Sample records for proposed method expressed

  1. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.

    PubMed

    Yu, Fang; Chen, Ming-Hui; Kuo, Lynn; Talbott, Heather; Davis, John S

    2015-08-07

    Recently, the Bayesian method becomes more popular for analyzing high dimensional gene expression data as it allows us to borrow information across different genes and provides powerful estimators for evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting differentially expressed (DE) genes based on the Bayesian estimators. In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387-404), we propose two new gene selection algorithms for general Bayesian models and name these new methods as the confident difference criterion methods. One is based on the standardized differences between two mean expression values among genes; the other adds the differences between two variances to it. The proposed confident difference criterion methods first evaluate the posterior probability of a gene having different gene expressions between competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F, Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:783-802) is established under the normal-normal-model with equal variances between two samples. The empirical performance of the proposed methods is examined and compared to those of several existing methods via several simulations. The results from these simulation studies show that the proposed confident difference criterion methods outperform the existing methods when comparing gene expressions across different conditions for both microarray studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed methodology. In the real data application, the confident difference criterion methods successfully identified more clinically important DE genes than the other methods. The confident difference criterion method proposed in this paper provides a new efficient approach for both microarray studies and sequence-based high-throughput studies to identify differentially expressed genes.

  2. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns

    PubMed Central

    Mollah, Mohammad Manir Hossain; Jamal, Rahman; Mokhtar, Norfilza Mohd; Harun, Roslan; Mollah, Md. Nurul Haque

    2015-01-01

    Background Identifying genes that are differentially expressed (DE) between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA), are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression. Results The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0) to outlying expressions and larger weights (≤ 1) to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA. Conclusion Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed) perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large-sample cases in the presence of more than 50% outlying genes. The proposed method also exhibited better performance than the other methods for m > 2 conditions with multiple patterns of expression, where the BetaEB was not extended for this condition. Therefore, the proposed approach would be more suitable and reliable on average for the identification of DE genes between two or more conditions with multiple patterns of expression. PMID:26413858

  3. Method for Expressing Public Opinions Concerning the Introduction of an Emerging Technology to Society

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoshi; Ito, Kyoko; Ohnishi, Satoshi; Nishida, Shogo

    Emerging technology may have considerable social impact. Because emerging technology has not yet been introduced in society, it is needed general public express its opinions on emerging technology. It is important that expressing opinion must have social spirit. A method to limit facility of the Internet and activate social spirit is proposed. Evaluation experiment were conducted to test the effectiveness of the proposed method, and the participant could express opinion with social spirit.

  4. Analyzing gene expression time-courses based on multi-resolution shape mixture model.

    PubMed

    Li, Ying; He, Ye; Zhang, Yu

    2016-11-01

    Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data.

    PubMed

    Huynh-Thu, Vân Anh; Geurts, Pierre

    2018-02-21

    The elucidation of gene regulatory networks is one of the major challenges of systems biology. Measurements about genes that are exploited by network inference methods are typically available either in the form of steady-state expression vectors or time series expression data. In our previous work, we proposed the GENIE3 method that exploits variable importance scores derived from Random forests to identify the regulators of each target gene. This method provided state-of-the-art performance on several benchmark datasets, but it could however not specifically be applied to time series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 (dynGENIE3), for handling both time series and steady-state expression data. The proposed method is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression datasets. Although dynGENIE3 does not systematically yield the best performance on each and every network, it is competitive with diverse methods from the literature, while preserving the main advantages of GENIE3 in terms of scalability.

  6. Dynamic facial expression recognition based on geometric and texture features

    NASA Astrophysics Data System (ADS)

    Li, Ming; Wang, Zengfu

    2018-04-01

    Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.

  7. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    PubMed

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  8. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression

    PubMed Central

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors. PMID:29091919

  9. A New Method of Facial Expression Recognition Based on SPE Plus SVM

    NASA Astrophysics Data System (ADS)

    Ying, Zilu; Huang, Mingwei; Wang, Zhen; Wang, Zhewei

    A novel method of facial expression recognition (FER) is presented, which uses stochastic proximity embedding (SPE) for data dimension reduction, and support vector machine (SVM) for expression classification. The proposed algorithm is applied to Japanese Female Facial Expression (JAFFE) database for FER, better performance is obtained compared with some traditional algorithms, such as PCA and LDA etc.. The result have further proved the effectiveness of the proposed algorithm.

  10. Domain Regeneration for Cross-Database Micro-Expression Recognition

    NASA Astrophysics Data System (ADS)

    Zong, Yuan; Zheng, Wenming; Huang, Xiaohua; Shi, Jingang; Cui, Zhen; Zhao, Guoying

    2018-05-01

    In this paper, we investigate the cross-database micro-expression recognition problem, where the training and testing samples are from two different micro-expression databases. Under this setting, the training and testing samples would have different feature distributions and hence the performance of most existing micro-expression recognition methods may decrease greatly. To solve this problem, we propose a simple yet effective method called Target Sample Re-Generator (TSRG) in this paper. By using TSRG, we are able to re-generate the samples from target micro-expression database and the re-generated target samples would share same or similar feature distributions with the original source samples. For this reason, we can then use the classifier learned based on the labeled source samples to accurately predict the micro-expression categories of the unlabeled target samples. To evaluate the performance of the proposed TSRG method, extensive cross-database micro-expression recognition experiments designed based on SMIC and CASME II databases are conducted. Compared with recent state-of-the-art cross-database emotion recognition methods, the proposed TSRG achieves more promising results.

  11. Partitioning of functional gene expression data using principal points.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2017-10-12

    DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene function over a period of time. Temporal gene expression curves can be treated as functional data since they are considered as independent realizations of a stochastic process. This process requires appropriate models to identify patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients for individual expression profiles based on the orthonormal basis system. A principal points based functional partitioning method is proposed for time-course gene expression data. The method explores the relationship between genes using Legendre coefficients as principal points to extract the features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions found in budding yeast data and Escherichia coli data. The proposed method benefitted from the use of principal points, dimension reduction, and choice of orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed method is able to identify highly connected genes and to explore the complex dynamics of biological systems in functional genomics.

  12. System for face recognition under expression variations of neutral-sampled individuals using recognized expression warping and a virtual expression-face database

    NASA Astrophysics Data System (ADS)

    Petpairote, Chayanut; Madarasmi, Suthep; Chamnongthai, Kosin

    2018-01-01

    The practical identification of individuals using facial recognition techniques requires the matching of faces with specific expressions to faces from a neutral face database. A method for facial recognition under varied expressions against neutral face samples of individuals via recognition of expression warping and the use of a virtual expression-face database is proposed. In this method, facial expressions are recognized and the input expression faces are classified into facial expression groups. To aid facial recognition, the virtual expression-face database is sorted into average facial-expression shapes and by coarse- and fine-featured facial textures. Wrinkle information is also employed in classification by using a process of masking to adjust input faces to match the expression-face database. We evaluate the performance of the proposed method using the CMU multi-PIE, Cohn-Kanade, and AR expression-face databases, and we find that it provides significantly improved results in terms of face recognition accuracy compared to conventional methods and is acceptable for facial recognition under expression variation.

  13. Integration Method of Emphatic Motions and Adverbial Expressions with Scalar Parameters for Robotic Motion Coaching System

    NASA Astrophysics Data System (ADS)

    Okuno, Keisuke; Inamura, Tetsunari

    A robotic coaching system can improve humans' learning performance of motions by intelligent usage of emphatic motions and adverbial expressions according to user reactions. In robotics, however, method to control both the motions and the expressions and how to bind them had not been adequately discussed from an engineering point of view. In this paper, we propose a method for controlling and binding emphatic motions and adverbial expressions by using two scalar parameters in a phase space. In the phase space, variety of motion patterns and verbal expressions are connected and can be expressed as static points. We show the feasibility of the proposing method through experiments of actual sport coaching tasks for beginners. From the results of participants' improvements in motion learning, we confirmed the feasibility of the methods to control and bind emphatic motions and adverbial expressions, as well as confirmed contribution of the emphatic motions and positive correlation of adverbial expressions for participants' improvements in motion learning. Based on the results, we introduce a hypothesis that individually optimized method for binding adverbial expression is required.

  14. Facial expression recognition based on weber local descriptor and sparse representation

    NASA Astrophysics Data System (ADS)

    Ouyang, Yan

    2018-03-01

    Automatic facial expression recognition has been one of the research hotspots in the area of computer vision for nearly ten years. During the decade, many state-of-the-art methods have been proposed which perform very high accurate rate based on the face images without any interference. Nowadays, many researchers begin to challenge the task of classifying the facial expression images with corruptions and occlusions and the Sparse Representation based Classification framework has been wildly used because it can robust to the corruptions and occlusions. Therefore, this paper proposed a novel facial expression recognition method based on Weber local descriptor (WLD) and Sparse representation. The method includes three parts: firstly the face images are divided into many local patches, and then the WLD histograms of each patch are extracted, finally all the WLD histograms features are composed into a vector and combined with SRC to classify the facial expressions. The experiment results on the Cohn-Kanade database show that the proposed method is robust to occlusions and corruptions.

  15. A Natural Language Interface Concordant with a Knowledge Base.

    PubMed

    Han, Yong-Jin; Park, Seong-Bae; Park, Se-Young

    2016-01-01

    The discordance between expressions interpretable by a natural language interface (NLI) system and those answerable by a knowledge base is a critical problem in the field of NLIs. In order to solve this discordance problem, this paper proposes a method to translate natural language questions into formal queries that can be generated from a graph-based knowledge base. The proposed method considers a subgraph of a knowledge base as a formal query. Thus, all formal queries corresponding to a concept or a predicate in the knowledge base can be generated prior to query time and all possible natural language expressions corresponding to each formal query can also be collected in advance. A natural language expression has a one-to-one mapping with a formal query. Hence, a natural language question is translated into a formal query by matching the question with the most appropriate natural language expression. If the confidence of this matching is not sufficiently high the proposed method rejects the question and does not answer it. Multipredicate queries are processed by regarding them as a set of collected expressions. The experimental results show that the proposed method thoroughly handles answerable questions from the knowledge base and rejects unanswerable ones effectively.

  16. UNCLES: method for the identification of genes differentially consistently co-expressed in a specific subset of datasets.

    PubMed

    Abu-Jamous, Basel; Fa, Rui; Roberts, David J; Nandi, Asoke K

    2015-06-04

    Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few previously unknown genes in those focused clusters are drawn. The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach will have wide application for the comprehensive analysis of genomic and other sources of multiple complex biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future functional studies.

  17. An effective fuzzy kernel clustering analysis approach for gene expression data.

    PubMed

    Sun, Lin; Xu, Jiucheng; Yin, Jiaojiao

    2015-01-01

    Fuzzy clustering is an important tool for analyzing microarray data. A major problem in applying fuzzy clustering method to microarray gene expression data is the choice of parameters with cluster number and centers. This paper proposes a new approach to fuzzy kernel clustering analysis (FKCA) that identifies desired cluster number and obtains more steady results for gene expression data. First of all, to optimize characteristic differences and estimate optimal cluster number, Gaussian kernel function is introduced to improve spectrum analysis method (SAM). By combining subtractive clustering with max-min distance mean, maximum distance method (MDM) is proposed to determine cluster centers. Then, the corresponding steps of improved SAM (ISAM) and MDM are given respectively, whose superiority and stability are illustrated through performing experimental comparisons on gene expression data. Finally, by introducing ISAM and MDM into FKCA, an effective improved FKCA algorithm is proposed. Experimental results from public gene expression data and UCI database show that the proposed algorithms are feasible for cluster analysis, and the clustering accuracy is higher than the other related clustering algorithms.

  18. Analysis of high-throughput biological data using their rank values.

    PubMed

    Dembélé, Doulaye

    2018-01-01

    High-throughput biological technologies are routinely used to generate gene expression profiling or cytogenetics data. To achieve high performance, methods available in the literature become more specialized and often require high computational resources. Here, we propose a new versatile method based on the data-ordering rank values. We use linear algebra, the Perron-Frobenius theorem and also extend a method presented earlier for searching differentially expressed genes for the detection of recurrent copy number aberration. A result derived from the proposed method is a one-sample Student's t-test based on rank values. The proposed method is to our knowledge the only that applies to gene expression profiling and to cytogenetics data sets. This new method is fast, deterministic, and requires a low computational load. Probabilities are associated with genes to allow a statistically significant subset selection in the data set. Stability scores are also introduced as quality parameters. The performance and comparative analyses were carried out using real data sets. The proposed method can be accessed through an R package available from the CRAN (Comprehensive R Archive Network) website: https://cran.r-project.org/web/packages/fcros .

  19. A robust two-way semi-linear model for normalization of cDNA microarray data

    PubMed Central

    Wang, Deli; Huang, Jian; Xie, Hehuang; Manzella, Liliana; Soares, Marcelo Bento

    2005-01-01

    Background Normalization is a basic step in microarray data analysis. A proper normalization procedure ensures that the intensity ratios provide meaningful measures of relative expression values. Methods We propose a robust semiparametric method in a two-way semi-linear model (TW-SLM) for normalization of cDNA microarray data. This method does not make the usual assumptions underlying some of the existing methods. For example, it does not assume that: (i) the percentage of differentially expressed genes is small; or (ii) the numbers of up- and down-regulated genes are about the same, as required in the LOWESS normalization method. We conduct simulation studies to evaluate the proposed method and use a real data set from a specially designed microarray experiment to compare the performance of the proposed method with that of the LOWESS normalization approach. Results The simulation results show that the proposed method performs better than the LOWESS normalization method in terms of mean square errors for estimated gene effects. The results of analysis of the real data set also show that the proposed method yields more consistent results between the direct and the indirect comparisons and also can detect more differentially expressed genes than the LOWESS method. Conclusions Our simulation studies and the real data example indicate that the proposed robust TW-SLM method works at least as well as the LOWESS method and works better when the underlying assumptions for the LOWESS method are not satisfied. Therefore, it is a powerful alternative to the existing normalization methods. PMID:15663789

  20. Support vector machine-based facial-expression recognition method combining shape and appearance

    NASA Astrophysics Data System (ADS)

    Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun

    2010-11-01

    Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.

  1. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes Using Gene Expression Heterogeneity.

    PubMed

    Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun

    2018-01-01

    When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.

  2. Dynamic association rules for gene expression data analysis.

    PubMed

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed DAR algorithm not only was able to identify a set of differentially expressed genes that largely agreed with that of other methods, but also provided an efficient and accurate way to find influential genes of a disease. In the paper, the well-established association rule mining technique from marketing has been successfully modified to determine the minimum support and minimum confidence based on the concept of confidence interval and hypothesis testing. It can be applied to gene expression data to mine significant association rules between gene regulation and phenotype. The proposed DAR algorithm provides an efficient way to find influential genes that underlie the phenotypic variance.

  3. Multi-layer sparse representation for weighted LBP-patches based facial expression recognition.

    PubMed

    Jia, Qi; Gao, Xinkai; Guo, He; Luo, Zhongxuan; Wang, Yi

    2015-03-19

    In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach.

  4. An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes

    PubMed Central

    2013-01-01

    Background Gene expression data could likely be a momentous help in the progress of proficient cancer diagnoses and classification platforms. Lately, many researchers analyze gene expression data using diverse computational intelligence methods, for selecting a small subset of informative genes from the data for cancer classification. Many computational methods face difficulties in selecting small subsets due to the small number of samples compared to the huge number of genes (high-dimension), irrelevant genes, and noisy genes. Methods We propose an enhanced binary particle swarm optimization to perform the selection of small subsets of informative genes which is significant for cancer classification. Particle speed, rule, and modified sigmoid function are introduced in this proposed method to increase the probability of the bits in a particle’s position to be zero. The method was empirically applied to a suite of ten well-known benchmark gene expression data sets. Results The performance of the proposed method proved to be superior to other previous related works, including the conventional version of binary particle swarm optimization (BPSO) in terms of classification accuracy and the number of selected genes. The proposed method also requires lower computational time compared to BPSO. PMID:23617960

  5. Low Cost Design of an Advanced Encryption Standard (AES) Processor Using a New Common-Subexpression-Elimination Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Chih; Hsiao, Shen-Fu

    In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.

  6. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.

    PubMed

    Liu, Xuejun; Shi, Xinxin; Chen, Chunlin; Zhang, Li

    2015-10-16

    The high-throughput sequencing technology, RNA-Seq, has been widely used to quantify gene and isoform expression in the study of transcriptome in recent years. Accurate expression measurement from the millions or billions of short generated reads is obstructed by difficulties. One is ambiguous mapping of reads to reference transcriptome caused by alternative splicing. This increases the uncertainty in estimating isoform expression. The other is non-uniformity of read distribution along the reference transcriptome due to positional, sequencing, mappability and other undiscovered sources of biases. This violates the uniform assumption of read distribution for many expression calculation approaches, such as the direct RPKM calculation and Poisson-based models. Many methods have been proposed to address these difficulties. Some approaches employ latent variable models to discover the underlying pattern of read sequencing. However, most of these methods make bias correction based on surrounding sequence contents and share the bias models by all genes. They therefore cannot estimate gene- and isoform-specific biases as revealed by recent studies. We propose a latent variable model, NLDMseq, to estimate gene and isoform expression. Our method adopts latent variables to model the unknown isoforms, from which reads originate, and the underlying percentage of multiple spliced variants. The isoform- and exon-specific read sequencing biases are modeled to account for the non-uniformity of read distribution, and are identified by utilizing the replicate information of multiple lanes of a single library run. We employ simulation and real data to verify the performance of our method in terms of accuracy in the calculation of gene and isoform expression. Results show that NLDMseq obtains competitive gene and isoform expression compared to popular alternatives. Finally, the proposed method is applied to the detection of differential expression (DE) to show its usefulness in the downstream analysis. The proposed NLDMseq method provides an approach to accurately estimate gene and isoform expression from RNA-Seq data by modeling the isoform- and exon-specific read sequencing biases. It makes use of a latent variable model to discover the hidden pattern of read sequencing. We have shown that it works well in both simulations and real datasets, and has competitive performance compared to popular methods. The method has been implemented as a freely available software which can be found at https://github.com/PUGEA/NLDMseq.

  7. An efficient method to identify differentially expressed genes in microarray experiments

    PubMed Central

    Qin, Huaizhen; Feng, Tao; Harding, Scott A.; Tsai, Chung-Jui; Zhang, Shuanglin

    2013-01-01

    Motivation Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss. Results We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes. Availability The C++ code to implement the proposed method is available upon request for academic use. PMID:18453554

  8. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.

    PubMed

    Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang

    2013-01-01

    One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.

  9. Ensuring critical event sequences in high consequence computer based systems as inspired by path expressions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidd, M.E.C.

    1997-02-01

    The goal of our work is to provide a high level of confidence that critical software driven event sequences are maintained in the face of hardware failures, malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. The methodology employed here is inspired by previous work in path expressions. This paper discusses the perceived problems, a brief overview of path expressions, the proposed methods, and a discussion of the differences between the proposed methods and traditional path expression usage and implementation.

  10. Verification and Optimal Control of Context-Sensitive Probabilistic Boolean Networks Using Model Checking and Polynomial Optimization

    PubMed Central

    Hiraishi, Kunihiko

    2014-01-01

    One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766

  11. SigEMD: A powerful method for differential gene expression analysis in single-cell RNA sequencing data.

    PubMed

    Wang, Tianyu; Nabavi, Sheida

    2018-04-24

    Differential gene expression analysis is one of the significant efforts in single cell RNA sequencing (scRNAseq) analysis to discover the specific changes in expression levels of individual cell types. Since scRNAseq exhibits multimodality, large amounts of zero counts, and sparsity, it is different from the traditional bulk RNA sequencing (RNAseq) data. The new challenges of scRNAseq data promote the development of new methods for identifying differentially expressed (DE) genes. In this study, we proposed a new method, SigEMD, that combines a data imputation approach, a logistic regression model and a nonparametric method based on the Earth Mover's Distance, to precisely and efficiently identify DE genes in scRNAseq data. The regression model and data imputation are used to reduce the impact of large amounts of zero counts, and the nonparametric method is used to improve the sensitivity of detecting DE genes from multimodal scRNAseq data. By additionally employing gene interaction network information to adjust the final states of DE genes, we further reduce the false positives of calling DE genes. We used simulated datasets and real datasets to evaluate the detection accuracy of the proposed method and to compare its performance with those of other differential expression analysis methods. Results indicate that the proposed method has an overall powerful performance in terms of precision in detection, sensitivity, and specificity. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Automatic 2.5-D Facial Landmarking and Emotion Annotation for Social Interaction Assistance.

    PubMed

    Zhao, Xi; Zou, Jianhua; Li, Huibin; Dellandrea, Emmanuel; Kakadiaris, Ioannis A; Chen, Liming

    2016-09-01

    People with low vision, Alzheimer's disease, and autism spectrum disorder experience difficulties in perceiving or interpreting facial expression of emotion in their social lives. Though automatic facial expression recognition (FER) methods on 2-D videos have been extensively investigated, their performance was constrained by challenges in head pose and lighting conditions. The shape information in 3-D facial data can reduce or even overcome these challenges. However, high expenses of 3-D cameras prevent their widespread use. Fortunately, 2.5-D facial data from emerging portable RGB-D cameras provide a good balance for this dilemma. In this paper, we propose an automatic emotion annotation solution on 2.5-D facial data collected from RGB-D cameras. The solution consists of a facial landmarking method and a FER method. Specifically, we propose building a deformable partial face model and fit the model to a 2.5-D face for localizing facial landmarks automatically. In FER, a novel action unit (AU) space-based FER method has been proposed. Facial features are extracted using landmarks and further represented as coordinates in the AU space, which are classified into facial expressions. Evaluated on three publicly accessible facial databases, namely EURECOM, FRGC, and Bosphorus databases, the proposed facial landmarking and expression recognition methods have achieved satisfactory results. Possible real-world applications using our algorithms have also been discussed.

  13. A Novel Method to Predict Highly Expressed Genes Based on Radius Clustering and Relative Synonymous Codon Usage.

    PubMed

    Tran, Tuan-Anh; Vo, Nam Tri; Nguyen, Hoang Duc; Pham, Bao The

    2015-12-01

    Recombinant proteins play an important role in many aspects of life and have generated a huge income, notably in the industrial enzyme business. A gene is introduced into a vector and expressed in a host organism-for example, E. coli-to obtain a high productivity of target protein. However, transferred genes from particular organisms are not usually compatible with the host's expression system because of various reasons, for example, codon usage bias, GC content, repetitive sequences, and secondary structure. The solution is developing programs to optimize for designing a nucleotide sequence whose origin is from peptide sequences using properties of highly expressed genes (HEGs) of the host organism. Existing data of HEGs determined by practical and computer-based methods do not satisfy for qualifying and quantifying. Therefore, the demand for developing a new HEG prediction method is critical. We proposed a new method for predicting HEGs and criteria to evaluate gene optimization. Codon usage bias was weighted by amplifying the difference between HEGs and non-highly expressed genes (non-HEGs). The number of predicted HEGs is 5% of the genome. In comparison with Puigbò's method, the result is twice as good as Puigbò's one, in kernel ratio and kernel sensitivity. Concerning transcription/translation factor proteins (TF), the proposed method gives low TF sensitivity, while Puigbò's method gives moderate one. In summary, the results indicated that the proposed method can be a good optional applying method to predict optimized genes for particular organisms, and we generated an HEG database for further researches in gene design.

  14. Simulated maximum likelihood method for estimating kinetic rates in gene expression.

    PubMed

    Tian, Tianhai; Xu, Songlin; Gao, Junbin; Burrage, Kevin

    2007-01-01

    Kinetic rate in gene expression is a key measurement of the stability of gene products and gives important information for the reconstruction of genetic regulatory networks. Recent developments in experimental technologies have made it possible to measure the numbers of transcripts and protein molecules in single cells. Although estimation methods based on deterministic models have been proposed aimed at evaluating kinetic rates from experimental observations, these methods cannot tackle noise in gene expression that may arise from discrete processes of gene expression, small numbers of mRNA transcript, fluctuations in the activity of transcriptional factors and variability in the experimental environment. In this paper, we develop effective methods for estimating kinetic rates in genetic regulatory networks. The simulated maximum likelihood method is used to evaluate parameters in stochastic models described by either stochastic differential equations or discrete biochemical reactions. Different types of non-parametric density functions are used to measure the transitional probability of experimental observations. For stochastic models described by biochemical reactions, we propose to use the simulated frequency distribution to evaluate the transitional density based on the discrete nature of stochastic simulations. The genetic optimization algorithm is used as an efficient tool to search for optimal reaction rates. Numerical results indicate that the proposed methods can give robust estimations of kinetic rates with good accuracy.

  15. Multiclass cancer classification using a feature subset-based ensemble from microRNA expression profiles.

    PubMed

    Piao, Yongjun; Piao, Minghao; Ryu, Keun Ho

    2017-01-01

    Cancer classification has been a crucial topic of research in cancer treatment. In the last decade, messenger RNA (mRNA) expression profiles have been widely used to classify different types of cancers. With the discovery of a new class of small non-coding RNAs; known as microRNAs (miRNAs), various studies have shown that the expression patterns of miRNA can also accurately classify human cancers. Therefore, there is a great demand for the development of machine learning approaches to accurately classify various types of cancers using miRNA expression data. In this article, we propose a feature subset-based ensemble method in which each model is learned from a different projection of the original feature space to classify multiple cancers. In our method, the feature relevance and redundancy are considered to generate multiple feature subsets, the base classifiers are learned from each independent miRNA subset, and the average posterior probability is used to combine the base classifiers. To test the performance of our method, we used bead-based and sequence-based miRNA expression datasets and conducted 10-fold and leave-one-out cross validations. The experimental results show that the proposed method yields good results and has higher prediction accuracy than popular ensemble methods. The Java program and source code of the proposed method and the datasets in the experiments are freely available at https://sourceforge.net/projects/mirna-ensemble/. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Lymphangiogenesis assessed using three methods is related to tumour grade, breast cancer subtype and expression of basal marker.

    PubMed

    Niemiec, Joanna; Adamczyk, Agnieszka; Ambicka, Aleksandra; Mucha-Małecka, Anna; Wysocki, Wojciech; Mituś, Jerzy; Ryś, Janusz

    2012-11-01

    Lymphangiogenesis is a potential indicator of cancer patients' survival. However, there is no standardisation of methodologies applied to the assessment of lymphatic vessel density. In 156 invasive ductal breast cancers (T  1/N+/M0), lymphatic and blood vessels were visualised using podoplanin and CD34, respectively. Based on these markers expression, four parameters were assessed: (i) distribution of podoplanin-stained vessels (DPV) - the percentage of fields with at least one lymphatic vessel (a simple method proposed by us), (ii) lymphatic vessel density (LVD), (iii) LVD to microvessel density ratio (LVD/MVD) and (iv) the expression of podoplanin in cancer-associated fibroblasts. Next, we estimated relations between the above-mentioned parameters and: (i) breast cancer subtype, (ii) tumour grade, and (iii) basal markers expression. We found that intensive lymphangiogenesis, assessed using all studied methods, is positively related to high tumour grade, triple negative or HER2 subtype and expression of basal markers. Whereas, the absence of podoplanin expression in fibroblasts of cancer stroma is related to luminal A subtype, low tumour grade or lack of basal markers expression. Distribution of podoplanin-stained vessels, assessed by a simple method proposed by us (indicating the percentage of fields with at least one lymphatic vessel), might be used instead of the "hot-spot" method.

  17. Integrative analysis of gene expression and DNA methylation using unsupervised feature extraction for detecting candidate cancer biomarkers.

    PubMed

    Moon, Myungjin; Nakai, Kenta

    2018-04-01

    Currently, cancer biomarker discovery is one of the important research topics worldwide. In particular, detecting significant genes related to cancer is an important task for early diagnosis and treatment of cancer. Conventional studies mostly focus on genes that are differentially expressed in different states of cancer; however, noise in gene expression datasets and insufficient information in limited datasets impede precise analysis of novel candidate biomarkers. In this study, we propose an integrative analysis of gene expression and DNA methylation using normalization and unsupervised feature extractions to identify candidate biomarkers of cancer using renal cell carcinoma RNA-seq datasets. Gene expression and DNA methylation datasets are normalized by Box-Cox transformation and integrated into a one-dimensional dataset that retains the major characteristics of the original datasets by unsupervised feature extraction methods, and differentially expressed genes are selected from the integrated dataset. Use of the integrated dataset demonstrated improved performance as compared with conventional approaches that utilize gene expression or DNA methylation datasets alone. Validation based on the literature showed that a considerable number of top-ranked genes from the integrated dataset have known relationships with cancer, implying that novel candidate biomarkers can also be acquired from the proposed analysis method. Furthermore, we expect that the proposed method can be expanded for applications involving various types of multi-omics datasets.

  18. Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements

    NASA Astrophysics Data System (ADS)

    Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing

    2015-10-01

    Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.

  19. A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress

    PubMed Central

    2018-01-01

    The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies. PMID:29765399

  20. A Seasonal Time-Series Model Based on Gene Expression Programming for Predicting Financial Distress.

    PubMed

    Cheng, Ching-Hsue; Chan, Chia-Pang; Yang, Jun-He

    2018-01-01

    The issue of financial distress prediction plays an important and challenging research topic in the financial field. Currently, there have been many methods for predicting firm bankruptcy and financial crisis, including the artificial intelligence and the traditional statistical methods, and the past studies have shown that the prediction result of the artificial intelligence method is better than the traditional statistical method. Financial statements are quarterly reports; hence, the financial crisis of companies is seasonal time-series data, and the attribute data affecting the financial distress of companies is nonlinear and nonstationary time-series data with fluctuations. Therefore, this study employed the nonlinear attribute selection method to build a nonlinear financial distress prediction model: that is, this paper proposed a novel seasonal time-series gene expression programming model for predicting the financial distress of companies. The proposed model has several advantages including the following: (i) the proposed model is different from the previous models lacking the concept of time series; (ii) the proposed integrated attribute selection method can find the core attributes and reduce high dimensional data; and (iii) the proposed model can generate the rules and mathematical formulas of financial distress for providing references to the investors and decision makers. The result shows that the proposed method is better than the listing classifiers under three criteria; hence, the proposed model has competitive advantages in predicting the financial distress of companies.

  1. Multivariate Boosting for Integrative Analysis of High-Dimensional Cancer Genomic Data

    PubMed Central

    Xiong, Lie; Kuan, Pei-Fen; Tian, Jianan; Keles, Sunduz; Wang, Sijian

    2015-01-01

    In this paper, we propose a novel multivariate component-wise boosting method for fitting multivariate response regression models under the high-dimension, low sample size setting. Our method is motivated by modeling the association among different biological molecules based on multiple types of high-dimensional genomic data. Particularly, we are interested in two applications: studying the influence of DNA copy number alterations on RNA transcript levels and investigating the association between DNA methylation and gene expression. For this purpose, we model the dependence of the RNA expression levels on DNA copy number alterations and the dependence of gene expression on DNA methylation through multivariate regression models and utilize boosting-type method to handle the high dimensionality as well as model the possible nonlinear associations. The performance of the proposed method is demonstrated through simulation studies. Finally, our multivariate boosting method is applied to two breast cancer studies. PMID:26609213

  2. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes

    PubMed Central

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data. PMID:26201006

  3. A P-Norm Robust Feature Extraction Method for Identifying Differentially Expressed Genes.

    PubMed

    Liu, Jian; Liu, Jin-Xing; Gao, Ying-Lian; Kong, Xiang-Zhen; Wang, Xue-Song; Wang, Dong

    2015-01-01

    In current molecular biology, it becomes more and more important to identify differentially expressed genes closely correlated with a key biological process from gene expression data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust feature extraction method is proposed to identify the differentially expressed genes. In our method, the Schatten p-norm is used as the regularization function to obtain a low-rank matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in the gene expression data. The results on simulation data show that our method can obtain higher identification accuracies than the competitive methods. Numerous experiments on real gene expression data sets demonstrate that our method can identify more differentially expressed genes than the others. Moreover, we confirmed that the identified genes are closely correlated with the corresponding gene expression data.

  4. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.

  5. Random forests-based differential analysis of gene sets for gene expression data.

    PubMed

    Hsueh, Huey-Miin; Zhou, Da-Wei; Tsai, Chen-An

    2013-04-10

    In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients. In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest. Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients. In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for interpretation of data in complex biological systems. The classifications of biologically defined gene sets can reveal the underlying interactions of gene sets associated with the phenotypes, and provide an insightful complement to conventional gene set analyses. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. 76 FR 52915 - Periodic Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... proposed changes in certain analytical methods used in periodic reporting. The proposed changes are... assignment of certain flat sorting operations; bias in mixed mail tallies; and Express Mail. Establishing... consider changes in the analytical methods approved for use in periodic reporting.\\1\\ \\1\\ Petition of the...

  7. Reconstructing Cell Lineages from Single-Cell Gene Expression Data: A Pilot Study

    DTIC Science & Technology

    2016-08-30

    Reconstructing cell lineages from single- cell gene expression data: a pilot study The goal of this pilot study is to develop novel mathematical...methods, by leveraging tools developed in the bifurcation theory, to infer the underlying cell -state dynamics from single- cell gene expression data. Our...proposed method contains two steps. The first step is to reconstruct the temporal order of the cells from gene expression data, whereas the second

  8. A Poisson Log-Normal Model for Constructing Gene Covariation Network Using RNA-seq Data.

    PubMed

    Choi, Yoonha; Coram, Marc; Peng, Jie; Tang, Hua

    2017-07-01

    Constructing expression networks using transcriptomic data is an effective approach for studying gene regulation. A popular approach for constructing such a network is based on the Gaussian graphical model (GGM), in which an edge between a pair of genes indicates that the expression levels of these two genes are conditionally dependent, given the expression levels of all other genes. However, GGMs are not appropriate for non-Gaussian data, such as those generated in RNA-seq experiments. We propose a novel statistical framework that maximizes a penalized likelihood, in which the observed count data follow a Poisson log-normal distribution. To overcome the computational challenges, we use Laplace's method to approximate the likelihood and its gradients, and apply the alternating directions method of multipliers to find the penalized maximum likelihood estimates. The proposed method is evaluated and compared with GGMs using both simulated and real RNA-seq data. The proposed method shows improved performance in detecting edges that represent covarying pairs of genes, particularly for edges connecting low-abundant genes and edges around regulatory hubs.

  9. Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.

    PubMed

    Cooper, Stephen

    2017-11-01

    Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.

  10. Supervised group Lasso with applications to microarray data analysis

    PubMed Central

    Ma, Shuangge; Song, Xiao; Huang, Jian

    2007-01-01

    Background A tremendous amount of efforts have been devoted to identifying genes for diagnosis and prognosis of diseases using microarray gene expression data. It has been demonstrated that gene expression data have cluster structure, where the clusters consist of co-regulated genes which tend to have coordinated functions. However, most available statistical methods for gene selection do not take into consideration the cluster structure. Results We propose a supervised group Lasso approach that takes into account the cluster structure in gene expression data for gene selection and predictive model building. For gene expression data without biological cluster information, we first divide genes into clusters using the K-means approach and determine the optimal number of clusters using the Gap method. The supervised group Lasso consists of two steps. In the first step, we identify important genes within each cluster using the Lasso method. In the second step, we select important clusters using the group Lasso. Tuning parameters are determined using V-fold cross validation at both steps to allow for further flexibility. Prediction performance is evaluated using leave-one-out cross validation. We apply the proposed method to disease classification and survival analysis with microarray data. Conclusion We analyze four microarray data sets using the proposed approach: two cancer data sets with binary cancer occurrence as outcomes and two lymphoma data sets with survival outcomes. The results show that the proposed approach is capable of identifying a small number of influential gene clusters and important genes within those clusters, and has better prediction performance than existing methods. PMID:17316436

  11. Linear Matrix Inequality Method for a Quadratic Performance Index Minimization Problem with a class of Bilinear Matrix Inequality Conditions

    NASA Astrophysics Data System (ADS)

    Tanemura, M.; Chida, Y.

    2016-09-01

    There are a lot of design problems of control system which are expressed as a performance index minimization under BMI conditions. However, a minimization problem expressed as LMIs can be easily solved because of the convex property of LMIs. Therefore, many researchers have been studying transforming a variety of control design problems into convex minimization problems expressed as LMIs. This paper proposes an LMI method for a quadratic performance index minimization problem with a class of BMI conditions. The minimization problem treated in this paper includes design problems of state-feedback gain for switched system and so on. The effectiveness of the proposed method is verified through a state-feedback gain design for switched systems and a numerical simulation using the designed feedback gains.

  12. SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation.

    PubMed

    Matsumoto, Hirotaka; Kiryu, Hisanori

    2016-06-08

    Single-cell technologies make it possible to quantify the comprehensive states of individual cells, and have the power to shed light on cellular differentiation in particular. Although several methods have been developed to fully analyze the single-cell expression data, there is still room for improvement in the analysis of differentiation. In this paper, we propose a novel method SCOUP to elucidate differentiation process. Unlike previous dimension reduction-based approaches, SCOUP describes the dynamics of gene expression throughout differentiation directly, including the degree of differentiation of a cell (in pseudo-time) and cell fate. SCOUP is superior to previous methods with respect to pseudo-time estimation, especially for single-cell RNA-seq. SCOUP also successfully estimates cell lineage more accurately than previous method, especially for cells at an early stage of bifurcation. In addition, SCOUP can be applied to various downstream analyses. As an example, we propose a novel correlation calculation method for elucidating regulatory relationships among genes. We apply this method to a single-cell RNA-seq data and detect a candidate of key regulator for differentiation and clusters in a correlation network which are not detected with conventional correlation analysis. We develop a stochastic process-based method SCOUP to analyze single-cell expression data throughout differentiation. SCOUP can estimate pseudo-time and cell lineage more accurately than previous methods. We also propose a novel correlation calculation method based on SCOUP. SCOUP is a promising approach for further single-cell analysis and available at https://github.com/hmatsu1226/SCOUP.

  13. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions.

  14. Gene regulatory network inference using fused LASSO on multiple data sets

    PubMed Central

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M. O.; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-01-01

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions. PMID:26864687

  15. Hybrid Binary Imperialist Competition Algorithm and Tabu Search Approach for Feature Selection Using Gene Expression Data.

    PubMed

    Wang, Shuaiqun; Aorigele; Kong, Wei; Zeng, Weiming; Hong, Xiaomin

    2016-01-01

    Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes.

  16. Hybrid Binary Imperialist Competition Algorithm and Tabu Search Approach for Feature Selection Using Gene Expression Data

    PubMed Central

    Aorigele; Zeng, Weiming; Hong, Xiaomin

    2016-01-01

    Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323

  17. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.

    PubMed

    Patel, Nihir; Wang, Jason T L

    2015-10-01

    Use of computational methods to predict gene regulatory networks (GRNs) from gene expression data is a challenging task. Many studies have been conducted using unsupervised methods to fulfill the task; however, such methods usually yield low prediction accuracies due to the lack of training data. In this article, we propose semi-supervised methods for GRN prediction by utilizing two machine learning algorithms, namely, support vector machines (SVM) and random forests (RF). The semi-supervised methods make use of unlabelled data for training. We investigated inductive and transductive learning approaches, both of which adopt an iterative procedure to obtain reliable negative training data from the unlabelled data. We then applied our semi-supervised methods to gene expression data of Escherichia coli and Saccharomyces cerevisiae, and evaluated the performance of our methods using the expression data. Our analysis indicated that the transductive learning approach outperformed the inductive learning approach for both organisms. However, there was no conclusive difference identified in the performance of SVM and RF. Experimental results also showed that the proposed semi-supervised methods performed better than existing supervised methods for both organisms.

  18. Integrating Multiple Data Sources for Combinatorial Marker Discovery: A Study in Tumorigenesis.

    PubMed

    Bandyopadhyay, Sanghamitra; Mallik, Saurav

    2018-01-01

    Identification of combinatorial markers from multiple data sources is a challenging task in bioinformatics. Here, we propose a novel computational framework for identifying significant combinatorial markers ( s) using both gene expression and methylation data. The gene expression and methylation data are integrated into a single continuous data as well as a (post-discretized) boolean data based on their intrinsic (i.e., inverse) relationship. A novel combined score of methylation and expression data (viz., ) is introduced which is computed on the integrated continuous data for identifying initial non-redundant set of genes. Thereafter, (maximal) frequent closed homogeneous genesets are identified using a well-known biclustering algorithm applied on the integrated boolean data of the determined non-redundant set of genes. A novel sample-based weighted support ( ) is then proposed that is consecutively calculated on the integrated boolean data of the determined non-redundant set of genes in order to identify the non-redundant significant genesets. The top few resulting genesets are identified as potential s. Since our proposed method generates a smaller number of significant non-redundant genesets than those by other popular methods, the method is much faster than the others. Application of the proposed technique on an expression and a methylation data for Uterine tumor or Prostate Carcinoma produces a set of significant combination of markers. We expect that such a combination of markers will produce lower false positives than individual markers.

  19. Finding differentially expressed genes in high dimensional data: Rank based test statistic via a distance measure.

    PubMed

    Mathur, Sunil; Sadana, Ajit

    2015-12-01

    We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.

  20. Facial expression recognition based on improved deep belief networks

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to improve the robustness of facial expression recognition, a method of face expression recognition based on Local Binary Pattern (LBP) combined with improved deep belief networks (DBNs) is proposed. This method uses LBP to extract the feature, and then uses the improved deep belief networks as the detector and classifier to extract the LBP feature. The combination of LBP and improved deep belief networks is realized in facial expression recognition. In the JAFFE (Japanese Female Facial Expression) database on the recognition rate has improved significantly.

  1. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.

    PubMed

    Liu, Li-Zhi; Wu, Fang-Xiang; Zhang, Wen-Jun

    2014-01-01

    As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in systems biology. With the development of biological technologies, multiple time-course gene expression datasets might be collected for a specific gene network under different circumstances. The inference of a gene regulatory network can be improved by integrating these multiple datasets. It is also known that gene expression data may be contaminated with large errors or outliers, which may affect the inference results. A novel method, Huber group LASSO, is proposed to infer the same underlying network topology from multiple time-course gene expression datasets as well as to take the robustness to large error or outliers into account. To solve the optimization problem involved in the proposed method, an efficient algorithm which combines the ideas of auxiliary function minimization and block descent is developed. A stability selection method is adapted to our method to find a network topology consisting of edges with scores. The proposed method is applied to both simulation datasets and real experimental datasets. It shows that Huber group LASSO outperforms the group LASSO in terms of both areas under receiver operating characteristic curves and areas under the precision-recall curves. The convergence analysis of the algorithm theoretically shows that the sequence generated from the algorithm converges to the optimal solution of the problem. The simulation and real data examples demonstrate the effectiveness of the Huber group LASSO in integrating multiple time-course gene expression datasets and improving the resistance to large errors or outliers.

  2. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    NASA Astrophysics Data System (ADS)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  3. Genetic network inference as a series of discrimination tasks.

    PubMed

    Kimura, Shuhei; Nakayama, Satoshi; Hatakeyama, Mariko

    2009-04-01

    Genetic network inference methods based on sets of differential equations generally require a great deal of time, as the equations must be solved many times. To reduce the computational cost, researchers have proposed other methods for inferring genetic networks by solving sets of differential equations only a few times, or even without solving them at all. When we try to obtain reasonable network models using these methods, however, we must estimate the time derivatives of the gene expression levels with great precision. In this study, we propose a new method to overcome the drawbacks of inference methods based on sets of differential equations. Our method infers genetic networks by obtaining classifiers capable of predicting the signs of the derivatives of the gene expression levels. For this purpose, we defined a genetic network inference problem as a series of discrimination tasks, then solved the defined series of discrimination tasks with a linear programming machine. Our experimental results demonstrated that the proposed method is capable of correctly inferring genetic networks, and doing so more than 500 times faster than the other inference methods based on sets of differential equations. Next, we applied our method to actual expression data of the bacterial SOS DNA repair system. And finally, we demonstrated that our approach relates to the inference method based on the S-system model. Though our method provides no estimation of the kinetic parameters, it should be useful for researchers interested only in the network structure of a target system. Supplementary data are available at Bioinformatics online.

  4. A Filter Feature Selection Method Based on MFA Score and Redundancy Excluding and It's Application to Tumor Gene Expression Data Analysis.

    PubMed

    Li, Jiangeng; Su, Lei; Pang, Zenan

    2015-12-01

    Feature selection techniques have been widely applied to tumor gene expression data analysis in recent years. A filter feature selection method named marginal Fisher analysis score (MFA score) which is based on graph embedding has been proposed, and it has been widely used mainly because it is superior to Fisher score. Considering the heavy redundancy in gene expression data, we proposed a new filter feature selection technique in this paper. It is named MFA score+ and is based on MFA score and redundancy excluding. We applied it to an artificial dataset and eight tumor gene expression datasets to select important features and then used support vector machine as the classifier to classify the samples. Compared with MFA score, t test and Fisher score, it achieved higher classification accuracy.

  5. THD-Module Extractor: An Application for CEN Module Extraction and Interesting Gene Identification for Alzheimer's Disease.

    PubMed

    Kakati, Tulika; Kashyap, Hirak; Bhattacharyya, Dhruba K

    2016-11-30

    There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer's disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer's disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer's disease brains. The biological pathways associated with Alzheimer's disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature.

  6. THD-Module Extractor: An Application for CEN Module Extraction and Interesting Gene Identification for Alzheimer’s Disease

    PubMed Central

    Kakati, Tulika; Kashyap, Hirak; Bhattacharyya, Dhruba K.

    2016-01-01

    There exist many tools and methods for construction of co-expression network from gene expression data and for extraction of densely connected gene modules. In this paper, a method is introduced to construct co-expression network and to extract co-expressed modules having high biological significance. The proposed method has been validated on several well known microarray datasets extracted from a diverse set of species, using statistical measures, such as p and q values. The modules obtained in these studies are found to be biologically significant based on Gene Ontology enrichment analysis, pathway analysis, and KEGG enrichment analysis. Further, the method was applied on an Alzheimer’s disease dataset and some interesting genes are found, which have high semantic similarity among them, but are not significantly correlated in terms of expression similarity. Some of these interesting genes, such as MAPT, CASP2, and PSEN2, are linked with important aspects of Alzheimer’s disease, such as dementia, increase cell death, and deposition of amyloid-beta proteins in Alzheimer’s disease brains. The biological pathways associated with Alzheimer’s disease, such as, Wnt signaling, Apoptosis, p53 signaling, and Notch signaling, incorporate these interesting genes. The proposed method is evaluated in regard to existing literature. PMID:27901073

  7. A method to identify differential expression profiles of time-course gene data with Fourier transformation

    PubMed Central

    2013-01-01

    Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics. PMID:24134721

  8. Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions

    PubMed Central

    Maruthapillai, Vasanthan; Murugappan, Murugappan

    2016-01-01

    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject’s face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject’s face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network. PMID:26859884

  9. Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions.

    PubMed

    Maruthapillai, Vasanthan; Murugappan, Murugappan

    2016-01-01

    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.

  10. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    PubMed

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  11. Discovering graphical Granger causality using the truncating lasso penalty

    PubMed Central

    Shojaie, Ali; Michailidis, George

    2010-01-01

    Motivation: Components of biological systems interact with each other in order to carry out vital cell functions. Such information can be used to improve estimation and inference, and to obtain better insights into the underlying cellular mechanisms. Discovering regulatory interactions among genes is therefore an important problem in systems biology. Whole-genome expression data over time provides an opportunity to determine how the expression levels of genes are affected by changes in transcription levels of other genes, and can therefore be used to discover regulatory interactions among genes. Results: In this article, we propose a novel penalization method, called truncating lasso, for estimation of causal relationships from time-course gene expression data. The proposed penalty can correctly determine the order of the underlying time series, and improves the performance of the lasso-type estimators. Moreover, the resulting estimate provides information on the time lag between activation of transcription factors and their effects on regulated genes. We provide an efficient algorithm for estimation of model parameters, and show that the proposed method can consistently discover causal relationships in the large p, small n setting. The performance of the proposed model is evaluated favorably in simulated, as well as real, data examples. Availability: The proposed truncating lasso method is implemented in the R-package ‘grangerTlasso’ and is freely available at http://www.stat.lsa.umich.edu/∼shojaie/ Contact: shojaie@umich.edu PMID:20823316

  12. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    PubMed

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  13. A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data

    PubMed Central

    Seok, Junhee; Davis, Ronald W.; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn’t been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge. PMID:25933378

  14. A gene expression biomarker identifies in vitro and in vivo ERα modulators in a human gene expression compendium

    EPA Science Inventory

    We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...

  15. A Proposal of a Communication Medium between Patients with Facial Disorder and the Doctors

    NASA Astrophysics Data System (ADS)

    Ito, Kyoko; Kurose, Hiroyuki; Takami, Ai; Shirai, Masayuki; Shimizu, Ryosuke; Nishida, Shogo

    There are diseases with the disorder in the face although human's face is an important body site with the social role. In this study, it is focused on “patient's facial expression” as a medium supporting communications between the patient with facial disorder and the doctor toward the satisfaction improvement to the patient's treatment on the medical treatment site. And, “expression to be expressed” and “difference between the expression actually expressed aiming at the expression to be expressed and the expression to be expressed” were selected as information transmitted through patient's expression. The design and development of an interface with the functions of an expression setting and an expression confirmation were carried out as an environmental setting for the patient to express selected information. Fourteen dentists in total who had the treatment experience of the facial disorder evaluated the possibility of the proposed interface as utility and a communication tool in the medical treatment site. The possibility of leading to the expression of the expectation for the patient's treatment was suggested as the results of the experiment, and concrete challenge points and the method for use in the medical treatment field were proposed.

  16. An Exact Formula for Calculating Inverse Radial Lens Distortions

    PubMed Central

    Drap, Pierre; Lefèvre, Julien

    2016-01-01

    This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view. PMID:27258288

  17. A Facial Control Method Using Emotional Parameters in Sensibility Robot

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroshi; Kanoh, Masayoshi; Kato, Shohei; Kunitachi, Tsutomu; Itoh, Hidenori

    The “Ifbot” robot communicates with people by considering its own “emotions”. Ifbot has many facial expressions to communicate enjoyment. These are used to express its internal emotions, purposes, reactions caused by external stimulus, and entertainment such as singing songs. All these facial expressions are developed by designers manually. Using this approach, we must design all facial motions, if we want Ifbot to express them. It, however, is not realistic. We have therefore developed a system which convert Ifbot's emotions to its facial expressions automatically. In this paper, we propose a method for creating Ifbot's facial expressions from parameters, emotional parameters, which handle its internal emotions computationally.

  18. Ask Him or Test Him?

    ERIC Educational Resources Information Center

    Rose, Harriett A.; Elton, Charles F.

    1970-01-01

    Proposes and demonstrates methodology for investigation of relationship between expressed and inventoried interests. Additional investigations comparing scores on the Vocational Preference Inventory, the SVIB, and expressed choice might establish the comparative validities of these methods of assessing vocational interest. (Author)

  19. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data.

    PubMed

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

  20. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data

    PubMed Central

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html PMID:29456555

  1. Comparison of normalization methods for differential gene expression analysis in RNA-Seq experiments

    PubMed Central

    Maza, Elie; Frasse, Pierre; Senin, Pavel; Bouzayen, Mondher; Zouine, Mohamed

    2013-01-01

    In recent years, RNA-Seq technologies became a powerful tool for transcriptome studies. However, computational methods dedicated to the analysis of high-throughput sequencing data are yet to be standardized. In particular, it is known that the choice of a normalization procedure leads to a great variability in results of differential gene expression analysis. The present study compares the most widespread normalization procedures and proposes a novel one aiming at removing an inherent bias of studied transcriptomes related to their relative size. Comparisons of the normalization procedures are performed on real and simulated data sets. Real RNA-Seq data sets analyses, performed with all the different normalization methods, show that only 50% of significantly differentially expressed genes are common. This result highlights the influence of the normalization step on the differential expression analysis. Real and simulated data sets analyses give similar results showing 3 different groups of procedures having the same behavior. The group including the novel method named “Median Ratio Normalization” (MRN) gives the lower number of false discoveries. Within this group the MRN method is less sensitive to the modification of parameters related to the relative size of transcriptomes such as the number of down- and upregulated genes and the gene expression levels. The newly proposed MRN method efficiently deals with intrinsic bias resulting from relative size of studied transcriptomes. Validation with real and simulated data sets confirmed that MRN is more consistent and robust than existing methods. PMID:26442135

  2. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  3. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  4. DTFP-Growth: Dynamic Threshold-Based FP-Growth Rule Mining Algorithm Through Integrating Gene Expression, Methylation, and Protein-Protein Interaction Profiles.

    PubMed

    Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan

    2018-04-01

    Association rule mining is an important technique for identifying interesting relationships between gene pairs in a biological data set. Earlier methods basically work for a single biological data set, and, in maximum cases, a single minimum support cutoff can be applied globally, i.e., across all genesets/itemsets. To overcome this limitation, in this paper, we propose dynamic threshold-based FP-growth rule mining algorithm that integrates gene expression, methylation and protein-protein interaction profiles based on weighted shortest distance to find the novel associations among different pairs of genes in multi-view data sets. For this purpose, we introduce three new thresholds, namely, Distance-based Variable/Dynamic Supports (DVS), Distance-based Variable Confidences (DVC), and Distance-based Variable Lifts (DVL) for each rule by integrating co-expression, co-methylation, and protein-protein interactions existed in the multi-omics data set. We develop the proposed algorithm utilizing these three novel multiple threshold measures. In the proposed algorithm, the values of , , and are computed for each rule separately, and subsequently it is verified whether the support, confidence, and lift of each evolved rule are greater than or equal to the corresponding individual , , and values, respectively, or not. If all these three conditions for a rule are found to be true, the rule is treated as a resultant rule. One of the major advantages of the proposed method compared with other related state-of-the-art methods is that it considers both the quantitative and interactive significance among all pairwise genes belonging to each rule. Moreover, the proposed method generates fewer rules, takes less running time, and provides greater biological significance for the resultant top-ranking rules compared to previous methods.

  5. "Techniques d'expression,""approche communicative," meme combat? ("Expressive Techniques,""Communicative Approach," Same Struggle?)

    ERIC Educational Resources Information Center

    Vives, Robert

    1983-01-01

    Based on a literature review and analysis of teaching methods and objectives, it is proposed that the emphasis on communicative competence ascendant in French foreign language instruction is closely related to, and borrows from, expressive techniques taught in French native language instruction in the 1960s. (MSE)

  6. Novel harmonic regularization approach for variable selection in Cox's proportional hazards model.

    PubMed

    Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan

    2014-01-01

    Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq  (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.

  7. Luminance sticker based facial expression recognition using discrete wavelet transform for physically disabled persons.

    PubMed

    Nagarajan, R; Hariharan, M; Satiyan, M

    2012-08-01

    Developing tools to assist physically disabled and immobilized people through facial expression is a challenging area of research and has attracted many researchers recently. In this paper, luminance stickers based facial expression recognition is proposed. Recognition of facial expression is carried out by employing Discrete Wavelet Transform (DWT) as a feature extraction method. Different wavelet families with their different orders (db1 to db20, Coif1 to Coif 5 and Sym2 to Sym8) are utilized to investigate their performance in recognizing facial expression and to evaluate their computational time. Standard deviation is computed for the coefficients of first level of wavelet decomposition for every order of wavelet family. This standard deviation is used to form a set of feature vectors for classification. In this study, conventional validation and cross validation are performed to evaluate the efficiency of the suggested feature vectors. Three different classifiers namely Artificial Neural Network (ANN), k-Nearest Neighborhood (kNN) and Linear Discriminant Analysis (LDA) are used to classify a set of eight facial expressions. The experimental results demonstrate that the proposed method gives very promising classification accuracies.

  8. Identification of differential pathways in papillary thyroid carcinoma utilizing pathway co-expression analysis.

    PubMed

    Qiu, Wei-Hai; Chen, Gui-Yan; Cui, Lu; Zhang, Ting-Ming; Wei, Feng; Yang, Yong

    2016-01-01

    To identify differential pathways between papillary thyroid carcinoma (PTC) patients and normal controls utilizing a novel method which combined pathway with co-expression network. The proposed method included three steps. In the first step, we conducted pretreatments for background pathways and gained representative pathways in PTC. Subsequently, a co-expression network for representative pathways was constructed using empirical Bayes (EB) approach to assign a weight value for each pathway. Finally, random model was extracted to set the thresholds of identifying differential pathways. We obtained 1267 representative pathways and their weight values based on the co-expressed pathway network, and then by meeting the criterion (Weight > 0.0296), 87 differential pathways in total across PTC patients and normal controls were identified. The top three ranked differential pathways were CREB phosphorylation, attachment of GPI anchor to urokinase plasminogen activator receptor (uPAR) and loss of function of SMAD2/3 in cancer. In conclusion, we successfully identified differential pathways (such as CREB phosphorylation, attachment of GPI anchor to uPAR and post-translational modification: synthesis of GPI-anchored proteins) for PTC using the proposed pathway co-expression method, and these pathways might be potential biomarkers for target therapy and detection of PTC.

  9. Deciphering the associations between gene expression and copy number alteration using a sparse double Laplacian shrinkage approach

    PubMed Central

    Shi, Xingjie; Zhao, Qing; Huang, Jian; Xie, Yang; Ma, Shuangge

    2015-01-01

    Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have important biological implications. GEs are partly regulated by CNAs, and much effort has been devoted to understanding their relations. The regulation analysis is challenging with one gene expression possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of multiple genes. The correlations among GEs and among CNAs make the analysis even more complicated. The existing methods have limitations and cannot comprehensively describe the regulation. Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regulation relationships. Network adjacency is computed to describe the interconnections among GEs and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network adjacency measures. Simulation shows that the proposed method outperforms the competing alternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed to further demonstrate advantages of the proposed method. Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/ Contact: shuangge.ma@yale.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26342102

  10. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool

    PubMed Central

    Clark, Neil R.; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D.; Jones, Matthew R.; Ma’ayan, Avi

    2016-01-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community. PMID:26848405

  11. Principal Angle Enrichment Analysis (PAEA): Dimensionally Reduced Multivariate Gene Set Enrichment Analysis Tool.

    PubMed

    Clark, Neil R; Szymkiewicz, Maciej; Wang, Zichen; Monteiro, Caroline D; Jones, Matthew R; Ma'ayan, Avi

    2015-11-01

    Gene set analysis of differential expression, which identifies collectively differentially expressed gene sets, has become an important tool for biology. The power of this approach lies in its reduction of the dimensionality of the statistical problem and its incorporation of biological interpretation by construction. Many approaches to gene set analysis have been proposed, but benchmarking their performance in the setting of real biological data is difficult due to the lack of a gold standard. In a previously published work we proposed a geometrical approach to differential expression which performed highly in benchmarking tests and compared well to the most popular methods of differential gene expression. As reported, this approach has a natural extension to gene set analysis which we call Principal Angle Enrichment Analysis (PAEA). PAEA employs dimensionality reduction and a multivariate approach for gene set enrichment analysis. However, the performance of this method has not been assessed nor its implementation as a web-based tool. Here we describe new benchmarking protocols for gene set analysis methods and find that PAEA performs highly. The PAEA method is implemented as a user-friendly web-based tool, which contains 70 gene set libraries and is freely available to the community.

  12. Facial Expression Recognition with Fusion Features Extracted from Salient Facial Areas.

    PubMed

    Liu, Yanpeng; Li, Yibin; Ma, Xin; Song, Rui

    2017-03-29

    In the pattern recognition domain, deep architectures are currently widely used and they have achieved fine results. However, these deep architectures make particular demands, especially in terms of their requirement for big datasets and GPU. Aiming to gain better results without deep networks, we propose a simplified algorithm framework using fusion features extracted from the salient areas of faces. Furthermore, the proposed algorithm has achieved a better result than some deep architectures. For extracting more effective features, this paper firstly defines the salient areas on the faces. This paper normalizes the salient areas of the same location in the faces to the same size; therefore, it can extracts more similar features from different subjects. LBP and HOG features are extracted from the salient areas, fusion features' dimensions are reduced by Principal Component Analysis (PCA) and we apply several classifiers to classify the six basic expressions at once. This paper proposes a salient areas definitude method which uses peak expressions frames compared with neutral faces. This paper also proposes and applies the idea of normalizing the salient areas to align the specific areas which express the different expressions. As a result, the salient areas found from different subjects are the same size. In addition, the gamma correction method is firstly applied on LBP features in our algorithm framework which improves our recognition rates significantly. By applying this algorithm framework, our research has gained state-of-the-art performances on CK+ database and JAFFE database.

  13. A regulation probability model-based meta-analysis of multiple transcriptomics data sets for cancer biomarker identification.

    PubMed

    Xie, Xin-Ping; Xie, Yu-Feng; Wang, Hong-Qiang

    2017-08-23

    Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal. This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene regulation profile across studies by mathematically defining two gene regulation events between two conditions and estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and efficiency of jGRP in identifying DEGs identification in the context of meta-analysis. Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity. The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with study heterogeneity.

  14. Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network.

    PubMed

    Xi, Jianing; Wang, Minghui; Li, Ao

    2018-06-05

    Discovery of mutated driver genes is one of the primary objective for studying tumorigenesis. To discover some relatively low frequently mutated driver genes from somatic mutation data, many existing methods incorporate interaction network as prior information. However, the prior information of mRNA expression patterns are not exploited by these existing network-based methods, which is also proven to be highly informative of cancer progressions. To incorporate prior information from both interaction network and mRNA expressions, we propose a robust and sparse co-regularized nonnegative matrix factorization to discover driver genes from mutation data. Furthermore, our framework also conducts Frobenius norm regularization to overcome overfitting issue. Sparsity-inducing penalty is employed to obtain sparse scores in gene representations, of which the top scored genes are selected as driver candidates. Evaluation experiments by known benchmarking genes indicate that the performance of our method benefits from the two type of prior information. Our method also outperforms the existing network-based methods, and detect some driver genes that are not predicted by the competing methods. In summary, our proposed method can improve the performance of driver gene discovery by effectively incorporating prior information from interaction network and mRNA expression patterns into a robust and sparse co-regularized matrix factorization framework.

  15. Missing value imputation for gene expression data by tailored nearest neighbors.

    PubMed

    Faisal, Shahla; Tutz, Gerhard

    2017-04-25

    High dimensional data like gene expression and RNA-sequences often contain missing values. The subsequent analysis and results based on these incomplete data can suffer strongly from the presence of these missing values. Several approaches to imputation of missing values in gene expression data have been developed but the task is difficult due to the high dimensionality (number of genes) of the data. Here an imputation procedure is proposed that uses weighted nearest neighbors. Instead of using nearest neighbors defined by a distance that includes all genes the distance is computed for genes that are apt to contribute to the accuracy of imputed values. The method aims at avoiding the curse of dimensionality, which typically occurs if local methods as nearest neighbors are applied in high dimensional settings. The proposed weighted nearest neighbors algorithm is compared to existing missing value imputation techniques like mean imputation, KNNimpute and the recently proposed imputation by random forests. We use RNA-sequence and microarray data from studies on human cancer to compare the performance of the methods. The results from simulations as well as real studies show that the weighted distance procedure can successfully handle missing values for high dimensional data structures where the number of predictors is larger than the number of samples. The method typically outperforms the considered competitors.

  16. A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data.

    PubMed

    Zhang, L; Liu, X J

    2016-06-03

    With the rapid development of next-generation high-throughput sequencing technology, RNA-seq has become a standard and important technique for transcriptome analysis. For multi-sample RNA-seq data, the existing expression estimation methods usually deal with each single-RNA-seq sample, and ignore that the read distributions are consistent across multiple samples. In the current study, we propose a structured sparse regression method, SSRSeq, to estimate isoform expression using multi-sample RNA-seq data. SSRSeq uses a non-parameter model to capture the general tendency of non-uniformity read distribution for all genes across multiple samples. Additionally, our method adds a structured sparse regularization, which not only incorporates the sparse specificity between a gene and its corresponding isoform expression levels, but also reduces the effects of noisy reads, especially for lowly expressed genes and isoforms. Four real datasets were used to evaluate our method on isoform expression estimation. Compared with other popular methods, SSRSeq reduced the variance between multiple samples, and produced more accurate isoform expression estimations, and thus more meaningful biological interpretations.

  17. Joint Facial Action Unit Detection and Feature Fusion: A Multi-conditional Learning Approach.

    PubMed

    Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja

    2016-10-05

    Automated analysis of facial expressions can benefit many domains, from marketing to clinical diagnosis of neurodevelopmental disorders. Facial expressions are typically encoded as a combination of facial muscle activations, i.e., action units. Depending on context, these action units co-occur in specific patterns, and rarely in isolation. Yet, most existing methods for automatic action unit detection fail to exploit dependencies among them, and the corresponding facial features. To address this, we propose a novel multi-conditional latent variable model for simultaneous fusion of facial features and joint action unit detection. Specifically, the proposed model performs feature fusion in a generative fashion via a low-dimensional shared subspace, while simultaneously performing action unit detection using a discriminative classification approach. We show that by combining the merits of both approaches, the proposed methodology outperforms existing purely discriminative/generative methods for the target task. To reduce the number of parameters, and avoid overfitting, a novel Bayesian learning approach based on Monte Carlo sampling is proposed, to integrate out the shared subspace. We validate the proposed method on posed and spontaneous data from three publicly available datasets (CK+, DISFA and Shoulder-pain), and show that both feature fusion and joint learning of action units leads to improved performance compared to the state-of-the-art methods for the task.

  18. Concordant integrative gene set enrichment analysis of multiple large-scale two-sample expression data sets.

    PubMed

    Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A

    2014-01-01

    Gene set enrichment analysis (GSEA) is an important approach to the analysis of coordinate expression changes at a pathway level. Although many statistical and computational methods have been proposed for GSEA, the issue of a concordant integrative GSEA of multiple expression data sets has not been well addressed. Among different related data sets collected for the same or similar study purposes, it is important to identify pathways or gene sets with concordant enrichment. We categorize the underlying true states of differential expression into three representative categories: no change, positive change and negative change. Due to data noise, what we observe from experiments may not indicate the underlying truth. Although these categories are not observed in practice, they can be considered in a mixture model framework. Then, we define the mathematical concept of concordant gene set enrichment and calculate its related probability based on a three-component multivariate normal mixture model. The related false discovery rate can be calculated and used to rank different gene sets. We used three published lung cancer microarray gene expression data sets to illustrate our proposed method. One analysis based on the first two data sets was conducted to compare our result with a previous published result based on a GSEA conducted separately for each individual data set. This comparison illustrates the advantage of our proposed concordant integrative gene set enrichment analysis. Then, with a relatively new and larger pathway collection, we used our method to conduct an integrative analysis of the first two data sets and also all three data sets. Both results showed that many gene sets could be identified with low false discovery rates. A consistency between both results was also observed. A further exploration based on the KEGG cancer pathway collection showed that a majority of these pathways could be identified by our proposed method. This study illustrates that we can improve detection power and discovery consistency through a concordant integrative analysis of multiple large-scale two-sample gene expression data sets.

  19. The Artificial Neural Networks Based on Scalarization Method for a Class of Bilevel Biobjective Programming Problem

    PubMed Central

    Chen, Zhong; Liu, June; Li, Xiong

    2017-01-01

    A two-stage artificial neural network (ANN) based on scalarization method is proposed for bilevel biobjective programming problem (BLBOP). The induced set of the BLBOP is firstly expressed as the set of minimal solutions of a biobjective optimization problem by using scalar approach, and then the whole efficient set of the BLBOP is derived by the proposed two-stage ANN for exploring the induced set. In order to illustrate the proposed method, seven numerical examples are tested and compared with results in the classical literature. Finally, a practical problem is solved by the proposed algorithm. PMID:29312446

  20. Novel Harmonic Regularization Approach for Variable Selection in Cox's Proportional Hazards Model

    PubMed Central

    Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan

    2014-01-01

    Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq  (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods. PMID:25506389

  1. Experimental determination of the viscous flow permeability of porous materials by measuring reflected low frequency acoustic waves

    NASA Astrophysics Data System (ADS)

    Berbiche, A.; Sadouki, M.; Fellah, Z. E. A.; Ogam, E.; Fellah, M.; Mitri, F. G.; Depollier, C.

    2016-01-01

    An acoustic reflectivity method is proposed for measuring the permeability or flow resistivity of air-saturated porous materials. In this method, a simplified expression of the reflection coefficient is derived in the Darcy's regime (low frequency range), which does not depend on frequency and porosity. Numerical simulations show that the reflection coefficient of a porous material can be approximated by its simplified expression obtained from its Taylor development to the first order. This approximation is good especially for resistive materials (of low permeability) and for the lower frequencies. The permeability is reconstructed by solving the inverse problem using waves reflected by plastic foam samples, at different frequency bandwidths in the Darcy regime. The proposed method has the advantage of being simple compared to the conventional methods that use experimental reflected data, and is complementary to the transmissivity method, which is more adapted to low resistive materials (high permeability).

  2. Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan

    2010-12-01

    This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.

  3. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.

    PubMed

    Doungpan, Narumol; Engchuan, Worrawat; Chan, Jonathan H; Meechai, Asawin

    2016-12-05

    Gene expression has been used to identify disease gene biomarkers, but there are ongoing challenges. Single gene or gene-set biomarkers are inadequate to provide sufficient understanding of complex disease mechanisms and the relationship among those genes. Network-based methods have thus been considered for inferring the interaction within a group of genes to further study the disease mechanism. Recently, the Gene-Network-based Feature Set (GNFS), which is capable of handling case-control and multiclass expression for gene biomarker identification, has been proposed, partly taking into account of network topology. However, its performance relies on a greedy search for building subnetworks and thus requires further improvement. In this work, we establish a new approach named Gene Sub-Network-based Feature Selection (GSNFS) by implementing the GNFS framework with two proposed searching and scoring algorithms, namely gene-set-based (GS) search and parent-node-based (PN) search, to identify subnetworks. An additional dataset is used to validate the results. The two proposed searching algorithms of the GSNFS method for subnetwork expansion are concerned with the degree of connectivity and the scoring scheme for building subnetworks and their topology. For each iteration of expansion, the neighbour genes of a current subnetwork, whose expression data improved the overall subnetwork score, is recruited. While the GS search calculated the subnetwork score using an activity score of a current subnetwork and the gene expression values of its neighbours, the PN search uses the expression value of the corresponding parent of each neighbour gene. Four lung cancer expression datasets were used for subnetwork identification. In addition, using pathway data and protein-protein interaction as network data in order to consider the interaction among significant genes were discussed. Classification was performed to compare the performance of the identified gene subnetworks with three subnetwork identification algorithms. The two searching algorithms resulted in better classification and gene/gene-set agreement compared to the original greedy search of the GNFS method. The identified lung cancer subnetwork using the proposed searching algorithm resulted in an improvement of the cross-dataset validation and an increase in the consistency of findings between two independent datasets. The homogeneity measurement of the datasets was conducted to assess dataset compatibility in cross-dataset validation. The lung cancer dataset with higher homogeneity showed a better result when using the GS search while the dataset with low homogeneity showed a better result when using the PN search. The 10-fold cross-dataset validation on the independent lung cancer datasets showed higher classification performance of the proposed algorithms when compared with the greedy search in the original GNFS method. The proposed searching algorithms provide a higher number of genes in the subnetwork expansion step than the greedy algorithm. As a result, the performance of the subnetworks identified from the GSNFS method was improved in terms of classification performance and gene/gene-set level agreement depending on the homogeneity of the datasets used in the analysis. Some common genes obtained from the four datasets using different searching algorithms are genes known to play a role in lung cancer. The improvement of classification performance and the gene/gene-set level agreement, and the biological relevance indicated the effectiveness of the GSNFS method for gene subnetwork identification using expression data.

  4. Evaluation of two outlier-detection-based methods for detecting tissue-selective genes from microarray data.

    PubMed

    Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro

    2007-05-01

    Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU.

  5. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection.

    PubMed

    Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne

    2005-04-15

    The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.

  6. Detecting complexes from edge-weighted PPI networks via genes expression analysis.

    PubMed

    Zhang, Zehua; Song, Jian; Tang, Jijun; Xu, Xinying; Guo, Fei

    2018-04-24

    Identifying complexes from PPI networks has become a key problem to elucidate protein functions and identify signal and biological processes in a cell. Proteins binding as complexes are important roles of life activity. Accurate determination of complexes in PPI networks is crucial for understanding principles of cellular organization. We propose a novel method to identify complexes on PPI networks, based on different co-expression information. First, we use Markov Cluster Algorithm with an edge-weighting scheme to calculate complexes on PPI networks. Then, we propose some significant features, such as graph information and gene expression analysis, to filter and modify complexes predicted by Markov Cluster Algorithm. To evaluate our method, we test on two experimental yeast PPI networks. On DIP network, our method has Precision and F-Measure values of 0.6004 and 0.5528. On MIPS network, our method has F-Measure and S n values of 0.3774 and 0.3453. Comparing to existing methods, our method improves Precision value by at least 0.1752, F-Measure value by at least 0.0448, S n value by at least 0.0771. Experiments show that our method achieves better results than some state-of-the-art methods for identifying complexes on PPI networks, with the prediction quality improved in terms of evaluation criteria.

  7. Identification of FOPDT and SOPDT process dynamics using closed loop test.

    PubMed

    Bajarangbali, Raghunath; Majhi, Somanath; Pandey, Saurabh

    2014-07-01

    In this paper, identification of stable and unstable first order, second order overdamped and underdamped process dynamics with time delay is presented. Relay with hysteresis is used to induce a limit cycle output and using this information, unknown process model parameters are estimated. State space based generalized analytical expressions are derived to achieve accurate results. To show the performance of the proposed method expressions are also derived for systems with a zero. In real time systems, measurement noise is an important issue during identification of process dynamics. A relay with hysteresis reduces the effect of measurement noise, in addition a new multiloop control strategy is proposed to recover the original limit cycle. Simulation results are included to validate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Clustering change patterns using Fourier transformation with time-course gene expression data.

    PubMed

    Kim, Jaehee

    2011-01-01

    To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a period of time because biologically related gene groups can share the same change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. This work is aimed at discovering gene groups with similar change patterns which share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. We applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns.

  9. A statistical method for measuring activation of gene regulatory networks.

    PubMed

    Esteves, Gustavo H; Reis, Luiz F L

    2018-06-13

    Gene expression data analysis is of great importance for modern molecular biology, given our ability to measure the expression profiles of thousands of genes and enabling studies rooted in systems biology. In this work, we propose a simple statistical model for the activation measuring of gene regulatory networks, instead of the traditional gene co-expression networks. We present the mathematical construction of a statistical procedure for testing hypothesis regarding gene regulatory network activation. The real probability distribution for the test statistic is evaluated by a permutation based study. To illustrate the functionality of the proposed methodology, we also present a simple example based on a small hypothetical network and the activation measuring of two KEGG networks, both based on gene expression data collected from gastric and esophageal samples. The two KEGG networks were also analyzed for a public database, available through NCBI-GEO, presented as Supplementary Material. This method was implemented in an R package that is available at the BioConductor project website under the name maigesPack.

  10. Pathway activity inference for multiclass disease classification through a mathematical programming optimisation framework.

    PubMed

    Yang, Lingjian; Ainali, Chrysanthi; Tsoka, Sophia; Papageorgiou, Lazaros G

    2014-12-05

    Applying machine learning methods on microarray gene expression profiles for disease classification problems is a popular method to derive biomarkers, i.e. sets of genes that can predict disease state or outcome. Traditional approaches where expression of genes were treated independently suffer from low prediction accuracy and difficulty of biological interpretation. Current research efforts focus on integrating information on protein interactions through biochemical pathway datasets with expression profiles to propose pathway-based classifiers that can enhance disease diagnosis and prognosis. As most of the pathway activity inference methods in literature are either unsupervised or applied on two-class datasets, there is good scope to address such limitations by proposing novel methodologies. A supervised multiclass pathway activity inference method using optimisation techniques is reported. For each pathway expression dataset, patterns of its constituent genes are summarised into one composite feature, termed pathway activity, and a novel mathematical programming model is proposed to infer this feature as a weighted linear summation of expression of its constituent genes. Gene weights are determined by the optimisation model, in a way that the resulting pathway activity has the optimal discriminative power with regards to disease phenotypes. Classification is then performed on the resulting low-dimensional pathway activity profile. The model was evaluated through a variety of published gene expression profiles that cover different types of disease. We show that not only does it improve classification accuracy, but it can also perform well in multiclass disease datasets, a limitation of other approaches from the literature. Desirable features of the model include the ability to control the maximum number of genes that may participate in determining pathway activity, which may be pre-specified by the user. Overall, this work highlights the potential of building pathway-based multi-phenotype classifiers for accurate disease diagnosis and prognosis problems.

  11. Gene selection for tumor classification using neighborhood rough sets and entropy measures.

    PubMed

    Chen, Yumin; Zhang, Zunjun; Zheng, Jianzhong; Ma, Ying; Xue, Yu

    2017-03-01

    With the development of bioinformatics, tumor classification from gene expression data becomes an important useful technology for cancer diagnosis. Since a gene expression data often contains thousands of genes and a small number of samples, gene selection from gene expression data becomes a key step for tumor classification. Attribute reduction of rough sets has been successfully applied to gene selection field, as it has the characters of data driving and requiring no additional information. However, traditional rough set method deals with discrete data only. As for the gene expression data containing real-value or noisy data, they are usually employed by a discrete preprocessing, which may result in poor classification accuracy. In this paper, we propose a novel gene selection method based on the neighborhood rough set model, which has the ability of dealing with real-value data whilst maintaining the original gene classification information. Moreover, this paper addresses an entropy measure under the frame of neighborhood rough sets for tackling the uncertainty and noisy of gene expression data. The utilization of this measure can bring about a discovery of compact gene subsets. Finally, a gene selection algorithm is designed based on neighborhood granules and the entropy measure. Some experiments on two gene expression data show that the proposed gene selection is an effective method for improving the accuracy of tumor classification. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition.

    PubMed

    Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan

    2017-01-01

    Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve.

  13. iPcc: a novel feature extraction method for accurate disease class discovery and prediction

    PubMed Central

    Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi

    2013-01-01

    Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440

  14. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  15. Validation of MIMGO: a method to identify differentially expressed GO terms in a microarray dataset

    PubMed Central

    2012-01-01

    Background We previously proposed an algorithm for the identification of GO terms that commonly annotate genes whose expression is upregulated or downregulated in some microarray data compared with in other microarray data. We call these “differentially expressed GO terms” and have named the algorithm “matrix-assisted identification method of differentially expressed GO terms” (MIMGO). MIMGO can also identify microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. However, MIMGO has not yet been validated on a real microarray dataset using all available GO terms. Findings We combined Gene Set Enrichment Analysis (GSEA) with MIMGO to identify differentially expressed GO terms in a yeast cell cycle microarray dataset. GSEA followed by MIMGO (GSEA + MIMGO) correctly identified (p < 0.05) microarray data in which genes annotated to differentially expressed GO terms are upregulated. We found that GSEA + MIMGO was slightly less effective than, or comparable to, GSEA (Pearson), a method that uses Pearson’s correlation as a metric, at detecting true differentially expressed GO terms. However, unlike other methods including GSEA (Pearson), GSEA + MIMGO can comprehensively identify the microarray data in which genes annotated with a differentially expressed GO term are upregulated or downregulated. Conclusions MIMGO is a reliable method to identify differentially expressed GO terms comprehensively. PMID:23232071

  16. Methodological study of affine transformations of gene expression data with proposed robust non-parametric multi-dimensional normalization method.

    PubMed

    Bengtsson, Henrik; Hössjer, Ola

    2006-03-01

    Low-level processing and normalization of microarray data are most important steps in microarray analysis, which have profound impact on downstream analysis. Multiple methods have been suggested to date, but it is not clear which is the best. It is therefore important to further study the different normalization methods in detail and the nature of microarray data in general. A methodological study of affine models for gene expression data is carried out. Focus is on two-channel comparative studies, but the findings generalize also to single- and multi-channel data. The discussion applies to spotted as well as in-situ synthesized microarray data. Existing normalization methods such as curve-fit ("lowess") normalization, parallel and perpendicular translation normalization, and quantile normalization, but also dye-swap normalization are revisited in the light of the affine model and their strengths and weaknesses are investigated in this context. As a direct result from this study, we propose a robust non-parametric multi-dimensional affine normalization method, which can be applied to any number of microarrays with any number of channels either individually or all at once. A high-quality cDNA microarray data set with spike-in controls is used to demonstrate the power of the affine model and the proposed normalization method. We find that an affine model can explain non-linear intensity-dependent systematic effects in observed log-ratios. Affine normalization removes such artifacts for non-differentially expressed genes and assures that symmetry between negative and positive log-ratios is obtained, which is fundamental when identifying differentially expressed genes. In addition, affine normalization makes the empirical distributions in different channels more equal, which is the purpose of quantile normalization, and may also explain why dye-swap normalization works or fails. All methods are made available in the aroma package, which is a platform-independent package for R.

  17. Which missing value imputation method to use in expression profiles: a comparative study and two selection schemes.

    PubMed

    Brock, Guy N; Shaffer, John R; Blakesley, Richard E; Lotz, Meredith J; Tseng, George C

    2008-01-10

    Gene expression data frequently contain missing values, however, most down-stream analyses for microarray experiments require complete data. In the literature many methods have been proposed to estimate missing values via information of the correlation patterns within the gene expression matrix. Each method has its own advantages, but the specific conditions for which each method is preferred remains largely unclear. In this report we describe an extensive evaluation of eight current imputation methods on multiple types of microarray experiments, including time series, multiple exposures, and multiple exposures x time series data. We then introduce two complementary selection schemes for determining the most appropriate imputation method for any given data set. We found that the optimal imputation algorithms (LSA, LLS, and BPCA) are all highly competitive with each other, and that no method is uniformly superior in all the data sets we examined. The success of each method can also depend on the underlying "complexity" of the expression data, where we take complexity to indicate the difficulty in mapping the gene expression matrix to a lower-dimensional subspace. We developed an entropy measure to quantify the complexity of expression matrixes and found that, by incorporating this information, the entropy-based selection (EBS) scheme is useful for selecting an appropriate imputation algorithm. We further propose a simulation-based self-training selection (STS) scheme. This technique has been used previously for microarray data imputation, but for different purposes. The scheme selects the optimal or near-optimal method with high accuracy but at an increased computational cost. Our findings provide insight into the problem of which imputation method is optimal for a given data set. Three top-performing methods (LSA, LLS and BPCA) are competitive with each other. Global-based imputation methods (PLS, SVD, BPCA) performed better on mcroarray data with lower complexity, while neighbour-based methods (KNN, OLS, LSA, LLS) performed better in data with higher complexity. We also found that the EBS and STS schemes serve as complementary and effective tools for selecting the optimal imputation algorithm.

  18. Instrumentation for noninvasive express-diagnostics bacteriophages and viruses by optical method

    NASA Astrophysics Data System (ADS)

    Moguilnaia, Tatiana A.; Andreev, Gleb I.; Agibalov, Andrey A.; Botikov, Andrey G.; Kosenkov, Evgeniy; Saguitova, Elena

    2004-03-01

    The theoretical and the experimental researches of spectra of absent-minded radiation in medium containing viruses were carried out. The information on spectra luminescence 31 viruses was written down.The new method the express - analysis of viruses in organism of the man was developed. It shall be mentioned that the proposed method of express diagnostics allows detection of infection agent in the organism several hours after infection. It makes it suitable for high efficient testing in blood services for detection and rejection of potential donors infected with such viruses as hepatitis, herpes, Epstein-Barre, cytomegalovirus, and immunodeficiency. Methods of serum diagnostics used for that purpose can detect antibodies to virus only 1-3 months after the person has been infected. The device for the express analysis of 31 viruses of the man was created.

  19. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  20. Research on facial expression simulation based on depth image

    NASA Astrophysics Data System (ADS)

    Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao

    2017-11-01

    Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.

  1. Atomistic full-quantum transport model for zigzag graphene nanoribbon-based structures: Complex energy-band method

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Nan; Luo, Win-Jet; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying

    2018-01-01

    Using a non-equilibrium Green’s function framework in combination with the complex energy-band method, an atomistic full-quantum model for solving quantum transport problems for a zigzag-edge graphene nanoribbon (zGNR) structure is proposed. For transport calculations, the mathematical expressions from the theory for zGNR-based device structures are derived in detail. The transport properties of zGNR-based devices are calculated and studied in detail using the proposed method.

  2. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes

    PubMed Central

    Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates. PMID:26964035

  3. Differential gene expression detection and sample classification using penalized linear regression models.

    PubMed

    Wu, Baolin

    2006-02-15

    Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.

  4. Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

    PubMed

    Sun, Xiaoxiao; Dalpiaz, David; Wu, Di; S Liu, Jun; Zhong, Wenxuan; Ma, Ping

    2016-08-26

    Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.

  5. Discrimination of gender using facial image with expression change

    NASA Astrophysics Data System (ADS)

    Kuniyada, Jun; Fukuda, Takahiro; Terada, Kenji

    2005-12-01

    By carrying out marketing research, the managers of large-sized department stores or small convenience stores obtain the information such as ratio of men and women of visitors and an age group, and improve their management plan. However, these works are carried out in the manual operations, and it becomes a big burden to small stores. In this paper, the authors propose a method of men and women discrimination by extracting difference of the facial expression change from color facial images. Now, there are a lot of methods of the automatic recognition of the individual using a motion facial image or a still facial image in the field of image processing. However, it is very difficult to discriminate gender under the influence of the hairstyle and clothes, etc. Therefore, we propose the method which is not affected by personality such as size and position of facial parts by paying attention to a change of an expression. In this method, it is necessary to obtain two facial images with an expression and an expressionless. First, a region of facial surface and the regions of facial parts such as eyes, nose, and mouth are extracted in the facial image with color information of hue and saturation in HSV color system and emphasized edge information. Next, the features are extracted by calculating the rate of the change of each facial part generated by an expression change. In the last step, the values of those features are compared between the input data and the database, and the gender is discriminated. In this paper, it experimented for the laughing expression and smile expression, and good results were provided for discriminating gender.

  6. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  7. Mutual information estimation reveals global associations between stimuli and biological processes

    PubMed Central

    Suzuki, Taiji; Sugiyama, Masashi; Kanamori, Takafumi; Sese, Jun

    2009-01-01

    Background Although microarray gene expression analysis has become popular, it remains difficult to interpret the biological changes caused by stimuli or variation of conditions. Clustering of genes and associating each group with biological functions are often used methods. However, such methods only detect partial changes within cell processes. Herein, we propose a method for discovering global changes within a cell by associating observed conditions of gene expression with gene functions. Results To elucidate the association, we introduce a novel feature selection method called Least-Squares Mutual Information (LSMI), which computes mutual information without density estimaion, and therefore LSMI can detect nonlinear associations within a cell. We demonstrate the effectiveness of LSMI through comparison with existing methods. The results of the application to yeast microarray datasets reveal that non-natural stimuli affect various biological processes, whereas others are no significant relation to specific cell processes. Furthermore, we discover that biological processes can be categorized into four types according to the responses of various stimuli: DNA/RNA metabolism, gene expression, protein metabolism, and protein localization. Conclusion We proposed a novel feature selection method called LSMI, and applied LSMI to mining the association between conditions of yeast and biological processes through microarray datasets. In fact, LSMI allows us to elucidate the global organization of cellular process control. PMID:19208155

  8. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  9. GC-Content Normalization for RNA-Seq Data

    PubMed Central

    2011-01-01

    Background Transcriptome sequencing (RNA-Seq) has become the assay of choice for high-throughput studies of gene expression. However, as is the case with microarrays, major technology-related artifacts and biases affect the resulting expression measures. Normalization is therefore essential to ensure accurate inference of expression levels and subsequent analyses thereof. Results We focus on biases related to GC-content and demonstrate the existence of strong sample-specific GC-content effects on RNA-Seq read counts, which can substantially bias differential expression analysis. We propose three simple within-lane gene-level GC-content normalization approaches and assess their performance on two different RNA-Seq datasets, involving different species and experimental designs. Our methods are compared to state-of-the-art normalization procedures in terms of bias and mean squared error for expression fold-change estimation and in terms of Type I error and p-value distributions for tests of differential expression. The exploratory data analysis and normalization methods proposed in this article are implemented in the open-source Bioconductor R package EDASeq. Conclusions Our within-lane normalization procedures, followed by between-lane normalization, reduce GC-content bias and lead to more accurate estimates of expression fold-changes and tests of differential expression. Such results are crucial for the biological interpretation of RNA-Seq experiments, where downstream analyses can be sensitive to the supplied lists of genes. PMID:22177264

  10. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  11. Human fatigue expression recognition through image-based dynamic multi-information and bimodal deep learning

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin

    2016-09-01

    Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.

  12. ConGEMs: Condensed Gene Co-Expression Module Discovery Through Rule-Based Clustering and Its Application to Carcinogenesis.

    PubMed

    Mallik, Saurav; Zhao, Zhongming

    2017-12-28

    For transcriptomic analysis, there are numerous microarray-based genomic data, especially those generated for cancer research. The typical analysis measures the difference between a cancer sample-group and a matched control group for each transcript or gene. Association rule mining is used to discover interesting item sets through rule-based methodology. Thus, it has advantages to find causal effect relationships between the transcripts. In this work, we introduce two new rule-based similarity measures-weighted rank-based Jaccard and Cosine measures-and then propose a novel computational framework to detect condensed gene co-expression modules ( C o n G E M s) through the association rule-based learning system and the weighted similarity scores. In practice, the list of evolved condensed markers that consists of both singular and complex markers in nature depends on the corresponding condensed gene sets in either antecedent or consequent of the rules of the resultant modules. In our evaluation, these markers could be supported by literature evidence, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and Gene Ontology annotations. Specifically, we preliminarily identified differentially expressed genes using an empirical Bayes test. A recently developed algorithm-RANWAR-was then utilized to determine the association rules from these genes. Based on that, we computed the integrated similarity scores of these rule-based similarity measures between each rule-pair, and the resultant scores were used for clustering to identify the co-expressed rule-modules. We applied our method to a gene expression dataset for lung squamous cell carcinoma and a genome methylation dataset for uterine cervical carcinogenesis. Our proposed module discovery method produced better results than the traditional gene-module discovery measures. In summary, our proposed rule-based method is useful for exploring biomarker modules from transcriptomic data.

  13. Evaluation of Two Outlier-Detection-Based Methods for Detecting Tissue-Selective Genes from Microarray Data

    PubMed Central

    Kadota, Koji; Konishi, Tomokazu; Shimizu, Kentaro

    2007-01-01

    Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent’s non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent’s method is not suitable for ROKU. PMID:19936074

  14. Psychometric challenges and proposed solutions when scoring facial emotion expression codes.

    PubMed

    Olderbak, Sally; Hildebrandt, Andrea; Pinkpank, Thomas; Sommer, Werner; Wilhelm, Oliver

    2014-12-01

    Coding of facial emotion expressions is increasingly performed by automated emotion expression scoring software; however, there is limited discussion on how best to score the resulting codes. We present a discussion of facial emotion expression theories and a review of contemporary emotion expression coding methodology. We highlight methodological challenges pertinent to scoring software-coded facial emotion expression codes and present important psychometric research questions centered on comparing competing scoring procedures of these codes. Then, on the basis of a time series data set collected to assess individual differences in facial emotion expression ability, we derive, apply, and evaluate several statistical procedures, including four scoring methods and four data treatments, to score software-coded emotion expression data. These scoring procedures are illustrated to inform analysis decisions pertaining to the scoring and data treatment of other emotion expression questions and under different experimental circumstances. Overall, we found applying loess smoothing and controlling for baseline facial emotion expression and facial plasticity are recommended methods of data treatment. When scoring facial emotion expression ability, maximum score is preferred. Finally, we discuss the scoring methods and data treatments in the larger context of emotion expression research.

  15. The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection.

    PubMed

    Sun, Yingqiang; Lu, Chengbo; Li, Xiaobo

    2018-05-17

    The gene expression profile has the characteristics of a high dimension, low sample, and continuous type, and it is a great challenge to use gene expression profile data for the classification of tumor samples. This paper proposes a cross-entropy based multi-filter ensemble (CEMFE) method for microarray data classification. Firstly, multiple filters are used to select the microarray data in order to obtain a plurality of the pre-selected feature subsets with a different classification ability. The top N genes with the highest rank of each subset are integrated so as to form a new data set. Secondly, the cross-entropy algorithm is used to remove the redundant data in the data set. Finally, the wrapper method, which is based on forward feature selection, is used to select the best feature subset. The experimental results show that the proposed method is more efficient than other gene selection methods and that it can achieve a higher classification accuracy under fewer characteristic genes.

  16. A formal approach to the analysis of clinical computer-interpretable guideline modeling languages.

    PubMed

    Grando, M Adela; Glasspool, David; Fox, John

    2012-01-01

    To develop proof strategies to formally study the expressiveness of workflow-based languages, and to investigate their applicability to clinical computer-interpretable guideline (CIG) modeling languages. We propose two strategies for studying the expressiveness of workflow-based languages based on a standard set of workflow patterns expressed as Petri nets (PNs) and notions of congruence and bisimilarity from process calculus. Proof that a PN-based pattern P can be expressed in a language L can be carried out semi-automatically. Proof that a language L cannot provide the behavior specified by a PNP requires proof by exhaustion based on analysis of cases and cannot be performed automatically. The proof strategies are generic but we exemplify their use with a particular CIG modeling language, PROforma. To illustrate the method we evaluate the expressiveness of PROforma against three standard workflow patterns and compare our results with a previous similar but informal comparison. We show that the two proof strategies are effective in evaluating a CIG modeling language against standard workflow patterns. We find that using the proposed formal techniques we obtain different results to a comparable previously published but less formal study. We discuss the utility of these analyses as the basis for principled extensions to CIG modeling languages. Additionally we explain how the same proof strategies can be reused to prove the satisfaction of patterns expressed in the declarative language CIGDec. The proof strategies we propose are useful tools for analysing the expressiveness of CIG modeling languages. This study provides good evidence of the benefits of applying formal methods of proof over semi-formal ones. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A range-free method to determine antoine vapor-pressure heat transfer-related equation coefficients using the Boubaker polynomial expansion scheme

    NASA Astrophysics Data System (ADS)

    Koçak, H.; Dahong, Z.; Yildirim, A.

    2011-05-01

    In this study, a range-free method is proposed in order to determine the Antoine constants for a given material (salicylic acid). The advantage of this method is mainly yielding analytical expressions which fit different temperature ranges.

  18. Fractal Clustering and Knowledge-driven Validation Assessment for Gene Expression Profiling.

    PubMed

    Wang, Lu-Yong; Balasubramanian, Ammaiappan; Chakraborty, Amit; Comaniciu, Dorin

    2005-01-01

    DNA microarray experiments generate a substantial amount of information about the global gene expression. Gene expression profiles can be represented as points in multi-dimensional space. It is essential to identify relevant groups of genes in biomedical research. Clustering is helpful in pattern recognition in gene expression profiles. A number of clustering techniques have been introduced. However, these traditional methods mainly utilize shape-based assumption or some distance metric to cluster the points in multi-dimension linear Euclidean space. Their results shows poor consistence with the functional annotation of genes in previous validation study. From a novel different perspective, we propose fractal clustering method to cluster genes using intrinsic (fractal) dimension from modern geometry. This method clusters points in such a way that points in the same clusters are more self-affine among themselves than to the points in other clusters. We assess this method using annotation-based validation assessment for gene clusters. It shows that this method is superior in identifying functional related gene groups than other traditional methods.

  19. RGSS-ID: an approach to new radiologic reporting system.

    PubMed

    Ikeda, M; Sakuma, S; Maruyama, K

    1990-01-01

    RGSS-ID is a developmental computer system that applies artificial intelligence (AI) methods to a reporting system. The representation scheme called Generalized Finding Representation (GFR) is proposed to bridge the gap between natural language expressions in the radiology report and AI methods. The entry process of RGSS-ID is made mainly by selecting items; our system allows a radiologist to compose a sentence which can be completely parsed by the computer. Further RGSS-ID encodes findings into the expression corresponding to GFR, and stores this expression into the knowledge data base. The final printed report is made in the natural language.

  20. A novel feature ranking method for prediction of cancer stages using proteomics data

    PubMed Central

    Saghapour, Ehsan; Sehhati, Mohammadreza

    2017-01-01

    Proteomic analysis of cancers' stages has provided new opportunities for the development of novel, highly sensitive diagnostic tools which helps early detection of cancer. This paper introduces a new feature ranking approach called FRMT. FRMT is based on the Technique for Order of Preference by Similarity to Ideal Solution method (TOPSIS) which select the most discriminative proteins from proteomics data for cancer staging. In this approach, outcomes of 10 feature selection techniques were combined by TOPSIS method, to select the final discriminative proteins from seven different proteomic databases of protein expression profiles. In the proposed workflow, feature selection methods and protein expressions have been considered as criteria and alternatives in TOPSIS, respectively. The proposed method is tested on seven various classifier models in a 10-fold cross validation procedure that repeated 30 times on the seven cancer datasets. The obtained results proved the higher stability and superior classification performance of method in comparison with other methods, and it is less sensitive to the applied classifier. Moreover, the final introduced proteins are informative and have the potential for application in the real medical practice. PMID:28934234

  1. Applying Suffix Rules to Organization Name Recognition

    NASA Astrophysics Data System (ADS)

    Inui, Takashi; Murakami, Koji; Hashimoto, Taiichi; Utsumi, Kazuo; Ishikawa, Masamichi

    This paper presents a method for boosting the performance of the organization name recognition, which is a part of named entity recognition (NER). Although gazetteers (lists of the NEs) have been known as one of the effective features for supervised machine learning approaches on the NER task, the previous methods which have applied the gazetteers to the NER were very simple. The gazetteers have been used just for searching the exact matches between input text and NEs included in them. The proposed method generates regular expression rules from gazetteers, and, with these rules, it can realize a high-coverage searches based on looser matches between input text and NEs. To generate these rules, we focus on the two well-known characteristics of NE expressions; 1) most of NE expressions can be divided into two parts, class-reference part and instance-reference part, 2) for most of NE expressions the class-reference parts are located at the suffix position of them. A pattern mining algorithm runs on the set of NEs in the gazetteers, and some frequent word sequences from which NEs are constructed are found. Then, we employ only word sequences which have the class-reference part at the suffix position as suffix rules. Experimental results showed that our proposed method improved the performance of the organization name recognition, and achieved the 84.58 F-value for evaluation data.

  2. High-resolution face verification using pore-scale facial features.

    PubMed

    Li, Dong; Zhou, Huiling; Lam, Kin-Man

    2015-08-01

    Face recognition methods, which usually represent face images using holistic or local facial features, rely heavily on alignment. Their performances also suffer a severe degradation under variations in expressions or poses, especially when there is one gallery per subject only. With the easy access to high-resolution (HR) face images nowadays, some HR face databases have recently been developed. However, few studies have tackled the use of HR information for face recognition or verification. In this paper, we propose a pose-invariant face-verification method, which is robust to alignment errors, using the HR information based on pore-scale facial features. A new keypoint descriptor, namely, pore-Principal Component Analysis (PCA)-Scale Invariant Feature Transform (PPCASIFT)-adapted from PCA-SIFT-is devised for the extraction of a compact set of distinctive pore-scale facial features. Having matched the pore-scale features of two-face regions, an effective robust-fitting scheme is proposed for the face-verification task. Experiments show that, with one frontal-view gallery only per subject, our proposed method outperforms a number of standard verification methods, and can achieve excellent accuracy even the faces are under large variations in expression and pose.

  3. An alternative Biot's displacement formulation for porous materials.

    PubMed

    Dazel, Olivier; Brouard, Bruno; Depollier, Claude; Griffiths, Stéphane

    2007-06-01

    This paper proposes an alternative displacement formulation of Biot's linear model for poroelastic materials. Its advantage is a simplification of the formalism without making any additional assumptions. The main difference between the method proposed in this paper and the original one is the choice of the generalized coordinates. In the present approach, the generalized coordinates are chosen in order to simplify the expression of the strain energy, which is expressed as the sum of two decoupled terms. Hence, new equations of motion are obtained whose elastic forces are decoupled. The simplification of the formalism is extended to Biot and Willis thought experiments, and simpler expressions of the parameters of the three Biot waves are also provided. A rigorous derivation of equivalent and limp models is then proposed. It is finally shown that, for the particular case of sound-absorbing materials, additional simplifications of the formalism can be obtained.

  4. Implementation of plaid model biclustering method on microarray of carcinoma and adenoma tumor gene expression data

    NASA Astrophysics Data System (ADS)

    Ardaneswari, Gianinna; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    A Tumor is an abnormal growth of cells that serves no purpose. Carcinoma is a tumor that grows from the top of the cell membrane and the organ adenoma is a benign tumor of the gland-like cells or epithelial tissue. In the field of molecular biology, the development of microarray technology is used in the data store of disease genetic expression. For each of microarray gene, an amount of information is stored for each trait or condition. In gene expression data clustering can be done with a bicluster algorithm, thats clustering method which not only the objects to be clustered, but also the properties or condition of the object. This research proposed Plaid Model Biclustering as one of biclustering method. In this study, we discuss the implementation of Plaid Model Biclustering Method on microarray of Carcinoma and Adenoma tumor gene expression data. From the experimental results, we found three biclusters are formed by Carcinoma gene expression data and four biclusters are formed by Adenoma gene expression data.

  5. Dynamic texture recognition using local binary patterns with an application to facial expressions.

    PubMed

    Zhao, Guoying; Pietikäinen, Matti

    2007-06-01

    Dynamic texture (DT) is an extension of texture to the temporal domain. Description and recognition of DTs have attracted growing attention. In this paper, a novel approach for recognizing DTs is proposed and its simplifications and extensions to facial image analysis are also considered. First, the textures are modeled with volume local binary patterns (VLBP), which are an extension of the LBP operator widely used in ordinary texture analysis, combining motion and appearance. To make the approach computationally simple and easy to extend, only the co-occurrences of the local binary patterns on three orthogonal planes (LBP-TOP) are then considered. A block-based method is also proposed to deal with specific dynamic events such as facial expressions in which local information and its spatial locations should also be taken into account. In experiments with two DT databases, DynTex and Massachusetts Institute of Technology (MIT), both the VLBP and LBP-TOP clearly outperformed the earlier approaches. The proposed block-based method was evaluated with the Cohn-Kanade facial expression database with excellent results. The advantages of our approach include local processing, robustness to monotonic gray-scale changes, and simple computation.

  6. Dual Temporal Scale Convolutional Neural Network for Micro-Expression Recognition

    PubMed Central

    Peng, Min; Wang, Chongyang; Chen, Tong; Liu, Guangyuan; Fu, Xiaolan

    2017-01-01

    Facial micro-expression is a brief involuntary facial movement and can reveal the genuine emotion that people try to conceal. Traditional methods of spontaneous micro-expression recognition rely excessively on sophisticated hand-crafted feature design and the recognition rate is not high enough for its practical application. In this paper, we proposed a Dual Temporal Scale Convolutional Neural Network (DTSCNN) for spontaneous micro-expressions recognition. The DTSCNN is a two-stream network. Different of stream of DTSCNN is used to adapt to different frame rate of micro-expression video clips. Each stream of DSTCNN consists of independent shallow network for avoiding the overfitting problem. Meanwhile, we fed the networks with optical-flow sequences to ensure that the shallow networks can further acquire higher-level features. Experimental results on spontaneous micro-expression databases (CASME I/II) showed that our method can achieve a recognition rate almost 10% higher than what some state-of-the-art method can achieve. PMID:29081753

  7. Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer

    PubMed Central

    Ruffalo, Matthew

    2015-01-01

    Development of high-throughput monitoring technologies enables interrogation of cancer samples at various levels of cellular activity. Capitalizing on these developments, various public efforts such as The Cancer Genome Atlas (TCGA) generate disparate omic data for large patient cohorts. As demonstrated by recent studies, these heterogeneous data sources provide the opportunity to gain insights into the molecular changes that drive cancer pathogenesis and progression. However, these insights are limited by the vast search space and as a result low statistical power to make new discoveries. In this paper, we propose methods for integrating disparate omic data using molecular interaction networks, with a view to gaining mechanistic insights into the relationship between molecular changes at different levels of cellular activity. Namely, we hypothesize that genes that play a role in cancer development and progression may be implicated by neither frequent mutation nor differential expression, and that network-based integration of mutation and differential expression data can reveal these “silent players”. For this purpose, we utilize network-propagation algorithms to simulate the information flow in the cell at a sample-specific resolution. We then use the propagated mutation and expression signals to identify genes that are not necessarily mutated or differentially expressed genes, but have an essential role in tumor development and patient outcome. We test the proposed method on breast cancer and glioblastoma multiforme data obtained from TCGA. Our results show that the proposed method can identify important proteins that are not readily revealed by molecular data, providing insights beyond what can be gleaned by analyzing different types of molecular data in isolation. PMID:26683094

  8. Prediction of essential proteins based on gene expression programming.

    PubMed

    Zhong, Jiancheng; Wang, Jianxin; Peng, Wei; Zhang, Zhen; Pan, Yi

    2013-01-01

    Essential proteins are indispensable for cell survive. Identifying essential proteins is very important for improving our understanding the way of a cell working. There are various types of features related to the essentiality of proteins. Many methods have been proposed to combine some of them to predict essential proteins. However, it is still a big challenge for designing an effective method to predict them by integrating different features, and explaining how these selected features decide the essentiality of protein. Gene expression programming (GEP) is a learning algorithm and what it learns specifically is about relationships between variables in sets of data and then builds models to explain these relationships. In this work, we propose a GEP-based method to predict essential protein by combing some biological features and topological features. We carry out experiments on S. cerevisiae data. The experimental results show that the our method achieves better prediction performance than those methods using individual features. Moreover, our method outperforms some machine learning methods and performs as well as a method which is obtained by combining the outputs of eight machine learning methods. The accuracy of predicting essential proteins can been improved by using GEP method to combine some topological features and biological features.

  9. Foveation: an alternative method to simultaneously preserve privacy and information in face images

    NASA Astrophysics Data System (ADS)

    Alonso, Víctor E.; Enríquez-Caldera, Rogerio; Sucar, Luis Enrique

    2017-03-01

    This paper presents a real-time foveation technique proposed as an alternative method for image obfuscation while simultaneously preserving privacy in face deidentification. Relevance of the proposed technique is discussed through a comparative study of the most common distortions methods in face images and an assessment on performance and effectiveness of privacy protection. All the different techniques presented here are evaluated when they go through a face recognition software. Evaluating the data utility preservation was carried out under gender and facial expression classification. Results on quantifying the tradeoff between privacy protection and image information preservation at different obfuscation levels are presented. Comparative results using the facial expression subset of the FERET database show that the technique achieves a good tradeoff between privacy and awareness with 30% of recognition rate and a classification accuracy as high as 88% obtained from the common figures of merit using the privacy-awareness map.

  10. Correlation Characterization of Particles in Volume Based on Peak-to-Basement Ratio

    PubMed Central

    Vovk, Tatiana A.; Petrov, Nikolay V.

    2017-01-01

    We propose a new express method of the correlation characterization of the particles suspended in the volume of optically transparent medium. It utilizes inline digital holography technique for obtaining two images of the adjacent layers from the investigated volume with subsequent matching of the cross-correlation function peak-to-basement ratio calculated for these images. After preliminary calibration via numerical simulation, the proposed method allows one to quickly distinguish parameters of the particle distribution and evaluate their concentration. The experimental verification was carried out for the two types of physical suspensions. Our method can be applied in environmental and biological research, which includes analyzing tools in flow cytometry devices, express characterization of particles and biological cells in air and water media, and various technical tasks, e.g. the study of scattering objects or rapid determination of cutting tool conditions in mechanisms. PMID:28252020

  11. Normal uniform mixture differential gene expression detection for cDNA microarrays

    PubMed Central

    Dean, Nema; Raftery, Adrian E

    2005-01-01

    Background One of the primary tasks in analysing gene expression data is finding genes that are differentially expressed in different samples. Multiple testing issues due to the thousands of tests run make some of the more popular methods for doing this problematic. Results We propose a simple method, Normal Uniform Differential Gene Expression (NUDGE) detection for finding differentially expressed genes in cDNA microarrays. The method uses a simple univariate normal-uniform mixture model, in combination with new normalization methods for spread as well as mean that extend the lowess normalization of Dudoit, Yang, Callow and Speed (2002) [1]. It takes account of multiple testing, and gives probabilities of differential expression as part of its output. It can be applied to either single-slide or replicated experiments, and it is very fast. Three datasets are analyzed using NUDGE, and the results are compared to those given by other popular methods: unadjusted and Bonferroni-adjusted t tests, Significance Analysis of Microarrays (SAM), and Empirical Bayes for microarrays (EBarrays) with both Gamma-Gamma and Lognormal-Normal models. Conclusion The method gives a high probability of differential expression to genes known/suspected a priori to be differentially expressed and a low probability to the others. In terms of known false positives and false negatives, the method outperforms all multiple-replicate methods except for the Gamma-Gamma EBarrays method to which it offers comparable results with the added advantages of greater simplicity, speed, fewer assumptions and applicability to the single replicate case. An R package called nudge to implement the methods in this paper will be made available soon at . PMID:16011807

  12. Model-based clustering for RNA-seq data.

    PubMed

    Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P

    2014-01-15

    RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org

  13. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    PubMed

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  14. Covariance Matrix Estimation for Massive MIMO

    NASA Astrophysics Data System (ADS)

    Upadhya, Karthik; Vorobyov, Sergiy A.

    2018-04-01

    We propose a novel pilot structure for covariance matrix estimation in massive multiple-input multiple-output (MIMO) systems in which each user transmits two pilot sequences, with the second pilot sequence multiplied by a random phase-shift. The covariance matrix of a particular user is obtained by computing the sample cross-correlation of the channel estimates obtained from the two pilot sequences. This approach relaxes the requirement that all the users transmit their uplink pilots over the same set of symbols. We derive expressions for the achievable rate and the mean-squared error of the covariance matrix estimate when the proposed method is used with staggered pilots. The performance of the proposed method is compared with existing methods through simulations.

  15. AUC-based biomarker ensemble with an application on gene scores predicting low bone mineral density.

    PubMed

    Zhao, X G; Dai, W; Li, Y; Tian, L

    2011-11-01

    The area under the receiver operating characteristic (ROC) curve (AUC), long regarded as a 'golden' measure for the predictiveness of a continuous score, has propelled the need to develop AUC-based predictors. However, the AUC-based ensemble methods are rather scant, largely due to the fact that the associated objective function is neither continuous nor concave. Indeed, there is no reliable numerical algorithm identifying optimal combination of a set of biomarkers to maximize the AUC, especially when the number of biomarkers is large. We have proposed a novel AUC-based statistical ensemble methods for combining multiple biomarkers to differentiate a binary response of interest. Specifically, we propose to replace the non-continuous and non-convex AUC objective function by a convex surrogate loss function, whose minimizer can be efficiently identified. With the established framework, the lasso and other regularization techniques enable feature selections. Extensive simulations have demonstrated the superiority of the new methods to the existing methods. The proposal has been applied to a gene expression dataset to construct gene expression scores to differentiate elderly women with low bone mineral density (BMD) and those with normal BMD. The AUCs of the resulting scores in the independent test dataset has been satisfactory. Aiming for directly maximizing AUC, the proposed AUC-based ensemble method provides an efficient means of generating a stable combination of multiple biomarkers, which is especially useful under the high-dimensional settings. lutian@stanford.edu. Supplementary data are available at Bioinformatics online.

  16. DNA ARRAYS TO MONITOR GENE EXPRESSION IN RAT BLOOD AND UTERUS FOLLOWING 17BETA-ESTRADIOL EXPOSURE: BIOMONITORING ENVIRONMENTAL EFFECTS USING SURROGATE TISSUES

    EPA Science Inventory

    We propose that gene expression changes in accessible tissues such as blood often reflect those in inaccessible tissues, thus offering a convenient biomonitoring method to provide insight into the effects of environmental toxicants on such tissues. In this pilot study, gene expre...

  17. Urban local climate zone mapping and apply in urban environment study

    NASA Astrophysics Data System (ADS)

    He, Shan; Zhang, Yunwei; Zhang, Jili

    2018-02-01

    The city’s local climate zone (LCZ) was considered to be a powerful tool for urban climate mapping. But for cities in different countries and regions, the LCZ division methods and results were different, thus targeted researches should be performed. In the current work, a LCZ mapping method was proposed, which is convenient in operation and city planning oriented. In this proposed method, the local climate zoning types were adjusted firstly, according to the characteristics of Chinese city, that more tall buildings and high density. Then the classification method proposed by WUDAPT based on remote sensing data was performed on Xi’an city, as an example, for LCZ mapping. Combined with the city road network, a reasonable expression of the dividing results was provided, to adapt to the characteristics in city planning that land parcels are usually recognized as the basic unit. The proposed method was validated against the actual land use and construction data that surveyed in Xi’an, with results indicating the feasibility of the proposed method for urban LCZ mapping in China.

  18. Research on multi-source image fusion technology in haze environment

    NASA Astrophysics Data System (ADS)

    Ma, GuoDong; Piao, Yan; Li, Bing

    2017-11-01

    In the haze environment, the visible image collected by a single sensor can express the details of the shape, color and texture of the target very well, but because of the haze, the sharpness is low and some of the target subjects are lost; Because of the expression of thermal radiation and strong penetration ability, infrared image collected by a single sensor can clearly express the target subject, but it will lose detail information. Therefore, the multi-source image fusion method is proposed to exploit their respective advantages. Firstly, the improved Dark Channel Prior algorithm is used to preprocess the visible haze image. Secondly, the improved SURF algorithm is used to register the infrared image and the haze-free visible image. Finally, the weighted fusion algorithm based on information complementary is used to fuse the image. Experiments show that the proposed method can improve the clarity of the visible target and highlight the occluded infrared target for target recognition.

  19. Efficient scheme for parametric fitting of data in arbitrary dimensions.

    PubMed

    Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching

    2008-07-01

    We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.

  20. Modal analysis of wave propagation in dispersive media

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. Ismail; Gralak, B.

    2018-01-01

    Surveys on wave propagation in dispersive media have been limited since the pioneering work of Sommerfeld [Ann. Phys. 349, 177 (1914), 10.1002/andp.19143491002] by the presence of branches in the integral expression of the wave function. In this article a method is proposed to eliminate these critical branches and hence to establish a modal expansion of the time-dependent wave function. The different components of the transient waves are physically interpreted as the contributions of distinct sets of modes and characterized accordingly. Then, the modal expansion is used to derive a modified analytical expression of the Sommerfeld precursor improving significantly the description of the amplitude and the oscillating period up to the arrival of the Brillouin precursor. The proposed method and results apply to all waves governed by the Helmholtz equations.

  1. Unsupervised Outlier Profile Analysis

    PubMed Central

    Ghosh, Debashis; Li, Song

    2014-01-01

    In much of the analysis of high-throughput genomic data, “interesting” genes have been selected based on assessment of differential expression between two groups or generalizations thereof. Most of the literature focuses on changes in mean expression or the entire distribution. In this article, we explore the use of C(α) tests, which have been applied in other genomic data settings. Their use for the outlier expression problem, in particular with continuous data, is problematic but nevertheless motivates new statistics that give an unsupervised analog to previously developed outlier profile analysis approaches. Some simulation studies are used to evaluate the proposal. A bivariate extension is described that can accommodate data from two platforms on matched samples. The proposed methods are applied to data from a prostate cancer study. PMID:25452686

  2. An express method for optimally tuning an analog controller with respect to integral quality criteria

    NASA Astrophysics Data System (ADS)

    Golinko, I. M.; Kovrigo, Yu. M.; Kubrak, A. I.

    2014-03-01

    An express method for optimally tuning analog PI and PID controllers is considered. An integral quality criterion with minimizing the control output is proposed for optimizing control systems. The suggested criterion differs from existing ones in that the control output applied to the technological process is taken into account in a correct manner, due to which it becomes possible to maximally reduce the expenditure of material and/or energy resources in performing control of industrial equipment sets. With control organized in such manner, smaller wear and longer service life of control devices are achieved. A unimodal nature of the proposed criterion for optimally tuning a controller is numerically demonstrated using the methods of optimization theory. A functional interrelation between the optimal controller parameters and dynamic properties of a controlled plant is numerically determined for a single-loop control system. The results obtained from simulation of transients in a control system carried out using the proposed and existing functional dependences are compared with each other. The proposed calculation formulas differ from the existing ones by a simple structure and highly accurate search for the optimal controller tuning parameters. The obtained calculation formulas are recommended for being used by specialists in automation for design and optimization of control systems.

  3. Combining facial dynamics with appearance for age estimation.

    PubMed

    Dibeklioglu, Hamdi; Alnajar, Fares; Ali Salah, Albert; Gevers, Theo

    2015-06-01

    Estimating the age of a human from the captured images of his/her face is a challenging problem. In general, the existing approaches to this problem use appearance features only. In this paper, we show that in addition to appearance information, facial dynamics can be leveraged in age estimation. We propose a method to extract and use dynamic features for age estimation, using a person's smile. Our approach is tested on a large, gender-balanced database with 400 subjects, with an age range between 8 and 76. In addition, we introduce a new database on posed disgust expressions with 324 subjects in the same age range, and evaluate the reliability of the proposed approach when used with another expression. State-of-the-art appearance-based age estimation methods from the literature are implemented as baseline. We demonstrate that for each of these methods, the addition of the proposed dynamic features results in statistically significant improvement. We further propose a novel hierarchical age estimation architecture based on adaptive age grouping. We test our approach extensively, including an exploration of spontaneous versus posed smile dynamics, and gender-specific age estimation. We show that using spontaneity information reduces the mean absolute error by up to 21%, advancing the state of the art for facial age estimation.

  4. Critical appraisal of rigour in interpretive phenomenological nursing research.

    PubMed

    de Witt, Lorna; Ploeg, Jenny

    2006-07-01

    This paper reports a critical review of published nursing research for expressions of rigour in interpretive phenomenology, and a new framework of rigour specific to this methodology is proposed. The rigour of interpretive phenomenology is an important nursing research methods issue that has direct implications for the legitimacy of nursing science. The use of a generic set of qualitative criteria of rigour for interpretive phenomenological studies is problematic because it is philosophically inconsistent with the methodology and creates obstacles to full expression of rigour in such studies. A critical review was conducted of the published theoretical interpretive phenomenological nursing literature from 1994 to 2004 and the expressions of rigour in this literature identified. We used three sources to inform the derivation of a proposed framework of expressions of rigour for interpretive phenomenology: the phenomenological scholar van Manen, the theoretical interpretive phenomenological nursing literature, and Madison's criteria of rigour for hermeneutic phenomenology. The nursing literature reveals a broad range of criteria for judging the rigour of interpretive phenomenological research. The proposed framework for evaluating rigour in this kind of research contains the following five expressions: balanced integration, openness, concreteness, resonance, and actualization. Balanced integration refers to the intertwining of philosophical concepts in the study methods and findings and a balance between the voices of study participants and the philosophical explanation. Openness is related to a systematic, explicit process of accounting for the multiple decisions made throughout the study process. Concreteness relates to usefulness for practice of study findings. Resonance encompasses the experiential or felt effect of reading study findings upon the reader. Finally, actualization refers to the future realization of the resonance of study findings. Adoption of this or similar frameworks of expressions of rigour could help to preserve the integrity and legitimacy of interpretive phenomenological nursing research.

  5. Computational synchronization of microarray data with application to Plasmodium falciparum.

    PubMed

    Zhao, Wei; Dauwels, Justin; Niles, Jacquin C; Cao, Jianshu

    2012-06-21

    Microarrays are widely used to investigate the blood stage of Plasmodium falciparum infection. Starting with synchronized cells, gene expression levels are continually measured over the 48-hour intra-erythrocytic cycle (IDC). However, the cell population gradually loses synchrony during the experiment. As a result, the microarray measurements are blurred. In this paper, we propose a generalized deconvolution approach to reconstruct the intrinsic expression pattern, and apply it to P. falciparum IDC microarray data. We develop a statistical model for the decay of synchrony among cells, and reconstruct the expression pattern through statistical inference. The proposed method can handle microarray measurements with noise and missing data. The original gene expression patterns become more apparent in the reconstructed profiles, making it easier to analyze and interpret the data. We hypothesize that reconstructed gene expression patterns represent better temporally resolved expression profiles that can be probabilistically modeled to match changes in expression level to IDC transitions. In particular, we identify transcriptionally regulated protein kinases putatively involved in regulating the P. falciparum IDC. By analyzing publicly available microarray data sets for the P. falciparum IDC, protein kinases are ranked in terms of their likelihood to be involved in regulating transitions between the ring, trophozoite and schizont developmental stages of the P. falciparum IDC. In our theoretical framework, a few protein kinases have high probability rankings, and could potentially be involved in regulating these developmental transitions. This study proposes a new methodology for extracting intrinsic expression patterns from microarray data. By applying this method to P. falciparum microarray data, several protein kinases are predicted to play a significant role in the P. falciparum IDC. Earlier experiments have indeed confirmed that several of these kinases are involved in this process. Overall, these results indicate that further functional analysis of these additional putative protein kinases may reveal new insights into how the P. falciparum IDC is regulated.

  6. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    PubMed

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  7. Inference of Vohradský's Models of Genetic Networks by Solving Two-Dimensional Function Optimization Problems

    PubMed Central

    Kimura, Shuhei; Sato, Masanao; Okada-Hatakeyama, Mariko

    2013-01-01

    The inference of a genetic network is a problem in which mutual interactions among genes are inferred from time-series of gene expression levels. While a number of models have been proposed to describe genetic networks, this study focuses on a mathematical model proposed by Vohradský. Because of its advantageous features, several researchers have proposed the inference methods based on Vohradský's model. When trying to analyze large-scale networks consisting of dozens of genes, however, these methods must solve high-dimensional non-linear function optimization problems. In order to resolve the difficulty of estimating the parameters of the Vohradský's model, this study proposes a new method that defines the problem as several two-dimensional function optimization problems. Through numerical experiments on artificial genetic network inference problems, we showed that, although the computation time of the proposed method is not the shortest, the method has the ability to estimate parameters of Vohradský's models more effectively with sufficiently short computation times. This study then applied the proposed method to an actual inference problem of the bacterial SOS DNA repair system, and succeeded in finding several reasonable regulations. PMID:24386175

  8. Robust Principal Component Analysis Regularized by Truncated Nuclear Norm for Identifying Differentially Expressed Genes.

    PubMed

    Wang, Ya-Xuan; Gao, Ying-Lian; Liu, Jin-Xing; Kong, Xiang-Zhen; Li, Hai-Jun

    2017-09-01

    Identifying differentially expressed genes from the thousands of genes is a challenging task. Robust principal component analysis (RPCA) is an efficient method in the identification of differentially expressed genes. RPCA method uses nuclear norm to approximate the rank function. However, theoretical studies showed that the nuclear norm minimizes all singular values, so it may not be the best solution to approximate the rank function. The truncated nuclear norm is defined as the sum of some smaller singular values, which may achieve a better approximation of the rank function than nuclear norm. In this paper, a novel method is proposed by replacing nuclear norm of RPCA with the truncated nuclear norm, which is named robust principal component analysis regularized by truncated nuclear norm (TRPCA). The method decomposes the observation matrix of genomic data into a low-rank matrix and a sparse matrix. Because the significant genes can be considered as sparse signals, the differentially expressed genes are viewed as the sparse perturbation signals. Thus, the differentially expressed genes can be identified according to the sparse matrix. The experimental results on The Cancer Genome Atlas data illustrate that the TRPCA method outperforms other state-of-the-art methods in the identification of differentially expressed genes.

  9. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers.

    PubMed

    Campbell, Kieran R; Yau, Christopher

    2017-03-15

    Modeling bifurcations in single-cell transcriptomics data has become an increasingly popular field of research. Several methods have been proposed to infer bifurcation structure from such data, but all rely on heuristic non-probabilistic inference. Here we propose the first generative, fully probabilistic model for such inference based on a Bayesian hierarchical mixture of factor analyzers. Our model exhibits competitive performance on large datasets despite implementing full Markov-Chain Monte Carlo sampling, and its unique hierarchical prior structure enables automatic determination of genes driving the bifurcation process. We additionally propose an Empirical-Bayes like extension that deals with the high levels of zero-inflation in single-cell RNA-seq data and quantify when such models are useful. We apply or model to both real and simulated single-cell gene expression data and compare the results to existing pseudotime methods. Finally, we discuss both the merits and weaknesses of such a unified, probabilistic approach in the context practical bioinformatics analyses.

  10. Hologram repositioning by an interferometric technique.

    PubMed

    Soares, O D

    1979-11-15

    An interferometric technique for hologram repositioning is described where the hologram is compared with the interference pattern of the reference and object waves. Analytical expressions to evaluate the accuracy of the repositioning are presented for the method. Two applications of the method in metrology for micromovement measurements are proposed.

  11. Quantifying circular RNA expression from RNA-seq data using model-based framework.

    PubMed

    Li, Musheng; Xie, Xueying; Zhou, Jing; Sheng, Mengying; Yin, Xiaofeng; Ko, Eun-A; Zhou, Tong; Gu, Wanjun

    2017-07-15

    Circular RNAs (circRNAs) are a class of non-coding RNAs that are widely expressed in various cell lines and tissues of many organisms. Although the exact function of many circRNAs is largely unknown, the cell type-and tissue-specific circRNA expression has implicated their crucial functions in many biological processes. Hence, the quantification of circRNA expression from high-throughput RNA-seq data is becoming important to ascertain. Although many model-based methods have been developed to quantify linear RNA expression from RNA-seq data, these methods are not applicable to circRNA quantification. Here, we proposed a novel strategy that transforms circular transcripts to pseudo-linear transcripts and estimates the expression values of both circular and linear transcripts using an existing model-based algorithm, Sailfish. The new strategy can accurately estimate transcript expression of both linear and circular transcripts from RNA-seq data. Several factors, such as gene length, amount of expression and the ratio of circular to linear transcripts, had impacts on quantification performance of circular transcripts. In comparison to count-based tools, the new computational framework had superior performance in estimating the amount of circRNA expression from both simulated and real ribosomal RNA-depleted (rRNA-depleted) RNA-seq datasets. On the other hand, the consideration of circular transcripts in expression quantification from rRNA-depleted RNA-seq data showed substantial increased accuracy of linear transcript expression. Our proposed strategy was implemented in a program named Sailfish-cir. Sailfish-cir is freely available at https://github.com/zerodel/Sailfish-cir . tongz@medicine.nevada.edu or wanjun.gu@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Compressed Symmetric Nested Arrays and Their Application for Direction-of-Arrival Estimation of Near-Field Sources.

    PubMed

    Li, Shuang; Xie, Dongfeng

    2016-11-17

    In this paper, a new sensor array geometry, called a compressed symmetric nested array (CSNA), is designed to increase the degrees of freedom in the near field. As its name suggests, a CSNA is constructed by getting rid of some elements from two identical nested arrays. The closed form expressions are also presented for the sensor locations and the largest degrees of freedom obtainable as a function of the total number of sensors. Furthermore, a novel DOA estimation method is proposed by utilizing the CSNA in the near field. By employing this new array geometry, our method can identify more sources than sensors. Compared with other existing methods, the proposed method achieves higher resolution because of increased array aperture. Simulation results are demonstrated to verify the effectiveness of the proposed method.

  13. BPP: a sequence-based algorithm for branch point prediction.

    PubMed

    Zhang, Qing; Fan, Xiaodan; Wang, Yejun; Sun, Ming-An; Shao, Jianlin; Guo, Dianjing

    2017-10-15

    Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. djguo@cuhk.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2012-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions

  15. Automatic Facial Expression Recognition and Operator Functional State

    NASA Technical Reports Server (NTRS)

    Blanson, Nina

    2011-01-01

    The prevalence of human error in safety-critical occupations remains a major challenge to mission success despite increasing automation in control processes. Although various methods have been proposed to prevent incidences of human error, none of these have been developed to employ the detection and regulation of Operator Functional State (OFS), or the optimal condition of the operator while performing a task, in work environments due to drawbacks such as obtrusiveness and impracticality. A video-based system with the ability to infer an individual's emotional state from facial feature patterning mitigates some of the problems associated with other methods of detecting OFS, like obtrusiveness and impracticality in integration with the mission environment. This paper explores the utility of facial expression recognition as a technology for inferring OFS by first expounding on the intricacies of OFS and the scientific background behind emotion and its relationship with an individual's state. Then, descriptions of the feedback loop and the emotion protocols proposed for the facial recognition program are explained. A basic version of the facial expression recognition program uses Haar classifiers and OpenCV libraries to automatically locate key facial landmarks during a live video stream. Various methods of creating facial expression recognition software are reviewed to guide future extensions of the program. The paper concludes with an examination of the steps necessary in the research of emotion and recommendations for the creation of an automatic facial expression recognition program for use in real-time, safety-critical missions.

  16. Using Peptide-Level Proteomics Data for Detecting Differentially Expressed Proteins.

    PubMed

    Suomi, Tomi; Corthals, Garry L; Nevalainen, Olli S; Elo, Laura L

    2015-11-06

    The expression of proteins can be quantified in high-throughput means using different types of mass spectrometers. In recent years, there have emerged label-free methods for determining protein abundance. Although the expression is initially measured at the peptide level, a common approach is to combine the peptide-level measurements into protein-level values before differential expression analysis. However, this simple combination is prone to inconsistencies between peptides and may lose valuable information. To this end, we introduce here a method for detecting differentially expressed proteins by combining peptide-level expression-change statistics. Using controlled spike-in experiments, we show that the approach of averaging peptide-level expression changes yields more accurate lists of differentially expressed proteins than does the conventional protein-level approach. This is particularly true when there are only few replicate samples or the differences between the sample groups are small. The proposed technique is implemented in the Bioconductor package PECA, and it can be downloaded from http://www.bioconductor.org.

  17. On construction of stochastic genetic networks based on gene expression sequences.

    PubMed

    Ching, Wai-Ki; Ng, Michael M; Fung, Eric S; Akutsu, Tatsuya

    2005-08-01

    Reconstruction of genetic regulatory networks from time series data of gene expression patterns is an important research topic in bioinformatics. Probabilistic Boolean Networks (PBNs) have been proposed as an effective model for gene regulatory networks. PBNs are able to cope with uncertainty, corporate rule-based dependencies between genes and discover the sensitivity of genes in their interactions with other genes. However, PBNs are unlikely to use directly in practice because of huge amount of computational cost for obtaining predictors and their corresponding probabilities. In this paper, we propose a multivariate Markov model for approximating PBNs and describing the dynamics of a genetic network for gene expression sequences. The main contribution of the new model is to preserve the strength of PBNs and reduce the complexity of the networks. The number of parameters of our proposed model is O(n2) where n is the number of genes involved. We also develop efficient estimation methods for solving the model parameters. Numerical examples on synthetic data sets and practical yeast data sequences are given to demonstrate the effectiveness of the proposed model.

  18. Unsupervised Bayesian linear unmixing of gene expression microarrays.

    PubMed

    Bazot, Cécile; Dobigeon, Nicolas; Tourneret, Jean-Yves; Zaas, Aimee K; Ginsburg, Geoffrey S; Hero, Alfred O

    2013-03-19

    This paper introduces a new constrained model and the corresponding algorithm, called unsupervised Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted here to generate random samples according to the posterior distribution of the factors, factor scores, and number of factors. These samples are then used to estimate all the unknown parameters. Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression dataset from a recent viral challenge study in which individuals have been inoculated with influenza A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated and real data sets considered here. The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.

  19. A highly sensitive and accurate gene expression analysis by sequencing ("bead-seq") for a single cell.

    PubMed

    Matsunaga, Hiroko; Goto, Mari; Arikawa, Koji; Shirai, Masataka; Tsunoda, Hiroyuki; Huang, Huan; Kambara, Hideki

    2015-02-15

    Analyses of gene expressions in single cells are important for understanding detailed biological phenomena. Here, a highly sensitive and accurate method by sequencing (called "bead-seq") to obtain a whole gene expression profile for a single cell is proposed. A key feature of the method is to use a complementary DNA (cDNA) library on magnetic beads, which enables adding washing steps to remove residual reagents in a sample preparation process. By adding the washing steps, the next steps can be carried out under the optimal conditions without losing cDNAs. Error sources were carefully evaluated to conclude that the first several steps were the key steps. It is demonstrated that bead-seq is superior to the conventional methods for single-cell gene expression analyses in terms of reproducibility, quantitative accuracy, and biases caused during sample preparation and sequencing processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Gene Expression-Based Survival Prediction in Lung Adenocarcinoma: A Multi-Site, Blinded Validation Study

    PubMed Central

    Shedden, Kerby; Taylor, Jeremy M.G.; Enkemann, Steve A.; Tsao, Ming S.; Yeatman, Timothy J.; Gerald, William L.; Eschrich, Steve; Jurisica, Igor; Venkatraman, Seshan E.; Meyerson, Matthew; Kuick, Rork; Dobbin, Kevin K.; Lively, Tracy; Jacobson, James W.; Beer, David G.; Giordano, Thomas J.; Misek, David E.; Chang, Andrew C.; Zhu, Chang Qi; Strumpf, Dan; Hanash, Samir; Shepherd, Francis A.; Ding, Kuyue; Seymour, Lesley; Naoki, Katsuhiko; Pennell, Nathan; Weir, Barbara; Verhaak, Roel; Ladd-Acosta, Christine; Golub, Todd; Gruidl, Mike; Szoke, Janos; Zakowski, Maureen; Rusch, Valerie; Kris, Mark; Viale, Agnes; Motoi, Noriko; Travis, William; Sharma, Anupama

    2009-01-01

    Although prognostic gene expression signatures for survival in early stage lung cancer have been proposed, for clinical application it is critical to establish their performance across different subject populations and in different laboratories. Here we report a large, training-testing, multi-site blinded validation study to characterize the performance of several prognostic models based on gene expression for 442 lung adenocarcinomas. The hypotheses proposed examined whether microarray measurements of gene expression either alone or combined with basic clinical covariates (stage, age, sex) can be used to predict overall survival in lung cancer subjects. Several models examined produced risk scores that substantially correlated with actual subject outcome. Most methods performed better with clinical data, supporting the combined use of clinical and molecular information when building prognostic models for early stage lung cancer. This study also provides the largest available set of microarray data with extensive pathological and clinical annotation for lung adenocarcinomas. PMID:18641660

  1. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage

    PubMed Central

    2015-01-01

    Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731

  2. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.

    PubMed

    Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A

    2011-10-01

    Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.

  3. Optimal consistency in microRNA expression analysis using reference-gene-based normalization.

    PubMed

    Wang, Xi; Gardiner, Erin J; Cairns, Murray J

    2015-05-01

    Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.

  4. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  5. Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    PubMed Central

    Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  6. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    NASA Astrophysics Data System (ADS)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  7. The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.

    PubMed

    Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan; Yi, Nengjun

    2017-01-01

    Large-scale "omics" data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coefficients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction. We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). Copyright © 2017 by the Genetics Society of America.

  8. Clustering of change patterns using Fourier coefficients.

    PubMed

    Kim, Jaehee; Kim, Haseong

    2008-01-15

    To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a time period because biologically related gene groups can share the same change patterns. Many clustering algorithms have been proposed to group observation data. However, because of the complexity of the underlying functions there have not been many studies on grouping data based on change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. The sample Fourier coefficients not only provide information about the underlying functions, but also reduce the dimension. In addition, as their limiting distribution is a multivariate normal, a model-based clustering method incorporating statistical properties would be appropriate. This work is aimed at discovering gene groups with similar change patterns that share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. The model-based method is advantageous over other methods in our proposed model because the sample Fourier coefficients asymptotically follow the multivariate normal distribution. Change patterns are automatically estimated with the Fourier representation in our model. Our model was tested in simulations and on real gene data sets. The simulation results showed that the model-based clustering method with the sample Fourier coefficients has a lower clustering error rate than K-means clustering. Even when the number of repeated time points was small, the same results were obtained. We also applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns. The R program is available upon the request.

  9. Homotopy method for optimization of variable-specific-impulse low-thrust trajectories

    NASA Astrophysics Data System (ADS)

    Chi, Zhemin; Yang, Hongwei; Chen, Shiyu; Li, Junfeng

    2017-11-01

    The homotopy method has been used as a useful tool in solving fuel-optimal trajectories with constant-specific-impulse low thrust. However, the specific impulse is often variable for many practical solar electric power-limited thrusters. This paper investigates the application of the homotopy method for optimization of variable-specific-impulse low-thrust trajectories. Difficulties arise when the two commonly-used homotopy functions are employed for trajectory optimization. The optimal power throttle level and the optimal specific impulse are coupled with the commonly-used quadratic and logarithmic homotopy functions. To overcome these difficulties, a modified logarithmic homotopy function is proposed to serve as a gateway for trajectory optimization, leading to decoupled expressions of both the optimal power throttle level and the optimal specific impulse. The homotopy method based on this homotopy function is proposed. Numerical simulations validate the feasibility and high efficiency of the proposed method.

  10. Classification of Time Series Gene Expression in Clinical Studies via Integration of Biological Network

    PubMed Central

    Qian, Liwei; Zheng, Haoran; Zhou, Hong; Qin, Ruibin; Li, Jinlong

    2013-01-01

    The increasing availability of time series expression datasets, although promising, raises a number of new computational challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov model/Gaussian mixture models hybrid explores the time-dependence of the expression data, thereby leading to better prediction results. We demonstrated that the biclustering procedure identifies function-related genes as a whole, giving rise to high accordance in prognosis prediction across independent time series datasets. In addition, we showed that integration of biological networks into our method significantly improves prediction performance. Moreover, we compared our approach with several state-of–the-art algorithms and found that our method outperformed previous approaches with regard to various criteria. Finally, our approach achieved better prediction results on early-stage data, implying the potential of our method for practical prediction. PMID:23516469

  11. Optical-electronic system for express analysis of mineral raw materials dressability by color sorting method

    NASA Astrophysics Data System (ADS)

    Alekhin, Artem A.; Gorbunova, Elena V.; Chertov, Aleksandr N.; Petuhova, Darya B.

    2013-04-01

    Due to the depletion of solid minerals ore reserves and the involvement in the production of the poor and refractory ores a process of continuous appreciation of minerals is going. In present time at the market of enrichment equipment are well represented optical sorters of various firms. All these sorters are essentially different from each other by parameters of productivity, classes of particles sizes for processed raw, nuances of decision algorithm, as well as by color model (RGB, YUV, HSB, etc.) chosen to describe the color of separating mineral samples. At the same time there is no dressability estimation method for mineral raw materials without direct semi-industrial test on the existing type of optical sorter, as well as there is no equipment realizing mentioned dressability estimation method. It should also be note the lack of criteria for choosing of one or another manufacturer (or type) of optical sorter. A direct consequence of this situation is the "opacity" of the color sorting method and the rejection of its potential customers. The proposed solution of mentioned problems is to develop the dressability estimation method, and to create an optical-electronic system for express analysis of mineral raw materials dressability by color sorting method. This paper has the description of structure organization and operating principles of experimental model optical-electronic system for express analysis of mineral raw material. Also in this work are represented comparison results of the proposed optical-electronic system and the real color sorter.

  12. Applying Cost-Sensitive Extreme Learning Machine and Dissimilarity Integration to Gene Expression Data Classification.

    PubMed

    Liu, Yanqiu; Lu, Huijuan; Yan, Ke; Xia, Haixia; An, Chunlin

    2016-01-01

    Embedding cost-sensitive factors into the classifiers increases the classification stability and reduces the classification costs for classifying high-scale, redundant, and imbalanced datasets, such as the gene expression data. In this study, we extend our previous work, that is, Dissimilar ELM (D-ELM), by introducing misclassification costs into the classifier. We name the proposed algorithm as the cost-sensitive D-ELM (CS-D-ELM). Furthermore, we embed rejection cost into the CS-D-ELM to increase the classification stability of the proposed algorithm. Experimental results show that the rejection cost embedded CS-D-ELM algorithm effectively reduces the average and overall cost of the classification process, while the classification accuracy still remains competitive. The proposed method can be extended to classification problems of other redundant and imbalanced data.

  13. A new service-oriented grid-based method for AIoT application and implementation

    NASA Astrophysics Data System (ADS)

    Zou, Yiqin; Quan, Li

    2017-07-01

    The traditional three-layer Internet of things (IoT) model, which includes physical perception layer, information transferring layer and service application layer, cannot express complexity and diversity in agricultural engineering area completely. It is hard to categorize, organize and manage the agricultural things with these three layers. Based on the above requirements, we propose a new service-oriented grid-based method to set up and build the agricultural IoT. Considering the heterogeneous, limitation, transparency and leveling attributes of agricultural things, we propose an abstract model for all agricultural resources. This model is service-oriented and expressed with Open Grid Services Architecture (OGSA). Information and data of agricultural things were described and encapsulated by using XML in this model. Every agricultural engineering application will provide service by enabling one application node in this service-oriented grid. Description of Web Service Resource Framework (WSRF)-based Agricultural Internet of Things (AIoT) and the encapsulation method were also discussed in this paper for resource management in this model.

  14. G =  MAT: linking transcription factor expression and DNA binding data.

    PubMed

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-31

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/.

  15. G = MAT: Linking Transcription Factor Expression and DNA Binding Data

    PubMed Central

    Tretyakov, Konstantin; Laur, Sven; Vilo, Jaak

    2011-01-01

    Transcription factors are proteins that bind to motifs on the DNA and thus affect gene expression regulation. The qualitative description of the corresponding processes is therefore important for a better understanding of essential biological mechanisms. However, wet lab experiments targeted at the discovery of the regulatory interplay between transcription factors and binding sites are expensive. We propose a new, purely computational method for finding putative associations between transcription factors and motifs. This method is based on a linear model that combines sequence information with expression data. We present various methods for model parameter estimation and show, via experiments on simulated data, that these methods are reliable. Finally, we examine the performance of this model on biological data and conclude that it can indeed be used to discover meaningful associations. The developed software is available as a web tool and Scilab source code at http://biit.cs.ut.ee/gmat/. PMID:21297945

  16. Early Detection of Breast Cancer Using Molecular Beacons

    DTIC Science & Technology

    2008-01-01

    a molecular beacon (MB)-based approach for direct examination of gene expression in viable and fixed cells (2, 3). This objective of proposed study ...can be distinguished from normal cells (dark) (Figure 1) (2, 3, 8). Recently, a class of new fluorescent emitting nanoparticles, semiconductor ...morphological classification. This method may offer a simple and fast procedure to detect biomarker gene expression in clinical samples. Our study results

  17. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.

