Simulation-Based Rule Generation Considering Readability
Yahagi, H.; Shimizu, S.; Ogata, T.; Hara, T.; Ota, J.
2015-01-01
Rule generation method is proposed for an aircraft control problem in an airport. Designing appropriate rules for motion coordination of taxiing aircraft in the airport is important, which is conducted by ground control. However, previous studies did not consider readability of rules, which is important because it should be operated and maintained by humans. Therefore, in this study, using the indicator of readability, we propose a method of rule generation based on parallel algorithm discovery and orchestration (PADO). By applying our proposed method to the aircraft control problem, the proposed algorithm can generate more readable and more robust rules and is found to be superior to previous methods. PMID:27347501
Motion compensated shape error concealment.
Schuster, Guido M; Katsaggelos, Aggelos K
2006-02-01
The introduction of Video Objects (VOs) is one of the innovations of MPEG-4. The alpha-plane of a VO defines its shape at a given instance in time and hence determines the boundary of its texture. In packet-based networks, shape, motion, and texture are subject to loss. While there has been considerable attention paid to the concealment of texture and motion errors, little has been done in the field of shape error concealment. In this paper we propose a post-processing shape error concealment technique that uses the motion compensated boundary information of the previously received alpha-plane. The proposed approach is based on matching received boundary segments in the current frame to the boundary in the previous frame. This matching is achieved by finding a maximally smooth motion vector field. After the current boundary segments are matched to the previous boundary, the missing boundary pieces are reconstructed by motion compensation. Experimental results demonstrating the performance of the proposed motion compensated shape error concealment method, and comparing it with the previously proposed weighted side matching method are presented.
Chen, Liang-Hsuan; Hsueh, Chan-Ching
2007-06-01
Fuzzy regression models are useful to investigate the relationship between explanatory and response variables with fuzzy observations. Different from previous studies, this correspondence proposes a mathematical programming method to construct a fuzzy regression model based on a distance criterion. The objective of the mathematical programming is to minimize the sum of distances between the estimated and observed responses on the X axis, such that the fuzzy regression model constructed has the minimal total estimation error in distance. Only several alpha-cuts of fuzzy observations are needed as inputs to the mathematical programming model; therefore, the applications are not restricted to triangular fuzzy numbers. Three examples, adopted in the previous studies, and a larger example, modified from the crisp case, are used to illustrate the performance of the proposed approach. The results indicate that the proposed model has better performance than those in the previous studies based on either distance criterion or Kim and Bishu's criterion. In addition, the efficiency and effectiveness for solving the larger example by the proposed model are also satisfactory.
Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps.
Moya, José M; Araujo, Alvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier
2009-01-01
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals.
Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps
Moya, José M.; Araujo, Álvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier
2009-01-01
The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals. PMID:22291569
Improved inter-layer prediction for light field content coding with display scalability
NASA Astrophysics Data System (ADS)
Conti, Caroline; Ducla Soares, Luís.; Nunes, Paulo
2016-09-01
Light field imaging based on microlens arrays - also known as plenoptic, holoscopic and integral imaging - has recently risen up as feasible and prospective technology due to its ability to support functionalities not straightforwardly available in conventional imaging systems, such as: post-production refocusing and depth of field changing. However, to gradually reach the consumer market and to provide interoperability with current 2D and 3D representations, a display scalable coding solution is essential. In this context, this paper proposes an improved display scalable light field codec comprising a three-layer hierarchical coding architecture (previously proposed by the authors) that provides interoperability with 2D (Base Layer) and 3D stereo and multiview (First Layer) representations, while the Second Layer supports the complete light field content. For further improving the compression performance, novel exemplar-based inter-layer coding tools are proposed here for the Second Layer, namely: (i) an inter-layer reference picture construction relying on an exemplar-based optimization algorithm for texture synthesis, and (ii) a direct prediction mode based on exemplar texture samples from lower layers. Experimental results show that the proposed solution performs better than the tested benchmark solutions, including the authors' previous scalable codec.
Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo
2016-08-01
Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.
Majumdar, Angshul; Gogna, Anupriya; Ward, Rabab
2014-08-25
We address the problem of acquiring and transmitting EEG signals in Wireless Body Area Networks (WBAN) in an energy efficient fashion. In WBANs, the energy is consumed by three operations: sensing (sampling), processing and transmission. Previous studies only addressed the problem of reducing the transmission energy. For the first time, in this work, we propose a technique to reduce sensing and processing energy as well: this is achieved by randomly under-sampling the EEG signal. We depart from previous Compressed Sensing based approaches and formulate signal recovery (from under-sampled measurements) as a matrix completion problem. A new algorithm to solve the matrix completion problem is derived here. We test our proposed method and find that the reconstruction accuracy of our method is significantly better than state-of-the-art techniques; and we achieve this while saving sensing, processing and transmission energy. Simple power analysis shows that our proposed methodology consumes considerably less power compared to previous CS based techniques.
Bohon, Jen; Jennings, Laura D.; Phillips, Christine M.; Licht, Stuart; Chance, Mark R.
2010-01-01
SUMMARY Synchrotron x-ray protein footprinting is used to study structural changes upon formation of the ClpA hexamer. Comparative solvent accessibilities between ClpA monomer and ClpA hexamer samples are in agreement throughout most of the sequence with calculations based on two previously proposed hexameric models. The data differ substantially from the proposed models in two parts of the structure: the D1 sensor 1 domain and the D2 loop region. The results suggest that these two regions can access alternate conformations in which their solvent protection is greater than in the structural models based on crystallographic data. In combination with previously reported structural data, the footprinting data provide support for a revised model in which the D2 loop contacts the D1 sensor 1 domain in the ATP-bound form of the complex. These data provide the first direct experimental support for the nucleotide-dependent D2 loop conformational change previously proposed to mediate substrate translocation. PMID:18682217
Integrated Planning Model (IPM) Base Case v.4.10
Learn about EPA's IPM Base Case v.4.10, including Proposed Transport Rule results, documentation, the National Electric Energy Data System (NEEDS) database and user's guide, and run results using previous base cases.
Discriminative Projection Selection Based Face Image Hashing
NASA Astrophysics Data System (ADS)
Karabat, Cagatay; Erdogan, Hakan
Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussian mixture model at the quantization step. Our simulation results on three different databases demonstrate that the proposed method has superior performance in comparison to previously proposed random projection based methods.
NASA Astrophysics Data System (ADS)
Zhong, Ke; Lei, Xia; Li, Shaoqian
2013-12-01
Statistics-based intercarrier interference (ICI) mitigation algorithm is proposed for orthogonal frequency division multiplexing systems in presence of both nonstationary and stationary phase noises. By utilizing the statistics of phase noise, which can be obtained from measurements or data sheets, a Wiener filter preprocessing algorithm for ICI mitigation is proposed. The proposed algorithm can be regarded as a performance-improving technique for the previous researches on phase noise cancelation. Simulation results show that the proposed algorithm can effectively mitigate ICI and lower the error floor, and therefore significantly improve the performances of previous researches on phase noise cancelation, especially in the presence of severe phase noise.
Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho
2017-04-25
User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.
Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho
2017-01-01
User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.’s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. PMID:28441331
1993-03-01
Construction activities for the Proposed Action and alternatives would take place on a concrete aircraft parking apron, or on areas previously disturbed by...activities for the Proposed Action would take place on a concrete aircraft parking apron, or areas previously disturbed by past grading activities, except...therefore, no significant impacts would occur. Biological Resources. No threatened or endangered species or sensitive habitats exist within the project areas
White blood cells identification system based on convolutional deep neural learning networks.
Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A
2017-11-16
White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... to fund medically based activities in projects that address such health issues as diabetes prevention... previously funded projects proposed by the same applicant or activities or projects proposed by a consortium that duplicate activities for which any consortium member also receives funding from ANA.'' This is a...
Support vector machine-based facial-expression recognition method combining shape and appearance
NASA Astrophysics Data System (ADS)
Han, Eun Jung; Kang, Byung Jun; Park, Kang Ryoung; Lee, Sangyoun
2010-11-01
Facial expression recognition can be widely used for various applications, such as emotion-based human-machine interaction, intelligent robot interfaces, face recognition robust to expression variation, etc. Previous studies have been classified as either shape- or appearance-based recognition. The shape-based method has the disadvantage that the individual variance of facial feature points exists irrespective of similar expressions, which can cause a reduction of the recognition accuracy. The appearance-based method has a limitation in that the textural information of the face is very sensitive to variations in illumination. To overcome these problems, a new facial-expression recognition method is proposed, which combines both shape and appearance information, based on the support vector machine (SVM). This research is novel in the following three ways as compared to previous works. First, the facial feature points are automatically detected by using an active appearance model. From these, the shape-based recognition is performed by using the ratios between the facial feature points based on the facial-action coding system. Second, the SVM, which is trained to recognize the same and different expression classes, is proposed to combine two matching scores obtained from the shape- and appearance-based recognitions. Finally, a single SVM is trained to discriminate four different expressions, such as neutral, a smile, anger, and a scream. By determining the expression of the input facial image whose SVM output is at a minimum, the accuracy of the expression recognition is much enhanced. The experimental results showed that the recognition accuracy of the proposed method was better than previous researches and other fusion methods.
Model Test of Proposed Loading Rates for Onsite Wastewater Treatment Systems
State regulatory agencies set standards for onsite wastewater treatment system (OWTS), commonly known as septic systems, based on expected hydraulic performance and nitrogen (N) treatment in soils of differing texture. In a previous study, hydraulic loading rates were proposed fo...
Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.
Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi
2014-02-10
This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.
76 FR 1437 - Issuance of Final Policy Directive
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
... to fund medically based activities in projects that address such health issues as diabetes prevention... and program clarifications, modifications, and activities for the fiscal year (FY) 2011 FOAs. The... previously funded projects proposed by the same applicant or activities or projects proposed by a consortium...
Matsumoto, Hirotaka; Kiryu, Hisanori
2016-06-08
Single-cell technologies make it possible to quantify the comprehensive states of individual cells, and have the power to shed light on cellular differentiation in particular. Although several methods have been developed to fully analyze the single-cell expression data, there is still room for improvement in the analysis of differentiation. In this paper, we propose a novel method SCOUP to elucidate differentiation process. Unlike previous dimension reduction-based approaches, SCOUP describes the dynamics of gene expression throughout differentiation directly, including the degree of differentiation of a cell (in pseudo-time) and cell fate. SCOUP is superior to previous methods with respect to pseudo-time estimation, especially for single-cell RNA-seq. SCOUP also successfully estimates cell lineage more accurately than previous method, especially for cells at an early stage of bifurcation. In addition, SCOUP can be applied to various downstream analyses. As an example, we propose a novel correlation calculation method for elucidating regulatory relationships among genes. We apply this method to a single-cell RNA-seq data and detect a candidate of key regulator for differentiation and clusters in a correlation network which are not detected with conventional correlation analysis. We develop a stochastic process-based method SCOUP to analyze single-cell expression data throughout differentiation. SCOUP can estimate pseudo-time and cell lineage more accurately than previous methods. We also propose a novel correlation calculation method based on SCOUP. SCOUP is a promising approach for further single-cell analysis and available at https://github.com/hmatsu1226/SCOUP.
NASA Astrophysics Data System (ADS)
Chaidee, S.; Pakawanwong, P.; Suppakitpaisarn, V.; Teerasawat, P.
2017-09-01
In this work, we devise an efficient method for the land-use optimization problem based on Laguerre Voronoi diagram. Previous Voronoi diagram-based methods are more efficient and more suitable for interactive design than discrete optimization-based method, but, in many cases, their outputs do not satisfy area constraints. To cope with the problem, we propose a force-directed graph drawing algorithm, which automatically allocates generating points of Voronoi diagram to appropriate positions. Then, we construct a Laguerre Voronoi diagram based on these generating points, use linear programs to adjust each cell, and reconstruct the diagram based on the adjustment. We adopt the proposed method to the practical case study of Chiang Mai University's allocated land for a mixed-use complex. For this case study, compared to other Voronoi diagram-based method, we decrease the land allocation error by 62.557 %. Although our computation time is larger than the previous Voronoi-diagram-based method, it is still suitable for interactive design.
A bicycle safety index for evaluating urban street facilities.
Asadi-Shekari, Zohreh; Moeinaddini, Mehdi; Zaly Shah, Muhammad
2015-01-01
The objectives of this research are to conceptualize the Bicycle Safety Index (BSI) that considers all parts of the street and to propose a universal guideline with microscale details. A point system method comparing existing safety facilities to a defined standard is proposed to estimate the BSI. Two streets in Singapore and Malaysia are chosen to examine this model. The majority of previous measurements to evaluate street conditions for cyclists usually cannot cover all parts of streets, including segments and intersections. Previous models also did not consider all safety indicators and cycling facilities at a microlevel in particular. This study introduces a new concept of a practical BSI to complete previous studies using its practical, easy-to-follow, point system-based outputs. This practical model can be used in different urban settings to estimate the level of safety for cycling and suggest some improvements based on the standards.
Fast dictionary-based reconstruction for diffusion spectrum imaging.
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar
2013-11-01
Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.
Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging
Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar
2015-01-01
Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466
Pellegrini, Marco O. O.
2017-01-01
Abstract Throughout the years, three infrageneric classifications were proposed for Tradescantia along with several informal groups and species complexes. The current infrageneric classification accepts 12 sections – with T. sect. Tradescantia being further divided into four series – and assimilates many concepts adopted by previous authors. Recent molecular-based phylogenetic studies indicate that the currently accepted sections might not represent monophyletic groups within Tradescantia. Based on newly gathered morphological data on the group, complemented with available micromorphological, cytological and phytochemical data, I present the first morphology-based evolutionary hypothesis for Tradescantia. Furthermore, I reduce subtribe Thyrsantheminae to a synonym of subtribe Tradescantiinae, and propose a new infrageneric classification for Tradescantia, based on the total evidence of the present morphological phylogeny, in accordance to the previously published molecular data. PMID:29118649
Patwary, Nurmohammed; Preza, Chrysanthe
2015-01-01
A depth-variant (DV) image restoration algorithm for wide field fluorescence microscopy, using an orthonormal basis decomposition of DV point-spread functions (PSFs), is investigated in this study. The efficient PSF representation is based on a previously developed principal component analysis (PCA), which is computationally intensive. We present an approach developed to reduce the number of DV PSFs required for the PCA computation, thereby making the PCA-based approach computationally tractable for thick samples. Restoration results from both synthetic and experimental images show consistency and that the proposed algorithm addresses efficiently depth-induced aberration using a small number of principal components. Comparison of the PCA-based algorithm with a previously-developed strata-based DV restoration algorithm demonstrates that the proposed method improves performance by 50% in terms of accuracy and simultaneously reduces the processing time by 64% using comparable computational resources. PMID:26504634
Agent Supported Serious Game Environment
ERIC Educational Resources Information Center
Terzidou, Theodouli; Tsiatsos, Thrasyvoulos; Miliou, Christina; Sourvinou, Athanasia
2016-01-01
This study proposes and applies a novel concept for an AI enhanced serious game collaborative environment as a supplementary learning tool in tertiary education. It is based on previous research that investigated pedagogical agents for a serious game in the OpenSim environment. The proposed AI features to support the serious game are the…
Two computational methods are proposed for estimation of the emission rate of volatile organic compounds (VOCs) from solvent-based indoor coating materials based on the knowledge of product formulation. The first method utilizes two previously developed mass transfer models with ...
NASA Astrophysics Data System (ADS)
Chen, Zigang; Li, Lixiang; Peng, Haipeng; Liu, Yuhong; Yang, Yixian
2018-04-01
Community mining for complex social networks with link and attribute information plays an important role according to different application needs. In this paper, based on our proposed general non-negative matrix factorization (GNMF) algorithm without dimension matching constraints in our previous work, we propose the joint GNMF with graph Laplacian (LJGNMF) to implement community mining of complex social networks with link and attribute information according to different application needs. Theoretical derivation result shows that the proposed LJGNMF is fully compatible with previous methods of integrating traditional NMF and symmetric NMF. In addition, experimental results show that the proposed LJGNMF can meet the needs of different community minings by adjusting its parameters, and the effect is better than traditional NMF in the community vertices attributes entropy.
QR code based noise-free optical encryption and decryption of a gray scale image
NASA Astrophysics Data System (ADS)
Jiao, Shuming; Zou, Wenbin; Li, Xia
2017-03-01
In optical encryption systems, speckle noise is one major challenge in obtaining high quality decrypted images. This problem can be addressed by employing a QR code based noise-free scheme. Previous works have been conducted for optically encrypting a few characters or a short expression employing QR codes. This paper proposes a practical scheme for optically encrypting and decrypting a gray-scale image based on QR codes for the first time. The proposed scheme is compatible with common QR code generators and readers. Numerical simulation results reveal the proposed method can encrypt and decrypt an input image correctly.
Zhou, Lushan; Zeng, Yuhan; Baker, Lane A; Hou, Jianghui
2015-01-01
Direct recording of tight junction permeability is of pivotal importance to many biologic fields. Previous approaches bear an intrinsic disadvantage due to the difficulty of separating tight junction conductance from nearby membrane conductance. Here, we propose the design of Double whole-cell Voltage Clamp - Ion Conductance Microscopy (DVC-ICM) based on previously demonstrated potentiometric scanning of local conductive pathways. As proposed, DVC-ICM utilizes two coordinated whole-cell patch-clamps to neutralize the apical membrane current during potentiometric scanning, which in models described here will profoundly enhance the specificity of tight junction recording. Several potential pitfalls are considered, evaluated and addressed with alternative countermeasures. PMID:26716077
NASA Astrophysics Data System (ADS)
Azuma, Naoki; Itoh, Shintaro; Fukuzawa, Kenji; Zhang, Hedong
2018-02-01
Through electrophoresis driven by a pulsed electric field, we succeeded in separating large DNA molecules with an electrophoretic microchip based on size exclusion chromatography (SEC), which was proposed in our previous study. The conditions of the pulsed electric field required to achieve the separation were determined by numerical analyses using our originally proposed separation model. From the numerical results, we succeeded in separating large DNA molecules (λ DNA and T4 DNA) within 1600 s, which was approximately half of that achieved under a direct electric field in our previous study. Our SEC-based electrophoresis microchip will be one of the effective tools to meet the growing demand of faster and more convenient separation of large DNA molecules, especially in the field of epidemiological research of infectious diseases.
Semantic text relatedness on Al-Qur’an translation using modified path based method
NASA Astrophysics Data System (ADS)
Irwanto, Yudi; Arif Bijaksana, Moch; Adiwijaya
2018-03-01
Abdul Baquee Muhammad [1] have built Corpus that contained AlQur’an domain, WordNet and dictionary. He has did initialisation in the development of knowledges about AlQur’an and the knowledges about relatedness between texts in AlQur’an. The Path based measurement method that proposed by Liu, Zhou and Zheng [3] has never been used in the AlQur’an domain. By using AlQur’an translation dataset in this research, the path based measurement method proposed by Liu, Zhou and Zheng [3] will be used to test this method in AlQur’an domain to obtain similarity values and to measure its correlation value. In this study the degree value is proposed to be used in modifying the path based method that proposed in previous research. Degree Value is the number of links that owned by a lcs (lowest common subsumer) node on a taxonomy. The links owned by a node on the taxonomy represent the semantic relationship that a node has in the taxonomy. By using degree value to modify the path-based method that proposed in previous research is expected that the correlation value obtained will increase. After running some experiment by using proposed method, the correlation measurement value can obtain fairly good correlation ties with 200 Word Pairs derive from Noun POS SimLex-999. The correlation value that be obtained is 93.3% which means their bonds are strong and they have very strong correlation. Whereas for the POS other than Noun POS vocabulary that owned by WordNet is incomplete therefore many pairs of words that the value of its similarity is zero so the correlation value is low.
2014-01-01
Background Ten years after the first proposal, a consensus definition of healthcare-associated infection (HCAI) has not been reached, preventing the development of specific treatment recommendations. A systematic review of all definitions of HCAI used in clinical studies is made. Methods The search strategy focused on an HCAI definition. MEDLINE, SCOPUS and ISI Web of Knowledge were searched for articles published from earliest achievable data until November 2012. Abstracts from scientific meetings were searched for relevant abstracts along with a manual search of references from reports, earlier reviews and retrieved studies. Results The search retrieved 49,405 references: 15,311 were duplicates and 33,828 were excluded based on title and abstract. Of the remaining 266, 43 met the inclusion criteria. The definition more frequently used was the initial proposed in 2002 - an infection present at hospital admission or within 48 hours of admission in patients that fulfilled any of the following criteria: received intravenous therapy at home, wound care or specialized nursing care in the previous 30 days; attended a hospital or hemodialysis clinic or received intravenous chemotherapy in the previous 30 days; were hospitalized in an acute care hospital for ≥2 days in the previous 90 days, resided in a nursing home or long-term care facility. Additional criteria founded in other studies were: immunosuppression, active or metastatic cancer, previous radiation therapy, transfer from another care facility, elderly or physically disabled persons who need healthcare, previous submission to invasive procedures, surgery performed in the last 180 days, family member with a multi-drug resistant microorganism and recent treatment with antibiotics. Conclusions Based on the evidence gathered we conclude that the definition initially proposed is widely accepted. In a future revision, recent invasive procedures, hospitalization in the last year or previous antibiotic treatment should be considered for inclusion in the definition. The role of immunosuppression in the definition of HCAI still requires ongoing discussion. PMID:24597462
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Kim, Sun Hyung; Oguz, Ipek; Styner, Martin
2016-03-01
The cortical thickness of the mammalian brain is an important morphological characteristic that can be used to investigate and observe the brain's developmental changes that might be caused by biologically toxic substances such as ethanol or cocaine. Although various cortical thickness analysis methods have been proposed that are applicable for human brain and have developed into well-validated open-source software packages, cortical thickness analysis methods for rodent brains have not yet become as robust and accurate as those designed for human brains. Based on a previously proposed cortical thickness measurement pipeline for rodent brain analysis,1 we present an enhanced cortical thickness pipeline in terms of accuracy and anatomical consistency. First, we propose a Lagrangian-based computational approach in the thickness measurement step in order to minimize local truncation error using the fourth-order Runge-Kutta method. Second, by constructing a line object for each streamline of the thickness measurement, we can visualize the way the thickness is measured and achieve sub-voxel accuracy by performing geometric post-processing. Last, with emphasis on the importance of an anatomically consistent partial differential equation (PDE) boundary map, we propose an automatic PDE boundary map generation algorithm that is specific to rodent brain anatomy, which does not require manual labeling. The results show that the proposed cortical thickness pipeline can produce statistically significant regions that are not observed in the previous cortical thickness analysis pipeline.
Efficient 3D geometric and Zernike moments computation from unstructured surface meshes.
Pozo, José María; Villa-Uriol, Maria-Cruz; Frangi, Alejandro F
2011-03-01
This paper introduces and evaluates a fast exact algorithm and a series of faster approximate algorithms for the computation of 3D geometric moments from an unstructured surface mesh of triangles. Being based on the object surface reduces the computational complexity of these algorithms with respect to volumetric grid-based algorithms. In contrast, it can only be applied for the computation of geometric moments of homogeneous objects. This advantage and restriction is shared with other proposed algorithms based on the object boundary. The proposed exact algorithm reduces the computational complexity for computing geometric moments up to order N with respect to previously proposed exact algorithms, from N(9) to N(6). The approximate series algorithm appears as a power series on the rate between triangle size and object size, which can be truncated at any desired degree. The higher the number and quality of the triangles, the better the approximation. This approximate algorithm reduces the computational complexity to N(3). In addition, the paper introduces a fast algorithm for the computation of 3D Zernike moments from the computed geometric moments, with a computational complexity N(4), while the previously proposed algorithm is of order N(6). The error introduced by the proposed approximate algorithms is evaluated in different shapes and the cost-benefit ratio in terms of error, and computational time is analyzed for different moment orders.
NASA Astrophysics Data System (ADS)
Guo, Yiqing; Jia, Xiuping; Paull, David
2018-06-01
The explosive availability of remote sensing images has challenged supervised classification algorithms such as Support Vector Machines (SVM), as training samples tend to be highly limited due to the expensive and laborious task of ground truthing. The temporal correlation and spectral similarity between multitemporal images have opened up an opportunity to alleviate this problem. In this study, a SVM-based Sequential Classifier Training (SCT-SVM) approach is proposed for multitemporal remote sensing image classification. The approach leverages the classifiers of previous images to reduce the required number of training samples for the classifier training of an incoming image. For each incoming image, a rough classifier is firstly predicted based on the temporal trend of a set of previous classifiers. The predicted classifier is then fine-tuned into a more accurate position with current training samples. This approach can be applied progressively to sequential image data, with only a small number of training samples being required from each image. Experiments were conducted with Sentinel-2A multitemporal data over an agricultural area in Australia. Results showed that the proposed SCT-SVM achieved better classification accuracies compared with two state-of-the-art model transfer algorithms. When training data are insufficient, the overall classification accuracy of the incoming image was improved from 76.18% to 94.02% with the proposed SCT-SVM, compared with those obtained without the assistance from previous images. These results demonstrate that the leverage of a priori information from previous images can provide advantageous assistance for later images in multitemporal image classification.
NASA Astrophysics Data System (ADS)
Chen, Ming-Chih; Hsiao, Shen-Fu
In this paper, we propose an area-efficient design of Advanced Encryption Standard (AES) processor by applying a new common-expression-elimination (CSE) method to the sub-functions of various transformations required in AES. The proposed method reduces the area cost of realizing the sub-functions by extracting the common factors in the bit-level XOR/AND-based sum-of-product expressions of these sub-functions using a new CSE algorithm. Cell-based implementation results show that the AES processor with our proposed CSE method has significant area improvement compared with previous designs.
Cryptographically supported NFC tags in medication for better inpatient safety.
Özcanhan, Mehmet Hilal; Dalkılıç, Gökhan; Utku, Semih
2014-08-01
Reliable sources report that errors in drug administration are increasing the number of harmed or killed inpatients, during healthcare. This development is in contradiction to patient safety norms. A correctly designed hospital-wide ubiquitous system, using advanced inpatient identification and matching techniques, should provide correct medicine and dosage at the right time. Researchers are still making grouping proof protocol proposals based on the EPC Global Class 1 Generation 2 ver. 1.2 standard tags, for drug administration. Analyses show that such protocols make medication unsecure and hence fail to guarantee inpatient safety. Thus, the original goal of patient safety still remains. In this paper, a very recent proposal (EKATE) upgraded by a cryptographic function is shown to fall short of expectations. Then, an alternative proposal IMS-NFC which uses a more suitable and newer technology; namely Near Field Communication (NFC), is described. The proposed protocol has the additional support of stronger security primitives and it is compliant to ISO communication and security standards. Unlike previous works, the proposal is a complete ubiquitous system that guarantees full patient safety; and it is based on off-the-shelf, new technology products available in every corner of the world. To prove the claims the performance, cost, security and scope of IMS-NFC are compared with previous proposals. Evaluation shows that the proposed system has stronger security, increased patient safety and equal efficiency, at little extra cost.
Figure-ground segmentation based on class-independent shape priors
NASA Astrophysics Data System (ADS)
Li, Yang; Liu, Yang; Liu, Guojun; Guo, Maozu
2018-01-01
We propose a method to generate figure-ground segmentation by incorporating shape priors into the graph-cuts algorithm. Given an image, we first obtain a linear representation of an image and then apply directional chamfer matching to generate class-independent, nonparametric shape priors, which provide shape clues for the graph-cuts algorithm. We then enforce shape priors in a graph-cuts energy function to produce object segmentation. In contrast to previous segmentation methods, the proposed method shares shape knowledge for different semantic classes and does not require class-specific model training. Therefore, the approach obtains high-quality segmentation for objects. We experimentally validate that the proposed method outperforms previous approaches using the challenging PASCAL VOC 2010/2012 and Berkeley (BSD300) segmentation datasets.
Strained layer relaxation effect on current crowding and efficiency improvement of GaN based LED
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
2012-02-01
Efficiency droop effect of GaN based LED at high power and high temperature is addressed by several groups based on career delocalization and photon recycling effect(radiative recombination). We extend the previous droop models to optical loss parameters. We correlate stained layer relaxation at high temperature and high current density to carrier delocalization. We propose a third order model and show that Shockley-Hall-Read and Auger recombination effect is not enough to account for the efficiency loss. Several strained layer modification scheme is proposed based on the model.
Object Tracking and Target Reacquisition Based on 3-D Range Data for Moving Vehicles
Lee, Jehoon; Lankton, Shawn; Tannenbaum, Allen
2013-01-01
In this paper, we propose an approach for tracking an object of interest based on 3-D range data. We employ particle filtering and active contours to simultaneously estimate the global motion of the object and its local deformations. The proposed algorithm takes advantage of range information to deal with the challenging (but common) situation in which the tracked object disappears from the image domain entirely and reappears later. To cope with this problem, a method based on principle component analysis (PCA) of shape information is proposed. In the proposed method, if the target disappears out of frame, shape similarity energy is used to detect target candidates that match a template shape learned online from previously observed frames. Thus, we require no a priori knowledge of the target’s shape. Experimental results show the practical applicability and robustness of the proposed algorithm in realistic tracking scenarios. PMID:21486717
Polidori, David; Rowley, Clarence
2014-07-22
The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method.
Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin
2017-11-01
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.
Unger, Jakob; Schuster, Maria; Hecker, Dietmar J; Schick, Bernhard; Lohscheller, Jörg
2016-01-01
This work presents a computer-based approach to analyze the two-dimensional vocal fold dynamics of endoscopic high-speed videos, and constitutes an extension and generalization of a previously proposed wavelet-based procedure. While most approaches aim for analyzing sustained phonation conditions, the proposed method allows for a clinically adequate analysis of both dynamic as well as sustained phonation paradigms. The analysis procedure is based on a spatio-temporal visualization technique, the phonovibrogram, that facilitates the documentation of the visible laryngeal dynamics. From the phonovibrogram, a low-dimensional set of features is computed using a principle component analysis strategy that quantifies the type of vibration patterns, irregularity, lateral symmetry and synchronicity, as a function of time. Two different test bench data sets are used to validate the approach: (I) 150 healthy and pathologic subjects examined during sustained phonation. (II) 20 healthy and pathologic subjects that were examined twice: during sustained phonation and a glissando from a low to a higher fundamental frequency. In order to assess the discriminative power of the extracted features, a Support Vector Machine is trained to distinguish between physiologic and pathologic vibrations. The results for sustained phonation sequences are compared to the previous approach. Finally, the classification performance of the stationary analyzing procedure is compared to the transient analysis of the glissando maneuver. For the first test bench the proposed procedure outperformed the previous approach (proposed feature set: accuracy: 91.3%, sensitivity: 80%, specificity: 97%, previous approach: accuracy: 89.3%, sensitivity: 76%, specificity: 96%). Comparing the classification performance of the second test bench further corroborates that analyzing transient paradigms provides clear additional diagnostic value (glissando maneuver: accuracy: 90%, sensitivity: 100%, specificity: 80%, sustained phonation: accuracy: 75%, sensitivity: 80%, specificity: 70%). The incorporation of parameters describing the temporal evolvement of vocal fold vibration clearly improves the automatic identification of pathologic vibration patterns. Furthermore, incorporating a dynamic phonation paradigm provides additional valuable information about the underlying laryngeal dynamics that cannot be derived from sustained conditions. The proposed generalized approach provides a better overall classification performance than the previous approach, and hence constitutes a new advantageous tool for an improved clinical diagnosis of voice disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Bidirectional teleportation of a pure EPR state by using GHZ states
NASA Astrophysics Data System (ADS)
Hassanpour, Shima; Houshmand, Monireh
2016-02-01
In the present paper, a novel bidirectional quantum teleportation protocol is proposed. By using entanglement swapping technique, two GHZ states are shared as a quantum channel between Alice and Bob as legitimate users. In this scheme, based on controlled-not operation, single-qubit measurement, and appropriate unitary operations, two users can simultaneously transmit a pure EPR state to each other, While, in the previous protocols, the users can just teleport a single-qubit state to each other via more than four-qubit state. Therefore, the proposed scheme is economical compared with previous protocols.
Change Detection via Selective Guided Contrasting Filters
NASA Astrophysics Data System (ADS)
Vizilter, Y. V.; Rubis, A. Y.; Zheltov, S. Y.
2017-05-01
Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample) as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map) could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO) is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC). The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC), mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All implemented filters provide the robustness relative to weak geometrical discrepancy of compared images. Selective guided contrasting based on morphological opening/closing and thresholded morphological correlation demonstrates the best change detection result.
Quantum cryptography without switching.
Weedbrook, Christian; Lance, Andrew M; Bowen, Warwick P; Symul, Thomas; Ralph, Timothy C; Lam, Ping Koy
2004-10-22
We propose a new coherent state quantum key distribution protocol that eliminates the need to randomly switch between measurement bases. This protocol provides significantly higher secret key rates with increased bandwidths than previous schemes that only make single quadrature measurements. It also offers the further advantage of simplicity compared to all previous protocols which, to date, have relied on switching.
NASA Astrophysics Data System (ADS)
Liu, Chen; Han, Runze; Zhou, Zheng; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
In this work we present a novel convolution computing architecture based on metal oxide resistive random access memory (RRAM) to process the image data stored in the RRAM arrays. The proposed image storage architecture shows performances of better speed-device consumption efficiency compared with the previous kernel storage architecture. Further we improve the architecture for a high accuracy and low power computing by utilizing the binary storage and the series resistor. For a 28 × 28 image and 10 kernels with a size of 3 × 3, compared with the previous kernel storage approach, the newly proposed architecture shows excellent performances including: 1) almost 100% accuracy within 20% LRS variation and 90% HRS variation; 2) more than 67 times speed boost; 3) 71.4% energy saving.
Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images
NASA Astrophysics Data System (ADS)
Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung
2010-06-01
Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betin, A Yu; Bobrinev, V I; Verenikina, N M
A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)
Use of Web-Based Portfolios as Tools for Reflection in Preservice Teacher Education
ERIC Educational Resources Information Center
Oner, Diler; Adadan, Emine
2011-01-01
This mixed-methods study examined the use of web-based portfolios for developing preservice teachers' reflective skills. Building on the work of previous research, the authors proposed a set of reflection-based tasks to enrich preservice teachers' internship experiences. Their purpose was to identify (a) whether preservice teachers demonstrated…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-08
...EPA is issuing a supplement to its proposed approval of the State of Indiana's request to redesignate the Indianapolis area to attainment for the 1997 annual National Ambient Air Quality Standards (NAAQS or standard) for fine particulate matter (PM2.5). This supplemental proposal revises and expands the basis for proposing approval of the state's request, in light of developments since EPA issued its initial proposal on September 27, 2011. This supplemental proposal addresses four issues, including the effects of two decisions of the United States Court of Appeals for the District of Columbia (D.C. Circuit or Court): the Court's August 21, 2012 decision to vacate and remand to EPA the Cross- State Air Pollution Control Rule (CSAPR) and the Court's January 4, 2013 decision to remand to EPA two final rules implementing the 1997 PM2.5 standard. In this supplemental proposal, EPA is also proposing to approve a supplement to the emission inventories previously submitted by the state. EPA is proposing that the inventories for ammonia and Volatile Organic Compounds (VOC), in conjunction with the inventories for nitrogen oxides (NOX), direct PM2.5, and sulfur dioxide (SO2) that EPA previously proposed to approve, meet the comprehensive emissions inventory requirement of the Clean Air Act (CAA). Finally, this supplemental proposal solicits comment on the state's January 17, 2013 submission of Motor Vehicle Emissions Budgets (MVEBs) developed using EPA's Motor Vehicle Emissions Simulator (MOVES) 2010a emissions model to replace the MOBILE6.2 based MVEBs previously submitted as part of the PM2.5 maintenance plan for the Indianapolis area. EPA is seeking comment only on the issues raised in its supplemental proposal, and is not re-opening for comment other issues raised in its prior proposal.
An EEG blind source separation algorithm based on a weak exclusion principle.
Lan Ma; Blu, Thierry; Wang, William S-Y
2016-08-01
The question of how to separate individual brain and non-brain signals, mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings, is a significant problem in contemporary neuroscience. This study proposes and evaluates a novel EEG Blind Source Separation (BSS) algorithm based on a weak exclusion principle (WEP). The chief point in which it differs from most previous EEG BSS algorithms is that the proposed algorithm is not based upon the hypothesis that the sources are statistically independent. Our first step was to investigate algorithm performance on simulated signals which have ground truth. The purpose of this simulation is to illustrate the proposed algorithm's efficacy. The results show that the proposed algorithm has good separation performance. Then, we used the proposed algorithm to separate real EEG signals from a memory study using a revised version of Sternberg Task. The results show that the proposed algorithm can effectively separate the non-brain and brain sources.
Novel density-based and hierarchical density-based clustering algorithms for uncertain data.
Zhang, Xianchao; Liu, Han; Zhang, Xiaotong
2017-09-01
Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing algorithms in accuracy and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yan; Geng, Chao; Li, Feng; Huang, Guan; Li, Xinyang
2018-05-01
In this paper, the fiber-based coherent polarization beam combining (CPBC) with cascaded phase-locking (PL) and polarization-transforming (PT) controls was proposed to combine imbalanced input beams where the number of the input beams is not binary, in which the PL control was performed using the piezoelectric-ring fiber-optic phase compensator, and the PT control was realized by the dynamic polarization controller, simultaneously. The principle of the proposed CPBC was introduced. The performance of the proposed CPBC was analyzed in comparison with the CPBC based on PL control and the CPBC based on PT control. The basic experiment of CPBC of three laser beams was carried out to validate the feasibility of the proposed CPBC, where cascaded controls of PL and PT were implemented based on stochastic parallel gradient descent algorithm. Simulation and experimental results show that the proposed CPBC incorporates the advantages of the two previous CPBC schemes and performs well in the closed loop. Moreover, the expansibility and the application of the proposed CPBC were validated by scaling the CPBC to combine seven laser beams. We believe that the proposed fiber-based CPBC with cascaded PL and PT controls has great potential in free space optical communications employing the multi-aperture receiver with asymmetric structure.
Research on Capturing of Customer Requirements Based on Innovation Theory
NASA Astrophysics Data System (ADS)
junwu, Ding; dongtao, Yang; zhenqiang, Bao
To exactly and effectively capture customer requirements information, a new customer requirements capturing modeling method was proposed. Based on the analysis of function requirement models of previous products and the application of technology system evolution laws of the Theory of Innovative Problem Solving (TRIZ), the customer requirements could be evolved from existing product designs, through modifying the functional requirement unit and confirming the direction of evolution design. Finally, a case study was provided to illustrate the feasibility of the proposed approach.
Applying STAMP in Accident Analysis
NASA Technical Reports Server (NTRS)
Leveson, Nancy; Daouk, Mirna; Dulac, Nicolas; Marais, Karen
2003-01-01
Accident models play a critical role in accident investigation and analysis. Most traditional models are based on an underlying chain of events. These models, however, have serious limitations when used for complex, socio-technical systems. Previously, Leveson proposed a new accident model (STAMP) based on system theory. In STAMP, the basic concept is not an event but a constraint. This paper shows how STAMP can be applied to accident analysis using three different views or models of the accident process and proposes a notation for describing this process.
Thermodynamics-based models of transcriptional regulation with gene sequence.
Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing
2015-12-01
Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.
Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok
2017-04-19
The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.
Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok
2017-01-01
The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms. PMID:28422084
NASA Astrophysics Data System (ADS)
Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Roh, Seungkuk
2016-05-01
In this paper, we propose a new image reconstruction algorithm considering the geometric information of acoustic sources and senor detector and review the two-step reconstruction algorithm which was previously proposed based on the geometrical information of ROI(region of interest) considering the finite size of acoustic sensor element. In a new image reconstruction algorithm, not only mathematical analysis is very simple but also its software implementation is very easy because we don't need to use the FFT. We verify the effectiveness of the proposed reconstruction algorithm by showing the simulation results by using Matlab k-wave toolkit.
A novel load balanced energy conservation approach in WSN using biogeography based optimization
NASA Astrophysics Data System (ADS)
Kaushik, Ajay; Indu, S.; Gupta, Daya
2017-09-01
Clustering sensor nodes is an effective technique to reduce energy consumption of the sensor nodes and maximize the lifetime of Wireless sensor networks. Balancing load of the cluster head is an important factor in long run operation of WSNs. In this paper we propose a novel load balancing approach using biogeography based optimization (LB-BBO). LB-BBO uses two separate fitness functions to perform load balancing of equal and unequal load respectively. The proposed method is simulated using matlab and compared with existing methods. The proposed method shows better performance than all the previous works implemented for energy conservation in WSN
A lung sound classification system based on the rational dilation wavelet transform.
Ulukaya, Sezer; Serbes, Gorkem; Sen, Ipek; Kahya, Yasemin P
2016-08-01
In this work, a wavelet based classification system that aims to discriminate crackle, normal and wheeze lung sounds is presented. While the previous works related with this problem use constant low Q-factor wavelets, which have limited frequency resolution and can not cope with oscillatory signals, in the proposed system, the Rational Dilation Wavelet Transform, whose Q-factors can be tuned, is employed. Proposed system yields an accuracy of 95 % for crackle, 97 % for wheeze, 93.50 % for normal and 95.17 % for total sound signal types using energy feature subset and proposed approach is superior to conventional low Q-factor wavelet analysis.
TF4SM: A Framework for Developing Traceability Solutions in Small Manufacturing Companies
Bordel Sánchez, Borja; Alcarria, Ramón; Martín, Diego; Robles, Tomás
2015-01-01
Nowadays, manufacturing processes have become highly complex. Besides, more and more, governmental institutions require companies to implement systems to trace a product’s life (especially for foods, clinical materials or similar items). In this paper, we propose a new framework, based on cyber-physical systems, for developing traceability systems in small manufacturing companies (which because of their size cannot implement other commercial products). We propose a general theoretical framework, study the requirements of these companies in relation to traceability systems, propose a reference architecture based on both previous elements and build the first minimum functional prototype, to compare our solution to a traditional tag-based traceability system. Results show that our system reduces the number of inefficiencies and reaction time. PMID:26610509
TF4SM: A Framework for Developing Traceability Solutions in Small Manufacturing Companies.
Bordel Sánchez, Borja; Alcarria, Ramón; Martín, Diego; Robles, Tomás
2015-11-20
Nowadays, manufacturing processes have become highly complex. Besides, more and more, governmental institutions require companies to implement systems to trace a product's life (especially for foods, clinical materials or similar items). In this paper, we propose a new framework, based on cyber-physical systems, for developing traceability systems in small manufacturing companies (which because of their size cannot implement other commercial products). We propose a general theoretical framework, study the requirements of these companies in relation to traceability systems, propose a reference architecture based on both previous elements and build the first minimum functional prototype, to compare our solution to a traditional tag-based traceability system. Results show that our system reduces the number of inefficiencies and reaction time.
Optical information encryption based on incoherent superposition with the help of the QR code
NASA Astrophysics Data System (ADS)
Qin, Yi; Gong, Qiong
2014-01-01
In this paper, a novel optical information encryption approach is proposed with the help of QR code. This method is based on the concept of incoherent superposition which we introduce for the first time. The information to be encrypted is first transformed into the corresponding QR code, and thereafter the QR code is further encrypted into two phase only masks analytically by use of the intensity superposition of two diffraction wave fields. The proposed method has several advantages over the previous interference-based method, such as a higher security level, a better robustness against noise attack, a more relaxed work condition, and so on. Numerical simulation results and actual smartphone collected results are shown to validate our proposal.
Hybrid glowworm swarm optimization for task scheduling in the cloud environment
NASA Astrophysics Data System (ADS)
Zhou, Jing; Dong, Shoubin
2018-06-01
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
Natural Aggregation Approach based Home Energy Manage System with User Satisfaction Modelling
NASA Astrophysics Data System (ADS)
Luo, F. J.; Ranzi, G.; Dong, Z. Y.; Murata, J.
2017-07-01
With the prevalence of advanced sensing and two-way communication technologies, Home Energy Management System (HEMS) has attracted lots of attentions in recent years. This paper proposes a HEMS that optimally schedules the controllable Residential Energy Resources (RERs) in a Time-of-Use (TOU) pricing and high solar power penetrated environment. The HEMS aims to minimize the overall operational cost of the home, and the user’s satisfactions and requirements on the operation of different household appliances are modelled and considered in the HEMS. Further, a new biological self-aggregation intelligence based optimization technique previously proposed by the authors, i.e., Natural Aggregation Algorithm (NAA), is applied to solve the proposed HEMS optimization model. Simulations are conducted to validate the proposed method.
Alternative Constraint Handling Technique for Four-Bar Linkage Path Generation
NASA Astrophysics Data System (ADS)
Sleesongsom, S.; Bureerat, S.
2018-03-01
This paper proposes an extension of a new concept for path generation from our previous work by adding a new constraint handling technique. The propose technique was initially designed for problems without prescribed timing by avoiding the timing constraint, while remain constraints are solving with a new constraint handling technique. The technique is one kind of penalty technique. The comparative study is optimisation of path generation problems are solved using self-adaptive population size teaching-learning based optimization (SAP-TLBO) and original TLBO. In this study, two traditional path generation test problem are used to test the proposed technique. The results show that the new technique can be applied with the path generation problem without prescribed timing and gives better results than the previous technique. Furthermore, SAP-TLBO outperforms the original one.
NASA Astrophysics Data System (ADS)
Qin, Y.; Lu, P.; Li, Z.
2018-04-01
Landslide inventory mapping is essential for hazard assessment and mitigation. In most previous studies, landslide mapping was achieved by visual interpretation of aerial photos and remote sensing images. However, such method is labor-intensive and time-consuming, especially over large areas. Although a number of semi-automatic landslide mapping methods have been proposed over the past few years, limitations remain in terms of their applicability over different study areas and data, and there is large room for improvement in terms of the accuracy and automation degree. For these reasons, we developed a change detection-based Markov Random Field (CDMRF) method for landslide inventory mapping. The proposed method mainly includes two steps: 1) change detection-based multi-threshold for training samples generation and 2) MRF for landslide inventory mapping. Compared with the previous methods, the proposed method in this study has three advantages: 1) it combines multiple image difference techniques with multi-threshold method to generate reliable training samples; 2) it takes the spectral characteristics of landslides into account; and 3) it is highly automatic with little parameter tuning. The proposed method was applied for regional landslides mapping from 10 m Sentinel-2 images in Western China. Results corroborated the effectiveness and applicability of the proposed method especially the capability of rapid landslide mapping. Some directions for future research are offered. This study to our knowledge is the first attempt to map landslides from free and medium resolution satellite (i.e., Sentinel-2) images in China.
Milenković, Jana; Dalmış, Mehmet Ufuk; Žgajnar, Janez; Platel, Bram
2017-09-01
New ultrafast view-sharing sequences have enabled breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to be performed at high spatial and temporal resolution. The aim of this study is to evaluate the diagnostic potential of textural features that quantify the spatiotemporal changes of the contrast-agent uptake in computer-aided diagnosis of malignant and benign breast lesions imaged with high spatial and temporal resolution DCE-MRI. The proposed approach is based on the textural analysis quantifying the spatial variation of six dynamic features of the early-phase contrast-agent uptake of a lesion's largest cross-sectional area. The textural analysis is performed by means of the second-order gray-level co-occurrence matrix, gray-level run-length matrix and gray-level difference matrix. This yields 35 textural features to quantify the spatial variation of each of the six dynamic features, providing a feature set of 210 features in total. The proposed feature set is evaluated based on receiver operating characteristic (ROC) curve analysis in a cross-validation scheme for random forests (RF) and two support vector machine classifiers, with linear and radial basis function (RBF) kernel. Evaluation is done on a dataset with 154 breast lesions (83 malignant and 71 benign) and compared to a previous approach based on 3D morphological features and the average and standard deviation of the same dynamic features over the entire lesion volume as well as their average for the smaller region of the strongest uptake rate. The area under the ROC curve (AUC) obtained by the proposed approach with the RF classifier was 0.8997, which was significantly higher (P = 0.0198) than the performance achieved by the previous approach (AUC = 0.8704) on the same dataset. Similarly, the proposed approach obtained a significantly higher result for both SVM classifiers with RBF (P = 0.0096) and linear kernel (P = 0.0417) obtaining AUC of 0.8876 and 0.8548, respectively, compared to AUC values of previous approach of 0.8562 and 0.8311, respectively. The proposed approach based on 2D textural features quantifying spatiotemporal changes of the contrast-agent uptake significantly outperforms the previous approach based on 3D morphology and dynamic analysis in differentiating the malignant and benign breast lesions, showing its potential to aid clinical decision making. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seok; Han, Young-Geun
2014-05-01
A highly sensitive current sensor based on an optical microfiber loop resonator (MLR) incorporating low index polymer is proposed and experimentally demonstrated. The microfiber with a waist diameter of 1 μm is wrapped around the nicrhrome wire with low index polymer coating and the optical MLR is realized. The use of the microfiber and low index polymer with high thermal property can effectively improve the current sensitivity of the proposed MLR-based sensing probe to be 437.9 pm/A2, which is ~10 times higher than the previous result.
NASA Astrophysics Data System (ADS)
Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou
2013-10-01
A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.
NASA Astrophysics Data System (ADS)
Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi
2014-01-01
The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.
Development of an Adaptive Learning System with Two Sources of Personalization Information
ERIC Educational Resources Information Center
Tseng, J. C. R.; Chu, H. C.; Hwang, G. J.; Tsai, C. C.
2008-01-01
Previous research of adaptive learning mainly focused on improving student learning achievements based only on single-source of personalization information, such as learning style, cognitive style or learning achievement. In this paper, an innovative adaptive learning approach is proposed by basing upon two main sources of personalization…
Twin hydroxymethyluracil-A base pair steps define the binding site for the DNA-binding protein TF1.
Grove, A; Figueiredo, M L; Galeone, A; Mayol, L; Geiduschek, E P
1997-05-16
The DNA-bending protein TF1 is the Bacillus subtilis bacteriophage SPO1-encoded homolog of the bacterial HU proteins and the Escherichia coli integration host factor. We recently proposed that TF1, which binds with high affinity (Kd was approximately 3 nM) to preferred sites within the hydroxymethyluracil (hmU)-containing phage genome, identifies its binding sites based on sequence-dependent DNA flexibility. Here, we show that two hmU-A base pair steps coinciding with two previously proposed sites of DNA distortion are critical for complex formation. The affinity of TF1 is reduced 10-fold when both of these hmU-A base pair steps are replaced with A-hmU, G-C, or C-G steps; only modest changes in affinity result when substitutions are made at other base pairs of the TF1 binding site. Replacement of all hmU residues with thymine decreases the affinity of TF1 greatly; remarkably, the high affinity is restored when the two hmU-A base pair steps corresponding to previously suggested sites of distortion are reintroduced into otherwise T-containing DNA. T-DNA constructs with 3-base bulges spaced apart by 9 base pairs of duplex also generate nM affinity of TF1. We suggest that twin hmU-A base pair steps located at the proposed sites of distortion are key to target site selection by TF1 and that recognition is based largely, if not entirely, on sequence-dependent DNA flexibility.
NASA Astrophysics Data System (ADS)
Xi, Songnan; Zoltowski, Michael D.
2008-04-01
Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.
2014-01-01
Background The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. Methods We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Conclusions Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method. PMID:25052018
Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He
2012-11-30
The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium.
Song, Yong; Hao, Qun; Zhang, Kai; Wang, Jingwen; Jin, Xuefeng; Sun, He
2012-01-01
The signal transmission technology based on the human body medium offers significant advantages in Body Sensor Networks (BSNs) used for healthcare and the other related fields. In previous works we have proposed a novel signal transmission method based on the human body medium using a Mach-Zehnder electro-optical (EO) sensor. In this paper, we present a signal transmission system based on the proposed method, which consists of a transmitter, a Mach-Zehnder EO sensor and a corresponding receiving circuit. Meanwhile, in order to verify the frequency response properties and determine the suitable parameters of the developed system, in-vivo measurements have been implemented under conditions of different carrier frequencies, baseband frequencies and signal transmission paths. Results indicate that the proposed system will help to achieve reliable and high speed signal transmission of BSN based on the human body medium. PMID:23443393
78 FR 65653 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... nine minutes calculation is based on a previous timed pre-test with six volunteer audiologists. There... received needed hearing tests and follow up services after their hospital discharges. The 2011 national...
Continuous Indoor Positioning Fusing WiFi, Smartphone Sensors and Landmarks
Deng, Zhi-An; Wang, Guofeng; Qin, Danyang; Na, Zhenyu; Cui, Yang; Chen, Juan
2016-01-01
To exploit the complementary strengths of WiFi positioning, pedestrian dead reckoning (PDR), and landmarks, we propose a novel fusion approach based on an extended Kalman filter (EKF). For WiFi positioning, unlike previous fusion approaches setting measurement noise parameters empirically, we deploy a kernel density estimation-based model to adaptively measure the related measurement noise statistics. Furthermore, a trusted area of WiFi positioning defined by fusion results of previous step and WiFi signal outlier detection are exploited to reduce computational cost and improve WiFi positioning accuracy. For PDR, we integrate a gyroscope, an accelerometer, and a magnetometer to determine the user heading based on another EKF model. To reduce accumulation error of PDR and enable continuous indoor positioning, not only the positioning results but also the heading estimations are recalibrated by indoor landmarks. Experimental results in a realistic indoor environment show that the proposed fusion approach achieves substantial positioning accuracy improvement than individual positioning approaches including PDR and WiFi positioning. PMID:27608019
Continuous Indoor Positioning Fusing WiFi, Smartphone Sensors and Landmarks.
Deng, Zhi-An; Wang, Guofeng; Qin, Danyang; Na, Zhenyu; Cui, Yang; Chen, Juan
2016-09-05
To exploit the complementary strengths of WiFi positioning, pedestrian dead reckoning (PDR), and landmarks, we propose a novel fusion approach based on an extended Kalman filter (EKF). For WiFi positioning, unlike previous fusion approaches setting measurement noise parameters empirically, we deploy a kernel density estimation-based model to adaptively measure the related measurement noise statistics. Furthermore, a trusted area of WiFi positioning defined by fusion results of previous step and WiFi signal outlier detection are exploited to reduce computational cost and improve WiFi positioning accuracy. For PDR, we integrate a gyroscope, an accelerometer, and a magnetometer to determine the user heading based on another EKF model. To reduce accumulation error of PDR and enable continuous indoor positioning, not only the positioning results but also the heading estimations are recalibrated by indoor landmarks. Experimental results in a realistic indoor environment show that the proposed fusion approach achieves substantial positioning accuracy improvement than individual positioning approaches including PDR and WiFi positioning.
Model-Based Engine Control Architecture with an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
Model-Based Engine Control Architecture with an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Connolly, Joseph W.
2016-01-01
This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
NASA Astrophysics Data System (ADS)
Sterpone, L.; Violante, M.
2007-08-01
Modern SRAM-based field programmable gate array (FPGA) devices offer high capability in implementing complex system. Unfortunately, SRAM-based FPGAs are extremely sensitive to single event upsets (SEUs) induced by radiation particles. In order to successfully deploy safety- or mission-critical applications, designer need to validate the correctness of the obtained designs. In this paper we describe a system based on partial-reconfiguration for running fault-injection experiments within the configuration memory of SRAM-based FPGAs. The proposed fault-injection system uses the internal configuration capabilities that modern FPGAs offer in order to inject SEU within the configuration memory. Detailed experimental results show that the technique is orders of magnitude faster than previously proposed ones.
Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Zhao, Xiaohui; Liang, Cong; Ding, Xu
2017-01-01
In cognitive radio (CR) systems, reasonable power allocation can increase transmission rate of CR users or secondary users (SUs) as much as possible and at the same time insure normal communication among primary users (PUs). This study proposes an optimal power allocation scheme for the OFDM-based CR system with one SU influenced by multiple PU interference constraints. This scheme is based on an improved artificial fish swarm (IAFS) algorithm in combination with the advantage of conventional artificial fish swarm (ASF) algorithm and particle swarm optimisation (PSO) algorithm. In performance comparison of IAFS algorithm with other intelligent algorithms by simulations, the superiority of the IAFS algorithm is illustrated; this superiority results in better performance of our proposed scheme than that of the power allocation algorithms proposed by the previous studies in the same scenario. Furthermore, our proposed scheme can obtain higher transmission data rate under the multiple PU interference constraints and the total power constraint of SU than that of the other mentioned works.
An Examination of New Paradigms for Spline Approximations.
Witzgall, Christoph; Gilsinn, David E; McClain, Marjorie A
2006-01-01
Lavery splines are examined in the univariate and bivariate cases. In both instances relaxation based algorithms for approximate calculation of Lavery splines are proposed. Following previous work Gilsinn, et al. [7] addressing the bivariate case, a rotationally invariant functional is assumed. The version of bivariate splines proposed in this paper also aims at irregularly spaced data and uses Hseih-Clough-Tocher elements based on the triangulated irregular network (TIN) concept. In this paper, the univariate case, however, is investigated in greater detail so as to further the understanding of the bivariate case.
Comprehensive European dietary exposure model (CEDEM) for food additives.
Tennant, David R
2016-05-01
European methods for assessing dietary exposures to nutrients, additives and other substances in food are limited by the availability of detailed food consumption data for all member states. A proposed comprehensive European dietary exposure model (CEDEM) applies summary data published by the European Food Safety Authority (EFSA) in a deterministic model based on an algorithm from the EFSA intake method for food additives. The proposed approach can predict estimates of food additive exposure provided in previous EFSA scientific opinions that were based on the full European food consumption database.
Position Accuracy Analysis of a Robust Vision-Based Navigation
NASA Astrophysics Data System (ADS)
Gaglione, S.; Del Pizzo, S.; Troisi, S.; Angrisano, A.
2018-05-01
Using images to determine camera position and attitude is a consolidated method, very widespread for application like UAV navigation. In harsh environment, where GNSS could be degraded or denied, image-based positioning could represent a possible candidate for an integrated or alternative system. In this paper, such method is investigated using a system based on single camera and 3D maps. A robust estimation method is proposed in order to limit the effect of blunders or noisy measurements on position solution. The proposed approach is tested using images collected in an urban canyon, where GNSS positioning is very unaccurate. A previous photogrammetry survey has been performed to build the 3D model of tested area. The position accuracy analysis is performed and the effect of the robust method proposed is validated.
An Information Retrieval Approach for Robust Prediction of Road Surface States.
Park, Jae-Hyung; Kim, Kwanho
2017-01-28
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.
Banik, Tenley J.; Wallace, Paul J.; Höskuldsson, Ármann; Miller, Calvin F.; Bacon, Charles R.; Furbish, David J.
2013-01-01
Products of subglacial volcanism can illuminate reconstructions of paleo-environmental conditions on both local and regional scales. Competing interpretations of Pleistocene conditions in south Iceland have been proposed based on an extensive sequence of repeating lava-and-hyaloclastite deposits in the Síða district. We propose here a new eruptive model and refine the glacial environment during eruption based on field research and analytical data for the Síða district lava/hyaloclastite units. Field observations from this and previous studies reveal a repeating sequence of cogenetic lava and hyaloclastite deposits extending many kilometers from their presumed eruptive source. Glasses from lava selvages and unaltered hyaloclastites have very low H2O, S, and CO2 concentrations, indicating significant degassing at or close to atmospheric pressure prior to quenching. We also present a scenario that demonstrates virtual co-emplacement of the two eruptive products. Our data and model results suggest repeated eruptions under thin ice or partially subaerial conditions, rather than eruption under a thick ice sheet or subglacial conditions as previously proposed.
ECG Sensor Card with Evolving RBP Algorithms for Human Verification.
Tseng, Kuo-Kun; Huang, Huang-Nan; Zeng, Fufu; Tu, Shu-Yi
2015-08-21
It is known that cardiac and respiratory rhythms in electrocardiograms (ECGs) are highly nonlinear and non-stationary. As a result, most traditional time-domain algorithms are inadequate for characterizing the complex dynamics of the ECG. This paper proposes a new ECG sensor card and a statistical-based ECG algorithm, with the aid of a reduced binary pattern (RBP), with the aim of achieving faster ECG human identity recognition with high accuracy. The proposed algorithm has one advantage that previous ECG algorithms lack-the waveform complex information and de-noising preprocessing can be bypassed; therefore, it is more suitable for non-stationary ECG signals. Experimental results tested on two public ECG databases (MIT-BIH) from MIT University confirm that the proposed scheme is feasible with excellent accuracy, low complexity, and speedy processing. To be more specific, the advanced RBP algorithm achieves high accuracy in human identity recognition and is executed at least nine times faster than previous algorithms. Moreover, based on the test results from a long-term ECG database, the evolving RBP algorithm also demonstrates superior capability in handling long-term and non-stationary ECG signals.
An Information Retrieval Approach for Robust Prediction of Road Surface States
Park, Jae-Hyung; Kim, Kwanho
2017-01-01
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods. PMID:28134859
Color image watermarking against fog effects
NASA Astrophysics Data System (ADS)
Chotikawanid, Piyanart; Amornraksa, Thumrongrat
2017-07-01
Fog effects in various computer and camera software can partially or fully damage the watermark information within the watermarked image. In this paper, we propose a color image watermarking based on the modification of reflectance component against fog effects. The reflectance component is extracted from the blue color channel in the RGB color space of a host image, and then used to carry a watermark signal. The watermark extraction is blindly achieved by subtracting the estimation of the original reflectance component from the watermarked component. The performance of the proposed watermarking method in terms of wPSNR and NC is evaluated, and then compared with the previous method. The experimental results on robustness against various levels of fog effect, from both computer software and mobile application, demonstrated a higher robustness of our proposed method, compared to the previous one.
NASA Astrophysics Data System (ADS)
Masalmah, Yahya M.; Vélez-Reyes, Miguel
2007-04-01
The authors proposed in previous papers the use of the constrained Positive Matrix Factorization (cPMF) to perform unsupervised unmixing of hyperspectral imagery. Two iterative algorithms were proposed to compute the cPMF based on the Gauss-Seidel and penalty approaches to solve optimization problems. Results presented in previous papers have shown the potential of the proposed method to perform unsupervised unmixing in HYPERION and AVIRIS imagery. The performance of iterative methods is highly dependent on the initialization scheme. Good initialization schemes can improve convergence speed, whether or not a global minimum is found, and whether or not spectra with physical relevance are retrieved as endmembers. In this paper, different initializations using random selection, longest norm pixels, and standard endmembers selection routines are studied and compared using simulated and real data.
Virtual Estimator for Piecewise Linear Systems Based on Observability Analysis
Morales-Morales, Cornelio; Adam-Medina, Manuel; Cervantes, Ilse; Vela-Valdés and, Luis G.; García Beltrán, Carlos Daniel
2013-01-01
This article proposes a virtual sensor for piecewise linear systems based on observability analysis that is in function of a commutation law related with the system's outpu. This virtual sensor is also known as a state estimator. Besides, it presents a detector of active mode when the commutation sequences of each linear subsystem are arbitrary and unknown. For the previous, this article proposes a set of virtual estimators that discern the commutation paths of the system and allow estimating their output. In this work a methodology in order to test the observability for piecewise linear systems with discrete time is proposed. An academic example is presented to show the obtained results. PMID:23447007
Small intestinal model for electrically propelled capsule endoscopy
2011-01-01
The aim of this research is to propose a small intestine model for electrically propelled capsule endoscopy. The electrical stimulus can cause contraction of the small intestine and propel the capsule along the lumen. The proposed model considered the drag and friction from the small intestine using a thin walled model and Stokes' drag equation. Further, contraction force from the small intestine was modeled by using regression analysis. From the proposed model, the acceleration and velocity of various exterior shapes of capsule were calculated, and two exterior shapes of capsules were proposed based on the internal volume of the capsules. The proposed capsules were fabricated and animal experiments were conducted. One of the proposed capsules showed an average (SD) velocity in forward direction of 2.91 ± 0.99 mm/s and 2.23 ± 0.78 mm/s in the backward direction, which was 5.2 times faster than that obtained in previous research. The proposed model can predict locomotion of the capsule based on various exterior shapes of the capsule. PMID:22177218
Case-based retrieval framework for gene expression data.
Anaissi, Ali; Goyal, Madhu; Catchpoole, Daniel R; Braytee, Ali; Kennedy, Paul J
2015-01-01
The process of retrieving similar cases in a case-based reasoning system is considered a big challenge for gene expression data sets. The huge number of gene expression values generated by microarray technology leads to complex data sets and similarity measures for high-dimensional data are problematic. Hence, gene expression similarity measurements require numerous machine-learning and data-mining techniques, such as feature selection and dimensionality reduction, to be incorporated into the retrieval process. This article proposes a case-based retrieval framework that uses a k-nearest-neighbor classifier with a weighted-feature-based similarity to retrieve previously treated patients based on their gene expression profiles. The herein-proposed methodology is validated on several data sets: a childhood leukemia data set collected from The Children's Hospital at Westmead, as well as the Colon cancer, the National Cancer Institute (NCI), and the Prostate cancer data sets. Results obtained by the proposed framework in retrieving patients of the data sets who are similar to new patients are as follows: 96% accuracy on the childhood leukemia data set, 95% on the NCI data set, 93% on the Colon cancer data set, and 98% on the Prostate cancer data set. The designed case-based retrieval framework is an appropriate choice for retrieving previous patients who are similar to a new patient, on the basis of their gene expression data, for better diagnosis and treatment of childhood leukemia. Moreover, this framework can be applied to other gene expression data sets using some or all of its steps.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-29
... controverted. In addition, the requestor/petitioner shall provide a brief explanation of the bases for the... changes to the Bases or licensee-controlled document will be evaluated pursuant to the requirements of 10... isolation, or radiological consequences of any accident previously evaluated. Further, the proposed changes...
NASA Astrophysics Data System (ADS)
Hirabayashi, Miki; Ohashi, Hirotada; Kubo, Tai
We have presented experimental analysis on the controllability of our transcription-based diagnostic biomolecular automata by programmed molecules. Focusing on the noninvasive transcriptome diagnosis by salivary mRNAs, we already proposed the novel concept of diagnostic device using DNA computation. This system consists of the main computational element which has a stem shaped promoter region and a pseudo-loop shaped read-only memory region for transcription regulation through the conformation change caused by the recognition of disease-related biomarkers. We utilize the transcription of malachite green aptamer sequence triggered by the target recognition for observation of detection. This algorithm makes it possible to release RNA-aptamer drugs multiply, different from the digestion-based systems by the restriction enzyme which was proposed previously, for the in-vivo use, however, the controllability of aptamer release is not enough at the previous stage. In this paper, we verified the regulation effect on aptamer transcription by programmed molecules in basic conditions towards the developm! ent of therapeutic automata. These results would bring us one step closer to the realization of new intelligent diagnostic and therapeutic automata based on molecular circuits.
Synchronization stability of memristor-based complex-valued neural networks with time delays.
Liu, Dan; Zhu, Song; Ye, Er
2017-12-01
This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
de La Cal, E. A.; Fernández, E. M.; Quiroga, R.; Villar, J. R.; Sedano, J.
In previous works a methodology was defined, based on the design of a genetic algorithm GAP and an incremental training technique adapted to the learning of series of stock market values. The GAP technique consists in a fusion of GP and GA. The GAP algorithm implements the automatic search for crisp trading rules taking as objectives of the training both the optimization of the return obtained and the minimization of the assumed risk. Applying the proposed methodology, rules have been obtained for a period of eight years of the S&P500 index. The achieved adjustment of the relation return-risk has generated rules with returns very superior in the testing period to those obtained applying habitual methodologies and even clearly superior to Buy&Hold. This work probes that the proposed methodology is valid for different assets in a different market than previous work.
The Model of Lake Operation in Water Transfer Projects Based on the Theory of Water- right
NASA Astrophysics Data System (ADS)
Bi-peng, Yan; Chao, Liu; Fang-ping, Tang
the lake operation is a very important content in Water Transfer Projects. The previous studies have not any related to water-right and water- price previous. In this paper, water right is divided into three parts, one is initialization waterright, another is by investment, and the third is government's water- right re-distribution. The water-right distribution model is also build. After analyzing the cost in water transfer project, a model and computation method for the capacity price as well as quantity price is proposed. The model of lake operation in water transfer projects base on the theory of water- right is also build. The simulation regulation for the lake was carried out by using historical data and Genetic Algorithms. Water supply and impoundment control line of the lake was proposed. The result can be used by south to north water transfer projects.
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.
Link-Based Similarity Measures Using Reachability Vectors
Yoon, Seok-Ho; Kim, Ji-Soo; Ryu, Minsoo; Choi, Ho-Jin
2014-01-01
We present a novel approach for computing link-based similarities among objects accurately by utilizing the link information pertaining to the objects involved. We discuss the problems with previous link-based similarity measures and propose a novel approach for computing link based similarities that does not suffer from these problems. In the proposed approach each target object is represented by a vector. Each element of the vector corresponds to all the objects in the given data, and the value of each element denotes the weight for the corresponding object. As for this weight value, we propose to utilize the probability of reaching from the target object to the specific object, computed using the “Random Walk with Restart” strategy. Then, we define the similarity between two objects as the cosine similarity of the two vectors. In this paper, we provide examples to show that our approach does not suffer from the aforementioned problems. We also evaluate the performance of the proposed methods in comparison with existing link-based measures, qualitatively and quantitatively, with respect to two kinds of data sets, scientific papers and Web documents. Our experimental results indicate that the proposed methods significantly outperform the existing measures. PMID:24701188
NASA Astrophysics Data System (ADS)
Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya
2017-01-01
In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.
A DTN-Based Multiple Access Fast Forward Service for the NASA Space Network
NASA Technical Reports Server (NTRS)
Israel, David; Davis, Faith; Marquart. Jane
2011-01-01
The NASA Space Network provides a demand access return link service capable of providing users a space link "on demand". An equivalent service in the forward link direction is not possible due to Tracking and Data Relay Spacecraft (TDRS) constraints. A Disruption Tolerant Networking (DTN)-based Multiple Access Fast Forward (MAFF) service has been proposed to provide a forward link to a user as soon as possible. Previous concept studies have identified a basic architecture and implementation approach. This paper reviews the user scenarios and benefits of an MAFF service and proposes an implementation approach based on the use of DTN protocols.
Nearest unlike neighbor (NUN): an aid to decision confidence estimation
NASA Astrophysics Data System (ADS)
Dasarathy, Belur V.
1995-09-01
The concept of nearest unlike neighbor (NUN), proposed and explored previously in the design of nearest neighbor (NN) based decision systems, is further exploited in this study to develop a measure of confidence in the decisions made by NN-based decision systems. This measure of confidence, on the basis of comparison with a user-defined threshold, may be used to determine the acceptability of the decision provided by the NN-based decision system. The concepts, associated methodology, and some illustrative numerical examples using the now classical Iris data to bring out the ease of implementation and effectiveness of the proposed innovations are presented.
An evidential link prediction method and link predictability based on Shannon entropy
NASA Astrophysics Data System (ADS)
Yin, Likang; Zheng, Haoyang; Bian, Tian; Deng, Yong
2017-09-01
Predicting missing links is of both theoretical value and practical interest in network science. In this paper, we empirically investigate a new link prediction method base on similarity and compare nine well-known local similarity measures on nine real networks. Most of the previous studies focus on the accuracy, however, it is crucial to consider the link predictability as an initial property of networks itself. Hence, this paper has proposed a new link prediction approach called evidential measure (EM) based on Dempster-Shafer theory. Moreover, this paper proposed a new method to measure link predictability via local information and Shannon entropy.
Rahimi Azghadi, Mostafa; Iannella, Nicolangelo; Al-Sarawi, Said; Abbott, Derek
2014-01-01
Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities. PMID:24551089
Rahimi Azghadi, Mostafa; Iannella, Nicolangelo; Al-Sarawi, Said; Abbott, Derek
2014-01-01
Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN) paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities.
Makeyev, Oleksandr; Ding, Quan; Kay, Steven M; Besio, Walter G
2012-01-01
As epilepsy affects approximately one percent of the world population, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via tripolar concentric ring electrodes on the scalp of rats after inducing seizures with pentylenetetrazole. We developed a system to detect seizures and automatically trigger the stimulation and evaluated the system on the electrographic activity from rats. In this preliminary study we propose and validate a novel seizure onset detection algorithm based on exponentially embedded family. Unlike the previously proposed approach it integrates the data from multiple electrodes allowing an improvement of the detector performance.
Diegoli, Toni Marie; Rohde, Heinrich; Borowski, Stefan; Krawczak, Michael; Coble, Michael D; Nothnagel, Michael
2016-11-01
Typing of X chromosomal short tandem repeat (X STR) markers has become a standard element of human forensic genetic analysis. Joint consideration of many X STR markers at a time increases their discriminatory power but, owing to physical linkage, requires inter-marker recombination rates to be accurately known. We estimated the recombination rates between 15 well established X STR markers using genotype data from 158 families (1041 individuals) and following a previously proposed likelihood-based approach that allows for single-step mutations. To meet the computational requirements of this family-based type of analysis, we modified a previous implementation so as to allow multi-core parallelization on a high-performance computing system. While we obtained recombination rate estimates larger than zero for all but one pair of adjacent markers within the four previously proposed linkage groups, none of the three X STR pairs defining the junctions of these groups yielded a recombination rate estimate of 0.50. Corroborating previous studies, our results therefore argue against a simple model of independent X chromosomal linkage groups. Moreover, the refined recombination fraction estimates obtained in our study will facilitate the appropriate joint consideration of all 15 investigated markers in forensic analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A vertical handoff decision algorithm based on ARMA prediction model
NASA Astrophysics Data System (ADS)
Li, Ru; Shen, Jiao; Chen, Jun; Liu, Qiuhuan
2012-01-01
With the development of computer technology and the increasing demand for mobile communications, the next generation wireless networks will be composed of various wireless networks (e.g., WiMAX and WiFi). Vertical handoff is a key technology of next generation wireless networks. During the vertical handoff procedure, handoff decision is a crucial issue for an efficient mobility. Based on auto regression moving average (ARMA) prediction model, we propose a vertical handoff decision algorithm, which aims to improve the performance of vertical handoff and avoid unnecessary handoff. Based on the current received signal strength (RSS) and the previous RSS, the proposed approach adopt ARMA model to predict the next RSS. And then according to the predicted RSS to determine whether trigger the link layer triggering event and complete vertical handoff. The simulation results indicate that the proposed algorithm outperforms the RSS-based scheme with a threshold in the performance of handoff and the number of handoff.
Threshold secret sharing scheme based on phase-shifting interferometry.
Deng, Xiaopeng; Shi, Zhengang; Wen, Wei
2016-11-01
We propose a new method for secret image sharing with the (3,N) threshold scheme based on phase-shifting interferometry. The secret image, which is multiplied with an encryption key in advance, is first encrypted by using Fourier transformation. Then, the encoded image is shared into N shadow images based on the recording principle of phase-shifting interferometry. Based on the reconstruction principle of phase-shifting interferometry, any three or more shadow images can retrieve the secret image, while any two or fewer shadow images cannot obtain any information of the secret image. Thus, a (3,N) threshold secret sharing scheme can be implemented. Compared with our previously reported method, the algorithm of this paper is suited for not only a binary image but also a gray-scale image. Moreover, the proposed algorithm can obtain a larger threshold value t. Simulation results are presented to demonstrate the feasibility of the proposed method.
Wide-Baseline Stereo-Based Obstacle Mapping for Unmanned Surface Vehicles
Mou, Xiaozheng; Wang, Han
2018-01-01
This paper proposes a wide-baseline stereo-based static obstacle mapping approach for unmanned surface vehicles (USVs). The proposed approach eliminates the complicated calibration work and the bulky rig in our previous binocular stereo system, and raises the ranging ability from 500 to 1000 m with a even larger baseline obtained from the motion of USVs. Integrating a monocular camera with GPS and compass information in this proposed system, the world locations of the detected static obstacles are reconstructed while the USV is traveling, and an obstacle map is then built. To achieve more accurate and robust performance, multiple pairs of frames are leveraged to synthesize the final reconstruction results in a weighting model. Experimental results based on our own dataset demonstrate the high efficiency of our system. To the best of our knowledge, we are the first to address the task of wide-baseline stereo-based obstacle mapping in a maritime environment. PMID:29617293
Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.
Xiao Yang; Jianjiang Feng; Jie Zhou
2014-05-01
Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.
Video-based depression detection using local Curvelet binary patterns in pairwise orthogonal planes.
Pampouchidou, Anastasia; Marias, Kostas; Tsiknakis, Manolis; Simos, Panagiotis; Fan Yang; Lemaitre, Guillaume; Meriaudeau, Fabrice
2016-08-01
Depression is an increasingly prevalent mood disorder. This is the reason why the field of computer-based depression assessment has been gaining the attention of the research community during the past couple of years. The present work proposes two algorithms for depression detection, one Frame-based and the second Video-based, both employing Curvelet transform and Local Binary Patterns. The main advantage of these methods is that they have significantly lower computational requirements, as the extracted features are of very low dimensionality. This is achieved by modifying the previously proposed algorithm which considers Three-Orthogonal-Planes, to only Pairwise-Orthogonal-Planes. Performance of the algorithms was tested on the benchmark dataset provided by the Audio/Visual Emotion Challenge 2014, with the person-specific system achieving 97.6% classification accuracy, and the person-independed one yielding promising preliminary results of 74.5% accuracy. The paper concludes with open issues, proposed solutions, and future plans.
Chaos based video encryption using maps and Ikeda time delay system
NASA Astrophysics Data System (ADS)
Valli, D.; Ganesan, K.
2017-12-01
Chaos based cryptosystems are an efficient method to deal with improved speed and highly secured multimedia encryption because of its elegant features, such as randomness, mixing, ergodicity, sensitivity to initial conditions and control parameters. In this paper, two chaos based cryptosystems are proposed: one is the higher-dimensional 12D chaotic map and the other is based on the Ikeda delay differential equation (DDE) suitable for designing a real-time secure symmetric video encryption scheme. These encryption schemes employ a substitution box (S-box) to diffuse the relationship between pixels of plain video and cipher video along with the diffusion of current input pixel with the previous cipher pixel, called cipher block chaining (CBC). The proposed method enhances the robustness against statistical, differential and chosen/known plain text attacks. Detailed analysis is carried out in this paper to demonstrate the security and uniqueness of the proposed scheme.
