NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2017-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2016-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed. In-situ resource utilization was found to be critical in making Mercury missions more amenable for human visits. At Saturn, refueling using local atmospheric mining was found to be difficult to impractical, while refueling the Saturn missions from Uranus was more practical and less complex.
Sensitivity Analysis of Hybrid Propulsion Transportation System for Human Mars Expeditions
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Joyce, Ryan T.; Kessler, Paul D.; Merrill, Raymond G.; Qu, Min
2017-01-01
The National Aeronautics and Space Administration continues to develop and refine various transportation options to successfully field a human Mars campaign. One of these transportation options is the Hybrid Transportation System which utilizes both solar electric propulsion and chemical propulsion. The Hybrid propulsion system utilizes chemical propulsion to perform high thrust maneuvers, where the delta-V is most optimal when ap- plied to save time and to leverage the Oberth effect. It then utilizes solar electric propulsion to augment the chemical burns throughout the interplanetary trajectory. This eliminates the need for the development of two separate vehicles for crew and cargo missions. Previous studies considered single point designs of the architecture, with fixed payload mass and propulsion system performance parameters. As the architecture matures, it is inevitable that the payload mass and the performance of the propulsion system will change. It is desirable to understand how these changes will impact the in-space transportation system's mass and power requirements. This study presents an in-depth sensitivity analysis of the Hybrid crew transportation system to payload mass growth and solar electric propulsion performance. This analysis is used to identify the breakpoints of the current architecture and to inform future architecture and campaign design decisions.
2011-01-01
ABSTRACT Title of Document: MODELING OF WATER-BREATHING PROPULSION SYSTEMS UTILIZING THE ALUMINUM-SEAWATER REACTION AND SOLID...Hybrid Aluminum Combustor (HAC): a novel underwater power system based on the exothermic reaction of aluminum with seawater. The system is modeled ...using a NASA-developed framework called Numerical Propulsion System Simulation (NPSS) by assembling thermodynamic models developed for each component
Neptune Orbiters Utilizing Solar and Radioisotope Electric Propulsion
NASA Technical Reports Server (NTRS)
Fiehler, Douglas I.; Oleson, Steven R.
2004-01-01
In certain cases, Radioisotope Electric Propulsion (REP), used in conjunction with other propulsion systems, could be used to reduce the trip times for outer planetary orbiter spacecraft. It also has the potential to improve the maneuverability and power capabilities of the spacecraft when the target body is reached as compared with non-electric propulsion spacecraft. Current missions under study baseline aerocapture systems to capture into a science orbit after a Solar Electric Propulsion (SEP) stage is jettisoned. Other options under study would use all REP transfers with small payloads. Compared to the SEP stage/Aerocapture scenario, adding REP to the science spacecraft as well as a chemical capture system can replace the aerocapture system but with a trip time penalty. Eliminating both the SEP stage and the aerocapture system and utilizing a slightly larger launch vehicle, Star 48 upper stage, and a combined REP/Chemical capture system, the trip time can nearly be matched while providing over a kilowatt of science power reused from the REP maneuver. A Neptune Orbiter mission is examined utilizing single propulsion systems and combinations of SEP, REP, and chemical systems to compare concepts.
A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Cupples, Michael; Coverstone, Vicki
2003-01-01
Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.
Advanced NSTS propulsion system verification study
NASA Technical Reports Server (NTRS)
Wood, Charles
1989-01-01
The merits of propulsion system development testing are discussed. The existing data base of technical reports and specialists is utilized in this investigation. The study encompassed a review of all available test reports of propulsion system development testing for the Saturn stages, the Titan stages, and the Space Shuttle main propulsion system. The knowledge on propulsion system development and system testing available from specialists and managers was also 'tapped' for inclusion.
Fission Technology for Exploring and Utilizing the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbub, Ivana; Schmidt, George R. (Technical Monitor)
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation space systems will build on over 45 years of US and international space fission system technology development to minimize cost,
Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System
NASA Technical Reports Server (NTRS)
Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.;
2000-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.
Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.
Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco
2004-04-01
The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. c2003 Elsevier Ltd. All rights reserved.
Upper stages utilizing electric propulsion
NASA Technical Reports Server (NTRS)
Byers, D. C.
1980-01-01
The payload characteristics of geocentric missions which utilize electron bombardment ion thruster systems are discussed. A baseline LEO to GEO orbit transfer mission was selected to describe the payload capabilities. The impacts on payloads of both mission parameters and electric propulsion technology options were evaluated. The characteristics of the electric propulsion thrust system and the power requirements were specified in order to predict payload mass. This was completed by utilizing a previously developed methodology which provides a detailed thrust system description after the final mass on orbit, the thrusting time, and the specific impulse are specified. The impact on payloads of total mass in LEO, thrusting time, propellant type, specific impulse, and power source characteristics was evaluated.
Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions
NASA Technical Reports Server (NTRS)
Cupples, Michael; Green, Shaun; Coverstone, Victoria
2003-01-01
Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.
Analysis of System Margins on Missions Utilizing Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Oh, David Y.; Landau, Damon; Randolph, Thomas; Timmerman, Paul; Chase, James; Sims, Jon; Kowalkowski, Theresa
2008-01-01
NASA's Jet Propulsion Laboratory has conducted a study focused on the analysis of appropriate margins for deep space missions using solar electric propulsion (SEP). The purpose of this study is to understand the links between disparate system margins (power, mass, thermal, etc.) and their impact on overall mission performance and robustness. It is determined that the various sources of uncertainty and risk associated with electric propulsion mission design can be summarized into three relatively independent parameters 1) EP Power Margin, 2) Propellant Margin and 3) Duty Cycle Margin. The overall relationship between these parameters and other major sources of uncertainty is presented. A detailed trajectory analysis is conducted to examine the impact that various assumptions related to power, duty cycle, destination, and thruster performance including missed thrust periods have on overall performance. Recommendations are presented for system margins for deep space missions utilizing solar electric propulsion.
NASA Technical Reports Server (NTRS)
Deckert, W. H.; Rolls, L. S.
1974-01-01
An integrated propulsion/control system for lift-fan transport aircraft is described. System behavior from full-scale experimental and piloted simulator investigations are reported. The lift-fan transport is a promising concept for short-to-medium haul civil transportation and for other missions. The lift-fan transport concept features high cruise airspeed, favorable ride qualities, small perceived noise footprints, high utilization, transportation system flexibility, and adaptability to VTOL, V/STOL, or STOL configurations. The lift-fan transport has high direct operating costs in comparison to conventional aircraft, primarily because of propulsion system and aircraft low-speed control system installation requirements. An integrated lift-fan propulsion system/aircraft low-speed control system that reduces total propulsion system and control system installation requirements is discussed.
A system level model for preliminary design of a space propulsion solid rocket motor
NASA Astrophysics Data System (ADS)
Schumacher, Daniel M.
Preliminary design of space propulsion solid rocket motors entails a combination of components and subsystems. Expert design tools exist to find near optimal performance of subsystems and components. Conversely, there is no system level preliminary design process for space propulsion solid rocket motors that is capable of synthesizing customer requirements into a high utility design for the customer. The preliminary design process for space propulsion solid rocket motors typically builds on existing designs and pursues feasible rather than the most favorable design. Classical optimization is an extremely challenging method when dealing with the complex behavior of an integrated system. The complexity and combinations of system configurations make the number of the design parameters that are traded off unreasonable when manual techniques are used. Existing multi-disciplinary optimization approaches generally address estimating ratios and correlations rather than utilizing mathematical models. The developed system level model utilizes the Genetic Algorithm to perform the necessary population searches to efficiently replace the human iterations required during a typical solid rocket motor preliminary design. This research augments, automates, and increases the fidelity of the existing preliminary design process for space propulsion solid rocket motors. The system level aspect of this preliminary design process, and the ability to synthesize space propulsion solid rocket motor requirements into a near optimal design, is achievable. The process of developing the motor performance estimate and the system level model of a space propulsion solid rocket motor is described in detail. The results of this research indicate that the model is valid for use and able to manage a very large number of variable inputs and constraints towards the pursuit of the best possible design.
NASA Technical Reports Server (NTRS)
Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.
2012-01-01
A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.
Space propulsion technology overview
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr.
1979-01-01
Chemical and electric propulsion technologies for operations beyond the shuttle's orbit with focus on future mission needs and economic effectiveness is discussed. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicted on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.
Options For Development of Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehagen, Ronald J.
2005-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
X-37 Storable Propulsion System Design and Operations
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris; Rehegan, Ronald J.
2006-01-01
In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Mike; Mitchell, Sonny; Kim, Tony; Borowski, Stan; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steve
2015-01-01
HEOMD's (Human Exploration and Operations Mission Directorate) AES (Advanced Exploration Systems) Nuclear Thermal Propulsion (NTP) project is making significant progress. First of four FY 2015 milestones achieved this month. Safety is the highest priority for NTP (as with other space systems). After safety comes affordability. No centralized capability for developing, qualifying, and utilizing an NTP system. Will require a strong, closely integrated team. Tremendous potential benefits from NTP and other space fission systems. No fundamental reason these systems cannot be developed and utilized in a safe, affordable fashion.
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2012-01-01
Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.
Field resonance propulsion concept
NASA Technical Reports Server (NTRS)
Holt, A. C.
1979-01-01
A propulsion concept was developed based on a proposed resonance between coherent, pulsed electromagnetic wave forms, and gravitational wave forms (or space-time metrics). Using this concept a spacecraft propulsion system potentially capable of galactic and intergalactic travel without prohibitive travel times was designed. The propulsion system utilizes recent research associated with magnetic field line merging, hydromagnetic wave effects, free-electron lasers, laser generation of megagauss fields, and special structural and containment metals. The research required to determine potential, field resonance characteristics and to evaluate various aspects of the spacecraft propulsion design is described.
Development of a Work Control System for Propulsion Testing at NASA Stennis
NASA Technical Reports Server (NTRS)
Messer, Elizabeth A.
2005-01-01
In 1996 Stennis Space Center was given management authority for all Propulsion Testing for NASA. Over the next few years several research and development (R&D) test facilities were completed and brought up to full operation in what is known as the E-Complex Test Facility at Stennis Space Center. To construct, activate and operate these test facilities, a manual paper-based work control system was created. After utilizing this paper-based work control system for approximately three years, it became apparent that the research and development test area needed a better method to execute, monitor, and report on tasks required to further propulsion testing. The paper based system did not provide the engineers adequate visibility into work tasks or the tracking of testing or hardware discrepancies. This system also restricted the engineer s ability to utilize and access past knowledge and experiences given the severe schedule limitations for most R&D propulsion testing projects. Therefore a system was developed to meet the growing need of Test Operations called the Propulsion Test Directorate (PTD) Work Control System. This system is used to plan, perform, and track tasks that support testing and also to capture lessons learned while doing so.
Space propulsion technology overview
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr.
1979-01-01
This paper discusses Shuttle-era, chemical and electric propulsion technologies for operations beyond the Shuttle's orbit with focus on future mission needs and economic effectiveness. The adequacy of the existing propulsion state-of-the-art, barriers to its utilization, benefit of technology advances, and the prognosis for advancement are the themes of the discussion. Low-thrust propulsion for large space systems is cited as a new technology with particularly high benefit. It is concluded that the Shuttle's presence for at least two decades is a legitimate basis for new propulsion technology, but that this technology must be predicated on an awareness of mission requirements, economic factors, influences of other technologies, and real constraints on its utilization.
Space station propulsion-ECLSS interaction study
NASA Technical Reports Server (NTRS)
Brennan, Scott M.
1986-01-01
The benefits of the utilization of effluents of the Space Station Environmental Control and Life Support (ECLS) system are examined. Various ECLSS-propulsion system interaction options are evaluated and compared on the basis of weight, volume, and power requirements. Annual propulsive impulse to maintain station altitude during a complete solar cycle of eleven years and the effect on station resupply are considered.
Nagasaka, Yuriko; Tanaka, Shinpei; Nehira, Tatsuo; Amimoto, Tomoko
2017-09-27
It is well known that oil droplets in or on water exhibit spontaneous movement induced by surfactants, and this self-propulsion is regarded as an important factor in droplet-based models for a living cell. We report here an oil-droplet system spontaneously producing amino acid-based surfactants, which are then utilized for the droplets' self-propulsion. Thus this system is an active system capable of producing the fuel for the propulsion by itself, which can be used as a conceptual model for cell metabolism.
A review of electric propulsion systems and mission applications
NASA Technical Reports Server (NTRS)
Vondra, R.; Nock, K.; Jones, R.
1984-01-01
The satisfaction of growing demands for access to space resources will require new developments related to advanced propulsion and power technologies. A key technology in this context is concerned with the utilization of electric propulsion. A brief review of the current state of development of electric propulsion systems on an international basis is provided, taking into account advances in the USSR, the U.S., Japan, West Germany, China and Brazil. The present investigation, however, is mainly concerned with the U.S. program. The three basic types of electric thrusters are considered along with the intrinsic differences between chemical and electric propulsion, the resistojet, the augmented hydrazine thruster, the arcjet, the ion auxiliary propulsion system flight test, the pulsed plasma thruster, magnetoplasmadynamic propulsion, a pulsed inductive thruster, and rail accelerators. Attention is also given to the applications of electric propulsion.
Nuclear Energy for Space Exploration
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2010-01-01
Nuclear power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system. Fusion and antimatter systems may also be viable in the future
Space Station propulsion electrolysis system - 'A technology challenge'
NASA Technical Reports Server (NTRS)
Le, Michael
1989-01-01
The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed.
Development of unified propulsion system for geostationary satellite
NASA Astrophysics Data System (ADS)
Murayama, S.; Kobayashi, H.; Masuda, I.; Kameishi, M.; Miyoshi, K.; Takahashi, M.
Japan's first Liquid Apogee Propulsion System (LAPS) has been developed for ETS-VI (Engineering Test Satellite - VI) 2-ton class geostationary satellite. The next largest (2-ton class) geostationary satellite, COMETS (Communication and Broadcasting Engineering Test Satellite), requires a more compact apogee propulsion system in order to increase the space for mission instruments. The study for such a propulsion system concluded with a Unified Propulsion System (UPS), which uses a common N2H4 propellant tank for both bipropellant apogee engines and monopropellant Reaction Control System (RCS) thrusters. This type of propulsion system has several significant advantages compared with popular nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) bipropellant satellite propulsion systems: The NTO/N2H4 apogee engine has a high specific impulse, and N2H4 thrusters have high reliability. Residual of N2H4 caused by propellant utilization of apogee engine firing (AEF) can be consumed by N2H4 monopropellant thrusters; that means a considerably prolonged satellite life.
NASA Astrophysics Data System (ADS)
Trinh, H. P.
2012-06-01
Utilization of new cold hypergolic propellants and leverage Missile Defense Agency technology for propulsion systems on Mars explorations will provide an increase of science payload and have significant payoffs and benefits for NASA missions.
The Case of Nuclear Propulsion
NASA Technical Reports Server (NTRS)
Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.
ProSEDS Telemetry System Utilization of GPS Position Data for Transmitter Cycling
NASA Technical Reports Server (NTRS)
Kennedy, Paul; Sims, Herb
2000-01-01
NASA Marshall Space Flight Center will launch the Propulsive Small Expendable Deployer System (ProSEDS) space experiment in late 2000. ProSEDS will demonstrate the use of an electrodynamic tether propulsion system and will utilize a conducting wire tether to generate limited spacecraft power. This paper will provide an overview of the ProSEDS mission and will discuss the design, development and test of the spacecraft telemetry system which utilizes a custom designed GPS subsystem to determine spacecraft position relative to ground station location and to control transmitter on/off cycling based on spacecraft state vector and ground station visibility.
Advanced Health Management Algorithms for Crew Exploration Applications
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John; Jones, Judit
2005-01-01
Achieving the goals of the President's Vision for Exploration will require new and innovative ways to achieve reliability increases of key systems and sub-systems. The most prominent approach used in current systems is to maintain hardware redundancy. This imposes constraints to the system and utilizes weight that could be used for payload for extended lunar, Martian, or other deep space missions. A technique to improve reliability while reducing the system weight and constraints is through the use of an Advanced Health Management System (AHMS). This system contains diagnostic algorithms and decision logic to mitigate or minimize the impact of system anomalies on propulsion system performance throughout the powered flight regime. The purposes of the AHMS are to increase the probability of successfully placing the vehicle into the intended orbit (Earth, Lunar, or Martian escape trajectory), increase the probability of being able to safely execute an abort after it has developed anomalous performance during launch or ascent phases of the mission, and to minimize or mitigate anomalies during the cruise portion of the mission. This is accomplished by improving the knowledge of the state of the propulsion system operation at any given turbomachinery vibration protection logic and an overall system analysis algorithm that utilizes an underlying physical model and a wide array of engine system operational parameters to detect and mitigate predefined engine anomalies. These algorithms are generic enough to be utilized on any propulsion system yet can be easily tailored to each application by changing input data and engine specific parameters. The key to the advancement of such a system is the verification of the algorithms. These algorithms will be validated through the use of a database of nominal and anomalous performance from a large propulsion system where data exists for catastrophic and noncatastrophic propulsion sytem failures.
Energy efficient engine: Propulsion system-aircraft integration evaluation
NASA Technical Reports Server (NTRS)
Owens, R. E.
1979-01-01
Flight performance and operating economics of future commercial transports utilizing the energy efficient engine were assessed as well as the probability of meeting NASA's goals for TSFC, DOC, noise, and emissions. Results of the initial propulsion systems aircraft integration evaluation presented include estimates of engine performance, predictions of fuel burns, operating costs of the flight propulsion system installed in seven selected advanced study commercial transports, estimates of noise and emissions, considerations of thrust growth, and the achievement-probability analysis.
Using Additive Manufacturing to Print a CubeSat Propulsion System
NASA Technical Reports Server (NTRS)
Marshall, William M.
2015-01-01
CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.
Low-thrust chemical orbit to orbit propulsion system propellant management study
NASA Technical Reports Server (NTRS)
Dergance, R. H.
1980-01-01
Propellant requirements, tankage configurations, preferred propellant management techniques, propulsion systems weights, and technology deficiencies for low thrust expendable propulsion systems are examined. A computer program was utilized which provided a complete propellant inventory (including boil-off for cryogenic cases), pressurant and propellant tank dimensions for a given ullage, pressurant requirements, insulation requirements, and miscellaneous masses. The output also includes the masses of all tanks; the mass of the insulation, engines and other components; total wet system and burnout mass; system mass fraction; total impulse and burn time.
Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam
2004-01-01
Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.
Ion propulsion for communications satellites
NASA Technical Reports Server (NTRS)
Poeschel, R. L.
1984-01-01
In a recent study of potential applications for electric propulsion, it was determined that ion propulsion can provide North-South stationkeeping (NSSK) for communication satellites in geosynchronous orbit with appreciably less mass than chemical propulsion. While this finding is not new, the margin of benefit over advanced chemical propulsion technology depends strongly on the ion propulsion system specifications. Full advantage must be taken of the under-utilized stored energy available from the communication satellite's batteries. This paper describes a methodology for evaluating the benefits obtained in using ion propulsion for NSSK, both in terms of the mass reduction and its economic value.
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Bruno, Cy
2012-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed
RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy
2013-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed.
Nonproliferation Challenges in Space Defense Technology - PANEL
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2016-01-01
The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?
A Strategic Roadmap to Centauri
NASA Technical Reports Server (NTRS)
Johnson, Les; Harris, David; Trausch, Ann; Matloff, Gregory L.; Taylor, Travis; Cutting, Kathleen
2005-01-01
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala.. Technologies under study by ISP include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space-science and exploration missions. Historically, human frontiers have expanded as people have learned to live off the land in new environments and to exploit local resorces. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail f or the nearest stars.
A Strategic Roadmap to Centauri
NASA Astrophysics Data System (ADS)
Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.
This paper discusses the connectivity between in-space propulsion and in-space fabrication/repair and is based upon a workshop presentation by Les Johnson, manager of the In-Space Propulsion (ISP) Technology Project at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Technologies under study by ISP include aerocapture, advanced solar- electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers and solar-photon sails. These propulsion systems are all approaching technology readiness levels (TRLs) at which they can be considered for application in space- science and exploration missions. Historically, human frontiers have expanded as people have learned to “live-off-the-land” in new environments and to exploit local resources. With this expansion, frontier settlements have required development of transportation improvements to carry tools and manufactured products to and from the frontier. It is demonstrated how ISP technologies will assist in the development of the solar-system frontier. In-space fabrication and repair will both require and assist the development of ISP propulsion systems, whether humans choose to settle planetary surfaces or to exploit resources of small Solar System bodies. As was true for successful terrestrial pioneers, in-space settlement and exploitation will require sophisticated surveys of inner and outer Solar System objects. ISP technologies will contribute to the success of these surveys, as well as to the efforts to retrieve Solar System resources. In a similar fashion, the utility of ISP products will be greatly enhanced by the technologies of in-space repair and fabrication. As in-space propulsion, fabrication and repair develop, human civilization may expand well beyond the Earth. In the future, small human communities (preceded by robotic explorers) may utilize these techniques to set sail for the nearest stars.
Affordable Development of a Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Integrated Main Propulsion System Performance Reconstruction Process/Models
NASA Technical Reports Server (NTRS)
Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael
2013-01-01
The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.
Integrated Neural Flight and Propulsion Control System
NASA Technical Reports Server (NTRS)
Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)
2001-01-01
This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.
NASA Technical Reports Server (NTRS)
Klem, Mark D.; Smith, Timothy D.
2008-01-01
The Propulsion and Cryogenics Advanced Development (PCAD) Project in the Exploration Technology Development Program is developing technologies as risk mitigation for Orion and the Lunar Lander. An integrated main and reaction control propulsion system has been identified as a candidate for the Lunar Lander Ascent Module. The propellants used in this integrated system are Liquid Oxygen (LOX)/Liquid Methane (LCH4) propellants. A deep throttle pump fed Liquid Oxygen (LOX)/Liquid Hydrogen (LH2) engine system has been identified for the Lunar Lander Descent Vehicle. The propellant combination and architecture of these propulsion systems are novel and would require risk reduction prior to detailed design and development. The PCAD Project addresses the technology requirements to obtain relevant and necessary test data to further the technology maturity of propulsion hardware utilizing these propellants. This plan and achievements to date will be presented.
A methodology for fostering commercialization of electric and hybrid vehicle propulsion systems
NASA Technical Reports Server (NTRS)
Thollot, P. A.; Musial, N. T.
1980-01-01
The rationale behind, and a proposed approach for, application of government assistance to accelerate the process of moving a new electric vehicle propulsion system product from technological readiness to profitable marketplace acceptance and utilization are described. Emphasis is on strategy, applicable incentives, and an implementation process.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
2000-01-01
NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.
Spacecraft propulsion systems test capability at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, Pleddie; Gorham, Richard
1993-01-01
The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.
Liquid Oxygen/Liquid Methane Integrated Power and Propulsion
NASA Technical Reports Server (NTRS)
Banker, Brian; Ryan, Abigail
2016-01-01
The proposed paper will cover ongoing work at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) on integrated power and propulsion for advanced human exploration. Specifically, it will present findings of the integrated design, testing, and operational challenges of a liquid oxygen / liquid methane (LOx/LCH4) propulsion brassboard and Solid Oxide Fuel Cell (SOFC) system. Human-Mars architectures point to an oxygen-methane economy utilizing common commodities, scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU), and common commodities across sub-systems. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth) increasing commonality between spacecraft subsystems such as power and propulsion can result in tremendous launch mass and volume savings. Historically, propulsion and fuel cell power subsystems have had little interaction outside of the generation (fuel cell) and consumption (propulsion) of electrical power. This was largely due to a mismatch in preferred commodities (hypergolics for propulsion; oxygen & hydrogen for fuel cells). Although this stove-piped approach benefits from simplicity in the design process, it means each subsystem has its own tanks, pressurization system, fluid feed system, etc. increasing overall spacecraft mass and volume. A liquid oxygen / liquid methane commodities architecture across propulsion and power subsystems would enable the use of common tankage and associated pressurization and commodity delivery hardware for both. Furthermore, a spacecraft utilizing integrated power and propulsion could use propellant residuals - propellant which could not be expelled from the tank near depletion due to hydrodynamic considerations caused by large flow demands of a rocket engine - to generate power after all propulsive maneuvers are complete thus utilizing previously wasted mass. Such is the case for human and robotic planetary landers. Although many potential benefits through integrated power & propulsion exist, integrated operations have yet to be successfully demonstrated and many challenges have already been identified the most obvious of which is the large temperature gradient. SOFC chemistry is exothermic with operating temperatures in excess of 1,000 K; however, any shared commodities will be undoubtedly stored at cryogenic temperatures (90-112 K) for mass efficiency reasons. Spacecraft packaging will drive these two subsystems in close proximity thus heat leak into the commodity tankage must be minimized and/or mitigated. Furthermore, commodities must be gasified prior to consumption by the SOFC. Excess heat generated by the SOFC could be used to perform this phase change; however, this has yet to be demonstrated. A further identified challenge is the ability of the SOFC to handle the sudden power spikes created by the propulsion system. A power accumulator (battery) will likely be necessary to handle these sudden demands while the SOFC thermally adjusts. JSC's current SOFC test system consists of a 1 kW fuel cell designed by Delphi. The fuel cell is currently undergoing characterization testing at the NASA JSC Energy Systems Test Area (ESTA) after which a Steam Methane Reformer (SMR) will be integrated and the combined system tested in closed-loop. The propulsion brassboard is approximately the size of what could be flown on a sounding rocket. It consists of one 100 lbf thrust "main" engine developed for NASA by Aerojet and two 10 lbf thrusters to simulate a reaction control system developed at NASA JSC. This system is also under development and initial testing at ESTA. After initial testing, combined testing will occur which will provide data on the fuel cell's ability to sufficiently handle the power spikes created by the propulsion system. These two systems will also be modeled using General-Use Nodal Network Solver (GUNNS) software. Once anchored with test data, this model will be used to extrapolate onto other firing profiles and used to size the power accumulator.
Application of dual-fuel propulsion to a single stage AMLS vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1993-01-01
As part of NASA's Advanced Manned Launch System (AMLS) study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate engine concept combining Russian RD-170 kerosene-fueled engines with SSME-derivative engines; the kerosene and hydrogen-fueled Russian RD-701 engine concept; and a dual-fuel, dual-expander engine concept. Analysis to determine vehicle weight and size characteristics was performed using conceptual level design techniques. A response surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicle concepts with respect to several important propulsion system and vehicle design parameters in order to achieve minimum empty weight. Comparisons were then made with a hydrogen-fueled reference, single-stage vehicle. The tools and methods employed in the analysis process are also summarized.
Preliminary Assessment of Thrust Augmentation of NEP Based Missions
NASA Technical Reports Server (NTRS)
Chew, Gilbert; Pelaccio, Dennis G.; Chiroux, Robert; Pervan, Sherry; Rauwolf, Gerald A.; White, Charles
2005-01-01
Science Applications International Corporation (SAIC), with support from NASA Marshall Space Flight Center, has conducted a preliminary study to compare options for augmenting the thrust of a conventional nuclear electric propulsion (NEP) system. These options include a novel nuclear propulsion system concept known as Hybrid Indirect Nuclear Propulsion (HINP) and conventional chemical propulsion. The utility and technical feasibility of the HINP concept are assessed, and features and potential of this new in-space propulsion system concept are identified. As part of the study, SAIC developed top-level design tools to model the size and performance of an HINP system, as well as for several chemical propulsion options, including liquid and gelled propellants. A mission trade study was performed to compare a representative HINP system with chemical propulsion options for thrust augmentation of NEP systems for a mission to Saturn's moon Titan. Details pertaining to the approach, features, initial demonstration results for HINP model development, and the mission trade study are presented. Key technology and design issues associated with the HINP concept and future work recommendations are also identified.
Reliability model of a monopropellant auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Greenberg, J. S.
1971-01-01
A mathematical model and associated computer code has been developed which computes the reliability of a monopropellant blowdown hydrazine spacecraft auxiliary propulsion system as a function of time. The propulsion system is used to adjust or modify the spacecraft orbit over an extended period of time. The multiple orbit corrections are the multiple objectives which the auxiliary propulsion system is designed to achieve. Thus the reliability model computes the probability of successfully accomplishing each of the desired orbit corrections. To accomplish this, the reliability model interfaces with a computer code that models the performance of a blowdown (unregulated) monopropellant auxiliary propulsion system. The computer code acts as a performance model and as such gives an accurate time history of the system operating parameters. The basic timing and status information is passed on to and utilized by the reliability model which establishes the probability of successfully accomplishing the orbit corrections.
A rapid method for optimization of the rocket propulsion system for single-stage-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Eldred, C. H.; Gordon, S. V.
1976-01-01
A rapid analytical method for the optimization of rocket propulsion systems is presented for a vertical take-off, horizontal landing, single-stage-to-orbit launch vehicle. This method utilizes trade-offs between propulsion characteristics affecting flight performance and engine system mass. The performance results from a point-mass trajectory optimization program are combined with a linearized sizing program to establish vehicle sizing trends caused by propulsion system variations. The linearized sizing technique was developed for the class of vehicle systems studied herein. The specific examples treated are the optimization of nozzle expansion ratio and lift-off thrust-to-weight ratio to achieve either minimum gross mass or minimum dry mass. Assumed propulsion system characteristics are high chamber pressure, liquid oxygen and liquid hydrogen propellants, conventional bell nozzles, and the same fixed nozzle expansion ratio for all engines on a vehicle.
Advanced supersonic propulsion study. [with emphasis on noise level reduction
NASA Technical Reports Server (NTRS)
Sabatella, J. A. (Editor)
1974-01-01
A study was conducted to determine the promising propulsion systems for advanced supersonic transport application, and to identify the critical propulsion technology requirements. It is shown that noise constraints have a major effect on the selection of the various engine types and cycle parameters. Several promising advanced propulsion systems were identified which show the potential of achieving lower levels of sideline jet noise than the first generation supersonic transport systems. The non-afterburning turbojet engine, utilizing a very high level of jet suppression, shows the potential to achieve FAR 36 noise level. The duct-heating turbofan with a low level of jet suppression is the most attractive engine for noise levels from FAR 36 to FAR 36 minus 5 EPNdb, and some series/parallel variable cycle engines show the potential of achieving noise levels down to FAR 36 minus 10 EPNdb with moderate additional penalty. The study also shows that an advanced supersonic commercial transport would benefit appreciably from advanced propulsion technology. The critical propulsion technology needed for a viable supersonic propulsion system, and the required specific propulsion technology programs are outlined.
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.
2002-01-01
Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as vehicles, missions and systems identified that are best suited to take advantage of their unique characteristics.
Exploring Propulsion System Requirements for More and All-Electric Helicopters
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
2015-01-01
Helicopters offer unique capabilities that are important for certain missions. More and all-electric propulsion systems for helicopters offer the potential for improved efficiency, reliability, vehicle and mission capabilities as well as reduced harmful emissions. To achieve these propulsion system-based benefits, the relevant requirements must be understood and developed for the various component, sub-component and ancillary systems of the overall propulsion system. Three representative helicopters were used to explore propulsion and overall vehicle and mission requirements. These vehicles varied from light utility (one to three occupants) to highly capable (three crew members plus ten passengers and cargo). Assuming 15 and 30 year technology availability, analytical models for electric system components were developed to understand component and ancillary requirements. Overall propulsion system characteristics were developed and used for vehicle sizing and mission analyses to understand the tradeoffs of component performance and weight, with increase in vehicle size and mission capability. Study results indicate that only the light utility vehicle retained significant payload for an arbitrary 100 nautical mile range assuming 15 year technology. Thirty year technology assumptions for battery energy storage are sufficient to enable some range and payload capabilities, but further improvements in energy density are required to maintain or exceed payload and range capabilities versus present systems. Hydrocarbon-fueled range extenders can be prudently used to recover range and payload deficiencies resulting from battery energy density limitations. Thermal loads for electric systems are low heat quality, but seem manageable. To realize the benefits from more and all-electric systems, technology goals must be achieved, as well as identify vehicles, missions and systems that are best suited to take advantage of their unique characteristics.
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
Nuclear systems for space power and propulsion
NASA Technical Reports Server (NTRS)
Klein, M.
1971-01-01
As exploration and utilization of space proceeds through the 1970s, 1980s, and beyond, spacecraft in earth orbit will become increasingly larger, spacecraft will travel deeper into space, and space activities will involve more complex operations. These trends require increasing amounts of energy for power and propulsion. The role to be played by nuclear energy is presented, including plans for deep space missions using radioisotope generators, the reactor power systems for earth orbiting stations and satellites, and the role of nuclear propulsion in space transportation.
Underwater cargo vessel utilizing variable buoyancy system for gliding propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Z.K.; Seireg, A.
1982-09-01
This study deals with investigating the feasibility of an underwater glider capable of carrying cargo for long distances by alternately employing gravity and buoyancy forces for forward propulsion. The parameters controlling the vessel design, stability and control are investigated.
A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.
2014-01-01
Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).
Heavy Lift Launch Vehicles for 1995 and Beyond
NASA Technical Reports Server (NTRS)
Toelle, R. (Compiler)
1985-01-01
A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.
Mission Analysis for Multiple Rendezvous of Near-Earth Asteroids Using Earth Gravity Assist
2010-03-01
devices. Finding solutions with this approach leads to a quicker timeline for possible missions since one does not have to wait for the propulsion...in this research. The discussion focuses on their approach to the problem and the applicability to this research. The headings are the titles of... approach the problem utilizing conventional impulsive thrust propulsion systems and utilize data presented from the JPL website for locating the
Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1995-01-01
As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.
Photochemically Etched Construction Technology Developed for Digital Xenon Feed Systems
NASA Technical Reports Server (NTRS)
Otsap, Ben; Cardin, Joseph; Verhey, Timothy R.; Rawlin, Vincent K.; Mueller, Juergen; Aadlund, Randall; Kay, Robert; Andrews, Michael
2005-01-01
Electric propulsion systems are quickly emerging as attractive options for primary propulsion in low Earth orbit, in geosynchronous orbit, and on interplanetary spacecraft. The driving force behind the acceptance of these systems is the substantial reduction in the propellant mass that can be realized. Unfortunately, system designers are often forced to utilize components designed for chemical propellants in their electric systems. Although functionally acceptable, these relatively large, heavy components are designed for the higher pressures and mass flow rates required by chemical systems. To fully realize the benefits of electric propulsion, researchers must develop components that are optimized for the low flow rates, critical leakage needs, low pressures, and limited budgets of these emerging systems.
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney s Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80deg E. and 11deg W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3-99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 deg E and 11 deg W, respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3-99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
Hall Effect Thruster Interactions Data From the Russian Express-A2 and Express-A3 Satellites
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
Human Mars Transportation Applications Using Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Donahue, Benjamin B.; Martin, Jim; Potter, Seth; Henley, Mark; Carrington, Connie (Technical Monitor)
2000-01-01
Advanced solar electric power systems and electric propulsion technology constitute viable elements for conducting human Mars transfer missions that are roughly comparable in performance to similar missions utilizing alternative high thrust systems, with the one exception being their inability to achieve short Earth-Mars trip times. A modest solar electric propulsion human Mars scenario is presented that features the use of conjunction class trajectories in concert with pre-emplacement of surface assets that can be used in a series of visits to Mars. Major elements of the Mars solar electric transfer vehicle can be direct derivatives of present state-of-the-art Solar array and electric thruster systems. During the study, several elements affecting system performance were evaluated, including varying Earth orbit altitude for departure, recapturing the transfer stage at Earth for reuse, varying power system mass-to-power ratio, and assessing solar array degradation on performance induced by Van Allen belt passage. Comparisons are made to chemical propulsion and nuclear thermal propulsion Mars vehicles carrying similar payloads.
Laboratory Facilities and Measurement Techniques for Beamed-Energy-Propulsion Experiments in Brazil
NASA Astrophysics Data System (ADS)
de Oliveira, Antonio Carlos; Chanes Júnior, José Brosler; Cordeiro Marcos, Thiago Victor; Pinto, David Romanelli; Santos Vilela, Renan Guilherme; Barros Galvão, Victor Alves; Mantovani, Arthur Freire; da Costa, Felipe Jean; dos Santos Assenção, José Adeildo; dos Santos, Alberto Monteiro; de Paula Toro, Paulo Gilberto; Sala Minucci, Marco Antonio; da Silveira Rêgo, Israel; Salvador, Israel Irone; Myrabo, Leik N.
2011-11-01
Laser propulsion is an innovative concept of accessing the space easier and cheaper where the propulsive energy is beamed to the aerospace vehicle in flight from ground—or even satellite-based high-power laser sources. In order to be realistic about laser propulsion, the Institute for Advanced Studies of the Brazilian Air Force in cooperation with the United States Air Force and the Rensselaer Polytechnic Institute are seriously investigating its basic physics mechanisms and engineering aspects at the Henry T. Hamamatsu Laboratory of Hypersonic and Aerothermodynamics in São José dos Campos, Brazil. This paper describes in details the existing facilities and measuring systems such as high-power laser devices, pulsed-hypersonic wind tunnels and high-speed flow visualization system currently utilized in the laboratory for experimentation on laser propulsion.
NASA Technical Reports Server (NTRS)
Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.
2014-01-01
A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.
Electric Propulsion Options for a Magnetospheric Mapping Mission
NASA Technical Reports Server (NTRS)
Oleson, Steven; Russell, Chris; Hack, Kurt; Riehl, John
1998-01-01
The Twin Electric Magnetospheric Probes Exploring on Spiral Trajectories mission concept was proposed as a Middle Explorer class mission. A pre-phase-A design was developed which utilizes the advantages of electric propulsion for Earth scientific spacecraft use. This paper presents propulsion system analyses performed for the proposal. The proposed mission required two spacecraft to explore near circular orbits 0.1 to 15 Earth radii in both high and low inclination orbits. Since the use of chemical propulsion would require launch vehicles outside the Middle Explorer class a reduction in launch mass was sought using ion, Hall, and arcjet electric propulsion system. Xenon ion technology proved to be the best propulsion option for the mission requirements requiring only two Pegasus XL launchers. The Hall thruster provided an alternative solution but required two larger, Taurus launch vehicles. Arcjet thrusters did not allow for significant launch vehicle reduction in the Middle Explorer class.
RS-34 (Peacekeeper Post Boost Propulsion System) Orbital Debris Application Concept Study
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Burnside, Christopher G.
2013-01-01
The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) lead a study to evaluate the Rocketdyne produced RS-34 propulsion system as it applies to an orbital debris removal design reference mission. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Concept Study, preceded by a utilization study to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions, sought to further understand application for an orbital debris design reference mission as the orbital debris removal mission was found to closely mimic the heritage RS-34 mission. The RS-34 Orbital Debris Application Concept Study sought to identify multiple configurations varying the degree of modification to trade for dry mass optimization and propellant load for overall capability and evaluation of several candidate missions. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed. The results and benefits of the RS-34 Orbital Debris Application Concept Study are presented in this paper.
Cycle Trades for Nuclear Thermal Rocket Propulsion Systems
NASA Technical Reports Server (NTRS)
White, C.; Guidos, M.; Greene, W.
2003-01-01
Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.
Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion
NASA Technical Reports Server (NTRS)
Galecki, Diane L.; Patterson, Michael J.
1987-01-01
Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
Interactive Schematic Integration Within the Propellant System Modeling Environment
NASA Technical Reports Server (NTRS)
Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don
2012-01-01
Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.
High Temperature Materials Needs in NASA's Advanced Space Propulsion Programs
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Glass, David E.
2005-01-01
In recent years, NASA has embarked on several new and exciting efforts in the exploration and use of space. The successful accomplishment of many planned missions and projects is dependent upon the development and deployment of previously unproven propulsion systems. Key to many of the propulsion systems is the use of emergent materials systems, particularly high temperature structural composites. A review of the general missions and benefits of utilizing high temperature materials will be presented. The design parameters and operating conditions will be presented for both specific missions/vehicles and classes of components. Key technical challenges and opportunities are identified along with suggested paths for addressing them.
An evaluation of oxygen-hydrogen propulsion systems for the Space Station
NASA Technical Reports Server (NTRS)
Klemetson, R. W.; Garrison, P. W.; Hannum, N. P.
1985-01-01
Conceptual designs for O2/H2 chemical and resistojet propulsion systems for the space station was developed and evaluated. The evolution of propulsion requirements was considered as the space station configuration and its utilization as a space transportation node change over the first decade of operation. The characteristics of candidate O2/H2 auxiliary propulsion systems are determined, and opportunities for integration with the OTV tank farm and the space station life support, power and thermal control subsystems are investigated. OTV tank farm boiloff can provide a major portion of the growth station impulse requirements and CO2 from the life support system can be a significant propellant resource, provided it is not denied by closure of that subsystem. Waste heat from the thermal control system is sufficient for many propellant conditioning requirements. It is concluded that the optimum level of subsystem integration must be based on higher level space station studies.
NASA Technical Reports Server (NTRS)
Spears, L. T.; Kramer, R. D.
1990-01-01
The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
Effects of Gravity-Assist Timing on Outer-Planet Missions Using Solar-Electric Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Cupples, Michael
2004-01-01
Missions to the outer planets for spacecraft with a solar-electric propulsion system (SEPS) and that utilize a single Venus gravity assist are investigated. The trajectories maximize the delivered mass to the target planet for a range of flight times. A comparison of the trajectory characteristics (delivered mass, launch energy and onboard propulsive energy) is made for various Venus gravity assist opportunities. Methods to estimate the delivered mass to the outer planets are developed.
2005-10-06
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD
Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development
NASA Astrophysics Data System (ADS)
Mehta, U.
Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.
Overcoming the Adoption Barrier to Electric Flight
NASA Technical Reports Server (NTRS)
Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.;
2016-01-01
Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.
NASA Technical Reports Server (NTRS)
Howe, Steven D.; Borowski, Stanley; Motloch, Chet; Helms, Ira; Diaz, Nils; Anghaie, Samim; Latham, Thomas
1991-01-01
In response to findings from two NASA/DOE nuclear propulsion workshops, six task teams were created to continue evaluation of various propulsion concepts, from which evolved an innovative concepts subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. This subpanel endeavored to evaluate each concept on a level technology basis, and to identify critical issues, technologies, and early proof-of-concept experiments. Results of the concept studies including the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter are presented.
Performance Evaluation of an Expanded Range XIPS Ion Thruster System for NASA Science Missions
NASA Technical Reports Server (NTRS)
Oh, David Y.; Goebel, Dan M.
2006-01-01
This paper examines the benefit that a solar electric propulsion (SEP) system based on the 5 kW Xenon Ion Propulsion System (XIPS) could have for NASA's Discovery class deep space missions. The relative cost and performance of the commercial heritage XIPS system is compared to NSTAR ion thruster based systems on three Discovery class reference missions: 1) a Near Earth Asteroid Sample Return, 2) a Comet Rendezvous and 3) a Main Belt Asteroid Rendezvous. It is found that systems utilizing a single operating XIPS thruster provides significant performance advantages over a single operating NSTAR thruster. In fact, XIPS performs as well as systems utilizing two operating NSTAR thrusters, and still costs less than the NSTAR system with a single operating thruster. This makes XIPS based SEP a competitive and attractive candidate for Discovery class science missions.
Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission
NASA Technical Reports Server (NTRS)
Fiehler, Douglas; Dougherty, Ryan; Manzella, David
2005-01-01
The proposed Prometheus 1 spacecraft would utilize nuclear electric propulsion to propel the spacecraft to its ultimate destination where it would perform its primary mission. As part of the Prometheus 1 Phase A studies, system models were developed for each of the spacecraft subsystems that were integrated into one overarching system model. The Electric Propulsion System (EPS) model was developed using data from the Prometheus 1 electric propulsion technology development efforts. This EPS model was then used to provide both performance and mass information to the Prometheus 1 system model for total system trades. Development of the EPS model is described, detailing both the performance calculations as well as its evolution over the course of Phase A through three technical baselines. Model outputs are also presented, detailing the performance of the model and its direct relationship to the Prometheus 1 technology development efforts. These EP system model outputs are also analyzed chronologically showing the response of the model development to the four technical baselines during Prometheus 1 Phase A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.W.; Layton, J.P.
1976-09-13
The three-volume report describes a dual-mode nuclear space power and propulsion system concept that employs an advanced solid-core nuclear fission reactor coupled via heat pipes to one of several electric power conversion systems. The NUROC3A systems analysis code was designed to provide the user with performance characteristics of the dual-mode system. Volume 3 describes utilization of the NUROC3A code to produce a detailed parameter study of the system.
Applying design principles to fusion reactor configurations for propulsion in space
NASA Technical Reports Server (NTRS)
Carpenter, Scott A.; Deveny, Marc E.; Schulze, Norman R.
1993-01-01
The application of fusion power to space propulsion requires rethinking the engineering-design solution to controlled-fusion energy. Whereas the unit cost of electricity (COE) drives the engineering-design solution for utility-based fusion reactor configurations; initial mass to low earth orbit (IMLEO), specific jet power (kW(thrust)/kg(engine)), and reusability drive the engineering-design solution for successful application of fusion power to space propulsion. We applied three design principles (DP's) to adapt and optimize three candidate-terrestrial-fusion-reactor configurations for propulsion in space. The three design principles are: provide maximum direct access to space for waste radiation, operate components as passive radiators to minimize cooling-system mass, and optimize the plasma fuel, fuel mix, and temperature for best specific jet power. The three candidate terrestrial fusion reactor configurations are: the thermal barrier tandem mirror (TBTM), field reversed mirror (FRM), and levitated dipole field (LDF). The resulting three candidate space fusion propulsion systems have their IMLEO minimized and their specific jet power and reusability maximized. We performed a preliminary rating of these configurations and concluded that the leading engineering-design solution to space fusion propulsion is a modified TBTM that we call the Mirror Fusion Propulsion System (MFPS).
The Potential for Ambient Plasma Wave Propulsion
NASA Technical Reports Server (NTRS)
Gilland, James H.; Williams, George J.
2016-01-01
A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at frequencies below the ion cyclotron frequency. They have been observed in both laboratory and astrophysical settings. On Earth, they are being investigated as a possible means for plasma heating, current drive, and momentum addition in magnetic confinement fusion systems. In addition, Alfven waves have been proposed as a mechanism for acceleration of the solar wind away from the sun.
Space station propulsion system technology
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Meng, Phillip R.; Schneider, Steven J.; Sovey, James S.; Tacina, Robert R.
1987-01-01
Two propulsion systems have been selected for the space station: O/H rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These thruster systems integrate very well with the fluid systems on the station. Both thrusters will utilize waste fluids as their source of propellant. The O/H rocket will be fueled by electrolyzed water and the resistojets will use stored waste gases from the environmental control system and the various laboratories. This paper presents the results of experimental efforts with O/H and resistojet thrusters to determine their performance and life capability.
Hybrid Propulsion In-Situ Resource Utilization Test Facility Results
NASA Technical Reports Server (NTRS)
Karp, Ashley Chandler; Nakazono, Barry; Vaughan, David; Warner, William N.
2015-01-01
Hybrid rockets present a promising alternative to conventional chemical propulsion systems for In-Situ Resource Utilization (ISRU) and in-space applications. While they have many benefits for these applications, there are still many small details that require research before they can be adopted into flight systems. A flexible test facility was developed at JPL to test operation of hybrid motors at small scale (5 cm outer diameter fuel grains) over a range of conditions. Specifically, this paper studies two of the major advantages: low temperature performance and throttling. Paraffin-based hybrid rockets are predicted to have good performance at low temperatures. This could significantly decrease the overall system mass by minimizing the thermal conditioning required for Mars or outer planet applications. Therefore, the coefficient of thermal expansion and glass transition of paraffin are discussed. Additionally, deep throttling has been considered for several applications. This was a natural starting point for hotfire testing using the hybrid propulsion ISRU test facility. Additionally, short length to diameter ratio (L/D) fuel grains are tested to determine if these systems can be packaged into geometrically constrained spaces.
NASA Astrophysics Data System (ADS)
Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki
2017-12-01
High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.
Market Driven Space Exploration
NASA Astrophysics Data System (ADS)
Gavert, Raymond B.
2004-02-01
Market driven space exploration will have the opportunity to develop to new levels with the coming of space nuclear power and propulsion. NASA's recently established Prometheus program is expected to receive several billion dollars over the next five years for developing nuclear power and propulsion systems for future spacecraft. Not only is nuclear power and propulsion essential for long distance Jupiter type missions, but it also important for providing greater access to planets and bodies nearer to the Earth. NASA has been working with industrial partners since 1987 through its Research Partnerships Centers (RPCs) to utilize the attributes of space in Low Earth Orbit (LEO). Plans are now being made to utilize the RPCs and industrial partners in extending the duration and boundaries of human space flight to create new opportunities for exploration and discovery. Private investors are considering setting up shops in LEO for commercial purposes. The trend is for more industrial involvement in space. Nuclear power and propulsion will hasten the progress. The objective of this paper is to show the progression of space market driven research and its potential for supporting space exploration given nuclear power and propulsion capabilities.
Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.
1994-01-01
Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.
Investigation of Various Novel Air-Breathing Propulsion Systems
NASA Astrophysics Data System (ADS)
Wilhite, Jarred M.
The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable of transferring significant amounts of heat and improving the efficiency and performance of the propulsion system.
Low Cost Electric Propulsion Thruster for Deep Space Robotic Science Missions
NASA Technical Reports Server (NTRS)
Manzella, David
2008-01-01
Electric Propulsion (EP) has found widespread acceptance by commercial satellite providers for on-orbit station keeping due to the total life cycle cost advantages these systems offer. NASA has also sought to benefit from the use of EP for primary propulsion onboard the Deep Space-1 and DAWN spacecraft. These applications utilized EP systems based on gridded ion thrusters, which offer performance unequaled by other electric propulsion thrusters. Through the In-Space Propulsion Project, a lower cost thruster technology is currently under development designed to make electric propulsion intended for primary propulsion applications cost competitive with chemical propulsion systems. The basis for this new technology is a very reliable electric propulsion thruster called the Hall thruster. Hall thrusters, which have been flown by the Russians dating back to the 1970s, have been used by the Europeans on the SMART-1 lunar orbiter and currently employed by 15 other geostationary spacecraft. Since the inception of the Hall thruster, over 100 of these devices have been used with no known failures. This paper describes the latest accomplishments of a development task that seeks to improve Hall thruster technology by increasing its specific impulse, throttle-ability, and lifetime to make this type of electric propulsion thruster applicable to NASA deep space science missions. In addition to discussing recent progress on this task, this paper describes the performance and cost benefits projected to result from the use of advanced Hall thrusters for deep space science missions.
LADEE Propulsion System Cold Flow Test
NASA Technical Reports Server (NTRS)
Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.
2013-01-01
Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012
Electromagnetic interference of power conditioners for solar electric propulsion
NASA Technical Reports Server (NTRS)
Whittlesey, A. C.; Macie, T. W.
1973-01-01
Electrical, multikilowatt power conditioning (PC) equipment needed on board a spacecraft utilizing solar electric propulsion creates an electromagnetic environment that is potentially deterimental to the science, navigation, and radio communication hardware. Within the scope of the solar electric propulsion system technology program, three lightweight, 2.5-kW PCs were evaluated in terms of their electromagnetic characteristics. It was found that the levels of radiated and conducted interference exceeded the levels anticipated for a solar electric propulsion mission. These noise emissions, however, were the result of deficient interference design in these models, rather than a basic inability to control interference in this type of PC.
NASA-NIAC 2001 Phase I Research Grant on Aneutronic Fusion Spacecraft Architecture
NASA Technical Reports Server (NTRS)
Tarditi, Alfonso G. (Principal Investigator); Scott, John H.; Miley, George H.
2012-01-01
This study was developed because the recognized need of defining of a new spacecraft architecture suitable for aneutronic fusion and featuring game-changing space travel capabilities. The core of this architecture is the definition of a new kind of fusion-based space propulsion system. This research is not about exploring a new fusion energy concept, it actually assumes the availability of an aneutronic fusion energy reactor. The focus is on providing the best (most efficient) utilization of fusion energy for propulsion purposes. The rationale is that without a proper architecture design even the utilization of a fusion reactor as a prime energy source for spacecraft propulsion is not going to provide the required performances for achieving a substantial change of current space travel capabilities.
A Study on the Propulsive Mechanism of a Double Jointed Fish Robot Utilizing Self-Excitation Control
NASA Astrophysics Data System (ADS)
Nakashima, Motomu; Ohgishi, Norifumi; Ono, Kyosuke
This paper describes a numerical and experimental study of a double jointed fish robot utilizing self-excitation control. The fish robot is composed of a streamlined body and a rectangular caudal fin. The body length is 280mm and it has a DC motor to actuate its first joint and a potentiometer to detect the angle of its second joint. The signal from the potentiometer is fed back into the DC motor, so that the system can be self-excited. In order to obtain a stable oscillation and a resultant stable propulsion, a torque limiter circuit is employed. From the experiment, it has been found that the robot can stably propel using this control and the maximum propulsive speed is 0.42m/s.
NASA Technical Reports Server (NTRS)
Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80deg E., and 11deg W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3-99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
NASA Technical Reports Server (NTRS)
Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.; Dunning, John (Technical Monitor)
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80deg E. and 11deg W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3-99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
NASA Technical Reports Server (NTRS)
Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 deg. E. and 11 deg. W respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
Propulsion Technology Needs for Exploration
NASA Technical Reports Server (NTRS)
Brown, Thomas
2007-01-01
The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to the propulsive and fluid management system technologies described, many component level technologies are also required to enable to the success if the integrated systems. The components include, but are not limited to, variable/throttling valves, variable position actuators, leak detectors, light weight cryogenic fluid pumps, sensor technology and others. NASA, partnering with the Aerospace Industry must endeavor to develop these, and other promising propulsion technologies, to enable the implements of the country's goals in exploration of the Moon, Mars and beyond.
Vehicle-Level Oxygen/Methane Propulsion System Hotfire Testing at Thermal Vacuum Conditions
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.; Desai, Pooja; Werlink, Rudy
2017-01-01
A prototype integrated liquid oxygen/liquid methane propulsion system was hot-fire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). This test campaign served two purposes: 1) Characterize the performance of the Plum Brook facility in vacuum accumulator mode and 2) Collect the unique data set of an integrated LOX/Methane propulsion system operating in high altitude and thermal vacuum environments (a first). Data from this propulsion system prototype could inform the design of future spacecraft in-space propulsion systems, including landers. The test vehicle for this campaign was the Integrated Cryogenic Propulsion Test Article (ICPTA), which was constructed for this project using assets from the former Morpheus Project rebuilt and outfitted with additional new hardware. The ICPTA utilizes one 2,800 lbf main engine, two 28 lbf and two 7 lbf reaction control engines mounted in two pods, four 48-inch propellant tanks (two each for liquid oxygen and liquid methane), and a cold helium system for propellant tank pressurization. Several hundred sensors on the ICPTA and many more in the test cell collected data to characterize the operation of the vehicle and facility. Multiple notable experiments were performed during this test campaign, many for the first time, including pressure-fed cryogenic reaction control system characterization over a wide range of conditions, coil-on-plug ignition system demonstration at the vehicle level, integrated main engine/RCS operation, and a non-intrusive propellant mass gauging system. The test data includes water-hammer and thermal heat leak data critical to validating models for use in future vehicle design activities. This successful test campaign demonstrated the performance of the updated Plum Brook In-Space Propulsion thermal vacuum chamber and incrementally advanced the state of LOX/Methane propulsion technology through numerous system-level and subsystem experiments.
Water Electrolysis for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Lee, Kristopher A.
2016-01-01
Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.
An advanced optical system for laser ablation propulsion in space
NASA Astrophysics Data System (ADS)
Bergstue, Grant; Fork, Richard; Reardon, Patrick
2014-03-01
We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space-based missions.
On-Board Chemical Propulsion Technology
NASA Technical Reports Server (NTRS)
Reed, Brian D.
2004-01-01
On-board propulsion functions include orbit insertion, orbit maintenance, constellation maintenance, precision positioning, in-space maneuvering, de-orbiting, vehicle reaction control, planetary retro, and planetary descent/ascent. This paper discusses on-board chemical propulsion technology, including bipropellants, monopropellants, and micropropulsion. Bipropellant propulsion has focused on maximizing the performance of Earth storable propellants by using high-temperature, oxidation-resistant chamber materials. The performance of bipropellant systems can be increased further, by operating at elevated chamber pressures and/or using higher energy oxidizers. Both options present system level difficulties for spacecraft, however. Monopropellant research has focused on mixtures composed of an aqueous solution of hydroxl ammonium nitrate (HAN) and a fuel component. HAN-based monopropellants, unlike hydrazine, do not present a vapor hazard and do not require extraordinary procedures for storage, handling, and disposal. HAN-based monopropellants generically have higher densities and lower freezing points than the state-of-art hydrazine and can higher performance, depending on the formulation. High-performance HAN-based monopropellants, however, have aggressive, high-temperature combustion environments and require advances in catalyst materials or suitable non-catalytic ignition options. The objective of the micropropulsion technology area is to develop low-cost, high-utility propulsion systems for the range of miniature spacecraft and precision propulsion applications.
Space-based laser-powered orbital transfer vehicle (Project SLICK)
NASA Technical Reports Server (NTRS)
1988-01-01
A conceptual design study of a laser-powered orbital transfer vehicle (LOTV) is presented. The LOTV, nicknamed SLICK (Space Laser Interorbital Cargo Kite), will be utilized for the transfer of 16000 kg of cargo between Low Earth Orbit (LEO) and either Geosynchronous Earth Orbit (GEO) or Low Lunar Orbit (LLO). This design concentrates primarily on the LEO/GEO scenario, which will have typical LEO-to-GEO trip time of 6 days and two return versions. One version uses an all propulsive return while the other utilizes a ballute aerobrake for the return trip. Furthermore, three return cargo options of 16000 kg, 5000 kg (standard option), and 1600 kg are considered for this scenario. The LEO/LLO scenario uses only a standard, aerobraked version. The basic concept behind the LOTV is that the power for the propulsion system is supplied by a source separate from the LOTV itself. For the LEO/GEO scenario the LOTV utilizes a direct solar-pumped iodide laser and possibly two relay stations, all orbiting at an altitude of one Earth radius and zero inclination. An additional nuclear-powered laser is placed on the Moon for the LEO/LLO scenario. The propulsion system of the LOTV consists of a single engine fueled with liquid hydrogen. The laser beam is captured and directed by a four mirror optical system through a window in the thrust chamber of the engine. There, seven plasmas are created to convert the laser beam energy into thermal energy at an efficiency of at least 50 percent. For the LEO/LLO scenario the laser propulsion is supplemented by LH2/LOX chemical thrusters.
Advanced propulsion system concept for hybrid vehicles
NASA Technical Reports Server (NTRS)
Bhate, S.; Chen, H.; Dochat, G.
1980-01-01
A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.
An evaluation of some special techniques for nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Mackay, J. S.
1973-01-01
A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.
Mission Design for the Innovative Interstellar Explorer Vision Mission
NASA Technical Reports Server (NTRS)
Fiehler, Douglas I.; McNutt, Ralph L.
2005-01-01
The Innovative Interstellar Explorer, studied under a NASA Vision Mission grant, examined sending a probe to a heliospheric distance of 200 Astronomical Units (AU) in a "reasonable" amount of time. Previous studies looked at the use of a near-Sun propulsive maneuver, solar sails, and fission reactor powered electric propulsion systems for propulsion. The Innovative Interstellar Explorer's mission design used a combination of a high-energy launch using current launch technology, a Jupiter gravity assist, and electric propulsion powered by advanced radioisotope power systems to reach 200 AU. Many direct and gravity assist trajectories at several power levels were considered in the development of the baseline trajectory, including single and double gravity assists utilizing the outer planets (Jupiter, Saturn, Uranus, and Neptune). A detailed spacecraft design study was completed followed by trajectory analyses to examine the performance of the spacecraft design options.
In-Space Propulsion Technology Program Solar Electric Propulsion Technologies
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2006-01-01
NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth
2005-01-01
The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.
Power, Propulsion, and Communications for Microspacecraft Missions
NASA Technical Reports Server (NTRS)
deGroot, W. A.; Maloney, T. M.; Vanderaar, M. J.
1998-01-01
The development of small sized, low weight spacecraft should lead to reduced scientific mission costs by lowering fabrication and launch costs. An order of magnitude reduction in spacecraft size can be obtained by miniaturizing components. Additional reductions in spacecraft weight, size, and cost can be obtained by utilizing the synergy that exists between different spacecraft systems. The state-of-the-art of three major systems, spacecraft power, propulsion, and communications is discussed. Potential strategies to exploit the synergy between these systems and/or the payload are identified. Benefits of several of these synergies are discussed.
Electrodynamic Tether Propulsion and Power Generation at Jupiter
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Johnson, L.; Moore, J.; Bagenal, F.
1998-01-01
The results of a study performed to evaluate the feasibility and merits of using an electrodynamic tether for propulsion and power generation for a spacecraft in the Jovian system are presented. The environment of the Jovian system has properties which are particularly favorable for utilization of an electrodynamic tether. Specifically, the planet has a strong magnetic field and the mass of the planet dictates high orbital velocities which, when combined with the planet's rapid rotation rate, can produce very large relative velocities between the magnetic field and the spacecraft. In a circular orbit close to the planet, tether propulsive forces are found to be as high as 50 N and power levels as high as 1 MW.
High-Power Solar Electric Propulsion for Future NASA Missions
NASA Technical Reports Server (NTRS)
Manzella, David; Hack, Kurt
2014-01-01
NASA has sought to utilize high-power solar electric propulsion as means of improving the affordability of in-space transportation for almost 50 years. Early efforts focused on 25 to 50 kilowatt systems that could be used with the Space Shuttle, while later efforts focused on systems nearly an order of magnitude higher power that could be used with heavy lift launch vehicles. These efforts never left the concept development phase in part because the technology required was not sufficiently mature. Since 2012 the NASA Space Technology Mission Directorate has had a coordinated plan to mature the requisite solar array and electric propulsion technology needed to implement a 30 to 50 kilowatt solar electric propulsion technology demonstration mission. Multiple solar electric propulsion technology demonstration mission concepts have been developed based on these maturing technologies with recent efforts focusing on an Asteroid Redirect Robotic Mission. If implemented, the Asteroid Redirect Vehicle will form the basis for a capability that can be cost-effectively evolved over time to provide solar electric propulsion transportation for a range of follow-on mission applications at power levels in excess of 100 kilowatts.
Example Solar Electric Propulsion System asteroid tours using variational calculus
NASA Technical Reports Server (NTRS)
Burrows, R. R.
1985-01-01
Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.
Example Solar Electric Propulsion System asteroid tours using variational calculus
NASA Astrophysics Data System (ADS)
Burrows, R. R.
1985-06-01
Exploration of the asteroid belt with a vehicle utilizing a Solar Electric Propulsion System has been proposed in past studies. Some of those studies illustrated multiple asteroid rendezvous with trajectories obtained using approximate methods. Most of the inadequacies of those approximations are overcome in this paper, which uses the calculus of variations to calculate the trajectories and associated payloads of four asteroid tours. The modeling, equations, and solution techniques are discussed, followed by a presentation of the results.
NASA Astrophysics Data System (ADS)
Zubrin, Robert M.
1994-07-01
In the past, most studies dealing with the benefits of space nuclear electric power systems for solar system exploration have focused on the potential of nuclear electric propulsion (NEP) to enhance missions by increasing delivered payload, decreasing LEO mass, or reducing trip time. While important, such mission enhancements have failed to go to the heart of the concerns of the scientific community supporting interplanetary exploration. To put the matter succinctly, scientists don't buy delivered payload - they buy data returned. With nuclear power we can increase both the quantity of data returned, by enormously increasing data communication rates, and the quality of data by enabling a host of active sensing techniques otherwise impossible. These non-propulsive mission enhancement capabilities of space nuclear power have been known in principle for many years, but they have not been adequately documented. As a result, support for the development of space nuclear power by the interplanetary exploration community has been much less forceful than it might otherwise be. In this paper we shall present mission designs that take full advantage of the potential mission enhancements offered by space nuclear power systems in the 10 to 100 kWe range, not just for propulsion, but to radically improve, enrich, and expand the science return itself. Missions considered include orbiter missions to each of the outer planets. It will be shown that be using hybrid trajectories combining chemical propulsion with NEP and (in certain cases) gravity assists, that it is possible, using a Titan IV-Centaur launch vehicle, for high-powered spacecraft to be placed in orbit around each of the outer planets with electric propulsion burn times of less than 4 years. Such hybrid trajectories therefore make the outer solar-system available to near-term nuclear electric power systems. Once in orbit, the spacecraft will utilize multi-kilowatt communication systems, similar to those now employed by the U.S. military, to increase data return far beyond that possible utilizing the 40 W rf traveling wave tube antennas that are the current NASA standard. This higher data rate will make possible very high resolution multi-spectral imaging (with high resolutions both spatially and spectrally), a form of science hitherto impossible in the outer solar system. Large numbers of such images could be returned, allowing the creation of motion pictures of atmospheric phenomenon on a small scale and greatly increasing the probability of capturing transient phenomena such as lighting or volcanic activity. The multi-kilowatt power sources on the spacecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground penetrating sounding of Pluto, the major planet's moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expenditures needed to bring a space qualified nuclear electric power source into being.
Civil propulsion technology for the next twenty-five years
NASA Technical Reports Server (NTRS)
Rosen, Robert; Facey, John R.
1987-01-01
The next twenty-five years will see major advances in civil propulsion technology that will result in completely new aircraft systems for domestic, international, commuter and high-speed transports. These aircraft will include advanced aerodynamic, structural, and avionic technologies resulting in major new system capabilities and economic improvements. Propulsion technologies will include high-speed turboprops in the near term, very high bypass ratio turbofans, high efficiency small engines and advanced cycles utilizing high temperature materials for high-speed propulsion. Key fundamental enabling technologies include increased temperature capability and advanced design methods. Increased temperature capability will be based on improved composite materials such as metal matrix, intermetallics, ceramics, and carbon/carbon as well as advanced heat transfer techniques. Advanced design methods will make use of advances in internal computational fluid mechanics, reacting flow computation, computational structural mechanics and computational chemistry. The combination of advanced enabling technologies, new propulsion concepts and advanced control approaches will provide major improvements in civil aircraft.
High Power Silicon Carbide (SiC) Power Processing Unit Development
NASA Technical Reports Server (NTRS)
Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.
2015-01-01
NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.
Advanced Space Fission Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, Stanley K.
2010-01-01
Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust-to-weight ratio. This presentation will discuss potential space fission propulsion options ranging from first generation systems to highly advanced systems. Ongoing research that shows promise for enabling second generation NTP systems with Isp greater than 1000 s will be discussed, as will the potential for liquid, gas, or plasma core systems. Space fission propulsion systems could also be used in conjunction with simple (water-based) propellant depots to enable routine, affordable missions to various destinations (e.g. moon, Mars, asteroids) once in-space infrastructure is sufficiently developed. As fuel and material technologies advance, very high performance Nuclear Electric Propulsion (NEP) systems may also become viable. These systems could enable sophisticated science missions, highly efficient cargo delivery, and human missions to numerous destinations. Commonalities between NTP, fission power systems, and NEP will be discussed.
Project WISH: The Emerald City
NASA Technical Reports Server (NTRS)
Oz, Hayrani; Slonksnes, Linda (Editor); Rogers, James W. (Editor); Sherer, Scott E. (Editor); Strosky, Michelle A. (Editor); Szmerekovsky, Andrew G. (Editor); Klupar, G. Joseph (Editor)
1990-01-01
The preliminary design of a permanently manned autonomous space oasis (PEMASO), including its pertinent subsystems, was performed during the 1990 Winter and Spring quarters. The purpose for the space oasis was defined and the preliminary design work was started with emphasis placed on the study of orbital mechanics, power systems and propulsion systems. A rotating torus was selected as the preliminary configuration, and overall size, mass and location of some subsystems within the station were addressed. Computer software packages were utilized to determine station transfer parameters and thus the preliminary propulsion requirements. Power and propulsion systems were researched to determine feasible configurations and many conventional schemes were ruled out. Vehicle dynamics and control, mechanical and life support systems were also studied. For each subsystem studied, the next step in the design process to be performed during the continuation of the project was also addressed.
Variable-Speed Simulation of a Dual-Clutch Gearbox Tiltrotor Driveline
NASA Technical Reports Server (NTRS)
DeSmidt, Hans; Wang, Kon-Well; Smith, Edward C.; Lewicki, David G.
2012-01-01
This investigation explores the variable-speed operation and shift response of a prototypical two-speed dual-clutch transmission tiltrotor driveline in forward flight. Here, a Comprehensive Variable-Speed Rotorcraft Propulsion System Modeling (CVSRPM) tool developed under a NASA funded NRA program is utilized to simulate the drive system dynamics. In this study, a sequential shifting control strategy is analyzed under a steady forward cruise condition. This investigation attempts to build upon previous variable-speed rotorcraft propulsion studies by 1) including a fully nonlinear transient gas-turbine engine model, 2) including clutch stick-slip friction effects, 3) including shaft flexibility, 4) incorporating a basic flight dynamics model to account for interactions with the flight control system. Through exploring the interactions between the various subsystems, this analysis provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Engine health monitoring: An advanced system
NASA Technical Reports Server (NTRS)
Dyson, R. J. E.
1981-01-01
The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.
NASA Technical Reports Server (NTRS)
Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80deg E. and 11deg W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
NASA Technical Reports Server (NTRS)
Dunning, John (Technical Monitor); Sitnikova, N.; Volkov, D.; Maximov, I.; Petrusevich, V.; Allen, D.
2003-01-01
This 12-part report documents the data obtained from various sensor measurements taken aboard the Russian Express-A2 and Express-A3 spacecraft in Geosynchronous Earth Orbit (GEO). These GEO communications satellites, which were designed and built by NPO Prikladnoy Mekhaniki (NPO PM) of Zheleznogorsk, Russia, utilize Hall thruster propulsion systems for north-south and east-west stationkeeping and as of June 2002, were still operating at 80 E. and 11 W., respectively. Express-A2 was launched on March 12, 2000, while Express-A3 was launched on June 24, 2000. The diagnostic equipment from which these data were taken includes electric field strength sensors, ion current and energy sensors, and pressure sensors. The diagnostics and the Hall thruster propulsion systems are described in detail along with lists of tabular data from those diagnostics and propulsion system and other satellite systems. Space Power, Inc., now part of Pratt & Whitney's Chemical Systems Division, under contract NAS3 99151 to the NASA Glenn Research Center, obtained these data over several periods from March 12, 2000, through September 30, 2001. Each of the 12 individual reports describe, in detail, the propulsion systems as well as the diagnostic sensors utilized. Finally, parts 11 and 12 include the requirements to which NPO PM prepared and delivered these data.
NASA Technical Reports Server (NTRS)
Kuhl, Christopher A.
2008-01-01
The Aerial Regional-Scale Environmental Survey (ARES) is a Mars exploration mission concept that utilizes a rocket propelled airplane to take scientific measurements of atmospheric, surface, and subsurface phenomena. The liquid rocket propulsion system design has matured through several design cycles and trade studies since the inception of the ARES concept in 2002. This paper describes the process of selecting a bipropellant system over other propulsion system options, and provides details on the rocket system design, thrusters, propellant tank and PMD design, propellant isolation, and flow control hardware. The paper also summarizes computer model results of thruster plume interactions and simulated flight performance. The airplane has a 6.25 m wingspan with a total wet mass of 185 kg and has to ability to fly over 600 km through the atmosphere of Mars with 45 kg of MMH / MON3 propellant.
Nuclear power propulsion system for spacecraft
NASA Astrophysics Data System (ADS)
Koroteev, A. S.; Oshev, Yu. A.; Popov, S. A.; Karevsky, A. V.; Solodukhin, A. Ye.; Zakharenkov, L. E.; Semenkin, A. V.
2015-12-01
The proposed designs of high-power space tugs that utilize solar or nuclear energy to power an electric jet engine are reviewed. The conceptual design of a nuclear power propulsion system (NPPS) is described; its structural diagram, gas circuit, and electric diagram are discussed. The NPPS incorporates a nuclear reactor, a thermal-to-electric energy conversion system, a system for the conversion and distribution of electric energy, and an electric propulsion system. Two criterion parameters were chosen in the considered NPPS design: the temperature of gaseous working medium at the nuclear reactor outlet and the rotor speed of turboalternators. The maintenance of these parameters at a given level guarantees that the needed electric voltage is generated and allows for power mode control. The processes of startup/shutdown and increasing/reducing the power, the principles of distribution of electric energy over loads, and the probable emergencies for the proposed NPPS design are discussed.
Future Directions for Fusion Propulsion Research at NASA
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Cassibry, Jason T.
2005-01-01
Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. .If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. Arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.
NASA Technical Reports Server (NTRS)
Ballard, RIchard O.
2006-01-01
This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the Fundamental Root Causes that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTF). This paper will discuss the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system
Nuclear electric propulsion mission performance for fast piloted Mars missions
NASA Technical Reports Server (NTRS)
Hack, K. J.; George, J. A.; Dudzinski, L. A.
1991-01-01
A mission study aimed at minimizing the time humans would spend in the space environment is presented. The use of nuclear electric propulsion (NEP), when combined with a suitable mission profile, can reduce the trip time to durations competitive with other propulsion systems. Specifically, a split mission profile utilizing an earth crew capture vehicle accounts for a significant portion of the trip time reduction compared to previous studies. NEP is shown to be capable of performing fast piloted missions to Mars at low power levels using near-term technology and is considered to be a viable candidate for these missions.
NASA Technical Reports Server (NTRS)
Smith, J. L.
1980-01-01
Review comments of the Congressional report entitled 'Federal Policies to Promote the Widespread Utilization of Photovoltaic Systems' are presented. Responses to the review comments by the Jet Propulsion Laboratory, preparer of the Congressional report, are also presented. The Congressional report discussed various issues related to promoting the deployment of photovoltaic systems through the Federal Photovoltaic Program. Various program strategies and funding levels were examined.
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
Using SFOC to fly the Magellan Venus mapping mission
NASA Technical Reports Server (NTRS)
Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.
1993-01-01
Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.
The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative
NASA Astrophysics Data System (ADS)
Coomes, Edmund P.; Dagle, Jeffery E.
1991-01-01
The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI.
Systematic Propulsion Optimization Tools (SPOT)
NASA Technical Reports Server (NTRS)
Bower, Mark; Celestian, John
1992-01-01
This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.
Computer programs for calculating potential flow in propulsion system inlets
NASA Technical Reports Server (NTRS)
Stockman, N. O.; Button, S. L.
1973-01-01
In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.
Plasma Jet Simulations Using a Generalized Ohm's Law
NASA Technical Reports Server (NTRS)
Ebersohn, Frans; Shebalin, John V.; Girimaji, Sharath S.
2012-01-01
Plasma jets are important physical phenomena in astrophysics and plasma propulsion devices. A currently proposed dual jet plasma propulsion device to be used for ISS experiments strongly resembles a coronal loop and further draws a parallel between these physical systems [1]. To study plasma jets we use numerical methods that solve the compressible MHD equations using the generalized Ohm s law [2]. Here, we will discuss the crucial underlying physics of these systems along with the numerical procedures we utilize to study them. Recent results from our numerical experiments will be presented and discussed.
NASA Technical Reports Server (NTRS)
Taber, William; Port, Dan
2014-01-01
At the Mission Design and Navigation Software Group at the Jet Propulsion Laboratory we make use of finite exponential based defect models to aid in maintenance planning and management for our widely used critical systems. However a number of pragmatic issues arise when applying defect models for a post-release system in continuous use. These include: how to utilize information from problem reports rather than testing to drive defect discovery and removal effort, practical model calibration, and alignment of model assumptions with our environment.
Initial Feasibility Assessment of a High Altitude Long Endurance Airship
NASA Technical Reports Server (NTRS)
Colozza, Anthony; Dolce, James (Technical Monitor)
2003-01-01
A high altitude solar powered airship provides the ability to carry large payloads to high altitudes and remain on station for extended periods of time. This study examines the feasibility of this concept. Factors such as time of year, latitude, wind speeds and payload are considered in establishing the capabilities of a given size airship. East and West coast operation were evaluated. The key aspect to success of this type of airship is the design and operation of the propulsion and power system. A preliminary propulsion/power system design was produced based on a regenerative fuel cell energy storage system and solar photovoltaic array for energy production. A modular system design was chosen with four independent power/propulsion units utilized by the airship. Results on payload capacity and flight envelope (latitude and time of year) were produced for a range of airship sizes.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1980-01-01
The computational techniques are described which are utilized at Lewis Research Center to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements. Cycle performance, and engine weight can be calculated along with costs and installation effects as opposed to fuel consumption alone. Almost any conceivable turbine engine cycle can be studied. These computer codes are: NNEP, WATE, LIFCYC, INSTAL, and POD DRG. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight and cost for representative types of aircraft and missions.
Integrated hydrogen/oxygen technology applied to auxiliary propulsion systems
NASA Technical Reports Server (NTRS)
Gerhardt, David L.
1990-01-01
The purpose of the Integrated Hydrogen/Oxygen Technology (IHOT) study was to determine if the vehicle/mission needs and technology of the 1990's support development of an all cryogenic H2/O2 system. In order to accomplish this, IHOT adopted the approach of designing Integrated Auxiliary Propulsion Systems (IAPS) for a representative manned vehicle; the advanced manned launch system. The primary objectives were to develop IAPS concepts which appeared to offer viable alternatives to state-of-the-art (i.e., hypergolic, or earth-storable) APS approaches. The IHOT study resulted in the definition of three APS concepts; two cryogenic IAPS, and a third concept utilizing hypergolic propellants.
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Morren, W. Earl; Sovey, James S.; Tacina, Robert R.
1987-01-01
Two propulsion systems have been selected for the space station: gaseous H/O rockets for high thrust applications and the multipropellant resistojets for low thrust needs. These two thruster systems integrate very well with the fluid systems on the space station, utilizing waste fluids as their source of propellant. The H/O rocket will be fueled by electrolyzed water and the resistojets will use waste gases collected from the environmental control system and the various laboratories. The results are presented of experimental efforts with H/O and resistojet thrusters to determine their performance and life capability, as well as results of studies to determine the availability of water and waste gases.
Earth-to-Orbit Rocket Propulsion
NASA Technical Reports Server (NTRS)
Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III
2003-01-01
The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.
Systems Simulation of NASA Shooting Star Experiment Using Matlab/Simulink
NASA Technical Reports Server (NTRS)
Reagan, Shawn
1997-01-01
The Shooting Star Experiment (SSE) is an experiment that incorporates advance propulsion technology. This project is being managed by the Marshall Space Flight Center, Huntsville, Alabama. Whenever spacecraft are launched from Low Earth Orbit (LEO), (typically 150 nautical miles) they are powered by a upper propulsive stage utilizing either a solid or liquid propellant engine. A typically mission for a spacecraft utilizing an upper stage would be a transfer from LEO to a Geostationary Orbit (GEO) or an interplanetary mission. These upper stages are heavy and bulky because they must carry propellants to provide sufficient energy to perform the mission. The SSE utilizes the energy of the Sun by focusing this energy by means of a Frensel lens into an engine where hydrogen (or nitrogen) gas is injected. The focusing of the solar energy heats the engine to very high temperatures. When the gas is injected into the hot engine, the gas is expelled at very high velocities. This process is extremely efficient. Because of the efficiency of the SSE type engine, more payload can be carried for a typical mission since the propulsive element is much smaller.
Enhanced Ionization Of Propellant Through Carbon Nanotube Growth On Angled Walls
2017-06-01
FEEP field emission electric propulsion MUF mass utilization factor NSTAR NASA Solar Technology Application Readiness SCATHA Spacecraft Charging at...Experiments This experiment, Spacecraft Charging at High Altitudes (SCATHA), was developed by the U.S. Air Force along with NASA [5]. A satellite was launched...propulsion system, gimbal mounted and deployed on DS1. Source: [6]. 3. DAWN A more recent use of XIPS is the DAWN Spacecraft from NASA . Orbiting the
NASA Astrophysics Data System (ADS)
Stanic, M.; Cassibry, J. T.; Adams, R. B.
2013-05-01
Hopes of sending probes to another star other than the Sun are currently limited by the maturity of advanced propulsion technologies. One of the few candidate propulsion systems for providing interstellar flight capabilities is nuclear fusion. In the past many fusion propulsion concepts have been proposed and some of them have even been explored in detail, Project Daedalus for example. However, as scientific progress in this field has advanced, new fusion concepts have emerged that merit evaluation as potential drivers for interstellar missions. Plasma jet driven Magneto-Inertial Fusion (PJMIF) is one of those concepts. PJMIF involves a salvo of converging plasma jets that form a uniform liner, which compresses a magnetized target to fusion conditions. It is an Inertial Confinement Fusion (ICF)-Magnetic Confinement Fusion (MCF) hybrid approach that has the potential for a multitude of benefits over both ICF and MCF, such as lower system mass and significantly lower cost. This paper concentrates on a thermodynamic assessment of basic performance parameters necessary for utilization of PJMIF as a candidate propulsion system for the Project Icarus mission. These parameters include: specific impulse, thrust, exhaust velocity, mass of the engine system, mass of the fuel required etc. This is a submission of the Project Icarus Study Group.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2014-01-01
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In the historical work, a broad range of technological innovations are described and analyzed. These studies depict program planning for future human missions throughout the solar system, lunar launched nuclear rockets, and future human settlements on the Moon, respectively. Updated analyses based on the visions presented are presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal propulsion, nuclear surface power, as well as advanced chemical propulsion can significantly enhance these scenarios. Robotic and human outer planet exploration options are described in many detailed and extensive studies. Nuclear propulsion options for fast trips to the outer planets are discussed. To refuel such vehicles, atmospheric mining in the outer solar system has also been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 (3He) and hydrogen (H2) can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and H2 (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses have investigated resource capturing aspects of atmospheric mining in the outer solar system. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists.
The Application of Metal Matrix Composite Materials in Propulsion System Valves
NASA Technical Reports Server (NTRS)
Laszar, John; Shah, Sandeep; Kashalikar, Uday; Rozenoyer, Boris
2003-01-01
Metal Matrix Composite (MMC) materials have been developed and used in many applications to reduce the weight of components where weight and deflection are the driving design requirement. MMC materials are being developed for use in some propulsion system components, such as turbo-pumps and thrust chambers. However, to date, no propulsion system valves have been developed that take advantage of the materials unique properties. The stiffness of MMC's could help keep valves light or improve life where deflection is the design constraint (such as seal and bearing locations). The low CTE of the materials might allow the designer to reduce tolerances and clearances producing better performance and lighter weight valves. Using unique manufacturing processes allow parts to be plated/coated for longer life and allow joining either by welding or threading/bolting. Additionally, casting of multi part pre-forms to form a single part can lead to designs that would be hard or impossible to manufacture with other methods. Therefore, NASA's Marshall Space Flight Center (MSFC) has developed and tested a prototype propulsion system valve that utilizes these materials to demonstrate these advantages. Through design and testing, this effort will determine the best use of these materials in valves designed to achieve the goal of a highly reliable and lightweight propulsion system. This paper is a continuation of the paper, The Application of Metal Matrix Composite Materials In Propulsion System Valves, presented at the JANNAF Conference held in April, 2002. Fabrication techniques employed, valve development, and valve test results will be discussed in this paper.
Free radical propulsion concept
NASA Technical Reports Server (NTRS)
Hawkins, C. E.; Nakanishi, S.
1981-01-01
A free radical propulsion concept utilizing the recombination energy of dissociated low molecular weight gases to produce thrust was examined. The concept offered promise of a propulsion system operating at a theoretical impulse, with hydrogen, as high as 2200 seconds at high thrust to power ratio, thus filling the gas existing between chemical and electrostatic propulsion capabilities. Microwave energy used to dissociate a continuously flowing gas was transferred to the propellant via three body recombination for conversion to propellant kinetic energy. Power absorption by the microwave plasma discharge was in excess of 90 percent over a broad range of pressures. Gas temperatures inferred from gas dynamic equations showed much higher temperatures from microwave heating than from electrothermal heating. Spectroscopic analysis appeared to corroborate the inferred temperatures of one of the gases tested.
MAP Propulsion System Thermal Design
NASA Technical Reports Server (NTRS)
Mosier, Carol L.
2003-01-01
The propulsion system of the Microwave Anisotropy Probe (MAP) had stringent requirements that made the thermal design unique. To meet instrument stability requirements the system had to be designed to keep temperatures of all components within acceptable limits without heater cycling. Although the spacecraft remains at a fixed 22 sun angle at L2, the variations in solar constant, property degradation, and bus voltage range all significantly affect the temperature. Large portions of the fuel lines are external to the structure and all components are mounted to non-conductive composite structure. These two facts made the sensitivity to the MLI effective emissivity and bus temperature very high. Approximately two years prior to launch the propulsion system was redesigned to meet MAP requirements. The new design utilized hardware that was already installed in order to meet schedule constraints. The spacecraft design and the thermal requirements were changed to compensate for inadequacies of the existing hardware. The propulsion system consists of fuel lines, fill and drain lines/valve, eight thrusters, a HXCM, and a propulsion tank. A voltage regulator was added to keep critical components within limits. Software was developed to control the operational heaters. Trim resistors were put in series with each operational heater circuits and the tank survival heater. A highly sophisticated test program, which included real time model correlation, was developed to determine trim resistors sizes. These trim resistors were installed during a chamber break and verified during thermal balance testing.
Performance Evaluation of the NASA GTX RBCC Flowpath
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Palac, Donald T.; Trefny, Charles J.; Roche, Joseph M.
2001-01-01
The NASA Glenn Research Center serves as NASAs lead center for aeropropulsion. Several programs are underway to explore revolutionary airbreathing propulsion systems in response to the challenge of reducing the cost of space transportation. Concepts being investigated include rocket-based combined cycle (RBCC), pulse detonation wave, and turbine-based combined cycle (TBCC) engines. The GTX concept is a vertical launched, horizontal landing, single stage to orbit (SSTO) vehicle utilizing RBCC engines. The propulsion pod has a nearly half-axisymmetric flowpath that incorporates a rocket and ram-scramjet. The engine system operates from lift-off up to above Mach 10, at which point the airbreathing engine flowpath is closed off, and the rocket alone powers the vehicle to orbit. The paper presents an overview of the research efforts supporting the development of this RBCC propulsion system. The experimental efforts of this program consist of a series of test rigs. Each rig is focused on development and optimization of the flowpath over a specific operating mode of the engine. These rigs collectively establish propulsion system performance over all modes of operation, therefore, covering the entire speed range. Computational Fluid Mechanics (CFD) analysis is an important element of the GTX propulsion system development and validation. These efforts guide experiments and flowpath design, provide insight into experimental data, and extend results to conditions and scales not achievable in ground test facilities. Some examples of important CFD results are presented.
Phase 1 Space Fission Propulsion System Design Considerations
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Carter, Robert; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a "Phase 1" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Phase 1 space fission propulsion system design considerations
NASA Astrophysics Data System (ADS)
Houts, Mike; van Dyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems operating at 80 kWe or above could enhance or enable numerous robotic outer solar system missions of interest. At these power levels it is possible to develop safe, affordable systems that meet mission performance requirements. In selecting the system design to pursue, seven evaluation criteria were identified: safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of three potential concepts was performed: an SP-100 based pumped liquid lithium system, a direct gas cooled system, and a heatpipe cooled system. For power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the heatpipe system has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the heatpipe approach. Successful development and utilization of a ``Phase 1'' fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system. .
An Evaluation of the Impacts of AF-M315E Propulsion Systems for Varied Mission Applications
NASA Technical Reports Server (NTRS)
Deans, Matthew C.; Oleson, Steven R.; Fittje, James; Colozza, Anthony; Packard, Tom; Gyekenyesi, John; McLean, Christopher H.; Spores, Ronald A.
2015-01-01
The purpose of the AF-M315E COMPASS study is to identify near-term (3-5 years) and long term (5 years +) opportunities for infusion, specifically the thruster and associated component technologies being developed as part of the GPIM project. Develop design reference missions which show the advantages of the AF-M315E green propulsion system. Utilize a combination of past COMPASS designs and selected new designs to demonstrate AF-M315E advantages. Use the COMPASS process to show the puts and takes of using AF-M315E at the integrated system level.
Test Facilities in Support of High Power Electric Propulsion Systems
NASA Technical Reports Server (NTRS)
VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Dickens, Ricky; Martin, James J.; Salvail, Patrick; Carter, Robert
2002-01-01
Successful development of space fission systems requires an extensive program of affordable and realistic testing. In addition to tests related to design/development of the fission system, realistic testing of the actual flight unit must also be performed. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system performance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the High Power Propulsion Thermal Simulator (HPPTS). The HPPTS is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the HPPTS is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. Through hardware based design and testing, the HPPTS investigates High Power Electric Propulsion (HPEP) component, subsystem, and integrated system design and performance.
High Power MPD Nuclear Electric Propulsion (NEP) for Artificial Gravity HOPE Missions to Callisto
NASA Technical Reports Server (NTRS)
McGuire, Melissa L.; Borowski, Stanley K.; Mason, Lee M.; Gilland, James
2003-01-01
This documents the results of a one-year multi-center NASA study on the prospect of sending humans to Jupiter's moon, Callisto, using an all Nuclear Electric Propulsion (NEP) space transportation system architecture with magnetoplasmadynamic (MPD) thrusters. The fission reactor system utilizes high temperature uranium dioxide (UO2) in tungsten (W) metal matrix cermet fuel and electricity is generated using advanced dynamic Brayton power conversion technology. The mission timeframe assumes on-going human Moon and Mars missions and existing space infrastructure to support launch of cargo and crewed spacecraft to Jupiter in 2041 and 2045, respectively.
Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, George J.; Gilland, James H.
The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential formore » spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.« less
Auxiliary propulsion technology for advanced Earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1987-01-01
The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.
Quasi 1D Modeling of Mixed Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Woolwine, Kyle J.
2012-01-01
The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of the 2-dimensional bifurcated mixed compression supersonic inlet is being developed. The model utilizes computational fluid dynamics for both the supersonic and subsonic diffusers. The oblique shocks are modeled utilizing compressible flow equations. This model also implements variable geometry required to control the normal shock position. The model is flexible and can also be utilized to simulate other mixed compression supersonic inlet designs. The model was validated both in time and in the frequency domain against the legacy LArge Perturbation INlet code, which has been previously verified using test data. This legacy code written in FORTRAN is quite extensive and complex in terms of the amount of software and number of subroutines. Further, the legacy code is not suitable for closed loop feedback controls design, and the simulation environment is not amenable to systems integration. Therefore, a solution is to develop an innovative, more simplified, mixed compression inlet model with the same steady state and dynamic performance as the legacy code that also can be used for controls design. The new nonlinear dynamic model is implemented in MATLAB Simulink. This environment allows easier development of linear models for controls design for shock positioning. The new model is also well suited for integration with a propulsion system model to study inlet/propulsion system performance, and integration with an aero-servo-elastic system model to study integrated vehicle ride quality, vehicle stability, and efficiency.
SP-100 multimegawatt scaleup to meet electric propulsion mission requirements
NASA Astrophysics Data System (ADS)
Newkirk, D. W.; Salamah, S. A.; Stewart, S. L.; Pluta, P. R.
The SP-100 nuclear heat source technology, utilizing uranium nitride fuel clad in PWC-11 in a fast reactor with lithium coolant circulated by an electromagnetic pump, is shown to be directly extrapolatable to thermal power levels that meet NASA nuclear electric propulsion requirements using different power conversion techniques. The SP-100 nuclear technology can be applied to missions with NEP (nuclear electric propulsion) requirements as low as tens of kWe to tens of MWe. It is pointed out that the SP-100 heat source has a great advantage of very long lifetime capability, since it utilizes very rugged refractory metal fuel pins and is independent of the power conversion scheme chosen for a given mission. The only moving parts in the nuclear subsystems are the control rods moved to compensate for fuel enrichment degradation due to fission and for power shutdown. Lowest alpha values in the range of interest for potential NASA missions are predicted for the dynamic Rankine and static HYTEC conversion systems.
Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.
Internal fluid mechanics research on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.
1988-01-01
The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.
Current Status of NASA's NEXT-C Ion Propulsion System Development Project
NASA Technical Reports Server (NTRS)
Shastry, Rohit; Soulas, George; Aulisio, Michael; Schmidt, George
2017-01-01
NASA's Evolutionary Xenon Thruster (NEXT) is a 7-kW class gridded ion thruster-based propulsion system that was initially developed from 2002 to 2012 under NASAs In-Space Propulsion Technology Program to meet future science mission requirements. In 2015, a contract was awarded to Aerojet Rocketdyne, with subcontractor ZIN Technologies, to design, build and test two NEXT flight thrusters and two power processing units that would be available for use on future NASA science missions. Because an additional goal of this contract is to take steps towards offering NEXT as a commercialized system, it is called the NEXT-Commercial project, or NEXT-C. This paper reviews the capabilities of the NEXT-C system, status of the NEXT-C project, and the forward plan to build, test, and deliver flight hardware in support of future NASA and commercial applications. It also briefly addresses some of the potential applications that could utilize the hardware developed and built by the project.
NASA Technical Reports Server (NTRS)
Yaros, Steven F.; Sexstone, Matthew G.; Huebner, Lawrence D.; Lamar, John E.; McKinley, Robert E., Jr.; Torres, Abel O.; Burley, Casey L.; Scott, Robert C.; Small, William J.
1998-01-01
This white paper addresses the subject of Synergistic Airframe-Propulsion interactions and integrations (SnAPII). The benefits of SnAPII have not been as extensively explored. This is due primarily to the separateness of design process for airframes and propulsion systems, with only unfavorable interactions addressed. The question 'How to design these two systems in such a way that the airframe needs the propulsion and the propulsion needs the airframe?' is the fundamental issue addressed in this paper. Successful solutions to this issue depend on appropriate technology ideas. This paper first details some ten technologies that have yet to make it to commercial products (with limited exceptions) and that could be utilized in a synergistic manner. Then these technologies, either alone or in combination, are applied to both a conventional twin-engine transonic transport and to an unconventional transport, the Blended Wing Body. Lastly, combinations of these technologies are applied to configuration concepts to assess the possibilities of success relative to five of the ten NASA aeronautics goals. These assessments are subjective, but they point the way in which the applied technologies could work together for some break-through benefits.
EVA Metro Sedan electric-propulsion system: test and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimers, E.
1979-09-01
The procedure and results of the performance evaluation of the EVA Metro Sedan (car No. 1) variable speed dc chopper motor drive and its three speed automatic transmission are presented. The propulsion system for a battery powered vehicle manufactured by Electric Vehicle Associates, Valley View, Ohio, was removed from the vehicle, mounted on the programmable electric dynamometer test facility and evaluated with the aid of a hp 3052A Data Acquisition System. Performance data for the automatic transmission, the solid state dc motor speed controller, and the dc motor in the continuous and pulsating dc power mode, as derived on themore » dynamometer test facility, as well as the entire propulsion system are given. This concept and the system's components were evaluated in terms of commercial applicability, maintainability, and energy utility to establish a design base for the further development of this system or similar propulsion drives. The propulsion system of the EVA Metro Sedan is powered by sixteen 6-volt traction batteries, Type EV 106 (Exide Battery Mfg. Co.). A thyristor controlled cable form Pulsomatic Mark 10 controller, actuated by a foot throttle, controls the voltage applied to a dc series field motor, rated at 10 hp at 3800 rpm (Baldor Electric Co.). Gear speed reduction to the wheel is accomplished by the original equipment three speed automatic transmission with torque converter (Renault 12 Sedan). The brake consists of a power-assisted, hydraulic braking system with front wheel disk and rear drum. An ability to recuperate electric energy with subsequent storage in the battery power supply is not provided.« less
Fuel Effective Photonic Propulsion
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Srivarshini, S.
2017-09-01
With the entry of miniaturization in electronics and ultra-small light-weight materials, energy efficient propulsion techniques for space travel can soon be possible. We need to go for such high speeds so that the generation’s time long interstellar missions can be done in incredibly short time. Also renewable energy like sunlight, nuclear energy can be used for propulsion instead of fuel. These propulsion techniques are being worked on currently. The recently proposed photon propulsion concepts are reviewed, that utilize momentum of photons generated by sunlight or onboard photon generators, such as blackbody radiation or lasers, powered by nuclear or solar power. With the understanding of nuclear photonic propulsion, in this paper, a rough estimate of nuclear fuel required to achieve the escape velocity of Earth is done. An overview of the IKAROS space mission for interplanetary travel by JAXA, that was successful in demonstrating that photonic propulsion works and also generated additional solar power on board, is provided; which can be used as a case study. An extension of this idea for interstellar travel, termed as ‘Star Shot’, aims to send a nanocraft to an exoplanet in the nearest star system, which could be potentially habitable. A brief overview of the idea is presented.
Transportation analyses for the lunar-Mars initiative
NASA Technical Reports Server (NTRS)
Woodcock, Gordon R.; Buddington, Patricia A.
1991-01-01
This paper focuses on certain results of an ongoing NASA-sponsored study by Boeing, including (1) a series of representative space exploration scenarios; (2) the levels of effort required to accomplish each; and (3) a range of candidate transportation system as partial implementations of the scenarios. This effort predated release of the Synthesis report; the three levels of activity described are not responses to the Synthesis architectures. These three levels (minimum, median and ambitious), do envelope the range of scope described in the four Synthesis architecture models. The level of analysis detail was to the current known level of detail of transportation hardware systems and mission scenarios. The study did not include detailed analysis of earth-to-orbit transportation, surface systems, or tracking and communications systems. The influence of earth-to-orbit systems was considered in terms of delivery capacity and cost. Aspects of additional options, such as in situ resource utilization are explored as needed to indicate potential benefits. Results favored cryogenic chemical propulsion for low activity levels and undemanding missions (such as cargo and some lunar missions), nuclear thermal propulsion for median activity levels similar to the Synthesis architectures, and nuclear thermal propulsion with aerobraking or nuclear electric propulsion for high activity levels. Solar electric propulsion was seen as having an important role if the present high unit cost (i.e., dollars per watt) of space photovoltaics could be reduced by a factor of five or more at production rates of megawatts per year.
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven
2015-01-01
Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or crewed missions. There are potential options for either modifying existing facilities or constructing new ground test facilities. At least three potential options exist for reducing (or eliminating) the release of radioactivity into the environment during ground testing. These include fully containing the NTP exhaust during the ground test, scrubbing the exhaust, or utilizing an existing borehole at the Nevada National Security Site (NNSS) to filter the exhaust. Finally, the project is considering the potential for an early flight demonstration of an engine very similar to one that could be used to support human Mars or other ambitious missions. The flight demonstration could be an important step towards the eventual utilization of NTP.
The Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Mitchell, Royce E.
1992-01-01
The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.
Hardware Based Technology Assessment in Support of Near-Term Space Fission Missions
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; BraggSitton, Shannon; Carter, Robert; Dickens, Ricky; Salvail, Pat; Williams, Eric; Harper, Roger
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. Achieving these milestones will depend on the capability to perform highly realistic non-nuclear testing of nuclear systems. This paper discusses ongoing and potential research that could help achieve these milestones.
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.
Methods for utilizing maximum power from a solar array
NASA Technical Reports Server (NTRS)
Decker, D. K.
1972-01-01
A preliminary study of maximum power utilization methods was performed for an outer planet spacecraft using an ion thruster propulsion system and a solar array as the primary energy source. The problems which arise from operating the array at or near the maximum power point of its 1-V characteristic are discussed. Two closed loop system configurations which use extremum regulators to track the array's maximum power point are presented. Three open loop systems are presented that either: (1) measure the maximum power of each array section and compute the total array power, (2) utilize a reference array to predict the characteristics of the solar array, or (3) utilize impedance measurements to predict the maximum power utilization. The advantages and disadvantages of each system are discussed and recommendations for further development are made.
Maximizing the science return of interplanetary missions using nuclear electric power
NASA Astrophysics Data System (ADS)
Zubrin, Robert M.
1995-01-01
In the past, most studies dealing with the benefits of space nuclear electric power systems for solar system exploration have focused on the potential of nuclear electric propulsion (NEP) to enhance missions by increasing delivered payload, decreasing LEO mass, or reducing trip time. While important, such mission enhancements have failed to go to the heart of the concerns of the scientific community supporting interplanetary exploration. To put the matter succintly, scientists don't buy delivered payload—they buy data returned. With nuclear power we can increase both the quantity of data returned, by enormously increasing data communication rates, and the quality of data by enabling a host of active sensing techniques otherwise impossible. These non-propulsive mission enhancement capabilities of space nuclear power have been known in principle for many years, but they have not been adequately documented. As a result, support for the development of space nuclear power by the interplanetary exploration community has been much less forceful than it might otherwise be. In this paper we shall present mission designs that take full advantage of the potential mission enhancements offered by space nuclear power systems in the 15 to 30 kWe range, not just for propulsion, but to radically improve, enrich, and expand the science return itself. Missions considered include orbiter missions to each of the outer planets. It will be shown that by using hybrid trajectories combining chemical propulsion with NEP and (in certain cases) gravity assists, that it is possible, using Proton, Tatan III or Titan IV-Centaur launch vehicles, for high-powered spacecraft to be placed in orbit around each of the outer planets with electric propulsion burn times of less than 4 years. Such hybrid trajectories therefore make the outer solar-system available to near-term nuclear electric power systems. Once in orbit, the spacecraft will utilize multi-kilowatt communication systems, similar to those now employed by the U.S. military, to increse data return far beyond that possible utilizing the 40 W rf traveling wave tube antennas that are the current NASA stadard. This higher data rate will make possible very high resolution multi-space imaging (with high resolutions both spatially and spectrally), a form of science hitherto impossible in the outer solar system. Larger numbers of such images could be returned, allowing the creation of motion pictures of atmospheric phenomenon on a small scale and greatly increasing the probability of capturing transient phenomena such as lighting or volcanic activity. The multi-kilowatt power sources on the spaecraft also enables active sensing, including radar, which could be used to do topographic and subsurface studies of clouded bodies such as Titan, ground pentrating sounding of Pluto, the major planet's moons, and planetoids, and topside sounding of the electrically conductive atmospheres of Jupiter, Saturn, Uranus and Neptune to produce profiles of fluid density, conductivity, and horizontal and vertical velocity as a function of depth and global location. Radio science investigations of planetary atmospheres and ring systems would be greatly enhanced by increased transmitter power. The scientific benefits of utilizing such techniques are discussed, and a comparison is made with the quantity and quality of science that a low-powered spacecraft employing RTGs could return. It is concluded that the non-propulsive benefits of nuclear power for spacecraft exploring the outer solar system are enormous, and taken together with the well documented mission enhancements enabled by electric propulsion fully justify the expanditures needed to bring a space qualified nuclear electric power source into being.
100-Lb(f) LO2/LCH4 Reaction Control Engine Technology Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.
2008-01-01
The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.
100-LBF LO2/LCH4 - Reaction Control Engine Technology Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
Robinson, Philip J.; Veith, Eric M.; Hurlbert, Eric A.; Jimenez, Rafael; Smith, Timothy D.
2008-01-01
The National Aeronautics and Space Administration (NASA) has identified liquid oxygen (LO2)/liquid methane (LCH4) propulsion systems as promising options for some future space vehicles. NASA issued a contract to Aerojet to develop a 100-lbf (445 N) LO2/LCH4 Reaction Control Engine (RCE) aimed at reducing the risk of utilizing a cryogenic reaction control system (RCS) on a space vehicle. Aerojet utilized innovative design solutions to develop an RCE that can ignite reliably over a broad range of inlet temperatures, perform short minimum impulse bits (MIB) at small electrical pulse widths (EPW), and produce excellent specific impulse (Isp) across a range of engine mixture ratios (MR). These design innovations also provide a start transient with a benign MR, ensuring good thrust chamber compatibility and long life. In addition, this RCE can successfully operate at MRs associated with main engines, enabling the RCE to provide emergency backup propulsion to minimize vehicle propellant load and overall system mass.
A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1997-01-01
This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mueller, Robert; Muscatello, Anthony
2015-01-01
Integrate In Situ Resource Utilization (ISRU) sub-systems and examine advanced capabilities and technologies to verify Mars 2024 Forward architecture precursor pathfinder options: Integrated spacecraft/surface infrastructure fluid architecture: propulsion, power, life support center dot Power system feed and propellant scavenging from propulsion system center dot High quality oxygen for life support and EVA Fluid/cryogenic zero-loss transfer and long-term storage center dot Rapid depot-to-rover/spacecraft center dot Slow ISRU plant-to-ascent vehicle Integration of ISRU consumable production center dot Oxygen only from Mars atmosphere carbon dioxide center dot Oxygen, fuel, water, from extraterrestrial soil/regolith Test bed to evaluate long duration life, operations, maintenance on hardware, sensors, and autonomy
Analysis and evaluation of an integrated laminar flow control propulsion system
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Dewitt, Kenneth J.
1993-01-01
Reduction of drag has been a major goal of the aircraft industry as no other single quantity influences the operating costs of transport aircraft more than aerodynamic drag. It has been estimated that even modest reduction of frictional drag could reduce fuel costs by anywhere from 2 to 5 percent. Current research on boundary layer drag reduction deals with various approaches to reduce turbulent skin friction drag as a means of improving aircraft performance. One of the techniques belonging to this category is laminar flow control in which extensive regions of laminar flow are maintained over aircraft surfaces by delaying transition to turbulence through the ingestion of boundary layer air. While problems of laminar flow control have been studied in some detail, the prospect of improving the propulsion system of an aircraft by the use of ingested boundary layer air has received very little attention. An initial study for the purpose of reducing propulsion system requirements by utilizing the kinetic energy of boundary layer air was performed in the mid-1970's at LeRC. This study which was based on ingesting the boundary layer air at a single location, did not yield any significant overall propulsion benefits; therefore, the concept was not pursued further. However, since then it has been proposed that if the boundary layer air were ingested at various locations on the aircraft surface instead of just at one site, an improvement in the propulsion system might be realized. The present report provides a review of laminar flow control by suction and focuses on the problems of reducing skin friction drag by maintaining extensive regions of laminar flow over the aircraft surfaces. In addition, it includes an evaluation of an aircraft propulsion system that is augmented by ingested boundary layer air.
Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)
1998-01-01
The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.
Thermal design of the IUE hydrazine auxiliary propulsion system. [International Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Skladany, J. T.; Kelly, W. H.
1977-01-01
The International Ultraviolet Explorer is a large astronomical observatory scheduled to be placed in a three-axis stabilized synchronous orbit in the fourth quarter of 1977. The Hydrazine Auxiliary Propulsion System (HAPS) must perform a number of spacecraft maneuvers to achieve a successful mission. This paper describes the thermal design which accomplishes temperature control between 5 and 65 C for all orbital conditions by utilizing multilayer insulation and commandable component heaters. A primary design criteria was the minimization of spacecraft power by the selective use of the solar environment. The thermal design was carefully assessed and verified in both spacecraft thermal balance and subsystem solar simulation testing.
Mars sample return mission architectures utilizing low thrust propulsion
NASA Astrophysics Data System (ADS)
Derz, Uwe; Seboldt, Wolfgang
2012-08-01
The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that case the lander is transported piggyback by the electrically propelled orbiter.
NASA Technical Reports Server (NTRS)
Chai, Patrick R.; Merrill, Raymond G.; Qu, Min
2016-01-01
NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and solar-electric propulsion systems are used to deliver crew and cargo to exploration destinations. By combining chemical and solar-electric propulsion into a single spacecraft and applying each where it is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel efficient than an all chemical propulsion architecture without significant increases to trip time. The architecture calls for the aggregation of exploration assets in cislunar space prior to departure for Mars and utilizes high energy lunar-distant high Earth orbits for the final staging prior to departure. This paper presents the detailed analysis of various cislunar operations for the EMC Hybrid architecture as well as the result of the higher fidelity end-to-end trajectory analysis to understand the implications of the design choices on the Mars exploration campaign.
Free radical propulsion concept
NASA Technical Reports Server (NTRS)
Hawkins, C. E.; Nakanishi, S.
1981-01-01
The concept of a free radical propulsion system, utilizing the recombination energy of dissociated low molecular weight gases to produce thrust, is analyzed. The system, operating at a theoretical impulse with hydrogen, as high as 2200 seconds at high thrust to power ratio, is hypothesized to bridge the gap between chemical and electrostatic propulsion capabilities. A comparative methodology is outlined by which characteristics of chemical and electric propulsion for orbit raising mission can be investigated. It is noted that free radicals proposed in rockets previously met with difficulty and complexity in terms of storage requirements; the present study proposes to eliminate the storage requirements by using electric energy to achieve a continuous-flow product of free radicals which are recombined to produce a high velocity propellant. Microwave energy used to dissociate a continuously flowing gas is transferred to the propellant via three-body-recombination for conversion to propellant kinetic energy. Microwave plasma discharge was found in excess of 90 percent over a broad range of pressure in preliminary experiments, and microwave heating compared to electrothermal heating showed much higher temperatures in gasdynamic equations.
External Pulsed Plasma Propulsion (EPPP) Analysis Maturation
NASA Technical Reports Server (NTRS)
Bonometti, Joesph A.; Morton, P. Jeff; Schmidt, George R. (Technical Monitor)
2000-01-01
External Pulsed Plasma Propulsion (EPPP) systems are at the stage of engineering infancy with evolving paradigms for application. performance and general characteristics. Recent efforts have focused on an approach that employs existing technologies with near term EPPP development for usage in interplanetary exploration and asteroid/comet deflection. if mandated. The inherent advantages of EPPP are discussed and its application to a variety of propulsion concepts is explored. These include, but are not limited to, utilizing energy sources such as fission. fusion and antimatter, as well as, improved chemical explosives. A mars mission scenario is presented as a demonstration of its capability using existing technologies. A suggested alternate means to improve EPPP efficiencies could also lead to a heavy lift (non-nuclear) launch vehicle capability. Conceivably, true low-cost, access to space is possible using advanced explosive propellants and/or coupling the EPPP vehicle to a "beam propellant" concept. EPPP systems appear to offer an approach that can potentially cover ETO through interstellar transportation capability. A technology roadmap is presented that shows mutual benefits pertaining to a substantial number of existing space propulsion and research areas.
Q-FANSTM for general aviation aircraft
NASA Technical Reports Server (NTRS)
Worobel, R.; Mayo, M. G.
1973-01-01
Continued growth of general aviation over the next 10 to 15 years is dependent on continuing improvement in aircraft safety, utility, performance and cost. Moreover, these advanced aircraft will need to conform to expected government regulations controlling propulsion system emissions and noise levels. An attractive compact low noise propulsor concept, the Q-FANTM when matched to piston, rotary combustion, or gas turbine engines opens up the exciting prospect of new, cleaner airframe designs for the next generation of general aviation aircraft which will provide these improvements and meet the expected noise and pollution restriction of the 1980 time period. New Q-FAN methodology which was derived to predict Q-FAN noise, weight and cost is presented. Based on this methodology Q-FAN propulsion system performance, weight, noise, and cost trends are discussed. Then the impact of this propulsion system type on the complete aircraft is investigated for several representative aircraft size categories. Finally, example conceptual designs for Q-FAN/engine integration and aircraft installations are presented.
NASA Technical Reports Server (NTRS)
Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.
2016-01-01
Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.
Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be.
Ghosh, Arijit; Paria, Debadrita; Rangarajan, Govindan; Ghosh, Ambarish
2014-01-02
Helical propulsion is at the heart of locomotion strategies utilized by various natural and artificial swimmers. We used experimental observations and a numerical model to study the various fluctuation mechanisms that determine the performance of an externally driven helical propeller as the size of the helix is reduced. From causality analysis, an overwhelming effect of orientational noise at low length scales is observed, which strongly affects the average velocity and direction of motion of a propeller. For length scales smaller than a few micrometers in aqueous media, the operational frequency for the propulsion system would have to increase as the inverse cube of the size, which can be the limiting factor for a helical propeller to achieve locomotion in the desired direction.
Structural optimization of the Halbach array PM rim thrust motor
NASA Astrophysics Data System (ADS)
Cao, Haichuan; Chen, Weihu
2018-05-01
The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.
Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.
1999-01-01
Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.
Nuclear thermal rockets using indigenous extraterrestrial propellants
NASA Technical Reports Server (NTRS)
Zubrin, Robert M.
1990-01-01
A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.
1961-01-01
As presented by Gerhard Heller of Marshall Space Flight Center's Research Projects Division in 1961, this chart illustrates three basic types of electric propulsion systems then under consideration by NASA. The ion engine (top) utilized cesium atoms ionized by hot tungsten and accelerated by an electrostatic field to produce thrust. The arc engine (middle) achieved propulsion by heating a propellant with an electric arc and then producing an expansion of the hot gas or plasma in a convergent-divergent duct. The electromagnetic, or MFD engine (bottom) manipulated strong magnetic fields to interact with a plasma and produce acceleration.
Comparisons of selected laser beam power missions to conventionally powered missions
NASA Technical Reports Server (NTRS)
Bozek, John M.; Oleson, Steven R.; Landis, Geoffrey A.; Stavnes, Mark W.
1993-01-01
Earth-based laser sites beaming laser power to space assets have shown benefits over competing power system concepts for specific missions. Missions analyzed in this report that show benefits of laser beam power are low Earth orbit (LEO) to geosynchronous Earth orbit (GEO) transfer, LEO to low lunar orbit (LLO) cargo missions, and lunar-base power. Both laser- and solar-powered orbit-transfer vehicles (OTV's) make a 'tug' concept viable, which substantially reduces cumulative initial mass to LEO in comparison to chemical propulsion concepts. Lunar cargo missions utilizing laser electric propulsion from Earth-orbit to LLO show substantial mass saving to LEO over chemical propulsion systems. Lunar-base power system options were compared on a landed-mass basis. Photovoltaics with regenerative fuel cells, reactor-based systems, and laser-based systems were sized to meet a generic lunar-base power profile. A laser-based system begins to show landed mass benefits over reactor-based systems when proposed production facilities on the Moon require power levels greater than approximately 300 kWe. Benefit/cost ratios of laser power systems for an OTV, both to GEO and LLO, and for a lunar base were calculated to be greater than 1.
2001-08-01
The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan Jerred; Troy Howe; Adarsh Rajguru
It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (~1,000 kgs to LEO) can be targeted. This, in effect, allows for beneficial explora-tion to be conducted within limited budgets. Researchers at the Center for Space Nuclear Re-search (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO. The proposed radioisotope-based system would leverage the high specific energies [J/kg] associated with radioisotope materials and enhance their inherent low specific powers [W/g]. This is accomplished by accumulating thermal energy from nuclear decay within a central core over time. This allows for significant amounts of power to be transferred to a flowing gas over short periods of time. In the proposed configuration the stored energy can be utilized in two ways: (1) with direct propellant injection to the core, the energy can be converted into thrust through the use of a converging-diverging nozzle and (2) by flowing a working fluid through the core and subsequent Brayton engine, energy within the core can be converted to electrical energy. The first scenario achieves moderate ranges of thrust, but at a higher Isp than traditional chemical-based systems. The second scenario allows for the production of electrical power, which is then available for electric-based propulsion. Additionally, once at location the production of electrical power can be dedicated to the payload’s communication system for data transfer. Ultimately, the proposed dual-mode propulsion platform capitalizes on the benefits of two types of propulsion methods – the thrust of thermal propulsion ideal for quick orbital maneuvers and the specific impulse of electric propulsion ideal for efficient inter-planetary travel. Previous versions of this RTR-based concept have been studied for various applications [NETS 1-3]. The current version of this concept is being matured through a NASA Innovative Advanced Concepts (NIAC) Phase I grant, awarded for FY 2014. In this study the RTR concept is being developed to deliver a 6U CubeSat payload to the orbit of the Saturnian moon - Enceladus. Additionally, this study will develop an entire mission architecture for Enceladus targeting a total allowable launch mass of 1,000 kg.« less
Modular, Reconfigurable, High-Energy Systems Stepping Stones
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Carrington, Connie K.; Mankins, John C.
2005-01-01
Modular, Reconfigurable, High-Energy Systems are Stepping Stones to provide capabilities for energy-rich infrastructure strategically located in space to support a variety of exploration scenarios. Abundant renewable energy at lunar or L1 locations could support propellant production and storage in refueling scenarios that enable affordable exploration. Renewable energy platforms in geosynchronous Earth orbits can collect and transmit power to satellites, or to Earth-surface locations. Energy-rich space technologies also enable the use of electric-powered propulsion systems that could efficiently deliver cargo and exploration facilities to remote locations. A first step to an energy-rich space infrastructure is a 100-kWe class solar-powered platform in Earth orbit. The platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to flight-demonstrate a variety of payload experiments and to utilize electric propulsion. State-of-the-art solar concentrators, highly efficient multi-junction solar cells, integrated thermal management on the arrays, and innovative deployable structure design and packaging make the 100-kW satellite feasible for launch on one existing launch vehicle. Higher voltage arrays and power management and distribution (PMAD) systems reduce or eliminate the need for massive power converters, and could enable direct- drive of high-voltage solar electric thrusters.
Li, Zhaoying; Zhou, Wenjie; Liu, Hao
2016-09-01
This paper addresses the nonlinear robust tracking controller design problem for hypersonic vehicles. This problem is challenging due to strong coupling between the aerodynamics and the propulsion system, and the uncertainties involved in the vehicle dynamics including parametric uncertainties, unmodeled model uncertainties, and external disturbances. By utilizing the feedback linearization technique, a linear tracking error system is established with prescribed references. For the linear model, a robust controller is proposed based on the signal compensation theory to guarantee that the tracking error dynamics is robustly stable. Numerical simulation results are given to show the advantages of the proposed nonlinear robust control method, compared to the robust loop-shaping control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Conceptual Design of a Supersonic Business Jet Propulsion System
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2002-01-01
NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.
Beamed Energy Propulsion: Research Status And Needs--Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkan, Mitat
One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremelymore » powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs.« less
Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.
2016-01-01
For missions beyond low Earth orbit, spacecraft size and mass can be dominated by onboard chemical propulsion systems and propellants that may constitute more than 50 percent of the spacecraft mass. This impact can be substantially reduced through the utilization of Solar Electric Propulsion (SEP) due to its substantially higher specific impulse. Studies performed for NASA's Human Exploration and Operations Mission Directorate and Science Mission Directorate have demonstrated that a 50kW-class SEP capability can be enabling for both near term and future architectures and science missions. A high-power SEP element is integral to the Evolvable Mars Campaign, which presents an approach to establish an affordable evolutionary human exploration architecture. To enable SEP missions at the power levels required for these applications, an in-space demonstration of an operational 50kW-class SEP spacecraft has been proposed as a SEP Technology Demonstration Mission (TDM). In 2010 NASA's Space Technology Mission Directorate (STMD) began developing high-power electric propulsion technologies. The maturation of these critical technologies has made mission concepts utilizing high-power SEP viable.
Bogeski, G; Shafton, A D; Kitchener, P D; Ferens, D M; Furness, J B
2005-04-01
We have developed methods that allow correlation of propulsive reflexes of the intestine with measurements of intraluminal pressure, fluid movement and spatio-temporal maps of intestinal wall movements for the first time in vivo. A segment of jejunum was cannulated and set up in a Trendelenburg recording system while remaining connected to the vascular and nerve supply of the anaesthetized rat. The resting intraluminal pressure in intact intestine was 2-4 mmHg. Hydrostatic pressures of 2, 4, 8 and 16 mmHg were imposed. At a baseline pressure of 4 mmHg, propulsive waves generated pressures of 9 +/- 1 mmHg, that progressed oral to anal at 2-5 mm s(-1). Individual propulsive waves propelled 0.8 +/- 0.4 mL of fluid. The frequency of propulsive waves increased with pressure, but peristaltic efficiency (mL per contraction) decreased with pressure increase between 4 and 16 mmHg. Atropine, as a bolus, transiently blocked peristalsis, but caused maintained block when infused. Hexamethonium blocked propulsive contractions. Inhibition of nitrergic transmission converted regular peristalsis to non-propulsive contractions. These studies demonstrate the utility of an adapted Trendelenburg method for quantitative investigation of motility and pharmacology of enteric reflexes in vivo.
Human Support Technology Research, Development and Demonstration
NASA Technical Reports Server (NTRS)
Joshi, Jitendra; Trinh, Eugene
2004-01-01
The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.
XCALIBUR: a Vertical Takeoff TSTO RLV Concept with a HEDM Upperstage and a Scram-Rocket Booster
NASA Astrophysics Data System (ADS)
Bradford, J.
2002-01-01
A new 3rd generation, two-stage-to-orbit (TSTO) reusable launch vehicle (RLV) has been designed. The Xcalibur concept represents a novel approach due to its integration method for the upperstage element of the system. The vertical-takeoff booster, which is powered by rocket-based combined-cycle (RBCC) engines, carries the upperstage internally in the aft section of the airframe to a Mach 15 staging condition. The upperstage is released from the booster and carries the 6,820 kg of payload to low earth orbit (LEO) using its high energy density matter (HEDM) propulsion system. The booster element is capable of returning to the original launch site in a ramjet-cruise propulsion mode. Both the booster and the upperstage utilize advanced technologies including: graphite-epoxy tanks, metal-matrix composites, UHTC TPS materials, electro- mechanical actuators (EMAs), and lightweight subsystems (avionics, power distribution, etc.). The booster system is enabled main propulsion system which utilizes four RBCC engines. These engines operate in four distinct modes: air- augmented rocket (AAR), ramjet, scram-rocket, and all-rocket. The booster operates in AAR mode from takeoff to Mach 3, with ramjet mode operation from Mach 3 to Mach 6. The rocket re-ignition for scram-rocket mode occurs at Mach 6, with all-rocket mode from Mach 14 to the staging condition. The extended utilization of the scram-rocket mode greatly improves vehicle performance by providing superior vehicle acceleration when compared to the scramjet mode performance over the same flight region. Results indicate that the specific impulse penalty due to the scram-rocket mode operation is outweighed by the reduced flight time, smaller vehicle size due to increased mixture ratio, and lower allowable maximum dynamic pressure. A complete vehicle system life-cycle analysis was performed in an automated, multi-disciplinary design environment. Automated disciplinary performance analysis tools include: trajectory (POST), propulsion (SCCREAM), aeroheating (TCAT II), and an Excel spreadsheet for component weight estimation. These tools were automated using `file wrappers' in Phoenix Integration's ModelCenter collaborative design environment. Performance tools utilized for the analysis, but not requiring automation included IDEAS for solid modeling and APAS for the aerodynamic analysis. The paper describes the vehicle concept and operation, discussing the types of technologies used and the nominal flight scenario. A brief discussion explaining the decision-making process for the vehicle configuration is included. For cost predictions, NAFCOM-derived cost estimating relationships were used. Economic predictions were developed using a number of codes, including CABAM (financials), AATe (operations), and GTSafetyII (safety and reliability).
Beamed Energy Propulsion: Research Status And Needs--Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkan, Mitat
One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremelymore » powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.« less
2002-08-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.
RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. D. Jerred; T. M. Howe; S. D. Howe
It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within themore » solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.« less
2006-01-01
From - To) 13-06-2006 Technical Paper 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER F04611-00-C-0055 Xenon Feed System Progress (Preprint) 5b. GRANT...propulsion xenon feed system for a flight technology demonstration program. Major accomplishments include: 1) Utilization of the Moog...successfully fed xenon to a 200 watt Hall Effect Thruster in a Technology Demonstration Program. The feed system has demonstrated throttling of xenon
NASA's Propulsion Research Laboratory
NASA Technical Reports Server (NTRS)
2004-01-01
The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.
Artist's Concept of NASA's Propulsion Research Laboratory
NASA Technical Reports Server (NTRS)
2002-01-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.
Phase 1 Space Fission Propulsion Energy Source Design
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
Human Missions to Mars Orbit, Phobos, and Mars Surface Using 100-kWe-Class Solar Electric Propulsion
NASA Technical Reports Server (NTRS)
Price, Humphrey W.; Woolley, Ryan C.; Strange, Nathan J.; Baker, John D.
2014-01-01
Solar electric propulsion (SEP) tugs in the 100-kWe range, may be utilized to preposition cargo in the Mars system to enable more affordable human missions to Phobos and to the surface of Mars. The SEP tug, a high heritage follow-on to the 50-kWe SEP spacecraft proposed for the Asteroid Redirect Robotic Mission (ARRM), would have the same structure, tankage, electric propulsion components, and avionics as the ARRM version, But with double the number of solar arrays, Hall thrusters, and power processor units (PPUs) and would be accommodated within the same launch envelope defined for ARRM. As a feasibility study, a 950-day human mission to Phobos using a conjunction class trajectory, such as the 2033 opportunity, was developed using two 100-kWe SEP vehicles to preposition a habitat at Phobos and propulsion stages in high Mars orbit (HMO). An architecture concept for a crewed Mars surface lander mission was also developed as a reference to build on the Phobos mission architecture, adding a lander element that could be delivered using chemical propulsion and aerocapture.
In-Space Propulsion: Connectivity to In-Space Fabrication and Repair
NASA Technical Reports Server (NTRS)
Johnson, L.; Harris, D.; Trausch, A.; Matloff, G. L.; Taylor, T.; Cutting, K.
2005-01-01
The connectivity between new in-space propulsion technologies and the ultimate development of an in-space fabrication and repair infrastructure are described in this Technical Memorandum. A number of advanced in-space propulsion technologies are being developed by NASA, many of which are directly relevant to the establishment of such an in-space infrastructure. These include aerocapture, advanced solar-electric propulsion, solar-thermal propulsion, advanced chemical propulsion, tethers, and solar photon sails. Other, further-term technologies have also been studied to assess their utility to the development of such an infrastructure.
Power and Propulsion System Design for Near-Earth Object Robotic Exploration
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.
2011-01-01
Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.
Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio
2011-01-01
The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary layer ingestion (BLI) to reduce inlet drag on the propulsion system, and reduces the wake drag of the vehicle.
Radioisotope Electric Propulsion Missions Utilizing a Common Spacecraft Design
NASA Technical Reports Server (NTRS)
Fiehler, Douglas; Oleson, Steven
2004-01-01
A study was conducted that shows how a single Radioisotope Electric Propulsion (REP) spacecraft design could be used for various missions throughout the solar system. This spacecraft design is based on a REP feasibility design from a study performed by NASA Glenn Research Center and the Johns Hopkins University Applied Physics Laboratory. The study also identifies technologies that need development to enable these missions. The mission baseline for the REP feasibility design study is a Trojan asteroid orbiter. This mission sends an REP spacecraft to Jupiter s leading Lagrange point where it would orbit and examine several Trojan asteroids. The spacecraft design from the REP feasibility study would also be applicable to missions to the Centaurs, and through some change of payload configuration, could accommodate a comet sample-return mission. Missions to small bodies throughout the outer solar system are also within reach of this spacecraft design. This set of missions, utilizing the common REP spacecraft design, is examined and required design modifications for specific missions are outlined.
NASA Technical Reports Server (NTRS)
Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.
2003-01-01
The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.
Status of Liquid Oxygen/Liquid Methane Injector Study for a Mars Ascent Engine
NASA Technical Reports Server (NTRS)
Trinh, Huu Ogyic; Cramer, John M.
1998-01-01
Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for non-toxic chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of the return vehicle. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies (2) of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25(MMH/MON-25)]. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully considered as a subscale precursor to a future human mission to Mars.
NASA Technical Reports Server (NTRS)
Simpson, Mike B.
2004-01-01
In the search to bridge current gaps in surveillance and communication technologies, a new type of, aircraft is currently undergoing design. The idea of a High Altitude Long Endurance (HALE) aircraft is already a few decades old, but has only recently become realizable. A relay and collector of information at altitudes of 65,000 feet and higher could greatly improve standards of data exchange, homeland security, and research of the air, land and sea. NASA, as a major force in propulsion research, is exploring methods of powering an autonomous aircraft for days, weeks, or even months without refueling. Such a task requires not only high energy density, but also the ability to make use of renewable energy sources to regenerate power. Hydrogen is one of the most energy dense fuels available. Fuel cells make use of hydrogen by harnessing the energy released as it combines with oxygen to produce electricity and water. Fuel cells are envisioned to occupy future propulsion systems in cooperation with solar cells where the photovoltaic arrays harness sunlight into power which can electrolize the water byproduct into reusable hydrogen and oxygen. Modeling this type of system requires adequate assumptions of support hardware and daily transients in operation. The performance of a regenerative fuel cell propulsion system lies in the flight characteristics (altitude, density, temperature, latitude, etc.). Each subsystem is defined by many parameters which can be varied across wide ranges. Statistical and probabilistic analyses bring forward a wealth of information that can be utilized in the design process. This is necessary since the required technologies are relatively young and barely, if yet, capable. Once the modeling is complete, a design space exploration of this highly constrained scenario can be utilized to find the optimal design. The model will become an interactive environment with which experiments and tests can be run. When linked
NASA Technical Reports Server (NTRS)
Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)
2002-01-01
The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.
An update of engine system research at the Army Propulsion Directorate
NASA Technical Reports Server (NTRS)
Bobula, George A.
1990-01-01
The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which have evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has demonstrated its utility in both research and development programs. The STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems.
NASA Technical Reports Server (NTRS)
Thomas, V. C.
1986-01-01
A Vibroacoustic Data Base Management Center has been established at the Jet Propulsion Laboratory (JPL). The center utilizes the Vibroacoustic Payload Environment Prediction System (VAPEPS) software package to manage a data base of shuttle and expendable launch vehicle flight and ground test data. Remote terminal access over telephone lines to a dedicated VAPEPS computer system has been established to provide the payload community a convenient means of querying the global VAPEPS data base. This guide describes the functions of the JPL Data Base Management Center and contains instructions for utilizing the resources of the center.
Interplanetary missions with the GDM propulsion system
NASA Astrophysics Data System (ADS)
Kammash, T.; Emrich, W.
1998-01-01
The Gasdynamic Mirror (GDM) fusion propulsion system utilizes a magnetic mirror machine in which a hot dense plasma is confined long enough to produce fusion energy while allowing a fraction of its charged particle population to escape from one end to generate thrust. The particles escaping through the opposite end have their energy converted to electric power which can be used to sustain the system in a steady state operation. With the aid of a power flow diagram the minimum demands on energy production can be established and the propulsive capability of the system can be determined by solving an appropriate set of governing equations. We apply these results to several missions within the solar system and compute the trip time by invoking a continuous burn, acceleration/deceleration type of trajectory with constant thrust and specific impulse. Ignoring gravitational effects of the planets or the sun, and neglecting the change in the Earth's position during the flight we compute the round trip time for missions from Earth to Mars, Jupiter, and Pluto using linear distances and certain payload fractions. We find that a round trip to Mars with the GDM rocket takes about 170 days while those to Jupiter and Pluto take 494 and 1566 days respectively.
Space shuttle propulsion parameter estimation using optimal estimation techniques
NASA Technical Reports Server (NTRS)
1983-01-01
The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.
Space Technology Mission Directorate: Game Changing Development
NASA Technical Reports Server (NTRS)
Gaddis, Stephen W.
2015-01-01
NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.
Utilization of recently developed codes for high power Brayton and Rankine cycle power systems
NASA Technical Reports Server (NTRS)
Doherty, Michael P.
1993-01-01
Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.
High- and low-thrust propulsion systems for the space station
NASA Technical Reports Server (NTRS)
Jones, R. E.
1987-01-01
The purpose of the Advanced Development program was to investigate propulsion options for the space station. Two options were investigated in detail: a high-thrust system consisting of 25 to 50 lbf gaseous oxygen/hydrogen rockets, and a low-thrust system of 0.1 lbf multipropellant resistojets. An effort is also being conducted to determine the life capability of hydrazine-fueled thrusters. During the course of this program, studies clearly identified the benefits of utilizing waste water and other fluids as propellant sources. The results of the H/O thruster test programs are presented and the plan to determine the life of hydrazine thrusters is discussed. The background required to establish a long-life resistojet is presented and the first design model is shown in detail.
NASA Technical Reports Server (NTRS)
Barnett, Gregory
2017-01-01
Science mission studies require spacecraft propulsion systems that are high-performance, lightweight, and compact. Highly matured technology and low-cost, short development time of the propulsion system are also very desirable. The Deep Space Engine (DSE) 100-lbf thruster is being developed to meet these needs. The overall goal of this game changing technology project is to qualify the DSE thrusters along with 5-lbf attitude control thrusters for space flight and for inclusion in science and exploration missions. The aim is to perform qualification tests representative of mission duty cycles. Most exploration missions are constrained by mass, power and cost. As major propulsion components, thrusters are identified as high-risk, long-lead development items. NASA spacecraft primarily rely on 1960s' heritage in-space thruster designs and opportunities exist for reducing size, weight, power, and cost through the utilization of modern materials and advanced manufacturing techniques. Advancements in MON-25/MMH hypergolic bipropellant thrusters represent a promising avenue for addressing these deficiencies with tremendous mission enhancing benefits. DSE is much lighter and costs less than currently available thrusters in comparable thrust classes. Because MON-25 propellants operate at lower temperatures, less power is needed for propellant conditioning for in-space propulsion applications, especially long duration and/or deep-space missions. Reduced power results in reduced mass for batteries and solar panels. DSE is capable of operating at a wide propellant temperature range (between -22 F and 122 F) while a similar existing thruster operates between 45 F and 70 F. Such a capability offers robust propulsion operation as well as flexibility in design. NASA's Marshall Space Flight Center evaluated available operational Missile Defense Agency heritage thrusters suitable for the science and lunar lander propulsion systems.
Dual-mode, high energy utilization system concept for mars missions
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.
2000-01-01
This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .
Nuclear Thermal Rocket (NTR) Propulsion and Power Systems for Outer Planetary Exploration Missions
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Cataldo, R. L.
2001-01-01
The high specific impulse (I (sub sp)) and engine thrust generated using liquid hydrogen (LH2)-cooled Nuclear Thermal Rocket (NTR) propulsion makes them attractive for upper stage applications for difficult robotic science missions to the outer planets. Besides high (I (sub sp)) and thrust, NTR engines can also be designed for "bimodal" operation allowing substantial amounts of electrical power (10's of kWe ) to be generated for onboard spacecraft systems and high data rate communications with Earth during the course of the mission. Two possible options for using the NTR are examined here. A high performance injection stage utilizing a single 15 klbf thrust engine can inject large payloads to the outer planets using a 20 t-class launch vehicle when operated in an "expendable mode". A smaller bimodal NTR stage generating approx. 1 klbf of thrust and 20 to 40 kWe for electric propulsion can deliver approx. 100 kg using lower cost launch vehicles. Additional information is contained in the original extended abstract.
Nuclear Thermal Propulsion Development Risks
NASA Technical Reports Server (NTRS)
Kim, Tony
2015-01-01
There are clear advantages of development of a Nuclear Thermal Propulsion (NTP) for a crewed mission to Mars. NTP for in-space propulsion enables more ambitious space missions by providing high thrust at high specific impulse ((is) approximately 900 sec) that is 2 times the best theoretical performance possible for chemical rockets. Missions can be optimized for maximum payload capability to take more payload with reduced total mass to orbit; saving cost on reduction of the number of launch vehicles needed. Or missions can be optimized to minimize trip time significantly to reduce the deep space radiation exposure to the crew. NTR propulsion technology is a game changer for space exploration to Mars and beyond. However, 'NUCLEAR' is a word that is feared and vilified by some groups and the hostility towards development of any nuclear systems can meet great opposition by the public as well as from national leaders and people in authority. The public often associates the 'nuclear' word with weapons of mass destruction. The development NTP is at risk due to unwarranted public fears and clear honest communication of nuclear safety will be critical to the success of the development of the NTP technology. Reducing cost to NTP development is critical to its acceptance and funding. In the past, highly inflated cost estimates of a full-scale development nuclear engine due to Category I nuclear security requirements and costly regulatory requirements have put the NTP technology as a low priority. Innovative approaches utilizing low enriched uranium (LEU). Even though NTP can be a small source of radiation to the crew, NTP can facilitate significant reduction of crew exposure to solar and cosmic radiation by reducing trip times by 3-4 months. Current Human Mars Mission (HMM) trajectories with conventional propulsion systems and fuel-efficient transfer orbits exceed astronaut radiation exposure limits. Utilizing extra propellant from one additional SLS launch and available energy in the NTP fuel, HMM radiation exposure can be reduced significantly.
Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.; Schmitz, Paul C.
2003-01-01
There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.
Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
2003-01-01
There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.
2004-07-28
The grand opening of NASA’s new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.
Space Fission Propulsion System Development Status
NASA Astrophysics Data System (ADS)
Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.
2001-01-01
The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability of a SAFE-powered electric propulsion system to outer planet science missions will also be discussed.
RS-34 Phoenix In-Space Propulsion System Applied to Active Debris Removal Mission
NASA Technical Reports Server (NTRS)
Esther, Elizabeth A.; Burnside, Christopher G.
2014-01-01
In-space propulsion is a high percentage of the cost when considering Active Debris Removal mission. For this reason it is desired to research if existing designs with slight modification would meet mission requirements to aid in reducing cost of the overall mission. Such a system capable of rendezvous, close proximity operations, and de-orbit of Envisat class resident space objects has been identified in the existing RS-34 Phoenix. RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper program; specifically the pressure-fed storable bi-propellant Stage IV Post Boost Propulsion System. The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC has obtained permission from the USAF to obtain all the remaining RS-34 stages for re-use opportunities. The MSFC Advanced Concepts Office (ACO) was commissioned to lead a study for evaluation of the Rocketdyne produced RS-34 propulsion system as it applies to an active debris removal design reference mission for resident space object targets including Envisat. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy payloads at multiple orbital locations. The RS-34 Concept Study lead by sought to further understand application for a similar orbital debris design reference mission to provide propulsive capability for rendezvous, close proximity operations to support the capture phase of the mission, and deorbit of single or multiple large class resident space objects. Multiple configurations varying the degree of modification were identified to trade for dry mass optimization and propellant load. The results of the RS-34 Phoenix Concept Study show that the system is technically sufficient to successfully support all of the missions to rendezvous, capture, and de-orbit targets including Envisat and Hubble Space Telescope. The results and benefits of the RS-34 Orbital Debris Application Concept Study are presented in this paper.
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1995-01-01
The subject is next generation orbital space transporation, taken to be fully reusable non-staged 'aircraft like' systems targeted for routine, affordable access to space. Specifically, the takeoff and landing approach to be selected for such systems is considered, mainly from a propulsion viewpoint. Conventional wisdom has it that any transatmospheric-class vehicle which uses high-speed airbreathing propulsion modes (e.g., scramjet) intrinsically must utilize horizontal takeoff and landing, HTOHL. Although this may be true for all-airbreathing propulsion (i.e., no rocket content as in turboramjet propulsion), that emerging class of powerplant which integrally combines airbreathing and rocket propulsion, referred to as rocket-based combined-cycle (RBCC) propulsion, is considerably more flexible with respect to selecting takeoff/landing modes. In fact, it is proposed that any of the modes of interest may potentially be selected: HTOHL, VTOHL, VTOVL. To illustrate this surmise, the case of a previously documented RBCC-powered 'Spaceliner' class space transport concept, which is designed for vertical takeoff and landing, is examined. The 'RBCC' and 'Spaceliner' categories are first described for background. Departing form an often presumed HTOHL baseline, the leading design and operational advantages of moving to VTOVL are then elucidated. Technical substantiation that the RBCC approach, in fact, enables this capability (but also that of HTOHL and VTOVL) is provided, with extensive reference to case-in-point supporting studies. The paper closes with a set of conditional surmises bearing on its set of conclusions, which point up the operational cost advantages associated with selecting the vertical takeoff and landing mode combination (VTOL), uniquely offered by RBCC propulsion.
NASA Astrophysics Data System (ADS)
Escher, William J. D.
The subject is next generation orbital space transporation, taken to be fully reusable non-staged 'aircraft like' systems targeted for routine, affordable access to space. Specifically, the takeoff and landing approach to be selected for such systems is considered, mainly from a propulsion viewpoint. Conventional wisdom has it that any transatmospheric-class vehicle which uses high-speed airbreathing propulsion modes (e.g., scramjet) intrinsically must utilize horizontal takeoff and landing, HTOHL. Although this may be true for all-airbreathing propulsion (i.e., no rocket content as in turboramjet propulsion), that emerging class of powerplant which integrally combines airbreathing and rocket propulsion, referred to as rocket-based combined-cycle (RBCC) propulsion, is considerably more flexible with respect to selecting takeoff/landing modes. In fact, it is proposed that any of the modes of interest may potentially be selected: HTOHL, VTOHL, VTOVL. To illustrate this surmise, the case of a previously documented RBCC-powered 'Spaceliner' class space transport concept, which is designed for vertical takeoff and landing, is examined. The 'RBCC' and 'Spaceliner' categories are first described for background. Departing form an often presumed HTOHL baseline, the leading design and operational advantages of moving to VTOVL are then elucidated. Technical substantiation that the RBCC approach, in fact, enables this capability (but also that of HTOHL and VTOVL) is provided, with extensive reference to case-in-point supporting studies. The paper closes with a set of conditional surmises bearing on its set of conclusions, which point up the operational cost advantages associated with selecting the vertical takeoff and landing mode combination (VTOL), uniquely offered by RBCC propulsion.
NASA Technical Reports Server (NTRS)
Jones, W. S.; Forsyth, J. B.; Skratt, J. P.
1979-01-01
The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2010-01-01
Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.
A white paper: Operational efficiency. New approaches to future propulsion systems
NASA Technical Reports Server (NTRS)
Rhodes, Russel; Wong, George
1991-01-01
Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.
Small space reactor power systems for unmanned solar system exploration missions
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1987-01-01
A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.
Modular Pulsed Plasma Electric Propulsion System for Cubesats
NASA Technical Reports Server (NTRS)
Perez, Andres Dono; Gazulla, Oriol Tintore; Teel, George Lewis; Mai, Nghia; Lukas, Joseph; Haque, Sumadra; Uribe, Eddie; Keidar, Michael; Agasid, Elwood
2014-01-01
Current capabilities of CubeSats must be improved in order to perform more ambitious missions. Electric propulsion systems will play a key role due to their large specific impulse. Compared to other propulsion alternatives, their simplicity allows an easier miniaturization and manufacturing of autonomous modules into the nano and pico-satellite platform. Pulsed Plasma Thrusters (PPTs) appear as one of the most promising technologies for the near term. The utilization of solid and non-volatile propellants, their low power requirements and their proven reliability in the large scale make them great candidates for rapid implementation. The main challenges are the integration and miniaturization of all the electronic circuitry into a printed circuit board (PCB) that can satisfy the strict requirements that CubeSats present. NASA Ames and the George Washington University have demonstrated functionality and control of three discrete Micro-Cathode Arc Thrusters (CAT) using a bench top configuration that was compatible with the ARC PhoneSat Bus. This demonstration was successfully conducted in a vaccum chamber at the ARC Environmental Test Laboratory. A new effort will integrate a low power Plasma Processing Unit and two plasma thrusters onto a single printed circuit board that will utilize less than 13 U of Bus volume. The target design will be optimized for the accommodation into the PhoneSatEDISON Demonstration of SmallSatellite Networks (EDSN) bus as it uses the same software interface application, which was demonstrated in the previous task. This paper describes the design, integration and architecture of the proposed propulsion subsystem for a planned Technology Demonstration Mission. In addition, a general review of the Pulsed Plasma technology available for CubeSats is presented in order to assess the necessary challenges to overcome further development.
1970-01-01
In 1970, NASA initiated Phase A contracts to study alternate Space Shuttle designs in addition to the two-stage fully-reusable Space Shuttle system already under development. A number of alternate systems were developed to ensure the development of the optimum earth-to-orbit system, including the Stage-and-a-half Chemical Interorbital Shuttle, shown here. The concept would utilize a reusable marned spacecraft with an onboard propulsion system attached to an expendable fuel tank to provide supplementary propellants.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2004-01-01
In this paper, an approach for in-flight fault detection and isolation (FDI) of aircraft engine sensors based on a bank of Kalman filters is developed. This approach utilizes multiple Kalman filters, each of which is designed based on a specific fault hypothesis. When the propulsion system experiences a fault, only one Kalman filter with the correct hypothesis is able to maintain the nominal estimation performance. Based on this knowledge, the isolation of faults is achieved. Since the propulsion system may experience component and actuator faults as well, a sensor FDI system must be robust in terms of avoiding misclassifications of any anomalies. The proposed approach utilizes a bank of (m+1) Kalman filters where m is the number of sensors being monitored. One Kalman filter is used for the detection of component and actuator faults while each of the other m filters detects a fault in a specific sensor. With this setup, the overall robustness of the sensor FDI system to anomalies is enhanced. Moreover, numerous component fault events can be accounted for by the FDI system. The sensor FDI system is applied to a commercial aircraft engine simulation, and its performance is evaluated at multiple power settings at a cruise operating point using various fault scenarios.
Propulsion Systems Panel deliberations
NASA Technical Reports Server (NTRS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; Mcgaw, Mike; Munafo, Paul M.
1993-01-01
The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.
Propulsion Systems Panel deliberations
NASA Astrophysics Data System (ADS)
Bianca, Carmelo J.; Miner, Robert; Johnston, Lawrence M.; Bruce, R.; Dennies, Daniel P.; Dickenson, W.; Dreshfield, Robert; Karakulko, Walt; McGaw, Mike; Munafo, Paul M.
1993-02-01
The Propulsion Systems Panel was established because of the specialized nature of many of the materials and structures technology issues related to propulsion systems. This panel was co-chaired by Carmelo Bianca, MSFC, and Bob Miner, LeRC. Because of the diverse range of missions anticipated for the Space Transportation program, three distinct propulsion system types were identified in the workshop planning process: liquid propulsion systems, solid propulsion systems and nuclear electric/nuclear thermal propulsion systems.
A large high vacuum, high pumping speed space simulation chamber for electric propulsion
NASA Technical Reports Server (NTRS)
Grisnik, Stanley P.; Parkes, James E.
1994-01-01
Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.
LOx/LCH4: A Unifying Technology for Future Exploration
NASA Technical Reports Server (NTRS)
Banker, Brian; Ryan, Abigail
2014-01-01
OVERVIEW For every pound of payload landed on Mars, 226 pounds are required on Earth to get it there. Due to this enormous mass gear-ratio, increasing commonality between lander subsystems, such as power, propulsion, and life support, results in tremendous launch mass and cost savings. Human-Mars architectures point to an oxygen-methane economy, utilizing common commodities scavenged from the planetary atmosphere and soil via In-Situ Resource Utilization (ISRU) and common commodity tankage across sub-systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... Propulsion as a Capital Maintenance Expense AGENCY: Federal Transit Administration (FTA), DOT. ACTION: Notice... for the propulsion of electrical vehicles, as a capital maintenance item for grants made in FY 2012... utility costs for the propulsion of electrical vehicles, as a capital maintenance item for grants made in...
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1991-01-01
A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.
Pulsed Plasma Propulsion - Making CubeSat Missions Beyond Low Earth Orbit Possible
NASA Astrophysics Data System (ADS)
Northway, P.
2015-12-01
As CubeSat missions become more and more popular means of scientific exploration of space, the current direction of interest is to utilize them in areas beyond low earth orbit. The University of Washington CubeSat program focuses on examining possible mission scenarios in addition to technology development and integration. Specifically, we are developing an inert CubeSat propulsion system in the form of a pulsed plasma thruster (PPT) capable of orbit maneuvers. Such a system would allow for missions at the Earth beyond LEO, extended missions at the Moon, and even missions at Europa, when assisted to the Jovian system. We will discuss how starting with a CubeSat design using PPTs for orbital maneuvers, other developing compact technology can be adapted to create a full suite of systems that would meet the requirements for a mission traveling outside low earth orbit.
Low Current Surface Flashover for Initiation of Electric Propulsion Devices
NASA Astrophysics Data System (ADS)
Dary, Omar G.
There has been a recent increase in interest in miniaturization of propulsion systems for satellites. These systems are needed to propel micro- and nano-satellites, where platforms are much smaller than conventional satellites and require smaller levels of thrust. Micro-propulsion systems for these satellites are in their infancy and they must manage with smaller power systems and smaller propellant volumes. Electric propulsion systems operating on various types of electric discharges are typically used for these needs. One of the central components of such electrical micropropulsion systems are ignitor subsystems, which are required for creation the breakdown and initiation of the main discharge. Ignitors have to provide reliable ignition for entire lifetime of the micropropulsion system. Electric breakdown in vacuum usually require high voltage potentials of hundreds of kilovolts per mm to induce breakdown. The breakdown voltage can be significantly decreased (down to several kVs per mm) if dielectric surface flashover is utilized. However, classical dielectric surface flashover operates at large electric current (100s of Amperes) and associated with overheating and damage of the electrodes/dielectric assembly after several flashover events. The central idea of this work was to eliminate the damage to the flashover electrode assembly by limiting the flashover currents to low values in milliampere range (Low Current Surface Flashover -LCSF) and utilize LCSF system as an ignition source for the main discharge on the micropropulsion system. The main objective of this research was to create a robust LCSF ignition system, capable producing a large number of surface flashover triggering events without significant damage to the LCSF electrode assembly. The thesis aims to characterize the plasma plume created at LCSF, study electrodes ablation and identify conditions required for robust triggering of main discharge utilized on micro-propulsion system. Conditioning of a new LCSF assembly (flashover current was limited to <100 mA in all experiments) was measured and breakdown voltages in the range of 8kV to 12kV were observed for the fully conditioned assembly. No damage to the LCSF electrode assembly was observed after about 104 LCSF events. The LCSF assembly created sufficient amount of seed plasma in order to bridge a vacuum gap between the high-current electrodes and to reliably ignite high-current arcs (10A-12A arc were used in this work). Ignition of the high-current arc was observed at three different cases of LCSF with limiting currents 100 mA, 33 mA and 20 mA respectively. Plasma parameter measurements were conducted with variety of Langmuir probes inside the LCSF plume. Ion currents created by the LCSF were primarily expelled directly perpendicular from the insulator surface. The plasma expansion for the LCSF assembly was measured to be 2 x 106-6 x 106 cm/s. Plasma density was measured to range 10 10-1011 cm-3. The plasma density was maximal near the LCSF assembly and quickly reduced radially. Temporal decay of the plasma was observed on a time scale of about 5 micros after the LCSF event. The results of this work are significant for creation of ignitor for micropropulsion systems. LCSF system offers reliable triggering for numerous ignition pulses for entire lifetime of the micropropulsion system and reduces complexity and volume of the system by excluding moving parts and the need for an external gas tanks.
NASA Technical Reports Server (NTRS)
Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.
1983-01-01
The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.
Propulsion for the lunar mission
NASA Technical Reports Server (NTRS)
Jones, Lee W.; Champion, Robert H., Jr.
1990-01-01
The paper describes the selection process utilized by NASA during the conduct of the 90-day study of the mission set that is known as the Space Exploration Initiative (SEI). It is directed specifically toward propulsion system definition and selection, with emphasis on the proposed Lunar Transfer Vehicle and the Lunar Exploration Vehicle. Results of trade studies show that selection cannot be readily made on the basis of engine performance alone, because the cost of launching hardware elements and the required propellant are very high. A decision must be made to use either life-cycle costs or annual program costs as the economic figure of merit, because they drive the selection in opposite directions.
NASA Astrophysics Data System (ADS)
York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.
1992-07-01
The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.
Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)
NASA Technical Reports Server (NTRS)
Ellis, Rod
2000-01-01
The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.
Tree Topping Ceremony at NASA's Propulsion Research Laboratory
NASA Technical Reports Server (NTRS)
2003-01-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.
A Tool for Automatic Verification of Real-Time Expert Systems
NASA Technical Reports Server (NTRS)
Traylor, B.; Schwuttke, U.; Quan, A.
1994-01-01
The creation of an automated, user-driven tool for expert system development, validation, and verification is curretly onoging at NASA's Jet Propulsion Laboratory. In the new age of faster, better, cheaper missions, there is an increased willingness to utilize embedded expert systems for encapsulating and preserving mission expertise in systems which combine conventional algorithmic processing and artifical intelligence. The once-questioned role of automation in spacecraft monitoring is now becoming one of increasing importance.
MEMS Reaction Control and Maneuvering for Picosat Beyond LEO
NASA Technical Reports Server (NTRS)
Alexeenko, Alina
2016-01-01
The MEMS Reaction Control and Maneuvering for Picosat Beyond LEO project will further develop a multi-functional small satellite technology for low-power attitude control, or orientation, of picosatellites beyond low Earth orbit (LEO). The Film-Evaporation MEMS Tunable Array (FEMTA) concept initially developed in 2013, is a thermal valving system which utilizes capillary forces in a microchannel to offset internal pressures in a bulk fluid. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in a nozzle which induces vacuum boiling and provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. Interplanetary CubeSats can utilize FEMTA for high slew rate attitude corrections in addition to desaturating reaction wheels. The FEMTA in cooling mode can be used for thermal control during high-power communication events, which are likely to accompany the attitude correction. Current small satellite propulsion options are limited to orbit correction whereas picosatellites are lacking attitude control thrusters. The available attitude control systems are either quickly saturated reaction wheels or movable high drag surfaces with long response times.
The Chameleon Solid Rocket Propulsion Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Glen A.
The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to thismore » forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).« less
Energetic Combustion Devices for Aerospace Propulsion and Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2000-01-01
Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.
A Lunar Electromagnetic Launch System for In-Situ Resource Utilization
NASA Technical Reports Server (NTRS)
Wright, Michael R.; Kuznetsov, Steven B.; Kloesel, Kurt J.
2010-01-01
Future human exploration of the moon will require the development of capabilities for in-situ resource utilization (ISRU). Transport of lunar-derived commodities such as fuel and oxygen to orbiting resource depots has been proposed to enable refueling landers or other vehicles. A lunar electromagnetic launch (LEML) system could be an effective means of transporting materials, as an alternative to non-renewable chemical-based propulsion systems. An example LEML concept is presented based on previous studies, existing EML technologies, and NASA's human exploration architecture. A preliminary assessment of the cost-versus-benefit of such a system is also offered; the conclusion, however, is not as favorable for LEML as originally suggested.
Antiproton catalyzed microfission/fusion propulsion
NASA Technical Reports Server (NTRS)
Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman
1994-01-01
Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.
NASA Technical Reports Server (NTRS)
Nolan, Sean; Neubek, Deb; Baxmann, C. J.
1988-01-01
The Manned Mars Explorer (MME) project responds to the fundamental problems of sending human beings to Mars in a mission scenario and schematic vehicle designs. The mission scenario targets an opposition class Venus inbound swingby for its trajectory with concentration on Phobos and/or Deimos as a staging base for initial and future Mars vicinity operations. Optional vehicles are presented as a comparison using nuclear electric power/propulsion technology. A Manned Planetary Vehicle and Crew Command Vehicle are used to accomplish the targeted mission. The Manned Planetary Vehicle utilizes the mature technology of chemical propulsion combined with an advanced aerobrake, tether and pressurized environment system. The Crew Command Vehicle is the workhorse of the mission performing many different functions including a manned Mars landing, and Phobos rendezvous.
Optimized ISRU Propellants for Propulsion and Power Needs for Future Mars Colonization
NASA Astrophysics Data System (ADS)
Rice, Eric E.; Gustafson, Robert J.; Gramer, Daniel J.; Chiaverini, Martin J.; Teeter, Ronald R.; White, Brant C.
2003-01-01
In recent studies (Rice, 2000, 2002) conducted by ORBITEC for the NASA Institute for Advanced Concepts (NIAC), we conceptualized systems and an evolving optimized architecture for producing and utilizing Mars-based in-situ space resources utilization (ISRU) propellant combinations for future Mars colonization. The propellants are to be used to support the propulsion and power systems for ground and flight vehicles. The key aspect of the study was to show the benefits of ISRU, develop an analysis methodology, as well as provide guidance to propellant system choices in the future based upon what is known today about Mars. The study time frame included an early unmanned and manned exploration period (through 2040) and two colonization scenarios that are postulated to occur from 2040 to 2090. As part of this feasibility study, ORBITEC developed two different Mars colonization scenarios: a low case that ends with a 100-person colony (an Antarctica analogy) and a high case that ends with a 10,000-person colony (a Mars terraforming scenario). A population growth model, mission traffic model, and infrastructure model were developed for each scenario to better understand the requirements of future Mars colonies. Additionally, propellant and propulsion systems design concepts were developed. Cost models were also developed to allow comparison of the different ISRU propellant approaches. This paper summarizes the overall results of the study. ISRU proved to be a key enabler for these colonization missions. Carbon monoxide and oxygen, proved to be the most cost-effective ISRU propellant combination. The entire final reports Phase I and II) and all the details can be found at the NIAC website www.niac.usra.edu.
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Larson, William E.
2012-01-01
Incorporation of In-Situ Resource Utilization (ISRU) and the production of mission critical consumables for 9 propulsion, power, and life support into mission architectures can greatly reduce the mass, cost, and risk of missions 10 leading to a sustainable and affordable approach to human exploration beyond Earth. ISRU and its products can 11 also greatly affect how other exploration systems are developed, including determining which technologies are 12 important or enabling. While the concept of lunar ISRU has existed for over 40 years, the technologies and systems 13 had not progressed much past simple laboratory proof-of-concept tests. With the release of the Vision for Space 14 Exploration in 2004 with the goal of harnessing the Moon.s resources, NASA initiated the ISRU Project in the 15 Exploration Technology Development Program (ETDP) to develop the technologies and systems needed to meet 16 this goal. In the five years of work in the ISRU Project, significant advancements and accomplishments occurred in 17 several important areas of lunar ISRU. Also, two analog field tests held in Hawaii in 2008 and 2010 demonstrated 18 all the steps in ISRU capabilities required along with the integration of ISRU products and hardware with 19 propulsion, power, and cryogenic storage systems. This paper will review the scope of the ISRU Project in the 20 ETDP, ISRU incorporation and development strategies utilized by the ISRU Project, and ISRU development and 21 test accomplishments over the five years of funded project activity.
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1995-01-01
A major difficulty in designing aeropropulsion systems is that of identifying and understanding the interactions between the separate engine components and disciplines (e.g., fluid mechanics, structural mechanics, heat transfer, material properties, etc.). The traditional analysis approach is to decompose the system into separate components with the interaction between components being evaluated by the application of each of the single disciplines in a sequential manner. Here, one discipline uses information from the calculation of another discipline to determine the effects of component coupling. This approach, however, may not properly identify the consequences of these effects during the design phase, leaving the interactions to be discovered and evaluated during engine testing. This contributes to the time and cost of developing new propulsion systems as, typically, several design-build-test cycles are needed to fully identify multidisciplinary effects and reach the desired system performance. The alternative to sequential isolated component analysis is to use multidisciplinary coupling at a more fundamental level. This approach has been made more plausible due to recent advancements in computation simulation along with application of concurrent engineering concepts. Computer simulation systems designed to provide an environment which is capable of integrating the various disciplines into a single simulation system have been proposed and are currently being developed. One such system is being developed by the Numerical Propulsion System Simulation (NPSS) project. The NPSS project, being developed at the Interdisciplinary Technology Office at the NASA Lewis Research Center is a 'numerical test cell' designed to provide for comprehensive computational design and analysis of aerospace propulsion systems. It will provide multi-disciplinary analyses on a variety of computational platforms, and a user-interface consisting of expert systems, data base management and visualization tools, to allow the designer to investigate the complex interactions inherent in these systems. An interactive programming software system, known as the Application Visualization System (AVS), was utilized for the development of the propulsion system simulation. The modularity of this system provides the ability to couple propulsion system components, as well as disciplines, and provides for the ability to integrate existing, well established analysis codes into the overall system simulation. This feature allows the user to customize the simulation model by inserting desired analysis codes. The prototypical simulation environment for multidisciplinary analysis, called Turbofan Engine System Simulation (TESS), which incorporates many of the characteristics of the simulation environment proposed herein, is detailed.
NASA Technical Reports Server (NTRS)
McRight, Patrick S.; Sheehy, Jeffrey A.; Blevins, John A.
2005-01-01
NASA Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V and the Space Shuttle. This paper highlights a lesser known but equally rich side of MSFC - its heritage in spacecraft chemical propulsion systems and its current capabilities for in-space propulsion system development and chemical propulsion research. The historical narrative describes the efforts associated with developing upper-stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology, X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and several technology development activities. Also discussed are MSFC chemical propulsion research capabilities, along with near- and long-term technology challenges to which MSFC research and system development competencies are relevant.
Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology
NASA Astrophysics Data System (ADS)
Kirkpatrick, Brad Kenneth
In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.
IPMC-driven thrust generation: a new conceptual design (Conference Presentation)
NASA Astrophysics Data System (ADS)
Olsen, Zakai; Kim, Kwang Jin
2017-04-01
Ionic Polymer-Metal Composites (IPMC) are highly functional actuators that find many uses in the field of soft robotics due to their low actuation voltage and ability to operate in aquatic environments. The actuation of an IPMC relies on the swelling of the negatively charged side when a potential is applied, due to the free-moving cations and water molecules migrating to that half. While this bending type actuation can be utilized to perform many tasks, it is ill suited for the primary propulsion mechanism in certain soft robotic applications. Here, a new conceptual design is presented which utilizes the bending of IPMC materials to achieve complex actuation motion in an attempt to generate a non-zero net thrust for propulsion of soft robots. The design capitalizes on advances in the manufacturing processes of electroactive polymer materials, which now allow for more complex shapes and thus new and unique modes of actuation. By utilizing the consistent bending deformation of IPMC actuators, in conjunction with carefully considered geometry, an IPMC driven body may serve as a primary mode of propulsion through a positive net thrust generation. This work consists of the initial feasibility study, concept testing, and optimization for such an actuator through computer modeling and simulation. COMSOL will be used for the finite element analysis to design the most efficient and optimized design for a positive net thrust generation. Such an IPMC design may find a great deal of applications, and the potential of future integration into other soft robotic systems is considered.
Solar rocket system concept analysis
NASA Technical Reports Server (NTRS)
Boddy, J. A.
1980-01-01
The use of solar energy to heat propellant for application to Earth orbital/planetary propulsion systems is of interest because of its performance capabilities. The achievable specific impulse values are approximately double those delivered by a chemical rocket system, and the thrust is at least an order of magnitude greater than that produced by a mercury bombardment ion propulsion thruster. The primary advantage the solar heater thruster has over a mercury ion bombardment system is that its significantly higher thrust permits a marked reduction in mission trip time. The development of the space transportation system, offers the opportunity to utilize the full performance potential of the solar rocket. The requirements for transfer from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) was examined as the return trip, GEO to LEO, both with and without payload. Payload weights considered ranged from 2000 to 100,000 pounds. The performance of the solar rocket was compared with that provided by LO2-LH2, N2O4-MMH, and mercury ion bombardment systems.
Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2014-01-01
Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.
V/STOL propulsion control analysis: Phase 2, task 5-9
NASA Technical Reports Server (NTRS)
1981-01-01
Typical V/STOL propulsion control requirements were derived for transition between vertical and horizontal flight using the General Electric RALS (Remote Augmented Lift System) concept. Steady-state operating requirements were defined for a typical Vertical-to-Horizontal transition and for a typical Horizontal-to-Vertical transition. Control mode requirements were established and multi-variable regulators developed for individual operating conditions. Proportional/Integral gain schedules were developed and were incorporated into a transition controller with capabilities for mode switching and manipulated variable reassignment. A non-linear component-level transient model of the engine was developed and utilized to provide a preliminary check-out of the controller logic. An inlet and nozzle effects model was developed for subsequent incorporation into the engine model and an aircraft model was developed for preliminary flight transition simulations. A condition monitoring development plan was developed and preliminary design requirements established. The Phase 1 long-range technology plan was refined and restructured toward the development of a real-time high fidelity transient model of a supersonic V/STOL propulsion system and controller for use in a piloted simulation program at NASA-Ames.
Conceptual Design For Interplanetary Spaceship Discovery
NASA Astrophysics Data System (ADS)
Benton, Mark G.
2006-01-01
With the recently revived national interest in Lunar and Mars missions, this design study was undertaken by the author in an attempt to satisfy the long-term space exploration vision of human travel ``to the Moon, Mars, and beyond'' with a single design or family of vehicles. This paper describes a conceptual design for an interplanetary spaceship of the not-to-distant future. It is a design that is outwardly similar to the spaceship Discovery depicted in the novel ``2001 - A Space Odyssey'' and film of the same name. Like its namesake, this spaceship could one day transport a human expedition to explore the moons of Jupiter. This spaceship Discovery is a real engineering design that is capable of being implemented using technologies that are currently at or near the state-of-the-art. The ship's main propulsion and electrical power are provided by bi-modal nuclear thermal rocket engines. Configurations are presented to satisfy four basic Design Reference Missions: (1) a high-energy mission to Jupiter's moon Callisto, (2) a high-energy mission to Mars, (3) a low-energy mission to Mars, and (4) a high-energy mission to the Moon. The spaceship design includes dual, strap-on boosters to enable the high-energy Mars and Jupiter missions. Three conceptual lander designs are presented: (1) Two types of Mars landers that utilize atmospheric and propulsive braking, and (2) a lander for Callisto or Earth's Moon that utilizes only propulsive braking. Spaceship Discovery offers many advantages for human exploration of the Solar System: (1) Nuclear propulsion enables propulsive capture and escape maneuvers at Earth and target planets, eliminating risky aero-capture maneuvers. (2) Strap-on boosters provide robust propulsive energy, enabling flexibility in mission planning, shorter transit times, expanded launch windows, and free-return abort trajectories from Mars. (3) A backup abort propulsion system enables crew aborts at multiple points in the mission. (4) Clustered NTR engines provide ``engine out'' redundancy. (5) The design efficiently implements galactic cosmic ray shielding using main propellant liquid hydrogen. (6) The design provides artificial gravity to mitigate crew physiological problems on long-duration missions. (7) The design is modular and can be launched using the proposed upgrades to the Evolved Expendable Launch Vehicles or Shuttle-derived heavy lift launch vehicles. (8) High value modules are reusable for Mars and Lunar missions. (9) The design has inherent growth capability, and can be tailored to satisfy expanding mission requirements to enable an in-family progression ``to the Moon, Mars, and beyond.''
Preliminary Assessment of Using Gelled and Hybrid Propellant Propulsion for VTOL/SSTO Launch Systems
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; OLeary, Robert; Pelaccio, Dennis G.
1998-01-01
A novel, reusable, Vertical-Takeoff-and-Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named AUGMENT-SSTO, is presented in this paper to help quantify the advantages of employing gelled and hybrid propellant propulsion system options for such applications. The launch vehicle system concept considered uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LO2/LH2) propulsion system, that is used only for launch, while a gelled or hybrid propellant propulsion system auxiliary propulsion system is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. Using a gelled or hybrid propellant propulsion system for major orbit maneuver burns and landing has many advantages over conventional VTOL/SSTO concepts that use LO2/LH2 propulsion system(s) burns for all phases of flight. The applicability of three gelled propellant systems, O2/H2/Al, O2/RP-1/Al, and NTO/MMH/Al, and a state-of-the-art (SOA) hybrid propulsion system are examined in this study. Additionally, this paper addresses the applicability of a high performance gelled O2/H2 propulsion system to perform the primary, as well as the auxiliary propulsion system functions of the vehicle.
NASA Astrophysics Data System (ADS)
Doerr, S. E.
1984-06-01
Modeling of aerodynamic interference effects of propulsive jet plumes, by using inert gases as substitute propellants, introduces design limits. To extend the range of modeling capabilities, nozzle wall curvature effects may be utilized. Numerical calculations, using the Method of Characteristics, were made and experimental data were taken to evaluate the merits of the theoretical predictions. A bibliography, listing articles that led to the present report, is included.
Electrolysis Propulsion for Spacecraft Applications
NASA Technical Reports Server (NTRS)
deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.
1997-01-01
Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.
Solar Electric Propulsion for Mars Exploration
NASA Technical Reports Server (NTRS)
Hack, Kurt J.
1998-01-01
Highly propellant-efficient electric propulsion is being combined with advanced solar power technology to provide a non-nuclear transportation option for the human exploration of Mars. By virtue of its high specific impulse, electric propulsion offers a greater change in spacecraft velocity for each pound of propellant than do conventional chemical rockets. As a result, a mission to Mars based on solar electric propulsion (SEP) would require fewer heavy-lift launches than a traditional all-chemical space propulsion scenario would. Performance, as measured by mass to orbit and trip time, would be comparable to the NASA design reference mission for human Mars exploration, which utilizes nuclear thermal propulsion; but it would avoid the issues surrounding the use of nuclear reactors in space.
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Kim, Youngho
2012-02-01
Manual wheelchair users are at a high risk of pain and injuries to the upper extremities due to mechanical inefficiency of wheelchair propulsion motion. The kinetic analysis of the upper extremities during manual wheelchair propulsion in various conditions needed to be investigated. We developed and calibrated a wheelchair dynamometer for measuring kinetic parameters during propulsion. We utilized the dynamometer to investigate and compare the propulsion torque and power values of experienced and novice users under four different conditions. Experienced wheelchair users generated lower torques with more power than novice users and reacted alertly and sensitively to changing conditions. We expect that these basic methods and results may help to quantitatively evaluate the mechanical efficiency of manual wheelchair propulsion.
Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.
2014-01-01
Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.
Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission
NASA Astrophysics Data System (ADS)
Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.
2016-03-01
Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.
Laser diagnostics for NTP fuel corrosion studies
NASA Technical Reports Server (NTRS)
Wantuck, Paul J.; Butt, D. P.; Sappey, A. D.
1993-01-01
Viewgraphs and explanations on laser diagnostics for nuclear thermal propulsion (NTP) fuel corrosion studies are presented. Topics covered include: NTP fuels; U-Zr-C system corrosion products; planar laser-induced fluorescence (PLIF); utilization of PLIF for corrosion product characterization of nuclear thermal rocket fuel elements under test; ZrC emission spectrum; and PLIF imaging of ZrC plume.
Utilization of methanol for polymer electrolyte fuel cells in mobile systems
NASA Astrophysics Data System (ADS)
Schmidt, V. M.; Brockerhoff, P.; Hohlein, B.; Menzer, R.; Stimming, U.
1994-04-01
The constantly growing volume of road traffic requires the introduction of new vehicle propulsion systems with higher efficiency and drastically reduced emission rates. As part of the fuel cell programme of the Research Centre Julich a vehicle propulsion system with methanol as secondary energy carrier and a polymer electrolyte membrane fuel cell (PEMFC) as the main component for energy conversion is developed. The fuel gas is produced by a heterogeneously catalyzed steam reforming reaction in which methanol is converted to H2, CO and CO2. The required energy is provided by the catalytic conversion of methanol for both heating up the system and reforming methanol. The high CO content of the fuel gas requires further processing of the gas or the development of new electrocatalysts for the anode. Various Pt-Ru alloys show promising behaviour as CO-tolerant anodes. The entire fuel cell system is discussed in terms of energy and emission balances. The development of important components is described and experimental results are discussed.
Solar-Powered Electric Propulsion Systems: Engineering and Applications
NASA Technical Reports Server (NTRS)
Stearns, J. W.; Kerrisk, D. J.
1966-01-01
Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.
Introduction: The challenge of optimum integration of propulsion systems and large space structures
NASA Technical Reports Server (NTRS)
Carlisle, R. F.
1980-01-01
A functional matrix of possible propulsion system characteristics for a spacecraft for deployable and assembled spacecraft structures shows that either electric propulsion or low thrust chemical propulsion systems could provide the propulsion required. The trade-off considerations of a single propulsion engine or multiengines are outlined and it is shown that a single point engine is bounded by some upper limit of thrust for assembled spacecraft. The matrix also shows several additional functions that can be provided to the spacecraft if a propulsion system is an integral part of the spacecraft. A review of all of the functions that can be provided for a spacecraft by an integral propulsion system may result in the inclusion of the propulsion for several functions even if no single function were mandatory. Propulsion interface issues for each combination of engines are identified.
Large-payload earth-orbit transportation with electric propulsion
NASA Technical Reports Server (NTRS)
Stearns, J. W.
1976-01-01
Economical unmanned earth orbit transportation for large payloads is evaluated. The high exhaust velocity achievable with electric propulsion is attractive because it minimizes the propellant that must be carried to low earth orbit. Propellant transport is a principal cost item. Electric propulsion subsystems utilizing advanced ion thrusters are compared to magnetoplasmadynamic (MPD) thrust subsystems. For very large payloads, a large lift vehicle is needed to low earth orbit, and argon propellant is required for electric propulsion. Under these circumstances, the MPD thruster is shown to be desirable over the ion thruster for earth orbit transportation.
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
Microwave ECR Ion Thruster Development Activities at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
2002-01-01
Outer solar system missions will have propulsion system lifetime requirements well in excess of that which can be satisfied by ion thrusters utilizing conventional hollow cathode technology. To satisfy such mission requirements, other technologies must be investigated. One possible approach is to utilize electrodeless plasma production schemes. Such an approach has seen low power application less than 1 kW on earth-space spacecraft such as ARTEMIS which uses the rf thruster the RIT 10 and deep space missions such as MUSES-C which will use a microwave ion thruster. Microwave and rf thruster technologies are compared. A microwave-based ion thruster is investigated for potential high power ion thruster systems requiring very long lifetimes.
2003-02-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.
Development of An Intelligent Flight Propulsion Control System
NASA Technical Reports Server (NTRS)
Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.
1999-01-01
The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of the IFPCS architecture and the ability to provide robust performance under a broad range of uncertainty. Robust stability is proved using Lyapunov like analysis. Future development of the IFPCS will include integration of conventional control surfaces with the use of propulsion augmentation, and utilization of available lift and drag devices, to demonstrate adaptive control capability under a greater variety of failure scenarios. Further work will specifically address the effects of actuator saturation.
USB environment measurements based on full-scale static engine ground tests
NASA Technical Reports Server (NTRS)
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.
Mercury orbiter transport study
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Feingold, H.
1977-01-01
A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.
Electric Propulsion Applications and Impacts
NASA Technical Reports Server (NTRS)
Curran, Frank M.; Wickenheiser, Timothy J.
1996-01-01
Most space missions require on-board propulsion systems and these systems are often dominant spacecraft mass drivers. Presently, on-board systems account for more than half the injected mass for commercial communications systems and even greater mass fractions for ambitious planetary missions. Anticipated trends toward the use of both smaller spacecraft and launch vehicles will likely increase pressure on the performance of on-board propulsion systems. The acceptance of arcjet thrusters for operational use on commercial communications satellites ushered in a new era in on-board propulsion and exponential growth of electric propulsion across a broad spectrum of missions is anticipated. NASA recognizes the benefits of advanced propulsion and NASA's Office of Space Access and Technology supports an aggressive On-Board Propulsion program, including a strong electric propulsion element, to assure the availability of high performance propulsion systems to meet the goals of the ambitious missions envisioned in the next two decades. The program scope ranges from fundamental research for future generation systems through specific insertion efforts aimed at near term technology transfer. The On-Board propulsion program is committed to carrying technologies to levels required for customer acceptance and emphasizes direct interactions with the user community and the development of commercial sources. This paper provides a discussion of anticipated missions, propulsion functions, and electric propulsion impacts followed by an overview of the electric propulsion element of the NASA On-Board Propulsion program.
High-speed flight propulsion systems. Progress in Astronautics and Aeronautics. Vol. 137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Curran, E.T.
1991-01-01
Various papers on high-speed flight propulsion systems are presented. The topics addressed are: propulsion systems from takeoff to high-speed flight, propulsion system performance and integration for high Mach air-breathing flight, energy analysis of high-speed flight systems, waves and thermodynamics in high Mach number propulsive ducts, turbulent free shear layer mixing and combustion, turbulent mixing in supersonic combustion systems, mixing and mixing enhancement in supersonic reacting flowfields, study of combustion and heat-exchange processes in high-enthalpy short-duration facilities, and facility requirements for hypersonic propulsion system testing.
NASA Technical Reports Server (NTRS)
Regetz, J. D., Jr.; Terwilliger, C. H.
1979-01-01
The directions that electric propulsion technology should take to meet the primary propulsion requirements for earth-orbital missions in the most cost effective manner are determined. The mission set requirements, state of the art electric propulsion technology and the baseline system characterized by it, adequacy of the baseline system to meet the mission set requirements, cost optimum electric propulsion system characteristics for the mission set, and sensitivities of mission costs and design points to system level electric propulsion parameters are discussed. The impact on overall costs than specific masses or costs of propulsion and power systems is evaluated.
Status of the NASA YF-12 Propulsion Research Program
NASA Technical Reports Server (NTRS)
Albers, J. A.
1976-01-01
The YF-12 research program was initiated to establish a technology base for the design of an efficient propulsion system for supersonic cruise aircraft. The major technology areas under investigation in this program are inlet design analysis, propulsion system steady-state performance, propulsion system dynamic performance, inlet and engine control systems, and airframe/propulsion system interactions. The objectives, technical approach, and status of the YF-12 propulsion program are discussed. Also discussed are the results obtained to date by the NASA Ames, Lewis, and Dryden research centers. The expected technical results and proposed future programs are also given. Propulsion system configurations are shown.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako
The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.
Identification of propulsion systems
NASA Technical Reports Server (NTRS)
Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet
1991-01-01
This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.
Hydrogen Storage for Aircraft Applications Overview
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)
2002-01-01
Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2017-01-01
Establishing a lunar presence and creating an industrial capability on the Moon may lead to important new discoveries for all of human kind. Historical studies of lunar exploration, in-situ resource utilization (ISRU) and industrialization all point to the vast resources on the Moon and its links to future human and robotic exploration. In references 1 through 9, a broad range of technological innovations are described and analyzed. Figures 1 depicts program planning for future human missions throughout the solar system which included lunar launched nuclear rockets, and future human settlements on the Moon. Figures 2 and 3 present the results for human Mercury missions, including LEO departure masses and round trip Mercury lander masses. Using in-situ resources, the missions become less burdensome to the LEO launch infrastructure. In one example using Mercury derived hydrogen, the LEO mass of the human Mercury missions can be reduced from 2,800 MT to 1,140 MT (Ref. 15). Additional analyses of staging options for human Mercury missions will be presented. Figures 4 shows an option for thermal control for long term in-space cryogenic storage and Figure 5 depicts the potentially deleterious elements emanating from Mercury that must be addressed, respectively. Updated analyses based on the visions presented will be presented. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear electric propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Human bases at Mercury may have to be resupplied from resources from regolith and water resources in permanently shadowed craters at its northern pole.
Comparison of Mars Aircraft Propulsion Systems
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.
2003-01-01
The propulsion system is a critical aspect of the performance and feasibility of a Mars aircraft. Propulsion system mass and performance greatly influence the aircraft s design and mission capabilities. Various propulsion systems were analyzed to estimate the system mass necessary for producing 35N of thrust within the Mars environment. Three main categories of propulsion systems were considered: electric systems, combustion engine systems and rocket systems. Also, the system masses were compared for mission durations of 1, 2, and 4 h.
NASA Technical Reports Server (NTRS)
Tucker, Michael; Meredith, Oliver; Brothers, Bobby
1986-01-01
Several concepts of chemical-propulsion Space Vehicles (SVs) for manned Mars landing missions are presented. For vehicle sizing purposes, several specific missions were chosen from opportunities in the late 1990's and early 2000's, and a vehicle system concept is then described which is applicable to the full range of missions and opportunities available. In general, missions utilizing planetary opposition alignments can be done with smaller vehicles than those utilizing planetary opposition alignments. The conjunction missions have a total mission time of about 3 years, including a required stay-time of about 60 days. Both types of missions might be desirable during a Mars program, the opposition type for early low-risk missions and/or for later unmanned cargo missions, and the conjunction type for more extensive science/exploration missions and/or for Mars base activities. Since the opposition missions appeared to drive the SV size more severely, there were probably more cases examined for them. Some of the concepts presented utilize all-propulsive braking, some utilize and all aerobraking approach, and some are hybrids. Weight statements are provided for various cases. Most of the work was done on 0-g vehicle concepts, but partial-g and 1-g concepts are also provided and discussed. Several options for habitable elements are shown, such as large-diameter modules and space station (SS) types of modules.
NASA Technical Reports Server (NTRS)
McRight, P. S.; Sheehy, J. A.; Blevins, J. A.
2005-01-01
NASA s Marshall Space Flight Center (MSFC) is well known for its contributions to large ascent propulsion systems such as the Saturn V rocket and the Space Shuttle external tank, solid rocket boosters, and main engines. This paper highlights a lesser known but very rich side of MSFC-its heritage in the development of in-space chemical propulsion systems and its current capabilities for spacecraft propulsion system development and chemical propulsion research. The historical narrative describes the flight development activities associated with upper stage main propulsion systems such as the Saturn S-IVB as well as orbital maneuvering and reaction control systems such as the S-IVB auxiliary propulsion system, the Skylab thruster attitude control system, and many more recent activities such as Chandra, the Demonstration of Automated Rendezvous Technology (DART), X-37, the X-38 de-orbit propulsion system, the Interim Control Module, the US Propulsion Module, and multiple technology development activities. This paper also highlights MSFC s advanced chemical propulsion research capabilities, including an overview of the center s Propulsion Systems Department and ongoing activities. The authors highlight near-term and long-term technology challenges to which MSFC research and system development competencies are relevant. This paper concludes by assessing the value of the full range of aforementioned activities, strengths, and capabilities in light of NASA s exploration missions.
NASA Technical Reports Server (NTRS)
Bond, W. H.; Yi, A. C.
1993-01-01
A concept is shown for a fully reusable, earth to orbit launch vehicle with horizontal takeoff and landing, employing an air-turborocket for low speed and a rocket for high speed acceleration, both using LH2 fuel. The turborocket employs a modified liquid air cycle to supply the oxidizer. The rocket uses 90 percent pure LOX that is collected from the atmosphere, separated, and stored during operation of the turborocket from about Mach 2 to Mach 5 or 6. The takeoff weight and the thrust required at takeoff are markedly reduced by collecting the rocket oxidizer in-flight. The paper shows an approach and the corresponding technology needs for using ALES propulsion in a SSTO vehicle. Reducing the trajectory altitude at the end of collection reduces the wing area and increases payload. The use of state-of-the-art materials, such as graphite polyimide, is critical to meet the structure weight objective for SSTO. Configurations that utilize 'waverider' aerodynamics show great promise to reduce the vehicle weight.
Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Lindena, S.
1976-01-01
A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.
Analytical modeling of helium turbomachinery using FORTRAN 77
NASA Astrophysics Data System (ADS)
Balaji, Purushotham
Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.
Q-Thruster Breadboard Campaign Project
NASA Technical Reports Server (NTRS)
White, Harold
2014-01-01
Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.
Advanced space power and propulsion based on lasers
NASA Astrophysics Data System (ADS)
Roth, M.; Logan, B. G.
2015-10-01
One of the key components for future space exploration, manned or unmanned, is the availability of propulsion systems beyond the state of the art. The rapid development in conventional propulsion systems since the middle of the 20th century has already reached the limits of chemical propulsion technology. To enhance mission radius, shorten the transit time and also extend the lifetime of a spacecraft more efficient, but still powerful propulsion system must be developed. Apart from the propulsion system a major weight contribution arises from the required energy source. Envisioning rapid development of future high average power laser systems and especially the ICAN project we review the prospect of advanced space propulsion based on laser systems.
NASA Astrophysics Data System (ADS)
Timar, T.
1981-09-01
A new blowdown system was developed for cleaning debris from the inlet grill of waterjet propulsion system on Boeing hydrofoil boats. A system was required to work with existing waterjet ducts which are open ended. The new blowdown system consists of an abrupt discharge of high pressure compressed air amidst the water inlet duct. It utilizes the open end of the propulsor discharge nozzle as a safety valve. Feasibility was proven by semi-steady state equations and was confirmed by full scale testing. A system was developed and installed and is now fully operational.
NASA Technical Reports Server (NTRS)
Fishbach, L. H.
1979-01-01
The computational techniques utilized to determine the optimum propulsion systems for future aircraft applications and to identify system tradeoffs and technology requirements are described. The characteristics and use of the following computer codes are discussed: (1) NNEP - a very general cycle analysis code that can assemble an arbitrary matrix fans, turbines, ducts, shafts, etc., into a complete gas turbine engine and compute on- and off-design thermodynamic performance; (2) WATE - a preliminary design procedure for calculating engine weight using the component characteristics determined by NNEP; (3) POD DRG - a table look-up program to calculate wave and friction drag of nacelles; (4) LIFCYC - a computer code developed to calculate life cycle costs of engines based on the output from WATE; and (5) INSTAL - a computer code developed to calculate installation effects, inlet performance and inlet weight. Examples are given to illustrate how these computer techniques can be applied to analyze and optimize propulsion system fuel consumption, weight, and cost for representative types of aircraft and missions.
A cislunar transportation system fuelled by lunar resources
NASA Astrophysics Data System (ADS)
Sowers, G. F.
2016-11-01
A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.
Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Vassallo, Corinne; Tadge, Megan
2015-01-01
The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.
Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Brophy, John R.; Oleson, Steve
2012-01-01
In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Pinon, Elfego, III; Oconnor, Brendan M.; Bilby, Curt R.
1990-01-01
The documentation of the Trajectory Generation and System Characterization Model for the Cislunar Low-Thrust Spacecraft is presented in Technical and User's Manuals. The system characteristics and trajectories of low thrust nuclear electric propulsion spacecraft can be generated through the use of multiple system technology models coupled with a high fidelity trajectory generation routine. The Earth to Moon trajectories utilize near Earth orbital plane alignment, midcourse control dependent upon the spacecraft's Jacobian constant, and capture to target orbit utilizing velocity matching algorithms. The trajectory generation is performed in a perturbed two-body equinoctial formulation and the restricted three-body formulation. A single control is determined by the user for the interactive midcourse portion of the trajectory. The full spacecraft system characteristics and trajectory are provided as output.
Nuclear Theft: Real and Imagined Dangers
1976-03-01
are utilized in connection with fossil fuel energy research and development programs and related activities conducted by the Bureau of Mines "energy... development associated with the U.S. nuclear weapons program . Addition- ally, ERDA conducts related programs which include power reactor design... development , nuclear propulsion, and other systems associated with space programs . The military and ERDA enjoy a symbiotic relationship in that nuclear
Rapid Analysis and Manufacturing Propulsion Technology (RAMPT)
NASA Technical Reports Server (NTRS)
Fikes, John C.
2018-01-01
NASA's strategic plan calls for the development of enabling technologies, improved production methods, and advanced design and analysis tools related to the agency's objectives to expand human presence in the solar system. NASA seeks to advance exploration, science, innovation, benefits to humanity, and international collaboration, as well as facilitate and utilize U.S. commercial capabilities to deliver cargo and crew to space.
Lunar surface base propulsion system study, volume 1
NASA Technical Reports Server (NTRS)
1987-01-01
The efficiency, capability, and evolution of a lunar base will be largely dependent on the transportation system that supports it. Beyond Space Station in low Earth orbit (LEO), a Lunar-derived propellant supply could provide the most important resource for the transportation infrastructure. The key to an efficient Lunar base propulsion system is the degree of Lunar self-sufficiency (from Earth supply) and reasonable propulsion system performance. Lunar surface propellant production requirements must be accounted in the measurement of efficiency of the entire space transportation system. Of all chemical propellant/propulsion systems considered, hydrogen/oxygen (H/O) OTVs appear most desirable, while both H/O and aluminum/oxygen propulsion systems may be considered for the lander. Aluminized-hydrogen/oxygen and Silane/oxygen propulsion systems are also promising candidates. Lunar propellant availability and processing techniques, chemical propulsion/vehicle design characteristics, and the associated performance of the total transportation infrastructure are reviewed, conceptual propulsion system designs and vehicle/basing concepts, and technology requirements are assessed in context of a Lunar Base mission scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Steven Howe; Nathan Jerred; Troy Howe
Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizingmore » an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds to the complexity of the mission architecture.« less
Deriving the Generalized Power and Efficiency Equations for Jet Propulsion Systems
NASA Astrophysics Data System (ADS)
Lee, Hsing-Juin; Chang, Chih-Luong
The kinetic power and efficiency equations for general jet propulsion systems are classically given in a much cursory, incomplete, and ununified format. This situation prohibits the propulsion designer from seeing the panorama of interrelated propulsion parameters and effects. And in some cases, it may lead to an energy-inefficient propulsion system design, or induce significant offset in propulsion performance as demonstrated in this study. Thus, herein we attempt to clarify some related concepts and to rigorously derive the associated generalized equations with a complete spectrum of physical parameters to be manipulated in quest of better performance. By a highly efficient interweaved transport scheme, we have derived the following equations for general jet propulsion systems: i.e., generalized total kinetic power, generalized kinetic power delivered to the jet propulsion system, generalized thrust power, generalized available propulsion power, and relevant generalized propulsive, thermal, and overall efficiency equations. Further, the variants of these equations under special conditions are also considered. For taking advantage of the above propulsion theories, we also illustrate some novel propulsion strategies in the final discussion, such as the dive-before-climb launch of rocket from highland mountain on eastbound rail, with perhaps minisatellites as the payloads.
Space Propulsion Technology Program Overview
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1991-01-01
The topics presented are covered in viewgraph form. Focused program elements are: (1) transportation systems, which include earth-to-orbit propulsion, commercial vehicle propulsion, auxiliary propulsion, advanced cryogenic engines, cryogenic fluid systems, nuclear thermal propulsion, and nuclear electric propulsion; (2) space platforms, which include spacecraft on-board propulsion, and station keeping propulsion; and (3) technology flight experiments, which include cryogenic orbital N2 experiment (CONE), SEPS flight experiment, and cryogenic orbital H2 experiment (COHE).
Resurrected DSCOVR Propulsion System - Challenges and Lessons Learned
NASA Technical Reports Server (NTRS)
Varia, Apurva P.; Scroggins, Ashley R.
2015-01-01
The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, is a unique mission, not because of its objectives but because of how long it was in storage before launch. The Triana spacecraft was built in the late 90s and later renamed as DSCOVR, but the project was canceled before the spacecraft was launched. The nearly-complete spacecraft was put in controlled storage for 10 years, until the National Oceanic and Atmospheric Administration (NOAA) provided funding for the National Aeronautics and Space Administration (NASA) to refurbish the spacecraft. On February 11, 2015, DSCOVR was launched on a Falcon 9 v1.1 from launch complex 40 at Cape Canaveral Air Force Station. This paper describes the DSCOVR propulsion system, which utilizes ten 4.5 N thrusters in blowdown mode to perform Midcourse Correction (MCC) maneuvers, Lissajous Orbit Insertion (LOI) at Lagrangian point L1, momentum unloading maneuvers, and station keeping delta-v maneuvers at L1. This paper also describes the testing that was performed, including susbsystem-level and spacecraft-level tests, to verify the propulsion system's integrity for flight. Finally, this paper concludes with a discussion of the challenges and lessons learned during this unique mission, including replacement of a bent thruster and installation of an auxiliary heater over existing propellant line heaters.
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.
2017-01-01
The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
Refractive Secondary Concentrators for Solar Thermal Applications
NASA Technical Reports Server (NTRS)
Wong, Wayne A.; Macosko, Robert P.
1999-01-01
The NASA Glenn Research Center is developing technologies that utilize solar energy for various space applications including electrical power conversion, thermal propulsion, and furnaces. Common to all of these applications is the need for highly efficient, solar concentration systems. An effort is underway to develop the innovative single crystal refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. The refractive secondary offers very high throughput efficiencies (greater than 90%), and when used in combination with advanced primary concentrators, enables very high concentration ratios (10,0(X) to 1) and very high temperatures (greater than 2000 K). Presented is an overview of the refractive secondary concentrator development effort at the NASA Glenn Research Center, including optical design and analysis techniques, thermal modeling capabilities, crystal materials characterization testing, optical coatings evaluation, and component testing. Also presented is a discussion of potential future activity and technical issues yet to be resolved. Much of the work performed to date has been in support of the NASA Marshall Space Flight Center's Solar Thermal Propulsion Program. The many benefits of a refractive secondary concentrator that enable efficient, high temperature thermal propulsion system designs, apply equally well to other solar applications including furnaces and power generation systems such as solar dynamics, concentrated thermal photovoltaics, and thermionics.
System Analysis and Performance Benefits of an Optimized Rotorcraft Propulsion System
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.
2007-01-01
The propulsion system of rotorcraft vehicles is the most critical system to the vehicle in terms of safety and performance. The propulsion system must provide both vertical lift and forward flight propulsion during the entire mission. Whereas propulsion is a critical element for all flight vehicles, it is particularly critical for rotorcraft due to their limited safe, un-powered landing capability. This unparalleled reliability requirement has led rotorcraft power plants down a certain evolutionary path in which the system looks and performs quite similarly to those of the 1960 s. By and large the advancements in rotorcraft propulsion have come in terms of safety and reliability and not in terms of performance. The concept of the optimized propulsion system is a means by which both reliability and performance can be improved for rotorcraft vehicles. The optimized rotorcraft propulsion system which couples an oil-free turboshaft engine to a highly loaded gearbox that provides axial load support for the power turbine can be designed with current laboratory proven technology. Such a system can provide up to 60% weight reduction of the propulsion system of rotorcraft vehicles. Several technical challenges are apparent at the conceptual design level and should be addressed with current research.
Apollo Command and Service Module Propulsion Systems Overview
NASA Technical Reports Server (NTRS)
Interbartolo, Michael A.
2009-01-01
An overview of the Apollo Command and Service Module (CSM) propulsion systems is provided. The systems for CSM propulsion and control are defined, the times during the mission when each system is used are listed, and, the basic components and operation of the service propulsion system, SM reaction control system and CM reaction control system are described.
NASA Astrophysics Data System (ADS)
Whitehead, James Joshua
The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in visualization. The concept of Expanded-Durov diagrams was also adopted and adapted to this study to aid in visualization of uncertainty bounds. Regions of maximum regression rate and associated uncertainties were determined for each set of case scenarios. Application of response surface methodology coupled with probabilistic-based MCS allowed for flexible and comprehensive interrogation of mixture and operating design space during optimization cases. Analyses were also conducted to assess sensitivity of uncertainty to variations in key elemental uncertainty estimates. The methodology developed during this research provides an innovative optimization tool for future propulsion design efforts.
Comparison of Propulsion Options for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.
2018-01-01
NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.
RHETT/EPDM Flight Hollow Cathode
NASA Technical Reports Server (NTRS)
Manzella, David; Patterson, Michael; Pastel, Michael
1997-01-01
Under the sponsorship of the BMDO Russian Hall Electric Thruster Technology program two xenon hollow cathodes, a flight unit and a flight spare were fabricated, acceptance tested and delivered to the Naval Research Laboratory for use on the Electric Propulsion Demonstration Module. These hollow cathodes, based on the International Space Station plasma contactor design, were fabricated at the NASA Lewis Research Center for use with a D-55 anode layer thruster in the first on-orbit operational application of this technology. The 2.2 Ampere nominal emission current of this device was obtained with a xenon flow rate of 0.6 mg/s. Ignition of the cathode discharge was accomplished through preheating the active electron emitter with a resistive heating element before application of a 650 volt ignition pulse between the emitter and an external starting electrode. The successful acceptance testing of the Electric Propulsion Demonstration Module utilizing these cathodes demonstrated the suitability of cathodes based on barium impregnated inserts in an enclosed keeper configuration for use with Hall thruster propulsion systems.
A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation
NASA Technical Reports Server (NTRS)
Mihaloew, J. R.; Roth, S. P.; Creekmore, R.
1981-01-01
A real time propulsion system modeling technique suitable for use in man-in-the-loop simulator studies was developd. This technique provides the system accuracy, stability, and transient response required for integrated aircraft and propulsion control system studies. A Pegasus-Harrier propulsion system was selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics were modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real time propulsion model was formulated by applying a piece-wise linear state variable methodology. A hydromechanical and water injection control system was also simulated. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model was programmed for interfacing with a Harrier aircraft simulation. Typical propulsion system simulation results are presented.
NASA's Evolutionary Xenon Thruster: The NEXT Ion Propulsion System for Solar System Exploration
NASA Technical Reports Server (NTRS)
Pencil, Eric J.; Benson, Scott W.
2008-01-01
This viewgraph presentation reviews NASA s Evolutionary Xenon Thruster (NEXT) Ion Propulsion system. The NEXT project is developing a solar electric ion propulsion system. The NEXT project is advancing the capability of ion propulsion to meet NASA robotic science mission needs. The NEXT system is planned to significantly improve performance over the state of the art electric propulsion systems, such as NASA Solar Electric Propulsion Technology Application Readiness (NSTAR). The status of NEXT development is reviewed, including information on the NEXT Thruster, the power processing unit, the propellant management system (PMS), the digital control interface unit, and the gimbal. Block diagrams NEXT system are presented. Also a review of the lessons learned from the Dawn and NSTAR systems is provided. In summary the NEXT project activities through 2007 have brought next-generation ion propulsion technology to a sufficient maturity level.
Five-Segment Solid Rocket Motor Development Status
NASA Technical Reports Server (NTRS)
Priskos, Alex S.
2012-01-01
In support of the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC) is developing a new, more powerful solid rocket motor for space launch applications. To minimize technical risks and development costs, NASA chose to use the Space Shuttle s solid rocket boosters as a starting point in the design and development. The new, five segment motor provides a greater total impulse with improved, more environmentally friendly materials. To meet the mass and trajectory requirements, the motor incorporates substantial design and system upgrades, including new propellant grain geometry with an additional segment, new internal insulation system, and a state-of-the art avionics system. Significant progress has been made in the design, development and testing of the propulsion, and avionics systems. To date, three development motors (one each in 2009, 2010, and 2011) have been successfully static tested by NASA and ATK s Launch Systems Group in Promontory, UT. These development motor tests have validated much of the engineering with substantial data collected, analyzed, and utilized to improve the design. This paper provides an overview of the development progress on the first stage propulsion system.
NASA Astrophysics Data System (ADS)
Knecht, Sean D.; Thomas, Robert E.; Mead, Franklin B.; Miley, George H.; Froning, David
2006-01-01
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean ``aneutronic'' dense plasma focus (DPF) fusion power and propulsion technology, with advanced ``lifting body''-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, ɛprop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and ɛprop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knecht, Sean D.; Mead, Franklin B.; Thomas, Robert E.
2006-01-20
The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q =more » 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.« less
46 CFR 111.33-11 - Propulsion systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion systems. 111.33-11 Section 111.33-11 Shipping... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections 4-8-5/5.17.9 and 4-8-5/5.17.10 of ABS Steel...
46 CFR 111.33-11 - Propulsion systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion systems. 111.33-11 Section 111.33-11 Shipping... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections 4-8-5/5.17.9 and 4-8-5/5.17.10 of ABS Steel...
46 CFR 111.33-11 - Propulsion systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion systems. 111.33-11 Section 111.33-11 Shipping... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections 4-8-5/5.17.9 and 4-8-5/5.17.10 of ABS Steel...
46 CFR 111.33-11 - Propulsion systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion systems. 111.33-11 Section 111.33-11 Shipping... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections 4-8-5/5.17.9 and 4-8-5/5.17.10 of ABS Steel...
46 CFR 111.33-11 - Propulsion systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion systems. 111.33-11 Section 111.33-11 Shipping... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-11 Propulsion systems. Each power semiconductor rectifier system in a propulsion system must meet sections 4-8-5/5.17.9 and 4-8-5/5.17.10 of ABS Steel...
NASA Technical Reports Server (NTRS)
Sussman, M. B.; Harkonen, D. L.; Reed, J. B.
1976-01-01
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive-lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data and to establish a basis for future flight test comparisons.
NASA's hypersonic propulsion program: History and direction
NASA Technical Reports Server (NTRS)
Wander, Steve
1992-01-01
Research into hypersonic propulsion; i.e., supersonic combustion, was seriously initiated at the Langley Research Center in the 1960's with the Hypersonic Research Engine (HRE) project. This project was designed to demonstrate supersonic combustion within the context of an engine module consisting of an inlet, combustor, and nozzle. In addition, the HRE utilized both subsonic and supersonic combustion (dual-mode) to demonstrate smooth operation over a Mach 4 to 7 speed range. The propulsion program thus concentrated on fundamental supersonic combustion studies and free jet propulsion tests for the three dimensional fixed geometry engine design to demonstrate inlet and combustor integration and installed performance potential. The developmental history of the program is presented. Additionally, the HRE program's effect on the current state of hypersonic propulsion is discussed.
Upper limb joint motion of two different user groups during manual wheelchair propulsion
NASA Astrophysics Data System (ADS)
Hwang, Seonhong; Kim, Seunghyeon; Son, Jongsang; Lee, Jinbok; Kim, Youngho
2013-02-01
Manual wheelchair users have a high risk of injury to the upper extremities. Recent studies have focused on kinematic and kinetic analyses of manual wheelchair propulsion in order to understand the physical demands on wheelchair users. The purpose of this study was to investigate upper limb joint motion by using a motion capture system and a dynamometer with two different groups of wheelchair users propelling their wheelchairs at different speeds under different load conditions. The variations in the contact time, release time, and linear velocity of the experienced group were all larger than they were in the novice group. The propulsion angles of the experienced users were larger than those of the novices under all conditions. The variances in the propulsion force (both radial and tangential) of the experienced users were larger than those of the novices. The shoulder joint moment had the largest variance with the conditions, followed by the wrist joint moment and the elbow joint moment. The variance of the maximum shoulder joint moment was over four times the variance of the maximum wrist joint moment and eight times the maximum elbow joint moment. The maximum joint moments increased significantly as the speed and load increased in both groups. Quick and significant manipulation ability based on environmental changes is considered an important factor in efficient propulsion. This efficiency was confirmed from the propulsion power results. Sophisticated strategies for efficient manual wheelchair propulsion could be understood by observation of the physical responses of each upper limb joint to changes in load and speed. We expect that the findings of this study will be utilized for designing a rehabilitation program to reduce injuries.
NASA Technical Reports Server (NTRS)
Hudson, Jennifer; Martinez, Andres; Petro, Andrew
2015-01-01
The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.
An overview of the NASA Advanced Propulsion Concepts program
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.
1992-01-01
NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.
The Use of Steady and Unsteady Detonation Waves for Propulsion Systems
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)
1995-01-01
Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.
NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2016-01-01
As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.
Advances in the Development of a WCl6 CVD System for Coating UO2 Powders with Tungsten
NASA Technical Reports Server (NTRS)
Mireles, Omar R.; Tieman, Alyssa; Broadway, Jeramie; Hickman, Robert
2013-01-01
W-UO2 CERMET fuels are under development to enable Nuclear Thermal Propulsion (NTP) for deep space exploration. Research efforts with an emphasis on fuel fabrication, testing, and identification of potential risks is underway. One primary risk is fuel loss due to CTE mismatch between W and UO2 and the grain boundary structure of W particles resulting in higher thermal stresses. Mechanical failure can result in significant reduction of the UO2 by hot hydrogen. Fuel loss can be mitigated if the UO2 particles are coated with a layer of high density tungsten before the consolidation process. This paper discusses the work to date, results, and advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process. Keywords: Space, Nuclear, Thermal, Propulsion, Fuel, CERMET, CVD, Tungsten, Uranium
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; Hedayat, A.
2015-01-01
This paper describes the experience of the authors in using the Generalized Fluid System Simulation Program (GFSSP) in teaching Design of Thermal Systems class at University of Alabama in Huntsville. GFSSP is a finite volume based thermo-fluid system network analysis code, developed at NASA/Marshall Space Flight Center, and is extensively used in NASA, Department of Defense, and aerospace industries for propulsion system design, analysis, and performance evaluation. The educational version of GFSSP is freely available to all US higher education institutions. The main purpose of the paper is to illustrate the utilization of this user-friendly code for the thermal systems design and fluid engineering courses and to encourage the instructors to utilize the code for the class assignments as well as senior design projects.
Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika
2004-03-01
The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.
Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Behbahani, Alireza
2012-01-01
Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
46 CFR 184.620 - Propulsion engine control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...
An antiproton driver for ICF propulsion
NASA Technical Reports Server (NTRS)
Chiang, Pi-Ren; Lewis, R. A.; Smith, G. A.; Gazze, C.; Higman, K.; Newton, R.; Chiaverini, M.; Dailey, J.; Surratt, M.; Werthman, W. Lance
1993-01-01
Inertial confinement fusion (ICF) utilizing an anitprotoncatalyzed target is discussed as a possible source of propulsion for rapid interplanetary manned space missions. The relevant compression, ignition, and thrust mechanisms are presented. Progress on an experiment presently in progress at the Phillips Laboratory, Kirtland AFB, NM to demonstrate proof-of-principle is reviewed.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.
2009-01-01
This paper summarizes Phase I and II analysis results from NASA's recent Mars DRA 5.0 study which re-examined mission, payload and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal rocket (NTR) propulsion was again identified as the preferred in-space transportation system over chemical/aerobrake because of its higher specific impulse (I(sub sp)) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit (IMLEO) which is important for reducing the number of Ares-V heavy lift launches and overall mission cost. DRA 5.0 features a long surface stay (approximately 500 days) split mission using separate cargo and crewed Mars transfer vehicles (MTVs). All vehicles utilize a common core propulsion stage with three 25 klbf composite fuel NERVA-derived NTR engines (T(sub ex) approximately 2650 - 2700 K, p(sub ch) approximately 1000 psia, epsilon approximately 300:1, I(sub sp) approximately 900 - 910 s, engine thrust-toweight ratio approximately 3.43) to perform all primary mission maneuvers. Two cargo flights, utilizing 1-way minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crewed MTV during the next mission opportunity (approximately 26 months later). The cargo payload elements aerocapture (AC) into Mars orbit and are enclosed within a large triconicshaped aeroshell which functions as payload shroud during launch, then as an aerobrake and thermal protection system during Mars orbit capture and subsequent entry, descent and landing (EDL) on Mars. The all propulsive crewed MTV is a 0-gE vehicle design that utilizes a fast conjunction trajectory that allows approximately 6-7 month 1-way transit times to and from Mars. Four 12.5 kW(sub e) per 125 square meter rectangular photovoltaic arrays provide the crewed MTV with approximately 50 kW(sub e) of electrical power in Mars orbit for crew life support and spacecraft subsystem needs. Vehicle assembly involves autonomous Earth orbit rendezvous and docking between the propulsion stages, in-line propellant tanks and payload elements. Nine Ares-V launches -- five for the two cargo MTVs and four for the crewed MTV -- deliver the key components for the three MTVs. Details on mission, payload, engine and vehicle characteristics and requirements are presented and the results of key trade studies are discussed.
Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Chojnacki, Kent T.
1992-01-01
The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.
Electric propulsion for lunar exploration and lunar base development
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
1992-01-01
Using electric propulsion to deliver materials to lunar orbit for the development and construction of a lunar base was investigated. Because the mass of the base and its life-cycle resupply mass are large, high specific impulse propulsion systems may significantly reduce the transportation system mass and cost. Three electric propulsion technologies (arcjet, ion, and magnetoplasmadynamic (MPD) propulsion) were compared with oxygen/hydrogen propulsion for a lunar base development scenario. Detailed estimates of the orbital transfer vehicles' (OTV's) masses and their propellant masses are presented. The fleet sizes for the chemical and electric propulsion systems are estimated. Ion and MPD propulsion systems enable significant launch mass savings over O2/H2 propulsion. Because of the longer trip time required for the low-thrust OTV's, more of them are required to perform the mission model. By offloading the lunar cargo from the manned O2/H2 OTV missions onto the electric propulsion OTV's, a significant reduction of the low Earth orbit (LEO) launch mass is possible over the 19-year base development period.
Mission Benefits of Gridded Ion and Hall Thruster Hybrid Propulsion Systems
NASA Technical Reports Server (NTRS)
Dankanich, John W.; Polsgrove, Tara
2006-01-01
The NASA In-Space Propulsion Technology (ISPT) Project Office has been developing the NEXT gridded ion thruster system and is planning to procure a low power Hall system. The new ion propulsion systems will join NSTAR as NASA's primary electric propulsion system options. Studies have been performed to show mission benefits of each of the stand alone systems. A hybrid ion propulsion system (IPS) can have the advantage of reduced cost, decreased flight time and greater science payload delivery over comparable homogeneous systems. This paper explores possible advantages of combining various thruster options for a single mission.
Space propulsion systems. Present performance limits and application and development trends
NASA Technical Reports Server (NTRS)
Buehler, R. D.; Lo, R. E.
1981-01-01
Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.
NASA advanced aeronautics design solar powered remotely piloted vehicle
NASA Technical Reports Server (NTRS)
Elario, David S.; Guillmette, Neal H.; Lind, Gregory S.; Webster, Jonathan D.; Ferreira, Michael J.; Konstantakis, George C.; Marshall, David L.; Windt, Cari L.
1991-01-01
Environmental problems such as the depletion of the ozone layer and air pollution demand a change in traditional means of propulsion that is sensitive to the ecology. Solar powered propulsion is a favorable alternative that is both ecologically harmless as well as cost effective. Integration of solar energy into designs ranging from futuristic vehicles to heating is beneficial to society. The design and construction of a Multi-Purpose Remotely Piloted Vehicle (MPRPV) seeks to verify the feasibility of utilizing solar propulsion as a primary fuel source. This task has been a year long effort by a group of ten students, divided into five teams, each dealing with different aspects of the design. The aircraft was designed to take-off, climb to the design altitude, fly in a sustained figure-eight flight path, and cruise for approximately one hour. This mission requires flight at Reynolds numbers between 150,000 and 200,000 and demands special considerations in the aerodynamic design in order to achieve flight in this regime. Optimal performance requires a light weight configuration with both structural integrity and maximum power availability. The structure design and choice of solar cells for the propulsion was governed by the weight, efficiency, and cost considerations. The final design is a MPRPV weighting 35 N which cruises 7 m/s at the design altitude of 50 m. The configuration includes a wing composed of balsa and foam NACA 6409 airfoil sections and carbon fiber spars, a tail of similar construction, and a truss structure fuselage. The propulsion system consists of 98 10 percent efficient solar cells donated by Mobil Solar, a NiCad battery for energy storage, and a folding propeller regulated by a lightweight and efficient control system. The airfoils and propeller chosen for the design were research and tested during the design process.
NASA Technical Reports Server (NTRS)
Holcomb, L. B.; Degrey, S. P.
1973-01-01
This paper addresses the comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced synchronous satellite. Economic selection techniques, evolved at the Jet Propulsion Laboratory, are used as a basis for system option comparisons. Electric auxiliary-propulsion types considered include pulsed plasma and ion bombardment, with hydrazine systems used as a state-of-the-art reference. Current as well as projected electric-propulsion system performance data are used, as well as projected hydrazine system costs resulting from NASA standardization program projections.
NASA Astrophysics Data System (ADS)
Lemmer, Kristina
2017-05-01
At present, very few CubeSats have flown in space featuring propulsion systems. Of those that have, the literature is scattered, published in a variety of formats (conference proceedings, contractor websites, technical notes, and journal articles), and often not available for public release. This paper seeks to collect the relevant publically releasable information in one location. To date, only two missions have featured propulsion systems as part of the technology demonstration. The IMPACT mission from the Aerospace Corporation launched several electrospray thrusters from Massachusetts Institute of Technology, and BricSAT-P from the United States Naval Academy had four micro-Cathode Arc Thrusters from George Washington University. Other than these two missions, propulsion on CubeSats has been used only for attitude control and reaction wheel desaturation via cold gas propulsion systems. As the desired capability of CubeSats increases, and more complex missions are planned, propulsion is required to accomplish the science and engineering objectives. This survey includes propulsion systems that have been designed specifically for the CubeSat platform and systems that fit within CubeSat constraints but were developed for other platforms. Throughout the survey, discussion of flight heritage and results of the mission are included where publicly released information and data have been made available. Major categories of propulsion systems that are in this survey are solar sails, cold gas propulsion, electric propulsion, and chemical propulsion systems. Only systems that have been tested in a laboratory or with some flight history are included.
NASA Technical Reports Server (NTRS)
Hammock, William R., Jr.; Cota, Phillip E., Jr.; Rosenbaum, Bernard J.; Barrett, Michael J.
1991-01-01
Standard leak detection methods at ambient temperature have been developed in order to prevent excessive leakage from the Space Shuttle liquid oxygen and liquid hydrogen Main Propulsion System. Unacceptable hydrogen leakage was encountered on the Columbia and Atlantis flight vehicles in the summer of 1990 after the standard leak check requirements had been satisfied. The leakage was only detectable when the fuel system was exposed to subcooled liquid hydrogen during External Tank loading operations. Special instrumentation and analytical tools were utilized during a series of propellant tanking tests in order to identify the sources of the hydrogen leakage. After the leaks were located and corrected, the physical characteristics of the leak sources were analyzed in an effort to understand how the discrepancies were introduced and why the leakage had evaded the standard leak detection methods. As a result of the post-leak analysis, corrective actions and leak detection improvements have been implemented in order to preclude a similar incident.
Evaluation of propfan propulsion applied to general aviation
NASA Technical Reports Server (NTRS)
Awker, R. W.
1986-01-01
Propfan propulsion on business aircraft was evaluated. Comparisons, in terms of cost and performance, were made between propfan propulsion systems and conventional turbofan propulsion systems on a typical business aircraft. In addition, configuration and cost sensitivity studies were conducted to further assess the potential of propfan propulsion.
NASA Technical Reports Server (NTRS)
Smith, W. W.
1981-01-01
The five major tasks of the program are reported. Task 1 is a literature search followed by selection and definition of seven generic spacecraft classes. Task 2 covers the determination and description of important disturbance effects. Task 3 applies the disturbances to the generic spacecraft and adds maneuver and stationkeeping functions to define total auxiliary propulsion systems requirements for control. The important auxiliary propulsion system characteristics are identified and sensitivities to control functions and large space system characteristics determined. In Task 4, these sensitivities are quantified and the optimum auxiliary propulsion system characteristics determined. Task 5 compares the desired characteristics with those available for both electrical and chemical auxiliary propulsion systems to identify the directions technology advances should take.
Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century
NASA Technical Reports Server (NTRS)
Houts, Mike
2008-01-01
The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.
Propulsion System Models for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2014-01-01
The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.
NASA Electric Propulsion System Studies
NASA Technical Reports Server (NTRS)
Felder, James L.
2015-01-01
An overview of NASA efforts in the area of hybrid electric and turboelectric propulsion in large transport. This overview includes a list of reasons why we are looking at transmitting some or all of the propulsive power for the aircraft electrically, a list of the different types of hybrid-turbo electric propulsion systems, and the results of 4 aircraft studies that examined different types of hybrid-turbo electric propulsion systems.
System controls challenges of hypersonic combined-cycle engine powered vehicles
NASA Technical Reports Server (NTRS)
Morrison, Russell H.; Ianculescu, George D.
1992-01-01
Hypersonic aircraft with air-breathing engines have been described as the most complex and challenging air/space vehicle designs ever attempted. This is particularly true for aircraft designed to accelerate to orbital velocities. The propulsion system for the National Aerospace Plane will be an active factor in maintaining the aircraft on course. Typically addressed are the difficulties with the aerodynamic vehicle design and development, materials limitations and propulsion performance. The propulsion control system requires equal materials limitations and propulsion performance. The propulsion control system requires equal concern. Far more important than merely a subset of propulsion performance, the propulsion control system resides at the crossroads of trajectory optimization, engine static performance, and vehicle-engine configuration optimization. To date, solutions at these crossroads are multidisciplinary and generally lag behind the broader performance issues. Just how daunting these demands will be is suggested. A somewhat simplified treatment of the behavioral characteristics of hypersonic aircraft and the issues associated with their air-breathing propulsion control system design are presented.
NASA Technical Reports Server (NTRS)
Shoji, James M.
1992-01-01
Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.
Space shuttle propulsion systems on-board checkout and monitoring system development study
NASA Technical Reports Server (NTRS)
1971-01-01
Investigations on the fundamental space shuttle propulsion systems program are reported, with emphasis on in-depth reviews of preliminary drafts of the guidelines. The guidelines will be used to incorporate the onboard checkout and monitoring function into the basic design of the propulsion systems and associated interfacing systems. The analysis of checkout and monitoring requirements of the Titan 3 L expandable booster propulsion systems was completed, and the techniques for accomplishing the checkout and monitoring functions were determined. Updating results of the basic study of propulsion system checkout and monitoring is continuing.
Status of Propulsion Technology Development Under the NASA In-Space Propulsion Technology Program
NASA Technical Reports Server (NTRS)
Anderson, David; Kamhawi, Hani; Patterson, Mike; Pencil, Eric; Pinero, Luis; Falck, Robert; Dankanich, John
2014-01-01
Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems/Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Halleffect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The NEXT Long Duration Test (LDT) recently exceeded 50,000 hours of operation and 900 kg throughput, corresponding to 34.8 MN-s of total impulse delivered. The HEP system is composed of the High Voltage Hall Accelerator (HIVHAC) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HIVHAC are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs: MAV propulsion and electric propulsion. And finally, one focus of the Systems/Mission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.
Performance of Solar Electric Powered Deep Space Missions Using Hall Thruster Propulsion
NASA Technical Reports Server (NTRS)
Witzberger, Kevin E.; Manzella, David
2006-01-01
Power limited, low-thrust trajectories were assessed for missions to Jupiter, Saturn, and Neptune utilizing a single Venus Gravity Assist (VGA) and a primary propulsion system based on either a 3-kW high voltage Hall thruster, of the type being developed by the NASA In-Space Propulsion Technology Program, or an 8-kW variant of this thruster. These Hall thrusters operate with specific impulses below 3,000 seconds. A trade study was conducted to examine mission parameters that include: net delivered mass (NDM), beginning-of-life (BOL) solar array power, heliocentric transfer time, required launch vehicle, number of operating thrusters, and throttle profile. The top performing spacecraft configuration was defined to be the one that delivered the highest mass for a range of transfer times. In order to evaluate the potential future benefit of using next generation Hall thrusters as the primary propulsion system, comparisons were made with the advanced state-of-the-art (ASOA), 7-kW, 4,100 second NASA's Evolutionary Xenon Thruster (NEXT) for the same mission scenarios. For the BOL array powers considered in this study (less than 30 kW), the results show that the performance of the Hall thrusters, relative to NEXT, is largely dependant on the performance capability of the launch vehicle, and that at least a 10 percent performance gain, equating to at least an additional 200 kg dry mass at each target planet, is achieved over the higher specific impulse NEXT when launched on an Atlas 551.
NASA Technical Reports Server (NTRS)
Rice, Eric E.; St. Clair, Christopher P.; Chiaverini, Martin J.; Knuth, William H.; Gustafson, Robert J.; Gramer, Daniel J.
1999-01-01
ORBITEC is developing methods for producing, testing, and utilizing Mars-based ISRU fuel/oxidizer combinations to support low cost, planetary surface and flight propulsion and power systems. When humans explore Mars we will need to use in situ resources that are available, such as: energy (solar); gases or liquids for life support, ground transportation, and flight to and from other surface locations and Earth; and materials for shielding and building habitats and infrastructure. Probably the easiest use of Martian resources to reduce the cost of human exploration activities is the use of the carbon and oxygen readily available from the CO2 in the Mars atmosphere. ORBITEC has conducted preliminary R&D that will eventually allow us to reliably use these resources. ORBITEC is focusing on the innovative use of solid CO as a fuel. A new advanced cryogenic hybrid rocket propulsion system is suggested that will offer advantages over LCO/LOX propulsion, making it the best option for a Mars sample return vehicle and other flight vehicles. This technology could also greatly support logistics and base operations by providing a reliable and simple way to store solar or nuclear generated energy in the form of chemical energy that can be used for ground transportation (rovers/land vehicles) and planetary surface power generators. This paper describes the overall concept and the test results of the first ever solid carbon monoxide/oxygen rocket engine firing.
Energy optimization analysis of the more electric aircraft
NASA Astrophysics Data System (ADS)
Liu, Yitao; Deng, Junxiang; Liu, Chao; Li, Sen
2018-02-01
The More Electric Aircraft (MEA) underlines the utilization of the electrical power to drive the non-propulsive aircraft systems. The critical features of the MEA including no-bleed engine architecture and advanced electrical system are introduced. Energy and exergy analysis is conducted for the MEA, and comparison of the effectiveness and efficiency of the energy usage between conventional aircraft and the MEA is conducted. The results indicate that one of the advantages of the MEA architecture is the greater efficiency gained in terms of reduced fuel consumption.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Curtis, Leslie; Johnson, Les; Brown, Norman S. (Technical Monitor)
2002-01-01
The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta 11 Expendable Launch Vehicle second stage. ProSEDS, which is planned on an Air Force GPS Satellite replacement mission in June 2002, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5 km bare wire plus 10 km non-conducting Dyneema) from a Delta 11 second stage to achieve approx. 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDS instrumentation includes Langmuir probes and Differential Ion Flux Probes, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations. The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the removal of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Ballance, Judy; Johnson, Les; Rogacki, John R. (Technical Monitor)
2000-01-01
The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta II Expendable Launch Vehicle (ELV) second stage. ProSEDS, which is planned to fly in 2001, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5km bare wire plus 10 km spectra or dyneema) from a Delta II second stage to achieve approximately 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDs instrumentation includes a Langmuir probe and Differential Ion Flux Probe, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations, The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the deorbit of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.
Mission and space vehicle sizing data for a chemical propulsion/aerobraking option
NASA Technical Reports Server (NTRS)
Butler, John; Brothers, Bobby
1986-01-01
Sizing data is presented for various combinations of Mars missions and chemical-propulsion/aerobraking vehicles. Data is compared for vehicles utilizing opposition (2-year mission) and conjunction (3-year mission) trajectories for 1999 and 2001 opportunities, for various sizes of vehicles. Payload capabilities for manned and unmanned missions vehicles and for propulsive-braking and aerobraking cases are shown. The effect of scaling up a reference vehicle is compared to the case of utilizing two identical vehicles, for growth in payload capability. The rate of cumulative build up of weight on the surface of Mars is examined for various mission/vehicle combinations, and is compared to the landed-weight requirements for sortie missions, moving-base missions, and fixed-base missions. Also, the required buildup of weight in low Earth orbit (LEO) for various mission/vehicle combinations is presented and discussed.
Advanced Electric Propulsion for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Oleson, Steve
1999-01-01
The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.
Certification Testing Approach for Propulsion System Design
NASA Technical Reports Server (NTRS)
Rodriguez, Henry; Popp, Chris
2005-01-01
The Certification of Propulsion Systems is costly and complex which involves development and qualification testing. The desire of the certification process is to assure all requirements can be demonstrated to be compliant. The purpose of this paper is to address the technical design concerns of certifying a system for flight. The authors of this paper have experience the lessons learned from supporting the Shuttle Program for Main Propulsion and On Orbit Propulsions Systems. They have collaborated design concerns for certifying propulsion systems. Presented are Pressurization, Tankage, Feed System and Combustion Instability concerns. Propulsion System Engineers are challenged with the dilemma for testing new systems to specific levels to reduce risk yet maintain budgetary targets. A methodical approach is presented to define the types of test suitable to address the technical issues for qualifying systems for retiring the risk levels.
Centralized versus distributed propulsion
NASA Technical Reports Server (NTRS)
Clark, J. P.
1982-01-01
The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.
Electric and hybrid vehicle system R/D
NASA Technical Reports Server (NTRS)
Schwartz, H. J.
1980-01-01
The work being done to characterize the level of current propulsion technology through component testing is described. Important interactions between the battery and the propulsion system will be discussed. Component development work, involving traction motors, motor controllers and transmissions are described and current results are presented. Studies of advanced electric and hybrid propulsion system studies are summarized and the status of propulsion system development work supported by the project is described. A strategy for fostering joint industry/government projects for commercialization of propulsion components and systems is described briefly.
YF-12 propulsion research program and results
NASA Technical Reports Server (NTRS)
Albers, J. A.; Olinger, F. V.
1976-01-01
The objectives and status of the propulsion program, along with the results acquired in the various technology areas, are discussed. The instrumentation requirements for and experience with flight testing the propulsion systems at high supersonic cruise are reported. Propulsion system performance differences between wind tunnel and flight are given. The effects of high frequency flow fluctuations (transients) on the stability of the propulsion system are described, and shock position control is evaluated.
NASA Technical Reports Server (NTRS)
Harmon, Timothy J.
1992-01-01
This document is the final report for the Space Transfer Propulsion Operational Efficiency Study Task of the Operationally Efficient Propulsion System Study (OEPSS) conducted by the Rocketdyne Division of Rockwell International. This Study task studied, evaluated and identified design concepts and technologies which minimized launch and in-space operations and optimized in-space vehicle propulsion system operability.
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph; Seidel, Jonathan
2014-01-01
A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.
An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Follen, Gregory J.
2003-01-01
Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT).
46 CFR 58.01-35 - Main propulsion auxiliary machinery.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...
46 CFR 58.01-35 - Main propulsion auxiliary machinery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 58.01-35 - Main propulsion auxiliary machinery.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 58.01-35 - Main propulsion auxiliary machinery.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
46 CFR 58.01-35 - Main propulsion auxiliary machinery.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Main propulsion auxiliary machinery. 58.01-35 Section 58... AUXILIARY MACHINERY AND RELATED SYSTEMS General Requirements § 58.01-35 Main propulsion auxiliary machinery. Auxiliary machinery vital to the main propulsion system must be provided in duplicate unless the system...
46 CFR 121.620 - Propulsion engine control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...
NASA Technical Reports Server (NTRS)
Zola, C. L.; Fishbach, L. H.; Allen, J. L.
1978-01-01
Two V/STOL propulsion concepts were evaluated in a common aircraft configuration. One propulsion system consists of cross coupled turboshaft engines driving variable pitch fans. The other system is a gas coupled combination of turbojet gas generators and tip turbine fixed pitch fans. Evaluations were made of endurance at low altitude, low speed loiter with equal takeoff fuel loads. Effects of propulsion system sizing, bypass ratio, and aircraft wing planform parameters were investigated and compared. Shaft driven propulsion systems appear to result in better overall performance, although at higher installed weight, than gas systems.
Performance analysis of the ascent propulsion system of the Apollo spacecraft
NASA Technical Reports Server (NTRS)
Hooper, J. C., III
1973-01-01
Activities involved in the performance analysis of the Apollo lunar module ascent propulsion system are discussed. A description of the ascent propulsion system, including hardware, instrumentation, and system characteristics, is included. The methods used to predict the inflight performance and to establish performance uncertainties of the ascent propulsion system are discussed. The techniques of processing the telemetered flight data and performing postflight performance reconstruction to determine actual inflight performance are discussed. Problems that have been encountered and results from the analysis of the ascent propulsion system performance during the Apollo 9, 10, and 11 missions are presented.
Advanced transportation system studies. Alternate propulsion subsystem concepts: Propulsion database
NASA Technical Reports Server (NTRS)
Levack, Daniel
1993-01-01
The Advanced Transportation System Studies alternate propulsion subsystem concepts propulsion database interim report is presented. The objective of the database development task is to produce a propulsion database which is easy to use and modify while also being comprehensive in the level of detail available. The database is to be available on the Macintosh computer system. The task is to extend across all three years of the contract. Consequently, a significant fraction of the effort in this first year of the task was devoted to the development of the database structure to ensure a robust base for the following years' efforts. Nonetheless, significant point design propulsion system descriptions and parametric models were also produced. Each of the two propulsion databases, parametric propulsion database and propulsion system database, are described. The descriptions include a user's guide to each code, write-ups for models used, and sample output. The parametric database has models for LOX/H2 and LOX/RP liquid engines, solid rocket boosters using three different propellants, a hybrid rocket booster, and a NERVA derived nuclear thermal rocket engine.
Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation
NASA Technical Reports Server (NTRS)
Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, risk tolerant university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed. A launch vehicle at the scale and price point which allows developers to take reasonable risks with new propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial "valley of death" that lies between demonstration in laboratory and flight environments. This effort will provide the framework to mature both on-orbit and earth-to-orbit avionics and propulsion technologies while also providing dedicated, affordable access to LEO for cubesat class payloads.
Automated screening of propulsion system test data by neural networks, phase 1
NASA Technical Reports Server (NTRS)
Hoyt, W. Andes; Whitehead, Bruce A.
1992-01-01
The evaluation of propulsion system test and flight performance data involves reviewing an extremely large volume of sensor data generated by each test. An automated system that screens large volumes of data and identifies propulsion system parameters which appear unusual or anomalous will increase the productivity of data analysis. Data analysts may then focus on a smaller subset of anomalous data for further evaluation of propulsion system tests. Such an automated data screening system would give NASA the benefit of a reduction in the manpower and time required to complete a propulsion system data evaluation. A phase 1 effort to develop a prototype data screening system is reported. Neural networks will detect anomalies based on nominal propulsion system data only. It appears that a reasonable goal for an operational system would be to screen out 95 pct. of the nominal data, leaving less than 5 pct. needing further analysis by human experts.
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
Ion Plume Damage in Formation Flight Regimes
NASA Astrophysics Data System (ADS)
Young, Jarred Alexander
This effort examines the potential for damage from plume impingement from an electric propulsion system within spacecraft missions that utilize a formation flight architecture. Specifically, the potential erosion of a structural material (Aluminum) and anti-reflective coatings for solar cell coverglass are explored. Sputter yields for the materials of Aluminum, Magnesium Fluoride, and Indium Tin Oxide are experimentally validated using an electrostatic ion source at energies varying from 500-1500 eV. Erosion depths are analyzed using white-light optical profilometry to measure potential depths up to 1 microm. This erosion data was then utilized to create (or augment) Bohdansky and Yamamura theoretical curve fits for multiple incidence angles to look at theoretical sputter effects within formation flight regimes at multiple formation distances from 50-1000 m. The damage from these electric propulsion plumes is explored throughout multiple orbital conditions from LEO, Sun-Synchronous, and GEO. Factors affecting erosion are: plume density, local geomagnetic field environment and incidence angles of target surfaces. Results from this simulated study show significant erosion with GEO with minor erosion in some LEO and all Sun-Synchronous cases.
Space station integrated propulsion and fluid systems study
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Shepard, D.; Rossier, R.
1988-01-01
The program study was performed in two tasks: Task 1 addressed propulsion systems and Task 2 addressed all fluid systems associated with the Space Station elements, which also included propulsion and pressurant systems. Program results indicated a substantial reduction in life cycle costs through integrating the oxygen/hydrogen propulsion system with the environmental control and life support system, and through supplying nitrogen in a cryogenic gaseous supercritical or subcritical liquid state. A water sensitivity analysis showed that increasing the food water content would substantially increase the amount of water available for propulsion use and in all cases, the implementation of the BOSCH CO2 reduction process would reduce overall life cycle costs to the station and minimize risk. An investigation of fluid systems and associated requirements revealed a delicate balance between the individual propulsion and fluid systems across work packages and a strong interdependence between all other fluid systems.
Engineering of the Magnetized Target Fusion Propulsion System
NASA Technical Reports Server (NTRS)
Statham, G.; White, S.; Adams, R. B.; Thio, Y. C. F.; Santarius, J.; Alexander, R.; Chapman, J.; Fincher, S.; Philips, A.; Polsgrove, T.
2003-01-01
Engineering details are presented for a magnetized target fusion (MTF) propulsion system designed to support crewed missions to the outer solar system. Basic operation of an MTF propulsion system is introduced. Structural, thermal, radiation-management and electrical design details are presented. The propellant storage and supply system design is also presented. A propulsion system mass estimate and associated performance figures are given. The advantages of helium-3 as a fusion fuel for an advanced MTF system are discussed.
Trade Studies for a Manned High-Power Nuclear Electric Propulsion Vehicle
NASA Technical Reports Server (NTRS)
SanSoucie, Michael; Hull, Patrick V.; Irwin, Ryan W.; TInker, Michael L.; Patton, Bruce W.
2005-01-01
Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate vehicles must be identified through trade studies for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combines analysis codes for NEP subsystems with genetic algorithm-based optimization. Trade studies for a NEP reference mission to the asteroids were conducted to identify important trends, and to determine the effects of various technologies and subsystems on vehicle performance. It was found that the electric thruster type and thruster performance have a major impact on the achievable system performance, and that significant effort in thruster research and development is merited.
Woodward Effect Experimental Verifications
NASA Astrophysics Data System (ADS)
March, Paul
2004-02-01
The work of J. F. Woodward (1990 1996a; 1996b; 1998; 2002a; 2002b; 2004) on the existence of ``mass fluctuations'' and their use in exotic propulsion schemes was examined for possible application in improving space flight propulsion and power generation. Woodward examined Einstein's General Relativity Theory (GRT) and assumed that if the strong Machian interpretation of GRT as well as gravitational / inertia like Wheeler-Feynman radiation reaction forces hold, then when an elementary particle is accelerated through a potential gradient, its rest mass should fluctuate around its mean value during its acceleration. Woodward also used GRT to clarify the precise experimental conditions necessary for observing and exploiting these mass fluctuations or ``Woodward effect'' (W-E). Later, in collaboration with his ex-graduate student T. Mahood, they also pushed the experimental verification boundaries of these proposals. If these purported mass fluctuations occur as Woodward claims, and his assumption that gravity and inertia are both byproducts of the same GRT based phenomenon per Mach's Principle is correct, then many innovative applications such as propellantless propulsion and gravitational exotic matter generators may be feasible. This paper examines the reality of mass fluctuations and the feasibility of using the W-E to design propellantless propulsion devices in the near to mid-term future. The latest experimental results, utilizing MHD-like force rectification systems, will also be presented.
NASA Technical Reports Server (NTRS)
Gardner, J. A.
1972-01-01
A solar electric propulsion system integration technology study is discussed. Detailed analyses in support of the solar electric propulsion module were performed. The thrust subsystem functional description is presented. The space vehicle and the space mission to which the propulsion system is applied are analyzed.
Development of a DC propulsion system for an electric vehicle
NASA Technical Reports Server (NTRS)
Kelledes, W. L.
1984-01-01
The suitability of the Eaton automatically shifted mechanical transaxle concept for use in a near-term dc powered electric vehicle is evaluated. A prototype dc propulsion system for a passenger electric vehicle was designed, fabricated, tested, installed in a modified Mercury Lynx vehicle and track tested at the contractor's site. The system consisted of a two-axis, three-speed, automatically-shifted mechanical transaxle, 15.2 Kw rated, separately excited traction motor, and a transistorized motor controller with a single chopper providing limited armature current below motor base speed and full range field control above base speed at up to twice rated motor current. The controller utilized a microprocessor to perform motor and vehicle speed monitoring and shift sequencing by means of solenoids applying hydraulic pressure to the transaxle clutches. Bench dynamometer and track testing was performed. Track testing showed best system efficiency for steady-state cruising speeds of 65-80 Km/Hz (40-50 mph). Test results include acceleration, steady speed and SAE J227A/D cycle energy consumption, braking tests and coast down to characterize the vehicle road load.
NASA Technical Reports Server (NTRS)
Ryan, Harry M.; Coote, David J.; Ahuja, Vineet; Hosangadi, Ashvin
2006-01-01
Accurate modeling of liquid rocket engine test processes involves assessing critical fluid mechanic and heat and mass transfer mechanisms within a cryogenic environment, and accurately modeling fluid properties such as vapor pressure and liquid and gas densities as a function of pressure and temperature. The Engineering and Science Directorate at the NASA John C. Stennis Space Center has developed and implemented such analytic models and analysis processes that have been used over a broad range of thermodynamic systems and resulted in substantial improvements in rocket propulsion testing services. In this paper, we offer an overview of the analyses techniques used to simulate pressurization and propellant fluid systems associated with the test stands at the NASA John C. Stennis Space Center. More specifically, examples of the global performance (one-dimensional) of a propellant system are provided as predicted using the Rocket Propulsion Test Analysis (RPTA) model. Computational fluid dynamic (CFD) analyses utilizing multi-element, unstructured, moving grid capability of complex cryogenic feed ducts, transient valve operation, and pressurization and mixing in propellant tanks are provided as well.
High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2001-01-01
Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.
1996-03-01
A novel, reusable, Vertical-Takeoff-and-Landing, Single-Stage-to-Orbit (VTOL/SSTO) launch system concept, named HYP-SSTO, is presented in this paper. This launch vehicle system concept uses a highly coupled, main high performance liquid oxygen/liquid hydrogen (LOX/LH2) propulsion system, that is used only for launch, with a hybrid auxiliary propulsion system which is used during final orbit insertion, major orbit maneuvering, and landing propulsive burn phases of flight. By using a hybrid propulsion system for major orbit maneuver burns and landing, this launch system concept has many advantages over conventional VTOL/SSTO concepts that use LOX/LH2 propulsion system(s) burns for all phases of flight. Because hybrid propulsion systems are relatively simple and inert by their nature, this concept has the potential to support short turnaround times between launches, be economical to develop, and be competitive in terms of overall system life-cycle cost. This paper provides a technical description of the novel, reusable HYP-SSTO launch system concept. Launch capability performance, as well as major design and operational system attributes, are identified and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traore, Mahama A.; Behkam, Bahareh, E-mail: behkam@vt.edu; School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia 24061
Flagellated bacteria have superb self-propulsion capabilities and are able to effectively move through highly viscous fluid and semi-solid (porous) environments. This innate aptitude has been harvested for whole-cell actuation of bio-hybrid microrobotic systems with applications in directed transport and microassembly. In this work, we present the biomanufacturing of Nanoscale Bacteria-Enabled Autonomous Delivery Systems (NanoBEADS) by controlled self-assembly and investigate the role of nanoparticle load on the dynamics of their self-propulsion in aqueous environments. Each NanoBEADS agent is comprised of spherical polystyrene nanoparticles assembled onto the body of a flagellated Escherichia coli bacterium. We demonstrate that the NanoBEADS assembly configuration ismore » strongly dependent upon the nanoparticles to bacteria ratio. Furthermore, we characterized the stochastic motion of the NanoBEADS as a function of the quantity and size of the nanoparticle load and computationally analyzed the effect of the nanoparticle load on the experienced drag force. We report that the average NanoBEADS swimming speed is reduced to 65% of the free-swimming bacteria speed (31 μm/s) at the highest possible load. NanoBEADS can be utilized as single agents or in a collaborative swarm in order to carry out specific tasks in a wide range of applications ranging from drug delivery to whole cell biosensing.« less
NASA Technical Reports Server (NTRS)
Bull, John; Mah, Robert; Hardy, Gordon; Sullivan, Barry; Jones, Jerry; Williams, Diane; Soukup, Paul; Winters, Jose
1997-01-01
Partial failures of aircraft primary flight control systems and structural damages to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5, B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety Board recommended 'Encourage research and development of backup flight control systems for newly certified wide-body airplanes that utilize an alternate source of motive power separate from that source used for the conventional control system.' This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot controls, displays, and procedures; and presents the results of a PCA piloted simulation test and evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December, 1996. The purpose of the test was to develop and evaluate propulsion control throughout the full flight envelope of the B747-400 including worst case scenarios of engine failures and out of trim moments. Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches, performed well in single engine failures, and performed well at aft cg. PCA performance was primarily limited by out-of-trim moments.
Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session
NASA Technical Reports Server (NTRS)
1992-01-01
The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.
NASA Technical Reports Server (NTRS)
Alexander, Leslie, Jr.
2006-01-01
Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.
Launch Vehicle Sizing Benefits Utilizing Main Propulsion System Crossfeed and Project Status
NASA Technical Reports Server (NTRS)
Chandler, Frank; Scheiern, M.; Champion, R.; Mazurkivich, P.; Lyles, Garry (Technical Monitor)
2002-01-01
To meet the goals for a next generation Reusable Launch Vehicle (RLV), a unique propulsion feed system concept was identified using crossfeed between the booster and orbiter stages that could reduce the Two-Stage-to-Orbit (TSTO) vehicle weight and Design, Development, Test and Evaluation (DDT&E) costs by approximately 25%, while increasing safety and reliability. The Main Propulsion System (MPS) crossfeed water demonstration test program addresses all activities required to reduce the risks for the MPS crossfeed system from a Technology Readiness Level (TRL) of 2 to 4 by the completion of testing and analysis by June 2003. During the initial period, that ended in March 2002, a subscale water flow test article was defined. Procurement of a subscale crossfeed check valve was initiated and the specifications for the various components were developed. The fluid transient and pressurization analytical models were developed separately and successfully integrated. The test matrix for the water flow test was developed to correlate the integrated model. A computational fluid dynamics (CFD) model of the crossfeed check valve was developed to assess flow disturbances and internal flow dynamics. Based on the results, the passive crossfeed system concept was very feasible and offered a safe system to be used in an RLV architecture. A water flow test article was designed to accommodate a wide range of flows simulating a number of different types of propellant systems. During the follow-on period, the crossfeed system model will be further refined, the test article will be completed, the water flow test will be performed, and finally the crossfeed system model will be correlated with the test data. This validated computer model will be used to predict the full-scale vehicle crossfeed system performance.
Antimatter Production for Near-Term Propulsion Applications
NASA Technical Reports Server (NTRS)
Gerrish, Harold P.; Schmidt, George R.
1999-01-01
This presentation discusses the use and potential of power generated from Proton-Antiproton Annihilation. The problem is that there is not enough production of anti-protons, and that the production methods are inefficient. The cost for 1 gram of antiprotons is estimated at 62.5 trillion dollars. Applications which require large quantities (i.e., about 1 kg) will require dramatic improvements in the efficiency of the production of the antiprotons. However, applications which involve small quantities (i.e., 1 to 10 micrograms may be practical with a relative expansion of capacities. There are four "conventional" antimatter propulsion concepts which are: (1) the solid core, (2) the gas core, (3) the plasma core, and the (4) beam core. These are compared in terms of specific impulse, propulsive energy utilization and vehicle structure/propellant mass ratio. Antimatter-catalyzed fusion propulsion is also evaluated. The improvements outlined in the presentation to the Fermilab production, and other sites. capability would result in worldwide capacity of several micrograms per year, by the middle of the next decade. The conclusions drawn are: (1) the Conventional antimatter propulsion IS not practical due to large p-bar requirement; (2) Antimatter-catalyzed systems can be reasonably considered this "solves" energy cost problem by employing substantially smaller quantities; (3) With current infrastructure, cost for 1 microgram of p-bars is $62.5 million, but with near-term improvements cost should drop; (4) Milligram-scale facility would require a $15 billion investment, but could produce 1 mg, at $0.1/kW-hr, for $6.25 million.
GPIM AF-M315E Propulsion System
NASA Technical Reports Server (NTRS)
Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris
2014-01-01
The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.
Nuclear Propulsion Technical Interchange Meeting, volume 2
NASA Technical Reports Server (NTRS)
1993-01-01
The purpose of the meeting was to review the work performed in fiscal year 1992 in the areas of nuclear thermal and nuclear electric propulsion technology development. These proceedings are an accumulation of the presentations provided at the meeting along with annotations provided by authors. The proceedings cover system concepts, technology development, and system modeling for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The test facilities required for the development of the nuclear propulsion systems are also discussed.
National Institute for Rocket Propulsion Systems (NIRPS): Solutions Facilitator
NASA Technical Reports Server (NTRS)
Brown, Tom
2011-01-01
National Institute for Rocket Propulsion Systems (NIRPS) "Solutions" plans to enable our nation's future in rocket propulsion systems by leveraging existing skills and capabilities to support industry's future needs
NASA Technical Reports Server (NTRS)
Holzman, Allen L.
1993-01-01
Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.
Modeling of Spacecraft Advanced Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Benfield, Michael P. J.; Belcher, Jeremy A.
2004-01-01
This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.
Solar electric propulsion system technology
NASA Technical Reports Server (NTRS)
Masek, T. D.; Macie, T. W.
1971-01-01
Achievements in the solar electric propulsion system technology program (SEPST 3) are reported and certain propulsion system-spacecraft interaction problems are discussed. The basic solar electric propulsion system concept and elements are reviewed. Hardware is discussed only briefly, relying on detailed fabrication or assembly descriptions reported elsewhere. Emphasis is placed on recent performance data, which are presented to show the relationship between spacecraft requirements and present technology.
NASA Technical Reports Server (NTRS)
Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.
1993-01-01
The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.
NASA Technical Reports Server (NTRS)
Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.
1993-01-01
The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.
Uranus and Neptune orbiter missions via solar electric propulsion
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Brandenburg, R. K.
1971-01-01
The characteristics and capabilities of solar electric propulsion for performing orbiter missions at the planets Uranus and Neptune are described. An assessment of the scientific objectives and instrumentation requirements, their relation to orbit size selection, and parametric analysis of solar electric propulsion trajectory/payload performance are included. Utilizing the Titan 3D/Centaur launch vehicle, minimum flight times of about 3400 days to Uranus and 5300 days to Neptune are required to place the TOPS spacecraft into the nominal orbits. It has been shown that solar electric propulsion can be used effectively to accomplish elliptical orbiter missions at Uranus and Neptune. However, because of the very long flight time required, these mission profiles are not too attractive. Previous studies have shown that nuclear electric propulsion, if developed, would allow much faster trips; 5 years to Uranus and 8 years to Neptune.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts
NASA Technical Reports Server (NTRS)
Wong, George S.; Ziese, James M.; Farhangi, Shahram
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.
Visions of the Future: Hybrid Electric Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.
2016-01-01
The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard a.; Pencil, Eric J.; Dankanich, John W.
2007-01-01
The In-Space Propulsion Technology Project (ISPT) is currently NASA's sole investment in electric propulsion technologies. This project is managed at NASA Glenn Research Center (GRC) for the NASA Headquarters Science Mission Directorate (SMD). The objective of the electric propulsion project area is to develop near-term and midterm electric propulsion technologies to enhance or enable future NASA science missions while minimizing risk and cost to the end user. Systems analysis activities sponsored by ISPT seek to identify future mission applications in order to quantify mission requirements, as well as develop analytical capability in order to facilitate greater understanding and application of electric propulsion and other propulsion technologies in the ISPT portfolio. These analyses guide technology investments by informing decisions and defining metrics for technology development to meet identified mission requirements. This paper discusses the missions currently being studied for electric propulsion by the ISPT project, and presents the results of recent electric propulsion (EP) mission trades. Recent ISPT systems analysis activities include: an initiative to standardize life qualification methods for various electric propulsion systems in order to retire perceived risk to proposed EP missions; mission analysis to identify EP requirements from Discovery, New Frontiers, and Flagship classes of missions; and an evaluation of system requirements for radioisotope-powered electric propulsion. Progress and early results of these activities is discussed where available.
The Ion Propulsion System for the Solar Electric Propulsion Technology Demonstration Mission
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Santiago, Walter; Kamhawi, Hani; Polk, James E.; Snyder, John Steven; Hofer, Richard R.; Parker, J. Morgan
2015-01-01
The Asteroid Redirect Robotic Mission is a candidate Solar Electric Propulsion Technology Demonstration Mission whose main objectives are to develop and demonstrate a high-power solar electric propulsion capability for the Agency and return an asteroidal mass for rendezvous and characterization in a companion human-crewed mission. The ion propulsion system must be capable of operating over an 8-year time period and processing up to 10,000 kg of xenon propellant. This high-power solar electric propulsion capability, or an extensible derivative of it, has been identified as a critical part of an affordable, beyond-low-Earth-orbit, manned-exploration architecture. Under the NASA Space Technology Mission Directorate the critical electric propulsion and solar array technologies are being developed. The ion propulsion system being co-developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory for the Asteroid Redirect Vehicle is based on the NASA-developed 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS0 thruster and power processing technologies. This paper presents the conceptual design for the ion propulsion system, the status of the NASA in-house thruster and power processing activity, and an update on flight hardware.
Aero-Propulsion Technology (APT) Task V Low Noise ADP Engine Definition Study
NASA Technical Reports Server (NTRS)
Holcombe, V.
2003-01-01
A study was conducted to identify and evaluate noise reduction technologies for advanced ducted prop propulsion systems that would allow increased capacity operation and result in an economically competitive commercial transport. The study investigated the aero/acoustic/structural advancements in fan and nacelle technology required to match or exceed the fuel burned and economic benefits of a constrained diameter large Advanced Ducted Propeller (ADP) compared to an unconstrained ADP propulsion system with a noise goal of 5 to 10 EPNDB reduction relative to FAR 36 Stage 3 at each of the three measuring stations namely, takeoff (cutback), approach and sideline. A second generation ADP was selected to operate within the maximum nacelle diameter constrain of 160 deg to allow installation under the wing. The impact of fan and nacelle technologies of the second generation ADP on fuel burn and direct operating costs for a typical 3000 nm mission was evaluated through use of a large, twin engine commercial airplane simulation model. The major emphasis of this study focused on fan blade aero/acoustic and structural technology evaluations and advanced nacelle designs. Results of this study have identified the testing required to verify the interactive performance of these components, along with noise characteristics, by wind tunnel testing utilizing and advanced interaction rig.
Electric Propulsion Induced Secondary Mass Spectroscopy
NASA Technical Reports Server (NTRS)
Amini, Rashied; Landis, Geoffrey
2012-01-01
A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.
Application of Magnetized Target Fusion to High-Energy Space Propulsion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Schmidt, G. R.; Kirkpatrick, R. C.; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement. Although the prospective performance of these concepts is excellent, the fusion processes on which these concepts are based still require considerable development before they can be seriously considered for actual applications. Furthermore, these processes are encumbered by the need for sophisticated plasma and power handling systems that are generally quite inefficient and have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion'. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high Isp, specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 50 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.
Nuclear power systems for lunar and Mars exploration
NASA Technical Reports Server (NTRS)
Sovie, R. J.; Bozek, J. M.
1990-01-01
Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.
Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments
NASA Technical Reports Server (NTRS)
Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.
2000-01-01
This paper provides an overview of the activities associated with the aerodynamic database which is being developed in support of NASA's Hyper-X scramjet flight experiments. Three flight tests are planned as part of the Hyper-X program. Each will utilize a small, nonrecoverable research vehicle with an airframe integrated scramjet propulsion engine. The research vehicles will be individually rocket boosted to the scramjet engine test points at Mach 7 and Mach 10. The research vehicles will then separate from the first stage booster vehicle and the scramjet engine test will be conducted prior to the terminal decent phase of the flight. An overview is provided of the activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts for all phases of the Hyper-X flight tests. A brief summary of the Hyper-X research vehicle aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics. Brief comments on the planned post flight data analysis efforts are also included.
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Callahan, Lisa Wood; Curran, Francis M.
1996-01-01
Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.
NASA Technical Reports Server (NTRS)
Chung, W. Y. William; Borchers, Paul F.; Franklin, James A.
1995-01-01
A simulation model has been developed for use in piloted evaluations of takeoff, transition, hover, and landing characteristics of an advanced, short takeoff, vertical landing lift fan fighter aircraft. The flight/propulsion control system includes modes for several response types which are coupled to the aircraft's aerodynamic and propulsion system effectors through a control selector tailored to the lift fan propulsion system. Head-up display modes for approach and hover, tailored to their corresponding control modes are provided in the simulation. Propulsion system components modeled include a remote lift and a lift/cruise engine. Their static performance and dynamic response are represented by the model. A separate report describes the subsonic, power-off aerodynamics and jet induced aerodynamics in hover and forward flight, including ground effects.
New Propulsion Technologies For Exploration of the Solar System and Beyond
NASA Technical Reports Server (NTRS)
Johnson, Les; Cook, Stephen (Technical Monitor)
2001-01-01
In order to implement the ambitious science and exploration missions planned over the next several decades, improvements in in-space transportation and propulsion technologies must be achieved. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs. Future missions will require 2 to 3 times more total change in velocity over their mission lives than the NASA Solar Electric Technology Application Readiness (NSTAR) demonstration on the Deep Space 1 mission. Rendezvous and return missions will require similar investments in in-space propulsion systems. New opportunities to explore beyond the outer planets and to the stars will require unparalleled technology advancement and innovation. The Advanced Space Transportation Program (ASTP) is investing in technologies to achieve a factor of 10 reduction in the cost of Earth orbital transportation and a factor of 2 reduction in propulsion system mass and travel time for planetary missions within the next 15 years. Since more than 70% of projected launches over the next 10 years will require propulsion systems capable of attaining destinations beyond Low Earth Orbit, investment in in-space technologies will benefit a large percentage of future missions. The ASTP technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to fission-powered multi-kilowatt systems, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, "propellantless" because they do not require on-board fuel to achieve thrust. An overview of the state-of-the-art in propellantless propulsion technologies such as solar and plasma sails, electrodynamic and momentum transfer tethers, and aeroassist and aerocapture will also be described. Results of recent earth-based technology demonstrations and space tests for many of these new propulsion technologies will be discussed.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Bringing an Effective Solar Sail Design Toward TRL 6
NASA Technical Reports Server (NTRS)
Lichodziejewski, David; West, John; Reinert, Rich; Belvin, Keith; Pappa, Richard; Derbes, Billy
2003-01-01
Solar sails reflect photons streaming from the sun and convert some of the energy into thrust. This thrust, though small, is continuous and acts for the life of the mission without the need for propellant ( I ) . Recent advances in sail materials and ultra-low mass structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of NASA, has been developing a solar sail configuration to address NASA s future space propulsion needs. Utilizing inflatably deployed and Sub Tg rigidized boom components, this 10,000 sq m sailcraft achieves an areal density of 14.1 g/sq m and a characteristic acceleration of 0.58 mm/s . The entire configuration released by the upper stage has a mass of 232.9 kg and requires just 1.7 d of volume in the booster. After deployment, 92.2 kg of non-flight required equipment is jettisoned resulting in a sailcraft mass, including payload and control system, of 140.7 kg. This document outlines the accomplishments of a Phase 1 effort to advance the technology readiness level (TRL) of the concept from 3 toward a TRL of 6. The Phase 1 effort, the first of three proposed phases, addressed the design of the solar sail, its application to several missions currently under review at NASA, and developed a ground tes plan to bring the technology toward a TRL of 6.
Rao, S S C; Mudipalli, R S; Stessman, M; Zimmerman, B
2004-10-01
Although 30-50% of constipated patients exhibit dyssynergia, an optimal method of diagnosis is unclear. Recently, consensus criteria have been proposed but their utility is unknown. To examine the diagnostic yield of colorectal tests, reproducibility of manometry and utility of Rome II criteria. A total of 100 patients with difficult defecation were prospectively evaluated with anorectal manometry, balloon expulsion, colonic transit and defecography. Fifty-three patients had repeat manometry. During attempted defecation, 30 showed normal and 70 one of three abnormal manometric patterns. Forty-six patients fulfilled Rome criteria and showed paradoxical anal contraction (type I) or impaired anal relaxation (type III) with adequate propulsion. However, 24 (34%) showed impaired propulsion (type II). Forty-five (64%) had slow transit, 42 (60%) impaired balloon expulsion and 26 (37%) abnormal defecography. Defecography provided no additional discriminant utility. Evidence of dyssynergia was reproducible in 51 of 53 patients. Symptoms alone could not differentiate dyssynergic subtypes or patients. