Electric and hybrid vehicle system R/D
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.
Propulsion system research and development for electric and hybrid vehicles
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
An approach to propulsion subsystem technology is presented. Various tests of component reliability are described to aid in the production of better quality vehicles. component characterization work is described to provide engineering data to manufacturers on component performance and on important component propulsion system interactions.
Trajectory correction propulsion for TOPS
NASA Technical Reports Server (NTRS)
Long, H. R.; Bjorklund, R. A.
1972-01-01
A blowdown-pressurized hydrazine propulsion system was selected to provide trajectory correction impulse for outer planet flyby spacecraft as the result of cost/mass/reliability tradeoff analyses. Present hydrazine component and system technology and component designs were evaluated for application to the Thermoelectric Outer Planet Spacecraft (TOPS); while general hydrazine technology was adequate, component design changes were deemed necessary for TOPS-type missions. A prototype hydrazine propulsion system was fabricated and fired nine times for a total of 1600 s to demonstrate the operation and performance of the TOPS propulsion configuration. A flight-weight trajectory correction propulsion subsystem (TCPS) was designed for the TOPS based on actual and estimated advanced components.
The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Lytle, John K.
1999-01-01
Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
Propulsion System Models for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2014-01-01
The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.
Coupled simulation of the propulsion system and vehicle using the ESPSS satellite library
NASA Astrophysics Data System (ADS)
Koppel, C. R.; Di Matteo, F.; Moral, J.; Steelant, J.
2018-06-01
The paper documents the implementation and validation of the coupled simulation of the propulsion system and vehicle performed during the 4th development phase of the ESPSS (European Space Propulsion System Simulation) library running on the existing platform EcosimPro®. This covers a significant update of the spacecraft propulsion system modeling: the Fluid flow, Tanks and Combustion chamber components are updated to allow coupling to the vehicle's motion, the Archimedes pressure coming from acceleration and rotations given by the vehicle or by any perturbation forces are taken into account, several new features are added to the Satellite library along with new components enabling full attitude control of a platform. A new powerful compact equation is presented for solving elegantly the Archimedes pressure coming from combined acceleration and rotation in the most general case (noncollinear). Eventually, a propulsion system is modeled to check the correct implementation of the new components especially those dealing with the effects of the mission on the propulsion subsystem.
Multidisciplinary propulsion simulation using the numerical propulsion system simulator (NPSS)
NASA Technical Reports Server (NTRS)
Claus, Russel W.
1994-01-01
Implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributions to the high cost is the need to perform many large scale system tests. The traditional design analysis procedure decomposes the engine into isolated components and focuses attention on each single physical discipline (e.g., fluid for structural dynamics). Consequently, the interactions that naturally occur between components and disciplines can be masked by the limited interactions that occur between individuals or teams doing the design and must be uncovered during expensive engine testing. This overview will discuss a cooperative effort of NASA, industry, and universities to integrate disciplines, components, and high performance computing into a Numerical propulsion System Simulator (NPSS).
Apollo Command and Service Module Propulsion Systems Overview
NASA Technical Reports Server (NTRS)
Interbartolo, Michael A.
2009-01-01
An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.
Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System
NASA Astrophysics Data System (ADS)
Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei
2018-01-01
Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George
2010-01-01
This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.
The Numerical Propulsion System Simulation: An Overview
NASA Technical Reports Server (NTRS)
Lytle, John K.
2000-01-01
Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
Steady-state simulation program for attitude control propulsion systems
NASA Technical Reports Server (NTRS)
Heinmiller, P. J.
1973-01-01
The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.
Critical Propulsion Components. Volume 1; Summary, Introduction, and Propulsion Systems Studies
NASA Technical Reports Server (NTRS)
2005-01-01
Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/ Inlet Acoustic Team.
Photochemically Etched Construction Technology Developed for Digital Xenon Feed Systems
NASA Technical Reports Server (NTRS)
Otsap, Ben; Cardin, Joseph; Verhey, Timothy R.; Rawlin, Vincent K.; Mueller, Juergen; Aadlund, Randall; Kay, Robert; Andrews, Michael
2005-01-01
Electric propulsion systems are quickly emerging as attractive options for primary propulsion in low Earth orbit, in geosynchronous orbit, and on interplanetary spacecraft. The driving force behind the acceptance of these systems is the substantial reduction in the propellant mass that can be realized. Unfortunately, system designers are often forced to utilize components designed for chemical propellants in their electric systems. Although functionally acceptable, these relatively large, heavy components are designed for the higher pressures and mass flow rates required by chemical systems. To fully realize the benefits of electric propulsion, researchers must develop components that are optimized for the low flow rates, critical leakage needs, low pressures, and limited budgets of these emerging systems.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
A perspective on future directions in aerospace propulsion system simulation
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Szuch, John R.; Gaugler, Raymond E.; Wood, Jerry R.
1989-01-01
The design and development of aircraft engines is a lengthy and costly process using today's methodology. This is due, in large measure, to the fact that present methods rely heavily on experimental testing to verify the operability, performance, and structural integrity of components and systems. The potential exists for achieving significant speedups in the propulsion development process through increased use of computational techniques for simulation, analysis, and optimization. This paper outlines the concept and technology requirements for a Numerical Propulsion Simulation System (NPSS) that would provide capabilities to do interactive, multidisciplinary simulations of complete propulsion systems. By combining high performance computing hardware and software with state-of-the-art propulsion system models, the NPSS will permit the rapid calculation, assessment, and optimization of subcomponent, component, and system performance, durability, reliability and weight-before committing to building hardware.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
Electric-hybrid-vehicle simulation
NASA Astrophysics Data System (ADS)
Pasma, D. C.
The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.
Catalog of components for electric and hybrid vehicle propulsion systems
NASA Technical Reports Server (NTRS)
Eissler, H. C.
1981-01-01
This catalog of commercially available electric and hybrid vehicle propulsion system components is intended for designers and builders of these vehicles and contains 50 categories of components. These categories include those components used between the battery terminals and the output axle hub, as well as some auxiliary equipment. An index of the components and a listing of the suppliers and their addresses and phone numbers are included.
A Status of the Advanced Space Transportation Program from Planning to Action
NASA Technical Reports Server (NTRS)
Lyles, Garry; Griner, Carolyn
1998-01-01
A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and dramatically reduce the propellant and structural mass of orbit transfer and deep space systems. Flight demonstration of ion propulsion is progressing towards launch. Ion propulsion is the primary propulsion for Deep Space 1; a flyby of comet West-kohoutek-lkemura and asteroid 3352 McAuliffe. Testing of critical solar-thermal propulsion subsystems have been accomplished and planning is continuing for the flight demonstration of an electrodynamic tether orbit transfer system. The forth and final element of the program, Space Transportation Research, has progressed in several areas of propulsion research. This element of the program is focused at long-term (25 years) breakthrough concepts that could bring launch costs to a factor of one hundred below today's cost or dramatically expand planetary travel and enable interstellar travel.
Space tug propulsion system failure mode, effects and criticality analysis
NASA Technical Reports Server (NTRS)
Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.
1972-01-01
For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.
LOX/hydrocarbon auxiliary propulsion system study
NASA Technical Reports Server (NTRS)
Orton, G. F.; Mark, T. D.; Weber, D. D.
1982-01-01
Liquid oxygen/hydrocarbon propulsion systems applicable to a second generation orbiter OMS/RCS were compared, and major system/component options were evaluated. A large number of propellant combinations and system concepts were evaluated. The ground rules were defined in terms of candidate propellants, system/component design options, and design requirements. System and engine component math models were incorporated into existing computer codes for system evaluations. The detailed system evaluations and comparisons were performed to identify the recommended propellant combination and system approach.
NASA Technical Reports Server (NTRS)
Scott, W. A.
1984-01-01
The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.
Energy Efficient Engine Flight Propulsion System Preliminary Analysis and Design Report
NASA Technical Reports Server (NTRS)
Bisset, J. W.; Howe, D. C.
1983-01-01
The final design and analysis of the flight propulsion system is presented. This system is the conceptual study engine defined to meet the performance, economic and environmental goals established for the Energy Efficient Engine Program. The design effort included a final definition of the engine, major components, internal subsystems, and nacelle. Various analytical representations and results from component technology programs are used to verify aerodynamic and structural design concepts and to predict performance. Specific design goals and specifications, reflecting future commercial aircraft propulsion system requirements for the mid-1980's, are detailed by NASA and used as guidelines during engine definition. Information is also included which details salient results from a separate study to define a turbofan propulsion system, known as the maximum efficiency engine, which reoptimized the advanced fuel saving technologies for improved fuel economy and direct operating costs relative to the flight propulsion system.
Spacecraft propulsion systems test capability at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, Pleddie; Gorham, Richard
1993-01-01
The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.
Advanced space power and propulsion based on lasers
NASA Astrophysics Data System (ADS)
Roth, M.; Logan, B. G.
2015-10-01
One of the key components for future space exploration, manned or unmanned, is the availability of propulsion systems beyond the state of the art. The rapid development in conventional propulsion systems since the middle of the 20th century has already reached the limits of chemical propulsion technology. To enhance mission radius, shorten the transit time and also extend the lifetime of a spacecraft more efficient, but still powerful propulsion system must be developed. Apart from the propulsion system a major weight contribution arises from the required energy source. Envisioning rapid development of future high average power laser systems and especially the ICAN project we review the prospect of advanced space propulsion based on laser systems.
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1988-01-01
The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.
NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
2005-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the NASA (National Aeronautics and Space Administration) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Visions of the Future: Hybrid Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.
2016-01-01
The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Overview of NASA GRC Electrified Aircraft Propulsion Systems Analysis Methods
NASA Technical Reports Server (NTRS)
Schnulo, Sydney
2017-01-01
The accurate modeling and analysis of electrified aircraft propulsion concepts require intricate subsystem system component coupling. The major challenge in electrified aircraft propulsion concept modeling lies in understanding how the subsystems "talk" to each other and the dependencies they have on one another.
A summary of EHV propulsion technology. [Electric and Hybrid Vehicle
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1983-01-01
While the battery used by an electric vehicle is the primary determinant of range, and to a lesser extent of performance, the design of the vehicle's propulsion system establishes its performance level and is the greatest contributor to its purchase price. Propulsion system weight, efficiency and cost are related to the specific combination of components used. Attention is given to the development status of the U.S. Department of Energy's Electric and Hybrid Vehicle Program, through which propulsion component and system design improvements have been made which promise weight savings of 35-50 percent, efficiency gains of 25 percent, and lower costs, when compared to the state of the art at the program's inception.
Critical Propulsion Components. Volume 2; Combustor
NASA Technical Reports Server (NTRS)
2005-01-01
Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Team. Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.
Critical Propulsion Components. Volume 3; Exhaust Nozzle
NASA Technical Reports Server (NTRS)
2005-01-01
Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.
Hybrid drive for motor vehicles with a preponderantly intermittent method of operation
NASA Technical Reports Server (NTRS)
Schreck, H.
1977-01-01
A flywheel hybrid propulsion system is compared with a conventional propulsion system in a test vehicle under intermittent operation. An energy balance is presented for the conventional propulsion system. Results so far indicate especially high energy conversion of the gyro component under dynamic operation along with favorable internal combustion engine conditions.
Numerical simulation of the flow around a steerable propulsion unit
NASA Astrophysics Data System (ADS)
Pacuraru, F.; Lungu, A.; Ungureanu, C.; Marcu, O.
2010-08-01
Azimuth propulsion units have become during the last decade a more and more popular solution for all kinds of vessels. Azimuth thruster system, combining the propulsion and steering units of conventional ships replaces traditional propellers and lengthy drive shafts and rudders ensuring an excellent vessel steering. In many cases the interaction between the propeller and other components of the propulsion system strongly affects the inflow to the propeller and therefore its performance. The correct estimation of this influence is important for propulsion systems which consist of more than one element, such as pods (shaft, gondola and propeller), ducted propellers (duct, struts and propeller) or bow thrusters (ship form, tunnel, gondola and propeller). The paper proposes a numerical investigation based on RANS computation for solving the viscous flow around an azimuth thruster system to provide a detailed insight into the critical flow regions for determining the optimum inclination angle for struts, for studying the hydrodynamic interactions between various components of the system, for predicting the hydrodynamic performance of the propulsion system and to investigate regions with possible flow separations.
Flow Control Opportunities for Propulsion Systems
NASA Technical Reports Server (NTRS)
Cutley, Dennis E.
2008-01-01
The advancement of technology in gas turbine engines used for aerospace propulsion has been focused on achieving significant performance improvements. At the system level, these improvements are expressed in metrics such as engine thrust-to-weight ratio and system and component efficiencies. The overall goals are directed at reducing engine weight, fuel burn, emissions, and noise. At a component level, these goals translate into aggressive designs of each engine component well beyond the state of the art.
Control of propulsion systems for supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Hiller, K. W.; Drain, D. I.
1976-01-01
The propulsion control requirements of supersonic aircraft are presented. Integration of inlet, engine, and airframe controls is discussed. The application of recent control theory developments to propulsion control design is described. Control component designs for achieving reliable, responsive propulsion control are also discussed.
Heavy Lift Launch Vehicles for 1995 and Beyond
NASA Technical Reports Server (NTRS)
Toelle, R. (Compiler)
1985-01-01
A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.
Test facilities for high power electric propulsion
NASA Technical Reports Server (NTRS)
Sovey, James S.; Vetrone, Robert H.; Grisnik, Stanley P.; Myers, Roger M.; Parkes, James E.
1991-01-01
Electric propulsion has applications for orbit raising, maneuvering of large space systems, and interplanetary missions. These missions involve propulsion power levels from tenths to tens of megawatts, depending upon the application. General facility requirements for testing high power electric propulsion at the component and thrust systems level are defined. The characteristics and pumping capabilities of many large vacuum chambers in the United States are reviewed and compared with the requirements for high power electric propulsion testing.
State-of-the-Art for Small Satellite Propulsion Systems
NASA Technical Reports Server (NTRS)
Parker, Khary I.
2016-01-01
SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.
2011-01-01
ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component
GPIM AF-M315E Propulsion System
NASA Technical Reports Server (NTRS)
Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris
2014-01-01
The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.
NASA Astrophysics Data System (ADS)
Baggett, R.
2004-11-01
Next Generation Electric Propulsion (NGEP) technology development tasks are working towards advancing solar-powered electric propulsion systems and components to levels ready for transition to flight systems. Current tasks within NGEP include NASA's Evolutionary Xenon Thruster (NEXT), Carbon Based Ion Optics (CBIO), NSTAR Extended Life Test (ELT) and low-power Hall Effect thrusters. The growing number of solar electric propulsion options provides reduced cost and flexibility to capture a wide range of Solar System exploration missions. Benefits of electric propulsion systems over state-of-the-art chemical systems include increased launch windows, which reduce mission risk; increased deliverable payload mass for more science; and a reduction in launch vehicle size-- all of which increase the opportunities for New Frontiers and Discovery class missions. The Dawn Discovery mission makes use of electric propulsion for sequential rendezvous with two large asteroids (Vesta then Ceres), something not possible using chemical propulsion. NEXT components and thruster system under development have NSTAR heritage with significant increases in maximum power and Isp along with deep throttling capability to accommodate changes in input power over the mission trajectory. NEXT will produce engineering model system components that will be validated (through qualification-level and integrated system testing) and ready for transition to flight system development. NEXT offers Discovery, New Frontiers, Mars Exploration and outer-planet missions a larger deliverable payload mass and a smaller launch vehicle size. CBIO addresses the need to further extend ion thruster lifetime by using low erosion carbon-based materials. Testing of 30-cm Carbon-Carbon and Pyrolytic graphite grids using a lab model NSTAR thruster are complete. In addition, JPL completed a 1000 hr. life test on 30-cm Carbon-Carbon grids. The NSTAR ELT was a life time qualification test started in 1999 with a goal of 88 kg throughput of Xenon propellant. The test was intentionally terminated in 2003 after accumulating 233 kg throughput. The thruster has been completely disassembled and the conditions of all components documented. Because most of the NSTAR design features have been used in the NEXT thruster, the success of the ELT goes a long way toward qualifying NEXT by similarity Recent mission analyses for Discovery and New Frontiers class missions have also identified potential benefits of low-power, high thrust Hall Effect thrusters. Estimated to be ready for mission implementation by 2008, low-power Hall systems could increase mission capture for electric propulsion by greatly reducing propulsion cost, mass and complexity.
Critical Propulsion Components. Volume 4; Inlet and Fan/Inlet Accoustics Team
NASA Technical Reports Server (NTRS)
2005-01-01
Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Carlson, Jan-Renee; Woolwine, Kyle
2015-01-01
This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the de- scribed dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.
NASA Technical Reports Server (NTRS)
Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle
2015-01-01
This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.
Component research for future propulsion systems
NASA Technical Reports Server (NTRS)
Walker, C. L.; Weden, G. J.; Zuk, J.
1981-01-01
Factors affecting the helicopter market are reviewed. The trade-offs involving acquisition cost, mission reliability, and life cycle cost are reviewed, including civil and military aspects. The potential for advanced vehicle configurations with substantial improvements in energy efficiency, operating economics, and characteristics to satisfy the demands of the future market are identified. Advanced propulsion systems required to support these vehicle configurations are discussed, as well as the component technology for the engine systems. Considerations for selection of components in areas of economics and efficiency are presented.
Current technology in ion and electrothermal propulsion
NASA Technical Reports Server (NTRS)
Finke, R. C.; Murch, C. K.
1973-01-01
High performance propulsion devices, such as electrostatic ion engines and electrothermal thrusters, are achieving wide user acceptance. The current technology and projected development trends in the areas of ion and electrothermal propulsion systems and components are surveyed.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA Technical Reports Server (NTRS)
Atkinson, W. H.; Cyr, M. A.; Strange, R. R.
1994-01-01
The 'development of sensors for ceramic components in advanced propulsion systems' program is divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objective of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. Six materials, mutually agreed upon by NASA and Pratt & Whitney, were investigated under this program. This report summarizes the Phase 2 effort and provides conclusions and recommendations for each of the categories evaluated.
Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid
NASA Technical Reports Server (NTRS)
Armstrong, Michael J.; Blackwelder, Mark; Bollman, Andrew; Ross, Christine; Campbell, Angela; Jones, Catherine; Norman, Patrick
2015-01-01
The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades' worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance.
A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation
NASA Technical Reports Server (NTRS)
Mihaloew, J. R.; Roth, S. P.; Creekmore, R.
1981-01-01
A real time propulsion system modeling technique suitable for use in man-in-the-loop simulator studies was developd. This technique provides the system accuracy, stability, and transient response required for integrated aircraft and propulsion control system studies. A Pegasus-Harrier propulsion system was selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics were modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real time propulsion model was formulated by applying a piece-wise linear state variable methodology. A hydromechanical and water injection control system was also simulated. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model was programmed for interfacing with a Harrier aircraft simulation. Typical propulsion system simulation results are presented.
Additive Manufacturing a Liquid Hydrogen Rocket Engine
NASA Technical Reports Server (NTRS)
Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris
2016-01-01
Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.
Comparative performance evaluation of advanced AC and DC EV propulsion systems
NASA Astrophysics Data System (ADS)
MacDowall, R. D.; Crumley, R. L.
Idaho National Engineering Laboratory (INEL) evaluates EV propulsion systems and components for the U.S. Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. In this study, experimental data were used to evaluate the relative performances of the benchmark Chrysler/GE ETV-1 DC and the Ford/GE First Generation Single-Shaft AC (ETX-I) propulsion systems. Tests were conducted on the INEL's chassis dynamometer using identical aerodynamic and rolling resistance road-load coefficients and vehicle test weights. The results allowed a direct comparison of selected efficiency and performance characteristics for the two propulsion system technologies. The ETX-I AC system exhibited slightly lower system efficiency during constant speed testing than the ETV-1 DC propulsion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.
Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in termsmore » of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.« less
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
NASA Technical Reports Server (NTRS)
Kemp, Victoria R.
1992-01-01
A fluid-dynamic, digital-transient computer model of an integrated, parallel propulsion system was developed for the CDC mainframe and the SUN workstation computers. Since all STME component designs were used for the integrated system, computer subroutines were written characterizing the performance and geometry of all the components used in the system, including the manifolds. Three transient analysis reports were completed. The first report evaluated the feasibility of integrated engine systems in regards to the start and cutoff transient behavior. The second report evaluated turbopump out and combined thrust chamber/turbopump out conditions. The third report presented sensitivity study results in staggered gas generator spin start and in pump performance characteristics.
Introduction to Advanced Engine Control Concepts
NASA Technical Reports Server (NTRS)
Sanjay, Garg
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
Hybrid and Electric Advanced Vehicle Systems Simulation
NASA Technical Reports Server (NTRS)
Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.
1985-01-01
Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.
NASA Technical Reports Server (NTRS)
Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.
1995-01-01
A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
NASA Technical Reports Server (NTRS)
Alexander, Leslie, Jr.
2006-01-01
Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-01
The N. S. Savannah program for testing, start-up, and initial operation of all reactor and propulsion components and systems is discussed. Definitions of test phases are given and various stages of the test program are outlined. A list of tests for the various reactor, propulsion, and other system components is included. (C.J.G.)
Apollo experience report: Descent propulsion system
NASA Technical Reports Server (NTRS)
Hammock, W. R., Jr.; Currie, E. C.; Fisher, A. E.
1973-01-01
The propulsion system for the descent stage of the lunar module was designed to provide thrust to transfer the fully loaded lunar module with two crewmen from the lunar parking orbit to the lunar surface. A history of the development of this system is presented. Development was accomplished primarily by ground testing of individual components and by testing the integrated system. Unique features of the descent propulsion system were the deep throttling capability and the use of a lightweight cryogenic helium pressurization system.
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1995-01-01
A major difficulty in designing aeropropulsion systems is that of identifying and understanding the interactions between the separate engine components and disciplines (e.g., fluid mechanics, structural mechanics, heat transfer, material properties, etc.). The traditional analysis approach is to decompose the system into separate components with the interaction between components being evaluated by the application of each of the single disciplines in a sequential manner. Here, one discipline uses information from the calculation of another discipline to determine the effects of component coupling. This approach, however, may not properly identify the consequences of these effects during the design phase, leaving the interactions to be discovered and evaluated during engine testing. This contributes to the time and cost of developing new propulsion systems as, typically, several design-build-test cycles are needed to fully identify multidisciplinary effects and reach the desired system performance. The alternative to sequential isolated component analysis is to use multidisciplinary coupling at a more fundamental level. This approach has been made more plausible due to recent advancements in computation simulation along with application of concurrent engineering concepts. Computer simulation systems designed to provide an environment which is capable of integrating the various disciplines into a single simulation system have been proposed and are currently being developed. One such system is being developed by the Numerical Propulsion System Simulation (NPSS) project. The NPSS project, being developed at the Interdisciplinary Technology Office at the NASA Lewis Research Center is a 'numerical test cell' designed to provide for comprehensive computational design and analysis of aerospace propulsion systems. It will provide multi-disciplinary analyses on a variety of computational platforms, and a user-interface consisting of expert systems, data base management and visualization tools, to allow the designer to investigate the complex interactions inherent in these systems. An interactive programming software system, known as the Application Visualization System (AVS), was utilized for the development of the propulsion system simulation. The modularity of this system provides the ability to couple propulsion system components, as well as disciplines, and provides for the ability to integrate existing, well established analysis codes into the overall system simulation. This feature allows the user to customize the simulation model by inserting desired analysis codes. The prototypical simulation environment for multidisciplinary analysis, called Turbofan Engine System Simulation (TESS), which incorporates many of the characteristics of the simulation environment proposed herein, is detailed.
Capillary Discharge Thruster Experiments and Modeling (Briefing Charts)
2016-06-01
Martin1 ERC INC.1, IN-SPACE PROPULSION BRANCH, AIR FORCE RESEARCH LABORATORY EDWARDS AIR FORCE BASE, CA USA Electric propulsion systems June 2016... PROPULSION MODELS & EXPERIMENTS Spacecraft Propulsion Relevant Plasma: From hall thrusters to plumes and fluxes on components Complex reaction physics i.e... Propulsion Plumes FRC Chamber Environment R.S. MARTIN (ERC INC.) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA# 16279 3 / 30 ELECTRIC
New propulsion components for electric vehicles
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1982-01-01
Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph; Seidel, Jonathan
2014-01-01
A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.
Component Data Base for Space Station Resistojet Auxiliary Propulsion
NASA Technical Reports Server (NTRS)
Bader, Clayton H.
1988-01-01
The resistojet was baselined for Space Station auxiliary propulsion because of its operational versatility, efficiency, and durability. This report was conceived as a guide to designers and planners of the Space Station auxiliary propulsion system. It is directed to the low thrust resistojet concept, though it should have application to other station concepts or systems such as the Environmental Control and Life Support System (ECLSS), Manufacturing and Technology Laboratory (MTL), and the Waste Fluid Management System (WFMS). The information will likely be quite useful in the same capacity for other non-Space Station systems including satellite, freeflyers, explorers, and maneuvering vehicles. The report is a catalog of the most useful information for the most significant feed system components and is organized for the greatest convenience of the user.
Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.
NASA Technical Reports Server (NTRS)
Howard, D. F.
1977-01-01
The preliminary design of the over-the-wing flight propulsion system installation and nacelle component and systems design features of a short-haul, powered lift aircraft are presented. Economic studies are also presented and show that high bypass, low pressure ratio turbofan engines have the potential of providing an economical propulsion system for achieving the very quiet aircraft noise level of 95 EPNdB on a 152.4 m sideline.
Crewed Mission to Callisto Using Advanced Plasma Propulsion Systems
NASA Technical Reports Server (NTRS)
Adams, R. B.; Statham, G.; White, S.; Patton, B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Chapman, J.
2003-01-01
This paper describes the engineering of several vehicles designed for a crewed mission to the Jovian satellite Callisto. Each subsystem is discussed in detail. Mission and trajectory analysis for each mission concept is described. Crew support components are also described. Vehicles were developed using both fission powered magneto plasma dynamic (MPD) thrusters and magnetized target fusion (MTF) propulsion systems. Conclusions were drawn regarding the usefulness of these propulsion systems for crewed exploration of the outer solar system.
LADEE Propulsion System Cold Flow Test
NASA Technical Reports Server (NTRS)
Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.
2013-01-01
Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012
MAP Propulsion System Thermal Design
NASA Technical Reports Server (NTRS)
Mosier, Carol L.
2003-01-01
The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.
Performance Validation Approach for the GTX Air-Breathing Launch Vehicle
NASA Technical Reports Server (NTRS)
Trefny, Charles J.; Roche, Joseph M.
2002-01-01
The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.
X-34 Main Propulsion System-Selected Subsystem Analyses
NASA Technical Reports Server (NTRS)
Brown, T. M.; McDonald, J. P.; Knight, K. C.; Champion, R. H., Jr.
1998-01-01
The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion System (MPS) has been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents selected analyses of MPS subsystems and components. Topics include the integration of component and system level modeling of the LOX dump subsystem and a simple terminal bubble velocity analysis conducted to guide propellant feed line design.
The Livingstone Model of a Main Propulsion System
NASA Technical Reports Server (NTRS)
Bajwa, Anupa; Sweet, Adam; Korsmeyer, David (Technical Monitor)
2003-01-01
Livingstone is a discrete, propositional logic-based inference engine that has been used for diagnosis of physical systems. We present a component-based model of a Main Propulsion System (MPS) and say how it is used with Livingstone (L2) in order to implement a diagnostic system for integrated vehicle health management (IVHM) for the Propulsion IVHM Technology Experiment (PITEX). We start by discussing the process of conceptualizing such a model. We describe graphical tools that facilitated the generation of the model. The model is composed of components (which map onto physical components), connections between components and constraints. A component is specified by variables, with a set of discrete, qualitative values for each variable in its local nominal and failure modes. For each mode, the model specifies the component's behavior and transitions. We describe the MPS components' nominal and fault modes and associated Livingstone variables and data structures. Given this model, and observed external commands and observations from the system, Livingstone tracks the state of the MPS over discrete time-steps by choosing trajectories that are consistent with observations. We briefly discuss how the compiled model fits into the overall PITEX architecture. Finally we summarize our modeling experience, discuss advantages and disadvantages of our approach, and suggest enhancements to the modeling process.
2004-04-15
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
NASA Technical Reports Server (NTRS)
Sargent, N. B.
1980-01-01
The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.
Liquid rocket disconnects, couplings, fittings, fixed joints, and seals
NASA Technical Reports Server (NTRS)
1976-01-01
State of the art and design criteria for components used in liquid propellant rocket propulsion systems to contain and control the flow of fluids involved are discussed. Particular emphasis is placed on the design of components used in the engine systems of boosters and upper stages, and in spacecraft propulsion systems because of the high pressure and high vibration levels to which these components are exposed. A table for conversion of U.S. customary units to SI units is included with a glossary, and a list of NASA space vehicle design criteria monographs issued to September 1976.
Solar electric propulsion for Mars transport vehicles
NASA Technical Reports Server (NTRS)
Hickman, J. M.; Curtis, H. B.; Alexander, S. W.; Gilland, J. H.; Hack, K. J.; Lawrence, C.; Swartz, C. K.
1990-01-01
Solar electric propulsion (SEP) is an alternative to chemical and nuclear powered propulsion systems for both piloted and unpiloted Mars transport vehicles. Photovoltaic solar cell and array technologies were evaluated as components of SEP power systems. Of the systems considered, the SEP power system composed of multijunction solar cells in an ENTECH domed fresnel concentrator array had the least array mass and area. Trip times to Mars optimized for minimum propellant mass were calculated. Additionally, a preliminary vehicle concept was designed.
An Overview of Aerospace Propulsion Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Reddy, D. R.
2007-01-01
NASA Glenn Research center is the recognized leader in aerospace propulsion research, advanced technology development and revolutionary system concepts committed to meeting the increasing demand for low noise, low emission, high performance, and light weight propulsion systems for affordable and safe aviation and space transportation needs. The technologies span a broad range of areas including air breathing, as well as rocket propulsion systems, for commercial and military aerospace applications and for space launch, as well as in-space propulsion applications. The scope of work includes fundamentals, components, processes, and system interactions. Technologies developed use both experimental and analytical approaches. The presentation provides an overview of the current research and technology development activities at NASA Glenn Research Center .
Using Additive Manufacturing to Print a CubeSat Propulsion System
NASA Technical Reports Server (NTRS)
Marshall, William M.
2015-01-01
CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2010-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program, the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.
Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter
2008-01-01
Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero- Propulso-Servo-Elastic model and for propulsion efficiency studies.
Implementation of an Online Database for Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
David B. Owen, II; McRight, Patrick S.; Cardiff, Eric H.
2009-01-01
The Johns Hopkins University, Chemical Propulsion Information Analysis Center (CPIAC) has been working closely with NASA Goddard Space Flight Center (GSFC); NASA Marshall Space Flight Center (MSFC); the University of Alabama at Huntsville (UAH); The Johns Hopkins University, Applied Physics Laboratory (APL); and NASA Jet Propulsion Laboratory (JPL) to capture satellite and spacecraft propulsion system information for an online database tool. The Spacecraft Chemical Propulsion Database (SCPD) is a new online central repository containing general and detailed system and component information on a variety of spacecraft propulsion systems. This paper only uses data that have been approved for public release with unlimited distribution. The data, supporting documentation, and ability to produce reports on demand, enable a researcher using SCPD to compare spacecraft easily, generate information for trade studies and mass estimates, and learn from the experiences of others through what has already been done. This paper outlines the layout and advantages of SCPD, including a simple example application with a few chemical propulsion systems from various NASA spacecraft.
Rocket Based Combined Cycle (RBCC) engine inlet
NASA Technical Reports Server (NTRS)
2004-01-01
Pictured is a component of the Rocket Based Combined Cycle (RBCC) engine. This engine was designed to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsion systems and ultimately a Single Stage to Orbit (SSTO) air breathing propulsion system.
Low-thrust chemical orbit to orbit propulsion system propellant management study
NASA Technical Reports Server (NTRS)
Dergance, R. H.
1980-01-01
Propellant requirements, tankage configurations, preferred propellant management techniques, propulsion systems weights, and technology deficiencies for low thrust expendable propulsion systems are examined. A computer program was utilized which provided a complete propellant inventory (including boil-off for cryogenic cases), pressurant and propellant tank dimensions for a given ullage, pressurant requirements, insulation requirements, and miscellaneous masses. The output also includes the masses of all tanks; the mass of the insulation, engines and other components; total wet system and burnout mass; system mass fraction; total impulse and burn time.
High Temperature Polymeric Materials for Space Transportation Propulsion Applications
NASA Technical Reports Server (NTRS)
Meador, Michael A.; Campbell, Sandi G.; Chuang, Kathy C.; Scheimann, Daniel A.; Mintz, Eric; Hylton, Donald; Veazie, David; Criss, James; Kollmansberg, Ron; Tsotsis, Tom
2003-01-01
High temperature polymer matrix composites are attractive materials for space transporation propulsion systems because of their low density and high specific strength. However, the relatively poor stability and processability of these materials can render them unsuitable for many of these applications. New polymeric materials have been developed under the Propulsion Research and Technology Program through the use of novel resin chemistry and nanotechnology. These new materials can significantly enhance the durability and weight and improve the processability and affordability of propulsion components for advanced space transportation systems.
New propulsion components for electric vehicles
NASA Astrophysics Data System (ADS)
Secunde, R. R.
Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982
New propulsion components for electric vehicles
NASA Technical Reports Server (NTRS)
Secunde, R. R.
1983-01-01
Improved component technology is described. This includes electronically commutated permanent magnet motors of both drum and disk configurations, an unconventional brush commutated motor, ac induction motors, various controllers, transmissions and complete systems. One or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors. Previously announced in STAR as N83-25982
NEXT Ion Propulsion System Development Status and Capabilities
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Benson, Scott W.
2008-01-01
NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.
Air Force Research Laboratory Technology Milestones 2007
2007-01-01
Propulsion Fuel Pumps and Fuel Systems Liquid Rockets and Combustion Gas Generators Micropropulsion Gears Monopropellants High-Cycle Fatigue and Its... Systems Electric Propulsion Engine Health Monitoring Systems High-Energy-Density Matter Exhaust Nozzles Injectors and Spray Measurements Fans Laser...of software models to drive development of component-based systems and lightweight domain-specific specification and verification technology. Highly
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan
2016-01-01
A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Seidel, Jonathan
2014-01-01
A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the lowboom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
The electric test vehicle one (ETV-1) was built from the ground up with present state of the art technology. Two vehicles were built and are presently being evaluated by NASA's Jet Propulsion Laboratory (JPL). A duplicate set of propulsion system components was built, mounted on a breadboard, and delivered to NASA's Lewis Research Center for testing on the road load simulator (RLS). Driving cycle tests completed on the system are described.
Probabilistic structural analysis methods for space transportation propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.
1991-01-01
Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .
Development of sensors for ceramic components in advanced propulsion systems
NASA Technical Reports Server (NTRS)
Atkinson, William H.; Cyr, M. A.; Strange, R. R.
1994-01-01
The 'Development of Sensors for Ceramics Components in Advanced Propulsion Systems' program was divided into two phases. The objectives of Phase 1 were to analyze, evaluate and recommend sensor concepts for the measurement of surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. The results of this effort were previously published in NASA CR-182111. As a result of Phase 1, three approaches were recommended for further development: pyrometry, thin-film sensors, and thermographic phosphors. The objectives of Phase 2 were to fabricate and conduct laboratory demonstration tests of these systems. A summary report of the Phase 2 effort, together with conclusions and recommendations for each of the categories evaluated, has been submitted to NASA. Emittance tests were performed on six materials furnished by NASA Lewis Research Center. Measurements were made of various surfaces at high temperature using a Thermogage emissometer. This report describes the emittance test program and presents a summary of the results.
Preliminary design of propulsion system for V/STOL research and technology aircraft
NASA Technical Reports Server (NTRS)
1977-01-01
The V/STOL Research and Technology Aircraft (RTA)propulsion system design effort is limited to components of the lift/cruise engines, turboshaft engine modifications, lift fan assembly, and propulsion system performance generation. The uninstalled total net thrust with all engines and fans operating at intermediate power was 37,114 pounds. Uninstalled system total net thrust was 27,102 pounds when one lift/cruise is inoperative. Components have lives above the 500 hours of the RTA duty cycle. The L/C engine used in a fixed nacelle has the cross shaft forward of the reduction gear whereas the cross shaft is aft of the reduction gear in a tilt nacelle L/C engine. The lift/cruise gearbox contains components and technologies from other DDA engines. The rotor has a 62-inch diameter and contains 22 composite blades that have a hub/tip ratio of 0.454. The blade pitch change mechanism contains hydraulic and mechanical redundancy. The lift fan assembly is completely self-contained including oil cooling in 10 exit vanes.
Large Liquid Rocket Testing: Strategies and Challenges
NASA Technical Reports Server (NTRS)
Rahman, Shamim A.; Hebert, Bartt J.
2005-01-01
Rocket propulsion development is enabled by rigorous ground testing in order to mitigate the propulsion systems risks that are inherent in space flight. This is true for virtually all propulsive devices of a space vehicle including liquid and solid rocket propulsion, chemical and non-chemical propulsion, boost stage and in-space propulsion and so forth. In particular, large liquid rocket propulsion development and testing over the past five decades of human and robotic space flight has involved a combination of component-level testing and engine-level testing to first demonstrate that the propulsion devices were designed to meet the specified requirements for the Earth to Orbit launchers that they powered. This was followed by a vigorous test campaign to demonstrate the designed propulsion articles over the required operational envelope, and over robust margins, such that a sufficiently reliable propulsion system is delivered prior to first flight. It is possible that hundreds of tests, and on the order of a hundred thousand test seconds, are needed to achieve a high-reliability, flight-ready, liquid rocket engine system. This paper overviews aspects of earlier and recent experience of liquid rocket propulsion testing at NASA Stennis Space Center, where full scale flight engines and flight stages, as well as a significant amount of development testing has taken place in the past decade. The liquid rocket testing experience discussed includes testing of engine components (gas generators, preburners, thrust chambers, pumps, powerheads), as well as engine systems and complete stages. The number of tests, accumulated test seconds, and years of test stand occupancy needed to meet varying test objectives, will be selectively discussed and compared for the wide variety of ground test work that has been conducted at Stennis for subscale and full scale liquid rocket devices. Since rocket propulsion is a crucial long-lead element of any space system acquisition or development, the appropriate plan and strategy must be put in place at the outset of the development effort. A deferment of this test planning, or inattention to strategy, will compromise the ability of the development program to achieve its systems reliability requirements and/or its development milestones. It is important for the government leadership and support team, as well as the vehicle and propulsion development team, to give early consideration to this aspect of space propulsion and space transportation work.
Development of Liquid Propulsion Systems Testbed at MSFC
NASA Technical Reports Server (NTRS)
Alexander, Reginald; Nelson, Graham
2016-01-01
As NASA, the Department of Defense and the aerospace industry in general strive to develop capabilities to explore near-Earth, Cis-lunar and deep space, the need to create more cost effective techniques of propulsion system design, manufacturing and test is imperative in the current budget constrained environment. The physics of space exploration have not changed, but the manner in which systems are developed and certified needs to change if there is going to be any hope of designing and building the high performance liquid propulsion systems necessary to deliver crew and cargo to the further reaches of space. To further the objective of developing these systems, the Marshall Space Flight Center is currently in the process of formulating a Liquid Propulsion Systems testbed, which will enable rapid integration of components to be tested and assessed for performance in integrated systems. The manifestation of this testbed is a breadboard engine configuration (BBE) with facility support for consumables and/or other components as needed. The goal of the facility is to test NASA developed elements, but can be used to test articles developed by other government agencies, industry or academia. Joint government/private partnership is likely the approach that will be required to enable efficient propulsion system development. MSFC has recently tested its own additively manufactured liquid hydrogen pump, injector, and valves in a BBE hot firing. It is rapidly building toward testing the pump and a new CH4 injector in the BBE configuration to demonstrate a 22,000 lbf, pump-fed LO2/LCH4 engine for the Mars lander or in-space transportation. The value of having this BBE testbed is that as components are developed they may be easily integrated in the testbed and tested. MSFC is striving to enhance its liquid propulsion system development capability. Rapid design, analysis, build and test will be critical to fielding the next high thrust rocket engine. With the maturity of the BBE testbed, MSFC propulsion engineering will bring forward a national capability that enables growth of both commercial and government interests.
NASP X-30 Propulsion technology status
NASA Technical Reports Server (NTRS)
Powell, William E.
1992-01-01
The performance goals of the NASP program require an aero-propulsion system with a high effective specific impulse. In order to achieve these goals, the high potential performance of air-breathing engines must be achieved over a very wide Mach number operating range. This, in turn, demands high component performance and involves many important technical issues which must be resolved. Scramjet Propulsion Technology is divided into five major areas: (1) inlets, (2) combustors, (3) nozzles, (4) component integration, and (5) test facilities. A status report covering the five areas is presented.
Space station propulsion test bed
NASA Technical Reports Server (NTRS)
Briley, G. L.; Evans, S. A.
1989-01-01
A test bed was fabricated to demonstrate hydrogen/oxygen propulsion technology readiness for the intital operating configuration (IOC) space station application. The test bed propulsion module and computer control system were delivered in December 1985, but activation was delayed until mid-1986 while the propulsion system baseline for the station was reexamined. A new baseline was selected with hydrogen/oxygen thruster modules supplied with gas produced by electrolysis of waste water from the space shuttle and space station. As a result, an electrolysis module was designed, fabricated, and added to the test bed to provide an end-to-end simulation of the baseline system. Subsequent testing of the test bed propulsion and electrolysis modules provided an end-to-end demonstration of the complete space station propulsion system, including thruster hot firings using the oxygen and hydrogen generated from electrolysis of water. Complete autonomous control and operation of all test bed components by the microprocessor control system designed and delivered during the program was demonstrated. The technical readiness of the system is now firmly established.
NASA research in aircraft propulsion
NASA Technical Reports Server (NTRS)
Beheim, M. A.
1982-01-01
A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.
Scramjet nozzle design and analysis as applied to a highly integrated hypersonic research airplane
NASA Technical Reports Server (NTRS)
Small, W. J.; Weidner, J. P.; Johnston, P. J.
1974-01-01
The configuration and performance of the propulsion system for the hypersonic research vehicle are discussed. A study of the interactions between propulsion and aerodynamics of the highly integrated vehicle was conducted. The hypersonic research vehicle is configured to test the technology of structural and thermal protection systems concepts and the operation of the propulsion system under true flight conditions for most of the hypersonic flight regime. The subjects considered are: (1) research vehicle and scramjet engine configurations to determine fundamental engine sizing constraints, (2) analytical methods for computing airframe and propulsion system components, and (3) characteristics of a candidate nozzle to investigate vehicle stability and acceleration performance.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
A system level model for preliminary design of a space propulsion solid rocket motor
NASA Astrophysics Data System (ADS)
Schumacher, Daniel M.
Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.
Solar electric propulsion. [low thrust trajectory control
NASA Technical Reports Server (NTRS)
Barbieri, R. W.
1975-01-01
The major components of a solar electric propulsion system are discussed and some problems in low thrust mission analysis are detailed. Emphasis is placed on the development of a nominal low thrust trajectory and guidance and navigation aspects.
Recent Electric Propulsion Development Activities for NASA Science Missions
NASA Technical Reports Server (NTRS)
Pencil, Eric J.
2009-01-01
(The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated valve concept, as well as a pressure control module, which will regulate pressure from the propellant tank. Cross-platform component standardization and simplification are being investigated through the Standard Architecture task to reduce first user costs for implementing electric propulsion systems. Progress on current hardware development, recent test activities and future plans are discussed.
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
The fundamentals of control integration for propulsion are reviewed giving practical illustrations of its use to demonstrate the advantages of integration. Attention is given to the first integration propulsion-control systems (IPCSs) which was developed for the F-111E, and the integrated controller design is described that NASA developed for the YF-12C aircraft. The integrated control systems incorporate a range of aircraft components including the engine, inlet controls, autopilot, autothrottle, airdata, navigation, and/or stability-augmentation systems. Also described are emergency-control systems, onboard engine optimization, and thrust-vectoring control technologies developed for the F-18A and the F-15. Integrated flight-propulsion control systems are shown to enhance the thrust, range, and survivability of the aircraft while reducing fuel consumption and maintenance.
NASA Technical Reports Server (NTRS)
Gemin, Paul; Kupiszewski, Tom; Radun, Arthur; Pan, Yan; Lai, Rixin; Zhang, Di; Wang, Ruxi; Wu, Xinhui; Jiang, Yan; Galioto, Steve;
2015-01-01
The purpose of this effort was to advance the selection, characterization, and modeling of a propulsion electric grid for a Turboelectric Distributed Propulsion (TeDP) system for transport aircraft. The TeDP aircraft would constitute a miniature electric grid with 50 MW or more of total power, two or more generators, redundant transmission lines, and multiple electric motors driving propulsion fans. The study proposed power system architectures, investigated electromechanical and solid state circuit breakers, estimated the impact of the system voltage on system mass, and recommended DC bus voltage range. The study assumed an all cryogenic power system. Detailed assumptions within the study include hybrid circuit breakers, a two cryogen system, and supercritical cyrogens. A dynamic model was developed to investigate control and parameter selection.
1997-02-01
Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. This photograph shows components for the thermal propulsion engine being laid out prior to assembly. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.
Artist's concept of Antimatter propulsion system
NASA Technical Reports Server (NTRS)
1999-01-01
This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1992-01-01
Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.
Additive Manufacturing of Aerospace Propulsion Components
NASA Technical Reports Server (NTRS)
Misra, Ajay K.; Grady, Joseph E.; Carter, Robert
2015-01-01
The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1982-01-01
The development of the technology to improve energy efficiency of propulsion systems for subsonic commercial aircrafts was examined. Goals established include: (1) fuel consumption, reduction in flight propulsion system; (2) direct operation cost; (3) noise, with provision for engine growth corresponding to future engine application; and (4) emissions, EPA new engine standards.
Numerical Propulsion System Simulation: A Common Tool for Aerospace Propulsion Being Developed
NASA Technical Reports Server (NTRS)
Follen, Gregory J.; Naiman, Cynthia G.
2001-01-01
The NASA Glenn Research Center is developing an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). This simulation is initially being used to support aeropropulsion in the analysis and design of aircraft engines. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the Aviation Safety Program and Advanced Space Transportation. NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes using the Common Object Request Broker Architecture (CORBA) in the NPSS Developer's Kit to facilitate collaborative engineering. The NPSS Developer's Kit will provide the tools to develop custom components and to use the CORBA capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities will extend NPSS from a zero-dimensional simulation tool to a multifidelity, multidiscipline system-level simulation tool for the full life cycle of an engine.
Fundamental Technology Development for Gas-Turbine Engine Health Management
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Simon, Donald L.; Hunter, Gary W.; Arnold, Steven M.; Reveley, Mary S.; Anderson, Lynn M.
2007-01-01
Integrated vehicle health management technologies promise to dramatically improve the safety of commercial aircraft by reducing system and component failures as causal and contributing factors in aircraft accidents. To realize this promise, fundamental technology development is needed to produce reliable health management components. These components include diagnostic and prognostic algorithms, physics-based and data-driven lifing and failure models, sensors, and a sensor infrastructure including wireless communications, power scavenging, and electronics. In addition, system assessment methods are needed to effectively prioritize development efforts. Development work is needed throughout the vehicle, but particular challenges are presented by the hot, rotating environment of the propulsion system. This presentation describes current work in the field of health management technologies for propulsion systems for commercial aviation.
NASA Technical Reports Server (NTRS)
Mauro, Stephanie
2016-01-01
The Iodine Satellite (iSAT) is a 12U cubesat with a primary mission to demonstrate the iodine fueled Hall Effect Thruster (HET) propulsion system. The spacecraft (SC) will operate throughout a one year mission in an effort to mature the propulsion system for use in future applications. The benefit of the HET is that it uses a propellant, iodine, which is easy to store and provides a high thrust-to-mass ratio. This paper will describe the thermal analysis and design of the SC between Preliminary Design Review (PDR) and Critical Design Review (CDR). The design of the satellite has undergone many changes due to a variety of challenges, both before PDR and during the time period discussed in this paper. Thermal challenges associated with the system include a high power density, small amounts of available radiative surface area, localized temperature requirements of the propulsion components, and unknown orbital parameters. The thermal control system is implemented to maintain component temperatures within their respective operational limits throughout the mission, while also maintaining propulsion components at the high temperatures needed to allow gaseous iodine propellant to flow. The design includes heaters, insulation, radiators, coatings, and thermal straps. Currently, the maximum temperatures for several components are near to their maximum operation limit, and the battery is close to its minimum operation limit. Mitigation strategies and planned work to solve these challenges will be discussed.
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Richard, Jacques C.
1991-01-01
An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.
System reliability approaches for advanced propulsion system structures
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mahadevan, S.
1991-01-01
This paper identifies significant issues that pertain to the estimation and use of system reliability in the design of advanced propulsion system structures. Linkages between the reliabilities of individual components and their effect on system design issues such as performance, cost, availability, and certification are examined. The need for system reliability computation to address the continuum nature of propulsion system structures and synergistic progressive damage modes has been highlighted. Available system reliability models are observed to apply only to discrete systems. Therefore a sequential structural reanalysis procedure is formulated to rigorously compute the conditional dependencies between various failure modes. The method is developed in a manner that supports both top-down and bottom-up analyses in system reliability.
Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Propulsion Controls and Diagnostics Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. Also the propulsion systems required to enable the National Aeronautics and Space Administration (NASA) Vision for Space Exploration in an affordable manner will need to have high reliability, safety and autonomous operation capability. The Controls and Dynamics Branch (CDB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This paper describes the current activities of the CDB under the NASA Aeronautics Research and Exploration Systems Missions. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.
Promising Electric Aircraft Drive Systems
NASA Technical Reports Server (NTRS)
Dudley, Michael R.
2010-01-01
An overview of electric aircraft propulsion technology performance thresholds for key power system components is presented. A weight comparison of electric drive systems with equivalent total delivered energy is made to help identify component performance requirements, and promising research and development opportunities.
Electric Motors for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.
2015-01-01
NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.
Electric Motor Considerations for Non-Cryogenic Hybrid Electric and Turboelectric Propulsion
NASA Technical Reports Server (NTRS)
Duffy, Kirsten P.
2015-01-01
NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. However, advances in motor component materials such as soft magnetic materials, hard magnetic materials, conductors, thermal insulation, and structural materials are expected in the coming years, and should improve motor performance. This study investigates several motor types for a one megawatt application, and projects the motor performance benefits of new component materials that might be available in the coming decades.
The Application of Metal Matrix Composite Materials in Propulsion System Valves
NASA Technical Reports Server (NTRS)
Laszar, John; Shah, Sandeep; Kashalikar, Uday; Rozenoyer, Boris
2003-01-01
Metal Matrix Composite (MMC) materials have been developed and used in many applications to reduce the weight of components where weight and deflection are the driving design requirement. MMC materials are being developed for use in some propulsion system components, such as turbo-pumps and thrust chambers. However, to date, no propulsion system valves have been developed that take advantage of the materials unique properties. The stiffness of MMC's could help keep valves light or improve life where deflection is the design constraint (such as seal and bearing locations). The low CTE of the materials might allow the designer to reduce tolerances and clearances producing better performance and lighter weight valves. Using unique manufacturing processes allow parts to be plated/coated for longer life and allow joining either by welding or threading/bolting. Additionally, casting of multi part pre-forms to form a single part can lead to designs that would be hard or impossible to manufacture with other methods. Therefore, NASA's Marshall Space Flight Center (MSFC) has developed and tested a prototype propulsion system valve that utilizes these materials to demonstrate these advantages. Through design and testing, this effort will determine the best use of these materials in valves designed to achieve the goal of a highly reliable and lightweight propulsion system. This paper is a continuation of the paper, The Application of Metal Matrix Composite Materials In Propulsion System Valves, presented at the JANNAF Conference held in April, 2002. Fabrication techniques employed, valve development, and valve test results will be discussed in this paper.
NASA Astrophysics Data System (ADS)
Koelle, D. E.; Mueller, W.; Schweig, H.
1985-10-01
The standardized propulsion module for future spacecraft in the 1800-2700 kg class is described. The definition of the propulsion system and its thrust level are addressed, and the design of the orbital propulsion module (OPM) is shown and described. The masses of various components are given. The OPM application and size optimization for the Ariane 4 launchers are examined, and the cost-saving aspects of OPM and its space applications are discussed.
NASA Astrophysics Data System (ADS)
Buksa, John J.; Kirk, William L.; Cappiello, Michael W.
A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the Rover reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.
In-Space Chemical Propulsion System Model
NASA Technical Reports Server (NTRS)
Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.
2004-01-01
Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
In-Space Chemical Propulsion System Model
NASA Technical Reports Server (NTRS)
Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.
2004-01-01
Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
Aeroacoustics of Propulsion Airframe Integration: Overview of NASA's Research
NASA Technical Reports Server (NTRS)
Thomas, Russell H.
2003-01-01
The integration of propulsion and airframe is fundamental to the design of an aircraft system. Many considerations influence the integration, such as structural, aerodynamic, and maintenance factors. In regard to the acoustics of an aircraft, the integration can have significant effects on the net radiated noise. Whether an engine is mounted above a wing or below can have a significant effect on noise that reaches communities below because of shielding or reflection of engine noise. This is an obvious example of the acoustic effects of propulsion airframe installation. Another example could be the effect of the pylon on the development of the exhaust plume and on the resulting jet noise. In addition, for effective system noise reduction the impact that installation has on noise reduction devices developed on isolated components must be understood. In the future, a focus on the aerodynamic and acoustic interaction effects of installation, propulsion airframe aeroacoustics, will become more important as noise reduction targets become more difficult to achieve. In addition to continued fundamental component reduction efforts, a system level approach that includes propulsion airframe aeroacoustics will be required in order to achieve the 20 dB of perceived noise reduction envisioned by the long-range NASA goals. This emphasis on the aeroacoustics of propulsion airframe integration is a new part of NASA s noise research. The following paper will review current efforts and highlight technical challenges and approaches.
Electric propulsion options for the SP-100 reference mission
NASA Technical Reports Server (NTRS)
Hardy, T. L.; Rawlin, V. K.; Patterson, M. J.
1987-01-01
Analyses were performed to characterize and compare electric propulsion systems for use on a space flight demonstration of the SP-100 nuclear power system. The component masses of resistojet, arcjet, and ion thruster systems were calculated using consistent assumptions and the maximum total impulse, velocity increment, and thrusting time were determined, subject to the constraint of the lift capability of a single Space Shuttle launch. From the study it was found that for most systems the propulsion system dry mass was less than 20 percent of the available mass for the propulsion system. The maximum velocity increment was found to be up to 2890 m/sec for resistojet, 3760 m/sec for arcjet, and 23 000 m/sec for ion thruster systems. The maximum thruster time was found to be 19, 47, and 853 days for resistojet, arcjet, and ion thruster systems, respectively.
State-of-the-Art for Small Satellite Propulsion Systems
NASA Technical Reports Server (NTRS)
Parker, Khary I.
2016-01-01
The NASA/Goddard Space Flight Center (NASA/GSFC) is in the business of performing world-class, space-based, scientific research on various spacecraft platforms, which now include small satellites (SmallSats). In order to perform world class science on a SmallSat, NASA/GSFC requires that their components be highly reliable, high performing, have low power consumption, at the lowest cost possible. The Propulsion Branch (Code 597) at NASA/GSFC has conducted a SmallSat propulsion system survey to determine their availability and level of development. Based on publicly available information and unique features, this paper discusses some of the existing SmallSat propulsion systems.. The systems described in this paper do not indicate or imply any endorsement by NASA or NASA/GSFC over those not included.
Energy efficient engine fan component detailed design report
NASA Technical Reports Server (NTRS)
Halle, J. E.; Michael, C. J.
1981-01-01
The fan component which was designed for the energy efficient engine is an advanced high performance, single stage system and is based on technology advancements in aerodynamics and structure mechanics. Two fan components were designed, both meeting the integrated core/low spool engine efficiency goal of 84.5%. The primary configuration, envisioned for a future flight propulsion system, features a shroudless, hollow blade and offers a predicted efficiency of 87.3%. A more conventional blade was designed, as a back up, for the integrated core/low spool demonstrator engine. The alternate blade configuration has a predicted efficiency of 86.3% for the future flight propulsion system. Both fan configurations meet goals established for efficiency surge margin, structural integrity and durability.
E-4 Test Facility Design Status
NASA Technical Reports Server (NTRS)
Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick
2001-01-01
Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.
Study of liquid oxygen/liquid hydrogen auxiliary propulsion systems for the space tug
NASA Technical Reports Server (NTRS)
Nichols, J. F.
1975-01-01
Design concepts are considered that permit use of a liquid-liquid (as opposed to gas-gas) oxygen/hydrogen thrust chamber for attitude control and auxiliary propulsion thrusters on the space tug. The best of the auxiliary propulsion system concepts are defined and their principal characteristics, including cost as well as operational capabilities, are established. Design requirements for each of the major components of the systems, including thrusters, are developed at the conceptual level. The competitive concepts considered use both dedicated (separate tanks) and integrated (propellant from main propulsion tanks) propellant supply. The integrated concept is selected as best for the space tug after comparative evaluation against both cryogenic and storable propellant dedicated systems. A preliminary design of the selected system is established and recommendations for supporting research and technology to further the concept are presented.
NASA Technical Reports Server (NTRS)
Dustin, M. O.
1983-01-01
The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.
78 FR 42415 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... INFORMATION CONTACT: Suzanne Lucier, Aerospace Engineer, Propulsion Branch, ANM-140S, FAA, Seattle Aircraft... Lucier, Aerospace Engineer, Propulsion Branch, ANM-140S, FAA, Seattle Aircraft Certification Office, 1601... 737-28-1286, dated January 10, 2012. (d) Subject Joint Aircraft System Component (JASC)/Air Transport...
Design, Integration, Certification and Testing of the Orion Crew Module Propulsion System
NASA Technical Reports Server (NTRS)
McKay, Heather; Freeman, Rich; Cain, George; Albright, John D.; Schoenberg, Rich; Delventhal, Rex
2014-01-01
The Orion Multipurpose Crew Vehicle (MPCV) is NASA's next generation spacecraft for human exploration of deep space. Lockheed Martin is the prime contractor for the design, development, qualification and integration of the vehicle. A key component of the Orion Crew Module (CM) is the Propulsion Reaction Control System, a high-flow hydrazine system used during re-entry to orient the vehicle for landing. The system consists of a completely redundant helium (GHe) pressurization system and hydrazine fuel system with monopropellant thrusters. The propulsion system has been designed, integrated, and qualification tested in support of the Orion program's first orbital flight test, Exploration Flight Test One (EFT-1), scheduled for 2014. A subset of the development challenges and lessons learned from this first flight test campaign will be discussed in this paper for consideration when designing future spacecraft propulsion systems. The CONOPS and human rating requirements of the CM propulsion system are unique when compared with a typical satellite propulsion reaction control system. The system requires a high maximum fuel flow rate. It must operate at both vacuum and sea level atmospheric pressure conditions. In order to meet Orion's human rating requirements, multiple parts of the system must be redundant, and capable of functioning after spacecraft system fault events.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
Low power pulsed MPD thruster system analysis and applications
NASA Astrophysics Data System (ADS)
Myers, Roger M.; Domonkos, Matthew; Gilland, James H.
1993-06-01
Pulsed MPD thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component. Results indicate that for payloads of 1000 and 2000 kg, pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg relative to hydrogen arcjets, reducing launch vehicle class and launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Maul, William A.; Garg, Sanjay
2007-01-01
The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.
NASA Technical Reports Server (NTRS)
1974-01-01
The SERT C (Space Electric Rocket Test - C) project study defines a spacecraft mission that would demonstrate the technology readiness of ion thruster systems for primary propulsion and station keeping applications. As a low cost precursor, SERT C develops the components and systems required for subsequent Solar Electric Propulsion (SEP) applications. The SERT C mission requirements and preliminary spacecraft and subsystem design are described.
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2011-01-01
The Controls and Dynamics Branch (CDB) at National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research and Exploration Systems Missions. This paper provides a brief overview of the various CDB tasks in support of the NASA programs. The programmatic structure of the CDB activities is described along with a brief overview of each of the CDB tasks including research objectives, technical challenges, and recent accomplishments. These tasks include active control of propulsion system components, intelligent propulsion diagnostics and control for reliable fault identification and accommodation, distributed engine control, and investigations into unsteady propulsion systems.
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2004-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.
NASA Technical Reports Server (NTRS)
Trinh, Huu P.
2015-01-01
NASA's exploration roadmap is focused on developing technologies and performing precursor missions to advance the state of the art for eventual human missions to Mars. One of the key components of this roadmap is various robotic missions to Near-Earth Objects, the Moon, and Mars to fill in some of the strategic knowledge gaps. The Resource Prospector (RP) project is one of these robotic precursor activities in the roadmap. RP is a multi-center and multi-institution project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days, assuming a five day direct Earth to Moon transfer. Because of the mission cost constraint, a trade study of the propulsion concepts was conducted with a focus on available low-cost hardware for reducing cost in development, while technical risk, system mass, and technology advancement requirements were also taken into consideration. The propulsion system for the lander is composed of a braking stage providing a high thrust to match the lander's velocity with the lunar surface and a lander stage performing the final lunar descent. For the braking stage, liquid oxygen (LOX) and liquid methane (LCH4) propulsion systems, derived from the Morpheus experimental lander, and storable bi-propellant systems, including the 4th stage Peacekeeper (PK) propulsion components and Space Shuttle orbital maneuvering engine (OME), and a solid motor were considered for the study. For the lander stage, the trade study included miniaturized Divert Attitude Control System (DACS) thrusters (Missile Defense Agency (MDA) heritage), their enhanced thruster versions, ISE-100 and ISE-5, and commercial-off-the-shelf (COTS) hardware. The lowest cost configuration of using the solid motor and the PK components while meeting the requirements was selected. The reference concept of the lander is shown in Figure 1. In the current reference configuration, the solid stage is the primary provider of delta-V. It will generate 15,000-lbf of thrust with a single burn of 80's seconds. The lander stage is a bi-propellant, pressure-regulated, pulsing liquid propulsion system to perform all other functions.
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center
NASA Technical Reports Server (NTRS)
Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III
2001-01-01
After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.
NASA Technical Reports Server (NTRS)
Franklin, James A.
1997-01-01
This report describes revisions to a simulation model that was developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced short takeoff and vertical landing lift fan fighter aircraft. These revisions have been made to the flight/propulsion control system, head-up display, and propulsion system to reflect recent flight and simulation experience with short takeoff and vertical landing operations. They include nonlinear inverse control laws in all axes (eliminating earlier versions with state rate feedback), throttle scaling laws for flightpath and thrust command, control selector commands apportioned based on relative effectiveness of the individual controls, lateral guidance algorithms that provide more flexibility for terminal area operations, and a simpler representation of the propulsion system. The model includes modes tailored to the phases of the aircraft's operation, with several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the propulsion system. Head-up display modes for approach and hover are integrated with the corresponding control modes. Propulsion system components modeled include a remote lift fan and a lift-cruise engine. Their static performance and dynamic responses are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
Electric Propulsion Technology Development for the Jupiter Icy Moons Orbiter Project
NASA Technical Reports Server (NTRS)
2004-01-01
During 2004, the Jupiter Icy Moons Orbiter project, a part of NASA's Project Prometheus, continued efforts to develop electric propulsion technologies. These technologies addressed the challenges of propelling a spacecraft to several moons of Jupiter. Specific challenges include high power, high specific impulse, long lived ion thrusters, high power/high voltage power processors, accurate feed systems, and large propellant storage systems. Critical component work included high voltage insulators and isolators as well as ensuring that the thruster materials and components could operate in the substantial Jupiter radiation environment. A review of these developments along with future plans is discussed.
NASA Technical Reports Server (NTRS)
Gostowski, Rudy
2003-01-01
High-Test Hydrogen Peroxide (HTP) is receiving renewed interest as a monopropellant and as the oxidizer for bipropellant systems. HTP is hydrogen peroxide having concentrations ranging from 70 to 98%. In these applications the energy and oxygen released during decomposition of HTP is used for propulsion. In propulsion systems components must be fabricated and connected using available joining processes. Welding is a common joining method for metallic components. The goal of this study was to compare the HTP compatibility of welded vs. unwelded stainless steel.
Ion Thruster Development at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Sovey, James S.; Hamley, John A.; Patterson, Michael J.; Rawlin, Vincent K.; Sarver-Verhey, Timothy R.
1992-01-01
Recent ion propulsion technology efforts at NASA's Lewis Research Center including development of kW-class xenon ion thrusters, high power xenon and krypton ion thrusters, and power processors are reviewed. Thruster physical characteristics, performance data, life projections, and power processor component technology are summarized. The ion propulsion technology program is structured to address a broad set of mission applications from satellite stationkeeping and repositioning to primary propulsion using solar or nuclear power systems.
High Temperature Materials Needs in NASA's Advanced Space Propulsion Programs
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Glass, David E.
2005-01-01
In recent years, NASA has embarked on several new and exciting efforts in the exploration and use of space. The successful accomplishment of many planned missions and projects is dependent upon the development and deployment of previously unproven propulsion systems. Key to many of the propulsion systems is the use of emergent materials systems, particularly high temperature structural composites. A review of the general missions and benefits of utilizing high temperature materials will be presented. The design parameters and operating conditions will be presented for both specific missions/vehicles and classes of components. Key technical challenges and opportunities are identified along with suggested paths for addressing them.
Planetary explorer liquid propulsion study
NASA Technical Reports Server (NTRS)
Mckevitt, F. X.; Eggers, R. F.; Bolz, C. W.
1971-01-01
An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined.
NASA Technical Reports Server (NTRS)
1981-01-01
The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.
NASA Technical Reports Server (NTRS)
Nobbs, Steven G.
