated l 1 regularization to further reduce the estimation bias. The proposed methods combine feature grouping and feature selection to enhance estimation accuracy. We employ the alternating direction method of multipliers (ADMM) and difference of convex functions (DC) programming to solve the proposed formulations. Our experimental results on synthetic data and two real datasets demonstrate the effectiveness of the proposed methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EntIS..12..155S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EntIS..12..155S"><span>An effective framework for finding similar cases of dengue from audio and text data using domain thesaurus and case base reasoning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sandhu, Rajinder; Kaur, Jaspreet; Thapar, Vivek</p> <p>2018-02-01</p> <p>Dengue, also known as break-bone fever, is a tropical disease transmitted by mosquitoes. If the similarity between dengue infected users can be identified, it can help government's health agencies to manage the outbreak more effectively. To find similarity between cases affected by Dengue, user's personal and health information are the two fundamental requirements. Identification of similar symptoms, causes, effects, predictions and treatment procedures, is important. In this paper, an effective framework is proposed which finds similar patients suffering from dengue using keyword aware domain thesaurus and case base reasoning method. This paper focuses on the use of ontology dependent domain thesaurus technique to extract relevant keywords and then build cases with the help of case base reasoning method. Similar cases can be shared with users, nearby hospitals and health organizations to manage the problem more adequately. Two million case bases were generated to test the proposed similarity method. Experimental evaluations of proposed framework resulted in high accuracy and low error rate for finding similar cases of dengue as compared to UPCC and IPCC algorithms. The framework developed in this paper is for dengue but can easily be extended to other domains also.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25702248','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25702248"><span>Multimodal manifold-regularized transfer learning for MCI conversion prediction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Bo; Liu, Mingxia; Suk, Heung-Il; Shen, Dinggang; Zhang, Daoqiang</p> <p>2015-12-01</p> <p>As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PASA...33...58Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PASA...33...58Z"><span>A Novel Sky-Subtraction Method Based on Non-negative Matrix Factorisation with Sparsity for Multi-object Fibre Spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Bo; Zhang, Long; Ye, Zhongfu</p> <p>2016-12-01</p> <p>A novel sky-subtraction method based on non-negative matrix factorisation with sparsity is proposed in this paper. The proposed non-negative matrix factorisation with sparsity method is redesigned for sky-subtraction considering the characteristics of the skylights. It has two constraint terms, one for sparsity and the other for homogeneity. Different from the standard sky-subtraction techniques, such as the B-spline curve fitting methods and the Principal Components Analysis approaches, sky-subtraction based on non-negative matrix factorisation with sparsity method has higher accuracy and flexibility. The non-negative matrix factorisation with sparsity method has research value for the sky-subtraction on multi-object fibre spectroscopic telescope surveys. To demonstrate the effectiveness and superiority of the proposed algorithm, experiments are performed on Large Sky Area Multi-Object Fiber Spectroscopic Telescope data, as the mechanisms of the multi-object fibre spectroscopic telescopes are similar.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...419..140B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...419..140B"><span>An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping</p> <p>2018-04-01</p> <p>An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1004a2022Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1004a2022Z"><span>Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue</p> <p>2018-04-01</p> <p>The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26650958','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26650958"><span>Skew-t partially linear mixed-effects models for AIDS clinical studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Tao</p> <p>2016-01-01</p> <p>We propose partially linear mixed-effects models with asymmetry and missingness to investigate the relationship between two biomarkers in clinical studies. The proposed models take into account irregular time effects commonly observed in clinical studies under a semiparametric model framework. In addition, commonly assumed symmetric distributions for model errors are substituted by asymmetric distribution to account for skewness. Further, informative missing data mechanism is accounted for. A Bayesian approach is developed to perform parameter estimation simultaneously. The proposed model and method are applied to an AIDS dataset and comparisons with alternative models are performed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28895905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28895905"><span>Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Xinyang; Jiang, Wen</p> <p>2017-09-12</p> <p>Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5621019','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5621019"><span>Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Deng, Xinyang</p> <p>2017-01-01</p> <p>Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model. PMID:28895905</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23960787','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23960787"><span>Portable system of programmable syringe pump with potentiometer for determination of promethazine in pharmaceutical applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saleh, Tawfik A; Abulkibash, A M; Ibrahim, Atta E</p> <p>2012-04-01</p> <p>A simple and fast-automated method was developed and validated for the assay of promethazine hydrochloride in pharmaceutical formulations, based on the oxidation of promethazine by cerium in an acidic medium. A portable system, consisting of a programmable syringe pump connected to a potentiometer, was constructed. The developed change in potential during promethazine oxidation was monitored. The related optimum working conditions, such as supporting electrolyte concentration, cerium(IV) concentration and flow rate were optimized. The proposed method was successfully applied to pharmaceutical samples as well as synthetic ones. The obtained results were realized by the official British pharmacopoeia (BP) method and comparable results were obtained. The obtained t-value indicates no significant differences between the results of the proposed and BP methods, with the advantages of the proposed method being simple, sensitive and cost effective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27869669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27869669"><span>Compressed Symmetric Nested Arrays and Their Application for Direction-of-Arrival Estimation of Near-Field Sources.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Shuang; Xie, Dongfeng</p> <p>2016-11-17</p> <p>In this paper, a new sensor array geometry, called a compressed symmetric nested array (CSNA), is designed to increase the degrees of freedom in the near field. As its name suggests, a CSNA is constructed by getting rid of some elements from two identical nested arrays. The closed form expressions are also presented for the sensor locations and the largest degrees of freedom obtainable as a function of the total number of sensors. Furthermore, a novel DOA estimation method is proposed by utilizing the CSNA in the near field. By employing this new array geometry, our method can identify more sources than sensors. Compared with other existing methods, the proposed method achieves higher resolution because of increased array aperture. Simulation results are demonstrated to verify the effectiveness of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29041054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29041054"><span>Failure prediction using machine learning and time series in optical network.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zhilong; Zhang, Min; Wang, Danshi; Song, Chuang; Liu, Min; Li, Jin; Lou, Liqi; Liu, Zhuo</p> <p>2017-08-07</p> <p>In this paper, we propose a performance monitoring and failure prediction method in optical networks based on machine learning. The primary algorithms of this method are the support vector machine (SVM) and double exponential smoothing (DES). With a focus on risk-aware models in optical networks, the proposed protection plan primarily investigates how to predict the risk of an equipment failure. To the best of our knowledge, this important problem has not yet been fully considered. Experimental results showed that the average prediction accuracy of our method was 95% when predicting the optical equipment failure state. This finding means that our method can forecast an equipment failure risk with high accuracy. Therefore, our proposed DES-SVM method can effectively improve traditional risk-aware models to protect services from possible failures and enhance the optical network stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10609E..19J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10609E..19J"><span>Smoke regions extraction based on two steps segmentation and motion detection in early fire</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jian, Wenlin; Wu, Kaizhi; Yu, Zirong; Chen, Lijuan</p> <p>2018-03-01</p> <p>Aiming at the early problems of video-based smoke detection in fire video, this paper proposes a method to extract smoke suspected regions by combining two steps segmentation and motion characteristics. Early smoldering smoke can be seen as gray or gray-white regions. In the first stage, regions of interests (ROIs) with smoke are obtained by using two step segmentation methods. Then, suspected smoke regions are detected by combining the two step segmentation and motion detection. Finally, morphological processing is used for smoke regions extracting. The Otsu algorithm is used as segmentation method and the ViBe algorithm is used to detect the motion of smoke. The proposed method was tested on 6 test videos with smoke. The experimental results show the effectiveness of our proposed method over visual observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24110976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24110976"><span>A modified anomaly detection method for capsule endoscopy images using non-linear color conversion and Higher-order Local Auto-Correlation (HLAC).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Erzhong; Nosato, Hirokazu; Sakanashi, Hidenori; Murakawa, Masahiro</p> <p>2013-01-01</p> <p>Capsule endoscopy is a patient-friendly endoscopy broadly utilized in gastrointestinal examination. However, the efficacy of diagnosis is restricted by the large quantity of images. This paper presents a modified anomaly detection method, by which both known and unknown anomalies in capsule endoscopy images of small intestine are expected to be detected. To achieve this goal, this paper introduces feature extraction using a non-linear color conversion and Higher-order Local Auto Correlation (HLAC) Features, and makes use of image partition and subspace method for anomaly detection. Experiments are implemented among several major anomalies with combinations of proposed techniques. As the result, the proposed method achieved 91.7% and 100% detection accuracy for swelling and bleeding respectively, so that the effectiveness of proposed method is demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EnOp...49.1166A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EnOp...49.1166A"><span>A seismic optimization procedure for reinforced concrete framed buildings based on eigenfrequency optimization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arroyo, Orlando; Gutiérrez, Sergio</p> <p>2017-07-01</p> <p>Several seismic optimization methods have been proposed to improve the performance of reinforced concrete framed (RCF) buildings; however, they have not been widely adopted among practising engineers because they require complex nonlinear models and are computationally expensive. This article presents a procedure to improve the seismic performance of RCF buildings based on eigenfrequency optimization, which is effective, simple to implement and efficient. The method is used to optimize a 10-storey regular building, and its effectiveness is demonstrated by nonlinear time history analyses, which show important reductions in storey drifts and lateral displacements compared to a non-optimized building. A second example for an irregular six-storey building demonstrates that the method provides benefits to a wide range of RCF structures and supports the applicability of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Rosenberg+AND+self-esteem&pg=5&id=EJ733824','ERIC'); return false;" href="https://eric.ed.gov/?q=Rosenberg+AND+self-esteem&pg=5&id=EJ733824"><span>Correlates of the Rosenberg Self-Esteem Scale Method Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Quilty, Lena C.; Oakman, Jonathan M.; Risko, Evan</p> <p>2006-01-01</p> <p>Investigators of personality assessment are becoming aware that using positively and negatively worded items in questionnaires to prevent acquiescence may negatively impact construct validity. The Rosenberg Self-Esteem Scale (RSES) has demonstrated a bifactorial structure typically proposed to result from these method effects. Recent work suggests…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NewA...62...26K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NewA...62...26K"><span>Effects of mass variation on structures of differentially rotating polytropic stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan</p> <p>2018-07-01</p> <p>A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29907300','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29907300"><span>A new solar power output prediction based on hybrid forecast engine and decomposition model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando</p> <p>2018-06-12</p> <p>Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=item+AND+response+AND+theory&pg=6&id=EJ951717','ERIC'); return false;" href="https://eric.ed.gov/?q=item+AND+response+AND+theory&pg=6&id=EJ951717"><span>A Bifactor Multidimensional Item Response Theory Model for Differential Item Functioning Analysis on Testlet-Based Items</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Fukuhara, Hirotaka; Kamata, Akihito</p> <p>2011-01-01</p> <p>A differential item functioning (DIF) detection method for testlet-based data was proposed and evaluated in this study. The proposed DIF model is an extension of a bifactor multidimensional item response theory (MIRT) model for testlets. Unlike traditional item response theory (IRT) DIF models, the proposed model takes testlet effects into…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=salton&pg=4&id=EJ314053','ERIC'); return false;" href="https://eric.ed.gov/?q=salton&pg=4&id=EJ314053"><span>A Comparison of Two Methods for Boolean Query Relevancy Feedback.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Salton, G.; And Others</p> <p>1984-01-01</p> <p>Evaluates and compares two recently proposed automatic methods for relevance feedback of Boolean queries (Dillon method, which uses probabilistic approach as basis, and disjunctive normal form method). Conclusions are drawn concerning the use of effective feedback methods in a Boolean query environment. Nineteen references are included. (EJS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RScI...87l3109B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RScI...87l3109B"><span>Development of a piecewise linear omnidirectional 3D image registration method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo</p> <p>2016-12-01</p> <p>This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1391735-optimal-placement-dynamic-var-sources-using-empirical-controllability-covariance','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1391735-optimal-placement-dynamic-var-sources-using-empirical-controllability-covariance"><span>Optimal Placement of Dynamic Var Sources by Using Empirical Controllability Covariance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qi, Junjian; Huang, Weihong; Sun, Kai</p> <p></p> <p>In this paper, the empirical controllability covariance (ECC), which is calculated around the considered operating condition of a power system, is applied to quantify the degree of controllability of system voltages under specific dynamic var source locations. An optimal dynamic var source placement method addressing fault-induced delayed voltage recovery (FIDVR) issues is further formulated as an optimization problem that maximizes the determinant of ECC. The optimization problem is effectively solved by the NOMAD solver, which implements the mesh adaptive direct search algorithm. The proposed method is tested on an NPCC 140-bus system and the results show that the proposed methodmore » with fault specified ECC can solve the FIDVR issue caused by the most severe contingency with fewer dynamic var sources than the voltage sensitivity index (VSI)-based method. The proposed method with fault unspecified ECC does not depend on the settings of the contingency and can address more FIDVR issues than the VSI method when placing the same number of SVCs under different fault durations. It is also shown that the proposed method can help mitigate voltage collapse.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ITEIS.127..874I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ITEIS.127..874I"><span>EEG Characteristic Extraction Method of Listening Music and Objective Estimation Method Based on Latency Structure Model in Individual Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ito, Shin-Ichi; Mitsukura, Yasue; Nakamura Miyamura, Hiroko; Saito, Takafumi; Fukumi, Minoru</p> <p></p> <p>EEG is characterized by the unique and individual characteristics. Little research has been done to take into account the individual characteristics when analyzing EEG signals. Often the EEG has frequency components which can describe most of the significant characteristics. Then there is the difference of importance between the analyzed frequency components of the EEG. We think that the importance difference shows the individual characteristics. In this paper, we propose a new EEG extraction method of characteristic vector by a latency structure model in individual characteristics (LSMIC). The LSMIC is the latency structure model, which has personal error as the individual characteristics, based on normal distribution. The real-coded genetic algorithms (RGA) are used for specifying the personal error that is unknown parameter. Moreover we propose an objective estimation method that plots the EEG characteristic vector on a visualization space. Finally, the performance of the proposed method is evaluated using a realistic simulation and applied to a real EEG data. The result of our experiment shows the effectiveness of the proposed method.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>