    PubMed

    Xu, Kelin; Jin, Li; Xiong, Momiao

    2017-05-18

    Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction identified using FRGM, RPKM and DESeq were 16,2361, 260 and 51, respectively, from the 350 European samples. The proposed FRGM for epistasis analysis of RNA-seq can capture isoform and position-level information and will have a broad application. Both simulations and real data analysis highlight the potential for the FRGM to be a good choice of the epistatic analysis with sequencing data.

  18. Functional modules by relating protein interaction networks and gene expression.

    PubMed

    Tornow, Sabine; Mewes, H W

    2003-11-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships.

  19. Functional modules by relating protein interaction networks and gene expression

    PubMed Central

    Tornow, Sabine; Mewes, H. W.

    2003-01-01

    Genes and proteins are organized on the basis of their particular mutual relations or according to their interactions in cellular and genetic networks. These include metabolic or signaling pathways and protein interaction, regulatory or co-expression networks. Integrating the information from the different types of networks may lead to the notion of a functional network and functional modules. To find these modules, we propose a new technique which is based on collective, multi-body correlations in a genetic network. We calculated the correlation strength of a group of genes (e.g. in the co-expression network) which were identified as members of a module in a different network (e.g. in the protein interaction network) and estimated the probability that this correlation strength was found by chance. Groups of genes with a significant correlation strength in different networks have a high probability that they perform the same function. Here, we propose evaluating the multi-body correlations by applying the superparamagnetic approach. We compare our method to the presently applied mean Pearson correlations and show that our method is more sensitive in revealing functional relationships. PMID:14576317

  20. A new principle technic for the transformation from frequency domain to time domain

    NASA Astrophysics Data System (ADS)

    Gao, Ben-Qing

    2017-03-01

    A principle technic for the transformation from frequency domain to time domain is presented. Firstly, a special type of frequency domain transcendental equation is obtained for an expected frequency domain parameter which is a rational or irrational fraction expression. Secondly, the inverse Laplace transformation is performed. When the two time-domain factors corresponding to the two frequency domain factors at two sides of frequency domain transcendental equation are known quantities, a time domain transcendental equation is reached. At last, the expected time domain parameter corresponding to the expected frequency domain parameter can be solved by the inverse convolution process. Proceeding from rational or irrational fraction expression, all solving process is provided. In the meantime, the property of time domain sequence is analyzed and the strategy for choosing the parameter values is described. Numerical examples are presented to verify the proposed theory and technic. Except for rational or irrational fraction expressions, examples of complex relative permittivity of water and plasma are used as verification method. The principle method proposed in the paper can easily solve problems which are difficult to be solved by Laplace transformation.

  1. Gene expression complex networks: synthesis, identification, and analysis.

    PubMed

    Lopes, Fabrício M; Cesar, Roberto M; Costa, Luciano Da F

    2011-10-01

    Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdös-Rényi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabási-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree variation, decreasing its network recovery rate with the increase of . The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

  2. Quantitative evaluation of cross correlation between two finite-length time series with applications to single-molecule FRET.

    PubMed

    Hanson, Jeffery A; Yang, Haw

    2008-11-06

    The statistical properties of the cross correlation between two time series has been studied. An analytical expression for the cross correlation function's variance has been derived. On the basis of these results, a statistically robust method has been proposed to detect the existence and determine the direction of cross correlation between two time series. The proposed method has been characterized by computer simulations. Applications to single-molecule fluorescence spectroscopy are discussed. The results may also find immediate applications in fluorescence correlation spectroscopy (FCS) and its variants.

  3. Efficiently detecting outlying behavior in video-game players.

    PubMed

    Kim, Young Bin; Kang, Shin Jin; Lee, Sang Hyeok; Jung, Jang Young; Kam, Hyeong Ryeol; Lee, Jung; Kim, Young Sun; Lee, Joonsoo; Kim, Chang Hun

    2015-01-01

    In this paper, we propose a method for automatically detecting the times during which game players exhibit specific behavior, such as when players commonly show excitement, concentration, immersion, and surprise. The proposed method detects such outlying behavior based on the game players' characteristics. These characteristics are captured non-invasively in a general game environment. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players (i.e., data regarding adjustments to the volume and the use of the keyboard and mouse) was used to analyze high-dimensional game-player data. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. The proposed method can also be used for feedback analysis of various interactive content provided in PC environments.

  4. Efficiently detecting outlying behavior in video-game players

    PubMed Central

    Kim, Young Bin; Kang, Shin Jin; Lee, Sang Hyeok; Jung, Jang Young; Kam, Hyeong Ryeol; Lee, Jung; Kim, Young Sun; Lee, Joonsoo

    2015-01-01

    In this paper, we propose a method for automatically detecting the times during which game players exhibit specific behavior, such as when players commonly show excitement, concentration, immersion, and surprise. The proposed method detects such outlying behavior based on the game players’ characteristics. These characteristics are captured non-invasively in a general game environment. In this paper, cameras were used to analyze observed data such as facial expressions and player movements. Moreover, multimodal data from the game players (i.e., data regarding adjustments to the volume and the use of the keyboard and mouse) was used to analyze high-dimensional game-player data. A support vector machine was used to efficiently detect outlying behaviors. We verified the effectiveness of the proposed method using games from several genres. The recall rate of the outlying behavior pre-identified by industry experts was approximately 70%. The proposed method can also be used for feedback analysis of various interactive content provided in PC environments. PMID:26713250

  5. Design of an Optical OR Gate using Mach-Zehnder Interferometers

    NASA Astrophysics Data System (ADS)

    Choudhary, Kuldeep; Kumar, Santosh

    2018-04-01

    The optical switching phenomenon enhances the speed of optical communication systems. It is widely used in the wavelength division multiplexing (WDM). In this work, an optical OR gate is proposed using the Mach-Zehnder interferometer (MZI) structure. The detailed derivation of mathematical expression have been shown. The analysis is carried out by simulating the proposed device with MATLAB and Beam propagation method.

  6. Evaluation of radiation loading on finite cylindrical shells using the fast Fourier transform: A comparison with direct numerical integration.

    PubMed

    Liu, S X; Zou, M S

    2018-03-01

    The radiation loading on a vibratory finite cylindrical shell is conventionally evaluated through the direct numerical integration (DNI) method. An alternative strategy via the fast Fourier transform algorithm is put forward in this work based on the general expression of radiation impedance. To check the feasibility and efficiency of the proposed method, a comparison with DNI is presented through numerical cases. The results obtained using the present method agree well with those calculated by DNI. More importantly, the proposed calculating strategy can significantly save the time cost compared with the conventional approach of straightforward numerical integration.

  7. Estimation of Dynamic Systems for Gene Regulatory Networks from Dependent Time-Course Data.

    PubMed

    Kim, Yoonji; Kim, Jaejik

    2018-06-15

    Dynamic system consisting of ordinary differential equations (ODEs) is a well-known tool for describing dynamic nature of gene regulatory networks (GRNs), and the dynamic features of GRNs are usually captured through time-course gene expression data. Owing to high-throughput technologies, time-course gene expression data have complex structures such as heteroscedasticity, correlations between genes, and time dependence. Since gene experiments typically yield highly noisy data with small sample size, for a more accurate prediction of the dynamics, the complex structures should be taken into account in ODE models. Hence, this study proposes an ODE model considering such data structures and a fast and stable estimation method for the ODE parameters based on the generalized profiling approach with data smoothing techniques. The proposed method also provides statistical inference for the ODE estimator and it is applied to a zebrafish retina cell network.

  8. Enhancing biological relevance of a weighted gene co-expression network for functional module identification.

    PubMed

    Prom-On, Santitham; Chanthaphan, Atthawut; Chan, Jonathan Hoyin; Meechai, Asawin

    2011-02-01

    Relationships among gene expression levels may be associated with the mechanisms of the disease. While identifying a direct association such as a difference in expression levels between case and control groups links genes to disease mechanisms, uncovering an indirect association in the form of a network structure may help reveal the underlying functional module associated with the disease under scrutiny. This paper presents a method to improve the biological relevance in functional module identification from the gene expression microarray data by enhancing the structure of a weighted gene co-expression network using minimum spanning tree. The enhanced network, which is called a backbone network, contains only the essential structural information to represent the gene co-expression network. The entire backbone network is decoupled into a number of coherent sub-networks, and then the functional modules are reconstructed from these sub-networks to ensure minimum redundancy. The method was tested with a simulated gene expression dataset and case-control expression datasets of autism spectrum disorder and colorectal cancer studies. The results indicate that the proposed method can accurately identify clusters in the simulated dataset, and the functional modules of the backbone network are more biologically relevant than those obtained from the original approach.

  9. A method for isolation of rat lymphocyte-rich mononuclear cells from lung tissue useful for determination of nucleoside triphosphate diphosphohydrolase activity.

    PubMed

    Jaques, Jeandre Augusto Dos S; Peres Rezer, João Felipe; Ruchel, Jader Betsch; Gutierres, Jessié; Bairros, André Valle; Gomes Farias, Iria Luiza; Almeida da Luz, Sonia Cristina; Mello Bertoncheli, Claudia de; Chitolina Schetinger, Maria Rosa; Morsch, Vera Maria; Leal, Daniela Bitencourt Rosa

    2011-03-01

    Methods for the isolation of peripheral blood mononuclear cells (PBMCs) and human lung mononuclear cells (LMCs) have been proposed previously. This study describes a method that allows the separation of lymphocyte-rich LMCs from rats. Trypan blue was applied to determine cell viability. White blood cell and differential cell counts were also performed. Relationships between nucleoside triphosphate diphosphohydrolase (NTPDase, EC 3.6.1.5) activities expressed in milligrams of protein, millions of cells, and millions of viable cells were examined as linear correlations. The lung tissue yielded 82.46% lymphocytes, 8.6% macrophages, 2.20% monocytes, and 1.27% polymorphonuclear cells (PMNs). In LMCs, a very strong correlation was observed as follows: between NTPDase activity, as determined using ATP or ADP as a substrate, expressed in milligrams of protein and that expressed in millions of cells (r ≥ 0.91), between that expressed in milligrams of protein and that expressed in millions of viable cells (r ≥ 0.91), and between that expressed in millions of cells and that expressed in millions of viable cells (r ≥ 0.98). Based on our results, we affirm that NTPDase activity could be expressed in millions of viable cells, millions of cells, or milligrams of protein. 2010 Elsevier Inc. All rights reserved.

  10. Towards a Unified Framework for Pose, Expression, and Occlusion Tolerant Automatic Facial Alignment.

    PubMed

    Seshadri, Keshav; Savvides, Marios

    2016-10-01

    We propose a facial alignment algorithm that is able to jointly deal with the presence of facial pose variation, partial occlusion of the face, and varying illumination and expressions. Our approach proceeds from sparse to dense landmarking steps using a set of specific models trained to best account for the shape and texture variation manifested by facial landmarks and facial shapes across pose and various expressions. We also propose the use of a novel l1-regularized least squares approach that we incorporate into our shape model, which is an improvement over the shape model used by several prior Active Shape Model (ASM) based facial landmark localization algorithms. Our approach is compared against several state-of-the-art methods on many challenging test datasets and exhibits a higher fitting accuracy on all of them.

  11. Distributional fold change test – a statistical approach for detecting differential expression in microarray experiments

    PubMed Central

    2012-01-01

    Background Because of the large volume of data and the intrinsic variation of data intensity observed in microarray experiments, different statistical methods have been used to systematically extract biological information and to quantify the associated uncertainty. The simplest method to identify differentially expressed genes is to evaluate the ratio of average intensities in two different conditions and consider all genes that differ by more than an arbitrary cut-off value to be differentially expressed. This filtering approach is not a statistical test and there is no associated value that can indicate the level of confidence in the designation of genes as differentially expressed or not differentially expressed. At the same time the fold change by itself provide valuable information and it is important to find unambiguous ways of using this information in expression data treatment. Results A new method of finding differentially expressed genes, called distributional fold change (DFC) test is introduced. The method is based on an analysis of the intensity distribution of all microarray probe sets mapped to a three dimensional feature space composed of average expression level, average difference of gene expression and total variance. The proposed method allows one to rank each feature based on the signal-to-noise ratio and to ascertain for each feature the confidence level and power for being differentially expressed. The performance of the new method was evaluated using the total and partial area under receiver operating curves and tested on 11 data sets from Gene Omnibus Database with independently verified differentially expressed genes and compared with the t-test and shrinkage t-test. Overall the DFC test performed the best – on average it had higher sensitivity and partial AUC and its elevation was most prominent in the low range of differentially expressed features, typical for formalin-fixed paraffin-embedded sample sets. Conclusions The distributional fold change test is an effective method for finding and ranking differentially expressed probesets on microarrays. The application of this test is advantageous to data sets using formalin-fixed paraffin-embedded samples or other systems where degradation effects diminish the applicability of correlation adjusted methods to the whole feature set. PMID:23122055

  12. Geometrical Description in Binary Composites and Spectral Density Representation

    PubMed Central

    Tuncer, Enis

    2010-01-01

    In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ=(εe-εm)(εi-εm)-1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL) [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell-shaped distributions, with coinciding peak locations but different heights. It is speculated that the coincidence in the peak locations is an absolute illustration of the self-similar fractal nature of the mixture topology (structure) created with the LLL expression. Consequently, the spectra are not altered significantly with increased filler concentration level—they exhibit a self-similar spectral density function for different concentration levels. Last but not least, the estimated percolation strengths also confirm the fractal nature of the systems characterized by the LLL mixture expression. It is concluded that the LLL expression is suitable for complex composite systems that have hierarchical order in their structure. These observations confirm the finding in the literature.

  13. Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods.

    PubMed

    Dal Molin, Alessandra; Baruzzo, Giacomo; Di Camillo, Barbara

    2017-01-01

    The sequencing of the transcriptomes of single-cells, or single-cell RNA-sequencing, has now become the dominant technology for the identification of novel cell types and for the study of stochastic gene expression. In recent years, various tools for analyzing single-cell RNA-sequencing data have been proposed, many of them with the purpose of performing differentially expression analysis. In this work, we compare four different tools for single-cell RNA-sequencing differential expression, together with two popular methods originally developed for the analysis of bulk RNA-sequencing data, but largely applied to single-cell data. We discuss results obtained on two real and one synthetic dataset, along with considerations about the perspectives of single-cell differential expression analysis. In particular, we explore the methods performance in four different scenarios, mimicking different unimodal or bimodal distributions of the data, as characteristic of single-cell transcriptomics. We observed marked differences between the selected methods in terms of precision and recall, the number of detected differentially expressed genes and the overall performance. Globally, the results obtained in our study suggest that is difficult to identify a best performing tool and that efforts are needed to improve the methodologies for single-cell RNA-sequencing data analysis and gain better accuracy of results.

  14. Automatic Contour Extraction of Facial Organs for Frontal Facial Images with Various Facial Expressions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroshi; Suzuki, Seiji; Takahashi, Hisanori; Tange, Akira; Kikuchi, Kohki

    This study deals with a method to realize automatic contour extraction of facial features such as eyebrows, eyes and mouth for the time-wise frontal face with various facial expressions. Because Snakes which is one of the most famous methods used to extract contours, has several disadvantages, we propose a new method to overcome these issues. We define the elastic contour model in order to hold the contour shape and then determine the elastic energy acquired by the amount of modification of the elastic contour model. Also we utilize the image energy obtained by brightness differences of the control points on the elastic contour model. Applying the dynamic programming method, we determine the contour position where the total value of the elastic energy and the image energy becomes minimum. Employing 1/30s time-wise facial frontal images changing from neutral to one of six typical facial expressions obtained from 20 subjects, we have estimated our method and find it enables high accuracy automatic contour extraction of facial features.

  15. Clustering gene expression data based on predicted differential effects of GV interaction.

    PubMed

    Pan, Hai-Yan; Zhu, Jun; Han, Dan-Fu

    2005-02-01

    Microarray has become a popular biotechnology in biological and medical research. However, systematic and stochastic variabilities in microarray data are expected and unavoidable, resulting in the problem that the raw measurements have inherent "noise" within microarray experiments. Currently, logarithmic ratios are usually analyzed by various clustering methods directly, which may introduce bias interpretation in identifying groups of genes or samples. In this paper, a statistical method based on mixed model approaches was proposed for microarray data cluster analysis. The underlying rationale of this method is to partition the observed total gene expression level into various variations caused by different factors using an ANOVA model, and to predict the differential effects of GV (gene by variety) interaction using the adjusted unbiased prediction (AUP) method. The predicted GV interaction effects can then be used as the inputs of cluster analysis. We illustrated the application of our method with a gene expression dataset and elucidated the utility of our approach using an external validation.

  16. A cluster merging method for time series microarray with production values.

    PubMed

    Chira, Camelia; Sedano, Javier; Camara, Monica; Prieto, Carlos; Villar, Jose R; Corchado, Emilio

    2014-09-01

    A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.

  17. Two-pass imputation algorithm for missing value estimation in gene expression time series.

    PubMed

    Tsiporkova, Elena; Boeva, Veselka

    2007-10-01

    Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.

  18. Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression.

    PubMed

    Lemieux, Sébastien

    2006-08-25

    The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition.

  19. A Novel Calibration-Minimum Method for Prediction of Mole Fraction in Non-Ideal Mixture.

    PubMed

    Shibayama, Shojiro; Kaneko, Hiromasa; Funatsu, Kimito

    2017-04-01

    This article proposes a novel concentration prediction model that requires little training data and is useful for rapid process understanding. Process analytical technology is currently popular, especially in the pharmaceutical industry, for enhancement of process understanding and process control. A calibration-free method, iterative optimization technology (IOT), was proposed to predict pure component concentrations, because calibration methods such as partial least squares, require a large number of training samples, leading to high costs. However, IOT cannot be applied to concentration prediction in non-ideal mixtures because its basic equation is derived from the Beer-Lambert law, which cannot be applied to non-ideal mixtures. We proposed a novel method that realizes prediction of pure component concentrations in mixtures from a small number of training samples, assuming that spectral changes arising from molecular interactions can be expressed as a function of concentration. The proposed method is named IOT with virtual molecular interaction spectra (IOT-VIS) because the method takes spectral change as a virtual spectrum x nonlin,i into account. It was confirmed through the two case studies that the predictive accuracy of IOT-VIS was the highest among existing IOT methods.

  20. Real-time Avatar Animation from a Single Image.

    PubMed

    Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F

    2011-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.

  1. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  2. Facial Expression Generation from Speaker's Emotional States in Daily Conversation

    NASA Astrophysics Data System (ADS)

    Mori, Hiroki; Ohshima, Koh

    A framework for generating facial expressions from emotional states in daily conversation is described. It provides a mapping between emotional states and facial expressions, where the former is represented by vectors with psychologically-defined abstract dimensions, and the latter is coded by the Facial Action Coding System. In order to obtain the mapping, parallel data with rated emotional states and facial expressions were collected for utterances of a female speaker, and a neural network was trained with the data. The effectiveness of proposed method is verified by a subjective evaluation test. As the result, the Mean Opinion Score with respect to the suitability of generated facial expression was 3.86 for the speaker, which was close to that of hand-made facial expressions.

  3. Do Procedures for Verbal Reporting of Thinking Have to Be Reactive? A Meta-Analysis and Recommendations for Best Reporting Methods

    ERIC Educational Resources Information Center

    Fox, Mark C.; Ericsson, K. Anders; Best, Ryan

    2011-01-01

    Since its establishment, psychology has struggled to find valid methods for studying thoughts and subjective experiences. Thirty years ago, Ericsson and Simon (1980) proposed that participants can give concurrent verbal expression to their thoughts (think aloud) while completing tasks without changing objectively measurable performance (accuracy).…

  4. A Novel Method to Identify Differential Pathways in Hippocampus Alzheimer's Disease.

    PubMed

    Liu, Chun-Han; Liu, Lian

    2017-05-08

    BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The objective of this paper is to propose a novel method to identify differential pathways in hippocampus AD. MATERIAL AND METHODS We proposed a combined method by merging existed methods. Firstly, pathways were identified by four known methods (DAVID, the neaGUI package, the pathway-based co-expressed method, and the pathway network approach), and differential pathways were evaluated through setting weight thresholds. Subsequently, we combined all pathways by a rank-based algorithm and called the method the combined method. Finally, common differential pathways across two or more of five methods were selected. RESULTS Pathways obtained from different methods were also different. The combined method obtained 1639 pathways and 596 differential pathways, which included all pathways gained from the four existing methods; hence, the novel method solved the problem of inconsistent results. Besides, a total of 13 common pathways were identified, such as metabolism, immune system, and cell cycle. CONCLUSIONS We have proposed a novel method by combining four existing methods based on a rank product algorithm, and identified 13 significant differential pathways based on it. These differential pathways might provide insight into treatment and diagnosis of hippocampus AD.

  5. Detecting discordance enrichment among a series of two-sample genome-wide expression data sets.

    PubMed

    Lai, Yinglei; Zhang, Fanni; Nayak, Tapan K; Modarres, Reza; Lee, Norman H; McCaffrey, Timothy A

    2017-01-25

    With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.

  6. Passenger Demand Model for Railway Revenue Management

    DOT National Transportation Integrated Search

    2011-01-01

    In this paper, we have illustrated a fare pricing strategy for the Acela Express service operated by Amtrak. The RM method proposed is based on passengers preference and products attributes. Using sales data, a MNL model has been calibrated; th...

  7. AUCTSP: an improved biomarker gene pair class predictor.

    PubMed

    Kagaris, Dimitri; Khamesipour, Alireza; Yiannoutsos, Constantin T

    2018-06-26

    The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision rule for classification and class prediction of gene expression profiles. The idea that differences in gene expression ranking are associated with presence or absence of disease is compelling and has strong biological plausibility. Nevertheless, the TSP formulation ignores significant available information which can improve classification accuracy and is vulnerable to selecting genes which do not have differential expression in the two conditions ("pivot" genes). We introduce the AUCTSP classifier as an alternative rank-based estimator of the magnitude of the ranking reversals involved in the original TSP. The proposed estimator is based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) and as such, takes into account the separation of the entire distribution of gene expression levels in gene pairs under the conditions considered, as opposed to comparing gene rankings within individual subjects as in the original TSP formulation. Through extensive simulations and case studies involving classification in ovarian, leukemia, colon, breast and prostate cancers and diffuse large b-cell lymphoma, we show the superiority of the proposed approach in terms of improving classification accuracy, avoiding overfitting and being less prone to selecting non-informative (pivot) genes. The proposed AUCTSP is a simple yet reliable and robust rank-based classifier for gene expression classification. While the AUCTSP works by the same principle as TSP, its ability to determine the top scoring gene pair based on the relative rankings of two marker genes across all subjects as opposed to each individual subject results in significant performance gains in classification accuracy. In addition, the proposed method tends to avoid selection of non-informative (pivot) genes as members of the top-scoring pair.

  8. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    PubMed Central

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  9. Comparison of Classification Methods for Detecting Emotion from Mandarin Speech

    NASA Astrophysics Data System (ADS)

    Pao, Tsang-Long; Chen, Yu-Te; Yeh, Jun-Heng

    It is said that technology comes out from humanity. What is humanity? The very definition of humanity is emotion. Emotion is the basis for all human expression and the underlying theme behind everything that is done, said, thought or imagined. Making computers being able to perceive and respond to human emotion, the human-computer interaction will be more natural. Several classifiers are adopted for automatically assigning an emotion category, such as anger, happiness or sadness, to a speech utterance. These classifiers were designed independently and tested on various emotional speech corpora, making it difficult to compare and evaluate their performance. In this paper, we first compared several popular classification methods and evaluated their performance by applying them to a Mandarin speech corpus consisting of five basic emotions, including anger, happiness, boredom, sadness and neutral. The extracted feature streams contain MFCC, LPCC, and LPC. The experimental results show that the proposed WD-MKNN classifier achieves an accuracy of 81.4% for the 5-class emotion recognition and outperforms other classification techniques, including KNN, MKNN, DW-KNN, LDA, QDA, GMM, HMM, SVM, and BPNN. Then, to verify the advantage of the proposed method, we compared these classifiers by applying them to another Mandarin expressive speech corpus consisting of two emotions. The experimental results still show that the proposed WD-MKNN outperforms others.

  10. Asymmetric latent semantic indexing for gene expression experiments visualization.

    PubMed

    González, Javier; Muñoz, Alberto; Martos, Gabriel

    2016-08-01

    We propose a new method to visualize gene expression experiments inspired by the latent semantic indexing technique originally proposed in the textual analysis context. By using the correspondence word-gene document-experiment, we define an asymmetric similarity measure of association for genes that accounts for potential hierarchies in the data, the key to obtain meaningful gene mappings. We use the polar decomposition to obtain the sources of asymmetry of the similarity matrix, which are later combined with previous knowledge. Genetic classes of genes are identified by means of a mixture model applied in the genes latent space. We describe the steps of the procedure and we show its utility in the Human Cancer dataset.

  11. Fast support vector data descriptions for novelty detection.

    PubMed

    Liu, Yi-Hung; Liu, Yan-Chen; Chen, Yen-Jen

    2010-08-01

    Support vector data description (SVDD) has become a very attractive kernel method due to its good results in many novelty detection problems. However, the decision function of SVDD is expressed in terms of the kernel expansion, which results in a run-time complexity linear in the number of support vectors. For applications where fast real-time response is needed, how to speed up the decision function is crucial. This paper aims at dealing with the issue of reducing the testing time complexity of SVDD. A method called fast SVDD (F-SVDD) is proposed. Unlike the traditional methods which all try to compress a kernel expansion into one with fewer terms, the proposed F-SVDD directly finds the preimage of a feature vector, and then uses a simple relationship between this feature vector and the SVDD sphere center to re-express the center with a single vector. The decision function of F-SVDD contains only one kernel term, and thus the decision boundary of F-SVDD is only spherical in the original space. Hence, the run-time complexity of the F-SVDD decision function is no longer linear in the support vectors, but is a constant, no matter how large the training set size is. In this paper, we also propose a novel direct preimage-finding method, which is noniterative and involves no free parameters. The unique preimage can be obtained in real time by the proposed direct method without taking trial-and-error. For demonstration, several real-world data sets and a large-scale data set, the extended MIT face data set, are used in experiments. In addition, a practical industry example regarding liquid crystal display micro-defect inspection is also used to compare the applicability of SVDD and our proposed F-SVDD when faced with mass data input. The results are very encouraging.

  12. Discovering Hidden Connections among Diseases, Genes and Drugs Based on Microarray Expression Profiles with Negative-Term Filtering

    PubMed Central

    2014-01-01

    Microarrays based on gene expression profiles (GEPs) can be tailored specifically for a variety of topics to provide a precise and efficient means with which to discover hidden information. This study proposes a novel means of employing existing GEPs to reveal hidden relationships among diseases, genes, and drugs within a rich biomedical database, PubMed. Unlike the co-occurrence method, which considers only the appearance of keywords, the proposed method also takes into account negative relationships and non-relationships among keywords, the importance of which has been demonstrated in previous studies. Three scenarios were conducted to verify the efficacy of the proposed method. In Scenario 1, disease and drug GEPs (disease: lymphoma cancer, lymph node cancer, and drug: cyclophosphamide) were used to obtain lists of disease- and drug-related genes. Fifteen hidden connections were identified between the diseases and the drug. In Scenario 2, we adopted different diseases and drug GEPs (disease: AML-ALL dataset and drug: Gefitinib) to obtain lists of important diseases and drug-related genes. In this case, ten hidden connections were identified. In Scenario 3, we obtained a list of disease-related genes from the disease-related GEP (liver cancer) and the drug (Capecitabine) on the PharmGKB website, resulting in twenty-two hidden connections. Experimental results demonstrate the efficacy of the proposed method in uncovering hidden connections among diseases, genes, and drugs. Following implementation of the weight function in the proposed method, a large number of the documents obtained in each of the scenarios were judged to be related: 834 of 4028 documents, 789 of 1216 documents, and 1928 of 3791 documents in Scenarios 1, 2, and 3, respectively. The negative-term filtering scheme also uncovered a large number of negative relationships as well as non-relationships among these connections: 97 of 834, 38 of 789, and 202 of 1928 in Scenarios 1, 2, and 3, respectively. PMID:24915461

  13. NetBenchmark: a bioconductor package for reproducible benchmarks of gene regulatory network inference.

    PubMed

    Bellot, Pau; Olsen, Catharina; Salembier, Philippe; Oliveras-Vergés, Albert; Meyer, Patrick E

    2015-09-29

    In the last decade, a great number of methods for reconstructing gene regulatory networks from expression data have been proposed. However, very few tools and datasets allow to evaluate accurately and reproducibly those methods. Hence, we propose here a new tool, able to perform a systematic, yet fully reproducible, evaluation of transcriptional network inference methods. Our open-source and freely available Bioconductor package aggregates a large set of tools to assess the robustness of network inference algorithms against different simulators, topologies, sample sizes and noise intensities. The benchmarking framework that uses various datasets highlights the specialization of some methods toward network types and data. As a result, it is possible to identify the techniques that have broad overall performances.

  14. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.

    PubMed

    Li, Xiaohong; Brock, Guy N; Rouchka, Eric C; Cooper, Nigel G F; Wu, Dongfeng; O'Toole, Timothy E; Gill, Ryan S; Eteleeb, Abdallah M; O'Brien, Liz; Rai, Shesh N

    2017-01-01

    Normalization is an essential step with considerable impact on high-throughput RNA sequencing (RNA-seq) data analysis. Although there are numerous methods for read count normalization, it remains a challenge to choose an optimal method due to multiple factors contributing to read count variability that affects the overall sensitivity and specificity. In order to properly determine the most appropriate normalization methods, it is critical to compare the performance and shortcomings of a representative set of normalization routines based on different dataset characteristics. Therefore, we set out to evaluate the performance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normalization after per-sample median or upper-quartile global scaling). Our per-gene normalization approach allows for comparisons between conditions based on similar count levels. Using the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we performed differential gene expression analysis to evaluate these methods. When evaluating MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate > 85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given the nominal FDR (≤0.05). Although the top commonly used methods (DESeq and TMM-edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specificity (<70%) and a slightly higher actual FDR than our proposed methods. In addition, the results from an analysis based on the qualitative characteristics of sample distribution for MAQC2 and human breast cancer datasets show that only our gene-wise normalization methods corrected data skewed towards lower read counts. However, when we evaluated MAQC3 with less variation in five replicates, all methods performed similarly. Thus, our proposed Med-pgQ2 and UQ-pgQ2 methods perform slightly better for differential gene analysis of RNA-seq data skewed towards lowly expressed read counts with high variation by improving specificity while maintaining a good detection power with a control of the nominal FDR level.

  15. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data

    PubMed Central

    Li, Xiaohong; Brock, Guy N.; Rouchka, Eric C.; Cooper, Nigel G. F.; Wu, Dongfeng; O’Toole, Timothy E.; Gill, Ryan S.; Eteleeb, Abdallah M.; O’Brien, Liz

    2017-01-01

    Normalization is an essential step with considerable impact on high-throughput RNA sequencing (RNA-seq) data analysis. Although there are numerous methods for read count normalization, it remains a challenge to choose an optimal method due to multiple factors contributing to read count variability that affects the overall sensitivity and specificity. In order to properly determine the most appropriate normalization methods, it is critical to compare the performance and shortcomings of a representative set of normalization routines based on different dataset characteristics. Therefore, we set out to evaluate the performance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normalization after per-sample median or upper-quartile global scaling). Our per-gene normalization approach allows for comparisons between conditions based on similar count levels. Using the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we performed differential gene expression analysis to evaluate these methods. When evaluating MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate > 85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given the nominal FDR (≤0.05). Although the top commonly used methods (DESeq and TMM-edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specificity (<70%) and a slightly higher actual FDR than our proposed methods. In addition, the results from an analysis based on the qualitative characteristics of sample distribution for MAQC2 and human breast cancer datasets show that only our gene-wise normalization methods corrected data skewed towards lower read counts. However, when we evaluated MAQC3 with less variation in five replicates, all methods performed similarly. Thus, our proposed Med-pgQ2 and UQ-pgQ2 methods perform slightly better for differential gene analysis of RNA-seq data skewed towards lowly expressed read counts with high variation by improving specificity while maintaining a good detection power with a control of the nominal FDR level. PMID:28459823

  16. Improving Pharmaceutical Protein Production in Oryza sativa

    PubMed Central

    Kuo, Yu-Chieh; Tan, Chia-Chun; Ku, Jung-Ting; Hsu, Wei-Cho; Su, Sung-Chieh; Lu, Chung-An; Huang, Li-Fen

    2013-01-01

    Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed. PMID:23615467

  17. Bayesian median regression for temporal gene expression data

    NASA Astrophysics Data System (ADS)

    Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.

    2007-09-01

    Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.

  18. Expressive map design: OGC SLD/SE++ extension for expressive map styles

    NASA Astrophysics Data System (ADS)

    Christophe, Sidonie; Duménieu, Bertrand; Masse, Antoine; Hoarau, Charlotte; Ory, Jérémie; Brédif, Mathieu; Lecordix, François; Mellado, Nicolas; Turbet, Jérémie; Loi, Hugo; Hurtut, Thomas; Vanderhaeghe, David; Vergne, Romain; Thollot, Joëlle

    2018-05-01

    In the context of custom map design, handling more artistic and expressive tools has been identified as a carto-graphic need, in order to design stylized and expressive maps. Based on previous works on style formalization, an approach for specifying the map style has been proposed and experimented for particular use cases. A first step deals with the analysis of inspiration sources, in order to extract `what does make the style of the source', i.e. the salient visual characteristics to be automatically reproduced (textures, spatial arrangements, linear stylization, etc.). In a second step, in order to mimic and generate those visual characteristics, existing and innovative rendering techniques have been implemented in our GIS engine, thus extending the capabilities to generate expressive renderings. Therefore, an extension of the existing cartographic pipeline has been proposed based on the following aspects: 1- extension of the symbolization specifications OGC SLD/SE in order to provide a formalism to specify and reference expressive rendering methods; 2- separate the specification of each rendering method and its parameterization, as metadata. The main contribution has been described in (Christophe et al. 2016). In this paper, we focus firstly on the extension of the cartographic pipeline (SLD++ and metadata) and secondly on map design capabilities which have been experimented on various topographic styles: old cartographic styles (Cassini), artistic styles (watercolor, impressionism, Japanese print), hybrid topographic styles (ortho-imagery & vector data) and finally abstract and photo-realist styles for the geovisualization of costal area. The genericity and interoperability of our approach are promising and have already been tested for 3D visualization.

  19. Bit-Table Based Biclustering and Frequent Closed Itemset Mining in High-Dimensional Binary Data

    PubMed Central

    Király, András; Abonyi, János

    2014-01-01

    During the last decade various algorithms have been developed and proposed for discovering overlapping clusters in high-dimensional data. The two most prominent application fields in this research, proposed independently, are frequent itemset mining (developed for market basket data) and biclustering (applied to gene expression data analysis). The common limitation of both methodologies is the limited applicability for very large binary data sets. In this paper we propose a novel and efficient method to find both frequent closed itemsets and biclusters in high-dimensional binary data. The method is based on simple but very powerful matrix and vector multiplication approaches that ensure that all patterns can be discovered in a fast manner. The proposed algorithm has been implemented in the commonly used MATLAB environment and freely available for researchers. PMID:24616651

  20. Impact of missing data imputation methods on gene expression clustering and classification.

    PubMed

    de Souto, Marcilio C P; Jaskowiak, Pablo A; Costa, Ivan G

    2015-02-26

    Several missing value imputation methods for gene expression data have been proposed in the literature. In the past few years, researchers have been putting a great deal of effort into presenting systematic evaluations of the different imputation algorithms. Initially, most algorithms were assessed with an emphasis on the accuracy of the imputation, using metrics such as the root mean squared error. However, it has become clear that the success of the estimation of the expression value should be evaluated in more practical terms as well. One can consider, for example, the ability of the method to preserve the significant genes in the dataset, or its discriminative/predictive power for classification/clustering purposes. We performed a broad analysis of the impact of five well-known missing value imputation methods on three clustering and four classification methods, in the context of 12 cancer gene expression datasets. We employed a statistical framework, for the first time in this field, to assess whether different imputation methods improve the performance of the clustering/classification methods. Our results suggest that the imputation methods evaluated have a minor impact on the classification and downstream clustering analyses. Simple methods such as replacing the missing values by mean or the median values performed as well as more complex strategies. The datasets analyzed in this study are available at http://costalab.org/Imputation/ .

  1. Analysis of facial expressions in parkinson's disease through video-based automatic methods.

    PubMed

    Bandini, Andrea; Orlandi, Silvia; Escalante, Hugo Jair; Giovannelli, Fabio; Cincotta, Massimo; Reyes-Garcia, Carlos A; Vanni, Paola; Zaccara, Gaetano; Manfredi, Claudia

    2017-04-01

    The automatic analysis of facial expressions is an evolving field that finds several clinical applications. One of these applications is the study of facial bradykinesia in Parkinson's disease (PD), which is a major motor sign of this neurodegenerative illness. Facial bradykinesia consists in the reduction/loss of facial movements and emotional facial expressions called hypomimia. In this work we propose an automatic method for studying facial expressions in PD patients relying on video-based METHODS: 17 Parkinsonian patients and 17 healthy control subjects were asked to show basic facial expressions, upon request of the clinician and after the imitation of a visual cue on a screen. Through an existing face tracker, the Euclidean distance of the facial model from a neutral baseline was computed in order to quantify the changes in facial expressivity during the tasks. Moreover, an automatic facial expressions recognition algorithm was trained in order to study how PD expressions differed from the standard expressions. Results show that control subjects reported on average higher distances than PD patients along the tasks. This confirms that control subjects show larger movements during both posed and imitated facial expressions. Moreover, our results demonstrate that anger and disgust are the two most impaired expressions in PD patients. Contactless video-based systems can be important techniques for analyzing facial expressions also in rehabilitation, in particular speech therapy, where patients could get a definite advantage from a real-time feedback about the proper facial expressions/movements to perform. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling

    PubMed Central

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028

  3. mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling.

    PubMed

    Alshamlan, Hala; Badr, Ghada; Alohali, Yousef

    2015-01-01

    An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.

  4. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.

    PubMed

    Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver

    2018-02-15

    Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R software is available at https://github.com/angy89/RobustSparseCorrelation. aserra@unisa.it or robtag@unisa.it. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    PubMed Central

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  6. An extended data mining method for identifying differentially expressed assay-specific signatures in functional genomic studies.

    PubMed

    Rollins, Derrick K; Teh, Ailing

    2010-12-17

    Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR) and statistical power (SP) which is the ability to correctly identify important genes. This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i) exposing E. coli cells to two different ethanol levels; (ii) application of myostatin to two groups of mice; and (iii) a simulated data study derived from the properties of (ii). The proposed method (PM) effectively identified critical genes in these studies based on comparison with the current method (CM). The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.

  7. Correspondence regarding Zhong et al., BMC Bioinformatics 2013 Mar 7;14:89.

    PubMed

    Kuhn, Alexandre

    2014-11-28

    Computational expression deconvolution aims to estimate the contribution of individual cell populations to expression profiles measured in samples of heterogeneous composition. Zhong et al. recently proposed Digital Sorting Algorithm (BMC Bioinformatics 2013 Mar 7;14:89) and showed that they could accurately estimate population-specific expression levels and expression differences between two populations. They compared DSA with Population-Specific Expression Analysis (PSEA), a previous deconvolution method that we developed to detect expression changes occurring within the same population between two conditions (e.g. disease versus non-disease). However, Zhong et al. compared PSEA-derived specific expression levels across different cell populations. Specific expression levels obtained with PSEA cannot be directly compared across different populations as they are on a relative scale. They are accurate as we demonstrate by deconvolving the same dataset used by Zhong et al. and, importantly, allow for comparison of population-specific expression across conditions.

  8. Learning the spherical harmonic features for 3-D face recognition.

    PubMed

    Liu, Peijiang; Wang, Yunhong; Huang, Di; Zhang, Zhaoxiang; Chen, Liming

    2013-03-01

    In this paper, a competitive method for 3-D face recognition (FR) using spherical harmonic features (SHF) is proposed. With this solution, 3-D face models are characterized by the energies contained in spherical harmonics with different frequencies, thereby enabling the capture of both gross shape and fine surface details of a 3-D facial surface. This is in clear contrast to most 3-D FR techniques which are either holistic or feature based, using local features extracted from distinctive points. First, 3-D face models are represented in a canonical representation, namely, spherical depth map, by which SHF can be calculated. Then, considering the predictive contribution of each SHF feature, especially in the presence of facial expression and occlusion, feature selection methods are used to improve the predictive performance and provide faster and more cost-effective predictors. Experiments have been carried out on three public 3-D face datasets, SHREC2007, FRGC v2.0, and Bosphorus, with increasing difficulties in terms of facial expression, pose, and occlusion, and which demonstrate the effectiveness of the proposed method.

  9. High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis

    PubMed Central

    Daye, Z. John; Chen, Jinbo; Li, Hongzhe

    2011-01-01

    Summary We consider the problem of high-dimensional regression under non-constant error variances. Despite being a common phenomenon in biological applications, heteroscedasticity has, so far, been largely ignored in high-dimensional analysis of genomic data sets. We propose a new methodology that allows non-constant error variances for high-dimensional estimation and model selection. Our method incorporates heteroscedasticity by simultaneously modeling both the mean and variance components via a novel doubly regularized approach. Extensive Monte Carlo simulations indicate that our proposed procedure can result in better estimation and variable selection than existing methods when heteroscedasticity arises from the presence of predictors explaining error variances and outliers. Further, we demonstrate the presence of heteroscedasticity in and apply our method to an expression quantitative trait loci (eQTLs) study of 112 yeast segregants. The new procedure can automatically account for heteroscedasticity in identifying the eQTLs that are associated with gene expression variations and lead to smaller prediction errors. These results demonstrate the importance of considering heteroscedasticity in eQTL data analysis. PMID:22547833

  10. MiRNA-TF-gene network analysis through ranking of biomolecules for multi-informative uterine leiomyoma dataset.

    PubMed

    Mallik, Saurav; Maulik, Ujjwal

    2015-10-01

    Gene ranking is an important problem in bioinformatics. Here, we propose a new framework for ranking biomolecules (viz., miRNAs, transcription-factors/TFs and genes) in a multi-informative uterine leiomyoma dataset having both gene expression and methylation data using (statistical) eigenvector centrality based approach. At first, genes that are both differentially expressed and methylated, are identified using Limma statistical test. A network, comprising these genes, corresponding TFs from TRANSFAC and ITFP databases, and targeter miRNAs from miRWalk database, is then built. The biomolecules are then ranked based on eigenvector centrality. Our proposed method provides better average accuracy in hub gene and non-hub gene classifications than other methods. Furthermore, pre-ranked Gene set enrichment analysis is applied on the pathway database as well as GO-term databases of Molecular Signatures Database with providing a pre-ranked gene-list based on different centrality values for comparing among the ranking methods. Finally, top novel potential gene-markers for the uterine leiomyoma are provided. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A Novel Attitude Estimation Algorithm Based on the Non-Orthogonal Magnetic Sensors

    PubMed Central

    Zhu, Jianliang; Wu, Panlong; Bo, Yuming

    2016-01-01

    Because the existing extremum ratio method for projectile attitude measurement is vulnerable to random disturbance, a novel integral ratio method is proposed to calculate the projectile attitude. First, the non-orthogonal measurement theory of the magnetic sensors is analyzed. It is found that the projectile rotating velocity is constant in one spinning circle and the attitude error is actually the pitch error. Next, by investigating the model of the extremum ratio method, an integral ratio mathematical model is established to improve the anti-disturbance performance. Finally, by combining the preprocessed magnetic sensor data based on the least-square method and the rotating extremum features in one cycle, the analytical expression of the proposed integral ratio algorithm is derived with respect to the pitch angle. The simulation results show that the proposed integral ratio method gives more accurate attitude calculations than does the extremum ratio method, and that the attitude error variance can decrease by more than 90%. Compared to the extremum ratio method (which collects only a single data point in one rotation cycle), the proposed integral ratio method can utilize all of the data collected in the high spin environment, which is a clearly superior calculation approach, and can be applied to the actual projectile environment disturbance. PMID:27213389

  12. Transfer Function of Multi-Stage Active Filters: A Solution Based on Pascal's Triangle and a General Expression

    ERIC Educational Resources Information Center

    Levesque, Luc

    2012-01-01

    A method is proposed to simplify analytical computations of the transfer function for electrical circuit filters, which are made from repetitive identical stages. A method based on the construction of Pascal's triangle is introduced and then a general solution from two initial conditions is provided for the repetitive identical stage. The present…

  13. Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun

    2008-11-01

    A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.

  14. A novel harmony search-K means hybrid algorithm for clustering gene expression data

    PubMed Central

    Nazeer, KA Abdul; Sebastian, MP; Kumar, SD Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms. PMID:23390351

  15. A novel harmony search-K means hybrid algorithm for clustering gene expression data.

    PubMed

    Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.

  16. Bayesian models based on test statistics for multiple hypothesis testing problems.

    PubMed

    Ji, Yuan; Lu, Yiling; Mills, Gordon B

    2008-04-01

    We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.

  17. Classification of facial-emotion expression in the application of psychotherapy using Viola-Jones and Edge-Histogram of Oriented Gradient.

    PubMed

    Candra, Henry; Yuwono, Mitchell; Rifai Chai; Nguyen, Hung T; Su, Steven

    2016-08-01

    Psychotherapy requires appropriate recognition of patient's facial-emotion expression to provide proper treatment in psychotherapy session. To address the needs this paper proposed a facial emotion recognition system using Combination of Viola-Jones detector together with a feature descriptor we term Edge-Histogram of Oriented Gradients (E-HOG). The performance of the proposed method is compared with various feature sources including the face, the eyes, the mouth, as well as both the eyes and the mouth. Seven classes of basic emotions have been successfully identified with 96.4% accuracy using Multi-class Support Vector Machine (SVM). The proposed descriptor E-HOG is much leaner to compute compared to traditional HOG as shown by a significant improvement in processing time as high as 1833.33% (p-value = 2.43E-17) with a slight reduction in accuracy of only 1.17% (p-value = 0.0016).

  18. A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ohmi, Masataro; Mori, Hiroyuki

    In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.

  19. A powerful nonparametric method for detecting differentially co-expressed genes: distance correlation screening and edge-count test.

    PubMed

    Zhang, Qingyang

    2018-05-16

    Differential co-expression analysis, as a complement of differential expression analysis, offers significant insights into the changes in molecular mechanism of different phenotypes. A prevailing approach to detecting differentially co-expressed genes is to compare Pearson's correlation coefficients in two phenotypes. However, due to the limitations of Pearson's correlation measure, this approach lacks the power to detect nonlinear changes in gene co-expression which is common in gene regulatory networks. In this work, a new nonparametric procedure is proposed to search differentially co-expressed gene pairs in different phenotypes from large-scale data. Our computational pipeline consisted of two main steps, a screening step and a testing step. The screening step is to reduce the search space by filtering out all the independent gene pairs using distance correlation measure. In the testing step, we compare the gene co-expression patterns in different phenotypes by a recently developed edge-count test. Both steps are distribution-free and targeting nonlinear relations. We illustrate the promise of the new approach by analyzing the Cancer Genome Atlas data and the METABRIC data for breast cancer subtypes. Compared with some existing methods, the new method is more powerful in detecting nonlinear type of differential co-expressions. The distance correlation screening can greatly improve computational efficiency, facilitating its application to large data sets.