Gray-world-assumption-based illuminant color estimation using color gamuts with high and low chroma
NASA Astrophysics Data System (ADS)
Kawamura, Harumi; Yonemura, Shunichi; Ohya, Jun; Kojima, Akira
2013-02-01
A new approach is proposed for estimating illuminant colors from color images under an unknown scene illuminant. The approach is based on a combination of a gray-world-assumption-based illuminant color estimation method and a method using color gamuts. The former method, which is one we had previously proposed, improved on the original method that hypothesizes that the average of all the object colors in a scene is achromatic. Since the original method estimates scene illuminant colors by calculating the average of all the image pixel values, its estimations are incorrect when certain image colors are dominant. Our previous method improves on it by choosing several colors on the basis of an opponent-color property, which is that the average color of opponent colors is achromatic, instead of using all colors. However, it cannot estimate illuminant colors when there are only a few image colors or when the image colors are unevenly distributed in local areas in the color space. The approach we propose in this paper combines our previous method and one using high chroma and low chroma gamuts, which makes it possible to find colors that satisfy the gray world assumption. High chroma gamuts are used for adding appropriate colors to the original image and low chroma gamuts are used for narrowing down illuminant color possibilities. Experimental results obtained using actual images show that even if the image colors are localized in a certain area in the color space, the illuminant colors are accurately estimated, with smaller estimation error average than that generated in the conventional method.
Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.
Li, Yun; Ho, K C; Popescu, Mihail
2014-03-01
Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.
Prediction of frozen food properties during freezing using product composition.
Boonsupthip, W; Heldman, D R
2007-06-01
Frozen water fraction (FWF), as a function of temperature, is an important parameter for use in the design of food freezing processes. An FWF-prediction model, based on concentrations and molecular weights of specific product components, has been developed. Published food composition data were used to determine the identity and composition of key components. The model proposed in this investigation had been verified using published experimental FWF data and initial freezing temperature data, and by comparison to outputs from previously published models. It was found that specific food components with significant influence on freezing temperature depression of food products included low molecular weight water-soluble compounds with molality of 50 micromol per 100 g food or higher. Based on an analysis of 200 high-moisture food products, nearly 45% of the experimental initial freezing temperature data were within an absolute difference (AD) of +/- 0.15 degrees C and standard error (SE) of +/- 0.65 degrees C when compared to values predicted by the proposed model. The predicted relationship between temperature and FWF for all analyzed food products provided close agreements with experimental data (+/- 0.06 SE). The proposed model provided similar prediction capability for high- and intermediate-moisture food products. In addition, the proposed model provided statistically better prediction of initial freezing temperature and FWF than previous published models.
NASA Astrophysics Data System (ADS)
Allman, Derek; Reiter, Austin; Bell, Muyinatu
2018-02-01
We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.
Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms
NASA Astrophysics Data System (ADS)
Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.
7 CFR 3403.6 - Content of proposals.
Code of Federal Regulations, 2010 CFR
2010-01-01
... development of a project based on previously completed research, will not be accepted. Literature surveys... Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE SMALL BUSINESS INNOVATION RESEARCH GRANTS PROGRAM...
Automatic Weather Station (AWS) Lidar
NASA Technical Reports Server (NTRS)
Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)
2001-01-01
A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.
Two-Phase chief complaint mapping to the UMLS metathesaurus in Korean electronic medical records.
Kang, Bo-Yeong; Kim, Dae-Won; Kim, Hong-Gee
2009-01-01
The task of automatically determining the concepts referred to in chief complaint (CC) data from electronic medical records (EMRs) is an essential component of many EMR applications aimed at biosurveillance for disease outbreaks. Previous approaches that have been used for this concept mapping have mainly relied on term-level matching, whereby the medical terms in the raw text and their synonyms are matched with concepts in a terminology database. These previous approaches, however, have shortcomings that limit their efficacy in CC concept mapping, where the concepts for CC data are often represented by associative terms rather than by synonyms. Therefore, herein we propose a concept mapping scheme based on a two-phase matching approach, especially for application to Korean CCs, which uses term-level complete matching in the first phase and concept-level matching based on concept learning in the second phase. The proposed concept-level matching suggests the method to learn all the terms (associative terms as well as synonyms) that represent the concept and predict the most probable concept for a CC based on the learned terms. Experiments on 1204 CCs extracted from 15,618 discharge summaries of Korean EMRs showed that the proposed method gave significantly improved F-measure values compared to the baseline system, with improvements of up to 73.57%.
GaAs Spectrometer for Electron Spectroscopy at Europa
NASA Astrophysics Data System (ADS)
Lioliou, G.; Barnett, A. M.
2016-12-01
We propose a GaAs based electron spectrometer for a hypothetical future mission orbiting Europa. Previous observations at Europa's South Pole with the Hubble Space Telescope of hydrogen Lyman-α and oxygen OI 130.4 nm emissions were consistent with water vapor plumes [Roth et al., 2014, Science 343, 171]. Future observations and analysis of plumes on Europa could provide information about its subsurface structure and the distribution of liquid water within its icy shells [Rhoden at al. 2015, Icarus 253, 169]. In situ low energy (1keV - 100keV) electron spectroscopy along with UV imaging either in situ or with the Hubble Space Telescope Wide Field Camera 3 or similar would allow verification of the auroral observations being due to electron impact excitation of water vapor plumes. The proposed spectrometer includes a novel GaAs p+-i-n+ photodiode and a custom-made charge-sensitive preamplifier. The use of an early prototype GaAs detector for direct electron spectroscopy has already been demonstrated in ground based applications [Barnett et al., 2012, J. Instrum. 7, P09012]. Based on previous radiation hardness measurements of GaAs, the expected duration of the mission without degradation of the detector performance is estimated to be 4 months. Simulations and laboratory experiments characterising the detection performance of the proposed system are presented.
Foot-mounted inertial measurement unit for activity classification.
Ghobadi, Mostafa; Esfahani, Ehsan T
2014-01-01
This paper proposes a classification technique for daily base activity recognition for human monitoring during physical therapy in home. The proposed method estimates the foot motion using single inertial measurement unit, then segments the motion into steps classify them by template-matching as walking, stairs up or stairs down steps. The results show a high accuracy of activity recognition. Unlike previous works which are limited to activity recognition, the proposed approach is more qualitative by providing similarity index of any activity to its desired template which can be used to assess subjects improvement.
Lin, Meihua; Li, Haoli; Zhao, Xiaolei; Qin, Jiheng
2013-01-01
Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects. PMID:24339984
Perthold, Jan Walther; Oostenbrink, Chris
2018-05-17
Enveloping distribution sampling (EDS) is an efficient approach to calculate multiple free-energy differences from a single molecular dynamics (MD) simulation. However, the construction of an appropriate reference-state Hamiltonian that samples all states efficiently is not straightforward. We propose a novel approach for the construction of the EDS reference-state Hamiltonian, related to a previously described procedure to smoothen energy landscapes. In contrast to previously suggested EDS approaches, our reference-state Hamiltonian preserves local energy minima of the combined end-states. Moreover, we propose an intuitive, robust and efficient parameter optimization scheme to tune EDS Hamiltonian parameters. We demonstrate the proposed method with established and novel test systems and conclude that our approach allows for the automated calculation of multiple free-energy differences from a single simulation. Accelerated EDS promises to be a robust and user-friendly method to compute free-energy differences based on solid statistical mechanics.
Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki
2013-06-17
We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as "our previous method") using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as "our new method"). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal.
Gamma-ray spectroscopy in the decay of (83)Se to levels of (83)Br.
Krane, K S
2015-03-01
High-resolution γ ray spectroscopy experiments have been done to study the emissions from the radioactive decay of 22-min (83g)Se produced from neutron capture using samples of enriched (82)Se. Energy and intensity values have been obtained to roughly an order of magnitude greater precision than in previous studies. Based on energy sums, 2 new levels are proposed in the daughter (83)Br and one previously proposed level is shown to be doubtful. Some 25 new transitions appear to decay with the (83)Se halflife, about half of which can be accommodated among the previous or newly proposed levels. Several previous γ ray placements are shown to be inconsistent with the new determinations of the (83)Br energy levels, but cannot be accommodated anywhere else among the known levels. As a result of the missing γ ray placements, some of the β branchings in the decay to levels of (83)Br appear to be negative. Gamma rays from the 2.4-h decay of the daughter (83)Br to levels of (83)Kr have also been observed, along with decays of (81g)(,m)Se present as a small impurity in the enriched samples and also as a strong component in irradiated samples of natural Se. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chen, Chih-Hung; Hwang, Gwo-Jen
2017-01-01
Previous research has illustrated the importance of acquiring knowledge from authentic contexts; however, without full engagement, students' learning performance might not be as good as expected. In this study, a Team Competition-based Ubiquitous Gaming approach was proposed for improving students' learning effectiveness in authentic learning…
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
ERIC Educational Resources Information Center
Weiss, Brandi A.; Dardick, William
2016-01-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…
ERIC Educational Resources Information Center
Baayen, R. Harald; Milin, Petar; Durdevic, Dusica Filipovic; Hendrix, Peter; Marelli, Marco
2011-01-01
A 2-layer symbolic network model based on the equilibrium equations of the Rescorla-Wagner model (Danks, 2003) is proposed. The study first presents 2 experiments in Serbian, which reveal for sentential reading the inflectional paradigmatic effects previously observed by Milin, Filipovic Durdevic, and Moscoso del Prado Martin (2009) for unprimed…
GPU-Based Point Cloud Superpositioning for Structural Comparisons of Protein Binding Sites.
Leinweber, Matthias; Fober, Thomas; Freisleben, Bernd
2018-01-01
In this paper, we present a novel approach to solve the labeled point cloud superpositioning problem for performing structural comparisons of protein binding sites. The solution is based on a parallel evolution strategy that operates on large populations and runs on GPU hardware. The proposed evolution strategy reduces the likelihood of getting stuck in a local optimum of the multimodal real-valued optimization problem represented by labeled point cloud superpositioning. The performance of the GPU-based parallel evolution strategy is compared to a previously proposed CPU-based sequential approach for labeled point cloud superpositioning, indicating that the GPU-based parallel evolution strategy leads to qualitatively better results and significantly shorter runtimes, with speed improvements of up to a factor of 1,500 for large populations. Binary classification tests based on the ATP, NADH, and FAD protein subsets of CavBase, a database containing putative binding sites, show average classification rate improvements from about 92 percent (CPU) to 96 percent (GPU). Further experiments indicate that the proposed GPU-based labeled point cloud superpositioning approach can be superior to traditional protein comparison approaches based on sequence alignments.
Sha, Zhichao; Liu, Zhengmeng; Huang, Zhitao; Zhou, Yiyu
2013-08-29
This paper addresses the problem of direction-of-arrival (DOA) estimation of multiple wideband coherent chirp signals, and a new method is proposed. The new method is based on signal component analysis of the array output covariance, instead of the complicated time-frequency analysis used in previous literatures, and thus is more compact and effectively avoids possible signal energy loss during the hyper-processes. Moreover, the a priori information of signal number is no longer a necessity for DOA estimation in the new method. Simulation results demonstrate the performance superiority of the new method over previous ones.
Mathematical Analysis for Non-reciprocal-interaction-based Model of Collective Behavior
NASA Astrophysics Data System (ADS)
Kano, Takeshi; Osuka, Koichi; Kawakatsu, Toshihiro; Ishiguro, Akio
2017-12-01
In many natural and social systems, collective behaviors emerge as a consequence of non-reciprocal interaction between their constituents. As a first step towards understanding the core principle that underlies these phenomena, we previously proposed a minimal model of collective behavior based on non-reciprocal interactions by drawing inspiration from friendship formation in human society, and demonstrated via simulations that various non-trivial patterns emerge by changing parameters. In this study, a mathematical analysis of the proposed model wherein the system size is small is performed. Through the analysis, the mechanism of the transition between several patterns is elucidated.
Latent component-based gear tooth fault detection filter using advanced parametric modeling
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.; Sadeghi, M. H.; Rezaee, M.; Chitsaz, S.
2009-10-01
In this paper, a new parametric model-based filter is proposed for gear tooth fault detection. The designing of the filter consists of identifying the most proper latent component (LC) of the undamaged gearbox signal by analyzing the instant modules (IMs) and instant frequencies (IFs) and then using the component with lowest IM as the proposed filter output for detecting fault of the gearbox. The filter parameters are estimated by using the LC theory in which an advanced parametric modeling method has been implemented. The proposed method is applied on the signals, extracted from simulated gearbox for detection of the simulated gear faults. In addition, the method is used for quality inspection of the produced Nissan-Junior vehicle gearbox by gear profile error detection in an industrial test bed. For evaluation purpose, the proposed method is compared with the previous parametric TAR/AR-based filters in which the parametric model residual is considered as the filter output and also Yule-Walker and Kalman filter are implemented for estimating the parameters. The results confirm the high performance of the new proposed fault detection method.
Scene-based nonuniformity correction with reduced ghosting using a gated LMS algorithm.
Hardie, Russell C; Baxley, Frank; Brys, Brandon; Hytla, Patrick
2009-08-17
In this paper, we present a scene-based nouniformity correction (NUC) method using a modified adaptive least mean square (LMS) algorithm with a novel gating operation on the updates. The gating is designed to significantly reduce ghosting artifacts produced by many scene-based NUC algorithms by halting updates when temporal variation is lacking. We define the algorithm and present a number of experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published methods including other LMS and constant statistics based methods. The experimental results include simulated imagery and a real infrared image sequence. We show that the proposed method significantly reduces ghosting artifacts, but has a slightly longer convergence time. (c) 2009 Optical Society of America
Augmented reality glass-free three-dimensional display with the stereo camera
NASA Astrophysics Data System (ADS)
Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu
2017-10-01
An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.
Finger vein verification system based on sparse representation.
Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong
2012-09-01
Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, H; Chen, Z; Nath, R
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less
Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO
NASA Astrophysics Data System (ADS)
Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng
2015-12-01
This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.
A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.
Ghal-Eh, N; Green, S
2016-06-01
In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Automated Assume-Guarantee Reasoning by Abstraction Refinement
NASA Technical Reports Server (NTRS)
Pasareanu, Corina S.; Giannakopoulous, Dimitra; Glannakopoulou, Dimitra
2008-01-01
Current automated approaches for compositional model checking in the assume-guarantee style are based on learning of assumptions as deterministic automata. We propose an alternative approach based on abstraction refinement. Our new method computes the assumptions for the assume-guarantee rules as conservative and not necessarily deterministic abstractions of some of the components, and refines those abstractions using counter-examples obtained from model checking them together with the other components. Our approach also exploits the alphabets of the interfaces between components and performs iterative refinement of those alphabets as well as of the abstractions. We show experimentally that our preliminary implementation of the proposed alternative achieves similar or better performance than a previous learning-based implementation.
Intelligent design of permanent magnet synchronous motor based on CBR
NASA Astrophysics Data System (ADS)
Li, Cong; Fan, Beibei
2018-05-01
Aiming at many problems in the design process of Permanent magnet synchronous motor (PMSM), such as the complexity of design process, the over reliance on designers' experience and the lack of accumulation and inheritance of design knowledge, a design method of PMSM Based on CBR is proposed in order to solve those problems. In this paper, case-based reasoning (CBR) methods of cases similarity calculation is proposed for reasoning suitable initial scheme. This method could help designers, by referencing previous design cases, to make a conceptual PMSM solution quickly. The case retain process gives the system self-enrich function which will improve the design ability of the system with the continuous use of the system.
NASA Astrophysics Data System (ADS)
Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji
Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.
Jiang, Joe-Air; Chuang, Cheng-Long; Lin, Tzu-Shiang; Chen, Chia-Pang; Hung, Chih-Hung; Wang, Jiing-Yi; Liu, Chang-Wang; Lai, Tzu-Yun
2010-01-01
In recent years, various received signal strength (RSS)-based localization estimation approaches for wireless sensor networks (WSNs) have been proposed. RSS-based localization is regarded as a low-cost solution for many location-aware applications in WSNs. In previous studies, the radiation patterns of all sensor nodes are assumed to be spherical, which is an oversimplification of the radio propagation model in practical applications. In this study, we present an RSS-based cooperative localization method that estimates unknown coordinates of sensor nodes in a network. Arrangement of two external low-cost omnidirectional dipole antennas is developed by using the distance-power gradient model. A modified robust regression is also proposed to determine the relative azimuth and distance between a sensor node and a fixed reference node. In addition, a cooperative localization scheme that incorporates estimations from multiple fixed reference nodes is presented to improve the accuracy of the localization. The proposed method is tested via computer-based analysis and field test. Experimental results demonstrate that the proposed low-cost method is a useful solution for localizing sensor nodes in unknown or changing environments.
Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.
Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio
2018-02-21
Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.
Curveslam: Utilizing Higher Level Structure In Stereo Vision-Based Navigation
2012-01-01
consider their applica- tion to SLAM . The work of [31] [32] develops a spline-based SLAM framework, but this is only for application to LIDAR -based SLAM ...Existing approaches to visual Simultaneous Localization and Mapping ( SLAM ) typically utilize points as visual feature primitives to represent landmarks...regions of interest. Further, previous SLAM techniques that propose the use of higher level structures often place constraints on the environment, such as
NASA Astrophysics Data System (ADS)
Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing
2015-10-01
Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.
Goal-Proximity Decision-Making
ERIC Educational Resources Information Center
Veksler, Vladislav D.; Gray, Wayne D.; Schoelles, Michael J.
2013-01-01
Reinforcement learning (RL) models of decision-making cannot account for human decisions in the absence of prior reward or punishment. We propose a mechanism for choosing among available options based on goal-option association strengths, where association strengths between objects represent previously experienced object proximity. The proposed…
Spoof Detection for Finger-Vein Recognition System Using NIR Camera.
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-10-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-01-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods. PMID:28974031
Real-time generation of infrared ocean scene based on GPU
NASA Astrophysics Data System (ADS)
Jiang, Zhaoyi; Wang, Xun; Lin, Yun; Jin, Jianqiu
2007-12-01
Infrared (IR) image synthesis for ocean scene has become more and more important nowadays, especially for remote sensing and military application. Although a number of works present ready-to-use simulations, those techniques cover only a few possible ways of water interacting with the environment. And the detail calculation of ocean temperature is rarely considered by previous investigators. With the advance of programmable features of graphic card, many algorithms previously limited to offline processing have become feasible for real-time usage. In this paper, we propose an efficient algorithm for real-time rendering of infrared ocean scene using the newest features of programmable graphics processors (GPU). It differs from previous works in three aspects: adaptive GPU-based ocean surface tessellation, sophisticated balance equation of thermal balance for ocean surface, and GPU-based rendering for infrared ocean scene. Finally some results of infrared image are shown, which are in good accordance with real images.
Environmental Assessment to Construct a FAMCAMP, Sheppard Air Force Base, Texas
2013-01-05
Bennuda (Cynodon dactylon), buffalo grass (Buchloe dactyloides), Texas wintergrass (Stipa leucotricha), Johnson grass (Sorghum halepense), and...previously disturbed areas within the developed area of the base. The proposed project area is composed of grasses that are periodically mowed including...consist of approved mixtures of grass species. Periodically, herbicide would be applied as necessary to control undesirable plant species. Therefore
In this paper, we describe the limitations of radius of influence (ROI) evaluation for venting design in more detail than has been done previously and propose an alternative method based on specification and attainment of critical pore-gas velocities in contaminated subsurface me...
Color analysis and image rendering of woodblock prints with oil-based ink
NASA Astrophysics Data System (ADS)
Horiuchi, Takahiko; Tanimoto, Tetsushi; Tominaga, Shoji
2012-01-01
This paper proposes a method for analyzing the color characteristics of woodblock prints having oil-based ink and rendering realistic images based on camera data. The analysis results of woodblock prints show some characteristic features in comparison with oil paintings: 1) A woodblock print can be divided into several cluster areas, each with similar surface spectral reflectance; and 2) strong specular reflection from the influence of overlapping paints arises only in specific cluster areas. By considering these properties, we develop an effective rendering algorithm by modifying our previous algorithm for oil paintings. A set of surface spectral reflectances of a woodblock print is represented by using only a small number of average surface spectral reflectances and the registered scaling coefficients, whereas the previous algorithm for oil paintings required surface spectral reflectances of high dimension at all pixels. In the rendering process, in order to reproduce the strong specular reflection in specific cluster areas, we use two sets of parameters in the Torrance-Sparrow model for cluster areas with or without strong specular reflection. An experiment on a woodblock printing with oil-based ink was performed to demonstrate the feasibility of the proposed method.
Preference and strategy in proposer's prosocial giving in the ultimatum game.
Inaba, Misato; Inoue, Yumi; Akutsu, Satoshi; Takahashi, Nobuyuki; Yamagishi, Toshio
2018-01-01
The accumulation of findings that most responders in the ultimatum game reject unfair offers provides evidence that humans are driven by social preferences such as preferences for fairness and prosociality. On the other hand, if and how the proposer's behavior is affected by social preferences remains unelucidated. We addressed this question for the first time by manipulating the knowledge that the proposer had about the responder's belief concerning the intentionality of the proposer. In a new game called the "ultimatum game with ambiguous intentions of the proposer (UGAMB)," we made the intentionality of the proposer ambiguous to the recipient. We expected and found that the proposer would make more unfair offers in this new game than in the standard ultimatum game. This expectation can be derived from either the preference-based model or the strategy model of the proposer's giving decision. The additional finding that more unfair giving in the UGAMB was not mediated by the proposer's expectation that the recipient would be more willing to accept unfair offers provided support for the preference-based model. Using a psychological measure of cognitive control, the preference-based model received additional support through a conceptual replication of the previous finding that cognitive control of intuitive drive for prosociality in the dictator game, rather than mind reading in the ultimatum game, is responsible for the difference in giving between the two games.
Contourlet domain multiband deblurring based on color correlation for fluid lens cameras.
Tzeng, Jack; Liu, Chun-Chen; Nguyen, Truong Q
2010-10-01
Due to the novel fluid optics, unique image processing challenges are presented by the fluidic lens camera system. Developed for surgical applications, unique properties, such as no moving parts while zooming and better miniaturization than traditional glass optics, are advantages of the fluid lens. Despite these abilities, sharp color planes and blurred color planes are created by the nonuniform reaction of the liquid lens to different color wavelengths. Severe axial color aberrations are caused by this reaction. In order to deblur color images without estimating a point spread function, a contourlet filter bank system is proposed. Information from sharp color planes is used by this multiband deblurring method to improve blurred color planes. Compared to traditional Lucy-Richardson and Wiener deconvolution algorithms, significantly improved sharpness and reduced ghosting artifacts are produced by a previous wavelet-based method. Directional filtering is used by the proposed contourlet-based system to adjust to the contours of the image. An image is produced by the proposed method which has a similar level of sharpness to the previous wavelet-based method and has fewer ghosting artifacts. Conditions for when this algorithm will reduce the mean squared error are analyzed. While improving the blue color plane by using information from the green color plane is the primary focus of this paper, these methods could be adjusted to improve the red color plane. Many multiband systems such as global mapping, infrared imaging, and computer assisted surgery are natural extensions of this work. This information sharing algorithm is beneficial to any image set with high edge correlation. Improved results in the areas of deblurring, noise reduction, and resolution enhancement can be produced by the proposed algorithm.
Design and performance analysis of gas and liquid radial turbines
NASA Astrophysics Data System (ADS)
Tan, Xu
In the first part of the research, pumps running in reverse as turbines are studied. This work uses experimental data of wide range of pumps representing the centrifugal pumps' configurations in terms of specific speed. Based on specific speed and specific diameter an accurate correlation is developed to predict the performances at best efficiency point of the centrifugal pump in its turbine mode operation. The proposed prediction method yields very good results to date compared to previous such attempts. The present method is compared to nine previous methods found in the literature. The comparison results show that the method proposed in this paper is the most accurate. The proposed method can be further complemented and supplemented by more future tests to increase its accuracy. The proposed method is meaningful because it is based both specific speed and specific diameter. The second part of the research is focused on the design and analysis of the radial gas turbine. The specification of the turbine is obtained from the solar biogas hybrid system. The system is theoretically analyzed and constructed based on the purchased compressor. Theoretical analysis results in a specification of 100lb/min, 900ºC inlet total temperature and 1.575atm inlet total pressure. 1-D and 3-D geometry of the rotor is generated based on Aungier's method. 1-D loss model analysis and 3-D CFD simulations are performed to examine the performances of the rotor. The total-to-total efficiency of the rotor is more than 90%. With the help of CFD analysis, modifications on the preliminary design obtained optimized aerodynamic performances. At last, the theoretical performance analysis on the hybrid system is performed with the designed turbine.
A Lyapunov method for stability analysis of piecewise-affine systems over non-invariant domains
NASA Astrophysics Data System (ADS)
Rubagotti, Matteo; Zaccarian, Luca; Bemporad, Alberto
2016-05-01
This paper analyses stability of discrete-time piecewise-affine systems, defined on possibly non-invariant domains, taking into account the possible presence of multiple dynamics in each of the polytopic regions of the system. An algorithm based on linear programming is proposed, in order to prove exponential stability of the origin and to find a positively invariant estimate of its region of attraction. The results are based on the definition of a piecewise-affine Lyapunov function, which is in general discontinuous on the boundaries of the regions. The proposed method is proven to lead to feasible solutions in a broader range of cases as compared to a previously proposed approach. Two numerical examples are shown, among which a case where the proposed method is applied to a closed-loop system, to which model predictive control was applied without a-priori guarantee of stability.
Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng
2013-06-01
The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.
2018-02-01
Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.
A network-based dynamical ranking system for competitive sports
NASA Astrophysics Data System (ADS)
Motegi, Shun; Masuda, Naoki
2012-12-01
From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.
Toward a clearer portrayal of confounding bias in instrumental variable applications.
Jackson, John W; Swanson, Sonja A
2015-07-01
Recommendations for reporting instrumental variable analyses often include presenting the balance of covariates across levels of the proposed instrument and levels of the treatment. However, such presentation can be misleading as relatively small imbalances among covariates across levels of the instrument can result in greater bias because of bias amplification. We introduce bias plots and bias component plots as alternative tools for understanding biases in instrumental variable analyses. Using previously published data on proposed preference-based, geography-based, and distance-based instruments, we demonstrate why presenting covariate balance alone can be problematic, and how bias component plots can provide more accurate context for bias from omitting a covariate from an instrumental variable versus non-instrumental variable analysis. These plots can also provide relevant comparisons of different proposed instruments considered in the same data. Adaptable code is provided for creating the plots.
NASA Astrophysics Data System (ADS)
Kang, Donghun; Lee, Jungeon; Jung, Jongpil; Lee, Chul-Hee; Kyung, Chong-Min
2014-09-01
In mobile video systems powered by battery, reducing the encoder's compression energy consumption is critical to prolong its lifetime. Previous Energy-rate-distortion (E-R-D) optimization methods based on a software codec is not suitable for practical mobile camera systems because the energy consumption is too large and encoding rate is too low. In this paper, we propose an E-R-D model for the hardware codec based on the gate-level simulation framework to measure the switching activity and the energy consumption. From the proposed E-R-D model, an energy minimizing algorithm for mobile video camera sensor have been developed with the GOP (Group of Pictures) size and QP(Quantization Parameter) as run-time control variables. Our experimental results show that the proposed algorithm provides up to 31.76% of energy consumption saving while satisfying the rate and distortion constraints.
A Linearized Model for Flicker and Contrast Thresholds at Various Retinal Illuminances
NASA Technical Reports Server (NTRS)
Ahumada, Albert; Watson, Andrew
2015-01-01
We previously proposed a flicker visibility metric for bright displays, based on psychophysical data collected at a high mean luminance. Here we extend the metric to other mean luminances. This extension relies on a linear relation between log sensitivity and critical fusion frequency, and a linear relation between critical fusion frequency and log retina lilluminance. Consistent with our previous metric, the extended flicker visibility metric is measured in just-noticeable differences (JNDs).
Lu, Yanrong; Li, Lixiang; Peng, Haipeng; Xie, Dong; Yang, Yixian
2015-06-01
The Telecare Medicine Information Systems (TMISs) provide an efficient communicating platform supporting the patients access health-care delivery services via internet or mobile networks. Authentication becomes an essential need when a remote patient logins into the telecare server. Recently, many extended chaotic maps based authentication schemes using smart cards for TMISs have been proposed. Li et al. proposed a secure smart cards based authentication scheme for TMISs using extended chaotic maps based on Lee's and Jiang et al.'s scheme. In this study, we show that Li et al.'s scheme has still some weaknesses such as violation the session key security, vulnerability to user impersonation attack and lack of local verification. To conquer these flaws, we propose a chaotic maps and smart cards based password authentication scheme by applying biometrics technique and hash function operations. Through the informal and formal security analyses, we demonstrate that our scheme is resilient possible known attacks including the attacks found in Li et al.'s scheme. As compared with the previous authentication schemes, the proposed scheme is more secure and efficient and hence more practical for telemedical environments.
ERIC Educational Resources Information Center
Peretyatko, Artyom Yu.; Zulfugarzade, Teymur E.
2017-01-01
The paper reviews the project of reforms in the Don education, which were proposed by prominent public figures in the early 1860s., namely by A. M. Dondukov-Korsakov, Kh. I. Popov and N. I. Krasnov. Based on archival materials and publications by these authors, which in some cases have not been previously used in scientific studies, the paper…
Summary and Synthesis: How to Present a Research Proposal.
Setia, Maninder Singh; Panda, Saumya
2017-01-01
This concluding module attempts to synthesize the key learning points discussed during the course of the previous ten sets of modules on methodology and biostatistics. The objective of this module is to discuss how to present a model research proposal, based on whatever was discussed in the preceding modules. The lynchpin of a research proposal is the protocol, and the key component of a protocol is the study design. However, one must not neglect the other areas, be it the project summary through which one catches the eyes of the reviewer of the proposal, or the background and the literature review, or the aims and objectives of the study. Two critical areas in the "methods" section that cannot be emphasized more are the sampling strategy and a formal estimation of sample size. Without a legitimate sample size, none of the conclusions based on the statistical analysis would be valid. Finally, the ethical parameters of the study should be well understood by the researchers, and that should get reflected in the proposal.
Summary and Synthesis: How to Present a Research Proposal
Setia, Maninder Singh; Panda, Saumya
2017-01-01
This concluding module attempts to synthesize the key learning points discussed during the course of the previous ten sets of modules on methodology and biostatistics. The objective of this module is to discuss how to present a model research proposal, based on whatever was discussed in the preceding modules. The lynchpin of a research proposal is the protocol, and the key component of a protocol is the study design. However, one must not neglect the other areas, be it the project summary through which one catches the eyes of the reviewer of the proposal, or the background and the literature review, or the aims and objectives of the study. Two critical areas in the “methods” section that cannot be emphasized more are the sampling strategy and a formal estimation of sample size. Without a legitimate sample size, none of the conclusions based on the statistical analysis would be valid. Finally, the ethical parameters of the study should be well understood by the researchers, and that should get reflected in the proposal. PMID:28979004
Impulsive noise removal from color video with morphological filtering
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper deals with impulse noise removal from color video. The proposed noise removal algorithm employs a switching filtering for denoising of color video; that is, detection of corrupted pixels by means of a novel morphological filtering followed by removal of the detected pixels on the base of estimation of uncorrupted pixels in the previous scenes. With the help of computer simulation we show that the proposed algorithm is able to well remove impulse noise in color video. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
Ramkumar, Barathram; Sabarimalai Manikandan, M.
2017-01-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal. PMID:28529758
Roseman, Mary G; Riddell, Martha C; Haynes, Jessica N
2011-01-01
To review the literature, identifying proposed recommendations for school-based nutrition interventions, and evaluate kindergarten through 12th grade school-based nutrition interventions conducted from 2000-2008. Proposed recommendations from school-based intervention reviews were developed and used in conducting a content analysis of 26 interventions. Twenty-six school-based nutrition interventions in the United States first published in peer-reviewed journals from 2000-2008. VARIABLE MEASURED: Ten proposed recommendations based on prior analyses of school-based nutrition interventions: (1) behaviorally focused, (2) multicomponents, (3) healthful food/school environment, (4) family involvement, (5) self-assessments, (6) quantitative evaluation, (7) community involvement, (8) ethnic/heterogeneous groups, (9) multimedia technology, and (10) sequential and sufficient duration. Descriptive statistics. The most frequent recommendations used were: (1) behaviorally focused components (100%) and (2) quantitative evaluation of food behaviors (96%). Only 15% of the interventions included community involvement or ethnic/heterogeneous groups, whereas 31% included anthropometric measures. Five of the 10 proposed recommendations were included in over 50% of the interventions. Rising trend of overweight children warrants the need to synthesize findings from previous studies to inform research and program development and assist in identification of high-impact strategies and tactics. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.
Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M
2017-02-01
Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.
Scaling effect on the fracture toughness of bone materials using MMTS criterion.
Akbardoost, Javad; Amirafshari, Reza; Mohsenzade, Omid; Berto, Filippo
2018-05-21
The aim of this study is to present a stress based approach for investigating the effect of specimen size on the fracture toughness of bone materials. The proposed approach is a modified form of the classical fracture criterion called maximum tangential stress (MTS). The mechanical properties of bone are different in longitudinal and transverse directions and hence the tangential stress component in the proposed approach should be determined in the orthotropic media. Since only the singular terms of series expansions were obtained in the previous studies, the tangential stress is measured from finite element analysis. In this study, the critical distance is also assumed to be size dependent and a semi-empirical formulation is used for describing the size dependency of the critical distance. By comparing the results predicted by the proposed approach and those reported in the previous studies, it is shown that the proposed approach can predict the fracture resistance of cracked bone by taking into account the effect of specimen size. Copyright © 2018 Elsevier Ltd. All rights reserved.
Watanabe, Takashi
2013-01-01
The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442
Blurred image recognition by legendre moment invariants
Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2010-01-01
Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003
Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Coppa, Bertrand
2012-01-01
In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an input signal of -4 dB.
Multiple-3D-object secure information system based on phase shifting method and single interference.
Li, Wei-Na; Shi, Chen-Xiao; Piao, Mei-Lan; Kim, Nam
2016-05-20
We propose a multiple-3D-object secure information system for encrypting multiple three-dimensional (3D) objects based on the three-step phase shifting method. During the decryption procedure, five phase functions (PFs) are decreased to three PFs, in comparison with our previous method, which implies that one cross beam splitter is utilized to implement the single decryption interference. Moreover, the advantages of the proposed scheme also include: each 3D object can be decrypted discretionarily without decrypting a series of other objects earlier; the quality of the decrypted slice image of each object is high according to the correlation coefficient values, none of which is lower than 0.95; no iterative algorithm is involved. The feasibility of the proposed scheme is demonstrated by computer simulation results.
A proposal of an architecture for the coordination level of intelligent machines
NASA Technical Reports Server (NTRS)
Beard, Randall; Farah, Jeff; Lima, Pedro
1993-01-01
The issue of obtaining a practical, structured, and detailed description of an architecture for the Coordination Level of Center for Intelligent Robotic Systems for Sapce Exploration (CIRSSE) Testbed Intelligent Controller is addressed. Previous theoretical and implementation works were the departure point for the discussion. The document is organized as follows: after this introductory section, section 2 summarizes the overall view of the Intelligent Machine (IM) as a control system, proposing a performance measure on which to base its design. Section 3 addresses with some detail implementation issues. An hierarchic petri-net with feedback-based learning capabilities is proposed. Finally, section 4 is an attempt to address the feedback problem. Feedback is used for two functions: error recovery and reinforcement learning of the correct translations for the petri-net transitions.
Modified optimal control pilot model for computer-aided design and analysis
NASA Technical Reports Server (NTRS)
Davidson, John B.; Schmidt, David K.
1992-01-01
This paper presents the theoretical development of a modified optimal control pilot model based upon the optimal control model (OCM) of the human operator developed by Kleinman, Baron, and Levison. This model is input compatible with the OCM and retains other key aspects of the OCM, such as a linear quadratic solution for the pilot gains with inclusion of control rate in the cost function, a Kalman estimator, and the ability to account for attention allocation and perception threshold effects. An algorithm designed for each implementation in current dynamic systems analysis and design software is presented. Example results based upon the analysis of a tracking task using three basic dynamic systems are compared with measured results and with similar analyses performed with the OCM and two previously proposed simplified optimal pilot models. The pilot frequency responses and error statistics obtained with this modified optimal control model are shown to compare more favorably to the measured experimental results than the other previously proposed simplified models evaluated.
Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating
Wang, Bingkun; Huang, Yongfeng; Li, Xing
2016-01-01
E-commerce develops rapidly. Learning and taking good advantage of the myriad reviews from online customers has become crucial to the success in this game, which calls for increasingly more accuracy in sentiment classification of these reviews. Therefore the finer-grained review rating prediction is preferred over the rough binary sentiment classification. There are mainly two types of method in current review rating prediction. One includes methods based on review text content which focus almost exclusively on textual content and seldom relate to those reviewers and items remarked in other relevant reviews. The other one contains methods based on collaborative filtering which extract information from previous records in the reviewer-item rating matrix, however, ignoring review textual content. Here we proposed a framework for review rating prediction which shows the effective combination of the two. Then we further proposed three specific methods under this framework. Experiments on two movie review datasets demonstrate that our review rating prediction framework has better performance than those previous methods. PMID:26880879
Efficient path-based computations on pedigree graphs with compact encodings
2012-01-01
A pedigree is a diagram of family relationships, and it is often used to determine the mode of inheritance (dominant, recessive, etc.) of genetic diseases. Along with rapidly growing knowledge of genetics and accumulation of genealogy information, pedigree data is becoming increasingly important. In large pedigree graphs, path-based methods for efficiently computing genealogical measurements, such as inbreeding and kinship coefficients of individuals, depend on efficient identification and processing of paths. In this paper, we propose a new compact path encoding scheme on large pedigrees, accompanied by an efficient algorithm for identifying paths. We demonstrate the utilization of our proposed method by applying it to the inbreeding coefficient computation. We present time and space complexity analysis, and also manifest the efficiency of our method for evaluating inbreeding coefficients as compared to previous methods by experimental results using pedigree graphs with real and synthetic data. Both theoretical and experimental results demonstrate that our method is more scalable and efficient than previous methods in terms of time and space requirements. PMID:22536898
Combining Review Text Content and Reviewer-Item Rating Matrix to Predict Review Rating.
Wang, Bingkun; Huang, Yongfeng; Li, Xing
2016-01-01
E-commerce develops rapidly. Learning and taking good advantage of the myriad reviews from online customers has become crucial to the success in this game, which calls for increasingly more accuracy in sentiment classification of these reviews. Therefore the finer-grained review rating prediction is preferred over the rough binary sentiment classification. There are mainly two types of method in current review rating prediction. One includes methods based on review text content which focus almost exclusively on textual content and seldom relate to those reviewers and items remarked in other relevant reviews. The other one contains methods based on collaborative filtering which extract information from previous records in the reviewer-item rating matrix, however, ignoring review textual content. Here we proposed a framework for review rating prediction which shows the effective combination of the two. Then we further proposed three specific methods under this framework. Experiments on two movie review datasets demonstrate that our review rating prediction framework has better performance than those previous methods.