1995-01-01
An overview of the performance seeking control (PSC) algorithm and details of the important components of the algorithm are given. The onboard propulsion system models, the linear programming optimization, and engine control interface are described. The PSC algorithm receives input from various computers on the aircraft including the digital flight computer, digital engine control, and electronic inlet control. The PSC algorithm contains compact models of the propulsion system including the inlet, engine, and nozzle. The models compute propulsion system parameters, such as inlet drag and fan stall margin, which are not directly measurable in flight. The compact models also compute sensitivities of the propulsion system parameters to change in control variables. The engine model consists of a linear steady state variable model (SSVM) and a nonlinear model. The SSVM is updated with efficiency factors calculated in the engine model update logic, or Kalman filter. The efficiency factors are used to adjust the SSVM to match the actual engine. The propulsion system models are mathematically integrated to form an overall propulsion system model. The propulsion system model is then optimized using a linear programming optimization scheme. The goal of the optimization is determined from the selected PSC mode of operation. The resulting trims are used to compute a new operating point about which the optimization process is repeated. This process is continued until an overall (global) optimum is reached before applying the trims to the controllers.
Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC
NASA Technical Reports Server (NTRS)
Radke, Christopher; Studak, Joseph
2017-01-01
Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.
Service Life Extension of the Propulsion System of Long-Term Manned Orbital Stations
NASA Technical Reports Server (NTRS)
Kamath, Ulhas; Kuznetsov, Sergei; Spencer, Victor
2014-01-01
One of the critical non-replaceable systems of a long-term manned orbital station is the propulsion system. Since the propulsion system operates beginning with the launch of station elements into orbit, its service life determines the service life of the station overall. Weighing almost a million pounds, the International Space Station (ISS) is about four times as large as the Russian space station Mir and about five times as large as the U.S. Skylab. Constructed over a span of more than a decade with the help of over 100 space flights, elements and modules of the ISS provide more research space than any spacecraft ever built. Originally envisaged for a service life of fifteen years, this Earth orbiting laboratory has been in orbit since 1998. Some elements that have been launched later in the assembly sequence were not yet built when the first elements were placed in orbit. Hence, some of the early modules that were launched at the inception of the program were already nearing the end of their design life when the ISS was finally ready and operational. To maximize the return on global investments on ISS, it is essential for the valuable research on ISS to continue as long as the station can be sustained safely in orbit. This paper describes the work performed to extend the service life of the ISS propulsion system. A system comprises of many components with varying failure rates. Reliability of a system is the probability that it will perform its intended function under encountered operating conditions, for a specified period of time. As we are interested in finding out how reliable a system would be in the future, reliability expressed as a function of time provides valuable insight. In a hypothetical bathtub shaped failure rate curve, the failure rate, defined as the number of failures per unit time that a currently healthy component will suffer in a given future time interval, decreases during infant-mortality period, stays nearly constant during the service life and increases at the end when the design service life ends and wear-out phase begins. However, the component failure rates do not remain constant over the entire cycle life. The failure rate depends on various factors such as design complexity, current age of the component, operating conditions, severity of environmental stress factors, etc. Development, qualification and acceptance test processes provide rigorous screening of components to weed out imperfections that might otherwise cause infant mortality failures. If sufficient samples are tested to failure, the failure time versus failure quantity can be analyzed statistically to develop a failure probability distribution function (PDF), a statistical model of the probability of failure versus time. Driven by cost and schedule constraints however, spacecraft components are generally not tested in large numbers. Uncertainties in failure rate and remaining life estimates increase when fewer units are tested. To account for this, spacecraft operators prefer to limit useful operations to a period shorter than the maximum demonstrated service life of the weakest component. Running each component to its failure to determine the maximum possible service life of a system can become overly expensive and impractical. Spacecraft operators therefore, specify the required service life and an acceptable factor of safety (FOS). The designers use these requirements to limit the life test duration. Midway through the design life, when benefits justify additional investments, supplementary life test may be performed to demonstrate the capability to safely extend the service life of the system. An innovative approach is required to evaluate the entire system, without having to go through an elaborate test program of propulsion system elements. Evaluating every component through a brute force test program would be a cost prohibitive and time consuming endeavor. ISS propulsion system components were designed and built decades ago. There are no representative ground test articles for some of the components. A 'test everything' approach would require manufacturing new test articles. The paper outlines some of the techniques used for selective testing, by way of cherry picking candidate components based on failure mode effects analysis, system level impacts, hazard analysis, etc. The type of testing required for extending the service life depends on the design and criticality of the component, failure modes and failure mechanisms, life cycle margin provided by the original certification, operational and environmental stresses encountered, etc. When specific failure mechanism being considered and the underlying relationship of that mode to the stresses provided in the test can be correlated by supporting analysis, time and effort required for conducting life extension testing can be significantly reduced. Exposure to corrosive propellants over long periods of time, for instance, lead to specific failure mechanisms in several components used in the propulsion system. Using Arrhenius model, which is tied to chemically dependent failure mechanisms such as corrosion or chemical reactions, it is possible to subject carefully selected test articles to accelerated life test. Arrhenius model reflects the proportional relationship between time to failure of a component and the exponential of the inverse of absolute temperature acting on the component. The acceleration factor is used to perform tests at higher stresses that allow direct correlation between the times to failure at a high test temperature to the temperatures to be expected in actual use. As long as the temperatures are such that new failure mechanisms are not introduced, this becomes a very useful method for testing to failure a relatively small sample of items for a much shorter amount of time. In this article, based on the example of the propulsion system of the first ISS module Zarya, theoretical approaches and practical activities of extending the service life of the propulsion system are reviewed with the goal of determining the maximum duration of its safe operation.
Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)
1998-01-01
The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.
Numerical Propulsion System Simulation
NASA Technical Reports Server (NTRS)
Naiman, Cynthia
2006-01-01
The NASA Glenn Research Center, in partnership with the aerospace industry, other government agencies, and academia, is leading the effort to develop an advanced multidisciplinary analysis environment for aerospace propulsion systems called the Numerical Propulsion System Simulation (NPSS). NPSS is a framework for performing analysis of complex systems. The initial development of NPSS focused on the analysis and design of airbreathing aircraft engines, but the resulting NPSS framework may be applied to any system, for example: aerospace, rockets, hypersonics, power and propulsion, fuel cells, ground based power, and even human system modeling. NPSS provides increased flexibility for the user, which reduces the total development time and cost. It is currently being extended to support the NASA Aeronautics Research Mission Directorate Fundamental Aeronautics Program and the Advanced Virtual Engine Test Cell (AVETeC). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structure, and heat transfer with numerical zooming on component codes. Zooming is the coupling of analyses at various levels of detail. NPSS development includes capabilities to facilitate collaborative engineering. The NPSS will provide improved tools to develop custom components and to use capability for zooming to higher fidelity codes, coupling to multidiscipline codes, transmitting secure data, and distributing simulations across different platforms. These powerful capabilities extend NPSS from a zero-dimensional simulation tool to a multi-fidelity, multidiscipline system-level simulation tool for the full development life cycle.
NASA Technical Reports Server (NTRS)
Mitchell, Michael S.
2010-01-01
This slide presentation reviews the methodology in creating a Source Control Item (SCI) Hazard Report (HR). The SCI HR provides a system safety risk assessment for the following Ares I Upper Stage Production Contract (USPC) components (1) Pyro Separation Systems (2) Main Propulsion System (3) Reaction and Roll Control Systems (4) Thrust Vector Control System and (5) Ullage Settling Motor System components.
Antimatter Propulsion Developed by NASA
NASA Technical Reports Server (NTRS)
1999-01-01
This Quick Time movie shows possible forms of an antimatter propulsion system being developed by NASA. Antimatter annihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical energy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is ongoing and making some strides, but production of this as a propulsion system is far into the future.
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2013 CFR
2013-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2011 CFR
2011-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2012 CFR
2012-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2014 CFR
2014-01-01
... other propulsion system. D417.5Flight termination system design (a) Reliability prediction. A flight... design margin required by this appendix. As an alternative to subjecting the flight termination system to... the component is heated or cooled to achieve the required dwell time at one extreme of the required...
Space storable propulsion components development
NASA Technical Reports Server (NTRS)
Hagler, R., Jr.
1982-01-01
The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.
NASA Technical Reports Server (NTRS)
Harkney, R. D.
1980-01-01
Increased system requirements and functional integration with the aircraft have placed an increased demand on control system capability and reliability. To provide these at an affordable cost and weight and because of the rapid advances in electronic technology, hydromechanical systems are being phased out in favor of digital electronic systems. The transition is expected to be orderly from electronic trimming of hydromechanical controls to full authority digital electronic control. Future propulsion system controls will be highly reliable full authority digital electronic with selected component and circuit redundancy to provide the required safety and reliability. Redundancy may include a complete backup control of a different technology for single engine applications. The propulsion control will be required to communicate rapidly with the various flight and fire control avionics as part of an integrated control concept.
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Holcomb, Robert S.
1993-01-01
A project in Nuclear Electric Propulsion (NEP) technology is being established to develop the NEP technologies needed for advanced propulsion systems. A paced approach has been suggested which calls for progressive development of NEP component and subsystem level technologies. This approach will lead to major facility testing to achieve TRL-5 for megawatt NEP for SEI mission applications. This approach is designed to validate NEP power and propulsion technologies from kilowatt class to megawatt class ratings. Such a paced approach would have the benefit of achieving the development, testing, and flight of NEP systems in an evolutionary manner. This approach may also have the additional benefit of synergistic application with SEI extraterrestrial surface nuclear power applications.
Simplified Ion Thruster Xenon Feed System for NASA Science Missions
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.
2009-01-01
The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated the engine over the entire NSTAR throttle range over a series of tests. Flow rates were very stable with variations of at most 0.2%, and transition times between throttle levels were typically 90 seconds or less with a maximum of 200 seconds, both significant improvements over the Dawn bang-bang feed system.
Applying design principles to fusion reactor configurations for propulsion in space
NASA Technical Reports Server (NTRS)
Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.
1993-01-01
The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).
Advances in computational design and analysis of airbreathing propulsion systems
NASA Technical Reports Server (NTRS)
Klineberg, John M.
1989-01-01
The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.
The 30-centimeter ion thrust subsystem design manual
NASA Technical Reports Server (NTRS)
1979-01-01
The principal characteristics of the 30-centimeter ion propulsion thrust subsystem technology that was developed to satisfy the propulsion needs of future planetary and early orbital missions are described. Functional requirements and descriptions, interface and performance requirements, and physical characteristics of the hardware are described at the thrust subsystem, BIMOD engine system, and component level.
NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Williams, Hunter; Burnside, Chris
2015-01-01
The trade study has led to the selection of propulsion concept with the lowest cost and net lowest risk -Government-owned, flight qualified components -Meet mission requirements although the configuration is not optimized. Risk reduction activities have provided an opportunity -Implement design improvements while development with the early-test approach. -Gain knowledge on the operation and identify operation limit -Data to anchor analytical models for future flight designs; The propulsion system cold flow tests series have provided valuable data for future design. -The pressure surge from the system priming and waterhammer within component operation limits. -Enable to optimize the ullage volume to reduce the propellant tank mass; RS-34 hot fire tests have successfully demonstrated of using the engines for the RP mission -No degradation of performance due to extended storage life of the hardware. -Enable to operate the engine for RP flight mission scenarios, outside of the qualification regime. -Provide extended data for the thermal and GNC designs. Significant progress has been made on NASA propulsion concept design and risk reductions for Resource Prospector lander.
Low power pulsed MPD thruster system analysis and applications
NASA Astrophysics Data System (ADS)
Myers, Roger M.; Domonkos, Matthew; Gilland, James H.
1993-09-01
Pulsed magnetoplasmadynamic (MPD) thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component using off-the-shelf technology whenever possible. Results indicate that for payloads of 1000 and 2000 kg pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg over those achievable with hydrogen arcjets, which can be used to reduce launch vehicle class and the associated launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.
Low power pulsed MPD thruster system analysis and applications
NASA Technical Reports Server (NTRS)
Myers, Roger M.; Domonkos, Matthew; Gilland, James H.
1993-01-01
Pulsed magnetoplasmadynamic (MPD) thruster systems were analyzed for application to solar-electric orbit transfer vehicles at power levels ranging from 10 to 40 kW. Potential system level benefits of pulsed propulsion technology include ease of power scaling without thruster performance changes, improved transportability from low power flight experiments to operational systems, and reduced ground qualification costs. Required pulsed propulsion system components include a pulsed applied-field MPD thruster, a pulse-forming network, a charge control unit, a cathode heater supply, and high speed valves. Mass estimates were obtained for each propulsion subsystem and spacecraft component using off-the-shelf technology whenever possible. Results indicate that for payloads of 1000 and 2000 kg pulsed MPD thrusters can reduce launch mass by between 1000 and 2500 kg over those achievable with hydrogen arcjets, which can be used to reduce launch vehicle class and the associated launch cost. While the achievable mass savings depends on the trip time allowed for the mission, cases are shown in which the launch vehicle required for a mission is decreased from an Atlas IIAS to an Atlas I or Delta 7920.
A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics
NASA Technical Reports Server (NTRS)
Gorospe, George E., Jr.; Kulkarni, Chetan S.
2017-01-01
This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard
2007-01-01
A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.
Advanced Chemical Propulsion for Science Missions
NASA Technical Reports Server (NTRS)
Liou, Larry
2008-01-01
The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2014-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPTs propulsion technologies include: 1) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; 2) a Hall-effect electric propulsion (HEP) system for sample return and low cost missions; 3) the Advanced Xenon Flow Control System (AXFS); ultra-lightweight propellant tank technologies (ULTT); and propulsion technologies for a Mars Ascent Vehicle (MAV). The AXFS and ULTT are two component technologies being developed with nearer-term flight infusion in mind, whereas NEXT and the HEP are being developed as EP systems. ISPTs entry vehicle technologies are: 1) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GNC) models of blunt-body rigid aeroshells; and aerothermal effect models; and 2) Multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions. The Systems Mission Analysis area is focused on developing tools and assessing the application of propulsion, entry vehicle, and spacecraft bus technologies to a wide variety of mission concepts. Several of the ISPT technologies are related to sample return missions and other spacecraft bus technology needs like: MAV propulsion, MMEEV, and electric propulsion. These technologies, as well as Aerocapture, are more vehicle and mission-focused, and present a different set of technology development challenges. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV
2004-01-01
An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.
HTS machines as enabling technology for all-electric airborne vehicles
NASA Astrophysics Data System (ADS)
Masson, P. J.; Brown, G. V.; Soban, D. S.; Luongo, C. A.
2007-08-01
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.
Low Cost, Upper Stage-Class Propulsion
NASA Technical Reports Server (NTRS)
Vickers, John
2015-01-01
The low cost, upper stage-class propulsion (LCUSP) element will develop a high strength copper alloy additive manufacturing (AM) process as well as critical components for an upper stage-class propulsion system that will be demonstrated with testing. As manufacturing technologies have matured, it now appears possible to build all the major components and subsystems of an upper stage-class rocket engine for substantially less money and much faster than traditionally done. However, several enabling technologies must be developed before that can happen. This activity will address these technologies and demonstrate the concept by designing, manufacturing, and testing the critical components of a rocket engine. The processes developed and materials' property data will be transitioned to industry upon completion of the activity. Technologies to enable the concept are AM copper alloy process development, AM post-processing finishing to minimize surface roughness, AM material deposition on existing copper alloy substrate, and materials characterization.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2005-01-01
Feasibility assessment of pressure casting of ceramic-aluminum composites for NASA% propulsion applications is summarized. A combination of several demonstration projects to produce three unique components for liquid hydrogen-oxygen rocket engine% flanges, valves and turbo-pump housing are conducted. These components are made from boron carbide, silicon carbide and alumina powders fabricated into complex net shaped parts using dry green powder compaction, slip casting or a novel 3D ink-jet printing process, followed by sintering to produce performs that can be pressure cast by infiltration with molten aluminum. I n addition, joining techniques are also explored to insure that these components can be assembled into a structure without degrading their highly tailored properties. The feasibility assessment was made to determine if these new materials could provide a significant weight savings, thereby reducing vehicle launch costs, while being durable materials to increase safety and performance for propulsion system.
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.
1988-01-01
Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.
The Search for Nonflammable Solvent Alternatives for Cleaning Aerospace Oxygen Systems
NASA Technical Reports Server (NTRS)
Mitchell, Mark; Lowrey, Nikki
2012-01-01
Oxygen systems are susceptible to fires caused by particle and nonvolatile residue (NVR) contaminants, therefore cleaning and verification is essential for system safety. . Cleaning solvents used on oxygen system components must be either nonflammable in pure oxygen or complete removal must be assured for system safety. . CFC -113 was the solvent of choice before 1996 because it was effective, least toxic, compatible with most materials of construction, and non ]reactive with oxygen. When CFC -113 was phased out in 1996, HCFC -225 was selected as an interim replacement for cleaning propulsion oxygen systems at NASA. HCFC-225 production phase-out date is 01/01/2015. HCFC ]225 (AK ]225G) is used extensively at Marshall Space Flight Center and Stennis Space Center for cleaning and NVR verification on large propulsion oxygen systems, and propulsion test stands and ground support equipment. . Many components are too large for ultrasonic agitation - necessary for effective aqueous cleaning and NVR sampling. . Test stand equipment must be cleaned prior to installation of test hardware. Many items must be cleaned by wipe or flush in situ where complete removal of a flammable solvent cannot be assured. The search for a replacement solvent for these applications is ongoing.
The ac propulsion system for an electric vehicle, phase 1
NASA Astrophysics Data System (ADS)
Geppert, S.
1981-08-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
The ac propulsion system for an electric vehicle, phase 1
NASA Technical Reports Server (NTRS)
Geppert, S.
1981-01-01
A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.
NASA Technical Reports Server (NTRS)
1973-01-01
A study was conducted to determine the configuration and performance of a space tug. Details of the space tug systems are presented to include: (1) propulsion systems, (2) avionics, (3) thermal control, and (4) electric power subsystems. The data generated include engineering drawings, schematics, subsystem operation, and component description. Various options investigated and the rational for the point design selection are analyzed.
Innovative Airbreathing Propulsion Concepts for High-speed Applications
NASA Technical Reports Server (NTRS)
Whitlow, Woodrow, Jr.
2002-01-01
The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base Research and Technology Program mature, they are incorporated into ASTP. One example of this is rocket-based combined cycle systems that are being considered as part of ASTP. The NASA Ultra Efficient Engine Technology (UEET) Program has the goal of developing propulsion system component technology that is relevant to a wide range of vehicle missions. In addition to subsonic and supersonic speed regimes, it includes the hypersonic speed regime. More specifically, component technologies for turbine-based combined cycle engines are being developed as part of UEET.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility has been developed at NASA Lewis to allow integrated propulsion-control and flight-control algorithm development and evaluation in real time. As a preliminary check of the simulator facility and the correct integration of its components, the control design and physics models for an STOVL fighter aircraft model have been demonstrated, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The results show that this fixed-based flight simulator can provide real-time feedback and display of both airframe and propulsion variables for validation of integrated systems and testing of control design methodologies and cockpit mechanizations.
Evolutionary use of nuclear electric propulsion
NASA Technical Reports Server (NTRS)
Hack, K. J.; George, J. A.; Riehl, J. P.; Gilland, J. H.
1990-01-01
Evolving new propulsion technologies through a rational and conscious effort to minimize development costs and program risks while maximizing the performance benefits is intuitively practical. A phased approach to the evolution of nuclear electric propulsion from use on planetary probes, to lunar cargo vehicles, and finally to manned Mars missions with a concomitant growth in technology is considered. Technology levels and system component makeup are discussed for nuclear power systems and both ion and magnetoplasmadynamic thrusters. Mission scenarios are described, which include analysis of a probe to Pluto, a lunar cargo mission, Martian split, all-up, and quick-trip mission options. Evolutionary progression of the use of NEP in such missions is discussed.
NASA Stennis Space Center integrated system health management test bed and development capabilities
NASA Astrophysics Data System (ADS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-05-01
Integrated System Health Management (ISHM) capability for rocket propulsion testing is rapidly evolving and promises substantial reduction in time and cost of propulsion systems development, with substantially reduced operational costs and evolutionary improvements in launch system operational robustness. NASA Stennis Space Center (SSC), along with partners that includes NASA, contractor, and academia; is investigating and developing technologies to enable ISHM capability in SSC's rocket engine test stands (RETS). This will enable validation and experience capture over a broad range of rocket propulsion systems of varying complexity. This paper describes key components that constitute necessary ingredients to make possible implementation of credible ISHM capability in RETS, other NASA ground test and operations facilities, and ultimately spacecraft and space platforms and systems: (1) core technologies for ISHM, (2) RETS as ISHM testbeds, and (3) RETS systems models.
Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennion, K.; Thornton, M.
A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehiclesmore » (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.
2007-01-01
Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.
Development and Testing of Propulsion Health Management
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Lekki, John D.; Simon, Donald L.
2012-01-01
An Integrated Vehicle Health Management system aims to maintain vehicle health through detection, diagnostics, state awareness, prognostics, and lastly, mitigation of detrimental situations for each of the vehicle subsystems and throughout the vehicle as a whole. This paper discusses efforts to advance Propulsion Health Management technology for in-flight applications to provide improved propulsion sensors measuring a range of parameters, improve ease of propulsion sensor implementation, and to assess and manage the health of gas turbine engine flow-path components. This combined work is intended to enable real-time propulsion state assessments to accurately determine the vehicle health, reduce loss of control, and to improve operator situational awareness. A unique aspect of this work is demonstration of these maturing technologies on an operational engine.
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
NASA Technical Reports Server (NTRS)
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Brown, Gerald V.
2017-01-01
It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).
Gear systems for advanced turboprops
NASA Technical Reports Server (NTRS)
Wagner, Douglas A.
1987-01-01
A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.
On-Board Chemical Propulsion Technology
NASA Technical Reports Server (NTRS)
Reed, Brian D.
2004-01-01
On-board propulsion functions include orbit insertion, orbit maintenance, constellation maintenance, precision positioning, in-space maneuvering, de-orbiting, vehicle reaction control, planetary retro, and planetary descent/ascent. This paper discusses on-board chemical propulsion technology, including bipropellants, monopropellants, and micropropulsion. Bipropellant propulsion has focused on maximizing the performance of Earth storable propellants by using high-temperature, oxidation-resistant chamber materials. The performance of bipropellant systems can be increased further, by operating at elevated chamber pressures and/or using higher energy oxidizers. Both options present system level difficulties for spacecraft, however. Monopropellant research has focused on mixtures composed of an aqueous solution of hydroxl ammonium nitrate (HAN) and a fuel component. HAN-based monopropellants, unlike hydrazine, do not present a vapor hazard and do not require extraordinary procedures for storage, handling, and disposal. HAN-based monopropellants generically have higher densities and lower freezing points than the state-of-art hydrazine and can higher performance, depending on the formulation. High-performance HAN-based monopropellants, however, have aggressive, high-temperature combustion environments and require advances in catalyst materials or suitable non-catalytic ignition options. The objective of the micropropulsion technology area is to develop low-cost, high-utility propulsion systems for the range of miniature spacecraft and precision propulsion applications.
Status of NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David; Pencil, Eric; Vento, Dan; Peterson, Todd; Dankanich, John; Hahne, David; Munk, Michelle
2011-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies have broad applicability to future competed Discovery and New Frontiers mission solicitations, and are potentially enabling for future NASA flagship and sample return missions currently being considered. This paper provides status of the technology development of several in-space propulsion technologies that are ready for infusion into future missions. The technologies that are ready for flight infusion are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in FY12/13 are 1) Advanced Xenon Flow Control System, and 2) ultra-lightweight propellant tank technology advancements and their infusion potential will be also discussed. The paper will also describe the ISPT project s future focus on propulsion for sample return missions: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. Systems/Mission Analysis focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts.
Advancing Sensor Technology for Aerospace Propulsion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Mercer, Carolyn R.
2002-01-01
NASA's Stennis Space Center (SSC) and Glenn Research Center (GRC) participate in the development of technologies for propulsion testing and propulsion applications in air and space transportation. Future transportation systems and the test facilities needed to develop and sustain them are becoming increasingly complex. Sensor technology is a fundamental pillar that makes possible development of complex systems that must operate in automatic mode (closed loop systems), or even in assisted-autonomous mode (highly self-sufficient systems such as planetary exploration spacecraft). Hence, a great deal of effort is dedicated to develop new sensors and related technologies to be used in research facilities, test facilities, and in vehicles and equipment. This paper describes sensor technologies being developed and in use at SSC and GRC, including new technologies in integrated health management involving sensors, components, processes, and vehicles.
NASA Technical Reports Server (NTRS)
Molnar, Dan; Ammon, Rob; Gallagher, Todd; Gouhin, Pat; Hermann, Steve; Roos, John Bryan; Saurer, Craig; White, Heather
1990-01-01
The final design of a hypersonic, SCRAMjet research aircraft, which is to be dropped from a carrier plane, is considered. Topics such as propulsion systems, aerodynamics, component weight analysis, and aircraft design with waverider analyses are stressed with smaller emphasis placed on aircraft systems such as cockpit design and landing gear configurations. Propulsion systems include analysis of the turbofanramjet for acceleration to low hypersonic speed (Mach 6.0) and analysis of the SCRAMjets themselves to carry the aircraft to Mach 10.0. Both analyses include the use of liquid hydrogen as fuel. Inlet design for both propulsion systems is analyzed as well. Aerodynamic properties are found using empirical and theoretical formulas for lift and drag on delta-wing aircraft. The aircraft design involves the integration of all preliminary studies into a modified waverider configuration.
Probabilistic load simulation: Code development status
NASA Astrophysics Data System (ADS)
Newell, J. F.; Ho, H.
1991-05-01
The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.
Overview of the Main Propulsion System for the NASA Ares I Upper Stage
NASA Technical Reports Server (NTRS)
Quinn, Jason E.; Swanson, Luke A.
2009-01-01
A functional overview of the Main Propulsion System (MPS) of the NASA Ares I Upper Stage is provided. In addition to a simple overview of the key MPS functions and design philosophies, major lessons learned are discussed. The intent is to provide a technical overview with enough detail to allow engineers outside of the MPS Integrated Product Team (IPT) to develop a rough understanding of MPS operations, components, design philosophy, and lessons learned.
Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle
NASA Technical Reports Server (NTRS)
Johnston, E. A.
1978-01-01
The detail design of the under the wing experimental composite nacelle components is summarized. Analysis of an inlet, fan bypass duct doors, core cowl doors, and variable fan nozzle are given. The required technology to meet propulsion system performance, weight, and operational characteristics is discussed. The materials, design, and fabrication technology for quiet propulsion systems which will yield installed thrust to weight ratios greater than 3.5 to 1 are described.
Research on advanced transportation systems
NASA Astrophysics Data System (ADS)
Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka
1992-08-01
An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.; Lewandowski, Henry; Homer, Patrick T.; Schlichting, Richard D.
1996-01-01
The NASA Numerical Propulsion System Simulation (NPSS) project is exploring the use of computer simulation to facilitate the design of new jet engines. Several key issues raised in this research are being examined in an NPSS-related research project: zooming, monitoring and control, and support for heterogeneity. The design of a simulation executive that addresses each of these issues is described. In this work, the strategy of zooming, which allows codes that model at different levels of fidelity to be integrated within a single simulation, is applied to the fan component of a turbofan propulsion system. A prototype monitoring and control system has been designed for this simulation to support experimentation with expert system techniques for active control of the simulation. An interconnection system provides a transparent means of connecting the heterogeneous systems that comprise the prototype.
Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)
2000-01-01
Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.
In-Space Propulsion Technology Program Solar Electric Propulsion Technologies
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2006-01-01
NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.
NASA Astrophysics Data System (ADS)
Baris, Engin
Distributed electric propulsion systems benefit from the inherent scale independence of electric propulsion. This property allows the designer to place multiple small electric motors along the wing of an aircraft instead of using a single or several internal combustion motors with gear boxes or other power train components. Aircraft operating at low Reynolds numbers are ideal candidates for benefiting from increased local flow velocities as provided by distributed propulsion systems. In this study, a distributed electric propulsion system made up of eight motor/propellers was integrated into the leading edge of a small fixed wing-body model to investigate the expected improvements on the aerodynamics available to small UAVs operating at low Reynolds numbers. Wind tunnel tests featuring a Design of Experiments (DOE) methodology were used for aerodynamic characterization. Experiments were performed in four modes: all-propellers-on, wing-tip-propellers-alone-on, wing-alone mode, and two-inboard-propellers-on-alone mode. In addition, the all-propeller-on, wing-alone, and a single-tractor configuration were analyzed using VSPAERO, a vortex lattice code, to make comparisons between these different configurations. Results show that the distributed propulsion system has higher normal force, endurance, and range features, despite a potential weight penalty.
The NASA Lewis integrated propulsion and flight control simulator
NASA Technical Reports Server (NTRS)
Bright, Michelle M.; Simon, Donald L.
1991-01-01
A new flight simulation facility was developed at NASA-Lewis. The purpose of this flight simulator is to allow integrated propulsion control and flight control algorithm development and evaluation in real time. As a preliminary check of the simulator facility capabilities and correct integration of its components, the control design and physics models for a short take-off and vertical landing fighter aircraft model were shown, with their associated system integration and architecture, pilot vehicle interfaces, and display symbology. The initial testing and evaluation results show that this fixed based flight simulator can provide real time feedback and display of both airframe and propulsion variables for validation of integrated flight and propulsion control systems. Additionally, through the use of this flight simulator, various control design methodologies and cockpit mechanizations can be tested and evaluated in a real time environment.
Analysis of the Space Propulsion System Problem Using RAVEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
diego mandelli; curtis smith; cristian rabiti
This paper presents the solution of the space propulsion problem using a PRA code currently under development at Idaho National Laboratory (INL). RAVEN (Reactor Analysis and Virtual control ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities. It is designed to derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures) and to perform both Monte- Carlo sampling of random distributed events and Event Tree based analysis. In order to facilitate the input/output handling, a Graphical User Interface (GUI) and a post-processing data-mining module are available.more » RAVEN allows also to interface with several numerical codes such as RELAP5 and RELAP-7 and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc simulator has been developed and written in python language and then interfaced to RAVEN. Such simulator fully models both deterministic (e.g., system dynamics and interactions between system components) and stochastic behaviors (i.e., failures of components/systems such as distribution lines and thrusters). Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo). Such analysis is accomplished to determine both the reliability of the space propulsion system and to propagate the uncertainties associated to a specific set of parameters. As also indicated in the scope of the benchmark problem, the results generated by the stochastic analysis are used to generate risk-informed insights such as conditions under witch different strategy can be followed.« less
Advanced Vehicle system concepts. [nonpetroleum passenger transportation
NASA Technical Reports Server (NTRS)
Hardy, K. S.; Langendoen, J. M.
1983-01-01
Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.
NASA Technical Reports Server (NTRS)
Dash, S. M.; Sinha, N.; Wolf, D. E.; York, B. J.
1986-01-01
An overview of computational models developed for the complete, design-oriented analysis of a scramjet propulsion system is provided. The modular approach taken involves the use of different PNS models to analyze the individual propulsion system components. The external compression and internal inlet flowfields are analyzed by the SCRAMP and SCRINT components discussed in Part II of this paper. The combustor is analyzed by the SCORCH code which is based upon SPLITP PNS pressure-split methodology formulated by Dash and Sinha. The nozzle is analyzed by the SCHNOZ code which is based upon SCIPVIS PNS shock-capturing methodology formulated by Dash and Wolf. The current status of these models, previous developments leading to this status, and, progress towards future hybrid and 3D versions are discussed in this paper.
Fusion for Space Propulsion and Plasma Liner Driven MTF
NASA Technical Reports Server (NTRS)
Thio, Y.C. Francis; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a low atomic weight propellant cannot overcome the problem. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. There are similarities as well as differences at the system level between applying fusion to propulsion and to terrestrial electrical power generation. The differences potentially provide a wider window of opportunities for applying fusion to propulsion. For example, pulsed approaches to fusion may be attractive for the propulsion application. This is particularly so in the light of significant development of the enabling pulsed power component technologies that have occurred in the last two decades because of defense and other energy requirements. The extreme states of matter required to produce fusion reactions may be more readily realizable in the pulsed states with less system mass than in steady states. Significant saving in system mass may result in pulsed fusion systems using plasmas in the appropriate density regimes. Magnetized target fusion, which attempts to combine the favorable attributes of magnetic confinement and inertial compression-containment into one single integrated fusion scheme, appears to have benefits that are worth exploring for propulsion application.
Nuclear Cryogenic Propulsion Stage Affordable Development Strategy
NASA Technical Reports Server (NTRS)
Doughty, Glen E.; Gerrish, H. P.; Kenny, R. J.
2014-01-01
The development of nuclear power for space use in nuclear thermal propulsion (NTP) systems will involve significant expenditures of funds and require major technology development efforts. The development effort must be economically viable yet sufficient to validate the systems designed. Efforts are underway within the National Aeronautics and Space Administration's (NASA) Nuclear Cryogenic Propulsion Stage Project (NCPS) to study what a viable program would entail. The study will produce an integrated schedule, cost estimate and technology development plan. This will include the evaluation of various options for test facilities, types of testing and use of the engine, components, and technology developed. A "Human Rating" approach will also be developed and factored into the schedule, budget and technology development approach.
CSTI Earth-to-orbit propulsion research and technology program overview
NASA Technical Reports Server (NTRS)
Gentz, Steven J.