  20. [Spectral scatter correction of coal samples based on quasi-linear local weighted method].

    PubMed

    Lei, Meng; Li, Ming; Ma, Xiao-Ping; Miao, Yan-Zi; Wang, Jian-Sheng

    2014-07-01

    The present paper puts forth a new spectral correction method based on quasi-linear expression and local weighted function. The first stage of the method is to search 3 quasi-linear expressions to replace the original linear expression in MSC method, such as quadratic, cubic and growth curve expression. Then the local weighted function is constructed by introducing 4 kernel functions, such as Gaussian, Epanechnikov, Biweight and Triweight kernel function. After adding the function in the basic estimation equation, the dependency between the original and ideal spectra is described more accurately and meticulously at each wavelength point. Furthermore, two analytical models were established respectively based on PLS and PCA-BP neural network method, which can be used for estimating the accuracy of corrected spectra. At last, the optimal correction mode was determined by the analytical results with different combination of quasi-linear expression and local weighted function. The spectra of the same coal sample have different noise ratios while the coal sample was prepared under different particle sizes. To validate the effectiveness of this method, the experiment analyzed the correction results of 3 spectral data sets with the particle sizes of 0.2, 1 and 3 mm. The results show that the proposed method can eliminate the scattering influence, and also can enhance the information of spectral peaks. This paper proves a more efficient way to enhance the correlation between corrected spectra and coal qualities significantly, and improve the accuracy and stability of the analytical model substantially.

  1. Multi-objective based spectral unmixing for hyperspectral images

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Shi, Zhenwei

    2017-02-01

    Sparse hyperspectral unmixing assumes that each observed pixel can be expressed by a linear combination of several pure spectra in a priori library. Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0 norm based optimization problem. Existing methods usually utilize a relaxation to the original l0 norm. However, the relaxation may bring in sensitive weighted parameters and additional calculation error. In this paper, we propose a novel multi-objective based algorithm to solve the sparse unmixing problem without any relaxation. We transform sparse unmixing to a multi-objective optimization problem, which contains two correlative objectives: minimizing the reconstruction error and controlling the endmember sparsity. To improve the efficiency of multi-objective optimization, a population-based randomly flipping strategy is designed. Moreover, we theoretically prove that the proposed method is able to recover a guaranteed approximate solution from the spectral library within limited iterations. The proposed method can directly deal with l0 norm via binary coding for the spectral signatures in the library. Experiments on both synthetic and real hyperspectral datasets demonstrate the effectiveness of the proposed method.

  2. Portraying the Expression Landscapes of B-Cell Lymphoma-Intuitive Detection of Outlier Samples and of Molecular Subtypes

    PubMed Central

    Hopp, Lydia; Lembcke, Kathrin; Binder, Hans; Wirth, Henry

    2013-01-01

    We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sample with individual resolution, characterizes the subtypes, disentangles the expression patterns into distinct modules, extracts their functional context using enrichment techniques and enables investigation of the similarity relations between the samples. The method also allows to detect and to correct outliers caused by contaminations. Based on our analysis, we propose a refined classification of B-cell Lymphoma into four molecular subtypes which are characterized by differential functional and clinical characteristics. PMID:24833231

  3. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays.

    PubMed

    McLachlan, G J; Bean, R W; Jones, L Ben-Tovim

    2006-07-01

    An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.

  4. A unified partial likelihood approach for X-chromosome association on time-to-event outcomes.

    PubMed

    Xu, Wei; Hao, Meiling

    2018-02-01

    The expression of X-chromosome undergoes three possible biological processes: X-chromosome inactivation (XCI), escape of the X-chromosome inactivation (XCI-E), and skewed X-chromosome inactivation (XCI-S). Although these expressions are included in various predesigned genetic variation chip platforms, the X-chromosome has generally been excluded from the majority of genome-wide association studies analyses; this is most likely due to the lack of a standardized method in handling X-chromosomal genotype data. To analyze the X-linked genetic association for time-to-event outcomes with the actual process unknown, we propose a unified approach of maximizing the partial likelihood over all of the potential biological processes. The proposed method can be used to infer the true biological process and derive unbiased estimates of the genetic association parameters. A partial likelihood ratio test statistic that has been proved asymptotically chi-square distributed can be used to assess the X-chromosome genetic association. Furthermore, if the X-chromosome expression pertains to the XCI-S process, we can infer the correct skewed direction and magnitude of inactivation, which can elucidate significant findings regarding the genetic mechanism. A population-level model and a more general subject-level model have been developed to model the XCI-S process. Finite sample performance of this novel method is examined via extensive simulation studies. An application is illustrated with implementation of the method on a cancer genetic study with survival outcome. © 2017 WILEY PERIODICALS, INC.

  5. Effective Feature Selection for Classification of Promoter Sequences.

    PubMed

    K, Kouser; P G, Lavanya; Rangarajan, Lalitha; K, Acharya Kshitish

    2016-01-01

    Exploring novel computational methods in making sense of biological data has not only been a necessity, but also productive. A part of this trend is the search for more efficient in silico methods/tools for analysis of promoters, which are parts of DNA sequences that are involved in regulation of expression of genes into other functional molecules. Promoter regions vary greatly in their function based on the sequence of nucleotides and the arrangement of protein-binding short-regions called motifs. In fact, the regulatory nature of the promoters seems to be largely driven by the selective presence and/or the arrangement of these motifs. Here, we explore computational classification of promoter sequences based on the pattern of motif distributions, as such classification can pave a new way of functional analysis of promoters and to discover the functionally crucial motifs. We make use of Position Specific Motif Matrix (PSMM) features for exploring the possibility of accurately classifying promoter sequences using some of the popular classification techniques. The classification results on the complete feature set are low, perhaps due to the huge number of features. We propose two ways of reducing features. Our test results show improvement in the classification output after the reduction of features. The results also show that decision trees outperform SVM (Support Vector Machine), KNN (K Nearest Neighbor) and ensemble classifier LibD3C, particularly with reduced features. The proposed feature selection methods outperform some of the popular feature transformation methods such as PCA and SVD. Also, the methods proposed are as accurate as MRMR (feature selection method) but much faster than MRMR. Such methods could be useful to categorize new promoters and explore regulatory mechanisms of gene expressions in complex eukaryotic species.

  6. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.

    PubMed

    Nidheesh, N; Abdul Nazeer, K A; Ameer, P M

    2017-12-01

    Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The next GUM and its proposals: a comparison study

    NASA Astrophysics Data System (ADS)

    Damasceno, J. C.; Couto, P. R. G.

    2018-03-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) is currently under revision. New proposals for its implementation were circulated in the form of a draft document. Two of the main changes are explored in this work using a Brinell hardness model example. Changes in the evaluation of uncertainty for repeated indications and in the construction of coverage intervals are compared with the classic GUM and with Monte Carlo simulation method.

  8. A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems.

    PubMed

    Sabar, Nasser R; Ayob, Masri; Kendall, Graham; Qu, Rong

    2015-02-01

    Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.

  9. Identification of aberrant gene expression associated with aberrant promoter methylation in primordial germ cells between E13 and E16 rat F3 generation vinclozolin lineage.

    PubMed

    Taguchi, Y-h

    2015-01-01

    Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.

  10. Closed-form eigensolutions of nonviscously, nonproportionally damped systems based on continuous damping sensitivity

    NASA Astrophysics Data System (ADS)

    Lázaro, Mario

    2018-01-01

    In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.

  11. Effects of threshold on the topology of gene co-expression networks.

    PubMed

    Couto, Cynthia Martins Villar; Comin, César Henrique; Costa, Luciano da Fontoura

    2017-09-26

    Several developments regarding the analysis of gene co-expression profiles using complex network theory have been reported recently. Such approaches usually start with the construction of an unweighted gene co-expression network, therefore requiring the selection of a suitable threshold defining which pairs of vertices will be connected. We aimed at addressing such an important problem by suggesting and comparing five different approaches for threshold selection. Each of the methods considers a respective biologically-motivated criterion for electing a potentially suitable threshold. A set of 21 microarray experiments from different biological groups was used to investigate the effect of applying the five proposed criteria to several biological situations. For each experiment, we used the Pearson correlation coefficient to measure the relationship between each gene pair, and the resulting weight matrices were thresholded considering several values, generating respective adjacency matrices (co-expression networks). Each of the five proposed criteria was then applied in order to select the respective threshold value. The effects of these thresholding approaches on the topology of the resulting networks were compared by using several measurements, and we verified that, depending on the database, the impact on the topological properties can be large. However, a group of databases was verified to be similarly affected by most of the considered criteria. Based on such results, it can be suggested that when the generated networks present similar measurements, the thresholding method can be chosen with greater freedom. If the generated networks are markedly different, the thresholding method that better suits the interests of each specific research study represents a reasonable choice.

  12. Reframed Genome-Scale Metabolic Model to Facilitate Genetic Design and Integration with Expression Data.

    PubMed

    Gu, Deqing; Jian, Xingxing; Zhang, Cheng; Hua, Qiang

    2017-01-01

    Genome-scale metabolic network models (GEMs) have played important roles in the design of genetically engineered strains and helped biologists to decipher metabolism. However, due to the complex gene-reaction relationships that exist in model systems, most algorithms have limited capabilities with respect to directly predicting accurate genetic design for metabolic engineering. In particular, methods that predict reaction knockout strategies leading to overproduction are often impractical in terms of gene manipulations. Recently, we proposed a method named logical transformation of model (LTM) to simplify the gene-reaction associations by introducing intermediate pseudo reactions, which makes it possible to generate genetic design. Here, we propose an alternative method to relieve researchers from deciphering complex gene-reactions by adding pseudo gene controlling reactions. In comparison to LTM, this new method introduces fewer pseudo reactions and generates a much smaller model system named as gModel. We showed that gModel allows two seldom reported applications: identification of minimal genomes and design of minimal cell factories within a modified OptKnock framework. In addition, gModel could be used to integrate expression data directly and improve the performance of the E-Fmin method for predicting fluxes. In conclusion, the model transformation procedure will facilitate genetic research based on GEMs, extending their applications.

  13. Recursive regularization for inferring gene networks from time-course gene expression profiles

    PubMed Central

    Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru

    2009-01-01

    Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091

  14. Integrating conventional and inverse representation for face recognition.

    PubMed

    Xu, Yong; Li, Xuelong; Yang, Jian; Lai, Zhihui; Zhang, David

    2014-10-01

    Representation-based classification methods are all constructed on the basis of the conventional representation, which first expresses the test sample as a linear combination of the training samples and then exploits the deviation between the test sample and the expression result of every class to perform classification. However, this deviation does not always well reflect the difference between the test sample and each class. With this paper, we propose a novel representation-based classification method for face recognition. This method integrates conventional and the inverse representation-based classification for better recognizing the face. It first produces conventional representation of the test sample, i.e., uses a linear combination of the training samples to represent the test sample. Then it obtains the inverse representation, i.e., provides an approximation representation of each training sample of a subject by exploiting the test sample and training samples of the other subjects. Finally, the proposed method exploits the conventional and inverse representation to generate two kinds of scores of the test sample with respect to each class and combines them to recognize the face. The paper shows the theoretical foundation and rationale of the proposed method. Moreover, this paper for the first time shows that a basic nature of the human face, i.e., the symmetry of the face can be exploited to generate new training and test samples. As these new samples really reflect some possible appearance of the face, the use of them will enable us to obtain higher accuracy. The experiments show that the proposed conventional and inverse representation-based linear regression classification (CIRLRC), an improvement to linear regression classification (LRC), can obtain very high accuracy and greatly outperforms the naive LRC and other state-of-the-art conventional representation based face recognition methods. The accuracy of CIRLRC can be 10% greater than that of LRC.

  15. Sample-space-based feature extraction and class preserving projection for gene expression data.

    PubMed

    Wang, Wenjun

    2013-01-01

    In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.

  16. Robust Gaussian Graphical Modeling via l1 Penalization

    PubMed Central

    Sun, Hokeun; Li, Hongzhe

    2012-01-01

    Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775

  17. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  18. Hesitant Fuzzy Linguistic Preference Utility Set and Its Application in Selection of Fire Rescue Plans

    PubMed Central

    Si, Guangsen; Xu, Zeshui

    2018-01-01

    Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers’ subjective cognition. In general, different decision-makers’ sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method. PMID:29614019

  19. A novel method for correcting scanline-observational bias of discontinuity orientation

    PubMed Central

    Huang, Lei; Tang, Huiming; Tan, Qinwen; Wang, Dingjian; Wang, Liangqing; Ez Eldin, Mutasim A. M.; Li, Changdong; Wu, Qiong

    2016-01-01

    Scanline observation is known to introduce an angular bias into the probability distribution of orientation in three-dimensional space. In this paper, numerical solutions expressing the functional relationship between the scanline-observational distribution (in one-dimensional space) and the inherent distribution (in three-dimensional space) are derived using probability theory and calculus under the independence hypothesis of dip direction and dip angle. Based on these solutions, a novel method for obtaining the inherent distribution (also for correcting the bias) is proposed, an approach which includes two procedures: 1) Correcting the cumulative probabilities of orientation according to the solutions, and 2) Determining the distribution of the corrected orientations using approximation methods such as the one-sample Kolmogorov-Smirnov test. The inherent distribution corrected by the proposed method can be used for discrete fracture network (DFN) modelling, which is applied to such areas as rockmass stability evaluation, rockmass permeability analysis, rockmass quality calculation and other related fields. To maximize the correction capacity of the proposed method, the observed sample size is suggested through effectiveness tests for different distribution types, dispersions and sample sizes. The performance of the proposed method and the comparison of its correction capacity with existing methods are illustrated with two case studies. PMID:26961249

  20. Hesitant Fuzzy Linguistic Preference Utility Set and Its Application in Selection of Fire Rescue Plans.

    PubMed

    Liao, Huchang; Si, Guangsen; Xu, Zeshui; Fujita, Hamido

    2018-04-03

    Hesitant fuzzy linguistic term set provides an effective tool to represent uncertain decision information. However, the semantics corresponding to the linguistic terms in it cannot accurately reflect the decision-makers' subjective cognition. In general, different decision-makers' sensitivities towards the semantics are different. Such sensitivities can be represented by the cumulative prospect theory value function. Inspired by this, we propose a linguistic scale function to transform the semantics corresponding to linguistic terms into the linguistic preference values. Furthermore, we propose the hesitant fuzzy linguistic preference utility set, based on which, the decision-makers can flexibly express their distinct semantics and obtain the decision results that are consistent with their cognition. For calculations and comparisons over the hesitant fuzzy linguistic preference utility sets, we introduce some distance measures and comparison laws. Afterwards, to apply the hesitant fuzzy linguistic preference utility sets in emergency management, we develop a method to obtain objective weights of attributes and then propose a hesitant fuzzy linguistic preference utility-TOPSIS method to select the best fire rescue plan. Finally, the validity of the proposed method is verified by some comparisons of the method with other two representative methods including the hesitant fuzzy linguistic-TOPSIS method and the hesitant fuzzy linguistic-VIKOR method.

  1. Simultaneous gas chromatographic determination of chlorpyrifos and its impurity sulfotep in liquid pesticide formulations.

    PubMed

    Płonka, Marlena; Walorczyk, Stanisław; Miszczyk, Marek; Kronenbach-Dylong, Dorota

    2016-11-01

    An analytical method for simultaneous determination of the active substance (chlorpyrifos) and its relevant impurity (sulfotep) in commercial pesticide formulations has been developed and validated. The proposed method entails extraction of the analytes from samples by sonication with acetone and analysis by gas chromatography-flame ionization detection (GC-FID). The proposed method was characterized by satisfactory accuracy and precision. The repeatability expressed as relative standard deviation (RSD) was lower than the acceptable values calculated from the modified Horwitz equation whereas individual recoveries were in the range of 98-102% and 80-120% for chlorpyrifos and sulfotep, respectively. The limit of quantification (LOQ) for the impurity (sulfotep) was 0.003 mg mL(-1) corresponding to the maximum permitted level according to Food and Agricultural Organization of the United Nations (FAO) specifications for the active substance (chlorpyrifos) being 3 g kg(-1) of the chlorpyrifos content found. The main advantage of the proposed method was a considerable reduction in the analysis time since both analytes were determined based on a single injection into the GC-FID. Analysis of real samples of commercial pesticide formulations confirmed fitness-for-purpose of the proposed method.

  2. A statistical method for the conservative adjustment of false discovery rate (q-value).

    PubMed

    Lai, Yinglei

    2017-03-14

    q-value is a widely used statistical method for estimating false discovery rate (FDR), which is a conventional significance measure in the analysis of genome-wide expression data. q-value is a random variable and it may underestimate FDR in practice. An underestimated FDR can lead to unexpected false discoveries in the follow-up validation experiments. This issue has not been well addressed in literature, especially in the situation when the permutation procedure is necessary for p-value calculation. We proposed a statistical method for the conservative adjustment of q-value. In practice, it is usually necessary to calculate p-value by a permutation procedure. This was also considered in our adjustment method. We used simulation data as well as experimental microarray or sequencing data to illustrate the usefulness of our method. The conservativeness of our approach has been mathematically confirmed in this study. We have demonstrated the importance of conservative adjustment of q-value, particularly in the situation that the proportion of differentially expressed genes is small or the overall differential expression signal is weak.

  3. [Combine fats products: methodic opportunities of it identification].

    PubMed

    Viktorova, E V; Kulakova, S N; Mikhaĭlov, N A

    2006-01-01

    At present time very topical problem is falsification of milk fat. The number of methods was considered to detection of milk fat authention and possibilities his difference from combined fat products. The analysis of modern approaches to valuation of milk fat authention has showed that the main method for detection of fat nature is gas chromatography analysis. The computer method of express identification of fat products is proposed for quick getting of information about accessory of examine fat to nature milk or combined fat product.

  4. Challenges in projecting clustering results across gene expression-profiling datasets.

    PubMed

    Lusa, Lara; McShane, Lisa M; Reid, James F; De Cecco, Loris; Ambrogi, Federico; Biganzoli, Elia; Gariboldi, Manuela; Pierotti, Marco A

    2007-11-21

    Gene expression microarray studies for several types of cancer have been reported to identify previously unknown subtypes of tumors. For breast cancer, a molecular classification consisting of five subtypes based on gene expression microarray data has been proposed. These subtypes have been reported to exist across several breast cancer microarray studies, and they have demonstrated some association with clinical outcome. A classification rule based on the method of centroids has been proposed for identifying the subtypes in new collections of breast cancer samples; the method is based on the similarity of the new profiles to the mean expression profile of the previously identified subtypes. Previously identified centroids of five breast cancer subtypes were used to assign 99 breast cancer samples, including a subset of 65 estrogen receptor-positive (ER+) samples, to five breast cancer subtypes based on microarray data for the samples. The effect of mean centering the genes (i.e., transforming the expression of each gene so that its mean expression is equal to 0) on subtype assignment by method of centroids was assessed. Further studies of the effect of mean centering and of class prevalence in the test set on the accuracy of method of centroids classifications of ER status were carried out using training and test sets for which ER status had been independently determined by ligand-binding assay and for which the proportion of ER+ and ER- samples were systematically varied. When all 99 samples were considered, mean centering before application of the method of centroids appeared to be helpful for correctly assigning samples to subtypes, as evidenced by the expression of genes that had previously been used as markers to identify the subtypes. However, when only the 65 ER+ samples were considered for classification, many samples appeared to be misclassified, as evidenced by an unexpected distribution of ER+ samples among the resultant subtypes. When genes were mean centered before classification of samples for ER status, the accuracy of the ER subgroup assignments was highly dependent on the proportion of ER+ samples in the test set; this effect of subtype prevalence was not seen when gene expression data were not mean centered. Simple corrections such as mean centering of genes aimed at microarray platform or batch effect correction can have undesirable consequences because patient population effects can easily be confused with these assay-related effects. Careful thought should be given to the comparability of the patient populations before attempting to force data comparability for purposes of assigning subtypes to independent subjects.

  5. Super-delta: a new differential gene expression analysis procedure with robust data normalization.

    PubMed

    Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing

    2017-12-21

    Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super-delta provides new insights to the area of differential gene expression analysis. Solid theoretical foundation supports its asymptotic unbiasedness and technical noise-free properties. Implementation on real and simulated datasets demonstrates its decent performance compared with state-of-art procedures. It also has the potential of expansion to be incorporated with other data type and/or more general between-group comparison problems.

  6. Comparative analysis of gene expression level by quantitative real-time PCR has limited application in objects with different morphology.

    PubMed

    Demidenko, Natalia V; Penin, Aleksey A

    2012-01-01

    qRT-PCR is a generally acknowledged method for gene expression analysis due to its precision and reproducibility. However, it is well known that the accuracy of qRT-PCR data varies greatly depending on the experimental design and data analysis. Recently, a set of guidelines has been proposed that aims to improve the reliability of qRT-PCR. However, there are additional factors that have not been taken into consideration in these guidelines that can seriously affect the data obtained using this method. In this study, we report the influence that object morphology can have on qRT-PCR data. We have used a number of Arabidopsis thaliana mutants with altered floral morphology as models for this study. These mutants have been well characterised (including in terms of gene expression levels and patterns) by other techniques. This allows us to compare the results from the qRT-PCR with the results inferred from other methods. We demonstrate that the comparison of gene expression levels in objects that differ greatly in their morphology can lead to erroneous results.

  7. Optimized theory for simple and molecular fluids.

    PubMed

    Marucho, M; Montgomery Pettitt, B

    2007-03-28

    An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.

  8. An Iterative Time Windowed Signature Algorithm for Time Dependent Transcription Module Discovery

    PubMed Central

    Meng, Jia; Gao, Shou-Jiang; Huang, Yufei

    2010-01-01

    An algorithm for the discovery of time varying modules using genome-wide expression data is present here. When applied to large-scale time serious data, our method is designed to discover not only the transcription modules but also their timing information, which is rarely annotated by the existing approaches. Rather than assuming commonly defined time constant transcription modules, a module is depicted as a set of genes that are co-regulated during a specific period of time, i.e., a time dependent transcription module (TDTM). A rigorous mathematical definition of TDTM is provided, which is serve as an objective function for retrieving modules. Based on the definition, an effective signature algorithm is proposed that iteratively searches the transcription modules from the time series data. The proposed method was tested on the simulated systems and applied to the human time series microarray data during Kaposi's sarcoma-associated herpesvirus (KSHV) infection. The result has been verified by Expression Analysis Systematic Explorer. PMID:21552463

  9. Bayesian estimation of differential transcript usage from RNA-seq data.

    PubMed

    Papastamoulis, Panagiotis; Rattray, Magnus

    2017-11-27

    Next generation sequencing allows the identification of genes consisting of differentially expressed transcripts, a term which usually refers to changes in the overall expression level. A specific type of differential expression is differential transcript usage (DTU) and targets changes in the relative within gene expression of a transcript. The contribution of this paper is to: (a) extend the use of cjBitSeq to the DTU context, a previously introduced Bayesian model which is originally designed for identifying changes in overall expression levels and (b) propose a Bayesian version of DRIMSeq, a frequentist model for inferring DTU. cjBitSeq is a read based model and performs fully Bayesian inference by MCMC sampling on the space of latent state of each transcript per gene. BayesDRIMSeq is a count based model and estimates the Bayes Factor of a DTU model against a null model using Laplace's approximation. The proposed models are benchmarked against the existing ones using a recent independent simulation study as well as a real RNA-seq dataset. Our results suggest that the Bayesian methods exhibit similar performance with DRIMSeq in terms of precision/recall but offer better calibration of False Discovery Rate.

  10. Transformation and model choice for RNA-seq co-expression analysis.

    PubMed

    Rau, Andrea; Maugis-Rabusseau, Cathy

    2018-05-01

    Although a large number of clustering algorithms have been proposed to identify groups of co-expressed genes from microarray data, the question of if and how such methods may be applied to RNA sequencing (RNA-seq) data remains unaddressed. In this work, we investigate the use of data transformations in conjunction with Gaussian mixture models for RNA-seq co-expression analyses, as well as a penalized model selection criterion to select both an appropriate transformation and number of clusters present in the data. This approach has the advantage of accounting for per-cluster correlation structures among samples, which can be strong in RNA-seq data. In addition, it provides a rigorous statistical framework for parameter estimation, an objective assessment of data transformations and number of clusters and the possibility of performing diagnostic checks on the quality and homogeneity of the identified clusters. We analyze four varied RNA-seq data sets to illustrate the use of transformations and model selection in conjunction with Gaussian mixture models. Finally, we propose a Bioconductor package coseq (co-expression of RNA-seq data) to facilitate implementation and visualization of the recommended RNA-seq co-expression analyses.

  11. Two-dimensional frequency-domain acoustic full-waveform inversion with rugged topography

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Jiang; Dai, Shi-Kun; Chen, Long-Wei; Li, Kun; Zhao, Dong-Dong; Huang, Xing-Xing

    2015-09-01

    We studied finite-element-method-based two-dimensional frequency-domain acoustic FWI under rugged topography conditions. The exponential attenuation boundary condition suitable for rugged topography is proposed to solve the cutoff boundary problem as well as to consider the requirement of using the same subdivision grid in joint multifrequency inversion. The proposed method introduces the attenuation factor, and by adjusting it, acoustic waves are sufficiently attenuated in the attenuation layer to minimize the cutoff boundary effect. Based on the law of exponential attenuation, expressions for computing the attenuation factor and the thickness of attenuation layers are derived for different frequencies. In multifrequency-domain FWI, the conjugate gradient method is used to solve equations in the Gauss-Newton algorithm and thus minimize the computation cost in calculating the Hessian matrix. In addition, the effect of initial model selection and frequency combination on FWI is analyzed. Examples using numerical simulations and FWI calculations are used to verify the efficiency of the proposed method.

  12. Detecting and isolating abrupt changes in linear switching systems

    NASA Astrophysics Data System (ADS)

    Nazari, Sohail; Zhao, Qing; Huang, Biao

    2015-04-01

    In this paper, a novel fault detection and isolation (FDI) method for switching linear systems is developed. All input and output signals are assumed to be corrupted with measurement noises. In the proposed method, a 'lifted' linear model named as stochastic hybrid decoupling polynomial (SHDP) is introduced. The SHDP model governs the dynamics of the switching linear system with all different modes, and is independent of the switching sequence. The error-in-variable (EIV) representation of SHDP is derived, and is used for the fault residual generation and isolation following the well-adopted local approach. The proposed FDI method can detect and isolate the fault-induced abrupt changes in switching models' parameters without estimating the switching modes. Furthermore, in this paper, the analytical expressions of the gradient vector and Hessian matrix are obtained based on the EIV SHDP formulation, so that they can be used to implement the online fault detection scheme. The performance of the proposed method is then illustrated by simulation examples.

  13. Determination of Magnetic Parameters of Maghemite (γ-Fe2O3) Core-Shell Nanoparticles from Nonlinear Magnetic Susceptibility Measurements

    NASA Astrophysics Data System (ADS)

    Syvorotka, Ihor I.; Pavlyk, Lyubomyr P.; Ubizskii, Sergii B.; Buryy, Oleg A.; Savytskyy, Hrygoriy V.; Mitina, Nataliya Y.; Zaichenko, Oleksandr S.

    2017-04-01

    Method of determining of magnetic moment and size from measurements of dependence of the nonlinear magnetic susceptibility upon magnetic field is proposed, substantiated and tested for superparamagnetic nanoparticles (SPNP) of the "magnetic core-polymer shell" type which are widely used in biomedical technologies. The model of the induction response of the SPNP ensemble on the combined action of the magnetic harmonic excitation field and permanent bias field is built, and the analysis of possible ways to determine the magnetic moment and size of the nanoparticles as well as the parameters of the distribution of these variables is performed. Experimental verification of the proposed method was implemented on samples of SPNP with maghemite core in dry form as well as in colloidal systems. The results have been compared with the data obtained by other methods. Advantages of the proposed method are analyzed and discussed, particularly in terms of its suitability for routine express testing of SPNP for biomedical technology.

  14. A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.

    2018-02-01

    A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.

  15. An improved K-means clustering method for cDNA microarray image segmentation.

    PubMed

    Wang, T N; Li, T J; Shao, G F; Wu, S X

    2015-07-14

    Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.

  16. A cross-species bi-clustering approach to identifying conserved co-regulated genes.

    PubMed

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-06-15

    A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on synthetic data and compared to the two-step method and several recent joint clustering methods. We then applied this approach to two real world datasets of gene expression during the pre-implantation embryonic development of the human and mouse. Co-regulated genes consistent between the human and mouse were identified, offering insights into conserved functions, as well as similarities and differences in genome activation timing between the human and mouse embryos. The R package containing the implementation of the proposed method in C ++ is available at: https://github.com/JavonSun/mvbc.git and also at the R platform https://www.r-project.org/ jinbo@engr.uconn.edu. © The Author 2016. Published by Oxford University Press.

  17. Standard model of knowledge representation

    NASA Astrophysics Data System (ADS)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  18. Cross-platform method for identifying candidate network biomarkers for prostate cancer.

    PubMed

    Jin, G; Zhou, X; Cui, K; Zhang, X-S; Chen, L; Wong, S T C

    2009-11-01

    Discovering biomarkers using mass spectrometry (MS) and microarray expression profiles is a promising strategy in molecular diagnosis. Here, the authors proposed a new pipeline for biomarker discovery that integrates disease information for proteins and genes, expression profiles in both genomic and proteomic levels, and protein-protein interactions (PPIs) to discover high confidence network biomarkers. Using this pipeline, a total of 474 molecules (genes and proteins) related to prostate cancer were identified and a prostate-cancer-related network (PCRN) was derived from the integrative information. Thus, a set of candidate network biomarkers were identified from multiple expression profiles composed by eight microarray datasets and one proteomics dataset. The network biomarkers with PPIs can accurately distinguish the prostate patients from the normal ones, which potentially provide more reliable hits of biomarker candidates than conventional biomarker discovery methods.

  19. Using online handwriting and audio streams for mathematical expressions recognition: a bimodal approach

    NASA Astrophysics Data System (ADS)

    Medjkoune, Sofiane; Mouchère, Harold; Petitrenaud, Simon; Viard-Gaudin, Christian

    2013-01-01

    The work reported in this paper concerns the problem of mathematical expressions recognition. This task is known to be a very hard one. We propose to alleviate the difficulties by taking into account two complementary modalities. The modalities referred to are handwriting and audio ones. To combine the signals coming from both modalities, various fusion methods are explored. Performances evaluated on the HAMEX dataset show a significant improvement compared to a single modality (handwriting) based system.

  20. Feature-opinion pair identification of product reviews in Chinese: a domain ontology modeling method

    NASA Astrophysics Data System (ADS)

    Yin, Pei; Wang, Hongwei; Guo, Kaiqiang

    2013-03-01

    With the emergence of the new economy based on social media, a great amount of consumer feedback on particular products are conveyed through wide-spreading product online reviews, making opinion mining a growing interest for both academia and industry. According to the characteristic mode of expression in Chinese, this research proposes an ontology-based linguistic model to identify the basic appraisal expression in Chinese product reviews-"feature-opinion pair (FOP)." The product-oriented domain ontology is constructed automatically at first, then algorithms to identify FOP are designed by mapping product features and opinions to the conceptual space of the domain ontology, and finally comparative experiments are conducted to evaluate the model. Experimental results indicate that the performance of the proposed approach in this paper is efficient in obtaining a more accurate result compared to the state-of-art algorithms. Furthermore, through identifying and analyzing FOPs, the unstructured product reviews are converted into structured and machine-sensible expression, which provides valuable information for business application. This paper contributes to the related research in opinion mining by developing a solid foundation for further sentiment analysis at a fine-grained level and proposing a general way for automatic ontology construction.

  1. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions.

    PubMed

    Yang, Yang; Saleemi, Imran; Shah, Mubarak

    2013-07-01

    This paper proposes a novel representation of articulated human actions and gestures and facial expressions. The main goals of the proposed approach are: 1) to enable recognition using very few examples, i.e., one or k-shot learning, and 2) meaningful organization of unlabeled datasets by unsupervised clustering. Our proposed representation is obtained by automatically discovering high-level subactions or motion primitives, by hierarchical clustering of observed optical flow in four-dimensional, spatial, and motion flow space. The completely unsupervised proposed method, in contrast to state-of-the-art representations like bag of video words, provides a meaningful representation conducive to visual interpretation and textual labeling. Each primitive action depicts an atomic subaction, like directional motion of limb or torso, and is represented by a mixture of four-dimensional Gaussian distributions. For one--shot and k-shot learning, the sequence of primitive labels discovered in a test video are labeled using KL divergence, and can then be represented as a string and matched against similar strings of training videos. The same sequence can also be collapsed into a histogram of primitives or be used to learn a Hidden Markov model to represent classes. We have performed extensive experiments on recognition by one and k-shot learning as well as unsupervised action clustering on six human actions and gesture datasets, a composite dataset, and a database of facial expressions. These experiments confirm the validity and discriminative nature of the proposed representation.

  2. A deep learning-based multi-model ensemble method for cancer prediction.

    PubMed

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. First-arrival traveltime computation for quasi-P waves in 2D transversely isotropic media using Fermat’s principle-based fast marching

    NASA Astrophysics Data System (ADS)

    Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong

    2017-12-01

    First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.

  4. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs)

    PubMed Central

    2013-01-01

    Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation. PMID:24088245

  5. Clustering gene expression regulators: new approach to disease subtyping.

    PubMed

    Pyatnitskiy, Mikhail; Mazo, Ilya; Shkrob, Maria; Schwartz, Elena; Kotelnikova, Ekaterina

    2014-01-01

    One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA) which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms), that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient.

  6. Clustering Gene Expression Regulators: New Approach to Disease Subtyping

    PubMed Central

    Pyatnitskiy, Mikhail; Mazo, Ilya; Shkrob, Maria; Schwartz, Elena; Kotelnikova, Ekaterina

    2014-01-01

    One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA) which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms), that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient. PMID:24416320

  7. Robust kernel representation with statistical local features for face recognition.

    PubMed

    Yang, Meng; Zhang, Lei; Shiu, Simon Chi-Keung; Zhang, David

    2013-06-01

    Factors such as misalignment, pose variation, and occlusion make robust face recognition a difficult problem. It is known that statistical features such as local binary pattern are effective for local feature extraction, whereas the recently proposed sparse or collaborative representation-based classification has shown interesting results in robust face recognition. In this paper, we propose a novel robust kernel representation model with statistical local features (SLF) for robust face recognition. Initially, multipartition max pooling is used to enhance the invariance of SLF to image registration error. Then, a kernel-based representation model is proposed to fully exploit the discrimination information embedded in the SLF, and robust regression is adopted to effectively handle the occlusion in face images. Extensive experiments are conducted on benchmark face databases, including extended Yale B, AR (A. Martinez and R. Benavente), multiple pose, illumination, and expression (multi-PIE), facial recognition technology (FERET), face recognition grand challenge (FRGC), and labeled faces in the wild (LFW), which have different variations of lighting, expression, pose, and occlusions, demonstrating the promising performance of the proposed method.

  8. Mining gene link information for survival pathway hunting.

    PubMed

    Jing, Gao-Jian; Zhang, Zirui; Wang, Hong-Qiang; Zheng, Hong-Mei

    2015-08-01

    This study proposes a gene link-based method for survival time-related pathway hunting. In this method, the authors incorporate gene link information to estimate how a pathway is associated with cancer patient's survival time. Specifically, a gene link-based Cox proportional hazard model (Link-Cox) is established, in which two linked genes are considered together to represent a link variable and the association of the link with survival time is assessed using Cox proportional hazard model. On the basis of the Link-Cox model, the authors formulate a new statistic for measuring the association of a pathway with survival time of cancer patients, referred to as pathway survival score (PSS), by summarising survival significance over all the gene links in the pathway, and devise a permutation test to test the significance of an observed PSS. To evaluate the proposed method, the authors applied it to simulation data and two publicly available real-world gene expression data sets. Extensive comparisons with previous methods show the effectiveness and efficiency of the proposed method for survival pathway hunting.

  9. A Penalized Robust Method for Identifying Gene-Environment Interactions

    PubMed Central

    Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Xie, Yang; Ma, Shuangge

    2015-01-01

    In high-throughput studies, an important objective is to identify gene-environment interactions associated with disease outcomes and phenotypes. Many commonly adopted methods assume specific parametric or semiparametric models, which may be subject to model mis-specification. In addition, they usually use significance level as the criterion for selecting important interactions. In this study, we adopt the rank-based estimation, which is much less sensitive to model specification than some of the existing methods and includes several commonly encountered data and models as special cases. Penalization is adopted for the identification of gene-environment interactions. It achieves simultaneous estimation and identification and does not rely on significance level. For computation feasibility, a smoothed rank estimation is further proposed. Simulation shows that under certain scenarios, for example with contaminated or heavy-tailed data, the proposed method can significantly outperform the existing alternatives with more accurate identification. We analyze a lung cancer prognosis study with gene expression measurements under the AFT (accelerated failure time) model. The proposed method identifies interactions different from those using the alternatives. Some of the identified genes have important implications. PMID:24616063

  10. Robust gene selection methods using weighting schemes for microarray data analysis.

    PubMed

    Kang, Suyeon; Song, Jongwoo

    2017-09-02

    A common task in microarray data analysis is to identify informative genes that are differentially expressed between two different states. Owing to the high-dimensional nature of microarray data, identification of significant genes has been essential in analyzing the data. However, the performances of many gene selection techniques are highly dependent on the experimental conditions, such as the presence of measurement error or a limited number of sample replicates. We have proposed new filter-based gene selection techniques, by applying a simple modification to significance analysis of microarrays (SAM). To prove the effectiveness of the proposed method, we considered a series of synthetic datasets with different noise levels and sample sizes along with two real datasets. The following findings were made. First, our proposed methods outperform conventional methods for all simulation set-ups. In particular, our methods are much better when the given data are noisy and sample size is small. They showed relatively robust performance regardless of noise level and sample size, whereas the performance of SAM became significantly worse as the noise level became high or sample size decreased. When sufficient sample replicates were available, SAM and our methods showed similar performance. Finally, our proposed methods are competitive with traditional methods in classification tasks for microarrays. The results of simulation study and real data analysis have demonstrated that our proposed methods are effective for detecting significant genes and classification tasks, especially when the given data are noisy or have few sample replicates. By employing weighting schemes, we can obtain robust and reliable results for microarray data analysis.

  11. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization.

    PubMed

    Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak

    2016-03-01

    One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi-supervised learning model is one more appropriate tool for survival analysis in clinical cancer research.

  12. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    PubMed

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  13. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    PubMed Central

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448

  14. A novel method for prediction of dynamic smiling expressions after orthodontic treatment: a case report.

    PubMed

    Dai, Fanfan; Li, Yangjing; Chen, Gui; Chen, Si; Xu, Tianmin

    2016-02-01

    Smile esthetics has become increasingly important for orthodontic patients, thus prediction of post-treatment smile is necessary for a perfect treatment plan. In this study, with a combination of three-dimensional craniofacial data from the cone beam computed tomography and color-encoded structured light system, a novel method for smile prediction was proposed based on facial expression transfer, in which dynamic facial expression was interpreted as a matrix of facial depth changes. Data extracted from the pre-treatment smile expression record were applied to the post-treatment static model to realize expression transfer. Therefore smile esthetics of the patient after treatment could be evaluated in pre-treatment planning procedure. The positive and negative mean values of error for prediction accuracy were 0.9 and - 1.1 mm respectively, with the standard deviation of ± 1.5 mm, which is clinically acceptable. Further studies would be conducted to reduce the prediction error from both the static and dynamic sides as well as to explore automatically combined prediction from the two sides.

  15. A method for feature selection of APT samples based on entropy

    NASA Astrophysics Data System (ADS)

    Du, Zhenyu; Li, Yihong; Hu, Jinsong

    2018-05-01

    By studying the known APT attack events deeply, this paper propose a feature selection method of APT sample and a logic expression generation algorithm IOCG (Indicator of Compromise Generate). The algorithm can automatically generate machine readable IOCs (Indicator of Compromise), to solve the existing IOCs logical relationship is fixed, the number of logical items unchanged, large scale and cannot generate a sample of the limitations of the expression. At the same time, it can reduce the redundancy and useless APT sample processing time consumption, and improve the sharing rate of information analysis, and actively respond to complex and volatile APT attack situation. The samples were divided into experimental set and training set, and then the algorithm was used to generate the logical expression of the training set with the IOC_ Aware plug-in. The contrast expression itself was different from the detection result. The experimental results show that the algorithm is effective and can improve the detection effect.

  16. Evaluation of RNA from human trabecular bone and identification of stable reference genes.

    PubMed

    Cepollaro, Simona; Della Bella, Elena; de Biase, Dario; Visani, Michela; Fini, Milena

    2018-06-01

    The isolation of good quality RNA from tissues is an essential prerequisite for gene expression analysis to study pathophysiological processes. This study evaluated the RNA isolated from human trabecular bone and defined a set of stable reference genes. After pulverization, RNA was extracted with a phenol/chloroform method and then purified using silica columns. The A260/280 ratio, A260/230 ratio, RIN, and ribosomal ratio were measured to evaluate RNA quality and integrity. Moreover, the expression of six candidates was analyzed by qPCR and different algorithms were applied to assess reference gene stability. A good purity and quality of RNA was achieved according to A260/280 and A260/230 ratios, and RIN values. TBP, YWHAZ, and PGK1 were the most stable reference genes that should be used for gene expression analysis. In summary, the method proposed is suitable for gene expression evaluation in human bone and a set of reliable reference genes has been identified. © 2017 Wiley Periodicals, Inc.

  17. Analyzing Kernel Matrices for the Identification of Differentially Expressed Genes

    PubMed Central

    Xia, Xiao-Lei; Xing, Huanlai; Liu, Xueqin

    2013-01-01

    One of the most important applications of microarray data is the class prediction of biological samples. For this purpose, statistical tests have often been applied to identify the differentially expressed genes (DEGs), followed by the employment of the state-of-the-art learning machines including the Support Vector Machines (SVM) in particular. The SVM is a typical sample-based classifier whose performance comes down to how discriminant samples are. However, DEGs identified by statistical tests are not guaranteed to result in a training dataset composed of discriminant samples. To tackle this problem, a novel gene ranking method namely the Kernel Matrix Gene Selection (KMGS) is proposed. The rationale of the method, which roots in the fundamental ideas of the SVM algorithm, is described. The notion of ''the separability of a sample'' which is estimated by performing -like statistics on each column of the kernel matrix, is first introduced. The separability of a classification problem is then measured, from which the significance of a specific gene is deduced. Also described is a method of Kernel Matrix Sequential Forward Selection (KMSFS) which shares the KMGS method's essential ideas but proceeds in a greedy manner. On three public microarray datasets, our proposed algorithms achieved noticeably competitive performance in terms of the B.632+ error rate. PMID:24349110

  18. Combining volumetric edge display and multiview display for expression of natural 3D images

    NASA Astrophysics Data System (ADS)

    Yasui, Ryota; Matsuda, Isamu; Kakeya, Hideki

    2006-02-01

    In the present paper the authors present a novel stereoscopic display method combining volumetric edge display technology and multiview display technology to realize presentation of natural 3D images where the viewers do not suffer from contradiction between binocular convergence and focal accommodation of the eyes, which causes eyestrain and sickness. We adopt volumetric display method only for edge drawing, while we adopt stereoscopic approach for flat areas of the image. Since focal accommodation of our eyes is affected only by the edge part of the image, natural focal accommodation can be induced if the edges of the 3D image are drawn on the proper depth. The conventional stereo-matching technique can give us robust depth values of the pixels which constitute noticeable edges. Also occlusion and gloss of the objects can be roughly expressed with the proposed method since we use stereoscopic approach for the flat area. We can attain a system where many users can view natural 3D objects at the consistent position and posture at the same time in this system. A simple optometric experiment using a refractometer suggests that the proposed method can give us 3-D images without contradiction between binocular convergence and focal accommodation.

  19. Nutzwertanalyse

    Treesearch

    A. Henne

    1978-01-01

    Nutzwertanalyse (NUWA) is a psychometric instrument for finding the test compromise in the multiple use planning of forestry, when the multiple objectives cannot be expressed in the same physical or monetary unit. It insures a systematic assessment of the consequences of proposed alternatives and thoroughly documents the decision process. The method leads to a ranking...

  20. FARVATX: FAmily-based Rare Variant Association Test for X-linked genes

    PubMed Central

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H.; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-01-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease (COPD). Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. PMID:27325607

  1. FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes.

    PubMed

    Choi, Sungkyoung; Lee, Sungyoung; Qiao, Dandi; Hardin, Megan; Cho, Michael H; Silverman, Edwin K; Park, Taesung; Won, Sungho

    2016-09-01

    Although the X chromosome has many genes that are functionally related to human diseases, the complicated biological properties of the X chromosome have prevented efficient genetic association analyses, and only a few significantly associated X-linked variants have been reported for complex traits. For instance, dosage compensation of X-linked genes is often achieved via the inactivation of one allele in each X-linked variant in females; however, some X-linked variants can escape this X chromosome inactivation. Efficient genetic analyses cannot be conducted without prior knowledge about the gene expression process of X-linked variants, and misspecified information can lead to power loss. In this report, we propose new statistical methods for rare X-linked variant genetic association analysis of dichotomous phenotypes with family-based samples. The proposed methods are computationally efficient and can complete X-linked analyses within a few hours. Simulation studies demonstrate the statistical efficiency of the proposed methods, which were then applied to rare-variant association analysis of the X chromosome in chronic obstructive pulmonary disease. Some promising significant X-linked genes were identified, illustrating the practical importance of the proposed methods. © 2016 WILEY PERIODICALS, INC.

  2. Bringing an Ecological Perspective to the Study of Aging and Recognition of Emotional Facial Expressions: Past, Current, and Future Methods

    PubMed Central

    Isaacowitz, Derek M.; Stanley, Jennifer Tehan

    2011-01-01

    Older adults perform worse on traditional tests of emotion recognition accuracy than do young adults. In this paper, we review descriptive research to date on age differences in emotion recognition from facial expressions, as well as the primary theoretical frameworks that have been offered to explain these patterns. We propose that this is an area of inquiry that would benefit from an ecological approach in which contextual elements are more explicitly considered and reflected in experimental methods. Use of dynamic displays and examination of specific cues to accuracy, for example, may reveal more nuanced age-related patterns and may suggest heretofore unexplored underlying mechanisms. PMID:22125354

  3. Evaluation of uncertainty for regularized deconvolution: A case study in hydrophone measurements.

    PubMed

    Eichstädt, S; Wilkens, V

    2017-06-01

    An estimation of the measurand in dynamic metrology usually requires a deconvolution based on a dynamic calibration of the measuring system. Since deconvolution is, mathematically speaking, an ill-posed inverse problem, some kind of regularization is required to render the problem stable and obtain usable results. Many approaches to regularized deconvolution exist in the literature, but the corresponding evaluation of measurement uncertainties is, in general, an unsolved issue. In particular, the uncertainty contribution of the regularization itself is a topic of great importance, because it has a significant impact on the estimation result. Here, a versatile approach is proposed to express prior knowledge about the measurand based on a flexible, low-dimensional modeling of an upper bound on the magnitude spectrum of the measurand. This upper bound allows the derivation of an uncertainty associated with the regularization method in line with the guidelines in metrology. As a case study for the proposed method, hydrophone measurements in medical ultrasound with an acoustic working frequency of up to 7.5 MHz are considered, but the approach is applicable for all kinds of estimation methods in dynamic metrology, where regularization is required and which can be expressed as a multiplication in the frequency domain.

  4. Simultaneous determination of selected biogenic amines in alcoholic beverage samples by isotachophoretic and chromatographic methods.

    PubMed

    Jastrzębska, Aneta; Piasta, Anna; Szłyk, Edward

    2014-01-01

    A simple and useful method for the determination of biogenic amines in beverage samples based on isotachophoretic separation is described. The proposed procedure permitted simultaneous analysis of histamine, tyramine, cadaverine, putrescine, tryptamine, 2-phenylethylamine, spermine and spermidine. The data presented demonstrate the utility, simplicity, flexibility, sensitivity and environmentally friendly character of the proposed method. The precision of the method expressed as coefficient of variations varied from 0.1% to 5.9% for beverage samples, whereas recoveries varied from 91% to 101%. The results for the determination of biogenic amines were compared with an HPLC procedure based on a pre-column derivatisation reaction of biogenic amines with dansyl chloride. Furthermore, the derivatisation procedure was optimised by verification of concentration and pH of the buffer, the addition of organic solvents, reaction time and temperature.

  5. Exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral harmonics

    NASA Astrophysics Data System (ADS)

    Mahajan, Bharat; Vadali, Srinivas R.; Alfriend, Kyle T.

    2018-03-01

    A novel approach for the exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral and sectorial spherical harmonics is presented in this work. It is shown that the exact solution for the Delaunay normalization can be reduced to quadratures by the application of Deprit's Lie-transform-based perturbation method. Two different series representations of the quadratures, one in powers of the eccentricity and the other in powers of the ratio of the Earth's angular velocity to the satellite's mean motion, are derived. The latter series representation produces expressions for the short-period variations that are similar to those obtained from the conventional method of relegation. Alternatively, the quadratures can be evaluated numerically, resulting in more compact expressions for the short-period variations that are valid for an elliptic orbit with an arbitrary value of the eccentricity. Using the proposed methodology for the Delaunay normalization, generalized expressions for the short-period variations of the equinoctial orbital elements, valid for an arbitrary tesseral or sectorial harmonic, are derived. The result is a compact unified artificial satellite theory for the sub-synchronous and super-synchronous orbit regimes, which is nonsingular for the resonant orbits, and is closed-form in the eccentricity as well. The accuracy of the proposed theory is validated by comparison with numerical orbit propagations.

  6. Symmetry and equivalence restrictions in electronic structure calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1988-01-01

    A simple method for obtaining MCSCF orbitals and CI natural orbitals adapted to degenerate point groups, with full symmetry and equivalnece restrictions, is described. Among several advantages accruing from this method are the ability to perform atomic SCF calculations on states for which the SCF energy expression cannot be written in terms of Coulomb and exchange integrals over real orbitals, and the generation of symmetry-adapted atomic natural orbitals for use in a recently proposed method for basis set contraction.

  7. Neutral face classification using personalized appearance models for fast and robust emotion detection.

    PubMed

    Chiranjeevi, Pojala; Gopalakrishnan, Viswanath; Moogi, Pratibha

    2015-09-01

    Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning-based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, and so on, in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as user stays neutral for majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this paper, we propose a light-weight neutral versus emotion classification engine, which acts as a pre-processer to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at key emotion (KE) points using a statistical texture model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a statistical texture model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves emotion recognition (ER) accuracy and simultaneously reduces computational complexity of the ER system, as validated on multiple databases.

  8. A Kinematically Consistent Two-Point Correlation Function

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1998-01-01

    A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.

  9. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    PubMed

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.

  10. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    PubMed Central

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  11. Sparse multivariate factor analysis regression models and its applications to integrative genomics analysis.

    PubMed

    Zhou, Yan; Wang, Pei; Wang, Xianlong; Zhu, Ji; Song, Peter X-K

    2017-01-01

    The multivariate regression model is a useful tool to explore complex associations between two kinds of molecular markers, which enables the understanding of the biological pathways underlying disease etiology. For a set of correlated response variables, accounting for such dependency can increase statistical power. Motivated by integrative genomic data analyses, we propose a new methodology-sparse multivariate factor analysis regression model (smFARM), in which correlations of response variables are assumed to follow a factor analysis model with latent factors. This proposed method not only allows us to address the challenge that the number of association parameters is larger than the sample size, but also to adjust for unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed methodology is evaluated and compared to the existing methods through extensive simulation studies. Our results show that accounting for latent factors through the proposed smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation. We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer. © 2016 WILEY PERIODICALS, INC.

  12. Proposed methods for testing and selecting the ERCC external RNA controls

    PubMed Central

    2005-01-01

    The External RNA Control Consortium (ERCC) is an ad-hoc group with approximately 70 members from private, public, and academic organizations. The group is developing a set of external RNA control transcripts that can be used to assess technical performance in gene expression assays. The ERCC is now initiating the Testing Phase of the project, during which candidate external RNA controls will be evaluated in both microarray and QRT-PCR gene expression platforms. This document describes the proposed experiments and informatics process that will be followed to test and qualify individual controls. The ERCC is distributing this description of the proposed testing process in an effort to gain consensus and to encourage feedback from the scientific community. On October 4–5, 2005, the ERCC met to further review the document, clarify ambiguities, and plan next steps. A summary of this meeting and changes to the test plan are provided as an appendix to this manuscript. PMID:16266432

  13. Analysis of host response to bacterial infection using error model based gene expression microarray experiments

    PubMed Central

    Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco

    2005-01-01

    A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204

  14. DMirNet: Inferring direct microRNA-mRNA association networks.

    PubMed

    Lee, Minsu; Lee, HyungJune

    2016-12-05

    MicroRNAs (miRNAs) play important regulatory roles in the wide range of biological processes by inducing target mRNA degradation or translational repression. Based on the correlation between expression profiles of a miRNA and its target mRNA, various computational methods have previously been proposed to identify miRNA-mRNA association networks by incorporating the matched miRNA and mRNA expression profiles. However, there remain three major issues to be resolved in the conventional computation approaches for inferring miRNA-mRNA association networks from expression profiles. 1) Inferred correlations from the observed expression profiles using conventional correlation-based methods include numerous erroneous links or over-estimated edge weight due to the transitive information flow among direct associations. 2) Due to the high-dimension-low-sample-size problem on the microarray dataset, it is difficult to obtain an accurate and reliable estimate of the empirical correlations between all pairs of expression profiles. 3) Because the previously proposed computational methods usually suffer from varying performance across different datasets, a more reliable model that guarantees optimal or suboptimal performance across different datasets is highly needed. In this paper, we present DMirNet, a new framework for identifying direct miRNA-mRNA association networks. To tackle the aforementioned issues, DMirNet incorporates 1) three direct correlation estimation methods (namely Corpcor, SPACE, Network deconvolution) to infer direct miRNA-mRNA association networks, 2) the bootstrapping method to fully utilize insufficient training expression profiles, and 3) a rank-based Ensemble aggregation to build a reliable and robust model across different datasets. Our empirical experiments on three datasets demonstrate the combinatorial effects of necessary components in DMirNet. Additional performance comparison experiments show that DMirNet outperforms the state-of-the-art Ensemble-based model [1] which has shown the best performance across the same three datasets, with a factor of up to 1.29. Further, we identify 43 putative novel multi-cancer-related miRNA-mRNA association relationships from an inferred Top 1000 direct miRNA-mRNA association network. We believe that DMirNet is a promising method to identify novel direct miRNA-mRNA relations and to elucidate the direct miRNA-mRNA association networks. Since DMirNet infers direct relationships from the observed data, DMirNet can contribute to reconstructing various direct regulatory pathways, including, but not limited to, the direct miRNA-mRNA association networks.

  15. The Rapid Transit System That Achieves Higher Performance with Lower Life-Cycle Costs

    NASA Astrophysics Data System (ADS)

    Sone, Satoru; Takagi, Ryo

    In the age of traction system made of inverter and ac traction motors, distributed traction system with pure electric brake of regenerative mode has been recognised very advantageous. This paper proposes a new system as the lowest life-cycle cost system for high performance rapid transit, a new architecture and optimum parameters of power feeding system, and a new running method of trains. In Japan, these components of this proposal, i.e. pure electric brake and various countermeasures of reducing loss of regeneration have been already popular but not as yet the new running method for better utilisation of the equipment and for lower life-cycle cost. One example of what are proposed in this paper will be made as Tsukuba Express, which is under construction as the most modern commuter railway in Greater Tokyo area.

  16. Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS

    PubMed Central

    Nezami Ranjbar, Mohammad R.; Tadesse, Mahlet G.; Wang, Yue; Ressom, Habtom W.

    2016-01-01

    We introduce a new method for normalization of data acquired by liquid chromatography coupled with mass spectrometry (LC-MS) in label-free differential expression analysis. Normalization of LC-MS data is desired prior to subsequent statistical analysis to adjust variabilities in ion intensities that are not caused by biological differences but experimental bias. There are different sources of bias including variabilities during sample collection and sample storage, poor experimental design, noise, etc. In addition, instrument variability in experiments involving a large number of LC-MS runs leads to a significant drift in intensity measurements. Although various methods have been proposed for normalization of LC-MS data, there is no universally applicable approach. In this paper, we propose a Bayesian normalization model (BNM) that utilizes scan-level information from LC-MS data. Specifically, the proposed method uses peak shapes to model the scan-level data acquired from extracted ion chromatograms (EIC) with parameters considered as a linear mixed effects model. We extended the model into BNM with drift (BNMD) to compensate for the variability in intensity measurements due to long LC-MS runs. We evaluated the performance of our method using synthetic and experimental data. In comparison with several existing methods, the proposed BNM and BNMD yielded significant improvement. PMID:26357332

  17. A new neuro-fuzzy training algorithm for identifying dynamic characteristics of smart dampers

    NASA Astrophysics Data System (ADS)

    Dzung Nguyen, Sy; Choi, Seung-Bok

    2012-08-01

    This paper proposes a new algorithm, named establishing neuro-fuzzy system (ENFS), to identify dynamic characteristics of smart dampers such as magnetorheological (MR) and electrorheological (ER) dampers. In the ENFS, data clustering is performed based on the proposed algorithm named partitioning data space (PDS). Firstly, the PDS builds data clusters in joint input-output data space with appropriate constraints. The role of these constraints is to create reasonable data distribution in clusters. The ENFS then uses these clusters to perform the following tasks. Firstly, the fuzzy sets expressing characteristics of data clusters are established. The structure of the fuzzy sets is adjusted to be suitable for features of the data set. Secondly, an appropriate structure of neuro-fuzzy (NF) expressed by an optimal number of labeled data clusters and the fuzzy-set groups is determined. After the ENFS is introduced, its effectiveness is evaluated by a prediction-error-comparative work between the proposed method and some other methods in identifying numerical data sets such as ‘daily data of stock A’, or in identifying a function. The ENFS is then applied to identify damping force characteristics of the smart dampers. In order to evaluate the effectiveness of the ENFS in identifying the damping forces of the smart dampers, the prediction errors are presented by comparing with experimental results.

  18. ANN based Real-Time Estimation of Power Generation of Different PV Module Types

    NASA Astrophysics Data System (ADS)

    Syafaruddin; Karatepe, Engin; Hiyama, Takashi

    Distributed generation is expected to become more important in the future generation system. Utilities need to find solutions that help manage resources more efficiently. Effective smart grid solutions have been experienced by using real-time data to help refine and pinpoint inefficiencies for maintaining secure and reliable operating conditions. This paper proposes the application of Artificial Neural Network (ANN) for the real-time estimation of the maximum power generation of PV modules of different technologies. An intelligent technique is necessary required in this case due to the relationship between the maximum power of PV modules and the open circuit voltage and temperature is nonlinear and can't be easily expressed by an analytical expression for each technology. The proposed ANN method is using input signals of open circuit voltage and cell temperature instead of irradiance and ambient temperature to determine the estimated maximum power generation of PV modules. It is important for the utility to have the capability to perform this estimation for optimal operating points and diagnostic purposes that may be an early indicator of a need for maintenance and optimal energy management. The proposed method is accurately verified through a developed real-time simulator on the daily basis of irradiance and cell temperature changes.

  19. svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification.

    PubMed

    Zhang, Wensheng; Edwards, Andrea; Fan, Wei; Zhu, Dongxiao; Zhang, Kun

    2010-06-22

    Comparative analysis of gene expression profiling of multiple biological categories, such as different species of organisms or different kinds of tissue, promises to enhance the fundamental understanding of the universality as well as the specialization of mechanisms and related biological themes. Grouping genes with a similar expression pattern or exhibiting co-expression together is a starting point in understanding and analyzing gene expression data. In recent literature, gene module level analysis is advocated in order to understand biological network design and system behaviors in disease and life processes; however, practical difficulties often lie in the implementation of existing methods. Using the singular value decomposition (SVD) technique, we developed a new computational tool, named svdPPCS (SVD-based Pattern Pairing and Chart Splitting), to identify conserved and divergent co-expression modules of two sets of microarray experiments. In the proposed methods, gene modules are identified by splitting the two-way chart coordinated with a pair of left singular vectors factorized from the gene expression matrices of the two biological categories. Importantly, the cutoffs are determined by a data-driven algorithm using the well-defined statistic, SVD-p. The implementation was illustrated on two time series microarray data sets generated from the samples of accessory gland (ACG) and malpighian tubule (MT) tissues of the line W118 of M. drosophila. Two conserved modules and six divergent modules, each of which has a unique characteristic profile across tissue kinds and aging processes, were identified. The number of genes contained in these models ranged from five to a few hundred. Three to over a hundred GO terms were over-represented in individual modules with FDR < 0.1. One divergent module suggested the tissue-specific relationship between the expressions of mitochondrion-related genes and the aging process. This finding, together with others, may be of biological significance. The validity of the proposed SVD-based method was further verified by a simulation study, as well as the comparisons with regression analysis and cubic spline regression analysis plus PAM based clustering. svdPPCS is a novel computational tool for the comparative analysis of transcriptional profiling. It especially fits the comparison of time series data of related organisms or different tissues of the same organism under equivalent or similar experimental conditions. The general scheme can be directly extended to the comparisons of multiple data sets. It also can be applied to the integration of data sets from different platforms and of different sources.

  20. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data.

    PubMed

    Li, Peipei; Piao, Yongjun; Shon, Ho Sun; Ryu, Keun Ho

    2015-10-28

    Recently, rapid improvements in technology and decrease in sequencing costs have made RNA-Seq a widely used technique to quantify gene expression levels. Various normalization approaches have been proposed, owing to the importance of normalization in the analysis of RNA-Seq data. A comparison of recently proposed normalization methods is required to generate suitable guidelines for the selection of the most appropriate approach for future experiments. In this paper, we compared eight non-abundance (RC, UQ, Med, TMM, DESeq, Q, RPKM, and ERPKM) and two abundance estimation normalization methods (RSEM and Sailfish). The experiments were based on real Illumina high-throughput RNA-Seq of 35- and 76-nucleotide sequences produced in the MAQC project and simulation reads. Reads were mapped with human genome obtained from UCSC Genome Browser Database. For precise evaluation, we investigated Spearman correlation between the normalization results from RNA-Seq and MAQC qRT-PCR values for 996 genes. Based on this work, we showed that out of the eight non-abundance estimation normalization methods, RC, UQ, Med, TMM, DESeq, and Q gave similar normalization results for all data sets. For RNA-Seq of a 35-nucleotide sequence, RPKM showed the highest correlation results, but for RNA-Seq of a 76-nucleotide sequence, least correlation was observed than the other methods. ERPKM did not improve results than RPKM. Between two abundance estimation normalization methods, for RNA-Seq of a 35-nucleotide sequence, higher correlation was obtained with Sailfish than that with RSEM, which was better than without using abundance estimation methods. However, for RNA-Seq of a 76-nucleotide sequence, the results achieved by RSEM were similar to without applying abundance estimation methods, and were much better than with Sailfish. Furthermore, we found that adding a poly-A tail increased alignment numbers, but did not improve normalization results. Spearman correlation analysis revealed that RC, UQ, Med, TMM, DESeq, and Q did not noticeably improve gene expression normalization, regardless of read length. Other normalization methods were more efficient when alignment accuracy was low; Sailfish with RPKM gave the best normalization results. When alignment accuracy was high, RC was sufficient for gene expression calculation. And we suggest ignoring poly-A tail during differential gene expression analysis.

  1. A Robust Unified Approach to Analyzing Methylation and Gene Expression Data

    PubMed Central

    Khalili, Abbas; Huang, Tim; Lin, Shili

    2009-01-01

    Microarray technology has made it possible to investigate expression levels, and more recently methylation signatures, of thousands of genes simultaneously, in a biological sample. Since more and more data from different biological systems or technological platforms are being generated at an incredible rate, there is an increasing need to develop statistical methods that are applicable to multiple data types and platforms. Motivated by such a need, a flexible finite mixture model that is applicable to methylation, gene expression, and potentially data from other biological systems, is proposed. Two major thrusts of this approach are to allow for a variable number of components in the mixture to capture non-biological variation and small biases, and to use a robust procedure for parameter estimation and probe classification. The method was applied to the analysis of methylation signatures of three breast cancer cell lines. It was also tested on three sets of expression microarray data to study its power and type I error rates. Comparison with a number of existing methods in the literature yielded very encouraging results; lower type I error rates and comparable/better power were achieved based on the limited study. Furthermore, the method also leads to more biologically interpretable results for the three breast cancer cell lines. PMID:20161265

  2. Inference of gene regulatory networks from time series by Tsallis entropy

    PubMed Central

    2011-01-01

    Background The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/. PMID:21545720

  3. Digital detection of multiple minority mutants and expression levels of multiple colorectal cancer-related genes using digital-PCR coupled with bead-array.

    PubMed

    Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua

    2015-01-01

    To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed "multiplex ligation-dependent probe amplification-digital amplification coupled with hydrogel bead-array" (MLPA-DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA-DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA-DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC.

  4. Prediction of regulatory gene pairs using dynamic time warping and gene ontology.

    PubMed

    Yang, Andy C; Hsu, Hui-Huang; Lu, Ming-Da; Tseng, Vincent S; Shih, Timothy K

    2014-01-01

    Selecting informative genes is the most important task for data analysis on microarray gene expression data. In this work, we aim at identifying regulatory gene pairs from microarray gene expression data. However, microarray data often contain multiple missing expression values. Missing value imputation is thus needed before further processing for regulatory gene pairs becomes possible. We develop a novel approach to first impute missing values in microarray time series data by combining k-Nearest Neighbour (KNN), Dynamic Time Warping (DTW) and Gene Ontology (GO). After missing values are imputed, we then perform gene regulation prediction based on our proposed DTW-GO distance measurement of gene pairs. Experimental results show that our approach is more accurate when compared with existing missing value imputation methods on real microarray data sets. Furthermore, our approach can also discover more regulatory gene pairs that are known in the literature than other methods.

  5. Recursive feature selection with significant variables of support vectors.

    PubMed

    Tsai, Chen-An; Huang, Chien-Hsun; Chang, Ching-Wei; Chen, Chun-Houh

    2012-01-01

    The development of DNA microarray makes researchers screen thousands of genes simultaneously and it also helps determine high- and low-expression level genes in normal and disease tissues. Selecting relevant genes for cancer classification is an important issue. Most of the gene selection methods use univariate ranking criteria and arbitrarily choose a threshold to choose genes. However, the parameter setting may not be compatible to the selected classification algorithms. In this paper, we propose a new gene selection method (SVM-t) based on the use of t-statistics embedded in support vector machine. We compared the performance to two similar SVM-based methods: SVM recursive feature elimination (SVMRFE) and recursive support vector machine (RSVM). The three methods were compared based on extensive simulation experiments and analyses of two published microarray datasets. In the simulation experiments, we found that the proposed method is more robust in selecting informative genes than SVMRFE and RSVM and capable to attain good classification performance when the variations of informative and noninformative genes are different. In the analysis of two microarray datasets, the proposed method yields better performance in identifying fewer genes with good prediction accuracy, compared to SVMRFE and RSVM.

  6. A Grammatical Approach to RNA-RNA Interaction Prediction

    NASA Astrophysics Data System (ADS)

    Kato, Yuki; Akutsu, Tatsuya; Seki, Hiroyuki

    2007-11-01

    Much attention has been paid to two interacting RNA molecules involved in post-transcriptional control of gene expression. Although there have been a few studies on RNA-RNA interaction prediction based on dynamic programming algorithm, no grammar-based approach has been proposed. The purpose of this paper is to provide a new modeling for RNA-RNA interaction based on multiple context-free grammar (MCFG). We present a polynomial time parsing algorithm for finding the most likely derivation tree for the stochastic version of MCFG, which is applicable to RNA joint secondary structure prediction including kissing hairpin loops. Also, elementary tests on RNA-RNA interaction prediction have shown that the proposed method is comparable to Alkan et al.'s method.

  7. Network Reconstruction From High-Dimensional Ordinary Differential Equations.

    PubMed

    Chen, Shizhe; Shojaie, Ali; Witten, Daniela M

    2017-01-01

    We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online.

  8. A new method based on the Butler-Volmer formalism to evaluate voltammetric cation and anion sensors.

    PubMed

    Cano, Manuel; Rodríguez-Amaro, Rafael; Fernández Romero, Antonio J

    2008-12-11

    A new method based on the Butler-Volmer formalism is applied to assess the capability of two voltammetric ion sensors based on polypyrrole films: PPy/DBS and PPy/ClO4 modified electrodes were studied as voltammetric cation and anion sensors, respectively. The reversible potential versus electrolyte concentrations semilogarithm plots provided positive calibration slopes for PPy/DBS and negative ones for PPy/ClO4, as was expected from the proposed method and that based on the Nernst equation. The slope expressions deduced from Butler-Volmer include the electron-transfer coefficient, which allows slope values different from the ideal Nernstian value to be explained. Both polymeric films exhibited a degree of ion-selectivity when they were immersed in mixed-analyte solutions. Selectivity coefficients for the two proposed voltammetric cation and anion sensors were obtained by several experimental methods, including the separated solution method (SSM) and matched potential method (MPM). The K values acquired by the different methods were very close for both polymeric sensors.

  9. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.

    PubMed

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-07-23

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.

  10. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems

    PubMed Central

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-01-01

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932

  11. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia: necessary modifications

    NASA Astrophysics Data System (ADS)

    Al-Qudaimi, Abdullah; Kumar, Amit

    2018-05-01

    Recently, Abdullah and Najib (International Journal of Sustainable Energy 35(4): 360-377, 2016) proposed an intuitionistic fuzzy analytic hierarchy process to deal with uncertainty in decision-making and applied it to establish preference in the sustainable energy planning decision-making of Malaysia. This work may attract the researchers of other countries to choose energy technology for their countries. However, after a deep study of the published paper (International Journal of Sustainable Energy 35(4): 362-377, 2016), it is noticed that the expression used by Abdullah and Najib in Step 6 of their proposed method for evaluating the intuitionistic fuzzy entropy of each aggregate of each row of intuitionistic fuzzy matrix is not valid. Therefore, it is not genuine to use the method proposed by Abdullah and Najib for solving real-life problems. The aim of this paper was to suggest the required necessary modifications for resolving the flaws of the Abdullah and Najib method.

  12. Development of a high-performance noise-reduction filter for tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Min; Pan, Xiaochuan

    2001-07-01

    We propose a new noise-reduction method for tomographic reconstruction. The method incorporates a priori information on the source image for allowing the derivation of the energy spectrum of its ideal sinogram. In combination with the energy spectrum of the Poisson noise in the measured sinogram, we are able to derive a Wiener-like filter for effective suppression of the sinogram noise. The filtered backprojection (FBP) algorithm, with a ramp filter, is then applied to the filtered sinogram to produce tomographic images. The resulting filter has a closed-form expression in the frequency space and contains a single user-adjustable regularization parameter. The proposed method is hence simple to implement and easy to use. In contrast to the ad hoc apodizing windows, such as Hanning and Butterworth filters, that are commonly used in the conventional FBP reconstruction, the proposed filter is theoretically more rigorous as it is derived by basing upon an optimization criterion, subject to a known class of source image intensity distributions.

  13. QR code based noise-free optical encryption and decryption of a gray scale image

    NASA Astrophysics Data System (ADS)

    Jiao, Shuming; Zou, Wenbin; Li, Xia

    2017-03-01

    In optical encryption systems, speckle noise is one major challenge in obtaining high quality decrypted images. This problem can be addressed by employing a QR code based noise-free scheme. Previous works have been conducted for optically encrypting a few characters or a short expression employing QR codes. This paper proposes a practical scheme for optically encrypting and decrypting a gray-scale image based on QR codes for the first time. The proposed scheme is compatible with common QR code generators and readers. Numerical simulation results reveal the proposed method can encrypt and decrypt an input image correctly.

  14. A Global User-Driven Model for Tile Prefetching in Web Geographical Information Systems.

    PubMed

    Pan, Shaoming; Chong, Yanwen; Zhang, Hang; Tan, Xicheng

    2017-01-01

    A web geographical information system is a typical service-intensive application. Tile prefetching and cache replacement can improve cache hit ratios by proactively fetching tiles from storage and replacing the appropriate tiles from the high-speed cache buffer without waiting for a client's requests, which reduces disk latency and improves system access performance. Most popular prefetching strategies consider only the relative tile popularities to predict which tile should be prefetched or consider only a single individual user's access behavior to determine which neighbor tiles need to be prefetched. Some studies show that comprehensively considering all users' access behaviors and all tiles' relationships in the prediction process can achieve more significant improvements. Thus, this work proposes a new global user-driven model for tile prefetching and cache replacement. First, based on all users' access behaviors, a type of expression method for tile correlation is designed and implemented. Then, a conditional prefetching probability can be computed based on the proposed correlation expression mode. Thus, some tiles to be prefetched can be found by computing and comparing the conditional prefetching probability from the uncached tiles set and, similarly, some replacement tiles can be found in the cache buffer according to multi-step prefetching. Finally, some experiments are provided comparing the proposed model with other global user-driven models, other single user-driven models, and other client-side prefetching strategies. The results show that the proposed model can achieve a prefetching hit rate in approximately 10.6% ~ 110.5% higher than the compared methods.

  15. Isoform-level gene expression patterns in single-cell RNA-sequencing data.

    PubMed

    Vu, Trung Nghia; Wills, Quin F; Kalari, Krishna R; Niu, Nifang; Wang, Liewei; Pawitan, Yudi; Rantalainen, Mattias

    2018-02-27

    RNA sequencing of single cells enables characterization of transcriptional heterogeneity in seemingly homogeneous cell populations. Single-cell sequencing has been applied in a wide range of researches fields. However, few studies have focus on characterization of isoform-level expression patterns at the single-cell level. In this study we propose and apply a novel method, ISOform-Patterns (ISOP), based on mixture modeling, to characterize the expression patterns of isoform pairs from the same gene in single-cell isoform-level expression data. We define six principal patterns of isoform expression relationships and describe a method for differential-pattern analysis. We demonstrate ISOP through analysis of single-cell RNA-sequencing data from a breast cancer cell line, with replication in three independent datasets. We assigned the pattern types to each of 16,562 isoform-pairs from 4,929 genes. Among those, 26% of the discovered patterns were significant (p<0.05), while remaining patterns are possibly effects of transcriptional bursting, drop-out and stochastic biological heterogeneity. Furthermore, 32% of genes discovered through differential-pattern analysis were not detected by differential-expression analysis. The effect of drop-out events, mean expression level, and properties of the expression distribution on the performances of ISOP were also investigated through simulated datasets. To conclude, ISOP provides a novel approach for characterization of isoformlevel preference, commitment and heterogeneity in single-cell RNA-sequencing data. The ISOP method has been implemented as a R package and is available at https://github.com/nghiavtr/ISOP under a GPL-3 license. mattias.rantalainen@ki.se. Supplementary data are available at Bioinformatics online.

  16. Rotor damage detection by using piezoelectric impedance

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Tao, Y.; Mao, Y. F.

    2016-04-01

    Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.

  17. Face recognition via sparse representation of SIFT feature on hexagonal-sampling image

    NASA Astrophysics Data System (ADS)

    Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong

    2018-04-01

    This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.

  18. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences.

    PubMed

    Ling, Zhi-Qiang; Wang, Yi; Mukaisho, Kenichi; Hattori, Takanori; Tatsuta, Takeshi; Ge, Ming-Hua; Jin, Li; Mao, Wei-Min; Sugihara, Hiroyuki

    2010-06-01

    Tests of differentially expressed genes (DEGs) from microarray experiments are based on the null hypothesis that genes that are irrelevant to the phenotype/stimulus are expressed equally in the target and control samples. However, this strict hypothesis is not always true, as there can be several transcriptomic background differences between target and control samples, including different cell/tissue types, different cell cycle stages and different biological donors. These differences lead to increased false positives, which have little biological/medical significance. In this article, we propose a statistical framework to identify DEGs between target and control samples from expression microarray data allowing transcriptomic background differences between these samples by introducing a modified null hypothesis that the gene expression background difference is normally distributed. We use an iterative procedure to perform robust estimation of the null hypothesis and identify DEGs as outliers. We evaluated our method using our own triplicate microarray experiment, followed by validations with reverse transcription-polymerase chain reaction (RT-PCR) and on the MicroArray Quality Control dataset. The evaluations suggest that our technique (i) results in less false positive and false negative results, as measured by the degree of agreement with RT-PCR of the same samples, (ii) can be applied to different microarray platforms and results in better reproducibility as measured by the degree of DEG identification concordance both intra- and inter-platforms and (iii) can be applied efficiently with only a few microarray replicates. Based on these evaluations, we propose that this method not only identifies more reliable and biologically/medically significant DEG, but also reduces the power-cost tradeoff problem in the microarray field. Source code and binaries freely available for download at http://comonca.org.cn/fdca/resources/softwares/deg.zip.

  19. Measuring Individual Differences in Sensitivities to Basic Emotions in Faces

    ERIC Educational Resources Information Center

    Suzuki, Atsunobu; Hoshino, Takahiro; Shigemasu, Kazuo

    2006-01-01

    The assessment of individual differences in facial expression recognition is normally required to address two major issues: (1) high agreement level (ceiling effect) and (2) differential difficulty levels across emotions. We propose a new assessment method designed to quantify individual differences in the recognition of the six basic emotions,…

  20. An Empathic Avatar in a Computer-Aided Learning Program to Encourage and Persuade Learners

    ERIC Educational Resources Information Center

    Chen, Gwo-Dong; Lee, Jih-Hsien; Wang, Chin-Yeh; Chao, Po-Yao; Li, Liang-Yi; Lee, Tzung-Yi

    2012-01-01

    Animated pedagogical agents with characteristics such as facial expressions, gestures, and human emotions, under an interactive user interface are attractive to students and have high potential to promote students' learning. This study proposes a convenient method to add an embodied empathic avatar into a computer-aided learning program; learners…

  1. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    NASA Astrophysics Data System (ADS)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-02-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  2. Robust 3D face landmark localization based on local coordinate coding.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J

    2014-12-01

    In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy.

  3. Nonlinear dynamic analysis of cantilevered piezoelectric energy harvesters under simultaneous parametric and external excitations

    NASA Astrophysics Data System (ADS)

    Fang, Fei; Xia, Guanghui; Wang, Jianguo

    2018-06-01

    The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.

  4. Adaptive metric learning with deep neural networks for video-based facial expression recognition

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Ge, Yubin; Yang, Chao; Jia, Ping

    2018-01-01

    Video-based facial expression recognition has become increasingly important for plenty of applications in the real world. Despite that numerous efforts have been made for the single sequence, how to balance the complex distribution of intra- and interclass variations well between sequences has remained a great difficulty in this area. We propose the adaptive (N+M)-tuplet clusters loss function and optimize it with the softmax loss simultaneously in the training phrase. The variations introduced by personal attributes are alleviated using the similarity measurements of multiple samples in the feature space with many fewer comparison times as conventional deep metric learning approaches, which enables the metric calculations for large data applications (e.g., videos). Both the spatial and temporal relations are well explored by a unified framework that consists of an Inception-ResNet network with long short term memory and the two fully connected layer branches structure. Our proposed method has been evaluated with three well-known databases, and the experimental results show that our method outperforms many state-of-the-art approaches.

  5. Improving performances of suboptimal greedy iterative biclustering heuristics via localization.

    PubMed

    Erten, Cesim; Sözdinler, Melih

    2010-10-15

    Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. Even the simplest versions of the problem are computationally hard. Most of the proposed solutions therefore employ greedy iterative heuristics that locally optimize a suitably assigned scoring function. We provide a fast and simple pre-processing algorithm called localization that reorders the rows and columns of the input data matrix in such a way as to group correlated entries in small local neighborhoods within the matrix. The proposed localization algorithm takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. In order to evaluate the effectivenesss of the localization pre-processing algorithm, we focus on three representative greedy iterative heuristic methods. We show how the localization pre-processing can be incorporated into each representative algorithm to improve biclustering performance. Furthermore, we propose a simple biclustering algorithm, Random Extraction After Localization (REAL) that randomly extracts submatrices from the localization pre-processed data matrix, eliminates those with low similarity scores, and provides the rest as correlated structures representing biclusters. We compare the proposed localization pre-processing with another pre-processing alternative, non-negative matrix factorization. We show that our fast and simple localization procedure provides similar or even better results than the computationally heavy matrix factorization pre-processing with regards to H-value tests. We next demonstrate that the performances of the three representative greedy iterative heuristic methods improve with localization pre-processing when biological correlations in the form of functional enrichment and PPI verification constitute the main performance criteria. The fact that the random extraction method based on localization REAL performs better than the representative greedy heuristic methods under same criteria also confirms the effectiveness of the suggested pre-processing method. Supplementary material including code implementations in LEDA C++ library, experimental data, and the results are available at http://code.google.com/p/biclustering/ cesim@khas.edu.tr; melihsozdinler@boun.edu.tr Supplementary data are available at Bioinformatics online.

  6. A Computational Framework for Analyzing Stochasticity in Gene Expression

    PubMed Central

    Sherman, Marc S.; Cohen, Barak A.

    2014-01-01

    Stochastic fluctuations in gene expression give rise to distributions of protein levels across cell populations. Despite a mounting number of theoretical models explaining stochasticity in protein expression, we lack a robust, efficient, assumption-free approach for inferring the molecular mechanisms that underlie the shape of protein distributions. Here we propose a method for inferring sets of biochemical rate constants that govern chromatin modification, transcription, translation, and RNA and protein degradation from stochasticity in protein expression. We asked whether the rates of these underlying processes can be estimated accurately from protein expression distributions, in the absence of any limiting assumptions. To do this, we (1) derived analytical solutions for the first four moments of the protein distribution, (2) found that these four moments completely capture the shape of protein distributions, and (3) developed an efficient algorithm for inferring gene expression rate constants from the moments of protein distributions. Using this algorithm we find that most protein distributions are consistent with a large number of different biochemical rate constant sets. Despite this degeneracy, the solution space of rate constants almost always informs on underlying mechanism. For example, we distinguish between regimes where transcriptional bursting occurs from regimes reflecting constitutive transcript production. Our method agrees with the current standard approach, and in the restrictive regime where the standard method operates, also identifies rate constants not previously obtainable. Even without making any assumptions we obtain estimates of individual biochemical rate constants, or meaningful ratios of rate constants, in 91% of tested cases. In some cases our method identified all of the underlying rate constants. The framework developed here will be a powerful tool for deducing the contributions of particular molecular mechanisms to specific patterns of gene expression. PMID:24811315

  7. Quantitative structure-activity relationships studies of CCR5 inhibitors and toxicity of aromatic compounds using gene expression programming.

    PubMed

    Shi, Weimin; Zhang, Xiaoya; Shen, Qi

    2010-01-01

    Quantitative structure-activity relationship (QSAR) study of chemokine receptor 5 (CCR5) binding affinity of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas and toxicity of aromatic compounds have been performed. The gene expression programming (GEP) was used to select variables and produce nonlinear QSAR models simultaneously using the selected variables. In our GEP implementation, a simple and convenient method was proposed to infer the K-expression from the number of arguments of the function in a gene, without building the expression tree. The results were compared to those obtained by artificial neural network (ANN) and support vector machine (SVM). It has been demonstrated that the GEP is a useful tool for QSAR modeling. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  8. Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.

    PubMed

    Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao

    2015-04-01

    Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A mixture model with a reference-based automatic selection of components for disease classification from protein and/or gene expression levels

    PubMed Central

    2011-01-01

    Background Bioinformatics data analysis is often using linear mixture model representing samples as additive mixture of components. Properly constrained blind matrix factorization methods extract those components using mixture samples only. However, automatic selection of extracted components to be retained for classification analysis remains an open issue. Results The method proposed here is applied to well-studied protein and genomic datasets of ovarian, prostate and colon cancers to extract components for disease prediction. It achieves average sensitivities of: 96.2 (sd = 2.7%), 97.6% (sd = 2.8%) and 90.8% (sd = 5.5%) and average specificities of: 93.6% (sd = 4.1%), 99% (sd = 2.2%) and 79.4% (sd = 9.8%) in 100 independent two-fold cross-validations. Conclusions We propose an additive mixture model of a sample for feature extraction using, in principle, sparseness constrained factorization on a sample-by-sample basis. As opposed to that, existing methods factorize complete dataset simultaneously. The sample model is composed of a reference sample representing control and/or case (disease) groups and a test sample. Each sample is decomposed into two or more components that are selected automatically (without using label information) as control specific, case specific and not differentially expressed (neutral). The number of components is determined by cross-validation. Automatic assignment of features (m/z ratios or genes) to particular component is based on thresholds estimated from each sample directly. Due to the locality of decomposition, the strength of the expression of each feature across the samples can vary. Yet, they will still be allocated to the related disease and/or control specific component. Since label information is not used in the selection process, case and control specific components can be used for classification. That is not the case with standard factorization methods. Moreover, the component selected by proposed method as disease specific can be interpreted as a sub-mode and retained for further analysis to identify potential biomarkers. As opposed to standard matrix factorization methods this can be achieved on a sample (experiment)-by-sample basis. Postulating one or more components with indifferent features enables their removal from disease and control specific components on a sample-by-sample basis. This yields selected components with reduced complexity and generally, it increases prediction accuracy. PMID:22208882

  10. Multi-tasking arbitration and behaviour design for human-interactive robots

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei

    2013-05-01

    Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.

  11. Transformations based on continuous piecewise-affine velocity fields

    DOE PAGES

    Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...

    2017-01-11

    Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less

  12. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    PubMed Central

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.

    2018-01-01

    We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517

  13. Dynamic analysis and numerical experiments for balancing of the continuous single-disc and single-span rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi

    2017-03-01

    Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.

  14. Spectrum response estimation for deep-water floating platforms via retardation function representation

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Liu, Chengcheng; Chen, Jiefeng; Wang, Bin

    2017-08-01

    The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures.

  15. Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions

    PubMed Central

    Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya

    2013-01-01

    Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458

  16. Essential protein discovery based on a combination of modularity and conservatism.

    PubMed

    Zhao, Bihai; Wang, Jianxin; Li, Xueyong; Wu, Fang-Xiang

    2016-11-01

    Essential proteins are indispensable for the survival of a living organism and play important roles in the emerging field of synthetic biology. Many computational methods have been proposed to identify essential proteins by using the topological features of interactome networks. However, most of these methods ignored intrinsic biological meaning of proteins. Researches show that essentiality is tied not only to the protein or gene itself, but also to the molecular modules to which that protein belongs. The results of this study reveal the modularity of essential proteins. On the other hand, essential proteins are more evolutionarily conserved than nonessential proteins and frequently bind each other. That is to say, conservatism is another important feature of essential proteins. Multiple networks are constructed by integrating protein-protein interaction (PPI) networks, time course gene expression data and protein domain information. Based on these networks, a new essential protein identification method is proposed based on a combination of modularity and conservatism of proteins. Experimental results show that the proposed method outperforms other essential protein identification methods in terms of a number essential protein out of top ranked candidates. Copyright © 2016. Published by Elsevier Inc.

  17. The Mantel-Haenszel procedure revisited: models and generalizations.

    PubMed

    Fidler, Vaclav; Nagelkerke, Nico

    2013-01-01

    Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented.

  18. The Mantel-Haenszel Procedure Revisited: Models and Generalizations

    PubMed Central

    Fidler, Vaclav; Nagelkerke, Nico

    2013-01-01

    Several statistical methods have been developed for adjusting the Odds Ratio of the relation between two dichotomous variables X and Y for some confounders Z. With the exception of the Mantel-Haenszel method, commonly used methods, notably binary logistic regression, are not symmetrical in X and Y. The classical Mantel-Haenszel method however only works for confounders with a limited number of discrete strata, which limits its utility, and appears to have no basis in statistical models. Here we revisit the Mantel-Haenszel method and propose an extension to continuous and vector valued Z. The idea is to replace the observed cell entries in strata of the Mantel-Haenszel procedure by subject specific classification probabilities for the four possible values of (X,Y) predicted by a suitable statistical model. For situations where X and Y can be treated symmetrically we propose and explore the multinomial logistic model. Under the homogeneity hypothesis, which states that the odds ratio does not depend on Z, the logarithm of the odds ratio estimator can be expressed as a simple linear combination of three parameters of this model. Methods for testing the homogeneity hypothesis are proposed. The relationship between this method and binary logistic regression is explored. A numerical example using survey data is presented. PMID:23516463

  19. Compact exponential product formulas and operator functional derivative

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin-Specht-Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians.

  20. A fuzzy model for assessing risk of occupational safety in the processing industry.

    PubMed

    Tadic, Danijela; Djapan, Marko; Misita, Mirjana; Stefanovic, Miladin; Milanovic, Dragan D

    2012-01-01

    Managing occupational safety in any kind of industry, especially in processing, is very important and complex. This paper develops a new method for occupational risk assessment in the presence of uncertainties. Uncertain values of hazardous factors and consequence frequencies are described with linguistic expressions defined by a safety management team. They are modeled with fuzzy sets. Consequence severities depend on current hazardous factors, and their values are calculated with the proposed procedure. The proposed model is tested with real-life data from fruit processing firms in Central Serbia.

  1. A rapid place name locating algorithm based on ontology qualitative retrieval, ranking and recommendation

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Zhu, Anfeng; Zhang, Weixia

    2015-12-01

    In order to meet the rapid positioning of 12315 complaints, aiming at the natural language expression of telephone complaints, a semantic retrieval framework is proposed which is based on natural language parsing and geographical names ontology reasoning. Among them, a search result ranking and recommended algorithms is proposed which is regarding both geo-name conceptual similarity and spatial geometry relation similarity. The experiments show that this method can assist the operator to quickly find location of 12,315 complaints, increased industry and commerce customer satisfaction.

  2. Prior knowledge driven Granger causality analysis on gene regulatory network discovery

    DOE PAGES

    Yao, Shun; Yoo, Shinjae; Yu, Dantong

    2015-08-28

    Our study focuses on discovering gene regulatory networks from time series gene expression data using the Granger causality (GC) model. However, the number of available time points (T) usually is much smaller than the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other regularization strategies can lead to a significant number of false identifications when n>>T. In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation experiments, themore » propose new methodology CGC-2SPR showed significant performance improvement in terms of accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods. In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true positive edges with CGC-2SPR than with the other existing methods. In our research, we noticed a “ 1+1>2” effect when we combined prior knowledge and gene expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of glucose. In conclusion, our research improves causality modeling by combining heterogeneous knowledge, which is well aligned with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-causality/wiki/Home.« less

  3. An Interactive Scheduling Method for Railway Rolling Stock Allocation

    NASA Astrophysics Data System (ADS)

    Otsuki, Tomoshi; Nakajima, Masayoshi; Fuse, Toru; Shimizu, Tadashi; Aisu, Hideyuki; Yasumoto, Takanori; Kaneko, Kenichi; Yokoyama, Nobuyuki

    Experts working for railway schedule planners still have to devote considerable time and effort for creating rolling stock allocation plans. In this paper, we propose a semiautomatic planning method for creating these plans. Our scheduler is able to interactively deal with flexible constraint-expression inputs and to output easy-to-understand failure messages. Owing to these useful features, the scheduler can provide results that are comparable to those obtained by experts and are obtained faster than before.

  4. Parameterized Facial Expression Synthesis Based on MPEG-4

    NASA Astrophysics Data System (ADS)

    Raouzaiou, Amaryllis; Tsapatsoulis, Nicolas; Karpouzis, Kostas; Kollias, Stefanos

    2002-12-01

    In the framework of MPEG-4, one can include applications where virtual agents, utilizing both textual and multisensory data, including facial expressions and nonverbal speech help systems become accustomed to the actual feelings of the user. Applications of this technology are expected in educational environments, virtual collaborative workplaces, communities, and interactive entertainment. Facial animation has gained much interest within the MPEG-4 framework; with implementation details being an open research area (Tekalp, 1999). In this paper, we describe a method for enriching human computer interaction, focusing on analysis and synthesis of primary and intermediate facial expressions (Ekman and Friesen (1978)). To achieve this goal, we utilize facial animation parameters (FAPs) to model primary expressions and describe a rule-based technique for handling intermediate ones. A relation between FAPs and the activation parameter proposed in classical psychological studies is established, leading to parameterized facial expression analysis and synthesis notions, compatible with the MPEG-4 standard.

  5. An integrative approach to inferring biologically meaningful gene modules.

    PubMed

    Cho, Ji-Hoon; Wang, Kai; Galas, David J

    2011-07-26

    The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level.

  6. Optimized Kernel Entropy Components.

    PubMed

    Izquierdo-Verdiguier, Emma; Laparra, Valero; Jenssen, Robert; Gomez-Chova, Luis; Camps-Valls, Gustau

    2017-06-01

    This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.

  7. Fusion of GFP and phase contrast images with complex shearlet transform and Haar wavelet-based energy rule.

    PubMed

    Qiu, Chenhui; Wang, Yuanyuan; Guo, Yanen; Xia, Shunren

    2018-03-14

    Image fusion techniques can integrate the information from different imaging modalities to get a composite image which is more suitable for human visual perception and further image processing tasks. Fusing green fluorescent protein (GFP) and phase contrast images is very important for subcellular localization, functional analysis of protein and genome expression. The fusion method of GFP and phase contrast images based on complex shearlet transform (CST) is proposed in this paper. Firstly the GFP image is converted to IHS model and its intensity component is obtained. Secondly the CST is performed on the intensity component and the phase contrast image to acquire the low-frequency subbands and the high-frequency subbands. Then the high-frequency subbands are merged by the absolute-maximum rule while the low-frequency subbands are merged by the proposed Haar wavelet-based energy (HWE) rule. Finally the fused image is obtained by performing the inverse CST on the merged subbands and conducting IHS-to-RGB conversion. The proposed fusion method is tested on a number of GFP and phase contrast images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation. © 2018 Wiley Periodicals, Inc.

  8. A New Numerical Method for Z2 Topological Insulators with Strong Disorder

    NASA Astrophysics Data System (ADS)

    Akagi, Yutaka; Katsura, Hosho; Koma, Tohru

    2017-12-01

    We propose a new method to numerically compute the Z2 indices for disordered topological insulators in Kitaev's periodic table. All of the Z2 indices are derived from the index formulae which are expressed in terms of a pair of projections introduced by Avron, Seiler, and Simon. For a given pair of projections, the corresponding index is determined by the spectrum of the difference between the two projections. This difference exhibits remarkable and useful properties, as it is compact and has a supersymmetric structure in the spectrum. These properties enable highly efficient numerical calculation of the indices of disordered topological insulators. The method, which we propose, is demonstrated for the Bernevig-Hughes-Zhang and Wilson-Dirac models whose topological phases are characterized by a Z2 index in two and three dimensions, respectively.

  9. A simple and efficient method for deriving neurospheres from bone marrow stromal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Qin; Mu Jun; Li Qi

    2008-08-08

    Bone marrow stromal cells (MSCs) can be differentiated into neuronal and glial-like cell types under appropriate experimental conditions. However, previously reported methods are complicated and involve the use of toxic reagents. Here, we present a simplified and nontoxic method for efficient conversion of rat MSCs into neurospheres that express the neuroectodermal marker nestin. These neurospheres can proliferate and differentiate into neuron, astrocyte, and oligodendrocyte phenotypes. We thus propose that MSCs are an emerging model cell for the treatment of a variety of neurological diseases.

  10. Regarding on the prototype solutions for the nonlinear fractional-order biological population model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskonus, Haci Mehmet, E-mail: hmbaskonus@gmail.com; Bulut, Hasan

    2016-06-08

    In this study, we have submitted to literature a method newly extended which is called as Improved Bernoulli sub-equation function method based on the Bernoulli Sub-ODE method. The proposed analytical scheme has been expressed with steps. We have obtained some new analytical solutions to the nonlinear fractional-order biological population model by using this technique. Two and three dimensional surfaces of analytical solutions have been drawn by wolfram Mathematica 9. Finally, a conclusion has been submitted by mentioning important acquisitions founded in this study.

  11. Three-Dimensional Gene Map of Cancer Cell Types: Structural Entropy Minimisation Principle for Defining Tumour Subtypes

    PubMed Central

    Li, Angsheng; Yin, Xianchen; Pan, Yicheng

    2016-01-01

    In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724

  12. Wavelet filtered shifted phase-encoded joint transform correlation for face recognition

    NASA Astrophysics Data System (ADS)

    Moniruzzaman, Md.; Alam, Mohammad S.

    2017-05-01

    A new wavelet-filtered-based Shifted- phase-encoded Joint Transform Correlation (WPJTC) technique has been proposed for efficient face recognition. The proposed technique uses discrete wavelet decomposition for preprocessing and can effectively accommodate various 3D facial distortions, effects of noise, and illumination variations. After analyzing different forms of wavelet basis functions, an optimal method has been proposed by considering the discrimination capability and processing speed as performance trade-offs. The proposed technique yields better correlation discrimination compared to alternate pattern recognition techniques such as phase-shifted phase-encoded fringe-adjusted joint transform correlator. The performance of the proposed WPJTC has been tested using the Yale facial database and extended Yale facial database under different environments such as illumination variation, noise, and 3D changes in facial expressions. Test results show that the proposed WPJTC yields better performance compared to alternate JTC based face recognition techniques.

  13. Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Zhang, Y; Kundu, S J

    2004-03-29

    This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.

  14. Development of Cardiovascular and Neurodevelopmental Metrics as Sublethal Endpoints for the Fish Embryo Toxicity Test.

    PubMed

    Krzykwa, Julie C; Olivas, Alexis; Jeffries, Marlo K Sellin

    2018-06-19

    The fathead minnow fish embryo toxicity (FET) test has been proposed as a more humane alternative to current toxicity testing methods, as younger organisms are thought to experience less distress during toxicant exposure. However, the FET test protocol does not include endpoints that allow for the prediction of sublethal adverse outcomes, limiting its utility relative to other test types. Researchers have proposed the development of sublethal endpoints for the FET test to increase its utility. The present study 1) developed methods for previously unmeasured sublethal metrics in fathead minnows (i.e., spontaneous contraction frequency and heart rate) and 2) investigated the responsiveness of several sublethal endpoints related to growth (wet weight, length, and growth-related gene expression), neurodevelopment (spontaneous contraction frequency, and neurodevelopmental gene expression), and cardiovascular function and development (pericardial area, eye size and cardiovascular related gene expression) as additional FET test metrics using the model toxicant 3,4-dichloroaniline. Of the growth, neurological and cardiovascular endpoints measured, length, eye size and pericardial area were found to more responsive than the other endpoints, respectively. Future studies linking alterations in these endpoints to longer-term adverse impacts are needed to fully evaluate the predictive power of these metrics in chemical and whole effluent toxicity testing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Data-driven information retrieval in heterogeneous collections of transcriptomics data links SIM2s to malignant pleural mesothelioma.

    PubMed

    Caldas, José; Gehlenborg, Nils; Kettunen, Eeva; Faisal, Ali; Rönty, Mikko; Nicholson, Andrew G; Knuutila, Sakari; Brazma, Alvis; Kaski, Samuel

    2012-01-15

    Genome-wide measurement of transcript levels is an ubiquitous tool in biomedical research. As experimental data continues to be deposited in public databases, it is becoming important to develop search engines that enable the retrieval of relevant studies given a query study. While retrieval systems based on meta-data already exist, data-driven approaches that retrieve studies based on similarities in the expression data itself have a greater potential of uncovering novel biological insights. We propose an information retrieval method based on differential expression. Our method deals with arbitrary experimental designs and performs competitively with alternative approaches, while making the search results interpretable in terms of differential expression patterns. We show that our model yields meaningful connections between biological conditions from different studies. Finally, we validate a previously unknown connection between malignant pleural mesothelioma and SIM2s suggested by our method, via real-time polymerase chain reaction in an independent set of mesothelioma samples. Supplementary data and source code are available from http://www.ebi.ac.uk/fg/research/rex.

  16. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula.

    PubMed

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling; Wang, Yun

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.

  17. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components. PMID:29692857

  18. Facial expression recognition under partial occlusion based on fusion of global and local features

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Xia, Chen; Hu, Min; Ren, Fuji

    2018-04-01

    Facial expression recognition under partial occlusion is a challenging research. This paper proposes a novel framework for facial expression recognition under occlusion by fusing the global and local features. In global aspect, first, information entropy are employed to locate the occluded region. Second, principal Component Analysis (PCA) method is adopted to reconstruct the occlusion region of image. After that, a replace strategy is applied to reconstruct image by replacing the occluded region with the corresponding region of the best matched image in training set, Pyramid Weber Local Descriptor (PWLD) feature is then extracted. At last, the outputs of SVM are fitted to the probabilities of the target class by using sigmoid function. For the local aspect, an overlapping block-based method is adopted to extract WLD features, and each block is weighted adaptively by information entropy, Chi-square distance and similar block summation methods are then applied to obtain the probabilities which emotion belongs to. Finally, fusion at the decision level is employed for the data fusion of the global and local features based on Dempster-Shafer theory of evidence. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the effectiveness and fault tolerance of this method.

  19. Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics

    PubMed Central

    Lin, Wei; Feng, Rui; Li, Hongzhe

    2014-01-01

    In genetical genomics studies, it is important to jointly analyze gene expression data and genetic variants in exploring their associations with complex traits, where the dimensionality of gene expressions and genetic variants can both be much larger than the sample size. Motivated by such modern applications, we consider the problem of variable selection and estimation in high-dimensional sparse instrumental variables models. To overcome the difficulty of high dimensionality and unknown optimal instruments, we propose a two-stage regularization framework for identifying and estimating important covariate effects while selecting and estimating optimal instruments. The methodology extends the classical two-stage least squares estimator to high dimensions by exploiting sparsity using sparsity-inducing penalty functions in both stages. The resulting procedure is efficiently implemented by coordinate descent optimization. For the representative L1 regularization and a class of concave regularization methods, we establish estimation, prediction, and model selection properties of the two-stage regularized estimators in the high-dimensional setting where the dimensionality of co-variates and instruments are both allowed to grow exponentially with the sample size. The practical performance of the proposed method is evaluated by simulation studies and its usefulness is illustrated by an analysis of mouse obesity data. Supplementary materials for this article are available online. PMID:26392642

  20. miR2Pathway: A novel analytical method to discover MicroRNA-mediated dysregulated pathways involved in hepatocellular carcinoma.

    PubMed

    Li, Chaoxing; Dinu, Valentin

    2018-05-01

    MicroRNAs (miRNAs) are small, non-coding RNAs involved in the regulation of gene expression at a post-transcriptional level. Recent studies have shown miRNAs as key regulators of a variety of biological processes, such as proliferation, differentiation, apoptosis, metabolism, etc. Aberrantly expressed miRNAs influence individual gene expression level, but rewired miRNA-mRNA connections can influence the activity of biological pathways. Here, we define rewired miRNA-mRNA connections as the differential (rewiring) effects on the activity of biological pathways between hepatocellular carcinoma (HCC) and normal phenotypes. Our work presented here uses a PageRank-based approach to measure the degree of miRNA-mediated dysregulation of biological pathways between HCC and normal samples based on rewired miRNA-mRNA connections. In our study, we regard the degree of miRNA-mediated dysregulation of biological pathways as disease risk of biological pathways. Therefore, we propose a new method, miR2Pathway, to measure and rank the degree of miRNA-mediated dysregulation of biological pathways by measuring the total differential influence of miRNAs on the activity of pathways between HCC and normal states. miR2Pathway proposed here systematically shows the first evidence for a mechanism of biological pathways being dysregulated by rewired miRNA-mRNA connections, and provides new insight into exploring mechanisms behind HCC. Thus, miR2Pathway is a novel method to identify and rank miRNA-dysregulated pathways in HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Analysis of temporal transcription expression profiles reveal links between protein function and developmental stages of Drosophila melanogaster.

    PubMed

    Wan, Cen; Lees, Jonathan G; Minneci, Federico; Orengo, Christine A; Jones, David T

    2017-10-01

    Accurate gene or protein function prediction is a key challenge in the post-genome era. Most current methods perform well on molecular function prediction, but struggle to provide useful annotations relating to biological process functions due to the limited power of sequence-based features in that functional domain. In this work, we systematically evaluate the predictive power of temporal transcription expression profiles for protein function prediction in Drosophila melanogaster. Our results show significantly better performance on predicting protein function when transcription expression profile-based features are integrated with sequence-derived features, compared with the sequence-derived features alone. We also observe that the combination of expression-based and sequence-based features leads to further improvement of accuracy on predicting all three domains of gene function. Based on the optimal feature combinations, we then propose a novel multi-classifier-based function prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our machine learning models also allows us to identify some of the underlying links between biological processes and developmental stages of Drosophila melanogaster.

  2. Identifying pleiotropic genes in genome-wide association studies from related subjects using the linear mixed model and Fisher combination function.

    PubMed

    Yang, James J; Williams, L Keoki; Buu, Anne

    2017-08-24

    A multivariate genome-wide association test is proposed for analyzing data on multivariate quantitative phenotypes collected from related subjects. The proposed method is a two-step approach. The first step models the association between the genotype and marginal phenotype using a linear mixed model. The second step uses the correlation between residuals of the linear mixed model to estimate the null distribution of the Fisher combination test statistic. The simulation results show that the proposed method controls the type I error rate and is more powerful than the marginal tests across different population structures (admixed or non-admixed) and relatedness (related or independent). The statistical analysis on the database of the Study of Addiction: Genetics and Environment (SAGE) demonstrates that applying the multivariate association test may facilitate identification of the pleiotropic genes contributing to the risk for alcohol dependence commonly expressed by four correlated phenotypes. This study proposes a multivariate method for identifying pleiotropic genes while adjusting for cryptic relatedness and population structure between subjects. The two-step approach is not only powerful but also computationally efficient even when the number of subjects and the number of phenotypes are both very large.

  3. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.

    PubMed

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice.

  4. eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes

    PubMed Central

    Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen

    2014-01-01

    Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice. PMID:25374455

  5. Digital Detection of Multiple Minority Mutants and Expression Levels of Multiple Colorectal Cancer-Related Genes Using Digital-PCR Coupled with Bead-Array

    PubMed Central

    Huang, Huan; Li, Shuo; Sun, Lizhou; Zhou, Guohua

    2015-01-01

    To simultaneously analyze mutations and expression levels of multiple genes on one detection platform, we proposed a method termed “multiplex ligation-dependent probe amplification–digital amplification coupled with hydrogel bead-array” (MLPA–DABA) and applied it to diagnose colorectal cancer (CRC). CRC cells and tissues were sampled to extract nucleic acid, perform MLPA with sequence-tagged probes, perform digital emulsion polymerase chain reaction (PCR), and produce a hydrogel bead-array to immobilize beads and form a single bead layer on the array. After hybridization with fluorescent probes, the number of colored beads, which reflects the abundance of expressed genes and the mutation rate, was counted for diagnosis. Only red or green beads occurred on the chips in the mixed samples, indicating the success of single-molecule PCR. When a one-source sample was analyzed using mixed MLPA probes, beads of only one color occurred, suggesting the high specificity of the method in analyzing CRC mutation and gene expression. In gene expression analysis of a CRC tissue from one CRC patient, the mutant percentage was 3.1%, and the expression levels of CRC-related genes were much higher than those of normal tissue. The highly sensitive MLPA–DABA succeeds in the relative quantification of mutations and gene expressions of exfoliated cells in stool samples of CRC patients on the same chip platform. MLPA–DABA coupled with hydrogel bead-array is a promising method in the non-invasive diagnosis of CRC. PMID:25880764

  6. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    PubMed

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  8. Optimized Probe Masking for Comparative Transcriptomics of Closely Related Species

    PubMed Central

    Poeschl, Yvonne; Delker, Carolin; Trenner, Jana; Ullrich, Kristian Karsten; Quint, Marcel; Grosse, Ivo

    2013-01-01

    Microarrays are commonly applied to study the transcriptome of specific species. However, many available microarrays are restricted to model organisms, and the design of custom microarrays for other species is often not feasible. Hence, transcriptomics approaches of non-model organisms as well as comparative transcriptomics studies among two or more species often make use of cost-intensive RNAseq studies or, alternatively, by hybridizing transcripts of a query species to a microarray of a closely related species. When analyzing these cross-species microarray expression data, differences in the transcriptome of the query species can cause problems, such as the following: (i) lower hybridization accuracy of probes due to mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii) probes binding transcripts of non-orthologous genes. So far, methods for (i) exist, but these neglect (ii) and (iii). Here, we propose an approach for comparative transcriptomics addressing problems (i) to (iii), which retains only transcript-specific probes binding transcripts of orthologous genes. We apply this approach to an Arabidopsis lyrata expression data set measured on a microarray designed for Arabidopsis thaliana, and compare it to two alternative approaches, a sequence-based approach and a genomic DNA hybridization-based approach. We investigate the number of retained probe sets, and we validate the resulting expression responses by qRT-PCR. We find that the proposed approach combines the benefit of sequence-based stringency and accuracy while allowing the expression analysis of much more genes than the alternative sequence-based approach. As an added benefit, the proposed approach requires probes to detect transcripts of orthologous genes only, which provides a superior base for biological interpretation of the measured expression responses. PMID:24260119

  9. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    PubMed

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  10. Effects of mass variation on structures of differentially rotating polytropic stars

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Saini, Seema; Singh, Kamal Krishan

    2018-07-01

    A method is proposed for determining equilibrium structures and various physical parameters of differentially rotating polytropic models of stars, taking into account the effect of mass variation inside the star and on its equipotential surfaces. The law of differential rotation has been assumed to be the form of ω2(s) =b1 +b2s2 +b3s4 . The proposed method utilizes the averaging approach of Kippenhahn and Thomas and concepts of Roche-equipotential to incorporate the effects of differential rotation on the equilibrium structures of polytropic stellar models. Mathematical expressions of determining the equipotential surfaces, volume, surface area and other physical parameters are also obtained under the effects of mass variation inside the stars. Some significant conclusions are also drawn.

  11. A Model-Free Machine Learning Method for Risk Classification and Survival Probability Prediction.

    PubMed

    Geng, Yuan; Lu, Wenbin; Zhang, Hao Helen

    2014-01-01

    Risk classification and survival probability prediction are two major goals in survival data analysis since they play an important role in patients' risk stratification, long-term diagnosis, and treatment selection. In this article, we propose a new model-free machine learning framework for risk classification and survival probability prediction based on weighted support vector machines. The new procedure does not require any specific parametric or semiparametric model assumption on data, and is therefore capable of capturing nonlinear covariate effects. We use numerous simulation examples to demonstrate finite sample performance of the proposed method under various settings. Applications to a glioma tumor data and a breast cancer gene expression survival data are shown to illustrate the new methodology in real data analysis.

  12. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    PubMed

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  13. An Evaluation of Automotive Interior Packages Based on Human Ocular and Joint Motor Properties

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Rakumatsu, Takeshi; Horiue, Masayoshi; Miyazaki, Tooru; Nishikawa, Kazuo; Nouzawa, Takahide; Tsuji, Toshio

    This paper proposes a new evaluation method of an automotive interior package based on human oculomotor and joint-motor properties. Assuming the long-term driving situation in the express high way, the three evaluation indices were designed on i) the ratio of head motion at gazing the driving items; ii) the load torque for maintaining the standard driving posture; and iii) the human force manipulability at the end-point of human extremities. Experiments were carried out for two different interior packages with four subjects who have the special knowledge on the automobile development. Evaluation results demonstrate that the proposed method can quantitatively analyze the driving interior in good agreement with the generally accepted subjective opinion in the automobile industry.

  14. QPROT: Statistical method for testing differential expression using protein-level intensity data in label-free quantitative proteomics.

    PubMed

    Choi, Hyungwon; Kim, Sinae; Fermin, Damian; Tsou, Chih-Chiang; Nesvizhskii, Alexey I

    2015-11-03

    We introduce QPROT, a statistical framework and computational tool for differential protein expression analysis using protein intensity data. QPROT is an extension of the QSPEC suite, originally developed for spectral count data, adapted for the analysis using continuously measured protein-level intensity data. QPROT offers a new intensity normalization procedure and model-based differential expression analysis, both of which account for missing data. Determination of differential expression of each protein is based on the standardized Z-statistic based on the posterior distribution of the log fold change parameter, guided by the false discovery rate estimated by a well-known Empirical Bayes method. We evaluated the classification performance of QPROT using the quantification calibration data from the clinical proteomic technology assessment for cancer (CPTAC) study and a recently published Escherichia coli benchmark dataset, with evaluation of FDR accuracy in the latter. QPROT is a statistical framework with computational software tool for comparative quantitative proteomics analysis. It features various extensions of QSPEC method originally built for spectral count data analysis, including probabilistic treatment of missing values in protein intensity data. With the increasing popularity of label-free quantitative proteomics data, the proposed method and accompanying software suite will be immediately useful for many proteomics laboratories. This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Missing value imputation in DNA microarrays based on conjugate gradient method.

    PubMed

    Dorri, Fatemeh; Azmi, Paeiz; Dorri, Faezeh

    2012-02-01

    Analysis of gene expression profiles needs a complete matrix of gene array values; consequently, imputation methods have been suggested. In this paper, an algorithm that is based on conjugate gradient (CG) method is proposed to estimate missing values. k-nearest neighbors of the missed entry are first selected based on absolute values of their Pearson correlation coefficient. Then a subset of genes among the k-nearest neighbors is labeled as the best similar ones. CG algorithm with this subset as its input is then used to estimate the missing values. Our proposed CG based algorithm (CGimpute) is evaluated on different data sets. The results are compared with sequential local least squares (SLLSimpute), Bayesian principle component analysis (BPCAimpute), local least squares imputation (LLSimpute), iterated local least squares imputation (ILLSimpute) and adaptive k-nearest neighbors imputation (KNNKimpute) methods. The average of normalized root mean squares error (NRMSE) and relative NRMSE in different data sets with various missing rates shows CGimpute outperforms other methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Robust and Efficient Biomolecular Clustering of Tumor Based on ${p}$ -Norm Singular Value Decomposition.

    PubMed

    Kong, Xiang-Zhen; Liu, Jin-Xing; Zheng, Chun-Hou; Hou, Mi-Xiao; Wang, Juan

    2017-07-01

    High dimensionality has become a typical feature of biomolecular data. In this paper, a novel dimension reduction method named p-norm singular value decomposition (PSVD) is proposed to seek the low-rank approximation matrix to the biomolecular data. To enhance the robustness to outliers, the Lp-norm is taken as the error function and the Schatten p-norm is used as the regularization function in the optimization model. To evaluate the performance of PSVD, the Kmeans clustering method is then employed for tumor clustering based on the low-rank approximation matrix. Extensive experiments are carried out on five gene expression data sets including two benchmark data sets and three higher dimensional data sets from the cancer genome atlas. The experimental results demonstrate that the PSVD-based method outperforms many existing methods. Especially, it is experimentally proved that the proposed method is more efficient for processing higher dimensional data with good robustness, stability, and superior time performance.

  17. ASSESSING AND COMBINING RELIABILITY OF PROTEIN INTERACTION SOURCES

    PubMed Central

    LEACH, SONIA; GABOW, AARON; HUNTER, LAWRENCE; GOLDBERG, DEBRA S.

    2008-01-01

    Integrating diverse sources of interaction information to create protein networks requires strategies sensitive to differences in accuracy and coverage of each source. Previous integration approaches calculate reliabilities of protein interaction information sources based on congruity to a designated ‘gold standard.’ In this paper, we provide a comparison of the two most popular existing approaches and propose a novel alternative for assessing reliabilities which does not require a gold standard. We identify a new method for combining the resultant reliabilities and compare it against an existing method. Further, we propose an extrinsic approach to evaluation of reliability estimates, considering their influence on the downstream tasks of inferring protein function and learning regulatory networks from expression data. Results using this evaluation method show 1) our method for reliability estimation is an attractive alternative to those requiring a gold standard and 2) the new method for combining reliabilities is less sensitive to noise in reliability assignments than the similar existing technique. PMID:17990508

  18. Deep learning architecture for air quality predictions.

    PubMed

    Li, Xiang; Peng, Ling; Hu, Yuan; Shao, Jing; Chi, Tianhe

    2016-11-01

    With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.

  19. 3D face recognition based on multiple keypoint descriptors and sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm.

  20. Identification and function analysis of contrary genes in Dupuytren's contracture.

    PubMed

    Ji, Xianglu; Tian, Feng; Tian, Lijie

    2015-07-01

    The present study aimed to analyze the expression of genes involved in Dupuytren's contracture (DC), using bioinformatic methods. The profile of GSE21221 was downloaded from the gene expression ominibus, which included six samples, derived from fibroblasts and six healthy control samples, derived from carpal-tunnel fibroblasts. A Distributed Intrusion Detection System was used in order to identify differentially expressed genes. The term contrary genes is proposed. Contrary genes were the genes that exhibited opposite expression patterns in the positive and negative groups, and likely exhibited opposite functions. These were identified using Coexpress software. Gene ontology (GO) function analysis was conducted for the contrary genes. A network of GO terms was constructed using the reduce and visualize gene ontology database. Significantly expressed genes (801) and contrary genes (98) were screened. A significant association was observed between Chitinase-3-like protein 1 and ten genes in the positive gene set. Positive regulation of transcription and the activation of nuclear factor-κB (NF-κB)-inducing kinase activity exhibited the highest degree values in the network of GO terms. In the present study, the expression of genes involved in the development of DC was analyzed, and the concept of contrary genes proposed. The genes identified in the present study are involved in the positive regulation of transcription and activation of NF-κB-inducing kinase activity. The contrary genes and GO terms identified in the present study may potentially be used for DC diagnosis and treatment.

  1. Predicting multi-level drug response with gene expression profile in multiple myeloma using hierarchical ordinal regression.

    PubMed

    Zhang, Xinyan; Li, Bingzong; Han, Huiying; Song, Sha; Xu, Hongxia; Hong, Yating; Yi, Nengjun; Zhuang, Wenzhuo

    2018-05-10

    Multiple myeloma (MM), like other cancers, is caused by the accumulation of genetic abnormalities. Heterogeneity exists in the patients' response to treatments, for example, bortezomib. This urges efforts to identify biomarkers from numerous molecular features and build predictive models for identifying patients that can benefit from a certain treatment scheme. However, previous studies treated the multi-level ordinal drug response as a binary response where only responsive and non-responsive groups are considered. It is desirable to directly analyze the multi-level drug response, rather than combining the response to two groups. In this study, we present a novel method to identify significantly associated biomarkers and then develop ordinal genomic classifier using the hierarchical ordinal logistic model. The proposed hierarchical ordinal logistic model employs the heavy-tailed Cauchy prior on the coefficients and is fitted by an efficient quasi-Newton algorithm. We apply our hierarchical ordinal regression approach to analyze two publicly available datasets for MM with five-level drug response and numerous gene expression measures. Our results show that our method is able to identify genes associated with the multi-level drug response and to generate powerful predictive models for predicting the multi-level response. The proposed method allows us to jointly fit numerous correlated predictors and thus build efficient models for predicting the multi-level drug response. The predictive model for the multi-level drug response can be more informative than the previous approaches. Thus, the proposed approach provides a powerful tool for predicting multi-level drug response and has important impact on cancer studies.

  2. A proposal to standardize reporting units for fecal immunochemical tests for hemoglobin.

    PubMed

    Fraser, Callum G; Allison, James E; Halloran, Stephen P; Young, Graeme P

    2012-06-06

    Fecal immunochemical tests for hemoglobin are replacing traditional guaiac fecal occult blood tests in population screening programs for many reasons. However, the many available fecal immunochemical test devices use a range of sampling methods, differ with regard to hemoglobin stability, and report hemoglobin concentrations in different ways. The methods for sampling, the mass of feces collected, and the volume and characteristics of the buffer used in the sampling device also vary among fecal immunochemical tests, making comparisons of test performance characteristics difficult. Fecal immunochemical test results may be expressed as the hemoglobin concentration in the sampling device buffer and, sometimes, albeit rarely, as the hemoglobin concentration per mass of feces. The current lack of consistency in units for reporting hemoglobin concentration is particularly problematic because apparently similar hemoglobin concentrations obtained with different devices can lead to very different clinical interpretations. Consistent adoption of an internationally accepted method for reporting results would facilitate comparisons of outcomes from these tests. We propose a simple strategy for reporting fecal hemoglobin concentration that will facilitate the comparison of results between fecal immunochemical test devices and across clinical studies. Such reporting is readily achieved by defining the mass of feces sampled and the volume of sample buffer (with confidence intervals) and expressing results as micrograms of hemoglobin per gram of feces. We propose that manufacturers of fecal immunochemical tests provide this information and that the authors of research articles, guidelines, and policy articles, as well as pathology services and regulatory bodies, adopt this metric when reporting fecal immunochemical test results.

  3. Time-Course Gene Set Analysis for Longitudinal Gene Expression Data

    PubMed Central

    Hejblum, Boris P.; Skinner, Jason; Thiébaut, Rodolphe

    2015-01-01

    Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package. PMID:26111374

  4. A perceptive method for handwritten text segmentation

    NASA Astrophysics Data System (ADS)

    Lemaitre, Aurélie; Camillerapp, Jean; Coüasnon, Bertrand

    2011-01-01

    This paper presents a new method to address the problem of handwritten text segmentation into text lines and words. Thus, we propose a method based on the cooperation among points of view that enables the localization of the text lines in a low resolution image, and then to associate the pixels at a higher level of resolution. Thanks to the combination of levels of vision, we can detect overlapping characters and re-segment the connected components during the analysis. Then, we propose a segmentation of lines into words based on the cooperation among digital data and symbolic knowledge. The digital data are obtained from distances inside a Delaunay graph, which gives a precise distance between connected components, at the pixel level. We introduce structural rules in order to take into account some generic knowledge about the organization of a text page. This cooperation among information gives a bigger power of expression and ensures the global coherence of the recognition. We validate this work using the metrics and the database proposed for the segmentation contest of ICDAR 2009. Thus, we show that our method obtains very interesting results, compared to the other methods of the literature. More precisely, we are able to deal with slope and curvature, overlapping text lines and varied kinds of writings, which are the main difficulties met by the other methods.

  5. Increasing the computational efficient of digital cross correlation by a vectorization method

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Yuan; Ma, Chien-Ching

    2017-08-01

    This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.

  6. Symmetric tridiagonal structure preserving finite element model updating problem for the quadratic model

    NASA Astrophysics Data System (ADS)

    Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath

    2018-07-01

    One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.

  7. Novel dynamic Bayesian networks for facial action element recognition and understanding

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Park, Jeong-Seon; Choi, Dong-You; Lee, Sang-Woong

    2011-12-01

    In daily life, language is an important tool of communication between people. Besides language, facial action can also provide a great amount of information. Therefore, facial action recognition has become a popular research topic in the field of human-computer interaction (HCI). However, facial action recognition is quite a challenging task due to its complexity. In a literal sense, there are thousands of facial muscular movements, many of which have very subtle differences. Moreover, muscular movements always occur simultaneously when the pose is changed. To address this problem, we first build a fully automatic facial points detection system based on a local Gabor filter bank and principal component analysis. Then, novel dynamic Bayesian networks are proposed to perform facial action recognition using the junction tree algorithm over a limited number of feature points. In order to evaluate the proposed method, we have used the Korean face database for model training. For testing, we used the CUbiC FacePix, facial expressions and emotion database, Japanese female facial expression database, and our own database. Our experimental results clearly demonstrate the feasibility of the proposed approach.

  8. An omnibus test for family-based association studies with multiple SNPs and multiple phenotypes.

    PubMed

    Lasky-Su, Jessica; Murphy, Amy; McQueen, Matthew B; Weiss, Scott; Lange, Christoph

    2010-06-01

    We propose an omnibus family-based association test (MFBAT) that can be applied to multiple markers and multiple phenotypes and that has only one degree of freedom. The proposed test statistic extends current FBAT methodology to incorporate multiple markers as well as multiple phenotypes. Using simulation studies, power estimates for the proposed methodology are compared with the standard methodologies. On the basis of these simulations, we find that MFBAT substantially outperforms other methods, including haplotypic approaches and doing multiple tests with single single-nucleotide polymorphisms (SNPs) and single phenotypes. The practical relevance of the approach is illustrated by an application to asthma in which SNP/phenotype combinations are identified and reach overall significance that would not have been identified using other approaches. This methodology is directly applicable to cases in which there are multiple SNPs, such as candidate gene studies, cases in which there are multiple phenotypes, such as expression data, and cases in which there are multiple phenotypes and genotypes, such as genome-wide association studies that incorporate expression profiles as phenotypes. This program is available in the PBAT analysis package.

  9. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis.

    PubMed

    Soneson, Charlotte; Lilljebjörn, Henrik; Fioretos, Thoas; Fontes, Magnus

    2010-04-15

    With the rapid development of new genetic measurement methods, several types of genetic alterations can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set separately, there is an increasing interest in studying the correlation structure between two or more data sets. Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The method is implemented by translating a regularized CCA to its dual form, where the computational complexity depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number alterations in leukemia. Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-selection of known disease-relevant genes, and without using information about clinical class membership, an exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the variables showing the highest relevance to the extracted features agree with previous biological knowledge concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-maximizing methods are shown to yield results which are more biologically interpretable than those resulting from a covariance-maximizing method, and provide different insight compared to when each variable set is studied separately using PCA. We conclude that regularized dual CCA as well as PCA+CCA are useful methods for exploratory analysis of paired genetic data sets, and can be efficiently implemented also when the number of variables is very large.

  10. A Global User-Driven Model for Tile Prefetching in Web Geographical Information Systems

    PubMed Central

    Pan, Shaoming; Chong, Yanwen; Zhang, Hang; Tan, Xicheng

    2017-01-01

    A web geographical information system is a typical service-intensive application. Tile prefetching and cache replacement can improve cache hit ratios by proactively fetching tiles from storage and replacing the appropriate tiles from the high-speed cache buffer without waiting for a client’s requests, which reduces disk latency and improves system access performance. Most popular prefetching strategies consider only the relative tile popularities to predict which tile should be prefetched or consider only a single individual user's access behavior to determine which neighbor tiles need to be prefetched. Some studies show that comprehensively considering all users’ access behaviors and all tiles’ relationships in the prediction process can achieve more significant improvements. Thus, this work proposes a new global user-driven model for tile prefetching and cache replacement. First, based on all users’ access behaviors, a type of expression method for tile correlation is designed and implemented. Then, a conditional prefetching probability can be computed based on the proposed correlation expression mode. Thus, some tiles to be prefetched can be found by computing and comparing the conditional prefetching probability from the uncached tiles set and, similarly, some replacement tiles can be found in the cache buffer according to multi-step prefetching. Finally, some experiments are provided comparing the proposed model with other global user-driven models, other single user-driven models, and other client-side prefetching strategies. The results show that the proposed model can achieve a prefetching hit rate in approximately 10.6% ~ 110.5% higher than the compared methods. PMID:28085937

  11. A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction.

    PubMed

    Nagare, Mukund B; Patil, Bhushan D; Holambe, Raghunath S

    2017-02-01

    B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.

  12. Identification of suitable genes contributes to lung adenocarcinoma clustering by multiple meta-analysis methods.

    PubMed

    Yang, Ze-Hui; Zheng, Rui; Gao, Yuan; Zhang, Qiang

    2016-09-01

    With the widespread application of high-throughput technology, numerous meta-analysis methods have been proposed for differential expression profiling across multiple studies. We identified the suitable differentially expressed (DE) genes that contributed to lung adenocarcinoma (ADC) clustering based on seven popular multiple meta-analysis methods. Seven microarray expression profiles of ADC and normal controls were extracted from the ArrayExpress database. The Bioconductor was used to perform the data preliminary preprocessing. Then, DE genes across multiple studies were identified. Hierarchical clustering was applied to compare the classification performance for microarray data samples. The classification efficiency was compared based on accuracy, sensitivity and specificity. Across seven datasets, 573 ADC cases and 222 normal controls were collected. After filtering out unexpressed and noninformative genes, 3688 genes were remained for further analysis. The classification efficiency analysis showed that DE genes identified by sum of ranks method separated ADC from normal controls with the best accuracy, sensitivity and specificity of 0.953, 0.969 and 0.932, respectively. The gene set with the highest classification accuracy mainly participated in the regulation of response to external stimulus (P = 7.97E-04), cyclic nucleotide-mediated signaling (P = 0.01), regulation of cell morphogenesis (P = 0.01) and regulation of cell proliferation (P = 0.01). Evaluation of DE genes identified by different meta-analysis methods in classification efficiency provided a new perspective to the choice of the suitable method in a given application. Varying meta-analysis methods always present varying abilities, so synthetic consideration should be taken when providing meta-analysis methods for particular research. © 2015 John Wiley & Sons Ltd.

  13. RNA-sequence data normalization through in silico prediction of reference genes: the bacterial response to DNA damage as case study.

    PubMed

    Berghoff, Bork A; Karlsson, Torgny; Källman, Thomas; Wagner, E Gerhart H; Grabherr, Manfred G

    2017-01-01

    Measuring how gene expression changes in the course of an experiment assesses how an organism responds on a molecular level. Sequencing of RNA molecules, and their subsequent quantification, aims to assess global gene expression changes on the RNA level (transcriptome). While advances in high-throughput RNA-sequencing (RNA-seq) technologies allow for inexpensive data generation, accurate post-processing and normalization across samples is required to eliminate any systematic noise introduced by the biochemical and/or technical processes. Existing methods thus either normalize on selected known reference genes that are invariant in expression across the experiment, assume that the majority of genes are invariant, or that the effects of up- and down-regulated genes cancel each other out during the normalization. Here, we present a novel method, moose 2 , which predicts invariant genes in silico through a dynamic programming (DP) scheme and applies a quadratic normalization based on this subset. The method allows for specifying a set of known or experimentally validated invariant genes, which guides the DP. We experimentally verified the predictions of this method in the bacterium Escherichia coli , and show how moose 2 is able to (i) estimate the expression value distances between RNA-seq samples, (ii) reduce the variation of expression values across all samples, and (iii) to subsequently reveal new functional groups of genes during the late stages of DNA damage. We further applied the method to three eukaryotic data sets, on which its performance compares favourably to other methods. The software is implemented in C++ and is publicly available from http://grabherr.github.io/moose2/. The proposed RNA-seq normalization method, moose 2 , is a valuable alternative to existing methods, with two major advantages: (i) in silico prediction of invariant genes provides a list of potential reference genes for downstream analyses, and (ii) non-linear artefacts in RNA-seq data are handled adequately to minimize variations between replicates.

  14. STOCK Mechanics:. a General Theory and Method of Energy Conservation with Applications on Djia

    NASA Astrophysics Data System (ADS)

    Tuncay, Çağlar

    A new method, based on the original theory of conservation of sum of kinetic and potential energy defined for prices is proposed and applied on the Dow Jones Industrials Average (DJIA). The general trends averaged over months or years gave a roughly conserved total energy, with three different potential energies, i.e., positive definite quadratic, negative definite quadratic and linear potential energy for exponential rises (and falls), sinusoidal oscillations and parabolic trajectories, respectively. Corresponding expressions for force (impact) are also given.

  15. EFFECTS OF LASER RADIATION ON MATTER: Distribution function of microinclusions in polymethylmethacrylate and its evolution under the influence of a series of laser pulses

    NASA Astrophysics Data System (ADS)

    Glauberman, G. Ya; Savanin, S. Yu; Shkunov, V. V.; Shumov, D. E.

    1990-08-01

    A new method is proposed for the derivation of the distribution function of the experimentally determined breakdown thresholds of absorbing microinclusions in a transparent insulator. Expressions are obtained for describing the evolution of this function in the course of irradiation of the insulator with laser pulses of constant energy density. The method is applied to calculate the distribution function of microinclusions in polymethylmethacrylate and the evolution of this function.

  16. Estimation of gene induction enables a relevance-based ranking of gene sets.

    PubMed

    Bartholomé, Kilian; Kreutz, Clemens; Timmer, Jens

    2009-07-01

    In order to handle and interpret the vast amounts of data produced by microarray experiments, the analysis of sets of genes with a common biological functionality has been shown to be advantageous compared to single gene analyses. Some statistical methods have been proposed to analyse the differential gene expression of gene sets in microarray experiments. However, most of these methods either require threshhold values to be chosen for the analysis, or they need some reference set for the determination of significance. We present a method that estimates the number of differentially expressed genes in a gene set without requiring a threshold value for significance of genes. The method is self-contained (i.e., it does not require a reference set for comparison). In contrast to other methods which are focused on significance, our approach emphasizes the relevance of the regulation of gene sets. The presented method measures the degree of regulation of a gene set and is a useful tool to compare the induction of different gene sets and place the results of microarray experiments into the biological context. An R-package is available.

  17. ITPI: Initial Transcription Process-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; Li, Yanwen; Zhang, Yanling; Li, Zhiyong; Bi, Tian; He, Yusu; Song, Kuokui; Wang, Yun

    2016-01-01

    Identification of bioactive components is an important area of research in traditional Chinese medicine (TCM) formula. The reported identification methods only consider the interaction between the components and the target proteins, which is not sufficient to explain the influence of TCM on the gene expression. Here, we propose the Initial Transcription Process-based Identification (ITPI) method for the discovery of bioactive components that influence transcription factors (TFs). In this method, genome-wide chip detection technology was used to identify differentially expressed genes (DEGs). The TFs of DEGs were derived from GeneCards. The components influencing the TFs were derived from STITCH. The bioactive components in the formula were identified by evaluating the molecular similarity between the components in formula and the components that influence the TF of DEGs. Using the formula of Tian-Zhu-San (TZS) as an example, the reliability and limitation of ITPI were examined and 16 bioactive components that influence TFs were identified. PMID:27034696

  18. Backward-stochastic-differential-equation approach to modeling of gene expression

    NASA Astrophysics Data System (ADS)

    Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F.; Aguiar, Paulo

    2017-03-01

    In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).

  19. Backward-stochastic-differential-equation approach to modeling of gene expression.

    PubMed

    Shamarova, Evelina; Chertovskih, Roman; Ramos, Alexandre F; Aguiar, Paulo

    2017-03-01

    In this article, we introduce a backward method to model stochastic gene expression and protein-level dynamics. The protein amount is regarded as a diffusion process and is described by a backward stochastic differential equation (BSDE). Unlike many other SDE techniques proposed in the literature, the BSDE method is backward in time; that is, instead of initial conditions it requires the specification of end-point ("final") conditions, in addition to the model parametrization. To validate our approach we employ Gillespie's stochastic simulation algorithm (SSA) to generate (forward) benchmark data, according to predefined gene network models. Numerical simulations show that the BSDE method is able to correctly infer the protein-level distributions that preceded a known final condition, obtained originally from the forward SSA. This makes the BSDE method a powerful systems biology tool for time-reversed simulations, allowing, for example, the assessment of the biological conditions (e.g., protein concentrations) that preceded an experimentally measured event of interest (e.g., mitosis, apoptosis, etc.).

  20. Detection of Patient Subgroups with Differential Expression in Omics Data: A Comprehensive Comparison of Univariate Measures

    PubMed Central

    Ahrens, Maike; Turewicz, Michael; Casjens, Swaantje; May, Caroline; Pesch, Beate; Stephan, Christian; Woitalla, Dirk; Gold, Ralf; Brüning, Thomas; Meyer, Helmut E.

    2013-01-01

    Detection of yet unknown subgroups showing differential gene or protein expression is a frequent goal in the analysis of modern molecular data. Applications range from cancer biology over developmental biology to toxicology. Often a control and an experimental group are compared, and subgroups can be characterized by differential expression for only a subgroup-specific set of genes or proteins. Finding such genes and corresponding patient subgroups can help in understanding pathological pathways, diagnosis and defining drug targets. The size of the subgroup and the type of differential expression determine the optimal strategy for subgroup identification. To date, commonly used software packages hardly provide statistical tests and methods for the detection of such subgroups. Different univariate methods for subgroup detection are characterized and compared, both on simulated and on real data. We present an advanced design for simulation studies: Data is simulated under different distributional assumptions for the expression of the subgroup, and performance results are compared against theoretical upper bounds. For each distribution, different degrees of deviation from the majority of observations are considered for the subgroup. We evaluate classical approaches as well as various new suggestions in the context of omics data, including outlier sum, PADGE, and kurtosis. We also propose the new FisherSum score. ROC curve analysis and AUC values are used to quantify the ability of the methods to distinguish between genes or proteins with and without certain subgroup patterns. In general, FisherSum for small subgroups and -test for large subgroups achieve best results. We apply each method to a case-control study on Parkinson's disease and underline the biological benefit of the new method. PMID:24278130

  1. Robust variable selection method for nonparametric differential equation models with application to nonlinear dynamic gene regulatory network analysis.

    PubMed

    Lu, Tao

    2016-01-01

    The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.

  2. A Modified Sparse Representation Method for Facial Expression Recognition.

    PubMed

    Wang, Wei; Xu, LiHong

    2016-01-01

    In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result.

  3. A Modified Sparse Representation Method for Facial Expression Recognition

    PubMed Central

    Wang, Wei; Xu, LiHong

    2016-01-01

    In this paper, we carry on research on a facial expression recognition method, which is based on modified sparse representation recognition (MSRR) method. On the first stage, we use Haar-like+LPP to extract feature and reduce dimension. On the second stage, we adopt LC-K-SVD (Label Consistent K-SVD) method to train the dictionary, instead of adopting directly the dictionary from samples, and add block dictionary training into the training process. On the third stage, stOMP (stagewise orthogonal matching pursuit) method is used to speed up the convergence of OMP (orthogonal matching pursuit). Besides, a dynamic regularization factor is added to iteration process to suppress noises and enhance accuracy. We verify the proposed method from the aspect of training samples, dimension, feature extraction and dimension reduction methods and noises in self-built database and Japan's JAFFE and CMU's CK database. Further, we compare this sparse method with classic SVM and RVM and analyze the recognition effect and time efficiency. The result of simulation experiment has shown that the coefficient of MSRR method contains classifying information, which is capable of improving the computing speed and achieving a satisfying recognition result. PMID:26880878

  4. Effects of disease severity distribution on the performance of quantitative diagnostic methods and proposal of a novel 'V-plot' methodology to display accuracy values.

    PubMed

    Petraco, Ricardo; Dehbi, Hakim-Moulay; Howard, James P; Shun-Shin, Matthew J; Sen, Sayan; Nijjer, Sukhjinder S; Mayet, Jamil; Davies, Justin E; Francis, Darrel P

    2018-01-01

    Diagnostic accuracy is widely accepted by researchers and clinicians as an optimal expression of a test's performance. The aim of this study was to evaluate the effects of disease severity distribution on values of diagnostic accuracy as well as propose a sample-independent methodology to calculate and display accuracy of diagnostic tests. We evaluated the diagnostic relationship between two hypothetical methods to measure serum cholesterol (Chol rapid and Chol gold ) by generating samples with statistical software and (1) keeping the numerical relationship between methods unchanged and (2) changing the distribution of cholesterol values. Metrics of categorical agreement were calculated (accuracy, sensitivity and specificity). Finally, a novel methodology to display and calculate accuracy values was presented (the V-plot of accuracies). No single value of diagnostic accuracy can be used to describe the relationship between tests, as accuracy is a metric heavily affected by the underlying sample distribution. Our novel proposed methodology, the V-plot of accuracies, can be used as a sample-independent measure of a test performance against a reference gold standard.

  5. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    PubMed

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  6. Fast clustering using adaptive density peak detection.

    PubMed

    Wang, Xiao-Feng; Xu, Yifan

    2017-12-01

    Common limitations of clustering methods include the slow algorithm convergence, the instability of the pre-specification on a number of intrinsic parameters, and the lack of robustness to outliers. A recent clustering approach proposed a fast search algorithm of cluster centers based on their local densities. However, the selection of the key intrinsic parameters in the algorithm was not systematically investigated. It is relatively difficult to estimate the "optimal" parameters since the original definition of the local density in the algorithm is based on a truncated counting measure. In this paper, we propose a clustering procedure with adaptive density peak detection, where the local density is estimated through the nonparametric multivariate kernel estimation. The model parameter is then able to be calculated from the equations with statistical theoretical justification. We also develop an automatic cluster centroid selection method through maximizing an average silhouette index. The advantage and flexibility of the proposed method are demonstrated through simulation studies and the analysis of a few benchmark gene expression data sets. The method only needs to perform in one single step without any iteration and thus is fast and has a great potential to apply on big data analysis. A user-friendly R package ADPclust is developed for public use.

  7. Simple and fast PO-CL method for the evaluation of antioxidant capacity of hydrophilic and hydrophobic antioxidants.

    PubMed

    Zargoosh, Kiomars; Ghayeb, Yousef; Azmoon, Behnaz; Qandalee, Mohammad

    2013-08-01

    A simple and fast procedure is described for evaluating the antioxidant activity of hydrophilic and hydrophobic compounds by using the peroxyoxalate-chemiluminescence (PO-CL) reaction of Bis(2,4,6-trichlorophenyl) oxalate (TCPO) with hydrogen peroxide in the presence of di(tert-butyl)2-(tert-butylamino)-5-[(E)-2-phenyl-1-ethenyl]3,4-furandicarboxylate as a highly fluorescent fluorophore. The IC50 values of the well-known antioxidants were calculated and the results were expressed as gallic equivalent antioxidant capacity (GEAC). It was found that the proposed method is free of physical quenching and oxidant interference, for this reason, proposed method is able to determine the accurate scavenging activity of the antioxidants to the free radicals. Finally, the proposed method was applied to the evaluation of antioxidant activity of complex real samples such as soybean oil and sunflower oil (as hydrophobic samples) and honey (as hydrophilic sample). To the best of our knowledge, this is the first time that total antioxidant activity can be determined directly in soybean oil, sunflower oil and honey (not in their extracts) using PO-CL reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Independence screening for high dimensional nonlinear additive ODE models with applications to dynamic gene regulatory networks.

    PubMed

    Xue, Hongqi; Wu, Shuang; Wu, Yichao; Ramirez Idarraga, Juan C; Wu, Hulin

    2018-05-02

    Mechanism-driven low-dimensional ordinary differential equation (ODE) models are often used to model viral dynamics at cellular levels and epidemics of infectious diseases. However, low-dimensional mechanism-based ODE models are limited for modeling infectious diseases at molecular levels such as transcriptomic or proteomic levels, which is critical to understand pathogenesis of diseases. Although linear ODE models have been proposed for gene regulatory networks (GRNs), nonlinear regulations are common in GRNs. The reconstruction of large-scale nonlinear networks from time-course gene expression data remains an unresolved issue. Here, we use high-dimensional nonlinear additive ODEs to model GRNs and propose a 4-step procedure to efficiently perform variable selection for nonlinear ODEs. To tackle the challenge of high dimensionality, we couple the 2-stage smoothing-based estimation method for ODEs and a nonlinear independence screening method to perform variable selection for the nonlinear ODE models. We have shown that our method possesses the sure screening property and it can handle problems with non-polynomial dimensionality. Numerical performance of the proposed method is illustrated with simulated data and a real data example for identifying the dynamic GRN of Saccharomyces cerevisiae. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Effects of disease severity distribution on the performance of quantitative diagnostic methods and proposal of a novel ‘V-plot’ methodology to display accuracy values

    PubMed Central

    Dehbi, Hakim-Moulay; Howard, James P; Shun-Shin, Matthew J; Sen, Sayan; Nijjer, Sukhjinder S; Mayet, Jamil; Davies, Justin E; Francis, Darrel P

    2018-01-01

    Background Diagnostic accuracy is widely accepted by researchers and clinicians as an optimal expression of a test’s performance. The aim of this study was to evaluate the effects of disease severity distribution on values of diagnostic accuracy as well as propose a sample-independent methodology to calculate and display accuracy of diagnostic tests. Methods and findings We evaluated the diagnostic relationship between two hypothetical methods to measure serum cholesterol (Cholrapid and Cholgold) by generating samples with statistical software and (1) keeping the numerical relationship between methods unchanged and (2) changing the distribution of cholesterol values. Metrics of categorical agreement were calculated (accuracy, sensitivity and specificity). Finally, a novel methodology to display and calculate accuracy values was presented (the V-plot of accuracies). Conclusion No single value of diagnostic accuracy can be used to describe the relationship between tests, as accuracy is a metric heavily affected by the underlying sample distribution. Our novel proposed methodology, the V-plot of accuracies, can be used as a sample-independent measure of a test performance against a reference gold standard. PMID:29387424

  10. Incorporating biological information in sparse principal component analysis with application to genomic data.

    PubMed

    Li, Ziyi; Safo, Sandra E; Long, Qi

    2017-07-11

    Sparse principal component analysis (PCA) is a popular tool for dimensionality reduction, pattern recognition, and visualization of high dimensional data. It has been recognized that complex biological mechanisms occur through concerted relationships of multiple genes working in networks that are often represented by graphs. Recent work has shown that incorporating such biological information improves feature selection and prediction performance in regression analysis, but there has been limited work on extending this approach to PCA. In this article, we propose two new sparse PCA methods called Fused and Grouped sparse PCA that enable incorporation of prior biological information in variable selection. Our simulation studies suggest that, compared to existing sparse PCA methods, the proposed methods achieve higher sensitivity and specificity when the graph structure is correctly specified, and are fairly robust to misspecified graph structures. Application to a glioblastoma gene expression dataset identified pathways that are suggested in the literature to be related with glioblastoma. The proposed sparse PCA methods Fused and Grouped sparse PCA can effectively incorporate prior biological information in variable selection, leading to improved feature selection and more interpretable principal component loadings and potentially providing insights on molecular underpinnings of complex diseases.

  11. Biophysics and bioinformatics of transcription regulation in bacteria and bacteriophages

    NASA Astrophysics Data System (ADS)

    Djordjevic, Marko

    2005-11-01

    Due to rapid accumulation of biological data, bioinformatics has become a very important branch of biological research. In this thesis, we develop novel bioinformatic approaches and aid design of biological experiments by using ideas and methods from statistical physics. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of the regulatory circuits that control expression of genes. We propose a novel, biophysics based algorithm, for the supervised detection of transcription factor (TF) binding sites. The method classifies potential binding sites by explicitly estimating the sequence-specific binding energy and the chemical potential of a given TF. In contrast with the widely used information theory based weight matrix method, our approach correctly incorporates saturation in the transcription factor/DNA binding probability. This results in a significant reduction in the number of expected false positives, and in the explicit appearance---and determination---of a binding threshold. The new method was used to identify likely genomic binding sites for the Escherichia coli TFs, and to examine the relationship between TF binding specificity and degree of pleiotropy (number of regulatory targets). We next address how parameters of protein-DNA interactions can be obtained from data on protein binding to random oligos under controlled conditions (SELEX experiment data). We show that 'robust' generation of an appropriate data set is achieved by a suitable modification of the standard SELEX procedure, and propose a novel bioinformatic algorithm for analysis of such data. Finally, we use quantitative data analysis, bioinformatic methods and kinetic modeling to analyze gene expression strategies of bacterial viruses. We study bacteriophage Xp10 that infects rice pathogen Xanthomonas oryzae. Xp10 is an unusual bacteriophage, which has morphology and genome organization that most closely resembles temperate phages, such as lambda. It, however, encodes its own T7-like RNA polymerase (characteristic of virulent phages), whose role in gene expression was unclear. Our analysis resulted in quantitative understanding of the role of both host and phage RNA polymerase, and in the identification of the previously unknown promoter sequence for Xp10 RNA polymerase. More generally, an increasing number of phage genomes are being sequenced every year, and we expect that methods of quantitative data analysis that we introduced will provide an efficient way to study gene expression strategies of novel bacterial viruses.

  12. Functional Mixed Effects Model for Small Area Estimation.

    PubMed

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  13. Accurate Modeling Method for Cu Interconnect

    NASA Astrophysics Data System (ADS)

    Yamada, Kenta; Kitahara, Hiroshi; Asai, Yoshihiko; Sakamoto, Hideo; Okada, Norio; Yasuda, Makoto; Oda, Noriaki; Sakurai, Michio; Hiroi, Masayuki; Takewaki, Toshiyuki; Ohnishi, Sadayuki; Iguchi, Manabu; Minda, Hiroyasu; Suzuki, Mieko

    This paper proposes an accurate modeling method of the copper interconnect cross-section in which the width and thickness dependence on layout patterns and density caused by processes (CMP, etching, sputtering, lithography, and so on) are fully, incorporated and universally expressed. In addition, we have developed specific test patterns for the model parameters extraction, and an efficient extraction flow. We have extracted the model parameters for 0.15μm CMOS using this method and confirmed that 10%τpd error normally observed with conventional LPE (Layout Parameters Extraction) was completely dissolved. Moreover, it is verified that the model can be applied to more advanced technologies (90nm, 65nm and 55nm CMOS). Since the interconnect delay variations due to the processes constitute a significant part of what have conventionally been treated as random variations, use of the proposed model could enable one to greatly narrow the guardbands required to guarantee a desired yield, thereby facilitating design closure.

  14. Isotropic stochastic rotation dynamics

    NASA Astrophysics Data System (ADS)

    Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten

    2017-12-01

    Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.

  15. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition.

    PubMed

    Huang, Yu-An; You, Zhu-Hong; Chen, Xing; Yan, Gui-Ying

    2016-12-23

    Protein-protein interactions (PPIs) are essential to most biological processes. Since bioscience has entered into the era of genome and proteome, there is a growing demand for the knowledge about PPI network. High-throughput biological technologies can be used to identify new PPIs, but they are expensive, time-consuming, and tedious. Therefore, computational methods for predicting PPIs have an important role. For the past years, an increasing number of computational methods such as protein structure-based approaches have been proposed for predicting PPIs. The major limitation in principle of these methods lies in the prior information of the protein to infer PPIs. Therefore, it is of much significance to develop computational methods which only use the information of protein amino acids sequence. Here, we report a highly efficient approach for predicting PPIs. The main improvements come from the use of a novel protein sequence representation by combining continuous wavelet descriptor and Chou's pseudo amino acid composition (PseAAC), and from adopting weighted sparse representation based classifier (WSRC). This method, cross-validated on the PPIs datasets of Saccharomyces cerevisiae, Human and H. pylori, achieves an excellent results with accuracies as high as 92.50%, 95.54% and 84.28% respectively, significantly better than previously proposed methods. Extensive experiments are performed to compare the proposed method with state-of-the-art Support Vector Machine (SVM) classifier. The outstanding results yield by our model that the proposed feature extraction method combing two kinds of descriptors have strong expression ability and are expected to provide comprehensive and effective information for machine learning-based classification models. In addition, the prediction performance in the comparison experiments shows the well cooperation between the combined feature and WSRC. Thus, the proposed method is a very efficient method to predict PPIs and may be a useful supplementary tool for future proteomics studies.

  16. The calculation of molecular Eigen-frequencies

    NASA Technical Reports Server (NTRS)

    Lindemann, F. A.

    1984-01-01

    A method of determining molecular eigen-frequencies based on the function of Einstein expressing the variation of the atomic heat of various elements is proposed. It is shown that the same equation can be utilized to calculate both atomic heat and optically identifiably eigen-frequencies - at least to an order of magnitude - suggesting that in both cases the same oscillating structure is responsible.

  17. Fast generation of computer-generated holograms using wavelet shrinkage.

    PubMed

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  18. Use of units of measurement error in anthropometric comparisons.

    PubMed

    Lucas, Teghan; Henneberg, Maciej

    2017-09-01

    Anthropometrists attempt to minimise measurement errors, however, errors cannot be eliminated entirely. Currently, measurement errors are simply reported. Measurement errors should be included into analyses of anthropometric data. This study proposes a method which incorporates measurement errors into reported values, replacing metric units with 'units of technical error of measurement (TEM)' by applying these to forensics, industrial anthropometry and biological variation. The USA armed forces anthropometric survey (ANSUR) contains 132 anthropometric dimensions of 3982 individuals. Concepts of duplication and Euclidean distance calculations were applied to the forensic-style identification of individuals in this survey. The National Size and Shape Survey of Australia contains 65 anthropometric measurements of 1265 women. This sample was used to show how a woman's body measurements expressed in TEM could be 'matched' to standard clothing sizes. Euclidean distances show that two sets of repeated anthropometric measurements of the same person cannot be matched (> 0) on measurements expressed in millimetres but can in units of TEM (= 0). Only 81 women can fit into any standard clothing size when matched using centimetres, with units of TEM, 1944 women fit. The proposed method can be applied to all fields that use anthropometry. Units of TEM are considered a more reliable unit of measurement for comparisons.

  19. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  20. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  1. Compact exponential product formulas and operator functional derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, M.

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin{endash}Specht{endash}Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians. {copyright} {ital 1997 American Institute of Physics.}

  2. Pose-variant facial expression recognition using an embedded image system

    NASA Astrophysics Data System (ADS)

    Song, Kai-Tai; Han, Meng-Ju; Chang, Shuo-Hung

    2008-12-01

    In recent years, one of the most attractive research areas in human-robot interaction is automated facial expression recognition. Through recognizing the facial expression, a pet robot can interact with human in a more natural manner. In this study, we focus on the facial pose-variant problem. A novel method is proposed in this paper to recognize pose-variant facial expressions. After locating the face position in an image frame, the active appearance model (AAM) is applied to track facial features. Fourteen feature points are extracted to represent the variation of facial expressions. The distance between feature points are defined as the feature values. These feature values are sent to a support vector machine (SVM) for facial expression determination. The pose-variant facial expression is classified into happiness, neutral, sadness, surprise or anger. Furthermore, in order to evaluate the performance for practical applications, this study also built a low resolution database (160x120 pixels) using a CMOS image sensor. Experimental results show that the recognition rate is 84% with the self-built database.

  3. Exploring candidate biomarkers for lung and prostate cancers using gene expression and flux variability analysis.

    PubMed

    Asgari, Yazdan; Khosravi, Pegah; Zabihinpour, Zahra; Habibi, Mahnaz

    2018-02-19

    Genome-scale metabolic models have provided valuable resources for exploring changes in metabolism under normal and cancer conditions. However, metabolism itself is strongly linked to gene expression, so integration of gene expression data into metabolic models might improve the detection of genes involved in the control of tumor progression. Herein, we considered gene expression data as extra constraints to enhance the predictive powers of metabolic models. We reconstructed genome-scale metabolic models for lung and prostate, under normal and cancer conditions to detect the major genes associated with critical subsystems during tumor development. Furthermore, we utilized gene expression data in combination with an information theory-based approach to reconstruct co-expression networks of the human lung and prostate in both cohorts. Our results revealed 19 genes as candidate biomarkers for lung and prostate cancer cells. This study also revealed that the development of a complementary approach (integration of gene expression and metabolic profiles) could lead to proposing novel biomarkers and suggesting renovated cancer treatment strategies which have not been possible to detect using either of the methods alone.

  4. Gene set differential analysis of time course expression profiles via sparse estimation in functional logistic model with application to time-dependent biomarker detection.

    PubMed

    Kayano, Mitsunori; Matsui, Hidetoshi; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru

    2016-04-01

    High-throughput time course expression profiles have been available in the last decade due to developments in measurement techniques and devices. Functional data analysis, which treats smoothed curves instead of originally observed discrete data, is effective for the time course expression profiles in terms of dimension reduction, robustness, and applicability to data measured at small and irregularly spaced time points. However, the statistical method of differential analysis for time course expression profiles has not been well established. We propose a functional logistic model based on elastic net regularization (F-Logistic) in order to identify the genes with dynamic alterations in case/control study. We employ a mixed model as a smoothing method to obtain functional data; then F-Logistic is applied to time course profiles measured at small and irregularly spaced time points. We evaluate the performance of F-Logistic in comparison with another functional data approach, i.e. functional ANOVA test (F-ANOVA), by applying the methods to real and synthetic time course data sets. The real data sets consist of the time course gene expression profiles for long-term effects of recombinant interferon β on disease progression in multiple sclerosis. F-Logistic distinguishes dynamic alterations, which cannot be found by competitive approaches such as F-ANOVA, in case/control study based on time course expression profiles. F-Logistic is effective for time-dependent biomarker detection, diagnosis, and therapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. An Optimal Mean Based Block Robust Feature Extraction Method to Identify Colorectal Cancer Genes with Integrated Data.

    PubMed

    Liu, Jian; Cheng, Yuhu; Wang, Xuesong; Zhang, Lin; Liu, Hui

    2017-08-17

    It is urgent to diagnose colorectal cancer in the early stage. Some feature genes which are important to colorectal cancer development have been identified. However, for the early stage of colorectal cancer, less is known about the identity of specific cancer genes that are associated with advanced clinical stage. In this paper, we conducted a feature extraction method named Optimal Mean based Block Robust Feature Extraction method (OMBRFE) to identify feature genes associated with advanced colorectal cancer in clinical stage by using the integrated colorectal cancer data. Firstly, based on the optimal mean and L 2,1 -norm, a novel feature extraction method called Optimal Mean based Robust Feature Extraction method (OMRFE) is proposed to identify feature genes. Then the OMBRFE method which introduces the block ideology into OMRFE method is put forward to process the colorectal cancer integrated data which includes multiple genomic data: copy number alterations, somatic mutations, methylation expression alteration, as well as gene expression changes. Experimental results demonstrate that the OMBRFE is more effective than previous methods in identifying the feature genes. Moreover, genes identified by OMBRFE are verified to be closely associated with advanced colorectal cancer in clinical stage.

  6. Multiconstrained gene clustering based on generalized projections

    PubMed Central

    2010-01-01

    Background Gene clustering for annotating gene functions is one of the fundamental issues in bioinformatics. The best clustering solution is often regularized by multiple constraints such as gene expressions, Gene Ontology (GO) annotations and gene network structures. How to integrate multiple pieces of constraints for an optimal clustering solution still remains an unsolved problem. Results We propose a novel multiconstrained gene clustering (MGC) method within the generalized projection onto convex sets (POCS) framework used widely in image reconstruction. Each constraint is formulated as a corresponding set. The generalized projector iteratively projects the clustering solution onto these sets in order to find a consistent solution included in the intersection set that satisfies all constraints. Compared with previous MGC methods, POCS can integrate multiple constraints from different nature without distorting the original constraints. To evaluate the clustering solution, we also propose a new performance measure referred to as Gene Log Likelihood (GLL) that considers genes having more than one function and hence in more than one cluster. Comparative experimental results show that our POCS-based gene clustering method outperforms current state-of-the-art MGC methods. Conclusions The POCS-based MGC method can successfully combine multiple constraints from different nature for gene clustering. Also, the proposed GLL is an effective performance measure for the soft clustering solutions. PMID:20356386

  7. A competitive chemiluminescence enzyme immunoassay method for β-defensin-2 detection in transgenic mice.

    PubMed

    Yang, Xi; Zhou, Tao; Yu, Lei; Tan, Wenwen; Zhou, Rui; Hu, Yonggang

    2015-03-01

    A competitive chemiluminescence enzyme immunoassay (CLEIA) method for porcine β-defensin-2 (pBD-2) detection in transgenic mice was established. Several factors that affect detection, including luminol, p-iodophenol and hydrogen peroxide concentrations, as well as pH, were studied and optimized. The linear range of the proposed method for pBD-2 detection under optimal conditions was 0.05-80 ng/mL with a correlation coefficient of 0.9960. Eleven detections of a 30 ng/mL pBD-2 standard sample were performed. Reproducible results were obtained with a relative standard deviation of 3.94%. The limit of detection of the method for pBD-2 was 3.5 pg/mL (3σ). The proposed method was applied to determine pBD-2 expression levels in the tissues of pBD-2 transgenic mice, and compared with LC-MS/MS and quantitative real-time reverse-transcriptase polymerase chain reaction. This suggests that the CLEIA can be used as a valuable method to detect and quantify pBD-2. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Wavelet-based unsupervised learning method for electrocardiogram suppression in surface electromyograms.

    PubMed

    Niegowski, Maciej; Zivanovic, Miroslav

    2016-03-01

    We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Tissue Non-Specific Genes and Pathways Associated with Diabetes: An Expression Meta-Analysis.

    PubMed

    Mei, Hao; Li, Lianna; Liu, Shijian; Jiang, Fan; Griswold, Michael; Mosley, Thomas

    2017-01-21

    We performed expression studies to identify tissue non-specific genes and pathways of diabetes by meta-analysis. We searched curated datasets of the Gene Expression Omnibus (GEO) database and identified 13 and five expression studies of diabetes and insulin responses at various tissues, respectively. We tested differential gene expression by empirical Bayes-based linear method and investigated gene set expression association by knowledge-based enrichment analysis. Meta-analysis by different methods was applied to identify tissue non-specific genes and gene sets. We also proposed pathway mapping analysis to infer functions of the identified gene sets, and correlation and independent analysis to evaluate expression association profile of genes and gene sets between studies and tissues. Our analysis showed that PGRMC1 and HADH genes were significant over diabetes studies, while IRS1 and MPST genes were significant over insulin response studies, and joint analysis showed that HADH and MPST genes were significant over all combined data sets. The pathway analysis identified six significant gene sets over all studies. The KEGG pathway mapping indicated that the significant gene sets are related to diabetes pathogenesis. The results also presented that 12.8% and 59.0% pairwise studies had significantly correlated expression association for genes and gene sets, respectively; moreover, 12.8% pairwise studies had independent expression association for genes, but no studies were observed significantly different for expression association of gene sets. Our analysis indicated that there are both tissue specific and non-specific genes and pathways associated with diabetes pathogenesis. Compared to the gene expression, pathway association tends to be tissue non-specific, and a common pathway influencing diabetes development is activated through different genes at different tissues.

  10. An ensemble framework for identifying essential proteins.

    PubMed

    Zhang, Xue; Xiao, Wangxin; Acencio, Marcio Luis; Lemke, Ney; Wang, Xujing

    2016-08-25

    Many centrality measures have been proposed to mine and characterize the correlations between network topological properties and protein essentiality. However, most of them show limited prediction accuracy, and the number of common predicted essential proteins by different methods is very small. In this paper, an ensemble framework is proposed which integrates gene expression data and protein-protein interaction networks (PINs). It aims to improve the prediction accuracy of basic centrality measures. The idea behind this ensemble framework is that different protein-protein interactions (PPIs) may show different contributions to protein essentiality. Five standard centrality measures (degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and subgraph centrality) are integrated into the ensemble framework respectively. We evaluated the performance of the proposed ensemble framework using yeast PINs and gene expression data. The results show that it can considerably improve the prediction accuracy of the five centrality measures individually. It can also remarkably increase the number of common predicted essential proteins among those predicted by each centrality measure individually and enable each centrality measure to find more low-degree essential proteins. This paper demonstrates that it is valuable to differentiate the contributions of different PPIs for identifying essential proteins based on network topological characteristics. The proposed ensemble framework is a successful paradigm to this end.

  11. Dynamic Trajectory Extraction from Stereo Vision Using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Onishi, Masaki; Yoda, Ikushi

    In recent years, many human tracking researches have been proposed in order to analyze human dynamic trajectory. These researches are general technology applicable to various fields, such as customer purchase analysis in a shopping environment and safety control in a (railroad) crossing. In this paper, we present a new approach for tracking human positions by stereo image. We use the framework of two-stepped clustering with k-means method and fuzzy clustering to detect human regions. In the initial clustering, k-means method makes middle clusters from objective features extracted by stereo vision at high speed. In the last clustering, c-means fuzzy method cluster middle clusters based on attributes into human regions. Our proposed method can be correctly clustered by expressing ambiguity using fuzzy clustering, even when many people are close to each other. The validity of our technique was evaluated with the experiment of trajectories extraction of doctors and nurses in an emergency room of a hospital.

  12. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  13. Uncertain dynamic analysis for rigid-flexible mechanisms with random geometry and material properties

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing; Walker, Paul D.

    2017-02-01

    This paper proposes an uncertain modelling and computational method to analyze dynamic responses of rigid-flexible multibody systems (or mechanisms) with random geometry and material properties. Firstly, the deterministic model for the rigid-flexible multibody system is built with the absolute node coordinate formula (ANCF), in which the flexible parts are modeled by using ANCF elements, while the rigid parts are described by ANCF reference nodes (ANCF-RNs). Secondly, uncertainty for the geometry of rigid parts is expressed as uniform random variables, while the uncertainty for the material properties of flexible parts is modeled as a continuous random field, which is further discretized to Gaussian random variables using a series expansion method. Finally, a non-intrusive numerical method is developed to solve the dynamic equations of systems involving both types of random variables, which systematically integrates the deterministic generalized-α solver with Latin Hypercube sampling (LHS) and Polynomial Chaos (PC) expansion. The benchmark slider-crank mechanism is used as a numerical example to demonstrate the characteristics of the proposed method.

  14. Missing-value estimation using linear and non-linear regression with Bayesian gene selection.

    PubMed

    Zhou, Xiaobo; Wang, Xiaodong; Dougherty, Edward R

    2003-11-22

    Data from microarray experiments are usually in the form of large matrices of expression levels of genes under different experimental conditions. Owing to various reasons, there are frequently missing values. Estimating these missing values is important because they affect downstream analysis, such as clustering, classification and network design. Several methods of missing-value estimation are in use. The problem has two parts: (1) selection of genes for estimation and (2) design of an estimation rule. We propose Bayesian variable selection to obtain genes to be used for estimation, and employ both linear and nonlinear regression for the estimation rule itself. Fast implementation issues for these methods are discussed, including the use of QR decomposition for parameter estimation. The proposed methods are tested on data sets arising from hereditary breast cancer and small round blue-cell tumors. The results compare very favorably with currently used methods based on the normalized root-mean-square error. The appendix is available from http://gspsnap.tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd: gsplab).

  15. An integrative approach to inferring biologically meaningful gene modules

    PubMed Central

    2011-01-01

    Background The ability to construct biologically meaningful gene networks and modules is critical for contemporary systems biology. Though recent studies have demonstrated the power of using gene modules to shed light on the functioning of complex biological systems, most modules in these networks have shown little association with meaningful biological function. We have devised a method which directly incorporates gene ontology (GO) annotation in construction of gene modules in order to gain better functional association. Results We have devised a method, Semantic Similarity-Integrated approach for Modularization (SSIM) that integrates various gene-gene pairwise similarity values, including information obtained from gene expression, protein-protein interactions and GO annotations, in the construction of modules using affinity propagation clustering. We demonstrated the performance of the proposed method using data from two complex biological responses: 1. the osmotic shock response in Saccharomyces cerevisiae, and 2. the prion-induced pathogenic mouse model. In comparison with two previously reported algorithms, modules identified by SSIM showed significantly stronger association with biological functions. Conclusions The incorporation of semantic similarity based on GO annotation with gene expression and protein-protein interaction data can greatly enhance the functional relevance of inferred gene modules. In addition, the SSIM approach can also reveal the hierarchical structure of gene modules to gain a broader functional view of the biological system. Hence, the proposed method can facilitate comprehensive and in-depth analysis of high throughput experimental data at the gene network level. PMID:21791051

  16. Meta-analytic framework for liquid association.

    PubMed

    Wang, Lin; Liu, Silvia; Ding, Ying; Yuan, Shin-Sheng; Ho, Yen-Yi; Tseng, George C

    2017-07-15

    Although coexpression analysis via pair-wise expression correlation is popularly used to elucidate gene-gene interactions at the whole-genome scale, many complicated multi-gene regulations require more advanced detection methods. Liquid association (LA) is a powerful tool to detect the dynamic correlation of two gene variables depending on the expression level of a third variable (LA scouting gene). LA detection from single transcriptomic study, however, is often unstable and not generalizable due to cohort bias, biological variation and limited sample size. With the rapid development of microarray and NGS technology, LA analysis combining multiple gene expression studies can provide more accurate and stable results. In this article, we proposed two meta-analytic approaches for LA analysis (MetaLA and MetaMLA) to combine multiple transcriptomic studies. To compensate demanding computing, we also proposed a two-step fast screening algorithm for more efficient genome-wide screening: bootstrap filtering and sign filtering. We applied the methods to five Saccharomyces cerevisiae datasets related to environmental changes. The fast screening algorithm reduced 98% of running time. When compared with single study analysis, MetaLA and MetaMLA provided stronger detection signal and more consistent and stable results. The top triplets are highly enriched in fundamental biological processes related to environmental changes. Our method can help biologists understand underlying regulatory mechanisms under different environmental exposure or disease states. A MetaLA R package, data and code for this article are available at http://tsenglab.biostat.pitt.edu/software.htm. ctseng@pitt.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Application of Hill's equation for estimating area under the concentration-time curve (AUC) and use of time to AUC 90% for expressing kinetics of drug disposition.

    PubMed

    Cheng, Hsien C

    2009-01-01

    Half life and its derived pharmacokinetic parameters are calculated on an assumption that the terminal phase of drug disposition follows a constant rate of disposition. In reality, this assumption may not necessarily be the case. A new method is needed for analyzing PK parameters if the disposition does not follow a first order PK kinetic. Cumulative area under the concentration-time curve (AUC) is plotted against time to yield a hyperbolic (or sigmoidal) AUC-time relationship curve which is then analyzed by Hill's equation to yield AUC(inf), time to achieving AUC50% (T(AUC50%)) or AUC90% (T(AUC90%)), and the Hill's slope. From these parameters, an AUC-time relationship curve can be reconstructed. Projected plasma concentration can be calculated for any time point. Time at which cumulative AUC reaches 90% (T(AUC90%)) can be used as an indicator for expressing how fast a drug is cleared. Clearance is calculated in a traditional manner (i.v. dose/AUC(inf)), and the volume of distribution is proposed to be calculated at T(AUC50%) (0.5 i.v. dose/plasma concentration at T(AUC50%)). This method of estimating AUC is applicable for both i.v. and oral data. It is concluded that the Hill's equation can be used as an alternative method for estimating AUC and analysis of PK parameters if the disposition does not follow a first order kinetic. T(AUC90%) is proposed to be used as an indicator for expressing how fast a drug is cleared from the system.

  18. An improved Pearson's correlation proximity-based hierarchical clustering for mining biological association between genes.

    PubMed

    Booma, P M; Prabhakaran, S; Dhanalakshmi, R

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality.

  19. An Improved Pearson's Correlation Proximity-Based Hierarchical Clustering for Mining Biological Association between Genes

    PubMed Central

    Booma, P. M.; Prabhakaran, S.; Dhanalakshmi, R.

    2014-01-01

    Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality. PMID:25136661

  20. Lung tumor diagnosis and subtype discovery by gene expression profiling.

    PubMed

    Wang, Lu-yong; Tu, Zhuowen

    2006-01-01

    The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.

  1. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.

    PubMed

    Guo, Yang; Liu, Shuhui; Li, Zhanhuai; Shang, Xuequn

    2018-04-11

    The classification of cancer subtypes is of great importance to cancer disease diagnosis and therapy. Many supervised learning approaches have been applied to cancer subtype classification in the past few years, especially of deep learning based approaches. Recently, the deep forest model has been proposed as an alternative of deep neural networks to learn hyper-representations by using cascade ensemble decision trees. It has been proved that the deep forest model has competitive or even better performance than deep neural networks in some extent. However, the standard deep forest model may face overfitting and ensemble diversity challenges when dealing with small sample size and high-dimensional biology data. In this paper, we propose a deep learning model, so-called BCDForest, to address cancer subtype classification on small-scale biology datasets, which can be viewed as a modification of the standard deep forest model. The BCDForest distinguishes from the standard deep forest model with the following two main contributions: First, a named multi-class-grained scanning method is proposed to train multiple binary classifiers to encourage diversity of ensemble. Meanwhile, the fitting quality of each classifier is considered in representation learning. Second, we propose a boosting strategy to emphasize more important features in cascade forests, thus to propagate the benefits of discriminative features among cascade layers to improve the classification performance. Systematic comparison experiments on both microarray and RNA-Seq gene expression datasets demonstrate that our method consistently outperforms the state-of-the-art methods in application of cancer subtype classification. The multi-class-grained scanning and boosting strategy in our model provide an effective solution to ease the overfitting challenge and improve the robustness of deep forest model working on small-scale data. Our model provides a useful approach to the classification of cancer subtypes by using deep learning on high-dimensional and small-scale biology data.

  2. Dirac delta representation by exact parametric equations.. Application to impulsive vibration systems

    NASA Astrophysics Data System (ADS)

    Chicurel-Uziel, Enrique

    2007-08-01

    A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.

  3. Person-independent facial expression analysis by fusing multiscale cell features

    NASA Astrophysics Data System (ADS)

    Zhou, Lubing; Wang, Han

    2013-03-01

    Automatic facial expression recognition is an interesting and challenging task. To achieve satisfactory accuracy, deriving a robust facial representation is especially important. A novel appearance-based feature, the multiscale cell local intensity increasing patterns (MC-LIIP), to represent facial images and conduct person-independent facial expression analysis is presented. The LIIP uses a decimal number to encode the texture or intensity distribution around each pixel via pixel-to-pixel intensity comparison. To boost noise resistance, MC-LIIP carries out comparison computation on the average values of scalable cells instead of individual pixels. The facial descriptor fuses region-based histograms of MC-LIIP features from various scales, so as to encode not only textural microstructures but also the macrostructures of facial images. Finally, a support vector machine classifier is applied for expression recognition. Experimental results on the CK+ and Karolinska directed emotional faces databases show the superiority of the proposed method.

  4. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    PubMed

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  5. A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation

    PubMed Central

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605

  6. Identification of reference genes for quantitative expression analysis using large-scale RNA-seq data of Arabidopsis thaliana and model crop plants.

    PubMed

    Kudo, Toru; Sasaki, Yohei; Terashima, Shin; Matsuda-Imai, Noriko; Takano, Tomoyuki; Saito, Misa; Kanno, Maasa; Ozaki, Soichi; Suwabe, Keita; Suzuki, Go; Watanabe, Masao; Matsuoka, Makoto; Takayama, Seiji; Yano, Kentaro

    2016-10-13

    In quantitative gene expression analysis, normalization using a reference gene as an internal control is frequently performed for appropriate interpretation of the results. Efforts have been devoted to exploring superior novel reference genes using microarray transcriptomic data and to evaluating commonly used reference genes by targeting analysis. However, because the number of specifically detectable genes is totally dependent on probe design in the microarray analysis, exploration using microarray data may miss some of the best choices for the reference genes. Recently emerging RNA sequencing (RNA-seq) provides an ideal resource for comprehensive exploration of reference genes since this method is capable of detecting all expressed genes, in principle including even unknown genes. We report the results of a comprehensive exploration of reference genes using public RNA-seq data from plants such as Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Solanum lycopersicum (tomato) and Oryza sativa (rice). To select reference genes suitable for the broadest experimental conditions possible, candidates were surveyed by the following four steps: (1) evaluation of the basal expression level of each gene in each experiment; (2) evaluation of the expression stability of each gene in each experiment; (3) evaluation of the expression stability of each gene across the experiments; and (4) selection of top-ranked genes, after ranking according to the number of experiments in which the gene was expressed stably. Employing this procedure, 13, 10, 12 and 21 top candidates for reference genes were proposed in Arabidopsis, soybean, tomato and rice, respectively. Microarray expression data confirmed that the expression of the proposed reference genes under broad experimental conditions was more stable than that of commonly used reference genes. These novel reference genes will be useful for analyzing gene expression profiles across experiments carried out under various experimental conditions.

  7. Review of methods for handling confounding by cluster and informative cluster size in clustered data

    PubMed Central

    Seaman, Shaun; Pavlou, Menelaos; Copas, Andrew

    2014-01-01

    Clustered data are common in medical research. Typically, one is interested in a regression model for the association between an outcome and covariates. Two complications that can arise when analysing clustered data are informative cluster size (ICS) and confounding by cluster (CBC). ICS and CBC mean that the outcome of a member given its covariates is associated with, respectively, the number of members in the cluster and the covariate values of other members in the cluster. Standard generalised linear mixed models for cluster-specific inference and standard generalised estimating equations for population-average inference assume, in general, the absence of ICS and CBC. Modifications of these approaches have been proposed to account for CBC or ICS. This article is a review of these methods. We express their assumptions in a common format, thus providing greater clarity about the assumptions that methods proposed for handling CBC make about ICS and vice versa, and about when different methods can be used in practice. We report relative efficiencies of methods where available, describe how methods are related, identify a previously unreported equivalence between two key methods, and propose some simple additional methods. Unnecessarily using a method that allows for ICS/CBC has an efficiency cost when ICS and CBC are absent. We review tools for identifying ICS/CBC. A strategy for analysis when CBC and ICS are suspected is demonstrated by examining the association between socio-economic deprivation and preterm neonatal death in Scotland. PMID:25087978

  8. A robust high resolution reversed-phase HPLC strategy to investigate various metabolic species in different biological models.

    PubMed

    D'Alessandro, Angelo; Gevi, Federica; Zolla, Lello

    2011-04-01

    Recent advancements in the field of omics sciences have paved the way for further expansion of metabolomics. Originally tied to NMR spectroscopy, metabolomic disciplines are constantly and growingly involving HPLC and mass spectrometry (MS)-based analytical strategies and, in this context, we hereby propose a robust and efficient extraction protocol for metabolites from four different biological sources which are subsequently analysed, identified and quantified through high resolution reversed-phase fast HPLC and mass spectrometry. To this end, we demonstrate the elevated intra- and inter-day technical reproducibility, ease of an MRM-based MS method, allowing simultaneous detection of up to 10 distinct features, and robustness of multiple metabolite detection and quantification in four different biological samples. This strategy might become routinely applicable to various samples/biological matrices, especially for low-availability ones. In parallel, we compare the present strategy for targeted detection of a representative metabolite, L-glutamic acid, with our previously-proposed chemical-derivatization through dansyl chloride. A direct comparison of the present method against spectrophotometric assays is proposed as well. An application of the proposed method is also introduced, using the SAOS-2 cell line, either induced or non-induced to express the TAp63 isoform of the p63 gene, as a model for determination of variations of glutamate concentrations.

  9. A new nanostructured Silicon biosensor for diagnostics of bovine leucosis

    NASA Astrophysics Data System (ADS)

    Luchenko, A. I.; Melnichenko, M. M.; Starodub, N. F.; Shmyryeva, O. M.

    2010-08-01

    In this report we propose a new instrumental method for the biochemical diagnostics of the bovine leucosis through the registration of the formation of the specific immune complex (antigen-antibody) with the help of biosensor based on the nano-structured silicon. The principle of the measurements is based on the determination of the photosensitivity of the surface. In spite of the existed traditional methods of the biochemical diagnostics of the bovine leucosis the proposed approach may provide the express control of the milk quality as direct on the farm and during the process raw materials. The proposed variant of the biosensor based on the nano-structured silicon may be applied for the determination of the concentration of different substances which may form the specific complex in the result of the bioaffine reactions. A new immune technique based on the nanostructured silicon and intended for the quantitative determination of some toxic substances is offered. The sensitivity of such biosensor allows determining T-2 mycotoxin at the concentration of 10 ng/ml during several minutes.

  10. Incremental Query Rewriting with Resolution

    NASA Astrophysics Data System (ADS)

    Riazanov, Alexandre; Aragão, Marcelo A. T.

    We address the problem of semantic querying of relational databases (RDB) modulo knowledge bases using very expressive knowledge representation formalisms, such as full first-order logic or its various fragments. We propose to use a resolution-based first-order logic (FOL) reasoner for computing schematic answers to deductive queries, with the subsequent translation of these schematic answers to SQL queries which are evaluated using a conventional relational DBMS. We call our method incremental query rewriting, because an original semantic query is rewritten into a (potentially infinite) series of SQL queries. In this chapter, we outline the main idea of our technique - using abstractions of databases and constrained clauses for deriving schematic answers, and provide completeness and soundness proofs to justify the applicability of this technique to the case of resolution for FOL without equality. The proposed method can be directly used with regular RDBs, including legacy databases. Moreover, we propose it as a potential basis for an efficient Web-scale semantic search technology.

  11. A two-step hierarchical hypothesis set testing framework, with applications to gene expression data on ordered categories

    PubMed Central

    2014-01-01

    Background In complex large-scale experiments, in addition to simultaneously considering a large number of features, multiple hypotheses are often being tested for each feature. This leads to a problem of multi-dimensional multiple testing. For example, in gene expression studies over ordered categories (such as time-course or dose-response experiments), interest is often in testing differential expression across several categories for each gene. In this paper, we consider a framework for testing multiple sets of hypothesis, which can be applied to a wide range of problems. Results We adopt the concept of the overall false discovery rate (OFDR) for controlling false discoveries on the hypothesis set level. Based on an existing procedure for identifying differentially expressed gene sets, we discuss a general two-step hierarchical hypothesis set testing procedure, which controls the overall false discovery rate under independence across hypothesis sets. In addition, we discuss the concept of the mixed-directional false discovery rate (mdFDR), and extend the general procedure to enable directional decisions for two-sided alternatives. We applied the framework to the case of microarray time-course/dose-response experiments, and proposed three procedures for testing differential expression and making multiple directional decisions for each gene. Simulation studies confirm the control of the OFDR and mdFDR by the proposed procedures under independence and positive correlations across genes. Simulation results also show that two of our new procedures achieve higher power than previous methods. Finally, the proposed methodology is applied to a microarray dose-response study, to identify 17 β-estradiol sensitive genes in breast cancer cells that are induced at low concentrations. Conclusions The framework we discuss provides a platform for multiple testing procedures covering situations involving two (or potentially more) sources of multiplicity. The framework is easy to use and adaptable to various practical settings that frequently occur in large-scale experiments. Procedures generated from the framework are shown to maintain control of the OFDR and mdFDR, quantities that are especially relevant in the case of multiple hypothesis set testing. The procedures work well in both simulations and real datasets, and are shown to have better power than existing methods. PMID:24731138

  12. The combined expression patterns of Ikaros isoforms characterize different hematological tumor subtypes.

    PubMed

    Orozco, Carlos A; Acevedo, Andrés; Cortina, Lazaro; Cuellar, Gina E; Duarte, Mónica; Martín, Liliana; Mesa, Néstor M; Muñoz, Javier; Portilla, Carlos A; Quijano, Sandra M; Quintero, Guillermo; Rodriguez, Miriam; Saavedra, Carlos E; Groot, Helena; Torres, María M; López-Segura, Valeriano

    2013-01-01

    A variety of genetic alterations are considered hallmarks of cancer development and progression. The Ikaros gene family, encoding for key transcription factors in hematopoietic development, provides several examples as genetic defects in these genes are associated with the development of different types of leukemia. However, the complex patterns of expression of isoforms in Ikaros family genes has prevented their use as clinical markers. In this study, we propose the use of the expression profiles of the Ikaros isoforms to classify various hematological tumor diseases. We have standardized a quantitative PCR protocol to estimate the expression levels of the Ikaros gene exons. Our analysis reveals that these levels are associated with specific types of leukemia and we have found differences in the levels of expression relative to five interexonic Ikaros regions for all diseases studied. In conclusion, our method has allowed us to precisely discriminate between B-ALL, CLL and MM cases. Differences between the groups of lymphoid and myeloid pathologies were also identified in the same way.

  13. Course 10: Three Lectures on Biological Networks

    NASA Astrophysics Data System (ADS)

    Magnasco, M. O.

    1 Enzymatic networks. Proofreading knots: How DNA topoisomerases disentangle DNA 1.1 Length scales and energy scales 1.2 DNA topology 1.3 Topoisomerases 1.4 Knots and supercoils 1.5 Topological equilibrium 1.6 Can topoisomerases recognize topology? 1.7 Proposal: Kinetic proofreading 1.8 How to do it twice 1.9 The care and proofreading of knots 1.10 Suppression of supercoils 1.11 Problems and outlook 1.12 Disquisition 2 Gene expression networks. Methods for analysis of DNA chip experiments 2.1 The regulation of gene expression 2.2 Gene expression arrays 2.3 Analysis of array data 2.4 Some simplifying assumptions 2.5 Probeset analysis 2.6 Discussion 3 Neural and gene expression networks: Song-induced gene expression in the canary brain 3.1 The study of songbirds 3.2 Canary song 3.3 ZENK 3.4 The blush 3.5 Histological analysis 3.6 Natural vs. artificial 3.7 The Blush II: gAP 3.8 Meditation

  14. Perturbed effects at radiation physics

    NASA Astrophysics Data System (ADS)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  15. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    PubMed

    Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E

    2011-04-04

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  16. A Noninvasive Test for MicroRNA Expression in Oral Squamous Cell Carcinoma.

    PubMed

    Gissi, Davide B; Morandi, Luca; Gabusi, Andrea; Tarsitano, Achille; Marchetti, Claudio; Cura, Francesca; Palmieri, Annalisa; Montebugnoli, Lucio; Asioli, Sofia; Foschini, Maria P; Scapoli, Luca

    2018-06-16

    MicroRNAs have recently been proposed as non-invasive biomarkers in Oral Squamous Cell Carcinoma (OSCC). The aim of this study was to analyze the expression of a panel of miRNAs in epithelial cells collected by oral brushing from OSCCs from regenerative areas after OSCC surgical resection and from their respective normal distant mucosa. Oral brushing specimens were collected from 24 healthy donors, 14 OSCC patients with specimens from tumour and normal distant mucosa, and from 13 patients who had OSCC resection, with samples from regenerative areas after OSCC resection and normal distant mucosa. Expression levels of eight targets (miR-21, miR-375, miR-345, miR-181b, miR-146a, miR-649, miR-518b, and miR-191) were evaluated by real-time Polymerase Chain Reaction (PCR). A highly significant between-group difference was found for miR-21 (F = 6.58, p < 0.001), miR-146a (F = 6.974, p < 0.001), and miR-191 (F = 17.07, p < 0.001). The major difference was observed between samples from healthy donors and from OSCC brushing, whereas no significant differences were observed between areas infiltrated by OSCC and their respective normal distant mucosa. Furthermore, altered expression of miR-146a and miR-191 was also observed in regenerative areas after OSCC resection. Oral brushing could be proposed as a noninvasive method to study microRNA expression in oral mucosa in OSCC patients.

  17. An Ensemble Framework Coping with Instability in the Gene Selection Process.

    PubMed

    Castellanos-Garzón, José A; Ramos, Juan; López-Sánchez, Daniel; de Paz, Juan F; Corchado, Juan M

    2018-03-01

    This paper proposes an ensemble framework for gene selection, which is aimed at addressing instability problems presented in the gene filtering task. The complex process of gene selection from gene expression data faces different instability problems from the informative gene subsets found by different filter methods. This makes the identification of significant genes by the experts difficult. The instability of results can come from filter methods, gene classifier methods, different datasets of the same disease and multiple valid groups of biomarkers. Even though there is a wide number of proposals, the complexity imposed by this problem remains a challenge today. This work proposes a framework involving five stages of gene filtering to discover biomarkers for diagnosis and classification tasks. This framework performs a process of stable feature selection, facing the problems above and, thus, providing a more suitable and reliable solution for clinical and research purposes. Our proposal involves a process of multistage gene filtering, in which several ensemble strategies for gene selection were added in such a way that different classifiers simultaneously assess gene subsets to face instability. Firstly, we apply an ensemble of recent gene selection methods to obtain diversity in the genes found (stability according to filter methods). Next, we apply an ensemble of known classifiers to filter genes relevant to all classifiers at a time (stability according to classification methods). The achieved results were evaluated in two different datasets of the same disease (pancreatic ductal adenocarcinoma), in search of stability according to the disease, for which promising results were achieved.

  18. Rapid analysis of effluents generated by the dairy industry for fat determination by preconcentration in nylon membranes and attenuated total reflectance infrared spectroscopy measurement.

    PubMed

    Moliner Martínez, Y; Muñoz-Ortuño, M; Herráez-Hernández, R; Campíns-Falcó, P

    2014-02-01

    This paper describes a new approach for the determination of fat in the effluents generated by the dairy industry which is based on the retention of fat in nylon membranes and measurement of the absorbances on the membrane surface by ATR-IR spectroscopy. Different options have been evaluated for retaining fat in the membranes using milk samples of different origin and fat content. Based on the results obtained, a method is proposed for the determination of fat in effluents which involves the filtration of 1 mL of the samples through 0.45 µm nylon membranes of 13 mm diameter. The fat content is then determined by measuring the absorbance of band at 1745 cm(-1). The proposed method can be used for the direct estimation of fat at concentrations in the 2-12 mg/L interval with adequate reproducibility. The intraday precision, expressed as coefficients of variation CVs, were ≤ 11%, whereas the interday CVs were ≤ 20%. The method shows a good tolerance towards conditions typically found in the effluents generated by the dairy industry. The most relevant features of the proposed method are simplicity and speed as the samples can be characterized in a few minutes. Sample preparation does not involve either additional instrumentation (such as pumps or vacuum equipment) or organic solvents or other chemicals. Therefore, the proposed method can be considered a rapid, simple and cost-effective alternative to gravimetric methods for controlling fat content in these effluents during production or cleaning processes. © 2013 Published by Elsevier B.V.

  19. 3D Face Recognition Based on Multiple Keypoint Descriptors and Sparse Representation

    PubMed Central

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm. PMID:24940876

  20. Modeling and control of non-square MIMO system using relay feedback.

    PubMed

    Kalpana, D; Thyagarajan, T; Gokulraj, N

    2015-11-01

    This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

Top