Pajak, Bozena; Fine, Alex B; Kleinschmidt, Dave F; Jaeger, T Florian
2016-12-01
We present a framework of second and additional language (L2/L n ) acquisition motivated by recent work on socio-indexical knowledge in first language (L1) processing. The distribution of linguistic categories covaries with socio-indexical variables (e.g., talker identity, gender, dialects). We summarize evidence that implicit probabilistic knowledge of this covariance is critical to L1 processing, and propose that L2/L n learning uses the same type of socio-indexical information to probabilistically infer latent hierarchical structure over previously learned and new languages. This structure guides the acquisition of new languages based on their inferred place within that hierarchy, and is itself continuously revised based on new input from any language. This proposal unifies L1 processing and L2/L n acquisition as probabilistic inference under uncertainty over socio-indexical structure. It also offers a new perspective on crosslinguistic influences during L2/L n learning, accommodating gradient and continued transfer (both negative and positive) from previously learned to novel languages, and vice versa.
Pajak, Bozena; Fine, Alex B.; Kleinschmidt, Dave F.; Jaeger, T. Florian
2015-01-01
We present a framework of second and additional language (L2/Ln) acquisition motivated by recent work on socio-indexical knowledge in first language (L1) processing. The distribution of linguistic categories covaries with socio-indexical variables (e.g., talker identity, gender, dialects). We summarize evidence that implicit probabilistic knowledge of this covariance is critical to L1 processing, and propose that L2/Ln learning uses the same type of socio-indexical information to probabilistically infer latent hierarchical structure over previously learned and new languages. This structure guides the acquisition of new languages based on their inferred place within that hierarchy, and is itself continuously revised based on new input from any language. This proposal unifies L1 processing and L2/Ln acquisition as probabilistic inference under uncertainty over socio-indexical structure. It also offers a new perspective on crosslinguistic influences during L2/Ln learning, accommodating gradient and continued transfer (both negative and positive) from previously learned to novel languages, and vice versa. PMID:28348442
Chen, Yikai; Wang, Kai; Xu, Chengcheng; Shi, Qin; He, Jie; Li, Peiqing; Shi, Ting
2018-05-19
To overcome the limitations of previous highway alignment safety evaluation methods, this article presents a highway alignment safety evaluation method based on fault tree analysis (FTA) and the characteristics of vehicle safety boundaries, within the framework of dynamic modeling of the driver-vehicle-road system. Approaches for categorizing the vehicle failure modes while driving on highways and the corresponding safety boundaries were comprehensively investigated based on vehicle system dynamics theory. Then, an overall crash probability model was formulated based on FTA considering the risks of 3 failure modes: losing steering capability, losing track-holding capability, and rear-end collision. The proposed method was implemented on a highway segment between Bengbu and Nanjing in China. A driver-vehicle-road multibody dynamics model was developed based on the 3D alignments of the Bengbu to Nanjing section of Ning-Luo expressway using Carsim, and the dynamics indices, such as sideslip angle and, yaw rate were obtained. Then, the average crash probability of each road section was calculated with a fixed-length method. Finally, the average crash probability was validated against the crash frequency per kilometer to demonstrate the accuracy of the proposed method. The results of the regression analysis and correlation analysis indicated good consistency between the results of the safety evaluation and the crash data and that it outperformed the safety evaluation methods used in previous studies. The proposed method has the potential to be used in practical engineering applications to identify crash-prone locations and alignment deficiencies on highways in the planning and design phases, as well as those in service.
NASA Astrophysics Data System (ADS)
Mountris, K. A.; Bert, J.; Noailly, J.; Rodriguez Aguilera, A.; Valeri, A.; Pradier, O.; Schick, U.; Promayon, E.; Gonzalez Ballester, M. A.; Troccaz, J.; Visvikis, D.
2017-03-01
Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model’s computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10-20% the Day30 urethra D10 dose metric is higher by 4.2%-10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.
Mountris, K A; Bert, J; Noailly, J; Aguilera, A Rodriguez; Valeri, A; Pradier, O; Schick, U; Promayon, E; Ballester, M A Gonzalez; Troccaz, J; Visvikis, D
2017-03-21
Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model's computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10-20% the Day30 urethra D10 dose metric is higher by 4.2%-10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.
Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy
Yu, Bing; Liu, Dongdong; Zhang, Tianhong
2011-01-01
Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734
NASA Astrophysics Data System (ADS)
Ivanov, Mark V.; Lobas, Anna A.; Levitsky, Lev I.; Moshkovskii, Sergei A.; Gorshkov, Mikhail V.
2018-02-01
In a proteogenomic approach based on tandem mass spectrometry analysis of proteolytic peptide mixtures, customized exome or RNA-seq databases are employed for identifying protein sequence variants. However, the problem of variant peptide identification without personalized genomic data is important for a variety of applications. Following the recent proposal by Chick et al. (Nat. Biotechnol. 33, 743-749, 2015) on the feasibility of such variant peptide search, we evaluated two available approaches based on the previously suggested "open" search and the "brute-force" strategy. To improve the efficiency of these approaches, we propose an algorithm for exclusion of false variant identifications from the search results involving analysis of modifications mimicking single amino acid substitutions. Also, we propose a de novo based scoring scheme for assessment of identified point mutations. In the scheme, the search engine analyzes y-type fragment ions in MS/MS spectra to confirm the location of the mutation in the variant peptide sequence.
Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.
Yu, Bing; Liu, Dongdong; Zhang, Tianhong
2011-01-01
Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.
Self-adaptive relevance feedback based on multilevel image content analysis
NASA Astrophysics Data System (ADS)
Gao, Yongying; Zhang, Yujin; Fu, Yu
2001-01-01
In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.
Self-adaptive relevance feedback based on multilevel image content analysis
NASA Astrophysics Data System (ADS)
Gao, Yongying; Zhang, Yujin; Fu, Yu
2000-12-01
In current content-based image retrieval systems, it is generally accepted that obtaining high-level image features is a key to improve the querying. Among the related techniques, relevance feedback has become a hot research aspect because it combines the information from the user to refine the querying results. In practice, many methods have been proposed to achieve the goal of relevance feedback. In this paper, a new scheme for relevance feedback is proposed. Unlike previous methods for relevance feedback, our scheme provides a self-adaptive operation. First, based on multi- level image content analysis, the relevant images from the user could be automatically analyzed in different levels and the querying could be modified in terms of different analysis results. Secondly, to make it more convenient to the user, the procedure of relevance feedback could be led with memory or without memory. To test the performance of the proposed method, a practical semantic-based image retrieval system has been established, and the querying results gained by our self-adaptive relevance feedback are given.
A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks
Hammad, Karim; El Bakly, Ahmed M.
2018-01-01
A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem—subject to various Quality-of-Service (QoS) constraints—represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms. PMID:29509760
A memetic optimization algorithm for multi-constrained multicast routing in ad hoc networks.
Ramadan, Rahab M; Gasser, Safa M; El-Mahallawy, Mohamed S; Hammad, Karim; El Bakly, Ahmed M
2018-01-01
A mobile ad hoc network is a conventional self-configuring network where the routing optimization problem-subject to various Quality-of-Service (QoS) constraints-represents a major challenge. Unlike previously proposed solutions, in this paper, we propose a memetic algorithm (MA) employing an adaptive mutation parameter, to solve the multicast routing problem with higher search ability and computational efficiency. The proposed algorithm utilizes an updated scheme, based on statistical analysis, to estimate the best values for all MA parameters and enhance MA performance. The numerical results show that the proposed MA improved the delay and jitter of the network, while reducing computational complexity as compared to existing algorithms.
Iwasaki, Yoichiro; Misumi, Masato; Nakamiya, Toshiyuki
2013-01-01
We have already proposed a method for detecting vehicle positions and their movements (henceforth referred to as “our previous method”) using thermal images taken with an infrared thermal camera. Our experiments have shown that our previous method detects vehicles robustly under four different environmental conditions which involve poor visibility conditions in snow and thick fog. Our previous method uses the windshield and its surroundings as the target of the Viola-Jones detector. Some experiments in winter show that the vehicle detection accuracy decreases because the temperatures of many windshields approximate those of the exterior of the windshields. In this paper, we propose a new vehicle detection method (henceforth referred to as “our new method”). Our new method detects vehicles based on tires' thermal energy reflection. We have done experiments using three series of thermal images for which the vehicle detection accuracies of our previous method are low. Our new method detects 1,417 vehicles (92.8%) out of 1,527 vehicles, and the number of false detection is 52 in total. Therefore, by combining our two methods, high vehicle detection accuracies are maintained under various environmental conditions. Finally, we apply the traffic information obtained by our two methods to traffic flow automatic monitoring, and show the effectiveness of our proposal. PMID:23774988
Numerical examination of like-honeycomb structures
NASA Astrophysics Data System (ADS)
John, Małgorzata; John, Antoni; Skarka, Wojciech
2018-01-01
In the paper based on the analogy with the biological tissue of bones, it was decided to examine more homogenous structure and also a heterogeneous structure too. Here, a new approach is proposed based on results from literature obtained using topology optimization 2D and 3D structures like beam, girder and cantilever. Proposed model of structure is similar to spatial trusses with honeycomb-shape porous. Parameters varied not only uniformly throughout the volume of the sample, but also be modified depending on various factors. They underwent a change in cell dimensions, among other things, the thickness of the wall. The obtained results were compared with those obtained previously for homogeneous samples.
Sun, Wei; Zhang, Xiaorui; Peeta, Srinivas; He, Xiaozheng; Li, Yongfu; Zhu, Senlai
2015-01-01
To improve the effectiveness and robustness of fatigue driving recognition, a self-adaptive dynamic recognition model is proposed that incorporates information from multiple sources and involves two sequential levels of fusion, constructed at the feature level and the decision level. Compared with existing models, the proposed model introduces a dynamic basic probability assignment (BPA) to the decision-level fusion such that the weight of each feature source can change dynamically with the real-time fatigue feature measurements. Further, the proposed model can combine the fatigue state at the previous time step in the decision-level fusion to improve the robustness of the fatigue driving recognition. An improved correction strategy of the BPA is also proposed to accommodate the decision conflict caused by external disturbances. Results from field experiments demonstrate that the effectiveness and robustness of the proposed model are better than those of models based on a single fatigue feature and/or single-source information fusion, especially when the most effective fatigue features are used in the proposed model. PMID:26393615
Fairness of prices, user fee policy and willingness to pay among visitors to a national forest
Jin Young Chung; Gerard T. Kyle; James F. Petrick; James D. Absher
2011-01-01
Imposing user fees in Nature-Based Tourism (NBT) contexts has been a controversial issue. Based on the notions of justice and fairness, this study extended previous work examining the relationship between attitudes toward user fees and spending support. In a proposed structural model of price fairness, fee spending support, and willingness to pay (WTP), this paper...
ERIC Educational Resources Information Center
1968
The present report proposes a central computing facility and presents the preliminary specifications for such a system. It is based, in part, on the results of earlier studies by two previous contractors on behalf of the U.S. Office of Education. The recommendations are based upon the present contractors considered evaluation of the earlier…
Improved argument-FFT frequency offset estimation for QPSK coherent optical Systems
NASA Astrophysics Data System (ADS)
Han, Jilong; Li, Wei; Yuan, Zhilin; Li, Haitao; Huang, Liyan; Hu, Qianggao
2016-02-01
A frequency offset estimation (FOE) algorithm based on fast Fourier transform (FFT) of the signal's argument is investigated, which does not require removing the modulated data phase. In this paper, we analyze the flaw of the argument-FFT algorithm and propose a combined FOE algorithm, in which the absolute of frequency offset (FO) is accurately calculated by argument-FFT algorithm with a relatively large number of samples and the sign of FO is determined by FFT-based interpolation discrete Fourier transformation (DFT) algorithm with a relatively small number of samples. Compared with the previous algorithms based on argument-FFT, the proposed one has low complexity and can still effectively work with a relatively less number of samples.
Terminal iterative learning control based station stop control of a train
NASA Astrophysics Data System (ADS)
Hou, Zhongsheng; Wang, Yi; Yin, Chenkun; Tang, Tao
2011-07-01
The terminal iterative learning control (TILC) method is introduced for the first time into the field of train station stop control and three TILC-based algorithms are proposed in this study. The TILC-based train station stop control approach utilises the terminal stop position error in previous braking process to update the current control profile. The initial braking position, or the braking force, or their combination is chosen as the control input, and corresponding learning law is developed. The terminal stop position error of each algorithm is guaranteed to converge to a small region related with the initial offset of braking position with rigorous analysis. The validity of the proposed algorithms is verified by illustrative numerical examples.
Multilayered photonic integration on SOI platform using waveguide-based bridge structure
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Chakraborty, Rajib
2018-06-01
A waveguide based structure on silicon on insulator platform is proposed for vertical integration in photonic integrated circuits. The structure consists of two multimode interference couplers connected by a single mode (SM) section which can act as a bridge over any other underlying device. Two more SM sections acts as input and output of the first and second multimode couplers respectively. Potential application of this structure is in multilayered photonic links. It is shown that the efficiency of the structure can be improved by making some design modifications. The entire simulation is done using effective-index based matrix method. The feature size chosen are comparable to waveguides fabricated previously so as to fabricate the proposed structure easily.
Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, P., E-mail: pechinlo@mednet.edu.ucla; Brown, M. S.; Kim, H.
Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select amore » small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.« less
Feedback Effects of Teaching Quality Assessment: Macro and Micro Evidence
ERIC Educational Resources Information Center
Bianchini, Stefano
2014-01-01
This study investigates the feedback effects of teaching quality assessment. Previous literature looked separately at the evolution of individual and aggregate scores to understand whether instructors and university performance depends on its past evaluation. I propose a new quantitative-based methodology, combining statistical distributions and…
X-Ray Flare Characteristics in lambda Eridani
NASA Technical Reports Server (NTRS)
Smith, Myron A.
1997-01-01
This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.
X-Ray Flare Characteristics in Lambda Eridani
NASA Technical Reports Server (NTRS)
Smith, Myron A.
1997-01-01
This proposal was for a joint X-ray/ultraviolet/ground-based study of the abnormal Be star lambda Eri, which has previously shown evidence of X-ray flaring from ROSAT observations in 1991. The X-ray component consisted of observations from both the ASCA and ROSAT satellites.
Appearance-Based First Impressions and Person Memory
ERIC Educational Resources Information Center
Bell, Raoul; Mieth, Laura; Buchner, Axel
2015-01-01
Previous research has demonstrated that people preferentially remember reputational information that is emotionally incongruent to their expectations, but it has left open the question of the generality of this effect. Three conflicting hypotheses were proposed: (a) The effect is restricted to information relevant to reciprocal social exchange.…
75 FR 71704 - Agency Information Collection Activities; Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... for decisions, and follow-up), recordkeeping, and annual audits. The Rule requires that IDSMs... not include any sensitive personal information, such as any individual's Social Security number, date..., staff has adjusted its previous estimates based on the following two factors. First, the annual audits...
Word-level language modeling for P300 spellers based on discriminative graphical models
NASA Astrophysics Data System (ADS)
Delgado Saa, Jaime F.; de Pesters, Adriana; McFarland, Dennis; Çetin, Müjdat
2015-04-01
Objective. In this work we propose a probabilistic graphical model framework that uses language priors at the level of words as a mechanism to increase the performance of P300-based spellers. Approach. This paper is concerned with brain-computer interfaces based on P300 spellers. Motivated by P300 spelling scenarios involving communication based on a limited vocabulary, we propose a probabilistic graphical model framework and an associated classification algorithm that uses learned statistical models of language at the level of words. Exploiting such high-level contextual information helps reduce the error rate of the speller. Main results. Our experimental results demonstrate that the proposed approach offers several advantages over existing methods. Most importantly, it increases the classification accuracy while reducing the number of times the letters need to be flashed, increasing the communication rate of the system. Significance. The proposed approach models all the variables in the P300 speller in a unified framework and has the capability to correct errors in previous letters in a word, given the data for the current one. The structure of the model we propose allows the use of efficient inference algorithms, which in turn makes it possible to use this approach in real-time applications.
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Kuwahara, Shinya; Tanimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new distributed architectures of manufacturing systems are proposed, aiming at realizing more flexible control structures of the manufacturing systems. Many researches have been carried out to deal with the distributed architectures for planning and control of the manufacturing systems. However, the human operators have not yet been discussed for the autonomous components of the distributed manufacturing systems. A real-time scheduling method is proposed, in this research, to select suitable combinations of the human operators, the resources and the jobs for the manufacturing processes. The proposed scheduling method consists of following three steps. In the first step, the human operators select their favorite manufacturing processes which they will carry out in the next time period, based on their preferences. In the second step, the machine tools and the jobs select suitable combinations for the next machining processes. In the third step, the automated guided vehicles and the jobs select suitable combinations for the next transportation processes. The second and third steps are carried out by using the utility value based method and the dispatching rule-based method proposed in the previous researches. Some case studies have been carried out to verify the effectiveness of the proposed method.
Approximation algorithms for the min-power symmetric connectivity problem
NASA Astrophysics Data System (ADS)
Plotnikov, Roman; Erzin, Adil; Mladenovic, Nenad
2016-10-01
We consider the NP-hard problem of synthesis of optimal spanning communication subgraph in a given arbitrary simple edge-weighted graph. This problem occurs in the wireless networks while minimizing the total transmission power consumptions. We propose several new heuristics based on the variable neighborhood search metaheuristic for the approximation solution of the problem. We have performed a numerical experiment where all proposed algorithms have been executed on the randomly generated test samples. For these instances, on average, our algorithms outperform the previously known heuristics.
Using chaotic artificial neural networks to model memory in the brain
NASA Astrophysics Data System (ADS)
Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh
2017-03-01
In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.
Proposal for the nomenclature of human plasminogen (PLG) polymorphism.
Skoda, U; Bertrams, J; Dykes, D; Eiberg, H; Hobart, M; Hummel, K; Kühnl, P; Mauff, G; Nakamura, S; Nishimukai, H
1986-01-01
Since its discovery, human plasminogen (PLG) polymorphism has received widespread acceptance in population genetics and forensic haematology. Due to the large number of variant alleles described, a PLG reference typing and Plasminogen Symposium was held, at which a nomenclature proposal was inaugurated. The technology of comparing PLG variants was based on isoelectric focusing and subsequent detection by caseinolytic overlay and 'Western' blotting. Typing results permitted comparison of so far described variant designations and resulted in a new nomenclature proposal for PLG polymorphism. It is recommended that the two most common alleles found in all investigated races be called: PLG*A (previously also PLG*1) and PLG*B (previously also PLG*2), the known variants with acidic pI: PLG*A1 to *A3, intermediate variants: PLG*M1 to *M5, PLG*M5 being functionally inactive, and basic variants: PLG*B1 to *B3. For future classification of newly discovered variants, samples should be compared at any of the laboratories participating in the reference typing.
Deformable image registration for tissues with large displacements
Huang, Xishi; Ren, Jing; Green, Mark
2017-01-01
Abstract. Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients’ movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of 1.87±0.87 mm and an average centerline distance error of 1.28±0.78 mm. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion. PMID:28149924
Discrete Biogeography Based Optimization for Feature Selection in Molecular Signatures.
Liu, Bo; Tian, Meihong; Zhang, Chunhua; Li, Xiangtao
2015-04-01
Biomarker discovery from high-dimensional data is a complex task in the development of efficient cancer diagnoses and classification. However, these data are usually redundant and noisy, and only a subset of them present distinct profiles for different classes of samples. Thus, selecting high discriminative genes from gene expression data has become increasingly interesting in the field of bioinformatics. In this paper, a discrete biogeography based optimization is proposed to select the good subset of informative gene relevant to the classification. In the proposed algorithm, firstly, the fisher-markov selector is used to choose fixed number of gene data. Secondly, to make biogeography based optimization suitable for the feature selection problem; discrete migration model and discrete mutation model are proposed to balance the exploration and exploitation ability. Then, discrete biogeography based optimization, as we called DBBO, is proposed by integrating discrete migration model and discrete mutation model. Finally, the DBBO method is used for feature selection, and three classifiers are used as the classifier with the 10 fold cross-validation method. In order to show the effective and efficiency of the algorithm, the proposed algorithm is tested on four breast cancer dataset benchmarks. Comparison with genetic algorithm, particle swarm optimization, differential evolution algorithm and hybrid biogeography based optimization, experimental results demonstrate that the proposed method is better or at least comparable with previous method from literature when considering the quality of the solutions obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu; Ohtomo, Kuni
2016-03-01
The purpose of this study is to evaluate the feasibility of a novel feature generation, which is based on multiple deep neural networks (DNNs) with boosting, for computer-assisted detection (CADe). It is hard and time-consuming to optimize the hyperparameters for DNNs such as stacked denoising autoencoder (SdA). The proposed method allows using SdA based features without the burden of the hyperparameter setting. The proposed method was evaluated by an application for detecting cerebral aneurysms on magnetic resonance angiogram (MRA). A baseline CADe process included four components; scaling, candidate area limitation, candidate detection, and candidate classification. Proposed feature generation method was applied to extract the optimal features for candidate classification. Proposed method only required setting range of the hyperparameters for SdA. The optimal feature set was selected from a large quantity of SdA based features by multiple SdAs, each of which was trained using different hyperparameter set. The feature selection was operated through ada-boost ensemble learning method. Training of the baseline CADe process and proposed feature generation were operated with 200 MRA cases, and the evaluation was performed with 100 MRA cases. Proposed method successfully provided SdA based features just setting the range of some hyperparameters for SdA. The CADe process by using both previous voxel features and SdA based features had the best performance with 0.838 of an area under ROC curve and 0.312 of ANODE score. The results showed that proposed method was effective in the application for detecting cerebral aneurysms on MRA.
Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem
NASA Astrophysics Data System (ADS)
Omagari, Hiroki; Higashino, Shin-Ichiro
2018-04-01
In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.
NASA Astrophysics Data System (ADS)
Zand, Ramtin; DeMara, Ronald F.
2017-12-01
In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.
Two RFID standard-based security protocols for healthcare environments.
Picazo-Sanchez, Pablo; Bagheri, Nasour; Peris-Lopez, Pedro; Tapiador, Juan E
2013-10-01
Radio Frequency Identification (RFID) systems are widely used in access control, transportation, real-time inventory and asset management, automated payment systems, etc. Nevertheless, the use of this technology is almost unexplored in healthcare environments, where potential applications include patient monitoring, asset traceability and drug administration systems, to mention just a few. RFID technology can offer more intelligent systems and applications, but privacy and security issues have to be addressed before its adoption. This is even more dramatical in healthcare applications where very sensitive information is at stake and patient safety is paramount. In Wu et al. (J. Med. Syst. 37:19, 43) recently proposed a new RFID authentication protocol for healthcare environments. In this paper we show that this protocol puts location privacy of tag holders at risk, which is a matter of gravest concern and ruins the security of this proposal. To facilitate the implementation of secure RFID-based solutions in the medical sector, we suggest two new applications (authentication and secure messaging) and propose solutions that, in contrast to previous proposals in this field, are fully based on ISO Standards and NIST Security Recommendations.
An information theory criteria based blind method for enumerating active users in DS-CDMA system
NASA Astrophysics Data System (ADS)
Samsami Khodadad, Farid; Abed Hodtani, Ghosheh
2014-11-01
In this paper, a new and blind algorithm for active user enumeration in asynchronous direct sequence code division multiple access (DS-CDMA) in multipath channel scenario is proposed. The proposed method is based on information theory criteria. There are two main categories of information criteria which are widely used in active user enumeration, Akaike Information Criterion (AIC) and Minimum Description Length (MDL) information theory criteria. The main difference between these two criteria is their penalty functions. Due to this difference, MDL is a consistent enumerator which has better performance in higher signal-to-noise ratios (SNR) but AIC is preferred in lower SNRs. In sequel, we propose a SNR compliance method based on subspace and training genetic algorithm to have the performance of both of them. Moreover, our method uses only a single antenna, in difference to the previous methods which decrease hardware complexity. Simulation results show that the proposed method is capable of estimating the number of active users without any prior knowledge and the efficiency of the method.
A Distributed Signature Detection Method for Detecting Intrusions in Sensor Systems
Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo
2013-01-01
Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu–Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors. PMID:23529146
A distributed signature detection method for detecting intrusions in sensor systems.
Kim, Ilkyu; Oh, Doohwan; Yoon, Myung Kuk; Yi, Kyueun; Ro, Won Woo
2013-03-25
Sensor nodes in wireless sensor networks are easily exposed to open and unprotected regions. A security solution is strongly recommended to prevent networks against malicious attacks. Although many intrusion detection systems have been developed, most systems are difficult to implement for the sensor nodes owing to limited computation resources. To address this problem, we develop a novel distributed network intrusion detection system based on the Wu-Manber algorithm. In the proposed system, the algorithm is divided into two steps; the first step is dedicated to a sensor node, and the second step is assigned to a base station. In addition, the first step is modified to achieve efficient performance under limited computation resources. We conduct evaluations with random string sets and actual intrusion signatures to show the performance improvement of the proposed method. The proposed method achieves a speedup factor of 25.96 and reduces 43.94% of packet transmissions to the base station compared with the previously proposed method. The system achieves efficient utilization of the sensor nodes and provides a structural basis of cooperative systems among the sensors.
Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia
2014-03-01
Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.
A CBR-Based and MAHP-Based Customer Value Prediction Model for New Product Development
Zhao, Yu-Jie; Luo, Xin-xing; Deng, Li
2014-01-01
In the fierce market environment, the enterprise which wants to meet customer needs and boost its market profit and share must focus on the new product development. To overcome the limitations of previous research, Chan et al. proposed a dynamic decision support system to predict the customer lifetime value (CLV) for new product development. However, to better meet the customer needs, there are still some deficiencies in their model, so this study proposes a CBR-based and MAHP-based customer value prediction model for a new product (C&M-CVPM). CBR (case based reasoning) can reduce experts' workload and evaluation time, while MAHP (multiplicative analytic hierarchy process) can use actual but average influencing factor's effectiveness in stimulation, and at same time C&M-CVPM uses dynamic customers' transition probability which is more close to reality. This study not only introduces the realization of CBR and MAHP, but also elaborates C&M-CVPM's three main modules. The application of the proposed model is illustrated and confirmed to be sensible and convincing through a stimulation experiment. PMID:25162050
A CBR-based and MAHP-based customer value prediction model for new product development.
Zhao, Yu-Jie; Luo, Xin-xing; Deng, Li
2014-01-01
In the fierce market environment, the enterprise which wants to meet customer needs and boost its market profit and share must focus on the new product development. To overcome the limitations of previous research, Chan et al. proposed a dynamic decision support system to predict the customer lifetime value (CLV) for new product development. However, to better meet the customer needs, there are still some deficiencies in their model, so this study proposes a CBR-based and MAHP-based customer value prediction model for a new product (C&M-CVPM). CBR (case based reasoning) can reduce experts' workload and evaluation time, while MAHP (multiplicative analytic hierarchy process) can use actual but average influencing factor's effectiveness in stimulation, and at same time C&M-CVPM uses dynamic customers' transition probability which is more close to reality. This study not only introduces the realization of CBR and MAHP, but also elaborates C&M-CVPM's three main modules. The application of the proposed model is illustrated and confirmed to be sensible and convincing through a stimulation experiment.
Previous experience in manned space flight: A survey of human factors lessons learned
NASA Technical Reports Server (NTRS)
Chandlee, George O.; Woolford, Barbara
1993-01-01
Previous experience in manned space flight programs can be used to compile a data base of human factors lessons learned for the purpose of developing aids in the future design of inhabited spacecraft. The objectives are to gather information available from relevant sources, to develop a taxonomy of human factors data, and to produce a data base that can be used in the future for those people involved in the design of manned spacecraft operations. A study is currently underway at the Johnson Space Center with the objective of compiling, classifying, and summarizing relevant human factors data bearing on the lessons learned from previous manned space flights. The research reported defines sources of data, methods for collection, and proposes a classification for human factors data that may be a model for other human factors disciplines.
Evaluation of six NEHRP B/C crustal amplification models proposed for use in western North America
Boore, David; Campbell, Kenneth W.
2016-01-01
We evaluate six crustal amplification models based on National Earthquake Hazards Reduction Program (NEHRP) B/C crustal profiles proposed for use in western North America (WNA) and often used in other active crustal regions where crustal properties are unknown. One of the models is based on an interpolation of generic rock velocity profiles previously proposed for WNA and central and eastern North America (CENA), in conjunction with material densities based on an updated velocity–density relationship. A second model is based on the velocity profile used to develop amplification factors for the Next Generation Attenuation (NGA)‐West2 project. A third model is based on a near‐surface velocity profile developed from the NGA‐West2 site database. A fourth model is based on velocity and density profiles originally proposed for use in CENA but recently used to represent crustal properties in California. We propose two alternatives to this latter model that more closely represent WNA crustal properties. We adopt a value of site attenuation (κ0) for each model that is either recommended by the author of the model or proposed by us. Stochastic simulation is used to evaluate the Fourier amplification factors and their impact on response spectra associated with each model. Based on this evaluation, we conclude that among the available models evaluated in this study the NEHRP B/C amplification model of Boore (2016) best represents median crustal amplification in WNA, although the amplification models based on the crustal profiles of Kamai et al. (2013, 2016, unpublished manuscript, see Data and Resources) and Yenier and Atkinson (2015), the latter adjusted to WNA crustal properties, can be used to represent epistemic uncertainty.
Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.
Chen, Jian; Jia, Bingxi; Zhang, Kaixiang
2017-11-01
In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.
The Effect of Story Grammars on Creative Self-Efficacy and Digital Storytelling
ERIC Educational Resources Information Center
Liu, C.-C.; Wu, L. Y.; Chen, Z.-M.; Tsai, C.-C.; Lin, H.-M.
2014-01-01
Previous studies have proposed that the grammars may serve as a rule-based scaffolding to facilitate story comprehension in storytelling activities. Such scaffoldings may inform students of crucial story elements and possible transitions among different elements. However, how these scaffoldings may influence story creation/writing activities is…
Hierarchical Bayesian Models of Subtask Learning
ERIC Educational Resources Information Center
Anglim, Jeromy; Wynton, Sarah K. A.
2015-01-01
The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…
Possible Mechanism of Action of the Electromagnetic Fields of Ultralow Frequency on G-protein
NASA Astrophysics Data System (ADS)
Nava, J. J. Godina; Segura, M. A. Rodríguez; García, M. N. Jiménez; Cadena, M. S. Reyes
2008-08-01
Based in several clinical achievements and mathematical simulation of the immune sytem, previously studied, permit us to establish that a possible Mechanism of Action of ultralow frequency Electromagnetic Fields (ELF) is on G-protein as it has been proposed in specialized literature.
Book Selection, Collection Development, and Bounded Rationality.
ERIC Educational Resources Information Center
Schwartz, Charles A.
1989-01-01
Reviews previously proposed schemes of classical rationality in book selection, describes new approaches to rational choice behavior, and presents a model of book selection based on bounded rationality in a garbage can decision process. The role of tacit knowledge and symbolic content in the selection process are also discussed. (102 references)…
Problem Solving Under Time-Constraints.
ERIC Educational Resources Information Center
Richardson, Michael; Hunt, Earl
A model of how automated and controlled processing can be mixed in computer simulations of problem solving is proposed. It is based on previous work by Hunt and Lansman (1983), who developed a model of problem solving that could reproduce the data obtained with several attention and performance paradigms, extending production-system notation to…
Improving the Bandwidth Selection in Kernel Equating
ERIC Educational Resources Information Center
Andersson, Björn; von Davier, Alina A.
2014-01-01
We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…
Identification of vortex structures in a cohort of 204 intracranial aneurysms
Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-01-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q-criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction (vVF) and the surface vortex fraction (sVF). Computational fluid dynamics simulations showed that the sVF, but not the vVF, discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. PMID:28539480
Identification of vortex structures in a cohort of 204 intracranial aneurysms.
Varble, Nicole; Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-05-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q -criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction ( vVF ) and the surface vortex fraction ( sVF ). Computational fluid dynamics simulations showed that the sVF , but not the vVF , discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. © 2017 The Author(s).
Multicast backup reprovisioning problem for Hamiltonian cycle-based protection on WDM networks
NASA Astrophysics Data System (ADS)
Din, Der-Rong; Huang, Jen-Shen
2014-03-01
As networks grow in size and complexity, the chance and the impact of failures increase dramatically. The pre-allocated backup resources cannot provide 100% protection guarantee when continuous failures occur in a network. In this paper, the multicast backup re-provisioning problem (MBRP) for Hamiltonian cycle (HC)-based protection on WDM networks for the link-failure case is studied. We focus on how to recover the protecting capabilities of Hamiltonian cycle against the subsequent link-failures on WDM networks for multicast transmissions, after recovering the multicast trees affected by the previous link-failure. Since this problem is a hard problem, an algorithm, which consists of several heuristics and a genetic algorithm (GA), is proposed to solve it. The simulation results of the proposed method are also given. Experimental results indicate that the proposed algorithm can solve this problem efficiently.
NASA Astrophysics Data System (ADS)
Navares, Ricardo; Aznarte, José Luis
2017-04-01
In this paper, we approach the problem of predicting the concentrations of Poaceae pollen which define the main pollination season in the city of Madrid. A classification-based approach, based on a computational intelligence model (random forests), is applied to forecast the dates in which risk concentration levels are to be observed. Unlike previous works, the proposal extends the range of forecasting horizons up to 6 months ahead. Furthermore, the proposed model allows to determine the most influential factors for each horizon, making no assumptions about the significance of the weather features. The performace of the proposed model proves it as a successful tool for allergy patients in preventing and minimizing the exposure to risky pollen concentrations and for researchers to gain a deeper insight on the factors driving the pollination season.
Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method
Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan
2018-01-01
Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824
Navares, Ricardo; Aznarte, José Luis
2017-04-01
In this paper, we approach the problem of predicting the concentrations of Poaceae pollen which define the main pollination season in the city of Madrid. A classification-based approach, based on a computational intelligence model (random forests), is applied to forecast the dates in which risk concentration levels are to be observed. Unlike previous works, the proposal extends the range of forecasting horizons up to 6 months ahead. Furthermore, the proposed model allows to determine the most influential factors for each horizon, making no assumptions about the significance of the weather features. The performace of the proposed model proves it as a successful tool for allergy patients in preventing and minimizing the exposure to risky pollen concentrations and for researchers to gain a deeper insight on the factors driving the pollination season.
Beef quality parameters estimation using ultrasound and color images
2015-01-01
Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452
A Universal Vacant Parking Slot Recognition System Using Sensors Mounted on Off-the-Shelf Vehicles.
Suhr, Jae Kyu; Jung, Ho Gi
2018-04-16
An automatic parking system is an essential part of autonomous driving, and it starts by recognizing vacant parking spaces. This paper proposes a method that can recognize various types of parking slot markings in a variety of lighting conditions including daytime, nighttime, and underground. The proposed method can readily be commercialized since it uses only those sensors already mounted on off-the-shelf vehicles: an around-view monitor (AVM) system, ultrasonic sensors, and in-vehicle motion sensors. This method first detects separating lines by extracting parallel line pairs from AVM images. Parking slot candidates are generated by pairing separating lines based on the geometric constraints of the parking slot. These candidates are confirmed by recognizing their entrance positions using line and corner features and classifying their occupancies using ultrasonic sensors. For more reliable recognition, this method uses the separating lines and parking slots not only found in the current image but also found in previous images by tracking their positions using the in-vehicle motion-sensor-based vehicle odometry. The proposed method was quantitatively evaluated using a dataset obtained during the day, night, and underground, and it outperformed previous methods by showing a 95.24% recall and a 97.64% precision.
Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain
NASA Astrophysics Data System (ADS)
Sanchez, Guadalupe; Serrano, Antonio; Cancillo, María Luisa
2017-10-01
Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.
A Universal Vacant Parking Slot Recognition System Using Sensors Mounted on Off-the-Shelf Vehicles
2018-01-01
An automatic parking system is an essential part of autonomous driving, and it starts by recognizing vacant parking spaces. This paper proposes a method that can recognize various types of parking slot markings in a variety of lighting conditions including daytime, nighttime, and underground. The proposed method can readily be commercialized since it uses only those sensors already mounted on off-the-shelf vehicles: an around-view monitor (AVM) system, ultrasonic sensors, and in-vehicle motion sensors. This method first detects separating lines by extracting parallel line pairs from AVM images. Parking slot candidates are generated by pairing separating lines based on the geometric constraints of the parking slot. These candidates are confirmed by recognizing their entrance positions using line and corner features and classifying their occupancies using ultrasonic sensors. For more reliable recognition, this method uses the separating lines and parking slots not only found in the current image but also found in previous images by tracking their positions using the in-vehicle motion-sensor-based vehicle odometry. The proposed method was quantitatively evaluated using a dataset obtained during the day, night, and underground, and it outperformed previous methods by showing a 95.24% recall and a 97.64% precision. PMID:29659512
Zholtkevych, G N; Nosov, K V; Bespalov, Yu G; Rak, L I; Abhishek, M; Vysotskaya, E V
2018-05-24
The state-of-art research in the field of life's organization confronts the need to investigate a number of interacting components, their properties and conditions of sustainable behaviour within a natural system. In biology, ecology and life sciences, the performance of such stable system is usually related to homeostasis, a property of the system to actively regulate its state within a certain allowable limits. In our previous work, we proposed a deterministic model for systems' homeostasis. The model was based on dynamical system's theory and pairwise relationships of competition, amensalism and antagonism taken from theoretical biology and ecology. However, the present paper proposes a different dimension to our previous results based on the same model. In this paper, we introduce the influence of inter-component relationships in a system, wherein the impact is characterized by direction (neutral, positive, or negative) as well as its (absolute) value, or strength. This makes the model stochastic which, in our opinion, is more consistent with real-world elements affected by various random factors. The case study includes two examples from areas of hydrobiology and medicine. The models acquired for these cases enabled us to propose a convincing explanation for corresponding phenomena identified by different types of natural systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, Randy; Flanagan, George F.; Voth, Marcus
Development of non-power molten salt reactor (MSR) test facilities is under consideration to support the analyses needed for development of a full-scale MSR. These non-power MSR test facilities will require review by the US Nuclear Regulatory Commission (NRC) staff. This report proposes chapter adaptations for NUREG-1537 in the form of interim staff guidance to address preparation and review of molten salt non-power reactor license applications. The proposed adaptations are based on a previous regulatory gap analysis of select chapters from NUREG-1537 for their applicability to non-power MSRs operating with a homogeneous fuel salt mixture.
Simulation of the shallow groundwater-flow system near Mole Lake, Forest County, Wisconsin
Fienen, Michael N.; Juckem, Paul F.; Hunt, Randall J.
2011-01-01
The shallow groundwater system near Mole Lake, Forest County, Wis. was simulated using a previously calibrated regional model. The previous model was updated using newly collected water-level measurements and refinements to surface-water features. The updated model was then used to calculate the area contributing recharge for one existing and two proposed pumping locations on lands of the Sokaogon Chippewa Community. Delineated 1-, 5-, and 10-year areas contributing recharge for existing and proposed wells extend from the areas of pumping to the northeast of the pumping locations. Steady-state pumping was simulated for two scenarios: a base pumping scenario using pumping rates that reflect what the Tribe expects to pump and a high pumping scenario, in which the rate was set to the maximum expected from wells installed in this area. In the base pumping scenario, pumping rates of 32 gallons per minute (gal/min; 46,000 gallons per day (gal/d)) from the existing well and 30 gal/min (43,000 gal/d) at each of the two proposed wells were simulated. The high pumping scenario simulated a rate of 70 gal/min (101,000 gal/d) from each of the three pumping wells to estimate of the largest areas contributing recharge that might be expected given what is currently known about the shallow groundwater system. The areas contributing recharge for both the base and high pumping scenarios did not intersect any modeled surface-water bodies; however, the high pumping scenario had a larger areal extent than the base pumping scenario and intersected a septic separator.