1993-01-01
NASA supports a vigorous Earth-to-orbit (ETO) research and technology program as part of its Civil Space Technology Initiative. The purpose of this program is to provide an up-to-date technology base to support future space transportation needs for a new generation of lower cost, operationally efficient, long-lived and highly reliable ETO propulsion systems by enhancing the knowledge, understanding and design methodology applicable to advanced oxygen/hydrogen and oxygen/hydrocarbon ETO propulsion systems. Program areas of interest include analytical models, advanced component technology, instrumentation, and validation/verification testing. Organizationally, the program is divided between technology acquisition and technology verification as follows: (1) technology acquisition; and (2) technology verification.
Apollo experience report: Launch escape propulsion subsystem
NASA Technical Reports Server (NTRS)
Townsend, N. A.
1973-01-01
The Apollo launch escape propulsion subsystem contained three solid rocket motors. The general design, development, and qualification of the solid-propellant pitch-control, tower-jettison, and launch-escape motors of the Apollo launch escape propulsion subsystem were completed during years 1961 to 1966. The launch escape system components are described in general terms, and the sequence of events through the ground-based test programs and flight-test programs is discussed. The initial ground rules established for this system were that it should use existing technology and designs as much as possible. The practicality of this decision is proved by the minimum number of problems that were encountered during the development and qualification program.
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and engineering capabilities have been demonstrated for a fusion reactor gain (Q) of the order of unity (TFTR: 0.25, JET: 0.65, JT-60: Q(sub eq) approx. 1.25). These technological advances made it compelling for considering fusion for propulsion.
Power, Propulsion, and Communications for Microspacecraft Missions
NASA Technical Reports Server (NTRS)
deGroot, W. A.; Maloney, T. M.; Vanderaar, M. J.
1998-01-01
The development of small sized, low weight spacecraft should lead to reduced scientific mission costs by lowering fabrication and launch costs. An order of magnitude reduction in spacecraft size can be obtained by miniaturizing components. Additional reductions in spacecraft weight, size, and cost can be obtained by utilizing the synergy that exists between different spacecraft systems. The state-of-the-art of three major systems, spacecraft power, propulsion, and communications is discussed. Potential strategies to exploit the synergy between these systems and/or the payload are identified. Benefits of several of these synergies are discussed.
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.
2015-01-01
The NASA's Evolutionary Xenon Thruster (NEXT) project is developing the next-generation solar electric propulsion ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system in order to provide future NASA science missions with enhanced propulsion capabilities. As part of a comprehensive thruster service life assessment, the NEXT Long-Duration Test (LDT) was initiated in June 2005 to demonstrate throughput capability and validate thruster service life modeling. The NEXT LDT exceeded its original qualification throughput requirement of 450 kg in December 2009. To date, the NEXT LDT has set records for electric propulsion lifetime and has demonstrated 50,170 h of operation, processed 902 kg of propellant, and delivered 34.9 MN-s of total impulse. The NEXT thruster design mitigated several life-limiting mechanisms encountered in the NSTAR design, dramatically increasing service life capability. Various component erosion rates compare favorably to the pretest predictions based upon semi-empirical ion thruster models. The NEXT LDT either met or exceeded all of its original goals regarding lifetime demonstration, performance and wear characterization, and modeling validation. In light of recent budget constraints and to focus on development of other components of the NEXT ion propulsion system, a voluntary termination procedure for the NEXT LDT began in April 2013. As part of this termination procedure, a comprehensive post-test performance characterization was conducted across all operating conditions of the NEXT throttle table. These measurements were found to be consistent with prior data that show minimal degradation of performance over the thruster's 50 kh lifetime. Repair of various diagnostics within the test facility is presently planned while keeping the thruster under high vacuum conditions. These diagnostics will provide additional critical information on the current state of the thruster, in regards to performance and wear, prior to destructive post-test analyses performed on the thruster under atmosphere conditions.
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.
2013-01-01
The NASA's Evolutionary Xenon Thruster (NEXT) project is developing the next-generation solar electric propulsion ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system in order to provide future NASA science missions with enhanced propulsion capabilities. As part of a comprehensive thruster service life assessment, the NEXT Long-Duration Test (LDT) was initiated in June 2005 to demonstrate throughput capability and validate thruster service life modeling. The NEXT LDT exceeded its original qualification throughput requirement of 450 kg in December 2009. To date, the NEXT LDT has set records for electric propulsion lifetime and has demonstrated 50,170 hours of operation, processed 902 kg of propellant, and delivered 34.9 MN-s of total impulse. The NEXT thruster design mitigated several life-limiting mechanisms encountered in the NSTAR design, dramatically increasing service life capability. Various component erosion rates compare favorably to the pretest predictions based upon semi-empirical ion thruster models. The NEXT LDT either met or exceeded all of its original goals regarding lifetime demonstration, performance and wear characterization, and modeling validation. In light of recent budget constraints and to focus on development of other components of the NEXT ion propulsion system, a voluntary termination procedure for the NEXT LDT began in April 2013. As part of this termination procedure, a comprehensive post-test performance characterization was conducted across all operating conditions of the NEXT throttle table. These measurements were found to be consistent with prior data that show minimal degradation of performance over the thruster's 50 kh lifetime. Repair of various diagnostics within the test facility is presently planned while keeping the thruster under high vacuum conditions. These diagnostics will provide additional critical information on the current state of the thruster, in regards to performance and wear, prior to destructive post-test analyses performed on the thruster under atmosphere conditions.
NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Williams, Hunter; Burnside, Chris
2015-01-01
The Resource Prospector mission is to investigate the Moon's polar regions in search of volatiles. The government-version lander concept for the mission is composed of a braking stage and a liquid-propulsion lander stage. A propulsion trade study concluded with a solid rocket motor for the braking stage while using the 4th-stage Peacekeeper (PK) propulsion components for the lander stage. The mechanical design of the liquid propulsion system was conducted in concert with the lander structure design. A propulsion cold-flow test article was fabricated and integrated into a lander development structure, and a series of cold flow tests were conducted to characterize the fluid transient behavior and to collect data for validating analytical models. In parallel, RS-34 PK thrusters to be used on the lander stage were hot-fire tested in vacuum conditions as part of risk reduction activities.
Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project
NASA Technical Reports Server (NTRS)
Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton
2017-01-01
The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.
Web-Based Distributed Simulation of Aeronautical Propulsion System
NASA Technical Reports Server (NTRS)
Zheng, Desheng; Follen, Gregory J.; Pavlik, William R.; Kim, Chan M.; Liu, Xianyou; Blaser, Tammy M.; Lopez, Isaac
2001-01-01
An application was developed to allow users to run and view the Numerical Propulsion System Simulation (NPSS) engine simulations from web browsers. Simulations were performed on multiple INFORMATION POWER GRID (IPG) test beds. The Common Object Request Broker Architecture (CORBA) was used for brokering data exchange among machines and IPG/Globus for job scheduling and remote process invocation. Web server scripting was performed by JavaServer Pages (JSP). This application has proven to be an effective and efficient way to couple heterogeneous distributed components.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
2000-01-01
NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.
High Power Silicon Carbide (SiC) Power Processing Unit Development
NASA Technical Reports Server (NTRS)
Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.
2015-01-01
NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.
Computational simulation of concurrent engineering for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1992-01-01
Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.
Computational simulation for concurrent engineering of aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Singhal, S. N.
1993-01-01
Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.
Computational simulation for concurrent engineering of aerospace propulsion systems
NASA Astrophysics Data System (ADS)
Chamis, C. C.; Singhal, S. N.
1993-02-01
Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.
A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
1999-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.
Rotorcraft Health Management Issues and Challenges
NASA Technical Reports Server (NTRS)
Zakrajsek, James J.; Dempsey, Paula J.; Huff, Edward M.; Augustin, Michael; Safa-Bakhsh, Robab; Ephraim, Piet; Grabil, Paul; Decker, Harry J.
2006-01-01
This paper presents an overview of health management issues and challenges that are specific to rotorcraft. Rotorcraft form a unique subset of air vehicles in that their propulsion system is used not only for propulsion, but also serves as the primary source of lift and maneuvering of the vehicle. No other air vehicle relies on the propulsion system to provide these functions through a transmission system with single critical load paths without duplication or redundancy. As such, health management of the power train is a critical and unique part of any rotorcraft health management system. This paper focuses specifically on the issues and challenges related to the dynamic mechanical components in the main power train. This includes the transmission and main rotor mechanisms. This paper will review standard practices used for rotorcraft health management, lessons learned from fielded trials, and future challenges.
Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
2001-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
NASA Technical Reports Server (NTRS)
Boyce, L.
1992-01-01
A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing.
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. The NASA Aeronautics Research Mission Directorate has identified a suite of investments to meet long term research demands beyond the purview of commercial investment. Electrification of aviation propulsion through turboelectric or hybrid electric propulsion is one of many exciting research areas which has the potential to revolutionize the aviation industry. This paper will provide an overview of the turboelectric and hybrid electric technologies being developed under NASAs Advanced Air Transportation Technology (AATT) Project, and how these technologies can impact vehicle design. An overview will be presented of vehicle system studies and the electric drive system assumptions for successful turboelectric and hybrid electric propulsion in single aisle size commercial aircraft. Key performance parameters for electric drive system technologies will be reviewed, and the technical investment made in materials, electric machines, power electronics, and integrated power systems will be discussed. Finally, power components for a single aisle turboelectric aircraft with an electrically driven tail cone thruster and a hybrid electric nine passenger aircraft with a range extender will be parametrically sized.
GASP- General Aviation Synthesis Program. Volume 5: Weight
NASA Technical Reports Server (NTRS)
Hague, D.
1978-01-01
Subroutines for determining the weights of propulsion system related components and the airframe components of an aircraft configuration are presented. Subroutines that deal with design load conditions, aircraft balance, and tail sizing are included. Options for turbine and internal combustion engines are provided.
Development of a 13 kW Hall Thruster Propulsion System Performance Model for AEPS
NASA Technical Reports Server (NTRS)
Stanley, Steven; Allen, May; Goodfellow, Keith; Chew, Gilbert; Rapetti, Ryan; Tofil, Todd; Herman, Dan; Jackson, Jerry; Myers, Roger
2017-01-01
The Advanced Electric Propulsion System (AEPS) program will develop a flight 13kW Hall thruster propulsion system based on NASA's HERMeS thruster. The AEPS system includes the Hall Thruster, the Power Processing Unit (PPU) and the Xenon Flow Controller (XFC). These three primary components must operate together to ensure that the system generates the required combinations of thrust and specific impulse at the required system efficiencies for the desired system lifetime. At the highest level, the AEPS system will be integrated into the spacecraft and will receive power, propellant, and commands from the spacecraft. Power and propellant flow rates will be determined by the throttle set points commanded by the spacecraft. Within the system, the major control loop is between the mass flow rate and thruster current, with time-dependencies required to handle all expected transients, and additional, much slower interactions between the thruster and cathode temperatures, flow controller and PPU. The internal system interactions generally occur on shorter timescales than the spacecraft interactions, though certain failure modes may require rapid responses from the spacecraft. The AEPS system performance model is designed to account for all these interactions in a way that allows evaluation of the sensitivity of the system to expected changes over the planned mission as well as to assess the impacts of normal component and assembly variability during the production phase of the program. This effort describes the plan for the system performance model development, correlation to NASA test data, and how the model will be used to evaluate the critical internal and external interactions. The results will ensure the component requirements do not unnecessarily drive the system cost or overly constrain the development program. Finally, the model will be available to quickly troubleshoot any future unforeseen development challenges.
Nuclear thermal propulsion technology: Results of an interagency panel in FY 1991
NASA Technical Reports Server (NTRS)
Clark, John S.; Mcdaniel, Patrick; Howe, Steven; Helms, Ira; Stanley, Marland
1993-01-01
NASA LeRC was selected to lead nuclear propulsion technology development for NASA. Also participating in the project are NASA MSFC and JPL. The U.S. Department of Energy will develop nuclear technology and will conduct nuclear component, subsystem, and system testing at appropriate DOE test facilities. NASA program management is the responsibility of NASA/RP. The project includes both nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) technology development. This report summarizes the efforts of an interagency panel that evaluated NTP technology in 1991. Other panels were also at work in 1991 on other aspects of nuclear propulsion, and the six panels worked closely together. The charters for the other panels and some of their results are also discussed. Important collaborative efforts with other panels are highlighted. The interagency (NASA/DOE/DOD) NTP Technology Panel worked in 1991 to evaluate nuclear thermal propulsion concepts on a consistent basis. Additionally, the panel worked to continue technology development project planning for a joint project in nuclear propulsion for the Space Exploration Initiative (SEI). Five meetings of the panel were held in 1991 to continue the planning for technology development of nuclear thermal propulsion systems. The state-of-the-art of the NTP technologies was reviewed in some detail. The major technologies identified were as follows: fuels, coatings, and other reactor technologies; materials; instrumentation, controls, health monitoring and management, and associated technologies; nozzles; and feed system technology, including turbopump assemblies.
LOX/Methane In-Space Propulsion Systems Technology Status and Gaps
NASA Technical Reports Server (NTRS)
Klem, Mark D.
2017-01-01
Human exploration architecture studies have identified liquid oxygen (LOX)Methane (LCH4) as a strong candidate for both interplanetary and descent ascent propulsion solutions. Significant research efforts into methane propulsion have been conducted for over 50 years, ranging from fundamental combustion mixing efforts to rocket chamber and system level demonstrations. Over the past 15 years NASA and its partners have built upon these early activities that have demonstrated practical components and sub-systems needed to field future methane space transportation elements. These advanced development efforts have formed a foundation of LOXLCH4 propulsion knowledge that has significantly reduced the development risks of future methane based space transportation elements for human exploration beyond earth orbit. As a bipropellant propulsion system, LOXLCH4 has some favorable characteristics for long life and reusability, which are critical to lunar and Mars missions. Non-toxic, non-corrosive, self-venting, and simple to purge. No extensive decontamination process required as with toxic propellants. High vapor pressure provides for excellent vacuum ignition characteristics. Performance is better than current earth storable propellants for human scale spacecraft. Provides the capability for future Mars exploration missions to use propellants that are produced in-situ on Mars Liquid Methane is thermally similar to O2 as a cryogenic propellant, 90,111 K (LO2, LCH4 respectively) instead of the 23 K of LH2. Allows for common components and thus providing cost savings as compared to liquid hydrogen (LH2). Due to liquid methane having a 6x higher density than hydrogen, it can be stored in much smaller volumes. Cryogenic storage aspect of these propellants needs to be addressed. Passive techniques using shielding and orientations to deep space Refrigeration may be required to maintain both oxygen and methane in liquid forms
NASA Technical Reports Server (NTRS)
Nelson, D. P.
1981-01-01
The design layouts and detailed design drawings of coannular exhaust nozzle models for a supersonic propulsion system are presented. The layout drawings show the assembly of the component parts for each configuration. A listing of the component parts is also given.
The NASA Evolutionary Xenon Thruster (NEXT): NASA's Next Step for U.S. Deep Space Propulsion
NASA Technical Reports Server (NTRS)
Schmidt, George R.; Patterson, Michael J.; Benson, Scott W.
2008-01-01
NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to enhance the performance and lower the costs of future NASA space science missions. This is being accomplished by producing Engineering Model (EM) and Prototype Model (PM) components, validating these via qualification-level and integrated system testing, and preparing the transition of NEXT technologies to flight system development. The project is currently completing one of the final milestones of the effort, that is operation of an integrated NEXT Ion Propulsion System (IPS) in a simulated space environment. This test will advance the NEXT system to a NASA Technology Readiness Level (TRL) of 6 (i.e., operation of a prototypical system in a representative environment), and will confirm its readiness for flight. Besides its promise for upcoming NASA science missions, NEXT may have excellent potential for future commercial and international spacecraft applications.
NASA Technical Reports Server (NTRS)
Obrien, Charles J.
1993-01-01
Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.
Ionic imbalance induced self-propulsion of liquid metals
Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-zadeh, Kourosh
2016-01-01
Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems. PMID:27488954
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
Ionic imbalance induced self-propulsion of liquid metals.
Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F; O'Mullane, Anthony P; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh
2016-08-04
Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.
Ionic imbalance induced self-propulsion of liquid metals
NASA Astrophysics Data System (ADS)
Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh
2016-08-01
Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.
Shielding Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Caffrey, Jarvis A.; Gomez, Carlos F.; Scharber, Luke L.
2015-01-01
Radiation shielding analysis and development for the Nuclear Cryogenic Propulsion Stage (NCPS) effort is currently in progress and preliminary results have enabled consideration for critical interfaces in the reactor and propulsion stage systems. Early analyses have highlighted a number of engineering constraints, challenges, and possible mitigating solutions. Performance constraints include permissible crew dose rates (shared with expected cosmic ray dose), radiation heating flux into cryogenic propellant, and material radiation damage in critical components. Design strategies in staging can serve to reduce radiation scatter and enhance the effectiveness of inherent shielding within the spacecraft while minimizing the required mass of shielding in the reactor system. Within the reactor system, shield design is further constrained by the need for active cooling with minimal radiation streaming through flow channels. Material selection and thermal design must maximize the reliability of the shield to survive the extreme environment through a long duration mission with multiple engine restarts. A discussion of these challenges and relevant design strategies are provided for the mitigation of radiation in nuclear thermal propulsion.
Research Opportunities in Space Propulsion
NASA Technical Reports Server (NTRS)
Rodgers, Stephen L.
2007-01-01
Rocket propulsion determines the primary characteristics of any space vehicle; how fast and far it can go, its lifetime, and its capabilities. It is the primary factor in safety and reliability and the biggest cost driver. The extremes of heat and pressure produced by propulsion systems push the limits of materials used for manufacturing. Space travel is very unforgiving with little room for errors, and so many things can go wrong with these very complex systems. So we have to plan for failure and that makes it costly. But what is more exciting than the roar of a rocket blasting into space? By its nature the propulsion world is conservative. The stakes are so high at every launch, in terms of payload value or in human life, that to introduce new components to a working, qualified system is extremely difficult and costly. Every launch counts and no risks are tolerated, which leads to the space world's version of Catch-22:"You can't fly till you flown." The last big 'game changer' in propulsion was the use of liquid hydrogen as a fuel. No new breakthrough, low cost access to space system will be developed without new efficient propulsion systems. Because there is no large commercial market driving investment in propulsion, what propulsion research is done is sponsored by government funding agencies. A further difficulty in propulsion technology development is that there are so few new systems flying. There is little opportunity to evolve propulsion technologies and to update existing systems with results coming out of research as there is in, for example, the auto industry. The biggest hurdle to space exploration is getting off the ground. The launch phase will consume most of the energy required for any foreseeable space exploration mission. The fundamental physical energy requirements of escaping earth's gravity make it difficult. It takes 60,000 kJ to put a kilogram into an escape orbit. The vast majority (-97%) of the energy produced by a launch vehicle is used to get propellants off the ground to be burned later. A modem launch vehicle is usually able to put no more than 1.5%-3% of its total liftoff weight into low earth orbit.
Aerospace Systems Technical Research Operation Services (ASTROS) Industry Day (Briefing Charts)
2014-07-01
Integrated Motor Life Management AFM 315E – Green Propellant MCAT – Missile Component Advanced Tech EP – Electric Propulsion Distribution A...service life estimate •Distribution A: Approved for public release; unlimited distribution 23 MCAT (Motor Component Assessment Technology) What are
Intermediate Fidelity Closed Brayton Cycle Power Conversion Model
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.
2006-01-01
This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.
Propulsion and braking in the study of asymmetry in able-bodied men's gaits.
Potdevin, François; Gillet, Christophe; Barbier, Franck; Coello, Yann; Moretto, Pierre
2008-12-01
The present study was designed to test functional differences between both lower limbs in able-bodied gait according to fore-aft force impulse analyses and to assess the existence of a preferential lower limb for forward propulsion and braking. The leg that did more of the braking (Most Braking Limb) and the leg that did more of the propulsion (Most Propulsive Limb) were defined by the higher negative and positive impulses calculated from the anterior-posterior component of the ground reaction force. 24 adult men free of pain and injury to their lower extremities (M age =25.9 yr., SD=4.5) performed 10 walking trials on a 10-m walkway with two force plates flush mounted in the middle. The anterior-posterior component of the velocity of the center of mass (V(AP)) was calculated with the VICON system. Results highlighted two forms of asymmetry behaviour: although significant bilateral differences between the legs concerning the propulsive and braking impulses were found in all participants, 70.8% of the participants displayed a different Most Braking Limb than Most Propulsive Limb, whereas 25% used the same leg to produce both more propulsion and braking. High consistency was found in the behavioural strategy. Bilateral differences in V(AP) according to the gait cycle (Most Propulsive Limb vs Most Braking Limb) suggested a functional division of tasks between the two lower limbs for 70.8% of the participants. The study provides support for the relevancy of a functional categorization to highlight different asymmetry strategies in able-bodied gait.
3D Printing the Complete CubeSat
NASA Technical Reports Server (NTRS)
Kief, Craig
2015-01-01
The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.
Development costs for a nuclear electric propulsion stage.
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Prickett, W. Z.
1973-01-01
Development costs are presented for an unmanned nuclear electric propulsion (NEP) stage based upon a liquid metal cooled, in-core thermionic reactor. A total of 120 kWe are delivered to the thrust subsystem which employs mercury ion engines for electric propulsion. This study represents the most recent cost evaluation of the development of a reactor power system for a wide range of nuclear space power applications. These include geocentric, and outer planet and other deep space missions. The development program is described for the total NEP stage, based upon specific development programs for key NEP stage components and subsystems.
CFD Techniques for Propulsion Applications
NASA Technical Reports Server (NTRS)
1992-01-01
The symposium was composed of the following sessions: turbomachinery computations and validations; flow in ducts, intakes, and nozzles; and reacting flows. Forty papers were presented, and they covered full 3-D code validation and numerical techniques; multidimensional reacting flow; and unsteady viscous flow for the entire spectrum of propulsion system components. The capabilities of the various numerical techniques were assessed and significant new developments were identified. The technical evaluation spells out where progress has been made and concludes that the present state of the art has almost reached the level necessary to tackle the comprehensive topic of computational fluid dynamics (CFD) validation for propulsion.
NASA Technical Reports Server (NTRS)
Poppel, G. L.; Glasheen, W. M.
1989-01-01
A detailed design of a fiber optic propulsion control system, integrating favored sensors and electro-optics architecture is presented. Layouts, schematics, and sensor lists describe an advanced fighter engine system model. Components and attributes of candidate fiber optic sensors are identified, and evaluation criteria are used in a trade study resulting in favored sensors for each measurand. System architectural ground rules were applied to accomplish an electro-optics architecture for the favored sensors. A key result was a considerable reduction in signal conductors. Drawings, schematics, specifications, and printed circuit board layouts describe the detailed system design, including application of a planar optical waveguide interface.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
Systems Analysis Initiated for All-Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three-dimensional computer-aided design (CAD) models of representative PEM fuel cell stack and components were developed and integrated into the virtual reality environment along with an Excel-based model used to calculate fuel cell electrical performance on the basis of cell dimensions (see the figure). CAD models of a representative general aviation aircraft were also developed and added to the environment. With the use of special headgear, users will be able to virtually manipulate the fuel cell s physical characteristics and its placement within the aircraft while receiving information on the resultant fuel cell output power and performance. As the systems analysis effort progresses, we will add more component models to the GRUVE environment to help us more fully understand the effect of various system configurations on the aircraft.
NASA Technical Reports Server (NTRS)
McNeal, Curtis I., Jr.; Anderson, William
1999-01-01
NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.
Venus Express Chemical Propulsion System - The Mars Express Legacy
NASA Astrophysics Data System (ADS)
Hunter, C. J.
2004-10-01
ESA's ambition of inter-planetary exploration using a fast-track low cost industrial programme was well achieved with Mars Express. Reusing the platform architecture for the service module and specifically the Propulsion system enabled Venus Express to benefit from several lessons learnt from the Mars Express experience. Using all existing components qualified for previous programmes, many of them commercial telecommunication spacecraft programmes with components available from stock, an industrial organisation familiar from Mars Express was able to compress the schedule to make the November 2005 launch window a realistic target. While initial inspection of the CPS schematic indicates a modified Eurostar type architecture, - a similar system using some Eurostar components - would be a fairer description. The use of many parts of the system on arrival at the destination (Mars or Venus in this case) is a departure from the usual mode of operation, where many components are used during the initial few weeks of GTO or GEO. The system modifications over the basic Eurostar system have catered for this in terms of reliability contingencies by replacing components, or providing different levels of test capability or isolation in flight. This paper aims to provide an introduction to the system, address the evolution from Eurostar, and provide an initial assessment of the success of these modifications using the Mars Express experience, and how measures have been adopted specifically for Venus Express.
Attitude Control Propulsion Components, Volume 2
NASA Technical Reports Server (NTRS)
1974-01-01
Attitude control propulsion components are described, including hydrazine thrusters, hydrazine thruster and cold gas jet valves, and pressure and temperature transducers. Component-ordered data are presented in tabular form; the manufacturer and specific space program are included.
26th JANNAF Airbreathing Propulsion Subcommittee Meeting. Volume 1
NASA Technical Reports Server (NTRS)
Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)
2002-01-01
This volume, the first of four volumes, is a collection of 28 unclassified/unlimited-distribution papers which were presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 26th Airbreathing Propulsion Subcommittee (APS) was held jointly with the 38th Combustion Subcommittee (CS), 20th Propulsion Systems Hazards Subcommittee (PSHS), and 2nd Modeling and Simulation Subcommittee. The meeting was held 8-12 April 2002 at the Bayside Inn at The Sandestin Golf & Beach Resort and Eglin Air Force Base, Destin, Florida. Topics covered include: scramjet and ramjet R&D program overviews; tactical propulsion; space access; NASA GTX status; PDE technology; actively cooled engine structures; modeling and simulation of complex hydrocarbon fuels and unsteady processes; and component modeling and simulation.
Using the NPSS Environment to Model an Altitude Test Facility
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Owen, Albert K.; Huffman, Brian C.
2013-01-01
An altitude test facility was modeled using Numerical Propulsion System Simulation (NPSS). This altitude test facility model represents the most detailed facility model developed in the NPSS architecture. The current paper demonstrates the use of the NPSS system to define the required operating range of a component for the facility. A significant number of additional component models were easily developed to complete the model. Discussed in this paper are the additional components developed and what was done in the development of these components.
Attitude Control Propulsion Components, Volume 1
NASA Technical Reports Server (NTRS)
1974-01-01
Effort was made to include as much engineering information on each component as possible, consistent with usefulness and catalog size limitations. The contents of this catalog contain components which were qualified for use with spacecraft monopropellant hydrazine and inert gas attitude control systems. Thrust ranges up to 44.5 N (10.0 lbf) for hydrazine and inert gas sytems were considered. Additionally, some components qualified for uses other than spacecraft attitude control are included because they are suitable for use in attitude controls systems.
Solar Sail Propulsion Technology Readiness Level Database
NASA Technical Reports Server (NTRS)
Adams, Charles L.
2004-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).
Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development
NASA Technical Reports Server (NTRS)
Klem, Mark D.; Smith, Timothy D.; Wadel, Mary F.; Meyer, Michael L.; Free, James M.; Cikanek, Harry A., III
2011-01-01
Exploration Systems Architecture Study conducted by NASA in 2005 identified the liquid oxygen (LOx)/liquid methane (LCH4) propellant combination as a prime candidate for the Crew Exploration Vehicle Service Module propulsion and for later use for ascent stage propulsion of the lunar lander. Both the Crew Exploration Vehicle and Lunar Lander were part the Constellation architecture, which had the objective to provide global sustained lunar human exploration capability. From late 2005 through the end of 2010, NASA and industry matured advanced development designs for many components that could be employed in relatively high thrust, high delta velocity, pressure fed propulsion systems for these two applications. The major investments were in main engines, reaction control engines, and the devices needed for cryogenic fluid management such as screens, propellant management devices, thermodynamic vents, and mass gauges. Engine and thruster developments also included advanced high reliability low mass igniters. Extensive tests were successfully conducted for all of these elements. For the thrusters and engines, testing included sea level and altitude conditions. This advanced development provides a mature technology base for future liquid oxygen/liquid methane pressure fed space propulsion systems. This paper documents the design and test efforts along with resulting hardware and test results.
An Overview of Propulsion Concept Studies and Risk Reduction Activities for Robotic Lunar Landers
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Story, George; Burnside, Chris; Kudlach, Al
2010-01-01
In support of designing robotic lunar lander concepts, the propulsion team at NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL), with participation from industry, conducted a series of trade studies on propulsion concepts with an emphasis on light-weight, advanced technology components. The results suggest a high-pressure propulsion system may offer some benefits in weight savings and system packaging. As part of the propulsion system, a solid rocket motor was selected to provide a large impulse to reduce the spacecraft s velocity prior to the lunar descent. In parallel to this study effort, the team also began technology risk reduction testing on a high thrust-to-weight descent thruster and a high-pressure regulator. A series of hot-fire tests was completed on the descent thruster in vacuum conditions at NASA White Sands Test Facility (WSTF) in New Mexico in 2009. Preparations for a hot-fire test series on the attitude control thruster at WSTF and for pressure regulator testing are now underway. This paper will provide an overview of the concept trade study results along with insight into the risk mitigation activities conducted to date.
Hypersonic missile propulsion system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazmar, R.R.
1998-11-01
Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technologymore » base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.« less
Instellar Exploration: Propulsion Options for Precursors and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Charles Les; Leifer, Stephanie
1999-01-01
NASA is considering a mission to explore near-interstellar space early in the next decade as the first step toward a vigorous interstellar exploration program. A key enabling technology for such an ambitious science and exploration effort is the development of propulsion systems capable of providing fast trip times; mission duration should not exceed the professional lifetime of the investigative team. Advanced propulsion technologies that might support an interstellar precursor mission early in the next century include some combination of solar sails, nuclear electric propulsion systems, and aerogravity assists. Follow-on missions to far beyond the heliopause will require the development of propulsion technologies that are only at the conceptual stage today. These include 1) matter-antimatter annihilation, 2) beamed-energy sails, and 3) fusion systems. For years, the scientific community has been interested in the development of solar sail technology to support exploration of the inner and outer planets. Progress in thin-film technology and the development of technologies that may enable the remote assembly of large sails in space are only now maturing to the point where ambitious interstellar precursor missions can be considered. Electric propulsion is now being demonstrated for planetary exploration by the Deep Space 1 mission. The primary issues for it's adaptation to interstellar precursor applications include the nuclear reactor that would be required and the engine lifetime. For further term interstellar missions, matter-antimatter annihilation propulsion system concepts have the highest energy density of any propulsion systems using onboard propellants. However, there are numerous challenges to production and storage of antimatter that must be overcome before it can be seriously considered for interstellar flight. Off-board energy systems (laser sails) are candidates for long-distance interstellar flight but development of component technologies and necessary infrastructure have not begun.. Fusion propulsion has been studied extensively. However, fusion technology is still considered immature, even after many decades of well-funded research. Furthermore, fusion alone does not offer high enough energy density to make it a viable candidate for interstellar propulsion unless propellant can be collected in situ, as was considered by R. Bussard for his interstellar ramjet concept. The current research in investigating these propulsion systems will be described, and the range of application of each technology will be explored.
Assessment of Spacecraft Systems Integration Using the Electric Propulsion Interactions Code (EPIC)
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Kuharski, Robert A.; Mandell, Myron J.; Gardner, Barbara M.; Kauffman, William J. (Technical Monitor)
2002-01-01
SAIC is currently developing the Electric Propulsion Interactions Code 'EPIC', an interactive computer tool that allows the construction of a 3-D spacecraft model, and the assessment of interactions between its subsystems and the plume from an electric thruster. EPIC unites different computer tools to address the complexity associated with the interaction processes. This paper describes the overall architecture and capability of EPIC including the physics and algorithms that comprise its various components. Results from selected modeling efforts of different spacecraft-thruster systems are also presented.
1999-10-21
This is an artist's rendition of an antimatter propulsion system. Matter - antimatter arnihilation offers the highest possible physical energy density of any known reaction substance. It is about 10 billion times more powerful than that of chemical engergy such as hydrogen and oxygen combustion. Antimatter would be the perfect rocket fuel, but the problem is that the basic component of antimatter, antiprotons, doesn't exist in nature and has to manufactured. The process of antimatter development is on-going and making some strides, but production of this as a propulsion system is far into the future.
Computer programs for calculating potential flow in propulsion system inlets
NASA Technical Reports Server (NTRS)
Stockman, N. O.; Button, S. L.
1973-01-01
In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.
Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems
NASA Technical Reports Server (NTRS)
Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.
2002-01-01
The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.
Health management and controls for Earth-to-orbit propulsion systems
NASA Astrophysics Data System (ADS)
Bickford, R. L.