Nezarat, Amin; Dastghaibifard, GH
2015-01-01
One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer’s utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider. PMID:26431035
Nezarat, Amin; Dastghaibifard, G H
2015-01-01
One of the most complex issues in the cloud computing environment is the problem of resource allocation so that, on one hand, the cloud provider expects the most profitability and, on the other hand, users also expect to have the best resources at their disposal considering the budget constraints and time. In most previous work conducted, heuristic and evolutionary approaches have been used to solve this problem. Nevertheless, since the nature of this environment is based on economic methods, using such methods can decrease response time and reducing the complexity of the problem. In this paper, an auction-based method is proposed which determines the auction winner by applying game theory mechanism and holding a repetitive game with incomplete information in a non-cooperative environment. In this method, users calculate suitable price bid with their objective function during several round and repetitions and send it to the auctioneer; and the auctioneer chooses the winning player based the suggested utility function. In the proposed method, the end point of the game is the Nash equilibrium point where players are no longer inclined to alter their bid for that resource and the final bid also satisfies the auctioneer's utility function. To prove the response space convexity, the Lagrange method is used and the proposed model is simulated in the cloudsim and the results are compared with previous work. At the end, it is concluded that this method converges to a response in a shorter time, provides the lowest service level agreement violations and the most utility to the provider.
Terahertz wave electro-optic measurements with optical spectral filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V.; Kitaeva, G. Kh.
We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.
Vehicle Counting and Moving Direction Identification Based on Small-Aperture Microphone Array.
Zu, Xingshui; Zhang, Shaojie; Guo, Feng; Zhao, Qin; Zhang, Xin; You, Xing; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2017-05-10
The varying trend of a moving vehicle's angles provides much important intelligence for an unattended ground sensor (UGS) monitoring system. The present study investigates the capabilities of a small-aperture microphone array (SAMA) based system to identify the number and moving direction of vehicles travelling on a previously established route. In this paper, a SAMA-based acoustic monitoring system, including the system hardware architecture and algorithm mechanism, is designed as a single node sensor for the application of UGS. The algorithm is built on the varying trend of a vehicle's bearing angles around the closest point of approach (CPA). We demonstrate the effectiveness of our proposed method with our designed SAMA-based monitoring system in various experimental sites. The experimental results in harsh conditions validate the usefulness of our proposed UGS monitoring system.
A Layered Searchable Encryption Scheme with Functional Components Independent of Encryption Methods
Luo, Guangchun; Qin, Ke
2014-01-01
Searchable encryption technique enables the users to securely store and search their documents over the remote semitrusted server, which is especially suitable for protecting sensitive data in the cloud. However, various settings (based on symmetric or asymmetric encryption) and functionalities (ranked keyword query, range query, phrase query, etc.) are often realized by different methods with different searchable structures that are generally not compatible with each other, which limits the scope of application and hinders the functional extensions. We prove that asymmetric searchable structure could be converted to symmetric structure, and functions could be modeled separately apart from the core searchable structure. Based on this observation, we propose a layered searchable encryption (LSE) scheme, which provides compatibility, flexibility, and security for various settings and functionalities. In this scheme, the outputs of the core searchable component based on either symmetric or asymmetric setting are converted to some uniform mappings, which are then transmitted to loosely coupled functional components to further filter the results. In such a way, all functional components could directly support both symmetric and asymmetric settings. Based on LSE, we propose two representative and novel constructions for ranked keyword query (previously only available in symmetric scheme) and range query (previously only available in asymmetric scheme). PMID:24719565
Assugeni, Camila de O; Magalhães, Tatiana; Bolaños, Juan A; Tudge, Christopher C; Mantelatto, Fernando L; Zara, Fernando J
2017-12-01
Recent studies based on morphological and molecular data provide a new perspective concerning taxonomic aspects of the brachyuran family Mithracidae. These studies proposed a series of nominal changes and indicated that the family is actually represented by a different number and representatives of genera than previously thought. Here, we provide a comparative description of the ultrastructure of spermatozoa and spermatophores of some species of Mithracidae in a phylogenetic context. The ultrastructure of the spermatozoa and spermatophore was observed by scanning and transmission electron microscopy. The most informative morphological characters analysed were thickness of the operculum, shape of the perforatorial chamber and shape and thickness of the inner acrosomal zone. As a framework, we used a topology based on a phylogenetic analysis using mitochondrial data obtained here and from previous studies. Our results indicate that closely related species share a series of morphological characteristics of the spermatozoa. A thick operculum, for example, is a feature observed in species of the genera Amphithrax, Teleophrys, and Omalacantha in contrast to the slender operculum observed in Mithraculus and Mithrax. Amphithrax and Teleophrys have a rhomboid perforatorial chamber, while Mithraculus, Mithrax, and Omalacantha show a wider, deltoid morphology. Furthermore, our results are in agreement with recently proposed taxonomic changes including the separation of the genera Mithrax (previously Damithrax), Amphithrax (previously Mithrax) and Mithraculus, and the synonymy of Mithrax caribbaeus with Mithrax hispidus. Overall, the spermiotaxonomy of these species of Mithracidae represent a novel set of data that corroborates the most recent taxonomic revision of the family and can be used in future taxonomic and phylogenetic studies within this family. © 2017 Wiley Periodicals, Inc.
Visual privacy by context: proposal and evaluation of a level-based visualisation scheme.
Padilla-López, José Ramón; Chaaraoui, Alexandros Andre; Gu, Feng; Flórez-Revuelta, Francisco
2015-06-04
Privacy in image and video data has become an important subject since cameras are being installed in an increasing number of public and private spaces. Specifically, in assisted living, intelligent monitoring based on computer vision can allow one to provide risk detection and support services that increase people's autonomy at home. In the present work, a level-based visualisation scheme is proposed to provide visual privacy when human intervention is necessary, such as at telerehabilitation and safety assessment applications. Visualisation levels are dynamically selected based on the previously modelled context. In this way, different levels of protection can be provided, maintaining the necessary intelligibility required for the applications. Furthermore, a case study of a living room, where a top-view camera is installed, is presented. Finally, the performed survey-based evaluation indicates the degree of protection provided by the different visualisation models, as well as the personal privacy preferences and valuations of the users.
NASA Astrophysics Data System (ADS)
Zhang, Dongqing; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong
2018-03-01
In the development of treatments for cardiovascular diseases, short axis cardiac cine MRI is important for the assessment of various structural and functional properties of the heart. In short axis cardiac cine MRI, Cardiac properties including the ventricle dimensions, stroke volume, and ejection fraction can be extracted based on accurate segmentation of the left ventricle (LV) myocardium. One of the most advanced segmentation methods is based on fully convolutional neural networks (FCN) and can be successfully used to do segmentation in cardiac cine MRI slices. However, the temporal dependency between slices acquired at neighboring time points is not used. Here, based on our previously proposed FCN structure, we proposed a new algorithm to segment LV myocardium in porcine short axis cardiac cine MRI by incorporating convolutional long short-term memory (Conv-LSTM) to leverage the temporal dependency. In this approach, instead of processing each slice independently in a conventional CNN-based approach, the Conv-LSTM architecture captures the dynamics of cardiac motion over time. In a leave-one-out experiment on 8 porcine specimens (3,600 slices), the proposed approach was shown to be promising by achieving average mean Dice similarity coefficient (DSC) of 0.84, Hausdorff distance (HD) of 6.35 mm, and average perpendicular distance (APD) of 1.09 mm when compared with manual segmentations, which improved the performance of our previous FCN-based approach (average mean DSC=0.84, HD=6.78 mm, and APD=1.11 mm). Qualitatively, our model showed robustness against low image quality and complications in the surrounding anatomy due to its ability to capture the dynamics of cardiac motion.
A formal approach to the analysis of clinical computer-interpretable guideline modeling languages.
Grando, M Adela; Glasspool, David; Fox, John
2012-01-01
To develop proof strategies to formally study the expressiveness of workflow-based languages, and to investigate their applicability to clinical computer-interpretable guideline (CIG) modeling languages. We propose two strategies for studying the expressiveness of workflow-based languages based on a standard set of workflow patterns expressed as Petri nets (PNs) and notions of congruence and bisimilarity from process calculus. Proof that a PN-based pattern P can be expressed in a language L can be carried out semi-automatically. Proof that a language L cannot provide the behavior specified by a PNP requires proof by exhaustion based on analysis of cases and cannot be performed automatically. The proof strategies are generic but we exemplify their use with a particular CIG modeling language, PROforma. To illustrate the method we evaluate the expressiveness of PROforma against three standard workflow patterns and compare our results with a previous similar but informal comparison. We show that the two proof strategies are effective in evaluating a CIG modeling language against standard workflow patterns. We find that using the proposed formal techniques we obtain different results to a comparable previously published but less formal study. We discuss the utility of these analyses as the basis for principled extensions to CIG modeling languages. Additionally we explain how the same proof strategies can be reused to prove the satisfaction of patterns expressed in the declarative language CIGDec. The proof strategies we propose are useful tools for analysing the expressiveness of CIG modeling languages. This study provides good evidence of the benefits of applying formal methods of proof over semi-formal ones. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Schilling, Keith
2018-04-01
Roques et al. (https://doi.org/10.1002/2017WR022085) claims that they have proposed an exponential time step (ETS) method to improve the computing method of Liang et al. (https://doi.org/10.1002/2017WR020938) which used a constant time step (CTS) method on the derivative for dQ/dt in field data, where Q is the base flow discharge and t is the time since the start of base flow recession. This reply emphasizes that the main objective of Liang et al. (https://doi.org/10.1002/2017WR020938) was to develop an analytical model to investigate the effects of the unsaturated flow on base flow recession, not on the data interpretation methods. The analytical model indicates that the base flow recession hydrograph behaves as dQ/dt ˜aQb with the exponent b close to 1 at late times, which is consistent with previous theoretical models. The model of Liang et al. (https://doi.org/10.1002/2017WR020938) was applied to field data where the derivative of dQ/dt was computed using the CTS method, a method that has been widely adopted in previous studies. The ETS method proposed by Roques et al. (https://doi.org/10.1016/j.advwatres.2017.07.013) appears to be a good alternative but its accuracy needs further validation. Using slopes to fit field data as proposed by Roques et al. (https://doi.org/10.1002/2017WR022085) appears to match data satisfactorily at early times whereas it performs less satisfactorily at late times and leads to the exponent b being obviously larger than 1.
Lin, Lei; Wang, Qian; Sadek, Adel W
2016-06-01
The duration of freeway traffic accidents duration is an important factor, which affects traffic congestion, environmental pollution, and secondary accidents. Among previous studies, the M5P algorithm has been shown to be an effective tool for predicting incident duration. M5P builds a tree-based model, like the traditional classification and regression tree (CART) method, but with multiple linear regression models as its leaves. The problem with M5P for accident duration prediction, however, is that whereas linear regression assumes that the conditional distribution of accident durations is normally distributed, the distribution for a "time-to-an-event" is almost certainly nonsymmetrical. A hazard-based duration model (HBDM) is a better choice for this kind of a "time-to-event" modeling scenario, and given this, HBDMs have been previously applied to analyze and predict traffic accidents duration. Previous research, however, has not yet applied HBDMs for accident duration prediction, in association with clustering or classification of the dataset to minimize data heterogeneity. The current paper proposes a novel approach for accident duration prediction, which improves on the original M5P tree algorithm through the construction of a M5P-HBDM model, in which the leaves of the M5P tree model are HBDMs instead of linear regression models. Such a model offers the advantage of minimizing data heterogeneity through dataset classification, and avoids the need for the incorrect assumption of normality for traffic accident durations. The proposed model was then tested on two freeway accident datasets. For each dataset, the first 500 records were used to train the following three models: (1) an M5P tree; (2) a HBDM; and (3) the proposed M5P-HBDM, and the remainder of data were used for testing. The results show that the proposed M5P-HBDM managed to identify more significant and meaningful variables than either M5P or HBDMs. Moreover, the M5P-HBDM had the lowest overall mean absolute percentage error (MAPE). Copyright © 2016 Elsevier Ltd. All rights reserved.
Medical privacy protection based on granular computing.
Wang, Da-Wei; Liau, Churn-Jung; Hsu, Tsan-Sheng
2004-10-01
Based on granular computing methodology, we propose two criteria to quantitatively measure privacy invasion. The total cost criterion measures the effort needed for a data recipient to find private information. The average benefit criterion measures the benefit a data recipient obtains when he received the released data. These two criteria remedy the inadequacy of the deterministic privacy formulation proposed in Proceedings of Asia Pacific Medical Informatics Conference, 2000; Int J Med Inform 2003;71:17-23. Granular computing methodology provides a unified framework for these quantitative measurements and previous bin size and logical approaches. These two new criteria are implemented in a prototype system Cellsecu 2.0. Preliminary system performance evaluation is conducted and reviewed.
Quantum adiabatic computation and adiabatic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Zhaohui; Ying Mingsheng
2007-08-15
Recently, quantum adiabatic computation has attracted more and more attention in the literature. It is a novel quantum computation model based on adiabatic approximation, and the analysis of a quantum adiabatic algorithm depends highly on the adiabatic conditions. However, it has been pointed out that the traditional adiabatic conditions are problematic. Thus, results obtained previously should be checked and sufficient adiabatic conditions applicable to adiabatic computation should be proposed. Based on a result of Tong et al. [Phys. Rev. Lett. 98, 150402 (2007)], we propose a modified adiabatic criterion which is more applicable to the analysis of adiabatic algorithms. Asmore » an example, we prove the validity of the local adiabatic search algorithm by employing our criterion.« less
Blood vessels segmentation of hatching eggs based on fully convolutional networks
NASA Astrophysics Data System (ADS)
Geng, Lei; Qiu, Ling; Wu, Jun; Xiao, Zhitao
2018-04-01
FCN, trained end-to-end, pixels-to-pixels, predict result of each pixel. It has been widely used for semantic segmentation. In order to realize the blood vessels segmentation of hatching eggs, a method based on FCN is proposed in this paper. The training datasets are composed of patches extracted from very few images to augment data. The network combines with lower layer and deconvolution to enables precise segmentation. The proposed method frees from the problem that training deep networks need large scale samples. Experimental results on hatching eggs demonstrate that this method can yield more accurate segmentation outputs than previous researches. It provides a convenient reference for fertility detection subsequently.
Two-out-of-two color matching based visual cryptography schemes.
Machizaud, Jacques; Fournel, Thierry
2012-09-24
Visual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view.
Bifurcation and chaos of a new discrete fractional-order logistic map
NASA Astrophysics Data System (ADS)
Ji, YuanDong; Lai, Li; Zhong, SuChuan; Zhang, Lu
2018-04-01
The fractional-order discrete maps with chaotic behaviors based on the theory of ;fractional difference; are proposed in recent years. In this paper, instead of using fractional difference, a new fractionalized logistic map is proposed based on the numerical algorithm of fractional differentiation definition. The bifurcation diagrams of this map with various differential orders are given by numerical simulation. The simulation results show that the fractional-order logistic map derived in this manner holds rich dynamical behaviors because of its memory effect. In addition, new types of behaviors of bifurcation and chaos are found, which are different from those of the integer-order and the previous fractional-order logistic maps.
Exploring personalized searches using tag-based user profiles and resource profiles in folksonomy.
Cai, Yi; Li, Qing; Xie, Haoran; Min, Huaqin
2014-10-01
With the increase in resource-sharing websites such as YouTube and Flickr, many shared resources have arisen on the Web. Personalized searches have become more important and challenging since users demand higher retrieval quality. To achieve this goal, personalized searches need to take users' personalized profiles and information needs into consideration. Collaborative tagging (also known as folksonomy) systems allow users to annotate resources with their own tags, which provides a simple but powerful way for organizing, retrieving and sharing different types of social resources. In this article, we examine the limitations of previous tag-based personalized searches. To handle these limitations, we propose a new method to model user profiles and resource profiles in collaborative tagging systems. We use a normalized term frequency to indicate the preference degree of a user on a tag. A novel search method using such profiles of users and resources is proposed to facilitate the desired personalization in resource searches. In our framework, instead of the keyword matching or similarity measurement used in previous works, the relevance measurement between a resource and a user query (termed the query relevance) is treated as a fuzzy satisfaction problem of a user's query requirements. We implement a prototype system called the Folksonomy-based Multimedia Retrieval System (FMRS). Experiments using the FMRS data set and the MovieLens data set show that our proposed method outperforms baseline methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.
Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin
2018-01-30
On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.
Qualitative and Quantitative Analysis for Facial Complexion in Traditional Chinese Medicine
Zhao, Changbo; Li, Guo-zheng; Li, Fufeng; Wang, Zhi; Liu, Chang
2014-01-01
Facial diagnosis is an important and very intuitive diagnostic method in Traditional Chinese Medicine (TCM). However, due to its qualitative and experience-based subjective property, traditional facial diagnosis has a certain limitation in clinical medicine. The computerized inspection method provides classification models to recognize facial complexion (including color and gloss). However, the previous works only study the classification problems of facial complexion, which is considered as qualitative analysis in our perspective. For quantitative analysis expectation, the severity or degree of facial complexion has not been reported yet. This paper aims to make both qualitative and quantitative analysis for facial complexion. We propose a novel feature representation of facial complexion from the whole face of patients. The features are established with four chromaticity bases splitting up by luminance distribution on CIELAB color space. Chromaticity bases are constructed from facial dominant color using two-level clustering; the optimal luminance distribution is simply implemented with experimental comparisons. The features are proved to be more distinctive than the previous facial complexion feature representation. Complexion recognition proceeds by training an SVM classifier with the optimal model parameters. In addition, further improved features are more developed by the weighted fusion of five local regions. Extensive experimental results show that the proposed features achieve highest facial color recognition performance with a total accuracy of 86.89%. And, furthermore, the proposed recognition framework could analyze both color and gloss degrees of facial complexion by learning a ranking function. PMID:24967342
NASA Astrophysics Data System (ADS)
Taghavipour, S.; Kharkovsky, S.; Kang, W.-H.; Samali, B.; Mirza, O.
2017-10-01
Previous studies have successfully demonstrated the capability and reliability of the use of Smart Aggregate (SA) transducers to monitor reinforced concrete (RC) structures. However, they mainly focused on the applications of embedded SAs to new structural members, while no major attention was paid to the monitoring of existing RC members using externally mounted SAs. In this paper, a mounted SA-based approach is proposed for a real-time health monitoring of existing RC beams. The proposed approach is verified through monitoring of RC beams under flexural loading, on each of which SA transducers are mounted as an actuator and sensors. The experimental results show that the proposed SA-based approach effectively evaluates the cracking status of RC beams in terms of the peak of power spectral density and damage indexes obtained at multiple sensor locations. It is also shown that the proposed sensor system can also capture a precautionary signal for major cracking.
A multihop key agreement scheme for wireless ad hoc networks based on channel characteristics.
Hao, Zhuo; Zhong, Sheng; Yu, Nenghai
2013-01-01
A number of key agreement schemes based on wireless channel characteristics have been proposed recently. However, previous key agreement schemes require that two nodes which need to agree on a key are within the communication range of each other. Hence, they are not suitable for multihop wireless networks, in which nodes do not always have direct connections with each other. In this paper, we first propose a basic multihop key agreement scheme for wireless ad hoc networks. The proposed basic scheme is resistant to external eavesdroppers. Nevertheless, this basic scheme is not secure when there exist internal eavesdroppers or Man-in-the-Middle (MITM) adversaries. In order to cope with these adversaries, we propose an improved multihop key agreement scheme. We show that the improved scheme is secure against internal eavesdroppers and MITM adversaries in a single path. Both performance analysis and simulation results demonstrate that the improved scheme is efficient. Consequently, the improved key agreement scheme is suitable for multihop wireless ad hoc networks.
A Multihop Key Agreement Scheme for Wireless Ad Hoc Networks Based on Channel Characteristics
Yu, Nenghai
2013-01-01
A number of key agreement schemes based on wireless channel characteristics have been proposed recently. However, previous key agreement schemes require that two nodes which need to agree on a key are within the communication range of each other. Hence, they are not suitable for multihop wireless networks, in which nodes do not always have direct connections with each other. In this paper, we first propose a basic multihop key agreement scheme for wireless ad hoc networks. The proposed basic scheme is resistant to external eavesdroppers. Nevertheless, this basic scheme is not secure when there exist internal eavesdroppers or Man-in-the-Middle (MITM) adversaries. In order to cope with these adversaries, we propose an improved multihop key agreement scheme. We show that the improved scheme is secure against internal eavesdroppers and MITM adversaries in a single path. Both performance analysis and simulation results demonstrate that the improved scheme is efficient. Consequently, the improved key agreement scheme is suitable for multihop wireless ad hoc networks. PMID:23766725
Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system
NASA Astrophysics Data System (ADS)
Nuster, Robert; Paltauf, Guenther
2017-07-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
Development, Integration and Utilization of Surface Nuclear Energy Sources for Exploration Missions
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon; Hickman, Robert; Hissam, Andy; Houston, Vance; Martin, Jim; Mireles, Omar; Reid, Bob; Schneider, Todd
2005-01-01
Throughout the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for human surface exploration missions. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Nuclear energy sources were used to provide heat on the Pathfinder; Spirit, and Discovery rovers. Scenarios have been proposed that utilize -1 kWe radioisotope systems for early missions, followed by fission systems in the 10 - 30 kWe range when energy requirements increase. A fission energy source unit size of approximately 150 kWt has been proposed based on previous lunar and Mars base architecture studies. Such a unit could support both early and advanced bases through a building block approach.
NASA Astrophysics Data System (ADS)
Strolger, Louis-Gregory; Porter, Sophia; Lagerstrom, Jill; Weissman, Sarah; Reid, I. Neill; Garcia, Michael
2017-04-01
The Proposal Auto-Categorizer and Manager (PACMan) tool was written to respond to concerns about subjective flaws and potential biases in some aspects of the proposal review process for time allocation for the Hubble Space Telescope (HST), and to partially alleviate some of the anticipated additional workload from the James Webb Space Telescope (JWST) proposal review. PACMan is essentially a mixed-method Naive Bayesian spam filtering routine, with multiple pools representing scientific categories, that utilizes the Robinson method for combining token (or word) probabilities. PACMan was trained to make similar programmatic decisions in science category sorting, panelist selection, and proposal-to-panelists assignments to those made by individuals and committees in the Science Policies Group (SPG) at the Space Telescope Science Institute. Based on training from the previous cycle’s proposals, at an average of 87%, PACMan made the same science category assignments for proposals in Cycle 24 as the SPG. Tests for similar science categorizations, based on training using proposals from additional cycles, show that this accuracy can be further improved, to the > 95 % level. This tool will be used to augment or replace key functions in the Time Allocation Committee review processes in future HST and JWST cycles.
Real-time probabilistic covariance tracking with efficient model update.
Wu, Yi; Cheng, Jian; Wang, Jinqiao; Lu, Hanqing; Wang, Jun; Ling, Haibin; Blasch, Erik; Bai, Li
2012-05-01
The recently proposed covariance region descriptor has been proven robust and versatile for a modest computational cost. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties, as well as their correlation, are characterized. The similarity between two covariance descriptors is measured on Riemannian manifolds. Based on the same metric but with a probabilistic framework, we propose a novel tracking approach on Riemannian manifolds with a novel incremental covariance tensor learning (ICTL). To address the appearance variations, ICTL incrementally learns a low-dimensional covariance tensor representation and efficiently adapts online to appearance changes of the target with only O(1) computational complexity, resulting in a real-time performance. The covariance-based representation and the ICTL are then combined with the particle filter framework to allow better handling of background clutter, as well as the temporary occlusions. We test the proposed probabilistic ICTL tracker on numerous benchmark sequences involving different types of challenges including occlusions and variations in illumination, scale, and pose. The proposed approach demonstrates excellent real-time performance, both qualitatively and quantitatively, in comparison with several previously proposed trackers.
A Study on Real-Time Scheduling Methods in Holonic Manufacturing Systems
NASA Astrophysics Data System (ADS)
Iwamura, Koji; Taimizu, Yoshitaka; Sugimura, Nobuhiro
Recently, new architectures of manufacturing systems have been proposed to realize flexible control structures of the manufacturing systems, which can cope with the dynamic changes in the volume and the variety of the products and also the unforeseen disruptions, such as failures of manufacturing resources and interruptions by high priority jobs. They are so called as the autonomous distributed manufacturing system, the biological manufacturing system and the holonic manufacturing system. Rule-based scheduling methods were proposed and applied to the real-time production scheduling problems of the HMS (Holonic Manufacturing System) in the previous report. However, there are still remaining problems from the viewpoint of the optimization of the whole production schedules. New procedures are proposed, in the present paper, to select the production schedules, aimed at generating effective production schedules in real-time. The proposed methods enable the individual holons to select suitable machining operations to be carried out in the next time period. Coordination process among the holons is also proposed to carry out the coordination based on the effectiveness values of the individual holons.
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo
2017-03-01
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.
NASA Astrophysics Data System (ADS)
Nabavi, N.
2018-07-01
The author investigates the monitoring methods for fine adjustment of the previously proposed on-chip architecture for frequency multiplication and translation of harmonics by design. Digital signal processing (DSP) algorithms are utilized to create an optimized microwave photonic integrated circuit functionality toward automated frequency multiplication. The implemented DSP algorithms are formed on discrete Fourier transform and optimization-based algorithms (Greedy and gradient-based algorithms), which are analytically derived and numerically compared based on the accuracy and speed of convergence criteria.
Mining subspace clusters from DNA microarray data using large itemset techniques.
Chang, Ye-In; Chen, Jiun-Rung; Tsai, Yueh-Chi
2009-05-01
Mining subspace clusters from the DNA microarrays could help researchers identify those genes which commonly contribute to a disease, where a subspace cluster indicates a subset of genes whose expression levels are similar under a subset of conditions. Since in a DNA microarray, the number of genes is far larger than the number of conditions, those previous proposed algorithms which compute the maximum dimension sets (MDSs) for any two genes will take a long time to mine subspace clusters. In this article, we propose the Large Itemset-Based Clustering (LISC) algorithm for mining subspace clusters. Instead of constructing MDSs for any two genes, we construct only MDSs for any two conditions. Then, we transform the task of finding the maximal possible gene sets into the problem of mining large itemsets from the condition-pair MDSs. Since we are only interested in those subspace clusters with gene sets as large as possible, it is desirable to pay attention to those gene sets which have reasonable large support values in the condition-pair MDSs. From our simulation results, we show that the proposed algorithm needs shorter processing time than those previous proposed algorithms which need to construct gene-pair MDSs.
A new effective operator for the hybrid algorithm for solving global optimisation problems
NASA Astrophysics Data System (ADS)
Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac
2018-04-01
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.
Modern proposal of methodology for retrieval of characteristic synthetic rainfall hyetographs
NASA Astrophysics Data System (ADS)
Licznar, Paweł; Burszta-Adamiak, Ewa; Łomotowski, Janusz; Stańczyk, Justyna
2017-11-01
Modern engineering workshop of designing and modelling complex drainage systems is based on hydrodynamic modelling and has a probabilistic character. Its practical application requires a change regarding rainfall models accepted at the input. Previously used artificial rainfall models of simplified form, e.g. block precipitation or Euler's type II model rainfall are no longer sufficient. It is noticeable that urgent clarification is needed as regards the methodology of standardized rainfall hyetographs that would take into consideration the specifics of local storm rainfall temporal dynamics. The aim of the paper is to present a proposal for innovative methodology for determining standardized rainfall hyetographs, based on statistical processing of the collection of actual local precipitation characteristics. Proposed methodology is based on the classification of standardized rainfall hyetographs with the use of cluster analysis. Its application is presented on the example of selected rain gauges localized in Poland. Synthetic rainfall hyetographs achieved as a final result may be used for hydrodynamic modelling of sewerage systems, including probabilistic detection of necessary capacity of retention reservoirs.
Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie
2010-10-10
The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.
Hot news recommendation system from heterogeneous websites based on bayesian model.
Xia, Zhengyou; Xu, Shengwu; Liu, Ningzhong; Zhao, Zhengkang
2014-01-01
The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results.
Hot News Recommendation System from Heterogeneous Websites Based on Bayesian Model
Xia, Zhengyou; Xu, Shengwu; Liu, Ningzhong; Zhao, Zhengkang
2014-01-01
The most current news recommendations are suitable for news which comes from a single news website, not for news from different heterogeneous news websites. Previous researches about news recommender systems based on different strategies have been proposed to provide news personalization services for online news readers. However, little research work has been reported on utilizing hundreds of heterogeneous news websites to provide top hot news services for group customers (e.g., government staffs). In this paper, we propose a hot news recommendation model based on Bayesian model, which is from hundreds of different news websites. In the model, we determine whether the news is hot news by calculating the joint probability of the news. We evaluate and compare our proposed recommendation model with the results of human experts on the real data sets. Experimental results demonstrate the reliability and effectiveness of our method. We also implement this model in hot news recommendation system of Hangzhou city government in year 2013, which achieves very good results. PMID:25093207
A Hybrid Classification System for Heart Disease Diagnosis Based on the RFRS Method.
Liu, Xiao; Wang, Xiaoli; Su, Qiang; Zhang, Mo; Zhu, Yanhong; Wang, Qiugen; Wang, Qian
2017-01-01
Heart disease is one of the most common diseases in the world. The objective of this study is to aid the diagnosis of heart disease using a hybrid classification system based on the ReliefF and Rough Set (RFRS) method. The proposed system contains two subsystems: the RFRS feature selection system and a classification system with an ensemble classifier. The first system includes three stages: (i) data discretization, (ii) feature extraction using the ReliefF algorithm, and (iii) feature reduction using the heuristic Rough Set reduction algorithm that we developed. In the second system, an ensemble classifier is proposed based on the C4.5 classifier. The Statlog (Heart) dataset, obtained from the UCI database, was used for experiments. A maximum classification accuracy of 92.59% was achieved according to a jackknife cross-validation scheme. The results demonstrate that the performance of the proposed system is superior to the performances of previously reported classification techniques.
Inchauspe, Adrián Angel
2016-01-01
AIM: To present an inclusion criterion for patients who have suffered bilateral amputation in order to be treated with the supplementary resuscitation treatment which is hereby proposed by the author. METHODS: This work is based on a Retrospective Cohort model so that a certainly lethal risk to the control group is avoided. RESULTS: This paper presents a hypothesis on acupunctural PC-9 Zhong chong point, further supported by previous statistical work recorded for the K-1 Yong quan resuscitation point. CONCLUSION: Thanks to the application of the resuscitation maneuver herein proposed on the previously mentioned point, patients with bilateral amputation would have another alternative treatment available in case basic and advanced CPR should fail. PMID:27152257
Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias
2013-07-25
We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01% can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.
Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias
2014-03-01
We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01 percent can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.
TW HYA ASSOCIATION MEMBERSHIP AND NEW WISE-DETECTED CIRCUMSTELLAR DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Adam; Song, Inseok; Melis, Carl, E-mail: aschneid@physast.uga.edu, E-mail: song@physast.uga.edu, E-mail: cmelis@ucsd.edu
2012-07-20
We assess the current membership of the nearby, young TW Hydrae association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 {mu}m providing clear evidence for substantial dusty circumstellar disks around these low-mass, {approx}8 Myr old stars that were previously shown to likely be accreting circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disksmore » with WISE and determine a 22 {mu}m excess fraction of 42{sup +10}{sub -{sub 9}}% based on our results.« less
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)
Armour, Cherie; Elklit, Ask; Shevlin, Mark
2011-01-01
Background Bartholomew (1990) proposed a four category adult attachment model based on Bowlby's (1973) proposal that attachment is underpinned by an individual's view of the self and others. Previous cluster analytic techniques have identified four and two attachment styles based on the Revised Adult Attachment Scale (RAAS). In addition, attachment styles have been proposed to meditate the association between stressful life events and subsequent psychiatric status. Objective The current study aimed to empirically test the attachment typology proposed by Collins and Read (1990). Specifically, LPA was used to determine if the proposed four styles can be derived from scores on the dimensions of closeness/dependency and anxiety. In addition, we aimed to test if the resultant attachment styles predicted the severity of psychopathology in response to a whiplash trauma. Method A large sample of Danish trauma victims (N=1577) participated. A Latent Profile Analysis was conducted, using Mplus 5.1, on scores from the RAAS scale to ascertain if there were underlying homogeneous attachment classes/subgroups. Class membership was used in a series of one-way ANOVA tests to determine if classes were significantly different in terms of mean scores on measures of psychopathology. Results The three class solution was considered optimal. Class one was termed Fearful (18.6%), Class two Preoccupied (34.5%), and Class three Secure (46.9%). The secure class evidenced significantly lower mean scores on PTSD, depression, and anxiety measures compared to other classes, whereas the fearful class evidenced significantly higher mean scores compared to other classes. Conclusions The results demonstrated evidence of three discrete classes of attachment styles, which were labelled secure, preoccupied, and fearful. This is in contrast to previous cluster analytic techniques which have identified four and two attachment styles based on the RAAS.In addition, Securely attached individuals display lower levels of psychopathology post whiplash trauma. PMID:22893805
Automatic segmentation of colon glands using object-graphs.
Gunduz-Demir, Cigdem; Kandemir, Melih; Tosun, Akif Burak; Sokmensuer, Cenk
2010-02-01
Gland segmentation is an important step to automate the analysis of biopsies that contain glandular structures. However, this remains a challenging problem as the variation in staining, fixation, and sectioning procedures lead to a considerable amount of artifacts and variances in tissue sections, which may result in huge variances in gland appearances. In this work, we report a new approach for gland segmentation. This approach decomposes the tissue image into a set of primitive objects and segments glands making use of the organizational properties of these objects, which are quantified with the definition of object-graphs. As opposed to the previous literature, the proposed approach employs the object-based information for the gland segmentation problem, instead of using the pixel-based information alone. Working with the images of colon tissues, our experiments demonstrate that the proposed object-graph approach yields high segmentation accuracies for the training and test sets and significantly improves the segmentation performance of its pixel-based counterparts. The experiments also show that the object-based structure of the proposed approach provides more tolerance to artifacts and variances in tissues.
NASA Astrophysics Data System (ADS)
Serra, Roger; Lopez, Lautaro
2018-05-01
Different approaches on the detection of damages based on dynamic measurement of structures have appeared in the last decades. They were based, amongst others, on changes in natural frequencies, modal curvatures, strain energy or flexibility. Wavelet analysis has also been used to detect the abnormalities on modal shapes induced by damages. However the majority of previous work was made with non-corrupted by noise signals. Moreover, the damage influence for each mode shape was studied separately. This paper proposes a new methodology based on combined modal wavelet transform strategy to cope with noisy signals, while at the same time, able to extract the relevant information from each mode shape. The proposed methodology will be then compared with the most frequently used and wide-studied methods from the bibliography. To evaluate the performance of each method, their capacity to detect and localize damage will be analyzed in different cases. The comparison will be done by simulating the oscillations of a cantilever steel beam with and without defect as a numerical case. The proposed methodology proved to outperform classical methods in terms of noisy signals.
Muthusamy, Hariharan; Polat, Kemal; Yaacob, Sazali
2015-01-01
In the recent years, many research works have been published using speech related features for speech emotion recognition, however, recent studies show that there is a strong correlation between emotional states and glottal features. In this work, Mel-frequency cepstralcoefficients (MFCCs), linear predictive cepstral coefficients (LPCCs), perceptual linear predictive (PLP) features, gammatone filter outputs, timbral texture features, stationary wavelet transform based timbral texture features and relative wavelet packet energy and entropy features were extracted from the emotional speech (ES) signals and its glottal waveforms(GW). Particle swarm optimization based clustering (PSOC) and wrapper based particle swarm optimization (WPSO) were proposed to enhance the discerning ability of the features and to select the discriminating features respectively. Three different emotional speech databases were utilized to gauge the proposed method. Extreme learning machine (ELM) was employed to classify the different types of emotions. Different experiments were conducted and the results show that the proposed method significantly improves the speech emotion recognition performance compared to previous works published in the literature. PMID:25799141
Enhancing an Instructional Design Model for Virtual Reality-Based Learning
ERIC Educational Resources Information Center
Chen, Chwen Jen; Teh, Chee Siong
2013-01-01
In order to effectively utilize the capabilities of virtual reality (VR) in supporting the desired learning outcomes, careful consideration in the design of instruction for VR learning is crucial. In line with this concern, previous work proposed an instructional design model that prescribes instructional methods to guide the design of VR-based…
Edge-Region Grouping in Figure-Ground Organization and Depth Perception
ERIC Educational Resources Information Center
Palmer, Stephen E.; Brooks, Joseph L.
2008-01-01
Edge-region grouping (ERG) is proposed as a unifying and previously unrecognized class of relational information that influences figure-ground organization and perceived depth across an edge. ERG occurs when the edge between two regions is differentially grouped with one region based on classic principles of similarity grouping. The ERG hypothesis…
MAP-Motivated Carrier Synchronization of GMSK Based on the Laurent AMP Representation
NASA Technical Reports Server (NTRS)
Simon, M. K.
1998-01-01
Using the MAP estimation approach to carrier synchronization of digital modulations containing ISI together with a two pulse stream AMP representation of GMSK, it is possible to obtain an optimum closed loop configuration in the same manner as has been previously proposed for other conventional modulations with ISI.
Constructional Meanings of Verb-Noun Compounds in Spanish: "Limpiabotas vs. Tientaparedes"
ERIC Educational Resources Information Center
Yoon, Jiyoung
2009-01-01
This study examines Spanish [Verb + Noun (V + N)] compounds based on insights drawn from Construction Grammar. In contrast to previous studies that treat Spanish [V + N] compounds as having one common structural and semantic property, this study proposes two types of [V + N] compound constructions in Spanish, each with its own respective…
USDA-ARS?s Scientific Manuscript database
The mango pulp weevil, Sternochetus frigidus (F.) is an important quarantine pest preventing the export of mangoes from the Philippines to the United States and other countries. Previously, a radiation dose of 100 Gy was proposed for phytosanitary treatment of S. frigidus based on dose-response stud...
"Think" Pragmatically: Children's Interpretation of Belief Reports
ERIC Educational Resources Information Center
Lewis, Shevaun; Hacquard, Valentine; Lidz, Jeffrey
2017-01-01
Children under 4 years of age often evaluate belief reports based on reality instead of beliefs. They tend to reject sentences like, "John thinks that giraffes have stripes" on the grounds that giraffes do not have stripes. Previous accounts have proposed that such judgments reflect immature Theory of Mind or immature syntactic/semantic…
Ontology-Based Annotation of Learning Object Content
ERIC Educational Resources Information Center
Gasevic, Dragan; Jovanovic, Jelena; Devedzic, Vladan
2007-01-01
The paper proposes a framework for building ontology-aware learning object (LO) content. Previously ontologies were exclusively employed for enriching LOs' metadata. Although such an approach is useful, as it improves retrieval of relevant LOs from LO repositories, it does not enable one to reuse components of a LO, nor to incorporate an explicit…
Abel inversion using fast Fourier transforms.
Kalal, M; Nugent, K A
1988-05-15
A fast Fourier transform based Abel inversion technique is proposed. The method is faster than previously used techniques, potentially very accurate (even for a relatively small number of points), and capable of handling large data sets. The technique is discussed in the context of its use with 2-D digital interferogram analysis algorithms. Several examples are given.
ERIC Educational Resources Information Center
Tang, Kai-Yu; Wang, Chia-Yu; Chang, Hsin-Yi; Chen, Sufen; Lo, Hao-Chang; Tsai, Chin-Chung
2016-01-01
The issues of metacognitive scaffolding in science education (MSiSE) have become increasingly popular and important. Differing from previous content reviews, this study proposes a series of quantitative computer-based analyses by integrating document co-citation analysis, social network analysis, and exploratory factor analysis to explore the…
Mapping of Supply Chain Learning: A Framework for SMEs
ERIC Educational Resources Information Center
Thakkar, Jitesh; Kanda, Arun; Deshmukh, S. G.
2011-01-01
Purpose: The aim of this paper is to propose a mapping framework for evaluating supply chain learning potential for the context of small- to medium-sized enterprises (SMEs). Design/methodology/approach: The extracts of recently completed case based research for ten manufacturing SME units and facts reported in the previous research are utilized…
Creativity in Men and Women: Threat, Other-Interest, and Self-Assessment
ERIC Educational Resources Information Center
Kemmelmeier, Markus; Walton, Andre P.
2016-01-01
Previous research into gender and creativity has provided little evidence for consistent differences between men and women in creative performance. This research revisits this topic by proposing a person × situation approach, arguing that gender differences in creative performance only occur in certain contexts, but not others. Based on the…
Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.
2013-01-01
Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203
Arctic lead detection using a waveform mixture algorithm from CryoSat-2 data
NASA Astrophysics Data System (ADS)
Lee, Sanggyun; Kim, Hyun-cheol; Im, Jungho
2018-05-01
We propose a waveform mixture algorithm to detect leads from CryoSat-2 data, which is novel and different from the existing threshold-based lead detection methods. The waveform mixture algorithm adopts the concept of spectral mixture analysis, which is widely used in the field of hyperspectral image analysis. This lead detection method was evaluated with high-resolution (250 m) MODIS images and showed comparable and promising performance in detecting leads when compared to the previous methods. The robustness of the proposed approach also lies in the fact that it does not require the rescaling of parameters (i.e., stack standard deviation, stack skewness, stack kurtosis, pulse peakiness, and backscatter σ0), as it directly uses L1B waveform data, unlike the existing threshold-based methods. Monthly lead fraction maps were produced by the waveform mixture algorithm, which shows interannual variability of recent sea ice cover during 2011-2016, excluding the summer season (i.e., June to September). We also compared the lead fraction maps to other lead fraction maps generated from previously published data sets, resulting in similar spatiotemporal patterns.
Design of synthetic jet actuator based on FSMA composite
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Kuga, Yasuo; Taya, Minoru
2005-05-01
An improved version of the membrane actuator has been designed and constructed based on our previous diaphragm actuator. It consists of ferromagnetic shape memory alloy composite (FSMA) diaphragm and an electromagnet system. The actuation mechanism of the membrane actuator is the hybrid mechanism that we proposed previously. The high momentum airflow will be produced by the oscillation of the circular FSMA composite diaphragm driven by electromagnets close to its resonance frequency. This membrane actuator is designed for the active flow control technology on airplane wings. The active flow control (AFC) technology has been studied and shown that it can help aircraft improve aerodynamic performance and jet noise reduction. AFC can be achieved by a synthetic jet actuator injecting high momentum air into the airflow at the appropriate locations on aircraft wings. Due to large force and martensitic transformation on the FSMA composite diaphragm, the membrane actuator can produce 190 m/s synthetic jets at 220 Hz. A series connection of several membrane actuators is proposed to construct a synthetic jet actuator package for distributing synthetic jet flow along the wing span.
Motion-adaptive model-assisted compatible coding with spatiotemporal scalability
NASA Astrophysics Data System (ADS)
Lee, JaeBeom; Eleftheriadis, Alexandros
1997-01-01
We introduce the concept of motion adaptive spatio-temporal model-assisted compatible (MA-STMAC) coding, a technique to selectively encode areas of different importance to the human eye in terms of space and time in moving images with the consideration of object motion. PRevious STMAC was proposed base don the fact that human 'eye contact' and 'lip synchronization' are very important in person-to-person communication. Several areas including the eyes and lips need different types of quality, since different areas have different perceptual significance to human observers. The approach provides a better rate-distortion tradeoff than conventional image coding techniques base don MPEG-1, MPEG- 2, H.261, as well as H.263. STMAC coding is applied on top of an encoder, taking full advantage of its core design. Model motion tracking in our previous STMAC approach was not automatic. The proposed MA-STMAC coding considers the motion of the human face within the STMAC concept using automatic area detection. Experimental results are given using ITU-T H.263, addressing very low bit-rate compression.
Laser-Based Slam with Efficient Occupancy Likelihood Map Learning for Dynamic Indoor Scenes
NASA Astrophysics Data System (ADS)
Li, Li; Yao, Jian; Xie, Renping; Tu, Jinge; Feng, Chen
2016-06-01
Location-Based Services (LBS) have attracted growing attention in recent years, especially in indoor environments. The fundamental technique of LBS is the map building for unknown environments, this technique also named as simultaneous localization and mapping (SLAM) in robotic society. In this paper, we propose a novel approach for SLAMin dynamic indoor scenes based on a 2D laser scanner mounted on a mobile Unmanned Ground Vehicle (UGV) with the help of the grid-based occupancy likelihood map. Instead of applying scan matching in two adjacent scans, we propose to match current scan with the occupancy likelihood map learned from all previous scans in multiple scales to avoid the accumulation of matching errors. Due to that the acquisition of the points in a scan is sequential but not simultaneous, there unavoidably exists the scan distortion at different extents. To compensate the scan distortion caused by the motion of the UGV, we propose to integrate a velocity of a laser range finder (LRF) into the scan matching optimization framework. Besides, to reduce the effect of dynamic objects such as walking pedestrians often existed in indoor scenes as much as possible, we propose a new occupancy likelihood map learning strategy by increasing or decreasing the probability of each occupancy grid after each scan matching. Experimental results in several challenged indoor scenes demonstrate that our proposed approach is capable of providing high-precision SLAM results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onoufriou, T.; Simpson, R.J.; Protopapas, M.
This paper presents the development and application of reliability based inspection planning techniques for floaters. Based on previous experience from jacket structure applications optimized inspection planning (OIP) techniques for floaters are developed. The differences between floaters and jacket structures in relation to fatigue damage, redundancy levels and inspection practice are examined and reflected in the proposed methodology. The application and benefits of these techniques is demonstrated through representative analyses and important trends are highlighted through the results of a parametric sensitivity study.
Data Warehouse Design from HL7 Clinical Document Architecture Schema.
Pecoraro, Fabrizio; Luzi, Daniela; Ricci, Fabrizio L
2015-01-01
This paper proposes a semi-automatic approach to extract clinical information structured in a HL7 Clinical Document Architecture (CDA) and transform it in a data warehouse dimensional model schema. It is based on a conceptual framework published in a previous work that maps the dimensional model primitives with CDA elements. Its feasibility is demonstrated providing a case study based on the analysis of vital signs gathered during laboratory tests.
Color encryption scheme based on adapted quantum logistic map
NASA Astrophysics Data System (ADS)
Zaghloul, Alaa; Zhang, Tiejun; Amin, Mohamed; Abd El-Latif, Ahmed A.
2014-04-01
This paper presents a new color image encryption scheme based on quantum chaotic system. In this scheme, a new encryption scheme is accomplished by generating an intermediate chaotic key stream with the help of quantum chaotic logistic map. Then, each pixel is encrypted by the cipher value of the previous pixel and the adapted quantum logistic map. The results show that the proposed scheme has adequate security for the confidentiality of color images.
GraDit: graph-based data repair algorithm for multiple data edits rule violations
NASA Astrophysics Data System (ADS)
Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.
NASA Astrophysics Data System (ADS)
Sun, Feng-Rong; Wang, Xiao-Jing; Wu, Qiang; Yao, Gui-Hua; Zhang, Yun
2013-01-01
Left ventricular (LV) torsion is a sensitive and global index of LV systolic and diastolic function, but how to noninvasively measure it is challenging. Two-dimensional echocardiography and the block-matching based speckle tracking method were used to measure LV torsion. Main advantages of the proposed method over the previous ones are summarized as follows: (1) The method is automatic, except for manually selecting some endocardium points on the end-diastolic frame in initialization step. (2) The diamond search strategy is applied, with a spatial smoothness constraint introduced into the sum of absolute differences matching criterion; and the reference frame during the search is determined adaptively. (3) The method is capable of removing abnormal measurement data automatically. The proposed method was validated against that using Doppler tissue imaging and some preliminary clinical experimental studies were presented to illustrate clinical values of the proposed method.
Fuzzy Matching Based on Gray-scale Difference for Quantum Images
NASA Astrophysics Data System (ADS)
Luo, GaoFeng; Zhou, Ri-Gui; Liu, XingAo; Hu, WenWen; Luo, Jia
2018-05-01
Quantum image processing has recently emerged as an essential problem in practical tasks, e.g. real-time image matching. Previous studies have shown that the superposition and entanglement of quantum can greatly improve the efficiency of complex image processing. In this paper, a fuzzy quantum image matching scheme based on gray-scale difference is proposed to find out the target region in a reference image, which is very similar to the template image. Firstly, we employ the proposed enhanced quantum representation (NEQR) to store digital images. Then some certain quantum operations are used to evaluate the gray-scale difference between two quantum images by thresholding. If all of the obtained gray-scale differences are not greater than the threshold value, it indicates a successful fuzzy matching of quantum images. Theoretical analysis and experiments show that the proposed scheme performs fuzzy matching at a low cost and also enables exponentially significant speedup via quantum parallel computation.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-01-01
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images. PMID:28335510
A dynamic scheduling algorithm for singe-arm two-cluster tools with flexible processing times
NASA Astrophysics Data System (ADS)
Li, Xin; Fung, Richard Y. K.
2018-02-01
This article presents a dynamic algorithm for job scheduling in two-cluster tools producing multi-type wafers with flexible processing times. Flexible processing times mean that the actual times for processing wafers should be within given time intervals. The objective of the work is to minimize the completion time of the newly inserted wafer. To deal with this issue, a two-cluster tool is decomposed into three reduced single-cluster tools (RCTs) in a series based on a decomposition approach proposed in this article. For each single-cluster tool, a dynamic scheduling algorithm based on temporal constraints is developed to schedule the newly inserted wafer. Three experiments have been carried out to test the dynamic scheduling algorithm proposed, comparing with the results the 'earliest starting time' heuristic (EST) adopted in previous literature. The results show that the dynamic algorithm proposed in this article is effective and practical.
Nguyen, Dat Tien; Kim, Ki Wan; Hong, Hyung Gil; Koo, Ja Hyung; Kim, Min Cheol; Park, Kang Ryoung
2017-03-20
Extracting powerful image features plays an important role in computer vision systems. Many methods have previously been proposed to extract image features for various computer vision applications, such as the scale-invariant feature transform (SIFT), speed-up robust feature (SURF), local binary patterns (LBP), histogram of oriented gradients (HOG), and weighted HOG. Recently, the convolutional neural network (CNN) method for image feature extraction and classification in computer vision has been used in various applications. In this research, we propose a new gender recognition method for recognizing males and females in observation scenes of surveillance systems based on feature extraction from visible-light and thermal camera videos through CNN. Experimental results confirm the superiority of our proposed method over state-of-the-art recognition methods for the gender recognition problem using human body images.
Probabilistic retinal vessel segmentation
NASA Astrophysics Data System (ADS)
Wu, Chang-Hua; Agam, Gady
2007-03-01
Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.
A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors
Han, Manhyung; Bang, Jae Hun; Nugent, Chris; McClean, Sally; Lee, Sungyoung
2014-01-01
Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%. PMID:25184486
Design of a fault-tolerant reversible control unit in molecular quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Bahadori, Golnaz; Houshmand, Monireh; Zomorodi-Moghadam, Mariam
Quantum-dot cellular automata (QCA) is a promising emerging nanotechnology that has been attracting considerable attention due to its small feature size, ultra-low power consuming, and high clock frequency. Therefore, there have been many efforts to design computational units based on this technology. Despite these advantages of the QCA-based nanotechnologies, their implementation is susceptible to a high error rate. On the other hand, using the reversible computing leads to zero bit erasures and no energy dissipation. As the reversible computation does not lose information, the fault detection happens with a high probability. In this paper, first we propose a fault-tolerant control unit using reversible gates which improves on the previous design. The proposed design is then synthesized to the QCA technology and is simulated by the QCADesigner tool. Evaluation results indicate the performance of the proposed approach.
Al-Masni, Mohammed A; Al-Antari, Mugahed A; Park, Jeong-Min; Gi, Geon; Kim, Tae-Yeon; Rivera, Patricio; Valarezo, Edwin; Choi, Mun-Taek; Han, Seung-Moo; Kim, Tae-Seong
2018-04-01
Automatic detection and classification of the masses in mammograms are still a big challenge and play a crucial role to assist radiologists for accurate diagnosis. In this paper, we propose a novel Computer-Aided Diagnosis (CAD) system based on one of the regional deep learning techniques, a ROI-based Convolutional Neural Network (CNN) which is called You Only Look Once (YOLO). Although most previous studies only deal with classification of masses, our proposed YOLO-based CAD system can handle detection and classification simultaneously in one framework. The proposed CAD system contains four main stages: preprocessing of mammograms, feature extraction utilizing deep convolutional networks, mass detection with confidence, and finally mass classification using Fully Connected Neural Networks (FC-NNs). In this study, we utilized original 600 mammograms from Digital Database for Screening Mammography (DDSM) and their augmented mammograms of 2,400 with the information of the masses and their types in training and testing our CAD. The trained YOLO-based CAD system detects the masses and then classifies their types into benign or malignant. Our results with five-fold cross validation tests show that the proposed CAD system detects the mass location with an overall accuracy of 99.7%. The system also distinguishes between benign and malignant lesions with an overall accuracy of 97%. Our proposed system even works on some challenging breast cancer cases where the masses exist over the pectoral muscles or dense regions. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Elvis, Martin; Plummer, David; Schachter, Jonathan; Fabbiano, G.
1992-01-01
A catalog of 819 sources detected in the Einstein IPC Slew Survey of the X-ray sky is presented; 313 of the sources were not previously known as X-ray sources. Typical count rates are 0.1 IPC count/s, roughly equivalent to a flux of 3 x 10 exp -12 ergs/sq cm s. The sources have positional uncertainties of 1.2 arcmin (90 percent confidence) radius, based on a subset of 452 sources identified with previously known pointlike X-ray sources (i.e., extent less than 3 arcmin). Identifications based on a number of existing catalogs of X-ray and optical objects are proposed for 637 of the sources, 78 percent of the survey (within a 3-arcmin error radius) including 133 identifications of new X-ray sources. A public identification data base for the Slew Survey sources will be maintained at CfA, and contributions to this data base are invited.
Histogram equalization with Bayesian estimation for noise robust speech recognition.
Suh, Youngjoo; Kim, Hoirin
2018-02-01
The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.
Drift-Free Position Estimation of Periodic or Quasi-Periodic Motion Using Inertial Sensors
Latt, Win Tun; Veluvolu, Kalyana Chakravarthy; Ang, Wei Tech
2011-01-01
Position sensing with inertial sensors such as accelerometers and gyroscopes usually requires other aided sensors or prior knowledge of motion characteristics to remove position drift resulting from integration of acceleration or velocity so as to obtain accurate position estimation. A method based on analytical integration has previously been developed to obtain accurate position estimate of periodic or quasi-periodic motion from inertial sensors using prior knowledge of the motion but without using aided sensors. In this paper, a new method is proposed which employs linear filtering stage coupled with adaptive filtering stage to remove drift and attenuation. The prior knowledge of the motion the proposed method requires is only approximate band of frequencies of the motion. Existing adaptive filtering methods based on Fourier series such as weighted-frequency Fourier linear combiner (WFLC), and band-limited multiple Fourier linear combiner (BMFLC) are modified to combine with the proposed method. To validate and compare the performance of the proposed method with the method based on analytical integration, simulation study is performed using periodic signals as well as real physiological tremor data, and real-time experiments are conducted using an ADXL-203 accelerometer. Results demonstrate that the performance of the proposed method outperforms the existing analytical integration method. PMID:22163935
Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity
NASA Astrophysics Data System (ADS)
Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas
2018-03-01
A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.
Virtual-optical information security system based on public key infrastructure
NASA Astrophysics Data System (ADS)
Peng, Xiang; Zhang, Peng; Cai, Lilong; Niu, Hanben
2005-01-01
A virtual-optical based encryption model with the aid of public key infrastructure (PKI) is presented in this paper. The proposed model employs a hybrid architecture in which our previously published encryption method based on virtual-optics scheme (VOS) can be used to encipher and decipher data while an asymmetric algorithm, for example RSA, is applied for enciphering and deciphering the session key(s). The whole information security model is run under the framework of international standard ITU-T X.509 PKI, which is on basis of public-key cryptography and digital signatures. This PKI-based VOS security approach has additional features like confidentiality, authentication, and integrity for the purpose of data encryption under the environment of network. Numerical experiments prove the effectiveness of the method. The security of proposed model is briefly analyzed by examining some possible attacks from the viewpoint of a cryptanalysis.
Multiparty Quantum Key Agreement Based on Quantum Search Algorithm
Cao, Hao; Ma, Wenping
2017-01-01
Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover’s algorithm. A novel example of protocols with 5 – party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks. PMID:28332610
Communication enabled – fast acting imbalance reserve (CE-FAIR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilches-Bernal, Felipe; Concepcion, Ricky; Neely, Jason C.
This letter presents a new frequency control strategy that takes advantage of communications and fast responding resources like PV generation, energy storage, wind generation, and demand response, termed collectively as converter interfaced generators (CIGs). The proposed approach uses an active monitoring of power imbalances to rapidly redispatch CIGs. This approach differs from previously proposed frequency control schemes in that it employs feed-forward control based on a measured power imbalance rather that relying on a frequency measurement. As a result, time-domain simulations of the full Western Electricity Coordinating Council (WECC) system are conducted to demonstrate the effectiveness of the proposed method,more » showing improved performance.« less
Communication enabled – fast acting imbalance reserve (CE-FAIR)
Wilches-Bernal, Felipe; Concepcion, Ricky; Neely, Jason C.; ...
2017-06-08
This letter presents a new frequency control strategy that takes advantage of communications and fast responding resources like PV generation, energy storage, wind generation, and demand response, termed collectively as converter interfaced generators (CIGs). The proposed approach uses an active monitoring of power imbalances to rapidly redispatch CIGs. This approach differs from previously proposed frequency control schemes in that it employs feed-forward control based on a measured power imbalance rather that relying on a frequency measurement. As a result, time-domain simulations of the full Western Electricity Coordinating Council (WECC) system are conducted to demonstrate the effectiveness of the proposed method,more » showing improved performance.« less
NASA Astrophysics Data System (ADS)
Kim, Hoon; Hyon, Taein; Lee, Yeonwoo
Most of previous works have presented the dynamic spectrum allocation (DSA) gain achieved by utilizing the time or regional variations in traffic demand between multi-network operators (NOs). In this paper, we introduce the functionalities required for the entities related with the spectrum sharing and allocation and propose a spectrum allocation algorithm while considering the long-term priority between NOs, the priority between multiple class services, and the urgent bandwidth request. To take into account the priorities among the NOs and the priorities of multiple class services, a spectrum sharing metric (SSM) is proposed, while a negotiation procedure is proposed to treat the urgent bandwidth request.
Benchmarking Data for the Proposed Signature of Used Fuel Casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton
2016-09-23
A set of benchmarking measurements to test facets of the proposed extended storage signature was conducted on May 17, 2016. The measurements were designed to test the overall concept of how the proposed signature can be used to identify a used fuel cask based only on the distribution of neutron sources within the cask. To simulate the distribution, 4 Cf-252 sources were chosen and arranged on a 3x3 grid in 3 different patterns and raw neutron totals counts were taken at 6 locations around the grid. This is a very simplified test of the typical geometry studied previously in simulationmore » with simulated used nuclear fuel.« less
Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan
2015-07-01
Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Potential standards support for activity-based GeoINT
NASA Astrophysics Data System (ADS)
Antonisse, Jim
2012-06-01
The Motion Imagery Standards Board (MISB) is engaged in multiple initiatives that may provide support for Activity-Based GeoINT (ABG). This paper describes a suite of approaches based on previous MISB work on a standards-based architecture for tracking. It focuses on ABG in the context of standardized tracker results, and shows how the MISB tracker formulation can formalize important components of the ABG problem. The paper proposes a grammar-based formalism for the reporting of activities within a stream of FMV or wide-area surveillance data. Such a grammar would potentially provide an extensible descriptive language for ABG across the community.
Model-based Bayesian signal extraction algorithm for peripheral nerves
NASA Astrophysics Data System (ADS)
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.
Saeed, Isaam; Tang, Sen-Lin; Halgamuge, Saman K.
2012-01-01
An approach to infer the unknown microbial population structure within a metagenome is to cluster nucleotide sequences based on common patterns in base composition, otherwise referred to as binning. When functional roles are assigned to the identified populations, a deeper understanding of microbial communities can be attained, more so than gene-centric approaches that explore overall functionality. In this study, we propose an unsupervised, model-based binning method with two clustering tiers, which uses a novel transformation of the oligonucleotide frequency-derived error gradient and GC content to generate coarse groups at the first tier of clustering; and tetranucleotide frequency to refine these groups at the secondary clustering tier. The proposed method has a demonstrated improvement over PhyloPythia, S-GSOM, TACOA and TaxSOM on all three benchmarks that were used for evaluation in this study. The proposed method is then applied to a pyrosequenced metagenomic library of mud volcano sediment sampled in southwestern Taiwan, with the inferred population structure validated against complementary sequencing of 16S ribosomal RNA marker genes. Finally, the proposed method was further validated against four publicly available metagenomes, including a highly complex Antarctic whale-fall bone sample, which was previously assumed to be too complex for binning prior to functional analysis. PMID:22180538
Localized contourlet features in vehicle make and model recognition
NASA Astrophysics Data System (ADS)
Zafar, I.; Edirisinghe, E. A.; Acar, B. S.
2009-02-01
Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic Number Plate Recognition (ANPR) systems. Several vehicle MMR systems have been proposed in literature. In parallel to this, the usefulness of multi-resolution based feature analysis techniques leading to efficient object classification algorithms have received close attention from the research community. To this effect, Contourlet transforms that can provide an efficient directional multi-resolution image representation has recently been introduced. Already an attempt has been made in literature to use Curvelet/Contourlet transforms in vehicle MMR. In this paper we propose a novel localized feature detection method in Contourlet transform domain that is capable of increasing the classification rates up to 4%, as compared to the previously proposed Contourlet based vehicle MMR approach in which the features are non-localized and thus results in sub-optimal classification. Further we show that the proposed algorithm can achieve the increased classification accuracy of 96% at significantly lower computational complexity due to the use of Two Dimensional Linear Discriminant Analysis (2DLDA) for dimensionality reduction by preserving the features with high between-class variance and low inter-class variance.
Ghost detection and removal based on super-pixel grouping in exposure fusion
NASA Astrophysics Data System (ADS)
Jiang, Shenyu; Xu, Zhihai; Li, Qi; Chen, Yueting; Feng, Huajun
2014-09-01
A novel multi-exposure images fusion method for dynamic scenes is proposed. The commonly used techniques for high dynamic range (HDR) imaging are based on the combination of multiple differently exposed images of the same scene. The drawback of these methods is that ghosting artifacts will be introduced into the final HDR image if the scene is not static. In this paper, a super-pixel grouping based method is proposed to detect the ghost in the image sequences. We introduce the zero mean normalized cross correlation (ZNCC) as a measure of similarity between a given exposure image and the reference. The calculation of ZNCC is implemented in super-pixel level, and the super-pixels which have low correlation with the reference are excluded by adjusting the weight maps for fusion. Without any prior information on camera response function or exposure settings, the proposed method generates low dynamic range (LDR) images which can be shown on conventional display devices directly with details preserving and ghost effects reduced. Experimental results show that the proposed method generates high quality images which have less ghost artifacts and provide a better visual quality than previous approaches.
An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cui, Yiming; Wang, Yan; Sun, Mingjian; Hu, Hengshan
2018-01-01
In order to ensure the safety and reliability of railway system, Acoustic Emission (AE) method is employed to investigate rail defect detection. However, little attention has been paid to the defect detection at high speed, especially for noise interference suppression. Based on AE technology, this paper presents an improved rail defect detection method by multi-level ANC with VSS-LMS. Multi-level noise cancellation based on SANC and ANC is utilized to eliminate complex noises at high speed, and tongue-shaped curve with index adjustment factor is proposed to enhance the performance of variable step-size algorithm. Defect signals and reference signals are acquired by the rail-wheel test rig. The features of noise signals and defect signals are analyzed for effective detection. The effectiveness of the proposed method is demonstrated by comparing with the previous study, and different filter lengths are investigated to obtain a better noise suppression performance. Meanwhile, the detection ability of the proposed method is verified at the top speed of the test rig. The results clearly illustrate that the proposed method is effective in detecting rail defects at high speed, especially for noise interference suppression.
Park, Chang-Seop
2014-01-01
After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance.
2014-01-01
After two recent security attacks against implantable medical devices (IMDs) have been reported, the privacy and security risks of IMDs have been widely recognized in the medical device market and research community, since the malfunctioning of IMDs might endanger the patient's life. During the last few years, a lot of researches have been carried out to address the security-related issues of IMDs, including privacy, safety, and accessibility issues. A physician accesses IMD through an external device called a programmer, for diagnosis and treatment. Hence, cryptographic key management between IMD and programmer is important to enforce a strict access control. In this paper, a new security architecture for the security of IMDs is proposed, based on a 3-Tier security model, where the programmer interacts with a Hospital Authentication Server, to get permissions to access IMDs. The proposed security architecture greatly simplifies the key management between IMDs and programmers. Also proposed is a security mechanism to guarantee the authenticity of the patient data collected from IMD and the nonrepudiation of the physician's treatment based on it. The proposed architecture and mechanism are analyzed and compared with several previous works, in terms of security and performance. PMID:25276797
Su, Ruiliang; Chen, Xiang; Cao, Shuai; Zhang, Xu
2016-01-14
Sign language recognition (SLR) has been widely used for communication amongst the hearing-impaired and non-verbal community. This paper proposes an accurate and robust SLR framework using an improved decision tree as the base classifier of random forests. This framework was used to recognize Chinese sign language subwords using recordings from a pair of portable devices worn on both arms consisting of accelerometers (ACC) and surface electromyography (sEMG) sensors. The experimental results demonstrated the validity of the proposed random forest-based method for recognition of Chinese sign language (CSL) subwords. With the proposed method, 98.25% average accuracy was obtained for the classification of a list of 121 frequently used CSL subwords. Moreover, the random forests method demonstrated a superior performance in resisting the impact of bad training samples. When the proportion of bad samples in the training set reached 50%, the recognition error rate of the random forest-based method was only 10.67%, while that of a single decision tree adopted in our previous work was almost 27.5%. Our study offers a practical way of realizing a robust and wearable EMG-ACC-based SLR systems.
Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young
2015-09-07
Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.
Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu
2014-03-20
A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.
Compressibility-aware media retargeting with structure preserving.
Wang, Shu-Fan; Lai, Shang-Hong
2011-03-01
A number of algorithms have been proposed for intelligent image/video retargeting with image content retained as much as possible. However, they usually suffer from some artifacts in the results, such as ridge or structure twist. In this paper, we present a structure-preserving media retargeting technique that preserves the content and image structure as best as possible. Different from the previous pixel or grid based methods, we estimate the image content saliency from the structure of the content. A block structure energy is introduced with a top-down strategy to constrain the image structure inside to deform uniformly in either x or y direction. However, the flexibilities for retargeting are quite different for different images. To cope with this problem, we propose a compressibility assessment scheme for media retargeting by combining the entropies of image gradient magnitude and orientation distributions. Thus, the resized media is produced to preserve the image content and structure as best as possible. Our experiments demonstrate that the proposed method provides resized images/videos with better preservation of content and structure than those by the previous methods.
FIT: statistical modeling tool for transcriptome dynamics under fluctuating field conditions
Iwayama, Koji; Aisaka, Yuri; Kutsuna, Natsumaro
2017-01-01
Abstract Motivation: Considerable attention has been given to the quantification of environmental effects on organisms. In natural conditions, environmental factors are continuously changing in a complex manner. To reveal the effects of such environmental variations on organisms, transcriptome data in field environments have been collected and analyzed. Nagano et al. proposed a model that describes the relationship between transcriptomic variation and environmental conditions and demonstrated the capability to predict transcriptome variation in rice plants. However, the computational cost of parameter optimization has prevented its wide application. Results: We propose a new statistical model and efficient parameter optimization based on the previous study. We developed and released FIT, an R package that offers functions for parameter optimization and transcriptome prediction. The proposed method achieves comparable or better prediction performance within a shorter computational time than the previous method. The package will facilitate the study of the environmental effects on transcriptomic variation in field conditions. Availability and Implementation: Freely available from CRAN (https://cran.r-project.org/web/packages/FIT/). Contact: anagano@agr.ryukoku.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online PMID:28158396
Fuzzy System-Based Target Selection for a NIR Camera-Based Gaze Tracker
Naqvi, Rizwan Ali; Arsalan, Muhammad; Park, Kang Ryoung
2017-01-01
Gaze-based interaction (GBI) techniques have been a popular subject of research in the last few decades. Among other applications, GBI can be used by persons with disabilities to perform everyday tasks, as a game interface, and can play a pivotal role in the human computer interface (HCI) field. While gaze tracking systems have shown high accuracy in GBI, detecting a user’s gaze for target selection is a challenging problem that needs to be considered while using a gaze detection system. Past research has used the blinking of the eyes for this purpose as well as dwell time-based methods, but these techniques are either inconvenient for the user or requires a long time for target selection. Therefore, in this paper, we propose a method for fuzzy system-based target selection for near-infrared (NIR) camera-based gaze trackers. The results of experiments performed in addition to tests of the usability and on-screen keyboard use of the proposed method show that it is better than previous methods. PMID:28420114
Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M
1999-01-01
This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.
Billeci, Lucia; Varanini, Maurizio
2017-01-01
The non-invasive fetal electrocardiogram (fECG) technique has recently received considerable interest in monitoring fetal health. The aim of our paper is to propose a novel fECG algorithm based on the combination of the criteria of independent source separation and of a quality index optimization (ICAQIO-based). The algorithm was compared with two methods applying the two different criteria independently—the ICA-based and the QIO-based methods—which were previously developed by our group. All three methods were tested on the recently implemented Fetal ECG Synthetic Database (FECGSYNDB). Moreover, the performance of the algorithm was tested on real data from the PhysioNet fetal ECG Challenge 2013 Database. The proposed combined method outperformed the other two algorithms on the FECGSYNDB (ICAQIO-based: 98.78%, QIO-based: 97.77%, ICA-based: 97.61%). Significant differences were obtained in particular in the conditions when uterine contractions and maternal and fetal ectopic beats occurred. On the real data, all three methods obtained very high performances, with the QIO-based method proving slightly better than the other two (ICAQIO-based: 99.38%, QIO-based: 99.76%, ICA-based: 99.37%). The findings from this study suggest that the proposed method could potentially be applied as a novel algorithm for accurate extraction of fECG, especially in critical recording conditions. PMID:28509860
Gold-standard evaluation of a folksonomy-based ontology learning model
NASA Astrophysics Data System (ADS)
Djuana, E.
2018-03-01
Folksonomy, as one result of collaborative tagging process, has been acknowledged for its potential in improving categorization and searching of web resources. However, folksonomy contains ambiguities such as synonymy and polysemy as well as different abstractions or generality problem. To maximize its potential, some methods for associating tags of folksonomy with semantics and structural relationships have been proposed such as using ontology learning method. This paper evaluates our previous work in ontology learning according to gold-standard evaluation approach in comparison to a notable state-of-the-art work and several baselines. The results show that our method is comparable to the state-of the art work which further validate our approach as has been previously validated using task-based evaluation approach.
Design and simulation of novel laparoscopic renal denervation system: a feasibility study.
Ye, Eunbi; Baik, Jinhwan; Lee, Seunghyun; Ryu, Seon Young; Yang, Sunchoel; Choi, Eue-Keun; Song, Won Hoon; Yuk, Hyeong Dong; Jeong, Chang Wook; Park, Sung-Min
2018-05-18
In this study, we propose a novel laparoscopy-based renal denervation (RDN) system for treating patients with resistant hypertension. In this feasibility study, we investigated whether our proposed surgical instrument can ablate renal nerves from outside of the renal artery safely and effectively and can overcome the depth-related limitations of the previous catheter-based system with less damage to the arterial walls. We designed a looped bipolar electrosurgical instrument to be used with laparoscopy-based RDN system. The tip of instrument wraps around the renal artery and delivers the radio-frequency (RF) energy. We evaluated the thermal distribution via simulation study on a numerical model designed using histological data and validated the results by the in vitro study. Finally, to show the effectiveness of this system, we compared the performance of our system with that of catheter-based RDN system through simulations. Simulation results were within the 95% confidence intervals of the in vitro experimental results. The validated results demonstrated that the proposed laparoscopy-based RDN system produces an effective thermal distribution for the removal of renal sympathetic nerves without damaging the arterial wall and addresses the depth limitation of catheter-based RDN system. We developed a novel laparoscope-based electrosurgical RDN method for hypertension treatment. The feasibility of our system was confirmed through a simulation study as well as in vitro experiments. Our proposed method could be an effective treatment for resistant hypertension as well as central nervous system diseases.
Reflectance Prediction Modelling for Residual-Based Hyperspectral Image Coding
Xiao, Rui; Gao, Junbin; Bossomaier, Terry
2016-01-01
A Hyperspectral (HS) image provides observational powers beyond human vision capability but represents more than 100 times the data compared to a traditional image. To transmit and store the huge volume of an HS image, we argue that a fundamental shift is required from the existing “original pixel intensity”-based coding approaches using traditional image coders (e.g., JPEG2000) to the “residual”-based approaches using a video coder for better compression performance. A modified video coder is required to exploit spatial-spectral redundancy using pixel-level reflectance modelling due to the different characteristics of HS images in their spectral and shape domain of panchromatic imagery compared to traditional videos. In this paper a novel coding framework using Reflectance Prediction Modelling (RPM) in the latest video coding standard High Efficiency Video Coding (HEVC) for HS images is proposed. An HS image presents a wealth of data where every pixel is considered a vector for different spectral bands. By quantitative comparison and analysis of pixel vector distribution along spectral bands, we conclude that modelling can predict the distribution and correlation of the pixel vectors for different bands. To exploit distribution of the known pixel vector, we estimate a predicted current spectral band from the previous bands using Gaussian mixture-based modelling. The predicted band is used as the additional reference band together with the immediate previous band when we apply the HEVC. Every spectral band of an HS image is treated like it is an individual frame of a video. In this paper, we compare the proposed method with mainstream encoders. The experimental results are fully justified by three types of HS dataset with different wavelength ranges. The proposed method outperforms the existing mainstream HS encoders in terms of rate-distortion performance of HS image compression. PMID:27695102
Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes
NASA Astrophysics Data System (ADS)
Kim, Ki Wan; Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Lee, Eui Chul; Park, Kang Ryoung
2015-03-01
The classification of eye openness and closure has been researched in various fields, e.g., driver drowsiness detection, physiological status analysis, and eye fatigue measurement. For a classification with high accuracy, accurate segmentation of the eye region is required. Most previous research used the segmentation method by image binarization on the basis that the eyeball is darker than skin, but the performance of this approach is frequently affected by thick eyelashes or shadows around the eye. Thus, we propose a fuzzy-based method for classifying eye openness and closure. First, the proposed method uses I and K color information from the HSI and CMYK color spaces, respectively, for eye segmentation. Second, the eye region is binarized using the fuzzy logic system based on I and K inputs, which is less affected by eyelashes and shadows around the eye. The combined image of I and K pixels is obtained through the fuzzy logic system. Third, in order to reflect the effect by all the inference values on calculating the output score of the fuzzy system, we use the revised weighted average method, where all the rectangular regions by all the inference values are considered for calculating the output score. Fourth, the classification of eye openness or closure is successfully made by the proposed fuzzy-based method with eye images of low resolution which are captured in the environment of people watching TV at a distance. By using the fuzzy logic system, our method does not require the additional procedure of training irrespective of the chosen database. Experimental results with two databases of eye images show that our method is superior to previous approaches.
Lyu, Ming-Ju Amy; Gowik, Udo; Kelly, Steve; Covshoff, Sarah; Mallmann, Julia; Westhoff, Peter; Hibberd, Julian M; Stata, Matt; Sage, Rowan F; Lu, Haorong; Wei, Xiaofeng; Wong, Gane Ka-Shu; Zhu, Xin-Guang
2015-06-18
The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the genus Flaveria contains 21 of the 23 known Flaveria species and has been previously constructed using a combination of morphological data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnL-F). Here we developed a new strategy to update the phylogenetic tree of 16 Flaveria species based on RNA-Seq data. The updated phylogeny is largely congruent with the previously published tree but with some modifications. We propose that the data collection method provided in this study can be used as a generic method for phylogenetic tree reconstruction if the target species has no genomic information. We also showed that a "F. pringlei" genotype recently used in a number of labs may be a hybrid between F. pringlei (C3) and F. angustifolia (C3-C4). We propose that the new strategy of obtaining phylogenetic sequences outlined in this study can be used to construct robust trees in a larger number of taxa. The updated Flaveria phylogenetic tree also supports a hypothesis of stepwise and parallel evolution of C4 photosynthesis in the Flavaria clade.
An electrically reconfigurable logic gate intrinsically enabled by spin-orbit materials.
Kazemi, Mohammad
2017-11-10
The spin degree of freedom in magnetic devices has been discussed widely for computing, since it could significantly reduce energy dissipation, might enable beyond Von Neumann computing, and could have applications in quantum computing. For spin-based computing to become widespread, however, energy efficient logic gates comprising as few devices as possible are required. Considerable recent progress has been reported in this area. However, proposals for spin-based logic either require ancillary charge-based devices and circuits in each individual gate or adopt principals underlying charge-based computing by employing ancillary spin-based devices, which largely negates possible advantages. Here, we show that spin-orbit materials possess an intrinsic basis for the execution of logic operations. We present a spin-orbit logic gate that performs a universal logic operation utilizing the minimum possible number of devices, that is, the essential devices required for representing the logic operands. Also, whereas the previous proposals for spin-based logic require extra devices in each individual gate to provide reconfigurability, the proposed gate is 'electrically' reconfigurable at run-time simply by setting the amplitude of the clock pulse applied to the gate. We demonstrate, analytically and numerically with experimentally benchmarked models, that the gate performs logic operations and simultaneously stores the result, realizing the 'stateful' spin-based logic scalable to ultralow energy dissipation.
NASA Astrophysics Data System (ADS)
Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.
Boonyasit, Yuwadee; Laiwattanapaisal, Wanida
2015-01-01
A method for acquiring albumin-corrected fructosamine values from whole blood using a microfluidic paper-based analytical system that offers substantial improvement over previous methods is proposed. The time required to quantify both serum albumin and fructosamine is shortened to 10 min with detection limits of 0.50 g dl(-1) and 0.58 mM, respectively (S/N = 3). The proposed system also exhibited good within-run and run-to-run reproducibility. The results of the interference study revealed that the acceptable recoveries ranged from 95.1 to 106.2%. The system was compared with currently used large-scale methods (n = 15), and the results demonstrated good agreement among the techniques. The microfluidic paper-based system has the potential to continuously monitor glycemic levels in low resource settings.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning.
Lim, Kwangyong; Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea).
Insecurity of position-based quantum-cryptography protocols against entanglement attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Hoi-Kwan; Lo, Hoi-Kwong
2011-01-15
Recently, position-based quantum cryptography has been claimed to be unconditionally secure. On the contrary, here we show that the existing proposals for position-based quantum cryptography are, in fact, insecure if entanglement is shared among two adversaries. Specifically, we demonstrate how the adversaries can incorporate ideas of quantum teleportation and quantum secret sharing to compromise the security with certainty. The common flaw to all current protocols is that the Pauli operators always map a codeword to a codeword (up to an irrelevant overall phase). We propose a modified scheme lacking this property in which the same cheating strategy used to underminemore » the previous protocols can succeed with a rate of at most 85%. We prove the modified protocol is secure when the shared quantum resource between the adversaries is a two- or three-level system.« less
Spin wave nonreciprocity for logic device applications
NASA Astrophysics Data System (ADS)
Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo
2013-11-01
The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications.
Body-Earth Mover's Distance: A Matching-Based Approach for Sleep Posture Recognition.
Xu, Xiaowei; Lin, Feng; Wang, Aosen; Hu, Yu; Huang, Ming-Chun; Xu, Wenyao
2016-10-01
Sleep posture is a key component in sleep quality assessment and pressure ulcer prevention. Currently, body pressure analysis has been a popular method for sleep posture recognition. In this paper, a matching-based approach, Body-Earth Mover's Distance (BEMD), for sleep posture recognition is proposed. BEMD treats pressure images as weighted 2D shapes, and combines EMD and Euclidean distance for similarity measure. Compared with existing work, sleep posture recognition is achieved with posture similarity rather than multiple features for specific postures. A pilot study is performed with 14 persons for six different postures. The experimental results show that the proposed BEMD can achieve 91.21% accuracy, which outperforms the previous method with an improvement of 8.01%.
Random number generators for large-scale parallel Monte Carlo simulations on FPGA
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, F.; Liu, B.
2018-05-01
Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.
NASA Astrophysics Data System (ADS)
Brodic, D.
2011-01-01
Text line segmentation represents the key element in the optical character recognition process. Hence, testing of text line segmentation algorithms has substantial relevance. All previously proposed testing methods deal mainly with text database as a template. They are used for testing as well as for the evaluation of the text segmentation algorithm. In this manuscript, methodology for the evaluation of the algorithm for text segmentation based on extended binary classification is proposed. It is established on the various multiline text samples linked with text segmentation. Their results are distributed according to binary classification. Final result is obtained by comparative analysis of cross linked data. At the end, its suitability for different types of scripts represents its main advantage.
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.
Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S
2016-08-30
This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.
Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter
NASA Astrophysics Data System (ADS)
Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong
2018-01-01
We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.
Spin wave nonreciprocity for logic device applications
Jamali, Mahdi; Kwon, Jae Hyun; Seo, Soo-Man; Lee, Kyung-Jin; Yang, Hyunsoo
2013-01-01
The utilization of spin waves as eigenmodes of the magnetization dynamics for information processing and communication has been widely explored recently due to its high operational speed with low power consumption and possible applications for quantum computations. Previous proposals of spin wave Mach-Zehnder devices were based on the spin wave phase, a delicate entity which can be easily disrupted. Here, we propose a complete logic system based on the spin wave amplitude utilizing the nonreciprocal spin wave behavior excited by microstrip antennas. The experimental data reveal that the nonreciprocity of magnetostatic surface spin wave can be tuned by the bias magnetic field. Furthermore, engineering of the device structure could result in a high nonreciprocity factor for spin wave logic applications. PMID:24196318
Analysis of a front suspension system for UniART FSAE car using FEA
NASA Astrophysics Data System (ADS)
Zaidie, M. N. A.; Hashim, M. S. M.; Tasyrif, M.; Basha, M. H.; Ibrahim, I.; Kamaruddin, N. S.; Shahriman, A. B.
2017-10-01
In recent years, many research works from institutions that participated in Formula SAE had highlighted on suspension systems. The aim is to improve the system in term of performance and robustness. However, every suspension system for a racing car is tailored to the car itself. Thus, this paper proposes a new design for front suspension system for UniART FSAE car. The new design was than being compared to the previous suspension system for enhancement. The analysis covered in this paper based on several conditions such as braking, cornering and bumping condition and was carried out using finite element analysis. Each main component for the suspension system such as lower arm, upper arm and knuckle has been analysed in term of strength and performance. From the results, the proposed new design of the suspension system has improved in term of strength and performance compared to the previous suspension system.
Ka-Band Wide-Bandgap Solid-State Power Amplifier: Hardware Validation
NASA Technical Reports Server (NTRS)
Epp, L.; Khan, P.; Silva, A.
2005-01-01
Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solid-state power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents proof-of-concept hardware used to validate power-combining technologies that may enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results in previous articles [1-3] indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. Previous architecture performance analyses and estimates indicate that the proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This combining efficiency would correspond to MMIC requirements of 5- to 10-W output power and >48 percent PAE. In order to validate the performance estimates of the three proposed architectures, measurements of proof-of-concept hardware are reported here.
A Fuzzy Description Logic with Automatic Object Membership Measurement
NASA Astrophysics Data System (ADS)
Cai, Yi; Leung, Ho-Fung
In this paper, we propose a fuzzy description logic named f om -DL by combining the classical view in cognitive psychology and fuzzy set theory. A formal mechanism used to determine object memberships automatically in concepts is also proposed, which is lacked in previous work fuzzy description logics. In this mechanism, object membership is based on the defining properties of concept definition and properties in object description. Moreover, while previous works cannot express the qualitative measurements of an object possessing a property, we introduce two kinds of properties named N-property and L-property, which are quantitative measurements and qualitative measurements of an object possessing a property respectively. The subsumption and implication of concepts and properties are also explored in our work. We believe that it is useful to the Semantic Web community for reasoning the fuzzy membership of objects for concepts in fuzzy ontologies.
King, Tim L; Switzer, John F; Morrison, Cheryl L; Eackles, Michael S; Young, Colleen C; Lubinski, Barbara A; Cryan, Paul
2006-12-01
Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius.
King, Timothy L.; Switzer, John F.; Morrison, Cheryl L.; Eackles, Michael S.; Young, Colleen C.; Lubinski, Barbara A.; Cryan, Paul M.
2006-01-01
Zapus hudsonius preblei, listed as threatened under the US Endangered Species Act (ESA), is one of 12 recognized subspecies of meadow jumping mice found in North America. Recent morphometric and phylogenetic comparisons among Z. h. preblei and neighbouring conspecifics questioned the taxonomic status of selected subspecies, resulting in a proposal to delist the Z. h. preblei from the ESA. We present additional analyses of the phylogeographic structure within Z. hudsonius that calls into question previously published data (and conclusions) and confirms the original taxonomic designations. A survey of 21 microsatellite DNA loci and 1380 base pairs from two mitochondrial DNA (mtDNA) regions (control region and cytochrome b) revealed that each Z. hudsonius subspecies is genetically distinct. These data do not support the null hypothesis of a homogeneous gene pool among the five subspecies found within the southwestern portion of the species' range. The magnitude of the observed differentiation was considerable and supported by significant findings for nearly every statistical comparison made, regardless of the genome or the taxa under consideration. Structuring of nuclear multilocus genotypes and subspecies-specific mtDNA haplotypes corresponded directly with the disjunct distributions of the subspecies investigated. Given the level of correspondence between the observed genetic population structure and previously proposed taxonomic classification of subspecies (based on the geographic separation and surveys of morphological variation), we conclude that the nominal subspecies surveyed in this study do not warrant synonymy, as has been proposed for Z. h. preblei, Z. h. campestris, and Z. h. intermedius. ?? 2006 The Authors.
An interval programming model for continuous improvement in micro-manufacturing
NASA Astrophysics Data System (ADS)
Ouyang, Linhan; Ma, Yizhong; Wang, Jianjun; Tu, Yiliu; Byun, Jai-Hyun
2018-03-01
Continuous quality improvement in micro-manufacturing processes relies on optimization strategies that relate an output performance to a set of machining parameters. However, when determining the optimal machining parameters in a micro-manufacturing process, the economics of continuous quality improvement and decision makers' preference information are typically neglected. This article proposes an economic continuous improvement strategy based on an interval programming model. The proposed strategy differs from previous studies in two ways. First, an interval programming model is proposed to measure the quality level, where decision makers' preference information is considered in order to determine the weight of location and dispersion effects. Second, the proposed strategy is a more flexible approach since it considers the trade-off between the quality level and the associated costs, and leaves engineers a larger decision space through adjusting the quality level. The proposed strategy is compared with its conventional counterparts using an Nd:YLF laser beam micro-drilling process.
A fault tolerant gait for a hexapod robot over uneven terrain.
Yang, J M; Kim, J H
2000-01-01
The fault tolerant gait of legged robots in static walking is a gait which maintains its stability against a fault event preventing a leg from having the support state. In this paper, a fault tolerant quadruped gait is proposed for a hexapod traversing uneven terrain with forbidden regions, which do not offer viable footholds but can be stepped over. By comparing performance of straight-line motion and crab walking over even terrain, it is shown that the proposed gait has better mobility and terrain adaptability than previously developed gaits. Based on the proposed gait, we present a method for the generation of the fault tolerant locomotion of a hexapod over uneven terrain with forbidden regions. The proposed method minimizes the number of legs on the ground during walking, and foot adjustment algorithm is used for avoiding steps on forbidden regions. The effectiveness of the proposed strategy over uneven terrain is demonstrated with a computer simulation.
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.
USDA-ARS?s Scientific Manuscript database
Researchers have proposed the adoption of 3 distinct genetic taxa among bacteria previously classified as Edwardsiella tarda; namely E. tarda, E. piscicida, and a taxon presently termed E. piscicida–like. Individual real-time polymerase chain reaction (qPCR) assays were developed, based on published...
Code of Federal Regulations, 2014 CFR
2014-01-01
... information from market research, producers or producer groups, agents, lending institutions, and other... reliability of the data; (5) An analysis of the results of simulations or modeling showing the performance of proposed rates and commodity prices, as applicable, based on one or more of the following (Such simulations...
Code of Federal Regulations, 2012 CFR
2012-01-01
... information from market research, producers or producer groups, agents, lending institutions, and other... reliability of the data; (5) An analysis of the results of simulations or modeling showing the performance of proposed rates and commodity prices, as applicable, based on one or more of the following (Such simulations...
Code of Federal Regulations, 2011 CFR
2011-01-01
... information from market research, producers or producer groups, agents, lending institutions, and other... reliability of the data; (5) An analysis of the results of simulations or modeling showing the performance of proposed rates and commodity prices, as applicable, based on one or more of the following (Such simulations...
Code of Federal Regulations, 2013 CFR
2013-01-01
... information from market research, producers or producer groups, agents, lending institutions, and other... reliability of the data; (5) An analysis of the results of simulations or modeling showing the performance of proposed rates and commodity prices, as applicable, based on one or more of the following (Such simulations...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... received by the closing date and may amend this proposed AD based on those comments. We will post all... provide. We will also post a report summarizing each substantive verbal contact we receive about this... for operation in the United States. Pursuant to our bilateral agreement with the State of Design...
ERIC Educational Resources Information Center
Samuel, Douglas B.; Connolly, Adrian J.; Ball, Samuel A.
2012-01-01
The "DSM-5" proposal indicates that personality disorders (PDs) be defined as collections of maladaptive traits but does not provide a specific diagnostic method. However, researchers have previously suggested that PD constructs can be assessed by comparing individuals' trait profiles with those prototypic of PDs and evidence from the…
A Decision Support Model and Tool to Assist Financial Decision-Making in Universities
ERIC Educational Resources Information Center
Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive
2015-01-01
In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…
Monitoring Ecosystems and Biodiversity at a Continental Scale--A Proposal for South America
Xavier Silva
2006-01-01
A monitoring system plan is being developed in South America to assess critically endangered ecoregions. The system will be based on a previous ecosystem and biodiversity inventory developed through a large gap analysis program in five South American ecoregions. The monitoring system will include three main elements: (1) Landscape Ecology: vegetation cover,...
EPA is developing approaches to inform the derivation of a Maximum Contaminant Level Goal (MCLG) for perchlorate in drinking water under the Safe Drinking Water Act. EPA previously conducted an independent, external, scientific peer review of the draft biologically-based dose-res...
Pure Misallocation of ''0'' in Number Transcoding: A New Symptom of Right Cerebral Dysfunction
ERIC Educational Resources Information Center
Furumoto, Hideharu
2006-01-01
To account for the mechanism of number transcoding, many authors have proposed various models, for example, semantic-abstract model, lexical-semantic model, triple-code model, and so on. However, almost all of them are based on the symptoms of patients with left cerebral damage. Previously, I reported two Japanese patients with right posterior…
A phase one AR/C system design
NASA Technical Reports Server (NTRS)
Kachmar, Peter M.; Polutchko, Robert J.; Matusky, Martin; Chu, William; Jackson, William; Montez, Moises
1991-01-01
The Phase One AR&C System Design integrates an evolutionary design based on the legacy of previous mission successes, flight tested components from manned Rendezvous and Proximity Operations (RPO) space programs, and additional AR&C components validated using proven methods. The Phase One system has a modular, open architecture with the standardized interfaces proposed for Space Station Freedom system architecture.
USDA-ARS?s Scientific Manuscript database
Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...
Does Powerlessness Explain the Relationship between Intimate Partner Violence and Depression?
ERIC Educational Resources Information Center
Filson, Jennifer; Ulloa, Emilio; Runfola, Cristin; Hokoda, Audrey
2010-01-01
The current study aimed to test whether relationship power could act as a mediator of the relationship between intimate partner violence and depression. The proposed mediation model was based on the theory of gender and power and on previous research of intimate partner violence and depression. Survey results from a sample of 327 single…
Integrated Formal Analysis of Timed-Triggered Ethernet
NASA Technical Reports Server (NTRS)
Dutertre, Bruno; Shankar, Nstarajan; Owre, Sam
2012-01-01
We present new results related to the verification of the Timed-Triggered Ethernet (TTE) clock synchronization protocol. This work extends previous verification of TTE based on model checking. We identify a suboptimal design choice in a compression function used in clock synchronization, and propose an improvement. We compare the original design and the improved definition using the SAL model checker.
ERIC Educational Resources Information Center
Haratsis, Jessica M.; Hood, Michelle; Creed, Peter A.
2015-01-01
We tested a model based on the dual-process framework that assessed the relationships among personal resources, career goal appraisals, career attitudes, and career goal management, which have not been previously assessed together. The model (tested on a sample of 486 young adults: 74% female, M[subscript]age = 22 years) proposed that personal…
ERIC Educational Resources Information Center
Warren, Hermine
2014-01-01
In 2011, nearly 13 million nonsurgical cosmetic procedures were performed, representing a 6% increase from the previous year. Patients often present with unrealistic treatment expectations based on beauty industry standards and misinformation. In addition, due to the lack of competency standardization in this area, providers frequently deliver…
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2015-01-01
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-01-01
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE. PMID:27447635
Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection.
Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun
2016-07-19
Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated by OKTAL-SE.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-08
... DEPARTMENT OF JUSTICE Office of Justice Programs [OMB Number 1105-0071] Agency Information Collection Activities: Proposed Reinstatement With Change of a Previously Approved Collection; Comments Requested ACTION: 30[dash]Day notice of information collection under review: extension with change of a previously approved collection national drug...
Kim, Bumhwi; Ban, Sang-Woo; Lee, Minho
2013-10-01
Humans can efficiently perceive arbitrary visual objects based on an incremental learning mechanism with selective attention. This paper proposes a new task specific top-down attention model to locate a target object based on its form and color representation along with a bottom-up saliency based on relativity of primitive visual features and some memory modules. In the proposed model top-down bias signals corresponding to the target form and color features are generated, which draw the preferential attention to the desired object by the proposed selective attention model in concomitance with the bottom-up saliency process. The object form and color representation and memory modules have an incremental learning mechanism together with a proper object feature representation scheme. The proposed model includes a Growing Fuzzy Topology Adaptive Resonance Theory (GFTART) network which plays two important roles in object color and form biased attention; one is to incrementally learn and memorize color and form features of various objects, and the other is to generate a top-down bias signal to localize a target object by focusing on the candidate local areas. Moreover, the GFTART network can be utilized for knowledge inference which enables the perception of new unknown objects on the basis of the object form and color features stored in the memory during training. Experimental results show that the proposed model is successful in focusing on the specified target objects, in addition to the incremental representation and memorization of various objects in natural scenes. In addition, the proposed model properly infers new unknown objects based on the form and color features of previously trained objects. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Anatomically Constrained Model for Path Integration in the Bee Brain.
Stone, Thomas; Webb, Barbara; Adden, Andrea; Weddig, Nicolai Ben; Honkanen, Anna; Templin, Rachel; Wcislo, William; Scimeca, Luca; Warrant, Eric; Heinze, Stanley
2017-10-23
Path integration is a widespread navigational strategy in which directional changes and distance covered are continuously integrated on an outward journey, enabling a straight-line return to home. Bees use vision for this task-a celestial-cue-based visual compass and an optic-flow-based visual odometer-but the underlying neural integration mechanisms are unknown. Using intracellular electrophysiology, we show that polarized-light-based compass neurons and optic-flow-based speed-encoding neurons converge in the central complex of the bee brain, and through block-face electron microscopy, we identify potential integrator cells. Based on plausible output targets for these cells, we propose a complete circuit for path integration and steering in the central complex, with anatomically identified neurons suggested for each processing step. The resulting model circuit is thus fully constrained biologically and provides a functional interpretation for many previously unexplained architectural features of the central complex. Moreover, we show that the receptive fields of the newly discovered speed neurons can support path integration for the holonomic motion (i.e., a ground velocity that is not precisely aligned with body orientation) typical of bee flight, a feature not captured in any previously proposed model of path integration. In a broader context, the model circuit presented provides a general mechanism for producing steering signals by comparing current and desired headings-suggesting a more basic function for central complex connectivity, from which path integration may have evolved. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visual Privacy by Context: Proposal and Evaluation of a Level-Based Visualisation Scheme
Padilla-López, José Ramón; Chaaraoui, Alexandros Andre; Gu, Feng; Flórez-Revuelta, Francisco
2015-01-01
Privacy in image and video data has become an important subject since cameras are being installed in an increasing number of public and private spaces. Specifically, in assisted living, intelligent monitoring based on computer vision can allow one to provide risk detection and support services that increase people's autonomy at home. In the present work, a level-based visualisation scheme is proposed to provide visual privacy when human intervention is necessary, such as at telerehabilitation and safety assessment applications. Visualisation levels are dynamically selected based on the previously modelled context. In this way, different levels of protection can be provided, maintaining the necessary intelligibility required for the applications. Furthermore, a case study of a living room, where a top-view camera is installed, is presented. Finally, the performed survey-based evaluation indicates the degree of protection provided by the different visualisation models, as well as the personal privacy preferences and valuations of the users. PMID:26053746
NASA Astrophysics Data System (ADS)
Yang, Guang; Ye, Xujiong; Slabaugh, Greg; Keegan, Jennifer; Mohiaddin, Raad; Firmin, David
2016-03-01
In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise.
Base Stock Policy in a Join-Type Production Line with Advanced Demand Information
NASA Astrophysics Data System (ADS)
Hiraiwa, Mikihiko; Tsubouchi, Satoshi; Nakade, Koichi
Production control such as the base stock policy, the kanban policy and the constant work-in-process policy in a serial production line has been studied by many researchers. Production lines, however, usually have fork-type, join-type or network-type figures. In addition, in most previous studies on production control, a finished product is required at the same time as arrival of demand at the system. Demand information is, however, informed before due date in practice. In this paper a join-type (assembly) production line under base stock control with advanced demand information in discrete time is analyzed. The recursive equations for the work-in-process are derived. The heuristic algorithm for finding appropriate base stock levels of all machines at short time is proposed and the effect of advanced demand information is examined by simulation with the proposed algorithm. It is shown that the inventory cost can decreases with little backlogs by using the appropriate amount of demand information and setting appropriate base stock levels.
The bacterial pneumonias: a new treatment paradigm.
Marik, Paul E
2015-01-01
Pneumonia is a common disease that carries a high mortality. Traditionally, pneumonia has been classified and treated according to the setting where the pneumonia develops, namely community-acquired pneumonia, health-care-associated pneumonia, and hospital-acquired pneumonia. This classification was based on the risk of a patient being infected with a hospital-acquired drug-resistant pathogen. A new treatment paradigm has been proposed based on the risk of the patient being infected with a community-acquired drug-resistant pathogen. The risk factors for infection with a community-acquired drug-resistant pathogen include (1) hospitalization for > 2 days during the previous 90 days, (2) antibiotic use during the previous 90 days, (3) nonambulatory status, (4) tube feeds, (5) immunocompromised status, (6) use of acid-suppressive therapy, (7) chronic hemodialysis during the preceding 30 days, (8) positive methicillin-resistant Staphylococcus aureus history within the previous 90 days, and (9) present hospitalization > 2 days. This article reviews this new treatment paradigm and other issues relevant to the diagnosis and management of pneumonia based on information from MEDLINE, EMBASE, and the Cochrane Register of Controlled Trials.
Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo
2015-11-20
This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.
Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator
NASA Astrophysics Data System (ADS)
Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi
Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.
Lee, Dong-Gi; Shin, Hyunjung
2017-05-18
Recently, research on human disease network has succeeded and has become an aid in figuring out the relationship between various diseases. In most disease networks, however, the relationship between diseases has been simply represented as an association. This representation results in the difficulty of identifying prior diseases and their influence on posterior diseases. In this paper, we propose a causal disease network that implements disease causality through text mining on biomedical literature. To identify the causality between diseases, the proposed method includes two schemes: the first is the lexicon-based causality term strength, which provides the causal strength on a variety of causality terms based on lexicon analysis. The second is the frequency-based causality strength, which determines the direction and strength of causality based on document and clause frequencies in the literature. We applied the proposed method to 6,617,833 PubMed literature, and chose 195 diseases to construct a causal disease network. From all possible pairs of disease nodes in the network, 1011 causal pairs of 149 diseases were extracted. The resulting network was compared with that of a previous study. In terms of both coverage and quality, the proposed method showed outperforming results; it determined 2.7 times more causalities and showed higher correlation with associated diseases than the existing method. This research has novelty in which the proposed method circumvents the limitations of time and cost in applying all possible causalities in biological experiments and it is a more advanced text mining technique by defining the concepts of causality term strength.
Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.
Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe
2015-08-28
We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.
Left ventricle segmentation via graph cut distribution matching.
Ben Ayed, Ismail; Punithakumar, Kumaradevan; Li, Shuo; Islam, Ali; Chong, Jaron
2009-01-01
We present a discrete kernel density matching energy for segmenting the left ventricle cavity in cardiac magnetic resonance sequences. The energy and its graph cut optimization based on an original first-order approximation of the Bhattacharyya measure have not been proposed previously, and yield competitive results in nearly real-time. The algorithm seeks a region within each frame by optimization of two priors, one geometric (distance-based) and the other photometric, each measuring a distribution similarity between the region and a model learned from the first frame. Based on global rather than pixelwise information, the proposed algorithm does not require complex training and optimization with respect to geometric transformations. Unlike related active contour methods, it does not compute iterative updates of computationally expensive kernel densities. Furthermore, the proposed first-order analysis can be used for other intractable energies and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of graph cuts. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert.
NASA Astrophysics Data System (ADS)
Nakanishi, Taiki; Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi
2018-03-01
A 40-GHz fully integrated CMOS-based circuit for circulating tumor cells (CTC) analysis, consisting of an on-chip vector network analyzer (VNA) and a highly sensitive coplanar-line-based detection area is presented in this paper. In this work, we introduce a fully integrated architecture that eliminates unwanted parasitic effects. The proposed analyzer was designed using 65 nm CMOS technology, and SPICE and MWS simulations were used to validate its operation. The simulation confirmed that the proposed circuit can measure S-parameter shifts resulting from the addition of various types of tumor cells to the detection area, the data of which are provided in a previous study: the |S 21| values for HepG2, A549, and HEC-1-A cells are -0.683, -0.580, and -0.623 dB, respectively. Additionally, the measurement demonstrated an S-parameters reduction of -25.7% when a silicone resin was put on the circuit. Hence, the proposed system is expected to contribute to cancer diagnosis.
Inferring drug-disease associations based on known protein complexes.
Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin
2015-01-01
Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.
Lee, Tian-Fu
2014-12-01
Telecare medicine information systems provide a communicating platform for accessing remote medical resources through public networks, and help health care workers and medical personnel to rapidly making correct clinical decisions and treatments. An authentication scheme for data exchange in telecare medicine information systems enables legal users in hospitals and medical institutes to establish a secure channel and exchange electronic medical records or electronic health records securely and efficiently. This investigation develops an efficient and secure verified-based three-party authentication scheme by using extended chaotic maps for data exchange in telecare medicine information systems. The proposed scheme does not require server's public keys and avoids time-consuming modular exponential computations and scalar multiplications on elliptic curve used in previous related approaches. Additionally, the proposed scheme is proven secure in the random oracle model, and realizes the lower bounds of messages and rounds in communications. Compared to related verified-based approaches, the proposed scheme not only possesses higher security, but also has lower computational cost and fewer transmissions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Inferring drug-disease associations based on known protein complexes
2015-01-01
Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949
New auto-tuning technique for the hydrogen maser
NASA Technical Reports Server (NTRS)
Sydnor, R. L.; Maleki, L.
1983-01-01
Auto-tuning of the maser cavity compensates for cavity pulling effect, and other sources of contribution to the long term frequency drift. Schemes previously proposed for the maser cavity auto-tuning can have adverse effects on the performance of the maser. A new scheme is proposed based on the phase relationship between the electric and the magnetic fields inside the cavity. This technique has the desired feature of auto-tuning the cavity with a very high sensitivity and without disturbing the maser performance. Some approaches for the implementation of this scheme and possible areas of difficulty are examined.
Gao, Jingjing; Nangia, Narinder; Jia, Jia; Bolognese, James; Bhattacharyya, Jaydeep; Patel, Nitin
2017-06-01
In this paper, we propose an adaptive randomization design for Phase 2 dose-finding trials to optimize Net Present Value (NPV) for an experimental drug. We replace the traditional fixed sample size design (Patel, et al., 2012) by this new design to see if NPV from the original paper can be improved. Comparison of the proposed design to the previous design is made via simulations using a hypothetical example based on a Diabetic Neuropathic Pain Study. Copyright © 2017 Elsevier Inc. All rights reserved.
Finger vein recognition using local line binary pattern.
Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin
2011-01-01
In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).
The pitch of vibrato tones: a model based on instantaneous frequency decomposition.
Mesz, Bruno A; Eguia, Manuel C
2009-07-01
We study vibrato as the more ubiquitous manifestation of a nonstationary tone that can evoke a single overall pitch. Some recent results using nonsymmetrical vibrato tones suggest that the perceived pitch could be governed by some stability-sensitive mechanism. For nonstationary sounds the adequate tools are time-frequency representations (TFRs). We show that a recently proposed TFR could be the simplest framework to explain this hypothetical stability-sensitive mechanism. We propose a one-parameter model within this framework that is able to predict previously reported results and we present new results obtained from psychophysical experiments performed in our laboratory.
A secure RFID authentication protocol adopting error correction code.
Chen, Chien-Ming; Chen, Shuai-Min; Zheng, Xinying; Chen, Pei-Yu; Sun, Hung-Min
2014-01-01
RFID technology has become popular in many applications; however, most of the RFID products lack security related functionality due to the hardware limitation of the low-cost RFID tags. In this paper, we propose a lightweight mutual authentication protocol adopting error correction code for RFID. Besides, we also propose an advanced version of our protocol to provide key updating. Based on the secrecy of shared keys, the reader and the tag can establish a mutual authenticity relationship. Further analysis of the protocol showed that it also satisfies integrity, forward secrecy, anonymity, and untraceability. Compared with other lightweight protocols, the proposed protocol provides stronger resistance to tracing attacks, compromising attacks and replay attacks. We also compare our protocol with previous works in terms of performance.
Hierarchical minutiae matching for fingerprint and palmprint identification.
Chen, Fanglin; Huang, Xiaolin; Zhou, Jie
2013-12-01
Fingerprints and palmprints are the most common authentic biometrics for personal identification, especially for forensic security. Previous research have been proposed to speed up the searching process in fingerprint and palmprint identification systems, such as those based on classification or indexing, in which the deterioration of identification accuracy is hard to avert. In this paper, a novel hierarchical minutiae matching algorithm for fingerprint and palmprint identification systems is proposed. This method decomposes the matching step into several stages and rejects many false fingerprints or palmprints on different stages, thus it can save much time while preserving a high identification rate. Experimental results show that the proposed algorithm can save almost 50% searching time compared with traditional methods and illustrate its effectiveness.
Dynamical crossover in a stochastic model of cell fate decision
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroki; Kawaguchi, Kyogo; Sagawa, Takahiro
2017-07-01
We study the asymptotic behaviors of stochastic cell fate decision between proliferation and differentiation. We propose a model of a self-replicating Langevin system, where cells choose their fate (i.e., proliferation or differentiation) depending on local cell density. Based on this model, we propose a scenario for multicellular organisms to maintain the density of cells (i.e., homeostasis) through finite-ranged cell-cell interactions. Furthermore, we numerically show that the distribution of the number of descendant cells changes over time, thus unifying the previously proposed two models regarding homeostasis: the critical birth death process and the voter model. Our results provide a general platform for the study of stochastic cell fate decision in terms of nonequilibrium statistical mechanics.
Della-Torre, E; Berti, A; Yacoub, M R; Guglielmi, B; Tombetti, E; Sabbadini, M G; Voltolini, S; Colombo, G
2015-05-01
The purpose of the present work is to evaluate the efficacy of an approach that combines clinical history, skin tests results, and premedication, in preventing recurrent hypersensitivity reactions to iodinated contrast media (ICM). Skin Prick tests, Intradermal tests, and Patch tests were performed in 36 patients with a previous reaction to ICM. All patients underwent a second contrast enhanced radiological procedure with an alternative ICM selected on the basis of the proposed approach. After alternative ICM re-injection, only one patient presented a mild NIR. The proposed algorithm, validated in clinical settings where repeated radiological exams are needed, offers a safe and practical approach for protecting patients from recurrent hypersensitivity reactions to ICM.
Origami structures for tunable thermal expansion
NASA Astrophysics Data System (ADS)
Boatti, Elisa; Bertoldi, Katia
Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.
An efficient variable projection formulation for separable nonlinear least squares problems.
Gan, Min; Li, Han-Xiong
2014-05-01
We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.
Makeyev, Oleksandr; Sazonov, Edward; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Ed; Neuman, Michael
2007-01-01
In this paper we propose a sound recognition technique based on the limited receptive area (LIRA) neural classifier and continuous wavelet transform (CWT). LIRA neural classifier was developed as a multipurpose image recognition system. Previous tests of LIRA demonstrated good results in different image recognition tasks including: handwritten digit recognition, face recognition, metal surface texture recognition, and micro work piece shape recognition. We propose a sound recognition technique where scalograms of sound instances serve as inputs of the LIRA neural classifier. The methodology was tested in recognition of swallowing sounds. Swallowing sound recognition may be employed in systems for automated swallowing assessment and diagnosis of swallowing disorders. The experimental results suggest high efficiency and reliability of the proposed approach.
A Secure RFID Authentication Protocol Adopting Error Correction Code
Zheng, Xinying; Chen, Pei-Yu
2014-01-01
RFID technology has become popular in many applications; however, most of the RFID products lack security related functionality due to the hardware limitation of the low-cost RFID tags. In this paper, we propose a lightweight mutual authentication protocol adopting error correction code for RFID. Besides, we also propose an advanced version of our protocol to provide key updating. Based on the secrecy of shared keys, the reader and the tag can establish a mutual authenticity relationship. Further analysis of the protocol showed that it also satisfies integrity, forward secrecy, anonymity, and untraceability. Compared with other lightweight protocols, the proposed protocol provides stronger resistance to tracing attacks, compromising attacks and replay attacks. We also compare our protocol with previous works in terms of performance. PMID:24959619
Krishnan, Shankar
2013-01-01
The worldwide need for rapid expansion and diversification of medical devices and the corresponding requirements in industry pose arduous challenges for educators to train undergraduate biomedical engineering (BME) students. Preparing BME students for working in the research and development (R&D) in medical device industry is not easily accomplished by adopting traditional pedagogical methods. Even with the inclusion of the design and development elements in capstone projects, medical device industry may be still experience a gap in fulfilling their needs in R&D. This paper proposes a new model based on interdisciplinary project-based learning (IDPBL) to address the requirements of building the necessary skill sets in academia for carrying out R&D in medical device industry. The proposed model incorporates IDPBL modules distributed in a stepwise fashion through the four years of a typical BME program. The proposed model involves buy-in and collaboration from faculty as well as students. The implementation of the proposed design in an undergraduate BME program is still in process. However, a variant of the proposed IDPBL method has been attempted at a limited scale at the postgraduate level and has shown some success. Extrapolating the previous results, the adoption of the IDPBL to BME training seems to suggest promising outcomes. Despite numerous implementation challenges, with continued efforts, the proposed IDPBL will be valuable n academia for skill sets building for medical device R&D.
Image ratio features for facial expression recognition application.
Song, Mingli; Tao, Dacheng; Liu, Zicheng; Li, Xuelong; Zhou, Mengchu
2010-06-01
Video-based facial expression recognition is a challenging problem in computer vision and human-computer interaction. To target this problem, texture features have been extracted and widely used, because they can capture image intensity changes raised by skin deformation. However, existing texture features encounter problems with albedo and lighting variations. To solve both problems, we propose a new texture feature called image ratio features. Compared with previously proposed texture features, e.g., high gradient component features, image ratio features are more robust to albedo and lighting variations. In addition, to further improve facial expression recognition accuracy based on image ratio features, we combine image ratio features with facial animation parameters (FAPs), which describe the geometric motions of facial feature points. The performance evaluation is based on the Carnegie Mellon University Cohn-Kanade database, our own database, and the Japanese Female Facial Expression database. Experimental results show that the proposed image ratio feature is more robust to albedo and lighting variations, and the combination of image ratio features and FAPs outperforms each feature alone. In addition, we study asymmetric facial expressions based on our own facial expression database and demonstrate the superior performance of our combined expression recognition system.
Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms
NASA Astrophysics Data System (ADS)
Juo, Jz-Yuan; Lin, Jia-Kang; Cheng, Chin-Yao; Liu, Zi-Yu; Yu, Ite A.; Chen, Yong-Fan
2018-05-01
Long-distance quantum optical communications usually require efficient wave-mixing processes to convert the wavelengths of single photons. Many quantum applications based on electromagnetically induced transparency (EIT) have been proposed and demonstrated at the single-photon level, such as quantum memories, all-optical transistors, and cross-phase modulations. However, EIT-based four-wave mixing (FWM) in a resonant double-Λ configuration has a maximum conversion efficiency (CE) of 25% because of absorptive loss due to spontaneous emission. An improved scheme using spatially modulated intensities of two control fields has been theoretically proposed to overcome this conversion limit. In this study, we first demonstrate wavelength conversion from 780 to 795 nm with a 43% CE by using this scheme at an optical density (OD) of 19 in cold 87Rb atoms. According to the theoretical model, the CE in the proposed scheme can further increase to 96% at an OD of 240 under ideal conditions, thereby attaining an identical CE to that of the previous nonresonant double-Λ scheme at half the OD. This spatial-light-modulation-based FWM scheme can achieve a near-unity CE, thus providing an easy method of implementing an efficient quantum wavelength converter for all-optical quantum information processing.
Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy
2004-01-01
New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.
Krajbich, Ian; Rangel, Antonio
2011-08-16
How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.
NASA Astrophysics Data System (ADS)
Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo
2004-07-01
A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.
Mach-Zehnder Interferometer Refractive Index Sensor Based on a Plasmonic Channel Waveguide
Lee, Da Eun; Lee, Young Jin; Shin, Eunso; Kwon, Soon-Hong
2017-01-01
A Mach-Zehnder interferometer based on a plasmonic channel waveguide is proposed for refractive index sensing. The structure, with a small physical footprint of 20 × 120 μm2, achieved a high figure of merit of 294. The cut-off frequency behaviour in the plasmonic channel waveguide resulted in a flat dispersion curve, which induces a 1.8 times larger change of the propagation constant for the given refractive index change compared with previously reported results. PMID:29120381
Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.
Mendlovic, D; Ozaktas, H M; Lohmann, A W
1994-09-10
Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao
2018-07-01
In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.
Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia
Hodges, John R.; Knopman, David; Mendez, Mario F.; Kramer, Joel H.; Neuhaus, John; van Swieten, John C.; Seelaar, Harro; Dopper, Elise G. P.; Onyike, Chiadi U.; Hillis, Argye E.; Josephs, Keith A.; Boeve, Bradley F.; Kertesz, Andrew; Seeley, William W.; Rankin, Katherine P.; Johnson, Julene K.; Gorno-Tempini, Maria-Luisa; Rosen, Howard; Prioleau-Latham, Caroline E.; Lee, Albert; Kipps, Christopher M.; Lillo, Patricia; Piguet, Olivier; Rohrer, Jonathan D.; Rossor, Martin N.; Warren, Jason D.; Fox, Nick C.; Galasko, Douglas; Salmon, David P.; Black, Sandra E.; Mesulam, Marsel; Weintraub, Sandra; Dickerson, Brad C.; Diehl-Schmid, Janine; Pasquier, Florence; Deramecourt, Vincent; Lebert, Florence; Pijnenburg, Yolande; Chow, Tiffany W.; Manes, Facundo; Grafman, Jordan; Cappa, Stefano F.; Freedman, Morris; Grossman, Murray; Miller, Bruce L.
2011-01-01
Based on the recent literature and collective experience, an international consortium developed revised guidelines for the diagnosis of behavioural variant frontotemporal dementia. The validation process retrospectively reviewed clinical records and compared the sensitivity of proposed and earlier criteria in a multi-site sample of patients with pathologically verified frontotemporal lobar degeneration. According to the revised criteria, ‘possible’ behavioural variant frontotemporal dementia requires three of six clinically discriminating features (disinhibition, apathy/inertia, loss of sympathy/empathy, perseverative/compulsive behaviours, hyperorality and dysexecutive neuropsychological profile). ‘Probable’ behavioural variant frontotemporal dementia adds functional disability and characteristic neuroimaging, while behavioural variant frontotemporal dementia ‘with definite frontotemporal lobar degeneration’ requires histopathological confirmation or a pathogenic mutation. Sixteen brain banks contributed cases meeting histopathological criteria for frontotemporal lobar degeneration and a clinical diagnosis of behavioural variant frontotemporal dementia, Alzheimer’s disease, dementia with Lewy bodies or vascular dementia at presentation. Cases with predominant primary progressive aphasia or extra-pyramidal syndromes were excluded. In these autopsy-confirmed cases, an experienced neurologist or psychiatrist ascertained clinical features necessary for making a diagnosis according to previous and proposed criteria at presentation. Of 137 cases where features were available for both proposed and previously established criteria, 118 (86%) met ‘possible’ criteria, and 104 (76%) met criteria for ‘probable’ behavioural variant frontotemporal dementia. In contrast, 72 cases (53%) met previously established criteria for the syndrome (P < 0.001 for comparison with ‘possible’ and ‘probable’ criteria). Patients who failed to meet revised criteria were significantly older and most had atypical presentations with marked memory impairment. In conclusion, the revised criteria for behavioural variant frontotemporal dementia improve diagnostic accuracy compared with previously established criteria in a sample with known frontotemporal lobar degeneration. Greater sensitivity of the proposed criteria may reflect the optimized diagnostic features, less restrictive exclusion features and a flexible structure that accommodates different initial clinical presentations. Future studies will be needed to establish the reliability and specificity of these revised diagnostic guidelines. PMID:21810890
Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan
2018-04-01
Association rule mining is an important technique for identifying interesting relationships between gene pairs in a biological data set. Earlier methods basically work for a single biological data set, and, in maximum cases, a single minimum support cutoff can be applied globally, i.e., across all genesets/itemsets. To overcome this limitation, in this paper, we propose dynamic threshold-based FP-growth rule mining algorithm that integrates gene expression, methylation and protein-protein interaction profiles based on weighted shortest distance to find the novel associations among different pairs of genes in multi-view data sets. For this purpose, we introduce three new thresholds, namely, Distance-based Variable/Dynamic Supports (DVS), Distance-based Variable Confidences (DVC), and Distance-based Variable Lifts (DVL) for each rule by integrating co-expression, co-methylation, and protein-protein interactions existed in the multi-omics data set. We develop the proposed algorithm utilizing these three novel multiple threshold measures. In the proposed algorithm, the values of , , and are computed for each rule separately, and subsequently it is verified whether the support, confidence, and lift of each evolved rule are greater than or equal to the corresponding individual , , and values, respectively, or not. If all these three conditions for a rule are found to be true, the rule is treated as a resultant rule. One of the major advantages of the proposed method compared with other related state-of-the-art methods is that it considers both the quantitative and interactive significance among all pairwise genes belonging to each rule. Moreover, the proposed method generates fewer rules, takes less running time, and provides greater biological significance for the resultant top-ranking rules compared to previous methods.
A novel wavelength multiplexer/demutiplexer based on side-port multimode interference coupler
NASA Astrophysics Data System (ADS)
Wei, Shile; Jian, Wu; Zhao, Lingjuan; Qiu, Jifang; Yin, Zuoshan; Hui, Rongqing
2014-05-01
Based on side-port multimode interference coupler, a novel design of 1.31/1.55-μm wavelength multiplexer/demutiplexer on SOI platform with conventional channel waveguides is proposed and analyzed by using wide-angle beam propagation method. With a 25.9μm long ultra-short MMI section, nearly an order of magnitude shorter than that of the previously reported 1.31/1.55-μm wavelength MMI splitters on SOI, simulation results exhibit contrasts of 28dB and 25dB at wavelength 1.31 and 1.55 μm, respectively, and the insertion losses are both below 0.55dB. Meanwhile, the analysis shows that the proposed structure has larger fabrication tolerances than restricted MMI based structures and the present design methodology also applies to split other wavelengths and in different material platforms, such as InP, GaAs and PLC guides, etc.
A novel three-stage distance-based consensus ranking method
NASA Astrophysics Data System (ADS)
Aghayi, Nazila; Tavana, Madjid
2018-05-01
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights obtained in the first stage is not unique. Finally, in the third stage, the group rank position of alternatives is obtained based on a distance of individual rank positions. The third stage determines a consensus solution for the group so that the ranks obtained have a minimum distance from the ranks acquired by each alternative in the previous stage. A numerical example is presented to demonstrate the applicability and exhibit the efficacy of the proposed method and algorithms.
Next Place Prediction Based on Spatiotemporal Pattern Mining of Mobile Device Logs.
Lee, Sungjun; Lim, Junseok; Park, Jonghun; Kim, Kwanho
2016-01-23
Due to the recent explosive growth of location-aware services based on mobile devices, predicting the next places of a user is of increasing importance to enable proactive information services. In this paper, we introduce a data-driven framework that aims to predict the user's next places using his/her past visiting patterns analyzed from mobile device logs. Specifically, the notion of the spatiotemporal-periodic (STP) pattern is proposed to capture the visits with spatiotemporal periodicity by focusing on a detail level of location for each individual. Subsequently, we present algorithms that extract the STP patterns from a user's past visiting behaviors and predict the next places based on the patterns. The experiment results obtained by using a real-world dataset show that the proposed methods are more effective in predicting the user's next places than the previous approaches considered in most cases.
Gradient-based interpolation method for division-of-focal-plane polarimeters.
Gao, Shengkui; Gruev, Viktor
2013-01-14
Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.
Optimized multiple linear mappings for single image super-resolution
NASA Astrophysics Data System (ADS)
Zhang, Kaibing; Li, Jie; Xiong, Zenggang; Liu, Xiuping; Gao, Xinbo
2017-12-01
Learning piecewise linear regression has been recognized as an effective way for example learning-based single image super-resolution (SR) in literature. In this paper, we employ an expectation-maximization (EM) algorithm to further improve the SR performance of our previous multiple linear mappings (MLM) based SR method. In the training stage, the proposed method starts with a set of linear regressors obtained by the MLM-based method, and then jointly optimizes the clustering results and the low- and high-resolution subdictionary pairs for regression functions by using the metric of the reconstruction errors. In the test stage, we select the optimal regressor for SR reconstruction by accumulating the reconstruction errors of m-nearest neighbors in the training set. Thorough experimental results carried on six publicly available datasets demonstrate that the proposed SR method can yield high-quality images with finer details and sharper edges in terms of both quantitative and perceptual image quality assessments.
Real-time traffic sign recognition based on a general purpose GPU and deep-learning
Hong, Yongwon; Choi, Yeongwoo; Byun, Hyeran
2017-01-01
We present a General Purpose Graphics Processing Unit (GPGPU) based real-time traffic sign detection and recognition method that is robust against illumination changes. There have been many approaches to traffic sign recognition in various research fields; however, previous approaches faced several limitations when under low illumination or wide variance of light conditions. To overcome these drawbacks and improve processing speeds, we propose a method that 1) is robust against illumination changes, 2) uses GPGPU-based real-time traffic sign detection, and 3) performs region detecting and recognition using a hierarchical model. This method produces stable results in low illumination environments. Both detection and hierarchical recognition are performed in real-time, and the proposed method achieves 0.97 F1-score on our collective dataset, which uses the Vienna convention traffic rules (Germany and South Korea). PMID:28264011
Magnetic skyrmion-based artificial neuron device
NASA Astrophysics Data System (ADS)
Li, Sai; Kang, Wang; Huang, Yangqi; Zhang, Xichao; Zhou, Yan; Zhao, Weisheng
2017-08-01
Neuromorphic computing, inspired by the biological nervous system, has attracted considerable attention. Intensive research has been conducted in this field for developing artificial synapses and neurons, attempting to mimic the behaviors of biological synapses and neurons, which are two basic elements of a human brain. Recently, magnetic skyrmions have been investigated as promising candidates in neuromorphic computing design owing to their topologically protected particle-like behaviors, nanoscale size and low driving current density. In one of our previous studies, a skyrmion-based artificial synapse was proposed, with which both short-term plasticity and long-term potentiation functions have been demonstrated. In this work, we further report on a skyrmion-based artificial neuron by exploiting the tunable current-driven skyrmion motion dynamics, mimicking the leaky-integrate-fire function of a biological neuron. With a simple single-device implementation, this proposed artificial neuron may enable us to build a dense and energy-efficient spiking neuromorphic computing system.
Global Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon; Abarbanel, Saul; Nordstrom, Jan; Ryabenkii, Viktor; Vatsa, Veer
1998-01-01
We propose new global artificial boundary conditions (ABC's) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability range of the DPM-based algorithm. In the paper, we present the general formulation of the problem, describe our numerical methodology, and discuss the corresponding computational results. The particular configuration that we analyze is a slender three-dimensional body with boat-tail geometry and supersonic jet exhaust in a subsonic external flow under zero angle of attack. Similarly to the results obtained earlier for the flows around airfoils and wings, current results for the jet flow case corroborate the superiority of the DPM-based ABC's over standard local methodologies from the standpoints of accuracy, overall numerical performance, and robustness.
A landscape inventory framework: scenic analyses of the Northern Great Plains
Litton R. Burton Jr.; Robert J. Tetlow
1978-01-01
A set of four visual inventories are proposed. They are designed to document scenic resources for varied scales of application, from regional and general to local and specific. The Northern Great Plains is used as a case study. Scenic analysis and identification of criteria extend earlier work. The inventory is based on (1) study of previously developed landscape...
Winston P. Smith; Scott M. Gende; Jeffrey V. Nichols
2005-01-01
Management indicator species (MIS) often are selected because their life history and demographics are thought to reflect a suite of ecosystem conditions that are too difficult or costly to measure directly. The northern flying squirrel (Glaucomys sabrinus) has been proposed as an MIS of temperate rain forest of southeastern Alaska based on previous...
Modelo empirico integral de una plantacion de Eucalyptus grandis en Concordia, Entre Rios
Jorge Frangi; Carolina Perez; Juan Goya; Natalia Teson; Marcelo Barrera; Marcelo Arturi
2016-01-01
The Argentinian Mesopotamia is the core of fast-growing tree species plantations of the country. Eucalyptus grandis plantations constitute 90 % of the forested area with Eucalyptus spp. in NE Entre Rios. Based on previous studies on structural and functional features, a comprehensive model is here proposed on emergence of new properties linked to matter and ecosystem...
ERIC Educational Resources Information Center
Guymon, Ronald E.
An innovative classroom-based approach to reading instruction in the context of Spanish instruction was proposed. The effects of this instruction on the pronunciation ability of students were analyzed. The subjects were 30 adult missionary trainees who had no previous exposure to Spanish. The dependent variable was measured using two instruments.…
ERIC Educational Resources Information Center
Escobar-Rodríguez, Tomás; Carvajal-Trujillo, Elena; Monge-Lozano, Pedro
2014-01-01
Social media technologies are becoming a fundamental component of education. This study extends the Unified Theory of Acceptance and Use of Technology (UTAUT) to identify factors that influence the perceived advantages and relevance of Facebook as a learning tool. The proposed model is based on previous models of UTAUT. Constructs from previous…
ERIC Educational Resources Information Center
Bal, P. Matthijs; Visser, Michel S.
2011-01-01
This article investigates the factors influencing the motivation to continue working after retirement among a sample of Dutch teachers. Based on previous research, it was proposed that teachers will be motivated to work after their legal retirement age when organizational support, possibilities to change work roles and financial needs are high.…
ERIC Educational Resources Information Center
Patacsil, Frederick F.; Tablatin, Christine Lourrine S.
2017-01-01
The research paper proposes a skills gap methodology that utilized the respondent experiences in the internship program to measure the importance of the Information Technology (IT) skills gap as perceived by IT students and the industry. The questionnaires were formulated based on previous studies, however, was slightly modified, validated and…
ERIC Educational Resources Information Center
Buelna, Christina; Ulloa, Emilio C.; Ulibarri, Monica D.
2009-01-01
This study examined relationship power as a possible mediator of the relationship between dating violence and sexually transmitted infections (STIs). The proposed mediation model was based on the theory of gender and power as well as previous research on intimate partner violence and STI risk. Survey results from a sample of 290 single,…
NASA Astrophysics Data System (ADS)
Lin, Chuang; Wang, Binghui; Jiang, Ning; Farina, Dario
2018-04-01
Objective. This paper proposes a novel simultaneous and proportional multiple degree of freedom (DOF) myoelectric control method for active prostheses. Approach. The approach is based on non-negative matrix factorization (NMF) of surface EMG signals with the inclusion of sparseness constraints. By applying a sparseness constraint to the control signal matrix, it is possible to extract the basis information from arbitrary movements (quasi-unsupervised approach) for multiple DOFs concurrently. Main Results. In online testing based on target hitting, able-bodied subjects reached a greater throughput (TP) when using sparse NMF (SNMF) than with classic NMF or with linear regression (LR). Accordingly, the completion time (CT) was shorter for SNMF than NMF or LR. The same observations were made in two patients with unilateral limb deficiencies. Significance. The addition of sparseness constraints to NMF allows for a quasi-unsupervised approach to myoelectric control with superior results with respect to previous methods for the simultaneous and proportional control of multi-DOF. The proposed factorization algorithm allows robust simultaneous and proportional control, is superior to previous supervised algorithms, and, because of minimal supervision, paves the way to online adaptation in myoelectric control.
Central Nervous System Control of Voice and Swallowing
Ludlow, Christy L.
2015-01-01
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238
Morison, Gordon; Boreham, Philip
2018-01-01
Electromagnetic Interference (EMI) is a technique for capturing Partial Discharge (PD) signals in High-Voltage (HV) power plant apparatus. EMI signals can be non-stationary which makes their analysis difficult, particularly for pattern recognition applications. This paper elaborates upon a previously developed software condition-monitoring model for improved EMI events classification based on time-frequency signal decomposition and entropy features. The idea of the proposed method is to map multiple discharge source signals captured by EMI and labelled by experts, including PD, from the time domain to a feature space, which aids in the interpretation of subsequent fault information. Here, instead of using only one permutation entropy measure, a more robust measure, called Dispersion Entropy (DE), is added to the feature vector. Multi-Class Support Vector Machine (MCSVM) methods are utilized for classification of the different discharge sources. Results show an improved classification accuracy compared to previously proposed methods. This yields to a successful development of an expert’s knowledge-based intelligent system. Since this method is demonstrated to be successful with real field data, it brings the benefit of possible real-world application for EMI condition monitoring. PMID:29385030
NASA Astrophysics Data System (ADS)
Modegi, Toshio
Using our previously developed audio to MIDI code converter tool “Auto-F”, from given vocal acoustic signals we can create MIDI data, which enable to playback the voice-like signals with a standard MIDI synthesizer. Applying this tool, we are constructing a MIDI database, which consists of previously converted simple harmonic structured MIDI codes from a set of 71 Japanese male and female syllable recorded signals. And we are developing a novel voice synthesizing system based on harmonically synthesizing musical sounds, which can generate MIDI data and playback voice signals with a MIDI synthesizer by giving Japanese plain (kana) texts, referring to the syllable MIDI code database. In this paper, we propose an improved MIDI converter tool, which can produce temporally higher-resolution MIDI codes. Then we propose an algorithm separating a set of 20 consonant and vowel phoneme MIDI codes from 71 syllable MIDI converted codes in order to construct a voice synthesizing system. And, we present the evaluation results of voice synthesizing quality between these separated phoneme MIDI codes and their original syllable MIDI codes by our developed 4-syllable word listening tests.
Liu, Chao; Gu, Jinwei
2014-01-01
Classifying raw, unpainted materials--metal, plastic, ceramic, fabric, and so on--is an important yet challenging task for computer vision. Previous works measure subsets of surface spectral reflectance as features for classification. However, acquiring the full spectral reflectance is time consuming and error-prone. In this paper, we propose to use coded illumination to directly measure discriminative features for material classification. Optimal illumination patterns--which we call "discriminative illumination"--are learned from training samples, after projecting to which the spectral reflectance of different materials are maximally separated. This projection is automatically realized by the integration of incident light for surface reflection. While a single discriminative illumination is capable of linear, two-class classification, we show that multiple discriminative illuminations can be used for nonlinear and multiclass classification. We also show theoretically that the proposed method has higher signal-to-noise ratio than previous methods due to light multiplexing. Finally, we construct an LED-based multispectral dome and use the discriminative illumination method for classifying a variety of raw materials, including metal (aluminum, alloy, steel, stainless steel, brass, and copper), plastic, ceramic, fabric, and wood. Experimental results demonstrate its effectiveness.
Kawaguchi, Atsushi; Yamashita, Fumio
2017-10-01
This article proposes a procedure for describing the relationship between high-dimensional data sets, such as multimodal brain images and genetic data. We propose a supervised technique to incorporate the clinical outcome to determine a score, which is a linear combination of variables with hieratical structures to multimodalities. This approach is expected to obtain interpretable and predictive scores. The proposed method was applied to a study of Alzheimer's disease (AD). We propose a diagnostic method for AD that involves using whole-brain magnetic resonance imaging (MRI) and positron emission tomography (PET), and we select effective brain regions for the diagnostic probability and investigate the genome-wide association with the regions using single nucleotide polymorphisms (SNPs). The two-step dimension reduction method, which we previously introduced, was considered applicable to such a study and allows us to partially incorporate the proposed method. We show that the proposed method offers classification functions with feasibility and reasonable prediction accuracy based on the receiver operating characteristic (ROC) analysis and reasonable regions of the brain and genomes. Our simulation study based on the synthetic structured data set showed that the proposed method outperformed the original method and provided the characteristic for the supervised feature. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Legacies of precipitation fluctuations on primary production: theory and data synthesis.
Sala, Osvaldo E; Gherardi, Laureano A; Reichmann, Lara; Jobbágy, Esteban; Peters, Debra
2012-11-19
Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP-precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP. We found that legacies revealed by the association of current- versus previous-year conditions through the temporal series occur across all ecosystem types from deserts to mesic grasslands. Therefore, previous-year precipitation and ANPP control a significant fraction of current-year production. We developed unified models for the controls of ANPP through space and time. The relative importance of current-versus previous-year precipitation changes along a gradient of mean annual precipitation with the importance of current-year PPT decreasing, whereas the importance of previous-year PPT remains constant as mean annual precipitation increases. Finally, our results suggest that ANPP will respond to climate-change-driven alterations in water availability and, more importantly, that the magnitude of the response will increase with time.
Deng, Li; Zhang, Yuanyuan; Zhu, Jianfeng; Zhang, Chen
2018-06-05
A wide-band and high gain circularly polarized (CP) graphene-based reflectarray operating in the THz regime is proposed and theoretically investigated in this paper. The proposed reflectarray consists of a THz CP source and several graphene-based unit-cells. Taking advantages of the Pancharatnam Berry (PB) phase principle, the graphene-based unit-cell is capable of realizing a tunable phase range of 360° in a wide-band (1.4⁻1.7 THz) by unit-cell rotating, overcoming the restriction of intrinsic narrow-band resonance in graphene. Therefore, this graphene-based unit-cell exhibits superior bandwidth and phase tunability to its previous counterparts. To demonstrate this, a wide-band (1.4⁻1.7 THz) focusing metasurface based on the proposed unit-cell that exhibits excellent focusing effect was designed. Then, according to the reversibility of the optical path, a CP reflectarray was realized by placing a wide-band CP THz source at the focal point of the metasurface. Numerical simulation demonstrates that this reflectarray can achieve a stable high gain up to 15 dBic and an axial ratio around 2.1 dB over the 1.4⁻1.7 THz band. The good radiation performance of the proposed CP reflectarray, as demonstrated, underlines its suitability for the THz communication applications. Moreover, the design principle of this graphene-based reflectarray with a full 360° phase range tunable unit-cells provides a new pathway to design high-performance CP reflectarray in the THz regime.
Image watermarking against lens flare effects
NASA Astrophysics Data System (ADS)
Chotikawanid, Piyanart; Amornraksa, Thumrongrat
2017-02-01
Lens flare effects in various photo and camera software nowadays can partially or fully damage the watermark information within the watermarked image. We propose in this paper a spatial domain based image watermarking against lens flare effects. The watermark embedding is based on the modification of the saturation color component in HSV color space of a host image. For watermark extraction, a homomorphic filter is used to predict the original embedding component from the watermarked component, and the watermark is blindly recovered by differentiating both components. The watermarked image's quality is evaluated by wPSNR, while the extracted watermark's accuracy is evaluated by NC. The experimental results against various types of lens flare effects from both computer software and mobile application showed that our proposed method outperformed the previous methods.
Oreshkov, Ognyan; Calsamiglia, John
2010-07-30
We propose a theory of adiabaticity in quantum markovian dynamics based on a decomposition of the Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our approach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noiseless subsystems. As two applications of our theory, we propose a general framework for decoherence-assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
A VM-shared desktop virtualization system based on OpenStack
NASA Astrophysics Data System (ADS)
Liu, Xi; Zhu, Mingfa; Xiao, Limin; Jiang, Yuanjie
2018-04-01
With the increasing popularity of cloud computing, desktop virtualization is rising in recent years as a branch of virtualization technology. However, existing desktop virtualization systems are mostly designed as a one-to-one mode, which one VM can only be accessed by one user. Meanwhile, previous desktop virtualization systems perform weakly in terms of response time and cost saving. This paper proposes a novel VM-Shared desktop virtualization system based on OpenStack platform. The paper modified the connecting process and the display data transmission process of the remote display protocol SPICE to support VM-Shared function. On the other hand, we propose a server-push display mode to improve user interactive experience. The experimental results show that our system performs well in response time and achieves a low CPU consumption.
Chronic kidney disease of unknown aetiology and ground-water ionicity: study based on Sri Lanka.
Dharma-Wardana, M W C; Amarasiri, Sarath L; Dharmawardene, Nande; Panabokke, C R
2015-04-01
High incidence of chronic kidney disease of unknown aetiology (CKDU) in Sri Lanka is shown to correlate with the presence of irrigation works and rivers that bring-in 'nonpoint source' fertilizer runoff from intensely agricultural regions. We review previous attempts to link CKDU with As, Cd and other standard toxins. Those studies (e.g. the WHO-sponsored study), while providing a wealth of data, are inconclusive in regard to aetiology. Here, we present new proposals based on increased ionicity of drinking water due to fertilizer runoff into the river system, redox processes in the soil and features of 'tank'-cascades and aquifers. The consequent chronic exposure to high ionicity in drinking water is proposed to debilitate the kidney via a Hofmeister-type (i.e. protein-denaturing) mechanism.
Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete
Pour, Sadaf Moallemi; Alam, M. Shahria; Milani, Abbas S.
2016-01-01
This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models. PMID:28773859
A proposed method for world weightlifting championships team selection.
Chiu, Loren Z F
2009-08-01
The caliber of competitors at the World Weightlifting Championships (WWC) has increased greatly over the past 20 years. As the WWC are the primary qualifiers for Olympic slots (1996 to present), it is imperative for a nation to select team members who will finish with a high placing and score team points. Previous selection methods were based on a simple percentage system. Analysis of the results from the 2006 and 2007 WWC indicates a curvilinear trend in each weight class, suggesting a simple percentage system will not maximize the number of team points earned. To maximize team points, weightlifters should be selected based on their potential to finish in the top 25. A 5-tier ranking system is proposed that should ensure the athletes with the greatest potential to score team points are selected.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong; Zhou, Nanrun
2018-06-01
The diffractive-imaging-based encryption (DIBE) scheme has aroused wide interesting due to its compact architecture and low requirement of conditions. Nevertheless, the primary information can hardly be recovered exactly in the real applications when considering the speckle noise and potential occlusion imposed on the ciphertext. To deal with this issue, the customized data container (CDC) into DIBE is introduced and a new phase retrieval algorithm (PRA) for plaintext retrieval is proposed. The PRA, designed according to the peculiarity of the CDC, combines two key techniques from previous approaches, i.e., input-support-constraint and median-filtering. The proposed scheme can guarantee totally the reconstruction of the primary information despite heavy noise or occlusion and its effectiveness and feasibility have been demonstrated with simulation results.
NASA Astrophysics Data System (ADS)
Nuster, Robert; Wurzinger, Gerhild; Paltauf, Guenther
2017-03-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
Defect detection of castings in radiography images using a robust statistical feature.
Zhao, Xinyue; He, Zaixing; Zhang, Shuyou
2014-01-01
One of the most commonly used optical methods for defect detection is radiographic inspection. Compared with methods that extract defects directly from the radiography image, model-based methods deal with the case of an object with complex structure well. However, detection of small low-contrast defects in nonuniformly illuminated images is still a major challenge for them. In this paper, we present a new method based on the grayscale arranging pairs (GAP) feature to detect casting defects in radiography images automatically. First, a model is built using pixel pairs with a stable intensity relationship based on the GAP feature from previously acquired images. Second, defects can be extracted by comparing the difference of intensity-difference signs between the input image and the model statistically. The robustness of the proposed method to noise and illumination variations has been verified on casting radioscopic images with defects. The experimental results showed that the average computation time of the proposed method in the testing stage is 28 ms per image on a computer with a Pentium Core 2 Duo 3.00 GHz processor. For the comparison, we also evaluated the performance of the proposed method as well as that of the mixture-of-Gaussian-based and crossing line profile methods. The proposed method achieved 2.7% and 2.0% false negative rates in the noise and illumination variation experiments, respectively.
Human joint motion estimation for electromyography (EMG)-based dynamic motion control.
Zhang, Qin; Hosoda, Ryo; Venture, Gentiane
2013-01-01
This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.
Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature.
Kim, Jihyun; Le, Thi-Thu-Huong; Kim, Howon
2017-01-01
Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification.
Nonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature
Le, Thi-Thu-Huong; Kim, Howon
2017-01-01
Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the distribution system. Among the previous studies, Hidden Markov Model (HMM) based models have been studied very much. However, increasing appliances, multistate of appliances, and similar power consumption of appliances are three big issues in NILM recently. In this paper, we address these problems through providing our contributions as follows. First, we proposed state-of-the-art energy disaggregation based on Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) model and additional advanced deep learning. Second, we proposed a novel signature to improve classification performance of the proposed model in multistate appliance case. We applied the proposed model on two datasets such as UK-DALE and REDD. Via our experimental results, we have confirmed that our model outperforms the advanced model. Thus, we show that our combination between advanced deep learning and novel signature can be a robust solution to overcome NILM's issues and improve the performance of load identification. PMID:29118809
Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon
2015-02-03
Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes.
A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions
NASA Astrophysics Data System (ADS)
Li, Ruo; Tang, Tao; Zhang, Pingwen
2002-04-01
A framework for adaptive meshes based on the Hamilton-Schoen-Yau theory was proposed by Dvinsky. In a recent work (2001, J. Comput. Phys.170, 562-588), we extended Dvinsky's method to provide an efficient moving mesh algorithm which compared favorably with the previously proposed schemes in terms of simplicity and reliability. In this work, we will further extend the moving mesh methods based on harmonic maps to deal with mesh adaptation in three space dimensions. In obtaining the variational mesh, we will solve an optimization problem with some appropriate constraints, which is in contrast to the traditional method of solving the Euler-Lagrange equation directly. The key idea of this approach is to update the interior and boundary grids simultaneously, rather than considering them separately. Application of the proposed moving mesh scheme is illustrated with some two- and three-dimensional problems with large solution gradients. The numerical experiments show that our methods can accurately resolve detail features of singular problems in 3D.
New Windows based Color Morphological Operators for Biomedical Image Processing
NASA Astrophysics Data System (ADS)
Pastore, Juan; Bouchet, Agustina; Brun, Marcel; Ballarin, Virginia
2016-04-01
Morphological image processing is well known as an efficient methodology for image processing and computer vision. With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. Many models have been proposed to extend morphological operators to the field of color images, dealing with some new problems not present previously in the binary and gray level contexts. These solutions usually deal with the lattice structure of the color space, or provide it with total orders, to be able to define basic operators with required properties. In this work we propose a new locally defined ordering, in the context of window based morphological operators, for the definition of erosions-like and dilation-like operators, which provides the same desired properties expected from color morphology, avoiding some of the drawbacks of the prior approaches. Experimental results show that the proposed color operators can be efficiently used for color image processing.
The online community based decision making support system for mitigating biased decision making
NASA Astrophysics Data System (ADS)
Kang, Sunghyun; Seo, Jiwan; Choi, Seungjin; Kim, Junho; Han, Sangyong
2016-10-01
As the Internet technology and social media advance, various information and opinions are shared and distributed through the online communities. However, the existence of implicit and explicit bias of opinions may have a potential influence on the outcomes. Compared to the importance of mitigating biased information, the study in this field is relatively young and does not address many important issues. In this paper we propose the noble approach to mitigate the biased opinions using conventional machine learning methods. The proposed method extracts the useful features such as inclination and sentiment of the community members. They are classified based on their previous behavior, and the propensity of the members is understood. This information on each community and its members is very useful and improve the ability to make an unbiased decision. The proposed method presented in this paper is shown to have the ability to assist optimal, fair and good decision making while also reducing the influence of implicit bias.
Script-independent text line segmentation in freestyle handwritten documents.
Li, Yi; Zheng, Yefeng; Doermann, David; Jaeger, Stefan; Li, Yi
2008-08-01
Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods [1]-[3]. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.
Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young
2016-04-18
Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.
Evolving rule-based systems in two medical domains using genetic programming.
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf
2004-11-01
To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.
Tanaka, Hiroki; Negoro, Hideki; Iwasaka, Hidemi; Nakamura, Satoshi
2017-01-01
Social skills training, performed by human trainers, is a well-established method for obtaining appropriate skills in social interaction. Previous work automated the process of social skills training by developing a dialogue system that teaches social communication skills through interaction with a computer avatar. Even though previous work that simulated social skills training only considered acoustic and linguistic information, human social skills trainers take into account visual and other non-verbal features. In this paper, we create and evaluate a social skills training system that closes this gap by considering the audiovisual features of the smiling ratio and the head pose (yaw and pitch). In addition, the previous system was only tested with graduate students; in this paper, we applied our system to children or young adults with autism spectrum disorders. For our experimental evaluation, we recruited 18 members from the general population and 10 people with autism spectrum disorders and gave them our proposed multimodal system to use. An experienced human social skills trainer rated the social skills of the users. We evaluated the system's effectiveness by comparing pre- and post-training scores and identified significant improvement in their social skills using our proposed multimodal system. Computer-based social skills training is useful for people who experience social difficulties. Such a system can be used by teachers, therapists, and social skills trainers for rehabilitation and the supplemental use of human-based training anywhere and anytime.
Negoro, Hideki; Iwasaka, Hidemi; Nakamura, Satoshi
2017-01-01
Social skills training, performed by human trainers, is a well-established method for obtaining appropriate skills in social interaction. Previous work automated the process of social skills training by developing a dialogue system that teaches social communication skills through interaction with a computer avatar. Even though previous work that simulated social skills training only considered acoustic and linguistic information, human social skills trainers take into account visual and other non-verbal features. In this paper, we create and evaluate a social skills training system that closes this gap by considering the audiovisual features of the smiling ratio and the head pose (yaw and pitch). In addition, the previous system was only tested with graduate students; in this paper, we applied our system to children or young adults with autism spectrum disorders. For our experimental evaluation, we recruited 18 members from the general population and 10 people with autism spectrum disorders and gave them our proposed multimodal system to use. An experienced human social skills trainer rated the social skills of the users. We evaluated the system’s effectiveness by comparing pre- and post-training scores and identified significant improvement in their social skills using our proposed multimodal system. Computer-based social skills training is useful for people who experience social difficulties. Such a system can be used by teachers, therapists, and social skills trainers for rehabilitation and the supplemental use of human-based training anywhere and anytime. PMID:28796781
Andrés, Axel; Rosés, Martí; Bosch, Elisabeth
2014-11-28
In previous work, a two-parameter model to predict chromatographic retention of ionizable analytes in gradient mode was proposed. However, the procedure required some previous experimental work to get a suitable description of the pKa change with the mobile phase composition. In the present study this previous experimental work has been simplified. The analyte pKa values have been calculated through equations whose coefficients vary depending on their functional group. Forced by this new approach, other simplifications regarding the retention of the totally neutral and totally ionized species also had to be performed. After the simplifications were applied, new prediction values were obtained and compared with the previously acquired experimental data. The simplified model gave pretty good predictions while saving a significant amount of time and resources. Copyright © 2014 Elsevier B.V. All rights reserved.
Designing algorithm visualization on mobile platform: The proposed guidelines
NASA Astrophysics Data System (ADS)
Supli, A. A.; Shiratuddin, N.
2017-09-01
This paper entails an ongoing study about the design guidelines of algorithm visualization (AV) on mobile platform, helping students learning data structures and algorithm (DSA) subject effectively. Our previous review indicated that design guidelines of AV on mobile platform are still few. Mostly, previous guidelines of AV are developed for AV on desktop and website platform. In fact, mobile learning has been proved to enhance engagement in learning circumstances, and thus effect student's performance. In addition, the researchers highly recommend including UI design and Interactivity in designing effective AV system. However, the discussions of these two aspects in previous AV design guidelines are not comprehensive. The UI design in this paper describes the arrangement of AV features in mobile environment, whereas interactivity is about the active learning strategy features based on learning experiences (how to engage learners). Thus, this study main objective is to propose design guidelines of AV on mobile platform (AVOMP) that entails comprehensively UI design and interactivity aspects. These guidelines are developed through content analysis and comparative analysis from various related studies. These guidelines are useful for AV designers to help them constructing AVOMP for various topics on DSA.
A wheelchair with lever propulsion control for climbing up and down stairs.
Sasaki, Kai; Eguchi, Yosuke; Suzuki, Kenji
2016-08-01
This study proposes a novel stair-climbing wheelchair based on lever propulsion control using the human upper body. Wheelchairs are widely used as supporting locomotion devices for people with acquired lower limb disabilities. However, steps and stairs are critical obstacles to locomotion, which restrict their activities when using wheelchairs. Previous research focused on power-assisted, stair-climbing wheelchairs, which were large and heavy due to its large actuators and mechanisms. In the previous research, we proposed a wheelchair with lever propulsion mechanism and presented its feasibility of climbing up the stairs. The developed stair-climbing wheelchair consists of manual wheels with casters for planar locomotion and a rotary-leg mechanism based on lever propulsion that is capable of climbing up stairs. The wheelchair also has a passive mechanism powered by gas springs for posture transition to shift the user's center of gravity between the desired positions for planar locomotion and stair-climbing. In this paper, we present an advanced study on both climbing up and going down using lever propulsion control by the user's upper body motion. For climbing down the stairs, we reassembled one-way clutches used for the rotary-leg mechanism to help a user climb down the stairs through lever operation. We also equipped the wheelchair with sufficient torque dampers. The frontal wheels were fixed while climbing down the stairs to ensure safety. Relevant experiments were then performed to investigate its performance and verify that the wheelchair users can operate the proposed lever propulsion mechanism.
Built-In Data-Flow Integration Testing in Large-Scale Component-Based Systems
NASA Astrophysics Data System (ADS)
Piel, Éric; Gonzalez-Sanchez, Alberto; Gross, Hans-Gerhard
Modern large-scale component-based applications and service ecosystems are built following a number of different component models and architectural styles, such as the data-flow architectural style. In this style, each building block receives data from a previous one in the flow and sends output data to other components. This organisation expresses information flows adequately, and also favours decoupling between the components, leading to easier maintenance and quicker evolution of the system. Integration testing is a major means to ensure the quality of large systems. Their size and complexity, together with the fact that they are developed and maintained by several stake holders, make Built-In Testing (BIT) an attractive approach to manage their integration testing. However, so far no technique has been proposed that combines BIT and data-flow integration testing. We have introduced the notion of a virtual component in order to realize such a combination. It permits to define the behaviour of several components assembled to process a flow of data, using BIT. Test-cases are defined in a way that they are simple to write and flexible to adapt. We present two implementations of our proposed virtual component integration testing technique, and we extend our previous proposal to detect and handle errors in the definition by the user. The evaluation of the virtual component testing approach suggests that more issues can be detected in systems with data-flows than through other integration testing approaches.
NASA Astrophysics Data System (ADS)
Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.
2012-01-01
Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.
Röösli, Martin; Frei, Patrizia; Bolte, John; Neubauer, Georg; Cardis, Elisabeth; Feychting, Maria; Gajsek, Peter; Heinrich, Sabine; Joseph, Wout; Mann, Simon; Martens, Luc; Mohler, Evelyn; Parslow, Roger C; Poulsen, Aslak Harbo; Radon, Katja; Schüz, Joachim; Thuroczy, György; Viel, Jean-François; Vrijheid, Martine
2010-05-20
The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas.
2010-01-01
Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas. PMID:20487532
A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable
Jeong, Useok; Cho, Kyu-Jin
2016-01-01
Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable’s inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m−1, unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor. PMID:27347959
Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan
2017-12-15
As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients' personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack.
Management of contaminated marine marketable resources after oil and HNS spills in Europe.
Cunha, Isabel; Neuparth, Teresa; Moreira, Susana; Santos, Miguel M; Reis-Henriques, Maria Armanda
2014-03-15
Different risk evaluation approaches have been used to face oil and hazardous and noxious substances (HNS) spills all over the world. To minimize health risks and mitigate economic losses due to a long term ban on the sale of sea products after a spill, it is essential to preemptively set risk evaluation criteria and standard methodologies based on previous experience and appropriate scientifically sound criteria. Standard methodologies are analyzed and proposed in order to improve the definition of criteria for reintegrating previously contaminated marine marketable resources into the commercialization chain in Europe. The criteria used in former spills for the closing of and lifting of bans on fisheries and harvesting are analyzed. European legislation was identified regarding food sampling, food chemical analysis and maximum levels of contaminants allowed in seafood, which ought to be incorporated in the standard methodologies for the evaluation of the decision criteria defined for oil and HNS spills in Europe. A decision flowchart is proposed that opens the current decision criteria to new material that may be incorporated in the decision process. Decision criteria are discussed and compared among countries and incidents. An a priori definition of risk criteria and an elaboration of action plans are proposed to speed up actions that will lead to prompt final decisions. These decisions, based on the best available scientific data and conducing to lift or ban economic activity, will tend to be better understood and respected by citizens. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alpha Matting with KL-Divergence Based Sparse Sampling.
Karacan, Levent; Erdem, Aykut; Erdem, Erkut
2017-06-22
In this paper, we present a new sampling-based alpha matting approach for the accurate estimation of foreground and background layers of an image. Previous sampling-based methods typically rely on certain heuristics in collecting representative samples from known regions, and thus their performance deteriorates if the underlying assumptions are not satisfied. To alleviate this, we take an entirely new approach and formulate sampling as a sparse subset selection problem where we propose to pick a small set of candidate samples that best explains the unknown pixels. Moreover, we describe a new dissimilarity measure for comparing two samples which is based on KLdivergence between the distributions of features extracted in the vicinity of the samples. The proposed framework is general and could be easily extended to video matting by additionally taking temporal information into account in the sampling process. Evaluation on standard benchmark datasets for image and video matting demonstrates that our approach provides more accurate results compared to the state-of-the-art methods.