1995-03-01
Avionics and health management technologies increase the safety and reliability while decreasing the overall cost for Earth-to-orbit (ETO) propulsion systems. New ETO propulsion systems will depend on highly reliable fault tolerant flight avionics, advanced sensing systems and artificial intelligence aided software to ensure critical control, safety and maintenance requirements are met in a cost effective manner. Propulsion avionics consist of the engine controller, actuators, sensors, software and ground support elements. In addition to control and safety functions, these elements perform system monitoring for health management. Health management is enhanced by advanced sensing systems and algorithms which provide automated fault detection and enable adaptive control and/or maintenance approaches. Aerojet is developing advanced fault tolerant rocket engine controllers which provide very high levels of reliability. Smart sensors and software systems which significantly enhance fault coverage and enable automated operations are also under development. Smart sensing systems, such as flight capable plume spectrometers, have reached maturity in ground-based applications and are suitable for bridging to flight. Software to detect failed sensors has reached similar maturity. This paper will discuss fault detection and isolation for advanced rocket engine controllers as well as examples of advanced sensing systems and software which significantly improve component failure detection for engine system safety and health management.
Turbopump Design and Analysis Approach for Nuclear Thermal Rockets
NASA Technical Reports Server (NTRS)
Chen, Shu-cheng S.; Veres, Joseph P.; Fittje, James E.
2006-01-01
A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.
A review and forecast of engine system research at the Army Propulsion Directorate
NASA Technical Reports Server (NTRS)
Bobula, George A.
1989-01-01
An account is given of the development status and achievements to date of the U.S. Army Propulsion Directorate's Small Turbine Engine Research (STER) programs, which are experimental investigations of the physics of entire engine systems from the viewpoints of component interactions and/or system dynamics. STER efforts are oriented toward the evaluation of complete turboshaft engine advanced concepts and are conducted at the ECRL-2 indoor, sea-level engine test facility. Attention is given to the results obtained by STER experiments concerned with IR-suppressing engine exhausts, a ceramic turbine-blade shroud, an active shaft-vibration control system, and a ceramic-matrix combustor liner.
Is effective force application in handrim wheelchair propulsion also efficient?
Bregman, D J J; van Drongelen, S; Veeger, H E J
2009-01-01
Efficiency in manual wheelchair propulsion is low, as is the fraction of the propulsion force that is attributed to the moment of propulsion of the wheelchair. In this study we tested the hypothesis that a tangential propulsion force direction leads to an increase in physiological cost, due to (1) the sub-optimal use of elbow flexors and extensors, and/or (2) the necessity of preventing of glenohumeral subluxation. Five able-bodied and 11 individuals with a spinal cord injury propelled a wheelchair while kinematics and kinetics were collected. The results were used to perform inverse dynamical simulations with input of (1) the experimentally obtained propulsion force, and (2) only the tangential component of that force. In the tangential force condition the physiological cost was over 30% higher, while the tangential propulsion force was only 75% of the total experimental force. According to model estimations, the tangential force condition led to more co-contraction around the elbow, and a higher power production around the shoulder joint. The tangential propulsion force led to a significant, but small 4% increase in necessity for the model to compensate for glenohumeral subluxation, which indicates that this is not a likely cause of the decrease in efficiency. The present findings support the hypothesis that the observed force direction in wheelchair propulsion is a compromise between efficiency and the constraints imposed by the wheelchair-user system. This implies that training should not be aimed at optimization of the propulsion force, because this may be less efficient and more straining for the musculoskeletal system.
SNTP propellant management system
NASA Technical Reports Server (NTRS)
Tippetts, Tom
1993-01-01
Viewgraphs on the following are presented: (1) space nuclear thermal propulsion (SNTP) propellant management system; (2) SNTP cycle selection; (3) NTP system components unique design constraints; (4) bleed cycle unique design requirement for turbopump; (5) bleed cycle turbopump; (6) SNTP carbon-carbon turbine wheel; and (7) turbine development program.
NASA Technical Reports Server (NTRS)
Huang, Zhao-Feng; Fint, Jeffry A.; Kuck, Frederick M.
2005-01-01
This paper is to address the in-flight reliability of a liquid propulsion engine system for a launch vehicle. We first establish a comprehensive list of system and sub-system reliability drivers for any liquid propulsion engine system. We then build a reliability model to parametrically analyze the impact of some reliability parameters. We present sensitivity analysis results for a selected subset of the key reliability drivers using the model. Reliability drivers identified include: number of engines for the liquid propulsion stage, single engine total reliability, engine operation duration, engine thrust size, reusability, engine de-rating or up-rating, engine-out design (including engine-out switching reliability, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction), propellant specific hazards, engine start and cutoff transient hazards, engine combustion cycles, vehicle and engine interface and interaction hazards, engine health management system, engine modification, engine ground start hold down with launch commit criteria, engine altitude start (1 in. start), Multiple altitude restart (less than 1 restart), component, subsystem and system design, manufacturing/ground operation support/pre and post flight check outs and inspection, extensiveness of the development program. We present some sensitivity analysis results for the following subset of the drivers: number of engines for the propulsion stage, single engine total reliability, engine operation duration, engine de-rating or up-rating requirements, engine-out design, catastrophic fraction, preventable failure fraction, unnecessary shutdown fraction, and engine health management system implementation (basic redlines and more advanced health management systems).
Aeronautics and Space Engineering Board: Aeronautics Assessment Committee
NASA Technical Reports Server (NTRS)
1977-01-01
High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.
Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments
NASA Technical Reports Server (NTRS)
Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana
2017-01-01
A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.
Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments
NASA Technical Reports Server (NTRS)
Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana
2017-01-01
A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.
Fiber optics for propulsion control systems
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1985-01-01
In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.
Fiberoptics for propulsion control system
NASA Technical Reports Server (NTRS)
Baumbick, R. J.
1984-01-01
In aircraft systems with digital controls, fiberoptics has advantages over wire systems because of its inherent immunity to electromagnetic noise (EMI) and electromagnetic pulses (EMP). It also offers a weight benefit when metallic conductors are replaced by optical fibers. To take full advantage of the benefits of optical waveguides, passive optical sensors are also being developed to eliminate the need for electrical power to the sensor. Fiberoptics may also be used for controlling actuators on engine and airframe. In this application, the optical fibers, connectors, etc. will be subjected to high temperature and vibrations. This paper discussed the use of fiberoptics in aircraft propulsion systems together with the optical sensors and optically controlled actuators being developed to take full advantage of the benefits which fiberoptics offers. The requirements for sensors and actuators in advanced propulsion systems are identified. The benefits of using fiberoptics in place of conventional wire systems are discussed as well as the environmental conditions under which the optical components must operate.
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2014-01-01
A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.
Electric propulsion options for 10 kW class earth space missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.
A Practical Approach to Starting Fission Surface Power Development
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2006-01-01
The Prometheus Power and Propulsion Program has been reformulated to address NASA needs relative to lunar and Mars exploration. Emphasis has switched from the Jupiter Icy Moons Orbiter (JIMO) flight system development to more generalized technology development addressing Fission Surface Power (FSP) and Nuclear Thermal Propulsion (NTP). Current NASA budget priorities and the deferred mission need date for nuclear systems prohibit a fully funded reactor Flight Development Program. However, a modestly funded Advanced Technology Program can and should be conducted to reduce the risk and cost of future flight systems. A potential roadmap for FSP technology development leading to possible flight applications could include three elements: 1) Conceptual Design Studies, 2) Advanced Component Technology, and 3) Non-Nuclear System Testing. The Conceptual Design Studies would expand on recent NASA and DOE analyses while increasing the depth of study in areas of greatest uncertainty such as reactor integration and human-rated shielding. The Advanced Component Technology element would address the major technology risks through development and testing of reactor fuels, structural materials, primary loop components, shielding, power conversion, heat rejection, and power management and distribution (PMAD). The Non-Nuclear System Testing would provide a modular, technology testbed to investigate and resolve system integration issues.
Aircraft fuel conservation technology. Task force report, September 10, 1975
NASA Technical Reports Server (NTRS)
1975-01-01
An advanced technology program is described for reduced fuel consumption in air transport. Cost benefits and estimates are given for improved engine design and components, turboprop propulsion systems, active control systems, laminar flow control, and composite primary structures.
Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator
NASA Technical Reports Server (NTRS)
Gaynor, T. L.
1994-01-01
The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.
A distributed component framework for science data product interoperability
NASA Technical Reports Server (NTRS)
Crichton, D.; Hughes, S.; Kelly, S.; Hardman, S.
2000-01-01
Correlation of science results from multi-disciplinary communities is a difficult task. Traditionally data from science missions is archived in proprietary data systems that are not interoperable. The Object Oriented Data Technology (OODT) task at the Jet Propulsion Laboratory is working on building a distributed product server as part of a distributed component framework to allow heterogeneous data systems to communicate and share scientific results.
Optical engine initiation: multiple compartment applications
NASA Astrophysics Data System (ADS)
Hunt, Jeffrey H.
2009-05-01
Modern day propulsion systems are used in aerospace applications for different purposes. The aerospace industry typically requires propulsion systems to operate in a rocket mode in order to drive large boost vehicles. The defense industry generally requires propulsion systems to operate in an air-breathing mode in order to drive missiles. A mixed system could use an air-breathing first stage and a rocket-mode upper stage for space access. Thus, propulsion systems can be used for high mass payloads and where the payload is dominated by the fuel/oxidizer mass being used by the propulsion system. The pulse detonation wave engine (PDWE) uses an alternative type of detonation cycle to achieve the same propulsion results. The primary component of the PDWE is the combustion chamber (or detonation tube). The PDWE represents an attractive propulsion source since its engine cycle is thermodynamically closest to that of a constant volume reaction. This characteristic leads to the inference that a maximum of the potential energy of the PDWE is put into thrust and not into flow work. Consequently, the volume must be increased. The technical community has increasingly adopted the alternative choice of increasing total volume by designing the engine to include a set of banks of smaller combustion chambers. This technique increases the complexity of the ignition subsystem because the inter-chamber timing must be considered. Current approaches to igniting the PDWE have involved separate shock or blast wave initiators and chemical additives designed to enhance detonatibility. An optical ignition subsystem generates a series of optical pulses, where the optical pulses ignite the fuel/oxidizer mixture such that the chambers detonate in a desired order. The detonation system also has an optical transport subsystem for transporting the optical pulses from the optical ignition subsystem to the chambers. The use of optical ignition and transport provides a non-toxic, small, lightweight, precisely controlled detonation system.
Overview of Propellant Delivery Systems at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Haselmaier, L. Haynes; Field, Robert E.; Ryan, Harry M.; Dickey, Jonathan C.
2006-01-01
A wide range of rocket propulsion test work occurs at he NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2. E-3 and E-4) test facilities. One of the greatest challenges associated with operating a test facility is maintaining the health of the primary propellant system and test-critical support systems. The challenge emerges due to the fact that the operating conditions of the various system components are extreme (e.g., low temperatures, high pressures) and due to the fact that many of the components and systems are unique. The purpose of this paper is to briefly describe the experience and modeling techniques that are used to operate the unique test facilities at NASA SSC that continue to support successful propulsion testing.
NASA Technical Reports Server (NTRS)
Groesbeck, W. A.; Baud, K. M.; Lacovic, R. F.; Tabata, W. K.; Szabo, S. V., Jr.
1974-01-01
Propulsion system tests were conducted on a full scale Centaur vehicle to investigate system capability of the proposed D-lT configuration for a three-burn mission. This particular mission profile requires that the engines be capable of restarting and firing for a final maneuver after a 5-1/2-hour coast to synchronous orbit. The thermal conditioning requirements of the engine and propellant feed system components for engine start under these conditions were investigated. Performance data were also obtained on the D-lT type computer controlled propellant tank pressurization system. The test results demonstrated that the RL-10 engines on the Centaur vehicle could be started and run reliably after being thermally conditioned to predicted engine start conditions for a one, two and three burn mission. Investigation of the thermal margins also indicated that engine starts could be accomplished at the maximum predicted component temperature conditions with prestart durations less than planned for flight.
Utilization of methanol for polymer electrolyte fuel cells in mobile systems
NASA Astrophysics Data System (ADS)
Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.
1994-04-01
The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.
ICRF Development for the Variable Specific Impulse Magnetoplasma Rocket
NASA Astrophysics Data System (ADS)
Ryan, P. M.; Baity, F. W.; Barber, G. C.; Carter, M. D.; Hoffman, D. J.; Jaeger, E. F.; Taylor, D. J.; Chang-Diaz, F. R.; Squire, J. P.; McCaskill, G.
1997-11-01
The feasibility of using magnetically vectored and rf-heated plasmas for space propulsion (F. R. Chang-Diaz, et al., Bull. Am. Phys. Soc., 41, 1541 (1996)) is being investigated experimentally on an asymmetric magnetic mirror device at the Advanced Space Propulsion Laboratory (ASPL), Johnson Space Center, NASA. Analysis of the antenna interaction with and the wave propagation through the dense plasma propulsion system is being studied at ORNL(Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy under contract number DE-AC05-96OR22464.), using antenna design codes developed for ICH systems and mirror codes developed for the EBT experiment at ORNL. The present modeling effort is directed toward the ASPL experimental device. Antenna optimization and performance, as well as the design considerations for space-qualified rf components and systems (minimizing weight while maximizing reliability) will be presented.
Cyclic Parameter Refinement of 4S-10 Hybrid Flux-Switching Motor for Lightweight Electric Vehicle
NASA Astrophysics Data System (ADS)
Rani, J. Abd; Sulaiman, E.; Kumar, R.
2017-08-01
A great deal of attention has been given to the reduction of lighting the vehicle because the lighter the vehicle the energy consumption is comparatively low. Hence, the lightweight electric vehicle was introduced for lower carbon footprint and the sizing of the vehicle itself. One of the components to reduce the weight of the vehicle is the propulsion system which comprised of electric motor functioning as the source of torque to drive the propulsion system of the machine. This paper presents the refinement methodology for the optimized design of the 4S-10P E-Core hybrid excitation flux switching motor. The purpose of the refinement methodology is to improve the torque production of the optimized motor. The result of the successful improvement of the torque production is justifiable for a lightweight electric vehicle to drive the propulsion system.
Attitude propulsion technology for TOPS
NASA Technical Reports Server (NTRS)
Moynihan, P. I.
1972-01-01
The thermoelectric outer planet spacecraft (TOPS) attitude propulsion subsystem (APS) effort is discussed. It includes the tradeoff rationale that went into the selection of an anhydrous hydrazine baseline system, followed by a discussion of the 0.22 N thruster and its integration into a portable, self-contained propulsion module that was designed, developed, and man rated to support the TOPS single-axis attitude control tests. The results of a cold-start feasibility demonstration with a modified thruster are presented. A description of three types of 0.44 thrusters that were procured for in-house evaluation is included along with the results of the test program. This is followed by a description of the APS feed system components, their evaluations, and a discussion of an evaluation of elastomeric material for valve seat seals. A list of new technology items which will be of value for application to future systems of this type is included.
Test Facilities in Support of High Power Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.
NASA Technical Reports Server (NTRS)
Richard, Jacques C.
1995-01-01
This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.
An Evaluation of the Impacts of AF-M315E Propulsion Systems for Varied Mission Applications
NASA Technical Reports Server (NTRS)
Deans, Matthew C.; Oleson, Steven R.; Fittje, James; Colozza, Anthony; Packard, Tom; Gyekenyesi, John; McLean, Christopher H.; Spores, Ronald A.
2015-01-01
The purpose of the AF-M315E COMPASS study is to identify near-term (3-5 years) and long term (5 years +) opportunities for infusion, specifically the thruster and associated component technologies being developed as part of the GPIM project. Develop design reference missions which show the advantages of the AF-M315E green propulsion system. Utilize a combination of past COMPASS designs and selected new designs to demonstrate AF-M315E advantages. Use the COMPASS process to show the puts and takes of using AF-M315E at the integrated system level.
22 CFR 129.7 - Prior approval (license).
Code of Federal Regulations, 2010 CFR
2010-04-01
...; (ii) Nuclear weapons strategic delivery systems and all components, parts, accessories, attachments specifically designed for such systems and associated equipment; (iii) Nuclear weapons design and test equipment of a nature described by Category XVI of Part 121; (iv) Naval nuclear propulsion equipment of a...
22 CFR 129.7 - Prior approval (license).
Code of Federal Regulations, 2011 CFR
2011-04-01
...; (ii) Nuclear weapons strategic delivery systems and all components, parts, accessories, attachments specifically designed for such systems and associated equipment; (iii) Nuclear weapons design and test equipment of a nature described by Category XVI of part 121; (iv) Naval nuclear propulsion equipment of a...
Advanced supersonic propulsion study, phase 3
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.
1976-01-01
The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.
Development Activities on Airbreathing Combined Cycle Engines
NASA Technical Reports Server (NTRS)
McArthur, J. Craig; Lyles, Garry (Technical Monitor)
2000-01-01
Contents include the following: Advanced reusable transportation(ART); aerojet and rocketdyne tests, RBCC focused concept flowpaths,fabricate flight weigh, test select components, document ART project, Istar (Integrated system test of an airbreathing rocket); combined cycle propulsion testbed;hydrocarbon demonstrator tracebility; Istar engine system and vehicle system closure study; and Istar project planning.
Analysis of Hybrid-Electric Propulsion System Designs for Small Unmanned Aircraft Systems
2010-03-01
34 5. Fundamental Aerodynamics... turbocharger , allowing the turbine and compressor to run at different speeds. The concept would simplify designing small diesel engines, which are...ICEs. Weight reductions in ancillary components like turbochargers and cooling systems must also be achieved for use in aviation. Since small
Energy efficient engine. Volume 1: Component development and integration program
NASA Technical Reports Server (NTRS)
1981-01-01
Technology for achieving lower installed fuel consumption and lower operating costs in future commercial turbofan engines are developed, evaluated, and demonstrated. The four program objectives are: (1) propulsion system analysis; (2) component analysis, design, and development; (3) core design, fabrication, and test; and (4) integrated core/low spoon design, fabrication, and test.
Performance Optimization of the Gasdynamic Mirror Propulsion System
NASA Technical Reports Server (NTRS)
Emrich, William J., Jr.; Kammash, Terry
1999-01-01
Nuclear fusion appears to be a most promising concept for producing extremely high specific impulse rocket engines. Engines such as these would effectively open up the solar system to human exploration and would virtually eliminate launch window restrictions. A preliminary vehicle sizing and mission study was performed based on the conceptual design of a Gasdynamic Mirror (GDM) fusion propulsion system. This study indicated that the potential specific impulse for this engine is approximately 142,000 sec. with about 22,100 N of thrust using a deuterium-tritium fuel cycle. The engine weight inclusive of the power conversion system was optimized around an allowable engine mass of 1500 Mg assuming advanced superconducting magnets and a Field Reversed Configuration (FRC) end plug at the mirrors. The vehicle habitat, lander, and structural weights are based on a NASA Mars mission study which assumes the use of nuclear thermal propulsion' Several manned missions to various planets were analyzed to determine fuel requirements and launch windows. For all fusion propulsion cases studied, the fuel weight remained a minor component of the total system weight regardless of when the missions commenced. In other words, the use of fusion propulsion virtually eliminates all mission window constraints and effectively allows unlimited manned exploration of the entire solar system. It also mitigates the need to have a large space infrastructure which would be required to support the transfer of massive amounts of fuel and supplies to lower a performing spacecraft.
Electric prototype power processor for a 30cm ion thruster
NASA Technical Reports Server (NTRS)
Biess, J. J.; Inouye, L. Y.; Schoenfeld, A. D.
1977-01-01
An electrical prototype power processor unit was designed, fabricated and tested with a 30 cm mercury ion engine for primary space propulsion. The power processor unit used the thyristor series resonant inverter as the basic power stage for the high power beam and discharge supplies. A transistorized series resonant inverter processed the remaining power for the low power outputs. The power processor included a digital interface unit to process all input commands and internal telemetry signals so that electric propulsion systems could be operated with a central computer system. The electrical prototype unit included design improvement in the power components such as thyristors, transistors, filters and resonant capacitors, and power transformers and inductors in order to reduce component weight, to minimize losses, and to control the component temperature rise. A design analysis for the electrical prototype is also presented on the component weight, losses, part count and reliability estimate. The electrical prototype was tested in a thermal vacuum environment. Integration tests were performed with a 30 cm ion engine and demonstrated operational compatibility. Electromagnetic interference data was also recorded on the design to provide information for spacecraft integration.
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane
1994-01-01
An advanced methodology for integrated flight propulsion control (IFPC) design for future aircraft, which will use propulsion system generated forces and moments for enhanced maneuver capabilities, is briefly described. This methodology has the potential to address in a systematic manner the coupling between the airframe and the propulsion subsystems typical of such enhanced maneuverability aircraft. Application of the methodology to a short take-off vertical landing (STOVL) aircraft in the landing approach to hover transition flight phase is presented with brief description of the various steps in the IFPC design methodology. The details of the individual steps have been described in previous publications and the objective of this paper is to focus on how the components of the control system designed at each step integrate into the overall IFPC system. The full nonlinear IFPC system was evaluated extensively in nonreal-time simulations as well as piloted simulations. Results from the nonreal-time evaluations are presented in this paper. Lessons learned from this application study are summarized in terms of areas of potential improvements in the STOVL IFPC design as well as identification of technology development areas to enhance the applicability of the proposed design methodology.
Recent Advances in Solar Sail Propulsion at NASA
NASA Technical Reports Server (NTRS)
Johnson, Les; Young, Roy M.; Montgomery, Edward E., IV
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing solar sail propulsion for use in robotic science and exploration of the solar system. Solar sail propulsion will provide longer on-station operation, increased scientific payload mass fraction, and access to previously inaccessible orbits for multiple potential science missions. Two different 20-meter solar sail systems were produced and successfully completed functional vacuum testing last year in NASA Glenn's Space Power Facility at Plum Brook Station, Ohio. The sails were designed and developed by ATK Space Systems and L'Garde, respectively. These sail systems consist of a central structure with four deployable booms that support the sails. This sail designs are robust enough for deployments in a one atmosphere, one gravity environment, and are scalable to much larger solar sails-perhaps as much as 150 meters on a side. In addition, computation modeling and analytical simulations have been performed to assess the scalability of the technology to the large sizes (>150 meters) required for first generation solar sails missions. Life and space environmental effects testing of sail and component materials are also nearly complete. This paper will summarize recent technology advancements in solar sails and their successful ambient and vacuum testing.
Dual-Shaft Electric Propulsion (DSEP) Technology Development Program
NASA Astrophysics Data System (ADS)
1992-08-01
The background, progress, and current state of the DOE-sponsored Advanced Dual-Shaft Electric Propulsion Technology Development are presented. Three electric-drive vehicles were build as conversions of a commercial gasoline-powered van, using program-designed components and systems as required. The vehicles were tested primarily on dynamometer or test tract. Component and system testing represented a major portion of the development effort. Test data are summarized in this report, and an Appendix contains the final component design specifications. This major programmatic concerns were the traction battery, the battery management system, the dc-to-ac inverter, the drive motor, the transaxle and its ancillary equipment, and the vehicle controller. Additional effort was devoted to vehicle-related equipment: gear selector, power steering, power brakes, accelerator, dashboard instrumentation, and heater. Design, development, and test activities are reported for each of these items, together with an appraisal (lessons learned) and recommendations for possible further work. Other programmatic results include a Cost and Commercialization Analysis, a Reliability and Hazards Analysis Study, Technical Recommendations for Next-Generation Development, and an assessment of overall program efforts.
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Kurth, R. E.; Ho, H.
1991-01-01
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.
Low Order Modeling Tools for Preliminary Pressure Gain Combustion Benefits Analyses
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.
2012-01-01
Pressure gain combustion (PGC) offers the promise of higher thermodynamic cycle efficiency and greater specific power in propulsion and power systems. This presentation describes a model, developed under a cooperative agreement between NASA and AFRL, for preliminarily assessing the performance enhancement and preliminary size requirements of PGC components either as stand-alone thrust producers or coupled with surrounding turbomachinery. The model is implemented in the Numerical Propulsion Simulation System (NPSS) environment allowing various configurations to be examined at numerous operating points. The validated model is simple, yet physics-based. It executes quickly in NPSS, yet produces realistic results.
Discrete Event Supervisory Control Applied to Propulsion Systems
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Shah, Neerav
2005-01-01
The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.
Overview of Propulsion Systems for a Mars Aircraft
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Miller, Christopher J.; Reed, Brian D.; Kohout, Lisa L.; Loyselle, Patricia L.
2001-01-01
The capabilities and performance of an aircraft depends greatly on the ability of the propulsion system to provide thrust. Since the beginning of powered flight, performance has increased in step with advancements in aircraft propulsion systems. These advances in technology from combustion engines to jets and rockets have enabled aircraft to exploit our atmospheric environment and fly at altitudes near the Earth's surface to near orbit at speeds ranging from hovering to several times the speed of sound. One of the main advantages of our atmosphere for these propulsion systems is the availability of oxygen. Getting oxygen basically "free" from the atmosphere dramatically increases the performance and capabilities of an aircraft. This is one of the reasons our present-day aircraft can perform such a wide range of tasks. But this advantage is limited to Earth; if we want to fly an aircraft on another planetary body, such as Mars, we will either have to carry our own source of oxygen or use a propulsion system that does not require it. The Mars atmosphere, composed mainly of carbon dioxide, is very thin. Because of this low atmospheric density, an aircraft flying on Mars will most likely be operating, in aerodynamical terms, within a very low Reynolds number regime. Also, the speed of sound within the Martian environment is approximately 20 percent less than it is on Earth. The reduction in the speed of sound plays an important role in the aerodynamic performance of both the aircraft itself and the components of the propulsion system, such as the propeller. This low Reynolds number-high Mach number flight regime is a unique flight environment that is very rarely encountered here on Earth.
NASA Technical Reports Server (NTRS)
Snyder, Christopher
2017-01-01
Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASA's Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2017-01-01
Assessing the potential to bring 100 years of aeronautics knowledge to the entrepreneurs desktop to enable a design environment for emerging vertical lift vehicles is one goal for the NASAs Design Environment for Novel Vertical Lift Vehicles (DELIVER). As part of this effort, a system study was performed using a notional, urban aerial taxi system to better understand vehicle requirements along with the tools and methods capability to assess these vehicles and their subsystems using cryogenic cooled components. The baseline was a vertical take-off and landing (VTOL) aircraft, with all-electric propulsion system assuming 15 year technology performance levels and its capability limited to a pilot with one or two people and cargo. Hydrocarbon-fueled hybrid concepts were developed to improve mission capabilities. The hybrid systems resulted in significant improvements in maximum range and number of on demand mobility (ODM) missions that could be completed before refuel or recharge. An important consideration was thermal management, including the choice for air-cooled or cryogenic cooling using liquid natural gas (LNG) fuel. Cryogenic cooling for critical components can have important implications on component performance and size. Thermal loads were also estimated, subsequent effort will be required to verify feasibility for cooling airflow and packaging. LNG cryogenic cooling of selected components further improved vehicle range and reduced thermal loads, but the same concerns for airflow and packaging still need to be addressed. The use of the NASA Design and Analysis of Rotorcraft (NDARC) tool for vehicle sizing and mission analysis appears to be capable of supporting analyses for present and future types of vehicles, missions, propulsion, and energy sources. Further efforts are required to develop verified models for these new types of propulsion and energy sources in the size and use envisioned for these emerging vehicle and mission classes.
Noncontacting measurement technologies for space propulsion condition monitoring
NASA Technical Reports Server (NTRS)
Randall, M. R.; Barkhoudarian, S.; Collins, J. J.; Schwartzbart, A.
1987-01-01
This paper describes four noncontacting measurement technologies that can be used in a turbopump condition monitoring system. The isotope wear analyzer, fiberoptic deflectometer, brushless torque-meter, and fiberoptic pyrometer can be used to monitor component wear, bearing degradation, instantaneous shaft torque, and turbine blade cracking, respectively. A complete turbopump condition monitoring system including these four technologies could predict remaining component life, thus reducing engine operating costs and increasing reliability.
Thin Film Sensors for Surface Measurements
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.
2001-01-01
Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.
Propulsion Design With Freeform Fabrication (PDFF)
NASA Technical Reports Server (NTRS)
Barnes, Daudi; McKinnon, James; Priem, Richard
2010-01-01
The nation is challenged to decrease the cost and schedule to develop new space transportation propulsion systems for commercial, scientific, and military purposes. Better design criteria and manufacturing techniques for small thrusters are needed to meet current applications in missile defense, space, and satellite propulsion. The requirements of these systems present size, performance, and environmental demands on these thrusters that have posed significant challenges to the current designers and manufacturers. Designers are limited by manufacturing processes, which are complex, costly, and time consuming, and ultimately limited in their capabilities. The PDFF innovation vastly extends the design opportunities of rocket engine components and systems by making use of the unique manufacturing freedom of solid freeform rapid prototype manufacturing technology combined with the benefits of ceramic materials. The unique features of PDFF are developing and implementing a design methodology that uses solid freeform fabrication (SFF) techniques to make propulsion components with significantly improved performance, thermal management, power density, and stability, while reducing development and production costs. PDFF extends the design process envelope beyond conventional constraints by leveraging the key feature of the SFF technique with the capability to form objects with nearly any geometric complexity without the need for elaborate machine setup. The marriage of SFF technology to propulsion components allows an evolution of design practice to harmonize material properties with functional design efficiency. Reduced density of materials when coupled with the capability to honeycomb structure used in the injector will have significant impact on overall mass reduction. Typical thrusters in use for attitude control have 60 90 percent of its mass in the valve and injector, which is typically made from titanium. The combination of material and structure envisioned for use in an SFF thruster design could reduce thruster weight by a factor of two or more. The thrust-to-weight ratios for such designs can achieve 1,000:1 or more, depending on chamber pressure. The potential exists for continued development in materials, size, speed, accuracy of SFF techniques, which can lead to speculative developments of PDFF processes such as fabrication of custom human interface devices like masks, chairs, and clothing, and advanced biomedical application to human organ reconstruction. Other potential applications are: higher fidelity lower cost test fixtures for probes and inspection, disposable thrusters, and ISRU (in situ resource utilization) for component production in space or on Lunar and Martian missions, and application for embedding MEMS (microelectromechanical systems) during construction process of form changing aerostructure/dynamic structures.
EVA Metro Sedan electric-propulsion system: test and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimers, E.
1979-09-01
The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on themore » dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.« less
Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines
NASA Technical Reports Server (NTRS)
Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.
2014-01-01
Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.
Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Lee, J.; Elam, S.
2001-01-01
The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)
2001-01-01
There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are somewhat different from those for terrestrial electrical power generation. Thus fusion schemes that are initially attractive for electrical power generation might not necessarily be attractive also for propulsion and vice versa, though the underlying fusion science and engineering enjoy much overlap. Parallel efforts to develop these qualitatively differently fusion schemes for the two applications could benefit greatly from each other due to the synergy in the underlying physics and engineering. Pulsed approaches to fusion have not been explored to the same degree as steady-state or long-pulse approaches to fusion in the fusion power research program. The concerns early on were several. One was that the pulsed power components might not have the service lifetimes meeting the requirements of a practical power generating plant. Another was that, for many pulsed fusion schemes, it was not clear whether the destruction of hardware per pulse could be minimized or eliminated or recycled to such an extent as to make economical electrical power generation feasible, Significant development of the underlying pulsed power component technologies have occurred in the last two decades because of defense and other energy requirements. The state of development of the pulsed power technologies are sufficiently advanced now to make it compelling to visit or re-visit pulsed fusion approaches for application to propulsion where the cost of energy is not so demanding a factor as in the case of terrestrial power application. For propulsion application, the overall mass of the fusion system is the critical factor. Producing fusion reactions require extreme states of matter. Conceptually, these extreme states of matter are more readily realizable in the pulsed states, at least within appropriate bounds, than in the steady states. Significant saving in system mass may result in such systems. Magnetic fields are effective in confining plasma energy, whereas inertial compression is an effective way of heating and containing the plasma. Intensive research in developing magnetic energy containment and inertial plasma compression are being pursued in distinctively different fusion experiments in the terrestrial fusion power program. Fusion schemes that attempt to combine the favorable attributes of these two aspects into one single integrated fusion scheme appear to have benefits that are worth exploring for propulsion application.
RHETT and SCARLET: Synergistic power and propulsion technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.M.; Curran, F.M.; Sankovic, J.
1995-12-31
The Ballistic Missile Defense Organization (BMDO) sponsors an aggressive program to qualify high performance space power and electric propulsion technologies for space flight. Specifically, the BMDO space propulsion program is now integrating an advanced Hall thruster system including all components necessary for use in an operational spacecraft. This Russian Hall Effect Thruster Technology (RHETT) integrated pallet will be qualified for space flight later this year. This will be followed by a space flight demonstration and verification in 1996. The BMDO power program includes a parallel program to qualify and space flight demonstrate the Solar Concentrator Arrays with Refractive Linear Elementmore » Technology (SCARLET). The first flight SCARLET system is being fabricated for Use on the EER/CTA Comet spacecraft in late July. The space flight demonstration is the first full size, deployed concentrator solar array. The propulsion work is conducted by an industry team led by Space Power, Inc. and Olin Aerospace with their partners in Russia, NIITP and TsNIIMash. The power program is conducted by an industry team led by AEC-Able. This paper is to familiarize the space power community with the synergies between spacecraft power and electric propulsion.« less
Numerical Propulsion System Simulation Architecture
NASA Technical Reports Server (NTRS)
Naiman, Cynthia G.
2004-01-01
The Numerical Propulsion System Simulation (NPSS) is a framework for performing analysis of complex systems. Because the NPSS was developed using the object-oriented paradigm, the resulting architecture is an extensible and flexible framework that is currently being used by a diverse set of participants in government, academia, and the aerospace industry. NPSS is being used by over 15 different institutions to support rockets, hypersonics, power and propulsion, fuel cells, ground based power, and aerospace. Full system-level simulations as well as subsystems may be modeled using NPSS. The NPSS architecture enables the coupling of analyses at various levels of detail, which is called numerical zooming. The middleware used to enable zooming and distributed simulations is the Common Object Request Broker Architecture (CORBA). The NPSS Developer's Kit offers tools for the developer to generate CORBA-based components and wrap codes. The Developer's Kit enables distributed multi-fidelity and multi-discipline simulations, preserves proprietary and legacy codes, and facilitates addition of customized codes. The platforms supported are PC, Linux, HP, Sun, and SGI.
Effect of Voltage Level on Power System Design for Solar Electric Propulsion Missions
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2003-01-01
This paper presents study results quantifying the benefits of higher voltage, electric power system designs for a typical solar electric propulsion spacecraft Earth orbiting mission. A conceptual power system architecture was defined and design points were generated for system voltages of 28-V, 50-V, 120-V, and 300-V using state-of-the-art or advanced technologies. A 300-V 'direct-drive' architecture was also analyzed to assess the benefits of directly powering the electric thruster from the photovoltaic array without up-conversion. Fortran and spreadsheet computational models were exercised to predict the performance and size power system components to meet spacecraft mission requirements. Pertinent space environments, such as electron and proton radiation, were calculated along the spiral trajectory. In addition, a simplified electron current collection model was developed to estimate photovoltaic array losses for the orbital plasma environment and that created by the thruster plume. The secondary benefits of power system mass savings for spacecraft propulsion and attitude control systems were also quantified. Results indicate that considerable spacecraft wet mass savings were achieved by the 300-V and 300-V direct-drive architectures.
Composite Load Spectra for Select Space Propulsion Structural Components
NASA Technical Reports Server (NTRS)
Ho, Hing W.; Newell, James F.
1994-01-01
Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.
Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1
NASA Technical Reports Server (NTRS)
Mraz, M. R.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.
Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Best, Philip J.; Unger, Ronald J.; Waits, David A.
2005-01-01
The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.
Solar electric propulsion thruster interactions with solar arrays
NASA Technical Reports Server (NTRS)
Parks, D. E.; Katz, I.
1977-01-01
The effect of interactions of spacecraft-generated and naturally occurring plasmas with high voltage solar array components on an advanced solar electric propulsion system proposed for the Halley's Comet rendezvous mission was investigated. The spacecraft-generated plasma consists of mercury ions and neutralizing electrons resulting from the operation of ion thrusters (the charge-exchange plasma) and associated hollow cathode neutralizers. Quantitative results are given for the parasitic currents and power coupled into solar arrays with voltage fixed as a function of position on the array.
Liquid Bismuth Feed System for Electric Propulsion
NASA Technical Reports Server (NTRS)
Markusic, T. E.; Polzin, K. A.; Stanojev, B. J.
2006-01-01
Operation of Hall thrusters with bismuth propellant has been shown to be a promising path toward high-power, high-performance, long-lifetime electric propulsion for spaceflight missions. For example, the VHITAL project aims td accurately, experimentally assess the performance characteristics of 10 kW-class bismuth-fed Hall thrusters - in order to validate earlier results and resuscitate a promising technology that has been relatively dormant for about two decades. A critical element of these tests will be the precise metering of propellant to the thruster, since performance cannot be accurately assessed without an accurate accounting of mass flow rate. Earlier work used a pre/post-test propellant weighing scheme that did not provide any real-time measurement of mass flow rate while the thruster was firing, and makes subsequent performance calculations difficult. The motivation of the present work was to develop a precision liquid bismuth Propellant Management System (PMS) that provides real-time propellant mass flow rate measurement and control, enabling accurate thruster performance measurements. Additionally, our approach emphasizes the development of new liquid metal flow control components and, hence, will establish a basis for the future development of components for application in spaceflight. The design of various critical components in a bismuth PMS are described - reservoir, electromagnetic pump, hotspot flow sensor, and automated control system. Particular emphasis is given to material selection and high-temperature sealing techniques. Open loop calibration test results are reported, which validate the systems capability to deliver bismuth at mass flow rates ranging from 10 to 100 mg/sec with an uncertainty of less than +/- 5%. Results of integrated vaporizer/liquid PMS tests demonstrate all of the necessary elements of a complete bismuth feed system for electric propulsion.
Electric Propulsion Options for 10 kW Class Earth-Space Missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment were evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA 2 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10 (exp 7) to 2.1x10 (exp 7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA 2 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10 (exp 6) to 3.6x10 (exp 6) N-s, and approximately 662 to 1072 m/s, respectively.
Unique Systems Analysis Task 7, Advanced Subsonic Technologies Evaluation Analysis
NASA Technical Reports Server (NTRS)
Eisenberg, Joseph D. (Technical Monitor); Bettner, J. L.; Stratton, S.
2004-01-01
To retain a preeminent U.S. position in the aircraft industry, aircraft passenger mile costs must be reduced while at the same time, meeting anticipated more stringent environmental regulations. A significant portion of these improvements will come from the propulsion system. A technology evaluation and system analysis was accomplished under this task, including areas such as aerodynamics and materials and improved methods for obtaining low noise and emissions. Previous subsonic evaluation analyses have identified key technologies in selected components for propulsion systems for year 2015 and beyond. Based on the current economic and competitive environment, it is clear that studies with nearer turn focus that have a direct impact on the propulsion industry s next generation product are required. This study will emphasize the year 2005 entry into service time period. The objective of this study was to determine which technologies and materials offer the greatest opportunities for improving propulsion systems. The goals are twofold. The first goal is to determine an acceptable compromise between the thermodynamic operating conditions for A) best performance, and B) acceptable noise and chemical emissions. The second goal is the evaluation of performance, weight and cost of advanced materials and concepts on the direct operating cost of an advanced regional transport of comparable technology level.
NASA Astrophysics Data System (ADS)
Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.
2004-08-01
Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of special metal/ceramic and ceramic/ceramic joining techniques as well as studying and verifying non destructive investigation processes for the purpose of testing components.
Energy efficient engine component development and integration program
NASA Technical Reports Server (NTRS)
1980-01-01
The design of an energy efficient commercial turbofan engine is examined with emphasis on lower fuel consumption and operating costs. Propulsion system performance, emission standards, and noise reduction are also investigated. A detailed design analysis of the engine/aircraft configuration, engine components, and core engine is presented along with an evaluation of the technology and testing involved.
Propulsion engineering study for small-scale Mars missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J.
1995-09-12
Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardwaremore » mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.« less
Mechanical Components Branch Test Facilities and Capabilities
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
2004-01-01
The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.
NASA Technical Reports Server (NTRS)
Stern, Martin O.
1992-01-01
This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.
Transient Thermal Analyses of Passive Systems on SCEPTOR X-57
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Schnulo, Sydney L.; Smith, Andrew D.
2017-01-01
As efficiency, emissions, and noise become increasingly prominent considerations in aircraft design, turning to an electric propulsion system is a desirable solution. Achieving the intended benefits of distributed electric propulsion (DEP) requires thermally demanding high power systems, presenting a different set of challenges compared to traditional aircraft propulsion. The embedded nature of these heat sources often preclude the use of traditional thermal management systems in order to maximize performance, with less opportunity to exhaust waste heat to the surrounding environment. This paper summarizes the thermal analyses of X-57 vehicle subsystems that don't employ externally air-cooled heat sinks. The high-power battery, wires, high-lift motors, and aircraft outer surface are subjected to heat loads with stringent thermal constraints. The temperature of these components are tracked transiently, since they never reach a steady-state equilibrium. Through analysis and testing, this report demonstrates that properly characterizing the material properties is key to accurately modeling peak temperature of these systems, with less concern for spatial thermal gradients. Experimentally validated results show the thermal profile of these systems can be sufficiently estimated using reduced order approximations.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2004-01-01
In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.
Rapid Development of Gossamer Propulsion for NASA Inner Solar System Science Missions
NASA Technical Reports Server (NTRS)
Young, Roy M.; Montgomery, Edward E.
2006-01-01
Over a two and one-half year period dating from 2003 through 2005, NASA s In-Space Propulsion Program matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. This paper describes the challenges identified; as well as the approaches taken toward solving a broad set of issues spanning material science, manufacturing technology, and interplanetary trajectory optimization. Revolutionary advances in system structural predictive analysis and characterization testing occurred. Also addressed are the remaining technology challenges that might be resolved with further ground technology research, geared toward reducing technical risks associated with future space validation and science missions.
Current Challenges for HTCMC Aero-Propulsion Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bansal, Narottam P.
2007-01-01
In comparison to the best metallic materials, HTCMC aero-propulsion engine components offer the opportunity of reduced weight and higher temperature operation, with corresponding improvements in engine cooling requirements, emissions, thrust, and specific fuel consumption. Although much progress has been made in the development of advanced HTCMC constituent materials and processes, major challenges still remain for their implementation into these components. The objectives of this presentation are to briefly review (1) potential HTCMC aero-propulsion components and their generic material performance requirements, (2) recent progress at NASA and elsewhere concerning advanced constituents and processes for meeting these requirements, (3) key HTCMC component implementation challenges that are currently being encountered, and (4) on-going activities within the new NASA Fundamental Aeronautics Program that are addressing these challenges.
Temperature measurement using infrared imaging systems during turbine engine altitude testing
NASA Technical Reports Server (NTRS)
Burns, Maureen E.
1994-01-01
This report details the use of infrared imaging for temperature measurement and thermal pattern determination during simulated altitude engine testing in the NASA Lewis Propulsion Systems Laboratory. Three identical argon-cooled imaging systems were installed in the facility exhaust collector behind sapphire windows to look at engine internal surfaces. The report describes the components of each system, presents the specifics of the complicated installation, and explains the operation of the systems during engine testing. During the program, several problems emerged, such as argon contamination system, component overheating, cracked sapphire windows, and other unexplained effects. This report includes a summary of the difficulties as well as the solutions developed. The systems performed well, considering they were in an unusually harsh exhaust environment. Both video and digital data were recorded, and the information provided valuable material for the engineers and designers to quickly make any necessary design changes to the engine hardware cooling system. The knowledge and experience gained during this program greatly simplified the installation and use of the systems during later test programs in the facility. The infrared imaging systems have significantly enhanced the measurement capabilities of the facility, and have become an outstanding and versatile testing resource in the Propulsion Systems Laboratory.
Material requirements for the High Speed Civil Transport
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.
1993-01-01
Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.
A transient model of the RL10A-3-3A rocket engine
NASA Technical Reports Server (NTRS)
Binder, Michael P.
1995-01-01
RL10A-3-3A rocket engines have served as the main propulsion system for Centaur upper stage vehicles since the early 1980's. This hydrogen/oxygen expander cycle engine continues to play a major role in the American launch industry. The Space Propulsion Technology Division at the NASA Lewis Research Center has created a computer model of the RL10 engine, based on detailed component analyses and available test data. This RL10 engine model can predict the performance of the engine over a wide range of operating conditions. The model may also be used to predict the effects of any proposed design changes and anticipated failure scenarios. In this paper, the results of the component analyses are discussed. Simulation results from the new system model are compared with engine test and flight data, including the start and shut-down transient characteristics.
NASA Hypersonic Propulsion: Overview of Progress from 1995 to 2005
NASA Technical Reports Server (NTRS)
Cikanek, Harry A., III; Bartolotta, Paul A.; Klem, Mark D.; Rausch, Vince L.
2007-01-01
Hypersonic propulsion work supported by the United States National Aeronautics and Space Administration had a primary focus on Space Transportation during the period from 1995 to 2005. The framework for these advances was established by policy and pursued with substantial funding. Many noteworthy advances were made, highlighted by the pinnacle flights of the X-43. This paper reviews and summarizes the programs and accomplishments of this era. The accomplishments are compared to the goals and objectives to lend an overarching perspective to what was achieved. At least dating back to the early days of the Space Shuttle program, NASA has had the objective of reducing the cost of access to space and concurrently improving safety and reliability. National Space Transportation Policy in 1994 coupled with a base of prior programs such as the National Aerospace Plane and the need to look beyond the Space Shuttle program set the stage for NASA to pursue Space Transportation Advances. Programs defined to pursue the advances represented a broad approach addressing classical rocket propulsion as well as airbreathing propulsion in various combinations and forms. The resulting portfolio of activities included systems analysis and design studies, discipline research and technology, component technology development, propulsion system ground test demonstration and flight demonstration. The types of propulsion systems that were pursued by these programs included classical rocket engines, "aerospike" rocket engines, high performance rocket engines, scram jets, rocket based combined cycles, and turbine based combined cycles. Vehicle architectures included single and two stage vehicles. Either single types of propulsion systems or combinations of the basic propulsion types were applied to both single and two stage vehicle design concepts. Some of the propulsion system design concepts were built and tested at full scale, large scale and small scale. Many flight demonstrators were conceptually defined, fewer designed and some built and one flown to demonstrate several technical advancements including propulsion. The X-43 flights were a culmination of these efforts for airbreathing propulsion. During the course of that period, there was a balance of funding and emphasis toward rocket propulsion but still very substantial airbreathing propulsion effort. The broad objectives of these programs were to both advance and test the state of the art so as to provide a basis for options to be pursued for broad space transportation needs, most importantly focused on crew carrying capability. NASA cooperated with the Department of Defense in planning and implementation of these programs to make efficient use of objectives and capabilities where appropriate. Much of the work was conducted in industry and academia as well as Government laboratories. Many test articles and data-bases now exist as a result of this work. At the conclusion of the period, the body of work made it clear that continued research and technology development was warranted, because although not ready for a NASA system development decision, results continued to support the promise of air-breathing propulsion for access to space.
The Loci Multidisciplinary Simulation System Overview and Status
NASA Technical Reports Server (NTRS)
Luke, Edward A.; Tong, Xiao-Ling; Tang, Lin
2002-01-01
This paper will discuss the Loci system, an innovative tool for developing tightly coupled multidisciplinary three dimensional simulations. This presentation will overview some of the unique capabilities of the Loci system to automate the assembly of numerical simulations from libraries of fundamental computational components. We will discuss the demonstration of the Loci system on coupled fluid-structure problems related to RBCC propulsion systems.
Advanced electric propulsion system concept for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Forbes, F. E.
1979-01-01
Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.
Energy efficient engine: Flight propulsion system, preliminary analysis and design update
NASA Technical Reports Server (NTRS)
Stearns, E. M.
1982-01-01
The preliminary design of General Electric's Energy Efficient Engine (E3) was reported in detail in 1980. Since then, the design has been refined and the components have been rig-tested. The changes which have occurred in the engine and a reassessment of the economic payoff are presented in this report. All goals for efficiency, environmental considerations, and economic payoff are being met. The E3 Flight Propulsion System has 14.9% lower sfc than a CF6-50C. It provides a 7.1% reduction in direct operating cost for a short haul domestic transport and 14.5% reduction for an international long distance transport.
Recent manufacturing advances for spiral bevel gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Bill, Robert C.
1991-01-01
The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.
Thermal design of the IUE hydrazine auxiliary propulsion system. [International Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Skladany, J. T.; Kelly, W. H.
1977-01-01
The International Ultraviolet Explorer is a large astronomical observatory scheduled to be placed in a three-axis stabilized synchronous orbit in the fourth quarter of 1977. The Hydrazine Auxiliary Propulsion System (HAPS) must perform a number of spacecraft maneuvers to achieve a successful mission. This paper describes the thermal design which accomplishes temperature control between 5 and 65 C for all orbital conditions by utilizing multilayer insulation and commandable component heaters. A primary design criteria was the minimization of spacecraft power by the selective use of the solar environment. The thermal design was carefully assessed and verified in both spacecraft thermal balance and subsystem solar simulation testing.
Recent manufacturing advances for spiral bevel gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Bill, Robert C.
1991-01-01
The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.
Restoring Redundancy to the MAP Propulsion System
NASA Technical Reports Server (NTRS)
O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE). Due to the MAP project's limited mass, power, and financial resources, a traditional reliability concept including fully redundant components was not feasible. The MAP design employs selective hardware redundancy, along with backup software modes and algorithms, to improve the odds of mission success. In particular, MAP's propulsion system, which is used for orbit maneuvers and momentum management, uses eight thrusters positioned and oriented in such a way that its thruster-based attitude control modes can maintain three-axis attitude control in the event of the failure of any one thruster.
NASA's 2004 In-Space Propulsion Refocus Studies for New Frontiers Class Missions
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.; Manzella, David; Oh, David; Cupples, Mike
2006-01-01
The New Frontiers (NF) program is designed to provide opportunities to fulfill the science objectives for top priority, medium class missions identified in the Decadal Solar System Exploration Survey. This paper assesses the applicability of the In-Space Propulsion s (ISP) Solar Electric Propulsion (SEP) technologies for representative NF class missions that include a Jupiter Polar Orbiter with Probes (JPOP), Comet Surface Sample Return (CSSR), and two different Titan missions. The SEP technologies evaluated include the 7-kW, 4,100-second NASA's Evolutionary Xenon Thruster (NEXT), the 3-kW, 2,700-second Hall thruster, and two different NASA Solar Electric Propulsion Technology Readiness (NSTAR) thrusters that are variants of the Deep Space 1 (DS1) thruster. One type of NSTAR, a 2.6-kW, 3,100-second thruster, will be the primary propulsion system for the DAWN mission that is scheduled to launch in 2006; the other is an "enhanced", higher power variant (3.8-kW, 4,100-second) and is so-called because it uses NEXT system components such as the NEXT power processing unit (PPU). The results show that SEP is applicable for the CSSR mission and a Titan Lander mission. In addition, NEXT has improved its applicability for these types of missions by modifying its thruster performance relative to its performance at the beginning of this study.
Propfan test assessment propfan propulsion system static test report
NASA Technical Reports Server (NTRS)
Orourke, D. M.
1987-01-01
The propfan test assessment (PTA) propulsion system successfully completed over 50 hours of extensive static ground tests, including a 36 hour endurance test. All major systems performed as expected, verifying that the large-scale 2.74 m diameter propfan, engine, gearbox, controls, subsystems, and flight instrumentation will be satisfactory with minor modifications for the upcoming PTA flight tests on the GII aircraft in early 1987. A test envelope was established for static ground operation to maintain propfan blade stresses within limits for propfan rotational speeds up to 105 percent and power levels up to 3880 kW. Transient tests verified stable, predictable response of engine power and propfan speed controls. Installed engine TSFC was better than expected, probably due to the excellent inlet performance coupled with the supercharging effect of the propfan. Near- and far-field noise spectra contained three dominant components, which were dependent on power, tip speed, and direction. The components were propfan blade tones, propfan random noise, and compressor/propfan interaction noise. No significant turbine noise or combustion noise was evident.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1991-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1990-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
Capabilities of the Environmental Effects Branch at Marshall Space Flight Cente
NASA Technical Reports Server (NTRS)
Rogers, Jan; Finckenor, Miria; Nehls, Mary
2016-01-01
The Environmental Effects Branch at the Marshall Space Flight Center supports a myriad array of programs for NASA, DoD, and commercial space including human exploration, advanced space propulsion, improving life on Earth, and the study of the Sun, the Earth, and the solar system. The branch provides testing, evaluation, and qualification of materials for use on external spacecraft surfaces and in contamination-sensitive systems. Space environment capabilities include charged particle radiation, ultraviolet radiation, atomic oxygen, impact, plasma, and thermal vacuum, anchored by flight experiments and analysis of returned space hardware. These environmental components can be combined for solar wind or planetary surface environment studies or to evaluate synergistic effects. The Impact Testing Facility allows simulation of impacts ranging from sand and rain to micrometeoroids and orbital debris in order to evaluate materials and components for flight and ground-based systems. The Contamination Control Team is involved in the evaluation of environmentally-friendly replacements for HCFC-225 for use in propulsion oxygen systems, developing cleaning methods for additively manufactured hardware, and reducing risk for the Space Launch System.
Numerical propulsion system simulation
NASA Technical Reports Server (NTRS)
Lytle, John K.; Remaklus, David A.; Nichols, Lester D.
1990-01-01
The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive. One of the major contributors to the high cost is the need to perform many large scale system tests. Extensive testing is used to capture the complex interactions among the multiple disciplines and the multiple components inherent in complex systems. The objective of the Numerical Propulsion System Simulation (NPSS) is to provide insight into these complex interactions through computational simulations. This will allow for comprehensive evaluation of new concepts early in the design phase before a commitment to hardware is made. It will also allow for rapid assessment of field-related problems, particularly in cases where operational problems were encountered during conditions that would be difficult to simulate experimentally. The tremendous progress taking place in computational engineering and the rapid increase in computing power expected through parallel processing make this concept feasible within the near future. However it is critical that the framework for such simulations be put in place now to serve as a focal point for the continued developments in computational engineering and computing hardware and software. The NPSS concept which is described will provide that framework.
An update of engine system research at the Army Propulsion Directorate
NASA Technical Reports Server (NTRS)
Bobula, George A.
1990-01-01
The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.
High-Energy Space Propulsion Based on Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Landrum, D. B.; Freeze, B.; Kirkpatrick, R. C.; Gerrish, H.; Schmidt, G. R.
1999-01-01
Magnetized target fusion is an approach in which a magnetized target plasma is compressed inertially by an imploding material wall. A high energy plasma liner may be used to produce the required implosion. The plasma liner is formed by the merging of a number of high momentum plasma jets converging towards the center of a sphere where two compact toroids have been introduced. Preliminary 3-D hydrodynamics modeling results using the SPHINX code of Los Alamos National Laboratory have been very encouraging and confirm earlier theoretical expectations. The concept appears ready for experimental exploration and plans for doing so are being pursued. In this talk, we explore conceptually how this innovative fusion approach could be packaged for space propulsion for interplanetary travel. We discuss the generally generic components of a baseline propulsion concept including the fusion engine, high velocity plasma accelerators, generators of compact toroids using conical theta pinches, magnetic nozzle, neutron absorption blanket, tritium reprocessing system, shock absorber, magnetohydrodynamic generator, capacitor pulsed power system, thermal management system, and micrometeorite shields.
Concepts for the design of an antimatter annihilation rocket
NASA Technical Reports Server (NTRS)
Morgan, D. L., Jr.
1982-01-01
Matter-antimatter annihilation is considered for spacecraft propulsion. Annihilation produces considerably more energy per unit mass of propellant than any other known means of energy production. An antimatter annihilation rocket requires several systems and components that are unique to its nature. Among these are an antimatter storage system, a means to extract the antimatter from storage, a system to transport the antimatter to the rocket engine, and the engine wherein annihilation occurs and thrust is produced. Design concepts of these systems and components are presented and discussed.
Hybrid and electric advanced vehicle systems (heavy) simulation
NASA Technical Reports Server (NTRS)
Hammond, R. A.; Mcgehee, R. K.
1981-01-01
A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.
Reliability Estimating Procedures for Electric and Thermochemical Propulsion Systems. Volume 2
1977-02-01
final form. For some components, the parameters are calculated from design factors (e.g., design life) that must be input when requested. Each component...Components Components are regarded as statis- tically identical if they are drawn from the same production lot because the initial and sub- sequent...table yields b 0.0023 The - factors are obtained from Tables 2.2.4-1 through 2.2.4-5: Factor Value rE Space, flight 1 JANTXV quality 0.5 7A Small signal
Code of Federal Regulations, 2011 CFR
2011-10-01
... TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.1 Definitions. As..., including land, piers, guideways, propulsion equipment and other components attached to guideways, power... described in § 268.3. Maglev means transportation systems employing magnetic levitation that would be...
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Wallace, H. W.; Hiley, P. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.
Development and qualification of the US Cruise Missile Propulsion System
NASA Astrophysics Data System (ADS)
Reardon, William H.; Cifone, Anthony J.
1992-09-01
This paper provides a description of the very successful Cruise Missile gas turbine propulsion program managed by the United States Department of Defense. The paper contains a summary of the procurement process, the technical and programmatic milestones, issues and challenges, and lessons learned. In the past fifteen years, testing at the Naval Air Propulsion Center has included over 800 cruise engine development and component substantiation efforts spanning the engine specification qualification requirements. This paper provides a detailed account of environmental test techniques used to qualify the F107 family of gas turbine engines which propel the U.S. Cruise Missile. In addition, a missile freestream flight test simulation for the TOMAHAWK Cruise Missile is discussed along with current and future program efforts.
External tank project new technology plan. [development of space shuttle external tank system
NASA Technical Reports Server (NTRS)
1973-01-01
A production plan for the space shuttle external tank configuration is presented. The subjects discussed are: (1) the thermal protection system, (2) thermal coating application techniques, (3) manufacturing and tooling, (4) propulsion system configurations and components, (5) low temperature rotating and sliding joint seals, (6) lightning protection, and (7) nondestructive testing technology.
Power management and distribution technology
NASA Astrophysics Data System (ADS)
Dickman, John Ellis
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
Power management and distribution technology
NASA Technical Reports Server (NTRS)
Dickman, John Ellis
1993-01-01
Power management and distribution (PMAD) technology is discussed in the context of developing working systems for a piloted Mars nuclear electric propulsion (NEP) vehicle. The discussion is presented in vugraph form. The following topics are covered: applications and systems definitions; high performance components; the Civilian Space Technology Initiative (CSTI) high capacity power program; fiber optic sensors for power diagnostics; high temperature power electronics; 200 C baseplate electronics; high temperature component characterization; a high temperature coaxial transformer; and a silicon carbide mosfet.
NASA Technical Reports Server (NTRS)
Dankanich, John; Demmons, Nate; Marrese-Reading, Colleen; Lozano, Paulo
2015-01-01
Propulsion technology is often a critical enabling technology for space missions. NASA is investing in technologies to enable high value missions with very small spacecraft, even CubeSats. However, these nanosatellites currently lack any appreciable propulsion capability. CubeSats are typically deployed and tumble or drift without any ability to transfer to higher value orbits, perform orbit maintenance, or perform de-orbit. Larger spacecraft can also benefit from high precision attitude control systems. Existing practices include reaction wheels with lifetime concerns and system level complexity. Microelectrospray thrusters will provide new propulsion capabilities to address these mission needs. Electric propulsion is an approach to accelerate propellant to very high exhaust velocities through the use of electrical power. Typical propulsion systems are limited to the combustion energy available in the chemical bonds of the fuel and then acceleration through a converging diverging nozzle. However, electric propulsion can accelerate propellant to ten times higher velocities and therefore increase momentum transfer efficiency, or essentially, increase the fuel economy. Fuel efficiency of thrusters is proportional to the exhaust velocity and referred to as specific impulse (Isp). The state-of-the-art (SOA) for CubeSats is cold gas propulsion with an Isp of 50-80 s. The Space Shuttle main engine demonstrated a specific impulse of 450 s. The target Isp for the Mars Exploration Program (MEP) systems is >1,500 s. This propellant efficiency can enable a 1-kg, 10-cm cube to transfer from low-Earth orbit to interplanetary space with only 200 g of propellant. In September 2013, NASA's Game Changing Development program competitively awarded three teams with contracts to develop MEP systems from Technology Readiness Level-3 (TRL-3), experimental concept, to TRL-5, system validation in a relevant environment. The project is planned for 18 months of system development. Due to the ambitious project goals, NASA has awarded contracts to mature three unique methods to achieve the desired goals. Some of the MEP concepts have been developed for more than a decade at the component level, but are now ready for system maturation. The three concepts include the high aspect ratio porous surface (HARPS) microthruster system, the scalable ion electrospray propulsion system (S-iEPS), and an indium microfluidic electrospray propulsion system. The HARPS system is under development by Busek Co. The HARPS thruster is an electrospray thruster that relies on surface emission of a porous metal with a passive capillary wicking system for propellant management. The HARPS thruster is expected to provide a simple, high ?V and low-cost solution. The HARPS thruster concept is shown in figure 1. Figure 1 includes the thruster, integrated power processing unit, and propellant reservoir.
Miniaturization of components and systems for space using MEMS-technology
NASA Astrophysics Data System (ADS)
Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin
2007-06-01
Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty of this micropropulsion system is that all critical components such as thrust chamber/nozzle assembly including internal heaters, valves and filters are manufactured using MEMS technology. Moreover, miniaturized pressure sensors, relying on MEMS technology, is also part of the system as a self-standing component. The flight opportunity on PRISMA represents one of the few and thus important opportunities to demonstrate MEMS technology in space. The present paper aims at describing this development effort and highlights the benefits of miniaturized components and systems for space using MEMS technology.
Materials Needs for Future In-space Propulsion Systems
NASA Technical Reports Server (NTRS)
Johnson, Charles Les
2008-01-01
NASA is developing the next generation of in-space propulsion systems in support of robotic exploration missions throughout the solar system. The propulsion technologies being developed are non-traditional and have stressing materials performance requirements. (Chemical Propulsion) Earth-storable chemical bipropellant performance is constrained by temperature limitations of the columbium used in the chamber. Iridium/rhenium (Ir/Re) is now available and has been implemented in initial versions of Earth-Storable rockets with specific impulses (Isp) about 10 seconds higher than columbium rocket chambers. New chamber fabrication methods that improve process and performance of Ir/Re and other promising material systems are needed. (Solar Sail Propulsion) The solar sail is a propellantless propulsion system that gains momentum by reflecting sunlight. The sails need to be very large in area (from 10000 m2 up to 62500 m2) yet be very lightweight in order to achieve adequate accelerations for realistic mission times. Lightweight materials that can be manufactured in thicknesses of less than 1 micron and that are not harmed by the space environment are desired. (Aerocapture) Blunt Body Aerocapture uses aerodynamic drag to slow an approaching spacecraft and insert it into a science orbit around any planet or moon with an atmosphere. The spacecraft is enclosed by a rigid aeroshell that protects it from the entry heating and aerodynamic environment. Lightweight, high-temperature structural systems, adhesives, insulators, and ablatives are key components for improving aeroshell efficiencies at heating rates of 1000-2000 W/cu cm and beyond. Inflatable decelerators in the forms of ballutes and inflatable aeroshells will use flexible polymeric thin film materials, high temperature fabrics, and structural adhesives. The inflatable systems will be tightly packaged during cruise and will be inflated prior to entry interface at the destination. Materials must maintain strength and flexibility while packaged at cold temperatures (_100oC) for up to 10 years and then withstand the high temperatures (500oC) encountered during aerocapture. The presentation will describe the status of each propulsion technology and summarize the materials needed for their implementation.
NASA Astrophysics Data System (ADS)
Maser, Adam Charles
More electric aircraft systems, high power avionics, and a reduction in heat sink capacity have placed a larger emphasis on correctly satisfying aircraft thermal management requirements during conceptual design. Thermal management systems must be capable of dealing with these rising heat loads, while simultaneously meeting mission performance. Since all subsystem power and cooling requirements are ultimately traced back to the engine, the growing interactions between the propulsion and thermal management systems are becoming more significant. As a result, it is necessary to consider their integrated performance during the conceptual design of the aircraft gas turbine engine cycle to ensure that thermal requirements are met. This can be accomplished by using thermodynamic subsystem modeling and simulation while conducting the necessary design trades to establish the engine cycle. However, this approach also poses technical challenges associated with the existence of elaborate aircraft subsystem interactions. This research addresses these challenges through the creation of a parsimonious, transparent thermodynamic model of propulsion and thermal management systems performance with a focus on capturing the physics that have the largest impact on propulsion design choices. This modeling environment, known as Cycle Refinement for Aircraft Thermodynamically Optimized Subsystems (CRATOS), is capable of operating in on-design (parametric) and off-design (performance) modes and includes a system-level solver to enforce design constraints. A key aspect of this approach is the incorporation of physics-based formulations involving the concurrent usage of the first and second laws of thermodynamics, which are necessary to achieve a clearer view of the component-level losses across the propulsion and thermal management systems. This is facilitated by the direct prediction of the exergy destruction distribution throughout the system and the resulting quantification of available work losses over the time history of the mission. The characterization of the thermodynamic irreversibility distribution helps give the propulsion systems designer an absolute and consistent view of the tradeoffs associated with the design of the entire integrated system. Consequently, this leads directly to the question of the proper allocation of irreversibility across each of the components. The process of searching for the most favorable allocation of this irreversibility is the central theme of the research and must take into account production cost and vehicle mission performance. The production cost element is accomplished by including an engine component weight and cost prediction capability within the system model. The vehicle mission performance is obtained by directly linking the propulsion and thermal management model to a vehicle performance model and flying it through a mission profile. A canonical propulsion and thermal management systems architecture is then presented to experimentally test each element of the methodology separately: first the integrated modeling and simulation, then the irreversibility, cost, and mission performance considerations, and then finally the proper technique to perform the optimal allocation. A goal of this research is the description of the optimal allocation of system irreversibility to enable an engine cycle design with improved performance and cost at the vehicle-level. To do this, a numerical optimization was first used to minimize system-level production and operating costs by fixing the performance requirements and identifying the best settings for all of the design variables. There are two major drawbacks to this approach: It does not allow the designer to directly trade off the performance requirements and it does not allow the individual component losses to directly factor into the optimization. An irreversibility allocation approach based on the economic concept of resource allocation is then compared to the numerical optimization. By posing the problem in economic terms, exergy destruction is treated as a true common currency to barter for improved efficiency, cost, and performance. This allows the designer to clearly see how changes in the irreversibility distribution impact the overall system. The inverse design is first performed through a filtered Monte Carlo to allow the designer to view the irreversibility design space. The designer can then directly perform the allocation using the exergy destruction, which helps to place the design choices on an even thermodynamic footing. Finally, two use cases are presented to show how the irreversibility allocation approach can assist the designer. The first describes a situation where the designer can better address competing system-level requirements; the second describes a different situation where the designer can choose from a number of options to improve a system in a manner that is more robust to future requirements.
Development Efforts Expanded in Ion Propulsion: Ion Thrusters Developed With Higher Power Levels
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Rawlin, Vincent K.; Sovey, James S.
2003-01-01
The NASA Glenn Research Center was the major contributor of 2-kW-class ion thruster technology to the Deep Space 1 mission, which was successfully completed in early 2002. Recently, NASA s Office of Space Science awarded approximately $21 million to Glenn to develop higher power xenon ion propulsion systems for large flagship missions such as outer planet explorers and sample return missions. The project, referred to as NASA's Evolutionary Xenon Thruster (NEXT), is a logical follow-on to the ion propulsion system demonstrated on Deep Space 1. The propulsion system power level for NEXT is expected to be as high as 25 kW, incorporating multiple ion thrusters, each capable of being throttled over a 1- to 6-kW power range. To date, engineering model thrusters have been developed, and performance and plume diagnostics are now being documented. The project team-Glenn, the Jet Propulsion Laboratory, General Dynamics, Boeing Electron Dynamic Devices, the Applied Physics Laboratory, the University of Michigan, and Colorado State University-is in the process of developing hardware for a ground demonstration of the NEXT propulsion system, which comprises a xenon feed system, controllers, multiple thrusters, and power processors. The development program also will include life assessments by tests and analyses, single-string tests of ion thrusters and power systems, and finally, multistring thruster system tests in calendar year 2005. In addition, NASA's Office of Space Science selected Glenn to lead the development of a 25-kW xenon thruster to enable NASA to conduct future missions to the outer planets of Jupiter and beyond, under the High Power Electric Propulsion (HiPEP) program. The development of a 100-kW-class ion propulsion system and power conversion systems are critical components to enable future nuclear-electric propulsion systems. In fiscal year 2003, a team composed of Glenn, the Boeing Company, General Dynamics, the Applied Physics Laboratory, the Naval Research Laboratory, the University of Wisconsin, the University of Michigan, and Colorado State University will perform a 6-month study that will result in the design of a 25-kW ion thruster, a propellant feed system, and a power processing architecture. The following 2 years will involve hardware development, wear tests, single-string tests of the thruster-power circuits and the xenon feed system, and subsystem service life analyses. The 2-kW-class ion propulsion technology developed for the Deep Space 1 mission will be used for NASA's discovery mission Dawn, which involves maneuvering a spacecraft to survey the asteroids Ceres and Vesta. The 6-kW-class ion thruster subsystem technology under NEXT is scheduled to be flight ready by calendar year 2006. The less mature 25- kW ion thruster system under HiPEP is expected to be ready for a flight advanced development program in calendar year 2006.
Closed-cycle gas dynamic laser design investigation
NASA Technical Reports Server (NTRS)
Ketch, G. W.; Young, W. E.
1977-01-01
A conceptual design study was made of a closed cycle gas-dynamic laser to provide definition of the major components in the laser loop. The system potential application is for long range power transmission by way of high power laser beams to provide satellite propulsion energy for orbit changing or station keeping. A parametric cycle optimization was conducted to establish the thermodynamic requirements for the system components. A conceptual design was conducted of the closed cycle system and the individual components to define physical characteristics and establish the system size and weight. Technology confirmation experimental demonstration programs were outlined to develop, evaluate, and demonstrate the technology base needed for this closed cycle GDL system.
An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Werner; Sam Bhattacharyya; Mike Houts
Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less
NASA Technical Reports Server (NTRS)
Sang, Janche
2003-01-01
Within NASA's Aviation Safety Program, NASA GRC participates in the Modeling and Simulation Project called ASMM. NASA GRC s focus is to characterize the propulsion systems performance from a fleet management and maintenance perspective by modeling and through simulation predict the characteristics of two classes of commercial engines (CFM56 and GE90). In prior years, the High Performance Computing and Communication (HPCC) program funded, NASA Glenn in developing a large scale, detailed simulations for the analysis and design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). Three major aspects of this modeling included the integration of different engine components, coupling of multiple disciplines, and engine component zooming at appropriate level fidelity, require relatively tight coupling of different analysis codes. Most of these codes in aerodynamics and solid mechanics are written in Fortran. Refitting these legacy Fortran codes with distributed objects can increase these codes reusability. Aviation Safety s modeling and simulation use in characterizing fleet management has similar needs. The modeling and simulation of these propulsion systems use existing Fortran and C codes that are instrumental in determining the performance of the fleet. The research centers on building a CORBA-based development environment for programmers to easily wrap and couple legacy Fortran codes. This environment consists of a C++ wrapper library to hide the details of CORBA and an efficient remote variable scheme to facilitate data exchange between the client and the server model. Additionally, a Web Service model should also be constructed for evaluation of this technology s use over the next two- three years.
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
Modular thrust subsystem approaches to solar electric propulsion module design
NASA Technical Reports Server (NTRS)
Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.
1976-01-01
Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
Low-Mass Inflation Systems for Inflatable Structures
NASA Technical Reports Server (NTRS)
Thunnissen, Daniel P.; Webster, Mark S.; Engelbrecht, Carl S.
1995-01-01
The use of inflatable space structures has often been proposed for aerospace and planetary applications. Communication, power generation, and very-long-baseline interferometry are just three potential applications of inflatable technology. The success of inflatable structures depends on the development of an applications of inflatable technology. This paper describes two design studies performed to develop a low mass inflation system. The first study takes advantage of existing onboard propulsion gases to reduce the overall system mass. The second study assumes that there is no onboard propulsion system. Both studies employ advanced components developed for the Pluto fast flyby spacecraft to further reduce mass. The study examined four different types of systems: hydrazine, nitrogen and water, nitrogen, and xenon. This study shows that all of these systems can be built for a small space structure with masses lower than 0.5 kilograms.
NASA Astrophysics Data System (ADS)
McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza
2006-01-01
The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.
A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
NASA Technical Reports Server (NTRS)
Messer, Bradley P.
2004-01-01
Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.
Investigation of Various Novel Air-Breathing Propulsion Systems
NASA Astrophysics Data System (ADS)
Wilhite, Jarred M.
The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable of transferring significant amounts of heat and improving the efficiency and performance of the propulsion system.
Impact of future fuel properties on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
This paper describes and discusses the propulsion-system problems that will most likely be encountered if the specifications of hydrocarbon-based jet fuels must undergo significant changes in the future and, correspondingly, the advances in technology that will be required to minimize the adverse impact of these problems. Several investigations conducted are summarized. Illustrations are used to describe the relative effects of selected fuel properties on the behavior of propulsion-system components and fuel systems. The selected fuel properties are those that are most likely to be relaxed in future fuel specifications. Illustrations are also used to describe technological advances that may be needed in the future. Finally, the technological areas needing the most attention are described, and programs that are under way to address these needs are briefly discussed.
A laboratory facility for electric vehicle propulsion system testing
NASA Technical Reports Server (NTRS)
Sargent, N. B.
1980-01-01
The road load simulator facility located at the NASA Lewis Research Center enables a propulsion system or any of its components to be evaluated under a realistic vehicle inertia and road loads. The load is applied to the system under test according to the road load equation: F(net)=K1F1+K2F2V+K3 sq V+K4(dv/dt)+K5 sin theta. The coefficient of each term in the equation can be varied over a wide range with vehicle inertial representative of vehicles up to 7500 pounds simulated by means of flywheels. The required torque is applied by the flywheels, a hydroviscous absorber and clutch, and a drive motor integrated by a closed loop control system to produce a smooth, continuous load up to 150 horsepower.
Propulsion Electric Grid Simulator (PEGS) for Future Turboelectric Distributed Propulsion Aircraft
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Morrison, Carlos; Dever, Timothy; Brown, Gerald V.
2014-01-01
NASA Glenn Research Center, in collaboration with the aerospace industry and academia, has begun the development of technology for a future hybrid-wing body electric airplane with a turboelectric distributed propulsion (TeDP) system. It is essential to design a subscale system to emulate the TeDP power grid, which would enable rapid analysis and demonstration of the proof-of-concept of the TeDP electrical system. This paper describes how small electrical machines with their controllers can emulate all the components in a TeDP power train. The whole system model in Matlab/Simulink was first developed and tested in simulation, and the simulation results showed that system dynamic characteristics could be implemented by using the closed-loop control of the electric motor drive systems. Then we designed a subscale experimental system to emulate the entire power system from the turbine engine to the propulsive fans. Firstly, we built a system to emulate a gas turbine engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft. We programmed the first motor and its drive to mimic the speed-torque characteristic of the gas turbine engine, while the second motor and drive act as a generator and produce a torque load on the first motor. Secondly, we built another system of two PM motors and drives to emulate a motor driving a propulsive fan. We programmed the first motor and drive to emulate a wound-rotor synchronous motor. The propulsive fan was emulated by implementing fan maps and flight conditions into the fourth motor and drive, which produce a torque load on the driving motor. The stator of each PM motor is designed to travel axially to change the coupling between rotor and stator. This feature allows the PM motor to more closely emulate a wound-rotor synchronous machine. These techniques can convert the plain motor system into a unique TeDP power grid emulator that enables real-time simulation performance using hardware-in-the-loop (HIL).
Personal Rotorcraft Design and Performance with Electric Hybridization
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2017-01-01
Recent and projected improvements for more or all-electric aviation propulsion systems can enable greater personal mobility, while also reducing environmental impact (noise and emissions). However, all-electric energy storage capability is significantly less than present, hydrocarbon-fueled systems. A system study was performed exploring design and performance assuming hybrid propulsion ranging from traditional hydrocarbon-fueled cycles (gasoline Otto and diesel) to all-electric systems using electric motors generators, with batteries for energy storage and load leveling. Study vehicles were a conventional, single-main rotor (SMR) helicopter and an advanced vertical takeoff and landing (VTOL) aircraft. Vehicle capability was limited to two or three people (including pilot or crew); the design range for the VTOL aircraft was set to 150 miles (about one hour total flight). Search and rescue (SAR), loiter, and cruise-dominated missions were chosen to illustrate each vehicle and degree of hybrid propulsion strengths and weaknesses. The traditional, SMR helicopter is a hover-optimized design; electric hybridization was performed assuming a parallel hybrid approach by varying degree of hybridization. Many of the helicopter hybrid propulsion combinations have some mission capabilities that might be effective for short range or on-demand mobility missions. However, even for 30 year technology electrical components, all hybrid propulsion systems studied result in less available fuel, lower maximum range, and reduced hover and loiter duration than the baseline vehicle. Results for the VTOL aircraft were more encouraging. Series hybrid combinations reflective of near-term systems could improve range and loiter duration by 30. Advanced, higher performing series hybrid combinations could double or almost triple the VTOL aircrafts range and loiter duration. Additional details on the study assumptions and work performed are given, as well as suggestions for future study effort.
Resource Prospector Propulsion System Cold Flow Testing
NASA Technical Reports Server (NTRS)
Williams, Hunter; Holt, Kim; Addona, Brad; Trinh, Huu
2015-01-01
Resource Prospector (RP) is a NASA mission being led by NASA Ames Research Center with current plans to deliver a scientific payload package aboard a rover to the lunar surface. As part of an early risk reduction activity, Marshall Space Flight Center (MSFC) and Johnson Space Flight Center (JSC) have jointly developed a government-version concept of a lunar lander for the mission. The spacecraft consists of two parts, the lander and the rover which carries the scientific instruments. The lander holds the rover during launch, cruise, and landing on the surface. Following terminal descent and landing the lander portion of the spacecraft become dormant after the rover embarks on the science mission. The lander will be equipped with a propulsion system for lunar descent and landing, as well as trajectory correction and attitude control maneuvers during transit to the moon. Hypergolic propellants monomethyl hydrazine and nitrogen tetroxide will be used to fuel sixteen 70-lbf descent thrusters and twelve 5-lbf attitude control thrusters. A total of four metal-diaphragm tanks, two per propellant, will be used along with a high-pressure composite-overwrapped pressure vessel for the helium pressurant gas. Many of the major propulsion system components are heritage missile hardware obtained by NASA from the Air Force. In parallel with the flight system design activities, a simulated propulsion system based on flight drawings was built for conducting a series of water flow tests to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes such as system priming, waterhammer, and crucial mission duty cycles. The primary objective of the cold flow testing was to simulate the RP propulsion system fluid flow operation through water flow testing and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. All design and build efforts, including the analytical modeling, have been performed. The cold flow testing of the propulsion system was set up and conducted at a NASA MSFC test facility. All testing was completed in the summer of 2014, and this paper documents the results of that testing and the associated fluid system modeling efforts.
Human Missions to Mars Orbit, Phobos, and Mars Surface Using 100-kWe-Class Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Price, Humphrey W.; Woolley, Ryan C.; Strange, Nathan J.; Baker, John D.
2014-01-01
Solar electric propulsion (SEP) tugs in the 100-kWe range, may be utilized to preposition cargo in the Mars system to enable more affordable human missions to Phobos and to the surface of Mars. The SEP tug, a high heritage follow-on to the 50-kWe SEP spacecraft proposed for the Asteroid Redirect Robotic Mission (ARRM), would have the same structure, tankage, electric propulsion components, and avionics as the ARRM version, But with double the number of solar arrays, Hall thrusters, and power processor units (PPUs) and would be accommodated within the same launch envelope defined for ARRM. As a feasibility study, a 950-day human mission to Phobos using a conjunction class trajectory, such as the 2033 opportunity, was developed using two 100-kWe SEP vehicles to preposition a habitat at Phobos and propulsion stages in high Mars orbit (HMO). An architecture concept for a crewed Mars surface lander mission was also developed as a reference to build on the Phobos mission architecture, adding a lander element that could be delivered using chemical propulsion and aerocapture.
Study of advanced techniques for determining the long term performance of components
NASA Technical Reports Server (NTRS)
1973-01-01
The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.
Communications satellite no. 2 (CS-2)
NASA Technical Reports Server (NTRS)
1982-01-01
The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.
Enabling propulsion materials for high-speed civil transport engines
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Herbell, Thomas P.
1992-01-01
NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.
NASA Technical Reports Server (NTRS)
Ekrami, Yasamin; Cook, Joseph S.
2011-01-01
In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.
NASA Astrophysics Data System (ADS)
Chen, Yang; Wang, Huasheng; Xia, Jixia; Cai, Guobiao; Zhang, Zhenpeng
2017-04-01
For the pressure reducing regulator and check valve double-valve combined test system in an integral bipropellant propulsion system, a system model is established with modular models of various typical components. The simulation research is conducted on the whole working process of an experiment of 9 MPa working condition from startup to rated working condition and finally to shutdown. Comparison of simulation results with test data shows: five working conditions including standby, startup, rated pressurization, shutdown and halt and nine stages of the combined test system are comprehensively disclosed; valve-spool opening and closing details of the regulator and two check valves are accurately revealed; the simulation also clarifies two phenomena which test data are unable to clarify, one is the critical opening state in which the check valve spools slightly open and close alternately in their own fully closed positions, the other is the obvious effects of flow-field temperature drop and temperature rise in pipeline network with helium gas flowing. Moreover, simulation results with consideration of component wall heat transfer are closer to the test data than those under the adiabatic-wall condition, and more able to reveal the dynamic characteristics of the system in various working stages.
NASA Technical Reports Server (NTRS)
Obrien, W. J.
1976-01-01
Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.
Proceedings of the 8th Annual Summer Conference: NASA/USRA Advanced Design Program
NASA Technical Reports Server (NTRS)
1992-01-01
Papers presented at the 8th Annual Summer Conference are categorized as Space Projects and Aeronautics projects. Topics covered include: Systematic Propulsion Optimization Tools (SPOT), Assured Crew Return Vehicle Post Landing Configuration Design and Test, Autonomous Support for Microorganism Research in Space, Bioregenerative System Components for Microgravity, The Extended Mission Rover (EMR), Planetary Surface Exploration MESUR/Autonomous Lunar Rover, Automation of Closed Environments in Space for Human Comfort and Safety, Walking Robot Design, Extraterrestrial Surface Propulsion Systems, The Design of Four Hypersonic Reconnaissance Aircraft, Design of a Refueling Tanker Delivering Liquid Hydrogen, The Design of a Long-Range Megatransport Aircraft, and Solar Powered Multipurpose Remotely Powered Aircraft.
NASA Technical Reports Server (NTRS)
Gerrish, Harold P., Jr.
2003-01-01
This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.
Progress on Ares First Stage Propulsion
NASA Technical Reports Server (NTRS)
Priskos, Alex S.; Tiller, Bruce
2008-01-01
The mission of the National Aeronautics and Space Administration (NASA) is not simply to maintain its current position with the International Space Station and other space exploration endeavors, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains. The Constellation Program will oversee the development of the crew capsule, launch vehicles, and other systems needed to achieve this mission. From this initiative will come two new launch vehicles: the Ares I and Ares V. The Ares I will be a human-rated vehicle, which will be used for crew transport; the Ares V, a cargo transport vehicle, will be the largest launch vehicle ever built. The Ares Projects team at Marshall Space Flight Center (MSFC) in Huntsville, Alabama is assigned with developing these two new vehicles. The Ares I vehicle will have an in-line, two-stage rocket configuration. The first stage will provide the thrust or propulsion component for the Ares rocket systems through the first two minutes of the mission. The First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low-Earth orbit. Building on the legacy of the Space Shuttle and other NASA space exploration initiatives, the propulsion for the Ares I First Stage will be a Shuttle-derived reusable solid rocket motor. Progress to date by the First Stage Team has been robust and on schedule. This paper provides an update on the design and development of the Ares First Stage Propulsion system.
Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters
NASA Astrophysics Data System (ADS)
Pfaff, Michael
Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.
Numerical Propulsion System Simulation (NPSS): An Award Winning Propulsion System Simulation Tool
NASA Technical Reports Server (NTRS)
Stauber, Laurel J.; Naiman, Cynthia G.
2002-01-01
The Numerical Propulsion System Simulation (NPSS) is a full propulsion system simulation tool used by aerospace engineers to predict and analyze the aerothermodynamic behavior of commercial jet aircraft, military applications, and space transportation. The NPSS framework was developed to support aerospace, but other applications are already leveraging the initial capabilities, such as aviation safety, ground-based power, and alternative energy conversion devices such as fuel cells. By using the framework and developing the necessary components, future applications that NPSS could support include nuclear power, water treatment, biomedicine, chemical processing, and marine propulsion. NPSS will dramatically reduce the time, effort, and expense necessary to design and test jet engines. It accomplishes that by generating sophisticated computer simulations of an aerospace object or system, thus enabling engineers to "test" various design options without having to conduct costly, time-consuming real-life tests. The ultimate goal of NPSS is to create a numerical "test cell" that enables engineers to create complete engine simulations overnight on cost-effective computing platforms. Using NPSS, engine designers will be able to analyze different parts of the engine simultaneously, perform different types of analysis simultaneously (e.g., aerodynamic and structural), and perform analysis in a more efficient and less costly manner. NPSS will cut the development time of a new engine in half, from 10 years to 5 years. And NPSS will have a similar effect on the cost of development: new jet engines will cost about a billion dollars to develop rather than two billion. NPSS is also being applied to the development of space transportation technologies, and it is expected that similar efficiencies and cost savings will result. Advancements of NPSS in fiscal year 2001 included enhancing the NPSS Developer's Kit to easily integrate external components of varying fidelities, providing the initial Visual-Based Syntax (VBS) capability, and developing additional capabilities to support space transportation. NPSS was supported under NASA's High Performance Computing and Communications Program. Through the NASA/Industry Cooperative Effort agreement, NASA Glenn and its industry and Government partners are developing NPSS. The NPSS team consists of propulsion experts and software engineers from GE Aircraft Engines, Pratt & Whitney, The Boeing Company, Honeywell, Rolls-Royce Corporation, Williams International, Teledyne Continental Motors, Arnold Engineering Development Center, Wright Patterson Air Force Base, and the NASA Glenn Research Center. Glenn is leading the way in developing NPSS--a method for solving complex design problems that's faster, better, and cheaper.
NASA Technical Reports Server (NTRS)
Zilz, D. E.; Devereaux, P. A.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.
Propulsion Systems Panel deliberations
NASA Technical Reports Server (NTRS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.
1993-01-01
The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.
Propulsion Systems Panel deliberations
NASA Astrophysics Data System (ADS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; McGaw, Mike; Munafo, Paul M.
1993-02-01
The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.
NASA Technical Reports Server (NTRS)
Mazurkivich, Pete; Chandler, Frank; Grayson, Gary
2005-01-01
To meet the requirements for the 2nd Generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and development cost by approximately 25%. A Main Propulsion System (MPS) crossfeed water demonstration test program was configured to address all the activities required to reduce the risks for the MPS crossfeed system. A transient, one-dimensional system simulation was developed for the subscale crossfeed water flow tests. To ensure accurate representation of the crossfeed valve's dynamics in the system model, a high-fidelity, three-dimensional, computational fluid-dynamics (CFD) model was employed. The results from the CFD model were used to specify the valve's flow characteristics in the system simulation. This yielded a crossfeed system model that was anchored to the specific valve hardware and achieved good agreement with the measured test data. These results allowed the transient models to be correlated and validated and used for full scale mission predictions. The full scale model simulations indicate crossfeed is ' viable with the system pressure disturbances at the crossfeed transition being less than experienced by the propulsion system during engine start and shutdown transients.
An update of engine system research at the Army Propulsion Directorate
NASA Technical Reports Server (NTRS)
Bobula, George A.
1990-01-01
The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which have evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has demonstrated its utility in both research and development programs. The STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Dankanich, John; Martinez, Andres; Petro, Andrew
2015-01-01
The Iodine Satellite (iSat) spacecraft will be the first CubeSat to demonstrate high change in velocity from a primary propulsion system by using Hall thruster technology and iodine as a propellant. The mission will demonstrate CubeSat maneuverability, including plane change, altitude change and change in its closest approach to Earth to ensure atmospheric reentry in less than 90 days. The mission is planned for launch in fall 2017. Hall thruster technology is a type of electric propulsion. Electric propulsion uses electricity, typically from solar panels, to accelerate the propellant. Electric propulsion can accelerate propellant to 10 times higher velocities than traditional chemical propulsion systems, which significantly increases fuel efficiency. To enable the success of the propulsion subsystem, iSat will also demonstrate power management and thermal control capabilities well beyond the current state-of-the-art for spacecraft of its size. This technology is a viable primary propulsion system that can be used on small satellites ranging from about 22 pounds (10 kilograms) to more than 1,000 pounds (450 kilograms). iSat's fuel efficiency is ten times greater and its propulsion per volume is 100 times greater than current cold-gas systems and three times better than the same system operating on xenon. iSat's iodine propulsion system consists of a 200 watt (W) Hall thruster, a cathode, a tank to store solid iodine, a power processing unit (PPU) and the feed system to supply the iodine. This propulsion system is based on a 200 W Hall thruster developed by Busek Co. Inc., which was previously flown using xenon as the propellant. Several improvements have been made to the original system to include a compact PPU, targeting greater than 80 percent reduction in mass and volume of conventional PPU designs. The cathode technology is planned to enable heaterless cathode conditioning, significantly increasing total system efficiency. The feed system has been designed to include iodine compatible control valves with internal heaters and temperature sensors to coincide with the iodine-compatible thruster. A key advantage to using iodine as a propellant is that it may be stored in the tank as an unpressurized solid on the ground and before flight operations. During operations, the tank is heated to vaporize the propellant. Iodine vapor is then routed through custom flow control valves to control mass flow to the thruster and cathode assembly. The thruster then ionizes the vapor and accelerates it via magnetic and electrostatic fields, resulting in high specific impulse, characteristic of a highly efficient propulsion system. The iSat spacecraft is a 12-unit (12U) CubeSat with dimensions of about 8 inches x 8 inches x 12 inches (20 centimeters x 20 centimeters x 30 centimeters). The spacecraft frame will be constructed from aluminum with a finish to prevent iodine-driven corrosion. The iSat spacecraft includes full three-axis control and will leverage heat generated by spacecraft components and radiators for a passive thermal control system. After the CubeSat has successfully detached from its launch vehicle, it will deploy its solar panels, correct for tip-off and maintain attitude control before ground contact. An initial check-out period of two weeks is planned for testing all subsystems. The spacecraft will charge the power system while in sunlight, using momentum wheels and magnetic torque rods to rotate the vehicle to the required attitude.
NASA Technical Reports Server (NTRS)
Barnett, Gregory
2017-01-01
Science mission studies require spacecraft propulsion systems that are high-performance, lightweight, and compact. Highly matured technology and low-cost, short development time of the propulsion system are also very desirable. The Deep Space Engine (DSE) 100-lbf thruster is being developed to meet these needs. The overall goal of this game changing technology project is to qualify the DSE thrusters along with 5-lbf attitude control thrusters for space flight and for inclusion in science and exploration missions. The aim is to perform qualification tests representative of mission duty cycles. Most exploration missions are constrained by mass, power and cost. As major propulsion components, thrusters are identified as high-risk, long-lead development items. NASA spacecraft primarily rely on 1960s' heritage in-space thruster designs and opportunities exist for reducing size, weight, power, and cost through the utilization of modern materials and advanced manufacturing techniques. Advancements in MON-25/MMH hypergolic bipropellant thrusters represent a promising avenue for addressing these deficiencies with tremendous mission enhancing benefits. DSE is much lighter and costs less than currently available thrusters in comparable thrust classes. Because MON-25 propellants operate at lower temperatures, less power is needed for propellant conditioning for in-space propulsion applications, especially long duration and/or deep-space missions. Reduced power results in reduced mass for batteries and solar panels. DSE is capable of operating at a wide propellant temperature range (between -22 F and 122 F) while a similar existing thruster operates between 45 F and 70 F. Such a capability offers robust propulsion operation as well as flexibility in design. NASA's Marshall Space Flight Center evaluated available operational Missile Defense Agency heritage thrusters suitable for the science and lunar lander propulsion systems.
Integrated model development for liquid fueled rocket propulsion systems
NASA Technical Reports Server (NTRS)
Santi, L. Michael
1993-01-01
As detailed in the original statement of work, the objective of phase two of this research effort was to develop a general framework for rocket engine performance prediction that integrates physical principles, a rigorous mathematical formalism, component level test data, system level test data, and theory-observation reconciliation. Specific phase two development tasks are defined.
NASA Technical Reports Server (NTRS)
1992-01-01
The technical effort and computer code developed during the first year are summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis.
The propulsive design aspects on the world's first direct drive hybrid airplane
NASA Astrophysics Data System (ADS)
Nanda, Ankit
The purpose of this thesis is to design a safe technology demonstrator by implementing a direct drive propulsion system for a gas-electric hybrid aircraft. This system was integrated on the Embry-Riddle Eco-Eagle for the Green Flight Challenge 2011. The aim of the system is to allow the pilot to use the electric motor as an independent power source to fly the aircraft once at cruise altitude, while having a gas engine to allow for higher power capability. The system was designed to incorporate the motor and the motor control unit provided by Flight Design and Drivetek AG alongside a Rotax 912ULS engine. The hardware is integrated such that the pilot would be able to fly the aircraft with controls similar to conventional general aviation aircraft. This thesis discusses the method of integration of the hybrid powerplant system into a Stemme S-10 and describes the various components of that system.
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Bruno, Cy
2012-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy
2013-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed.
Modular Aero-Propulsion System Simulation
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Guo, Ten-Huei
2006-01-01
The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.
NASA Technical Reports Server (NTRS)
Rajagopal, K. R.
1992-01-01
The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.
Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle
2012-01-01
This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.
Probabilistic structural analysis methods for space propulsion system components
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.
Advanced Computational Techniques for Hypersonic Propulsion
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1996-01-01
CFD has played a major role in the resurgence of hypersonic flight, on the premise that numerical methods will allow us to perform simulations at conditions for which no ground test capability exists. Validation of CFD methods is being established using the experimental data base available, which is below Mach 8. It is important, however, to realize the limitations involved in the extrapolation process as well as the deficiencies that exist in numerical methods at the present time. Current features of CFD codes are examined for application to propulsion system components. The shortcomings in simulation and modeling are identified and discussed.
Additive Manufacturing of Low Cost Upper Stage Propulsion Components
NASA Technical Reports Server (NTRS)
Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda
2014-01-01
NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.
Fluid design studies of integrated modular engine system
NASA Technical Reports Server (NTRS)
Frankenfield, Bruce; Carek, Jerry
1993-01-01
A study was performed to develop a fluid system design and show the feasibility of constructing an integrated modular engine (IME) configuration, using an expander cycle engine. The primary design goal of the IME configuration was to improve the propulsion system reliability. The IME fluid system was designed as a single fault tolerant system, while minimizing the required fluid components. This study addresses the design of the high pressure manifolds, turbopumps and thrust chambers for the IME configuration. A physical layout drawing was made, which located each of the fluid system components, manifolds and thrust chambers. Finally, a comparison was made between the fluid system designs of an IME system and a non-network (clustered) engine system.
NASA Astrophysics Data System (ADS)
Sidorov, K. M.; Yutt, V. E.; Grishchenko, A. G.; Golubchik, T. V.
2018-02-01
The objective of the work presented in this paper is to describe the implementation of the technical solutions have been developed, with regard to structure, composition, and characteristics, for an experimental prototype of an electric vehicle which has been converted from a conventional vehicle. The methodology of the study results is based on the practical implementation of the developed concept of the conversion of conventional vehicles into electric vehicles. The main components of electric propulsion system of the experimental prototype of electric vehicle are developed and manufactured on the basis of computational researches, taking into account the criteria and principles of conversion within the framework of presented work. The article describes a schematic and a design of power conversion and commutation electrical equipment, traction battery, electromechanical transmission. These results can serve as guidance material in the design and implementation of electric propulsion system (EPS) components of electric vehicles, facilitate the development of optimal technical solutions in the development and manufacture of vehicles, including those aimed at autonomy of operation and the use of perspective driver assistance systems. As part of this work, was suggested a rational structure for an electric vehicle experimental prototype, including technical performance characteristics of the components of EPS.
An Overview of the CNES Propulsion Program for Spacecraft
NASA Astrophysics Data System (ADS)
Cadiou, A.; Darnon, F.; Gibek, I.; Jolivet, L.; Pillet, N.
2004-10-01
This paper presents an overview of the CNES spacecraft propulsion activities. The main existing and future projects corresponding to low earth orbit and geostationary platforms are described. These projects cover various types of propulsion subsystems: monopropellant, bipropellant and electric. Monopropellant is mainly used for low earth orbit applications such as earth observation (SPOT/Helios, PLEIADES) or scientific applications (minisatellite PROTEUS line and micro satellites MYRIADE line). Bipropellant is used for geostationary telecommunications satellites (@BUS). The field of application of electric propulsion is the station keeping of geostationary telecommunication satellites (@BUS), main propulsion for specific probes (SMART 1) and fine attitude control for dedicated micro satellites (MICROSCOPE). The preparation of the future and the associated Research and Technology program are also described in the paper. The future developments are mainly dedicated to the performance improvements of electric propulsion which leads to the development of thrusters with higher thrust and higher specific impulse than those existing today, the evaluation of the different low thrust technologies for formation flying applications, the development of new systems to pressurize the propellants (volatile liquid, micro pump), the research on green propellants and different actions concerning components such as over wrapped pressure vessels, valves, micro propulsion. A constant effort is also put on plume effect in chemical and electrical propulsion area (improvement of tools and test activities) in the continuity of the previous work. These different R &T activities are described in detail after a presentation of the different projects and of their propulsion subsystems. The scientific activity supporting the development of Hall thrusters is going on in the frame of the GDR (Groupement de Recherche) CNRS / Universities / CNES / SNECMA on Plasma Propulsion.
Recent Advances in LOX / LH2 Propulsion System for Reusable Vehicle Testing
NASA Astrophysics Data System (ADS)
Tokudome, Shinichiro; Naruo, Yoshihiro; Yagishita, Tsuyoshi; Nonaka, Satoshi; Shida, Maki; Mori, Hatsuo; Nakamura, Takeshi
The third-generation vehicle RVT#3 equipped with a pressure-fed engine, which had upgraded in terms of durability enhancement and a LH2 tank of composite material, successfully performed in repeated flight operation tests; and the vehicle reached its maximum flying altitude of 42m in October 2003. The next step for demonstrating entire sequence of full-scale operation is to put a turbopump-fed system into propulsion system. From a result of primary system analysis, we decided to build an expander-cycle engine by diverting a pair of turbopumps, which had built for another research program, to the present study. A combustion chamber with long cylindrical portion adapted to the engine cycle was also newly made. Two captive firing tests have been conducted with two different thrust control methods, following the component tests of combustor and turbopumps separately conducted. A considerable technical issues recognized in the tests were the robustness enhancement of shaft seal design, the adjustment of shaft stiffness, and start-up operation adapted to the specific engine system. Experimental study of GOX/GH2 RCS thrusters have also been started as a part of a conceptual study of the integration of the propulsion system associated with simplification and reliability improvement of the vehicle system.
Miniatue Propulsion Components for the Pluto Fast Flyby Spacecraft
NASA Technical Reports Server (NTRS)
Morash, D. H.; Strand, L.
1994-01-01
Pluto is the only planet in our solar system not yet visited by our spacecraft. Recent observations through the Hubble Space Telescope have given us a glimpse of Pluto and it's moon Charon, but their small size and immense distance from earth have preserved their mystery.
NASA Technical Reports Server (NTRS)
Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew
2017-01-01
The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agency's LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three primary components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after propulsion separation. A recommissioning period was added after an anomaly occurred in the thruster system. The paper will describe the activities used to commission DRS, present results from the commissioning of the DCS and the recommissioning activities per-formed after the thruster anomaly.
NASA Technical Reports Server (NTRS)
Hsu, Oscar; Maghami, Peiman; O’Donnell, James R., Jr.; Ziemer, John; Romero-Wolf, Andrew
2017-01-01
The Space Technology-7 Disturbance Reduction System (DRS) launched aboard the European Space Agencys LISA Pathfinder spacecraft on December 3, 2015, after more than a decade in development. DRS consists of three prima-ry components: an Integrated Avionics Unit (IAU), Colloidal MicroNewton Thrusters, and Dynamic Control System (DCS) algorithms implemented on the IAU. During the portions of the mission in which the DRS was under control, the DCS was responsible for controlling the spacecraft and the free-floating test masses that were part of the LISA Test Package. The commissioning period was originally divided into two periods: before propulsion separation and after pro-pulsion separation. A recommissioning period was added after an anomaly oc-curred in the thruster system. The paper will describe the activities used to com-mission DRS, present results from the commissioning of the DCS and the re-commissioning activities performed after the thruster anomaly.
NASA Technical Reports Server (NTRS)
McRight, Patrick S.; Sheehy, Jeffrey A.; Blevins, John A.
2005-01-01
NASA Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V and the Space Shuttle. This paper highlights a lesser known but equally rich side of MSFC - its heritage in spacecraft chemical propulsion systems and its current capabilities for in-space propulsion system development and chemical propulsion research. The historical narrative describes the efforts associated with developing upper-stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology, X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and several technology development activities. Also discussed are MSFC chemical propulsion research capabilities, along with near- and long-term technology challenges to which MSFC research and system development competencies are relevant.
Results from Sandia National Laboratories/Lockheed Martin Electromagnetic Missile Launcher (EMML).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockner, Thomas Ramsbeck; Skurdal, Ben; Gaigler, Randy
2005-05-01
Sandia national laboratories (SNL) and lockheed martin MS2 are designing an electromagnetic missile launcher (EMML) for naval applications. The EMML uses an induction coilgun topology with the requirement of launching a 3600 lb. missile up to a velocity of 40 m/s. To demonstrate the feasibility of the electromagnetic propulsion design, a demonstrator launcher was built that consists of approximately 10% of the propulsion coils needed for a tactical design. The demonstrator verified the design by launching a 1430 lb weighted sled to a height of 24 ft in mid-December 2004 (Figure 1). This paper provides the general launcher design, specificmore » pulsed power system component details, system operation, and demonstration results.« less
Development and Qualification of ATV Propulsion Assemblies
NASA Astrophysics Data System (ADS)
Riehle, M.; Jost, R.
2002-01-01
In the frame of the development and operation of the International Space Station ISS, the European Space Agency ESA is not only contributing experiments and a laboratory module but also logistics capacity. This purpose of supplying the ISS shall be covered by an unmanned, Automated Transfer Vehicle (ATV) that will be launched for the first time in 2004 by Ariane 5. The development of the ATV is in close conjunction to the future Ariane 5 launch capacity of about 20 tons injected into low earth orbit. Thus this unmanned transporter will be a quite large space craft that is subjected to fulfil several mission objectives apart of only delivering cargo such as multiple automatic docking/de-docking, re-boost services and re-fuelling. For those reasons and due to its dimensions the propulsion sub-system is one of the most sophisticated in the field of space propulsion. Even safety issues of manned space flight have to be applied since the pressurised cargo section is part of the ISS when docked to the manned modules. This leads to by far the largest but also the most sophisticated propulsion system ever built in Europe. Astrium as one of the major partners of this european project is responsible for this major system that will be described in the paper. Focusing on the major core assemblies such as multi thruster platforms, pressure control system incl. safety and redundancy mechanisms as well as tanks and other components that completes a propulsion system. System Design and Qualification Starting from the basic criteria the paper will present the major performance requirements such as pressures, thrust levels and other parameters that led to the selection of major components of the system such as thrusters, valves, tanks, etc. Some of the component could be selected from off the shelve, whereas other core components such as the 200N Attitude Control and Braking Thrusters or Propellant Tanks had to be newly developed. The stepwise approach of development and careful qualification will be presented starting from components and assemblies up to sub- system. Exemplarily, the path of the 200N shall be described in more detail since requirements of various kinds are to be applied here. This thruster is used in a total of 28 engines located on 4 thruster cluster assemblies on the bottom and 4 on the front of the space craft delivering steady state thrust as well as impulse bit to the ATV and can be used also as backup for the main thrusters. Safety and thus redundancy is one of the major driver for the design. As a first step i.e. the thrusters are equipped with measures to detect malfunctions and problems by continuous measuring chamber temperature and combustion pressure. The layout of the thruster clusters arrangement in combination with control electronics are such are such that multiple independent branches are controlling the system by which each of them could to fulfil the whole operational objectives. The thruster clusters are also affected by most of the environmental constraints that require careful thermal or mechanical design. For example severe shock loads induced by the stage separation nearby as well as meteorites and debris have to be taken into account for mechanical design. Or large transient pressure spikes and water hammer caused by simultaneous operation of thrusters have to be considered for hydraulic design. As well as extreme conditions for thermal design facing high thermal loads both radiation and conductive during thruster firing and sun exposure of the externally mounted assembly as well as low heater budget and I/F flux limitations when exposed to deep space during long phases. Intensive test programs have been carried out or are under preparation as well as complementary numerical analysis are completing and supporting each step of the development. The paper will describe those design and qualification activities as well as the results as far as available to that time in order to give an overview of the status of the development of the whole propulsion system.
Assessment of Technologies for Noncryogenic Hybrid Electric Propulsion
NASA Technical Reports Server (NTRS)
Dever, Timothy P.; Duffy, Kirsten P.; Provenza, Andrew J.; Loyselle, Patricia L.; Choi, Benjamin B.; Morrison, Carlos R.; Lowe, Angela M.
2015-01-01
The Subsonic Fixed Wing Project of NASA's Fundamental Aeronautics Program is researching aircraft propulsion technologies that will lower noise, emissions, and fuel burn. One promising technology is noncryogenic electric propulsion, which could be either hybrid electric propulsion or turboelectric propulsion. Reducing dependence on the turbine engine would certainly reduce emissions. However, the weight of the electricmotor- related components that would have to be added would adversely impact the benefits of the smaller turbine engine. Therefore, research needs to be done to improve component efficiencies and reduce component weights. This study projects technology improvements expected in the next 15 and 30 years, including motor-related technologies, power electronics, and energy-storage-related technologies. Motor efficiency and power density could be increased through the use of better conductors, insulators, magnets, bearings, structural materials, and thermal management. Energy storage could be accomplished through batteries, flywheels, or supercapacitors, all of which expect significant energy density growth over the next few decades. A first-order approximation of the cumulative effect of each technology improvement shows that motor power density could be improved from 3 hp/lb, the state of the art, to 8 hp/lb in 15 years and 16 hp/lb in 30 years.
NASA Technical Reports Server (NTRS)
Zilz, D. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.
Space Shuttle critical function audit
NASA Technical Reports Server (NTRS)
Sacks, Ivan J.; Dipol, John; Su, Paul
1990-01-01
A large fault-tolerance model of the main propulsion system of the US space shuttle has been developed. This model is being used to identify single components and pairs of components that will cause loss of shuttle critical functions. In addition, this model is the basis for risk quantification of the shuttle. The process used to develop and analyze the model is digraph matrix analysis (DMA). The DMA modeling and analysis process is accessed via a graphics-based computer user interface. This interface provides coupled display of the integrated system schematics, the digraph models, the component database, and the results of the fault tolerance and risk analyses.
Adaptive Distributed Intelligent Control Architecture for Future Propulsion Systems (Preprint)
2007-04-01
weight will be reduced by replacing heavy harness assemblies and FADECs , with distributed processing elements interconnected. This paper reviews...Digital Electronic Controls ( FADECs ), with distributed processing elements interconnected through a serial bus. Efficient data flow throughout the...because intelligence is embedded in components while overall control is maintained in the FADEC . The need for Distributed Control Systems in
The Apollo spacecraft: A chronology. Volume 2: 8 November 1962 - 30 September 1964
NASA Technical Reports Server (NTRS)
Morse, M. L.; Bays, J. K.
1973-01-01
A chronology of the Apollo spacecraft development and production program is presented. The subjects discussed are: (1) defining contractural relations, (2) developing hardware distinctions, and (3) developing software ground rules. Illustrations, drawings, and photographs are used extensively to supplement the technical writing. Descriptions of life support systems, communication equipment, propulsion systems, control devices, and spacecraft components are provided.
The impact of fuels on aircraft technology through the year 2000
NASA Technical Reports Server (NTRS)
Grobman, J.; Reck, G. M.
1980-01-01
The impact that the supply, quality, and processing costs of future fuels may have on aircraft technology is assessed. The potential range of properties for future jet fuels is discussed along with the establishment of a data base of fuel property effects on propulsion system components. Also, the evolution and evaluation of advanced component technology that would permit the use of broader property fuels and the identification of technical and economic trade-offs within the overall fuel production-air transportation system associated with variations in fuel properties are examined.
Marshall Space Flight Center Test Capabilities
NASA Technical Reports Server (NTRS)
Hamilton, Jeffrey T.
2005-01-01
The Test Laboratory at NASA's Marshall Space Flight Center has over 50 facilities across 400+ acres inside a secure, fenced facility. The entire Center is located inside the boundaries of Redstone Arsenal, a 40,000 acre military reservation. About 150 Government and 250 contractor personnel operate facilities capable of all types of propulsion and structural testing, from small components to engine systems and structural strength, structural dynamic and environmental testing. We have tremendous engineering expertise in research, evaluation, analysis, design and development, and test of space transportation systems, subsystems, and components.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is moved into place on Atlantis. It is one of two OMS pods attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is suspended in air as it is moved toward Atlantis for installation. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is moved closer to Atlantis for installation. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians make adjustments to the orbital maneuvering system (OMS) pod being installed on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods is being moved for installation on Atlantis. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians move an orbital maneuvering system (OMS) pod into the correct position on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.
Engine system assessment study using Martian propellants
NASA Technical Reports Server (NTRS)
Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John
1992-01-01
A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.
NASA Astrophysics Data System (ADS)
Chen, Xianhe; Xia, Zhixun; Huang, Liya; Hu, Jianxin
2017-05-01
The working cycle of a novel underwater propulsion system based on aluminium combustion with water is researched in order to evaluate the best performance. The system exploits the exothermic reaction between aluminium and water which will produce high temperature, pressure steam and hydrogen mixture that can be used to drive turbine to generate power. Several new system configurations corresponding to different working cycles are investigated, and their performance parameters in terms of net power, energy density and global efficiency are discussed. The results of the system simulation show that using the recirculation steam rather than hydrogen as the carrier gas, the system net power, energy density and efficiency of the system are greatly increased compared, however the system performance is close either using adiabatic compression or isothermal compression. And if an evaporator component is added into system in order to take full use of the solid product heat, the system performance will be improved.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Sefcik, Robert J.; Qualls, A. L.; Schnitzler, B.G.; Joyner, C. R.
2014-01-01
Formulation of Affordable and Sustainable NTP Development Strategy is Underway Involving NASA, DOE and Industry. In FY11, Nuclear Thermal Propulsion (NTP) was identified as a key propulsion option under the Advanced In-Space Propulsion (AISP) component of NASA's Exploration Technology Development and Demonstration (ETDD) program.
Materials Needs for Future In-Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Johnson, Les
2006-01-01
NASA's In-Space Propulsion Technology Project is developing the next generation of in-space propulsion systems in support of robotic exploration missions throughout the solar system. The propulsion technologies being developed are non-traditional and have stressing materials performance requirements. Earth-storable bipropellant performance is constrained by temperature limitations of the columbium used in the chamber. Iridium/rhenium (Ir/Re) is now available and has been implemented in initial versions of Earth- Storable rockets with specific impulses about 10 seconds higher than columbium rocket chambers. New chamber fabrication methods that improve process and performance of Ir/Re and other promising material systems are needed. The solar sail is a propellantless propulsion system that gains momentum by reflecting sunlight. The sails need to be very large in area (from 10000 sq m up to 62500 sq m) yet be very lightweight in order to achieve adequate accelerations for realistic mission times. Lightweight materials that can be manufactured in thicknesses of less than 1 micron and that are not harmed by the space environment are desired. Blunt Body Aerocapture uses aerodynamic drag to slow an approaching spacecraft and insert it into a science orbit around any planet or moon with an atmosphere. The spacecraft is enclosed by a rigid aeroshell that protects it from the entry heating and aerodynamic environment. Lightweight, high-temperature structural systems, adhesives, insulators, and ablatives are key components for improving aeroshell efficiencies at heating rates of 1000-2000 W/sq cm and beyond. Inflatable decelerators in the forms of ballutes and inflatable aeroshells will use flexible polymeric thin film materials, high temperature fabrics, and structural adhesives. The inflatable systems will be tightly packaged during cruise and will be inflated prior to entry interface at the destination. Materials must maintain strength and flexibility while packaged at cold temperatures (-100 C) for up to 10 years and then withstand the high temperatures (500 C) encountered during aerocapture.
Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.
1998-01-01
A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.
Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles
2013-01-01
coupled with combustor – Combustor, component for subsonic or supersonic combustion – Nozzle , expands flow for high thrust and may provide lift... supersonic solution method that is used for both the inlet and nozzle components. The supersonic model SAMURI is a substantial improvement over previous models...purely supersonic inviscid flow. As a result, the model is also appropriate for other applications, including the nozzle , which is important 19 Figure
Solar-Powered Supply Is Light and Reliable
NASA Technical Reports Server (NTRS)
Willis, A. E.; Garrett, H.; Matheney, J.
1982-01-01
DC supply originally intended for use in solar-powered spacecraft propulsion is lightweight and very reliable. Operates from 100-200 volt output of solar panels to produce 11 different dc voltages, with total demand of 3,138 watts. With exception of specially wound inductors and transformers, system uses readily available components.
PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft
NASA Technical Reports Server (NTRS)
Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.
2012-01-01
Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.
Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices
NASA Technical Reports Server (NTRS)
Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.
2014-01-01
NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMDs), such as screen channel capillary liquid acquisition devices (LADs), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity these results to flow rate and tank internal pressure.
Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices
NASA Technical Reports Server (NTRS)
Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.
2014-01-01
NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMD's), such as screen channel capillary liquid acquisition devices (LAD's), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity of these results to flow rate and tank internal pressure.
High Temperature Semiconductor Process
NASA Technical Reports Server (NTRS)
1998-01-01
A sputtering deposition system capable of depositing large areas of high temperature superconducting materials was developed by CVC Products, Inc. with the support of the Jet Propulsion Laboratory SBIR (Small Business Innovative Research) program. The system was devleoped for NASA to produce high quality films of high temperature superconducting material for microwave communication system components. The system is also being used to deposit ferroelectric material for capacitors and the development of new electro-optical materials.2002103899
Aircraft Research and Technology for Future Fuels
NASA Technical Reports Server (NTRS)
1980-01-01
The potential characteristics of future aviation turbine fuels and the property effects of these fuels on propulsion system components are examined. The topics that are discussed include jet fuel supply and demand trends, the effects of refining variables on fuel properties, shekle oil processing, the characteristics of broadened property fuels, the effects of fuel property variations on combustor and fuel system performance, and combuster and fuel system technology for broadened property fuels.
Apollo Contour Rocket Nozzle in the Propulsion Systems Laboratory
1964-07-21
Bill Harrison and Bud Meilander check the setup of an Apollo Contour rocket nozzle in the Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Propulsion Systems Laboratory contained two 14-foot diameter test chambers that could simulate conditions found at very high altitudes. The facility was used in the 1960s to study complex rocket engines such as the Pratt and Whitney RL-10 and rocket components such as the Apollo Contour nozzle, seen here. Meilander oversaw the facility’s mechanics and the installation of test articles into the chambers. Harrison was head of the Supersonic Tunnels Branch in the Test Installations Division. Researchers sought to determine the impulse value of the storable propellant mix, classify and improve the internal engine performance, and compare the results with analytical tools. A special setup was installed in the chamber that included a device to measure the thrust load and a calibration stand. Both cylindrical and conical combustion chambers were examined with the conical large area ratio nozzles. In addition, two contour nozzles were tested, one based on the Apollo Service Propulsion System and the other on the Air Force’s Titan transtage engine. Three types of injectors were investigated, including a Lewis-designed model that produced 98-percent efficiency. It was determined that combustion instability did not affect the nozzle performance. Although much valuable information was obtained during the tests, attempts to improve the engine performance were not successful.
Development Status of the NSTAR Ion Propulsion System Power Processor
NASA Technical Reports Server (NTRS)
Hamley, John A.; Pinero, Luis R.; Rawlin, Vincent K.; Miller, John R.; Cartier, Kevin C.; Bowers, Glen E.
1995-01-01
A 0.5-2.3 kW xenon ion propulsion system is presently being developed under the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) program. This propulsion system includes a 30 cm diameter xenon ion thruster, a Digital Control Interface Unit, a xenon feed system, and a power processing unit (PPU). The PPU consists of the power supply assemblies which operate the thruster neutralizer, main discharge chamber, and ion optics. Also included are recycle logic and a digital microcontroller. The neutralizer and discharge power supplies employ a dual use configuration which combines the functions of two power supplies into one, significantly simplifying the PPU. Further simplification was realized by implementing a single thruster control loop which regulates the beam current via the discharge current. Continuous throttling is possible over a 0.5-2.3 kW output power range. All three power supplies have been fabricated and tested with resistive loads, and have been combined into a single breadboard unit with the recycle logic and microcontroller. All line and load regulation test results show the power supplies to be within the NSTAR flight PPU specified power output of 1.98 kW. The overall efficiency of the PPU, calculated as the combined efficiencies of the power supplies and controller, at 2.3 kW delivered to resistive loads was 0.90. The component was 6.16 kg. Integration testing of the neutralizer and discharge power supplies with a functional model thruster revealed no issues with discharge ignition or steady state operation.
NASA Technical Reports Server (NTRS)
Manderscheid, J. M.; Kaufman, A.
1985-01-01
Turbine blades for reusable space propulsion systems are subject to severe thermomechanical loading cycles that result in large inelastic strains and very short lives. These components require the use of anisotropic high-temperature alloys to meet the safety and durability requirements of such systems. To assess the effects on blade life of material anisotropy, cyclic structural analyses are being performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine. The blade alloy is directionally solidified MAR-M 246 alloy. The analyses are based on a typical test stand engine cycle. Stress-strain histories at the airfoil critical location are computed using the MARC nonlinear finite-element computer code. The MARC solutions are compared to cyclic response predictions from a simplified structural analysis procedure developed at the NASA Lewis Research Center.
Energy efficient engine: Flight propulsion system preliminary analysis and design
NASA Technical Reports Server (NTRS)
Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.
1980-01-01
The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.
Bipropellant propulsion with reciprocating pumps
NASA Astrophysics Data System (ADS)
Whitehead, John C.
1993-06-01
A pressure regulated gas generator rocket cycle with alternately pressurized pairs of reciprocating pumps offers thrust-on-demand operation with significantly lower inert mass than conventional spacecraft liquid propulsion systems. The operation of bipropellant feed systems with reciprocating pumps is explained, with consideration for both short and long term missions. There are several methods for startup and shutdown of this self-starting pump-fed system, with preference determined by thrust duty cycle and mission duration. Progress to date includes extensive development testing of components unique to this type of system, and several live tests with monopropellant hydrazine. Pneumatic pump control valves which render pistons and bellows automatically responsive to downstream liquid demand are significantly simpler than those described previously. A compact pumpset mounted to central liquid manifolds has a pair of oxidizer pumps pneumatically slaved to a pair of fuel pumps to reduce vibration. A warm gas pressure reducer for tank expulsion can eliminate any remaining need for inert gas storage.
Solar-Powered Electric Propulsion Systems: Engineering and Applications
NASA Technical Reports Server (NTRS)
Stearns, J. W.; Kerrisk, D. J.
1966-01-01
Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.
Introduction: The challenge of optimum integration of propulsion systems and large space structures
NASA Technical Reports Server (NTRS)
Carlisle, R. F.
1980-01-01
A functional matrix of possible propulsion system characteristics for a spacecraft for deployable and assembled spacecraft structures shows that either electric propulsion or low thrust chemical propulsion systems could provide the propulsion required. The trade-off considerations of a single propulsion engine or multiengines are outlined and it is shown that a single point engine is bounded by some upper limit of thrust for assembled spacecraft. The matrix also shows several additional functions that can be provided to the spacecraft if a propulsion system is an integral part of the spacecraft. A review of all of the functions that can be provided for a spacecraft by an integral propulsion system may result in the inclusion of the propulsion for several functions even if no single function were mandatory. Propulsion interface issues for each combination of engines are identified.
Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
McCrink, Matthew Henry
This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is presented. The propulsion and navigation system models are used to evaluate flight-testing methods for evaluating fixed-wing sUAS performance. A brief airframe analysis is presented to provide a foundation for assessing the efficacy of the flight-test methods. The flight-testing presented in this work is focused on validating the aircraft drag polar, zero-lift drag coefficient, and span efficiency factor. Three methods are detailed and evaluated for estimating these design parameters. Specific focus is placed on the influence of propulsion and navigation system uncertainty on the resulting performance data. Performance estimates are used in conjunction with the propulsion model to estimate the impact sensor and measurement uncertainty on the endurance and range of a fixed-wing sUAS. Endurance and range results for a simplistic power available model are compared to the Reynolds-dependent model presented in this work. Additional parameter sensitivity analysis related to state estimation uncertainties encountered in flight-testing are presented. Results from these analyses indicate that the sub-system models introduced in this work are of first-order importance, on the order of 5-10% change in range and endurance, in assessing the performance of a fixed-wing sUAS.
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
NASA Astrophysics Data System (ADS)
Waters, Daniel Francis
This dissertation investigates the use of gas turbine (GT) engine integrated solid oxide fuel cells (SOFCs) to reduce fuel burn in aircraft with large electrical loads like sensor-laden unmanned air vehicles (UAVs). The concept offers a number of advantages: the GT absorbs many SOFC balance of plant functions (supplying fuel, air, and heat to the fuel cell) thereby reducing the number of components in the system; the GT supplies fuel and pressurized air that significantly increases SOFC performance; heat and unreacted fuel from the SOFC are recaptured by the GT cycle offsetting system-level losses; good transient response of the GT cycle compensates for poor transient response of the SOFC. The net result is a system that can supply more electrical power more efficiently than comparable engine-generator systems with only modest (<10%) decrease in power density. Thermodynamic models of SOFCs, catalytic partial oxidation (CPOx) reactors, and three GT engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed that account for equilibrium gas phase and electrochemical reaction, pressure losses, and heat losses in ways that capture `down-the-channel' effects (a level of fidelity necessary for making meaningful performance, mass, and volume estimates). Models are created in a NASA-developed environment called Numerical Propulsion System Simulation (NPSS). A sensitivity analysis identifies important design parameters and translates uncertainties in model parameters into uncertainties in overall performance. GT-SOFC integrations reduce fuel burn 3-4% in 50 kW systems on 35 kN rated engines (all types) with overall uncertainty <1%. Reductions of 15-20% are possible at the 200 kW power level. GT-SOFCs are also able to provide more electric power (factors >3 in some cases) than generator-based systems before encountering turbine inlet temperature limits. Aerodynamic drag effects of engine-airframe integration are by far the most important limiter of the combined propulsion/electrical generation concept. However, up to 100-200 kW can be produced in a bypass ratio = 8, overall pressure ratio = 40 turbofan with little or no drag penalty. This study shows that it is possible to create cooperatively integrated GT-SOFC systems for combined propulsion and power with better overall performance than stand-alone components.
Engine structures analysis software: Component Specific Modeling (COSMO)
NASA Astrophysics Data System (ADS)
McKnight, R. L.; Maffeo, R. J.; Schwartz, S.
1994-08-01
A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.
Engine Structures Analysis Software: Component Specific Modeling (COSMO)
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.
1994-01-01
A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.
Electric Propulsion Applications and Impacts
NASA Technical Reports Server (NTRS)
Curran, Frank M.; Wickenheiser, Timothy J.
1996-01-01
Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
NASA Astrophysics Data System (ADS)
Falkowski, K. M.; Key, F. S.; Kuznetsov, S. B.
1993-01-01
This final report summarizes work completed in the investigation of the power, propulsion, and braking systems for five different electrodynamic (EDS) Maglev configurations. System requirements and recommendations, including a cost analysis, are determined for each configuration. The analysis considers variations in vehicle length, acceleration'/deceleration criteria, airgap clearance, and maximum propulsion thrust. Five different guideway configurations have been considered, each of which is based on air-core magnets made from low-temperature superconductors (LTSC) - (NbTi, Nb3Sn) or the newer high-T(sub c) ceramic superconductors (HTSCs). The material requirements and cost of the guideway electrical components were studied as a function of the energy conversion efficiency, the stator block length, armature current density, stator temperature rise, and other parameters. The propulsion design focused on a dual-parallel, linear synchronous motor (LSM) with thrust modulation achieved by applying a variable frequency and voltage along the guideway. Critical design parameters were estimated using a three-dimensional computer model for the inductances, magnetic fields, and electromagnetic forces. The study also addressed the conceptual design of the magnet, cryostat, and refrigeration subsystems. Magnetic fields, forces, AC losses, superconductor stability, heat loading, and refrigeration demands were analyzed; a specific design shows limits of passive shielding.
NASA Technical Reports Server (NTRS)
Srinivasan, K. V.
1986-01-01
The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.
NASA Technical Reports Server (NTRS)
Srinivasan, K. V.
1986-01-01
This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.
Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report
NASA Technical Reports Server (NTRS)
Stotler, C. L., Jr.; Bowden, J. H.
1977-01-01
The element and subcomponent testing conducted to verify the composite fan frame design of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft is described. Emphasis is placed on the propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing, including technology in composite structures and digital engine controls. The element tests confirmed that the processes used in the frame design would produce the predicted mechanical properties. The subcomponent tests verified that the detail structural components of the frame had adequate structural integrity.
NASA Technical Reports Server (NTRS)
Regetz, J. D., Jr.; Terwilliger, C. H.
1979-01-01
The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.
Status of the NASA YF-12 Propulsion Research Program
NASA Technical Reports Server (NTRS)
Albers, J. A.
1976-01-01
The YF-12 research program was initiated to establish a technology base for the design of an efficient propulsion system for supersonic cruise aircraft. The major technology areas under investigation in this program are inlet design analysis, propulsion system steady-state performance, propulsion system dynamic performance, inlet and engine control systems, and airframe/propulsion system interactions. The objectives, technical approach, and status of the YF-12 propulsion program are discussed. Also discussed are the results obtained to date by the NASA Ames, Lewis, and Dryden research centers. The expected technical results and proposed future programs are also given. Propulsion system configurations are shown.
Lessons Learned from using a Livingstone Model to Diagnose a Main Propulsion System
NASA Technical Reports Server (NTRS)
Sweet, Adam; Bajwa, Anupa
2003-01-01
NASA researchers have demonstrated that qualitative, model-based reasoning can be used for fault detection in a Main Propulsion System (MPS), a complex, continuous system. At the heart of this diagnostic system is Livingstone, a discrete, propositional logic-based inference engine. Livingstone comprises a language for specifying a discrete model of the system and a set of algorithms that use the model to track the system's state. Livingstone uses the model to test assumptions about the state of a component - observations from the system are compared with values predicted by the model. The intent of this paper is to summarize some advantages of Livingstone seen through our modeling experience: for instance, flexibility in modeling, speed and maturity. We also describe some shortcomings we perceived in the implementation of Livingstone, such as modeling continuous dynamics and handling of transients. We list some upcoming enhancements to the next version of Livingstone that may resolve some of the current limitations.
NASA Astrophysics Data System (ADS)
Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun
2017-10-01
This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.
Identification of propulsion systems
NASA Technical Reports Server (NTRS)
Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet
1991-01-01
This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.
Satoh, Kazuko; Kase, Yoshio; Yuzurihara, Mitsutoshi; Mizoguchi, Kazushige; Kurauchi, Kouji; Ishige, Atsushi
2003-05-01
This study was conducted to evaluate the effect of Dai-kenchu-to on chlorpromazine-induced hypoperistalsis in mice. Oral administration of Dai-kenchu-to (30-300 mg/kg) dose-dependently improved small intestinal and distal colonic propulsion decreased by chlorpromazine (3 mg/kg, p.o.). Although the improvement of small intestinal propulsion due to Dai-kenchu-to was partially inhibited by atropine (1 mg/kg, s.c.), this action was completely inhibited by the concomitant administration of lorglumide (10 mg/kg, i.p.), a CCKA receptor antagonist. The distal colonic propulsion-improving effect of Dai-kenchu-to was abolished by atropine (1 mg/kg, s.c.). When the effects of the respective components of Dai-kenchu-to were evaluated, oral administration of Zanthoxylum Fruit improved both delayed small intestinal and distal colonic propulsion caused by chlorpromazine. On the other hand, Malt Sugar was effective against only delayed small intestinal propulsion. The action of Zanthoxylum Fruit was completely inhibited by atropine (1 mg/kg, s.c.), and the effect of Malt Sugar was inhibited by lorglumide (10 mg/kg, i.p.). These results demonstrated that Dai-kenchu-to improves chlorpromazine-induced hypoperistalsis via cholinergic systems and that Zanthoxylum Fruit is the main contributor to this action of Dai-kenchu-to. In addition, endogenous CCK due to Malt Sugar may also contribute to this effect of Dai-kenchu-to.
Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)
NASA Technical Reports Server (NTRS)
Ellis, Rod
2000-01-01
The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.
Comparison of Mars Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
2003-01-01
The propulsion system is a critical aspect of the performance and feasibility of a Mars aircraft. Propulsion system mass and performance greatly influence the aircraft s design and mission capabilities. Various propulsion systems were analyzed to estimate the system mass necessary for producing 35N of thrust within the Mars environment. Three main categories of propulsion systems were considered: electric systems, combustion engine systems and rocket systems. Also, the system masses were compared for mission durations of 1, 2, and 4 h.
Analysis of dynamic requirements for fuel cell systems for vehicle applications
NASA Astrophysics Data System (ADS)
Pischinger, Stefan; Schönfelder, Carsten; Ogrzewalla, Jürgen
Conventional vehicles with internal combustion engines, as well as battery powered electric vehicles, achieve one of the most important customer requirements; achieving extremely short response times to load changes. Also, fast acceleration times from a cold start to full power in the range of seconds are practicable. New fuel cell-based propulsion systems, as well as auxiliary power units, have to fulfill the same demands to become competitive. This includes heating-up the system to operating temperature as well as the control strategy for start-up. An additional device to supply starting air is necessary, if the compressor motor can only be operated with fuel cell voltage. Since the system components (for example, the air supply or the fuel supply) are not mechanically coupled, as is the case with conventional internal combustion engines, these components have to be controlled by different sensors and actuators. This can be an advantage in optimizing the system, but it also can represent an additional challenge. This paper describes the fuel cell system requirements regarding transient operation and their dependence on system structure. In particular, the requirements for peripheral components such as air supply, fuel supply and the balance of heat in a fuel cell system are examined. Furthermore, the paper outlines the necessity of an electric storage device and its resultant capacity, which will enable faster load changes. Acceleration and deceleration of the vehicle are accomplished through the use of the electric storage device, while the fuel cell system only has to deliver the mean power consumption without higher load peaks. On the basis of system simulation, different concepts are evaluated for use as a propulsion system or APU and, then, critical components are identified. The effects of advanced control strategies regarding the dynamic behavior of the system are demonstrated. Technically, a fuel cell system could be a viable propulsion system alternative to conventional combustion engines, as long as there is a sufficient amount of power output from the fuel cell available for low operating temperatures. An optimized air supply system meets the requirements for transient operation in vehicles; however, specially designed machines are necessary-in particular smaller, integrated units. The electrical storage device helps to minimize fuel cell system response times for transient operation. An even more important point is that the fuel cell can be downsized. Utilizing this potential can reduce cost, space and weight. Fuel processing is preferable for auxiliary power units, since they have to operate in vehicles that use either gasoline or diesel fuel. High losses during the start-up phase can be avoided by using a battery to buffer the highly fluctuating power demands. Only advanced control methods are acceptable for controlling the operation of a fuel cell system with several components. Fuel cell systems can be developed and precisely optimized through the use of simulation tools, within an accelerated development process.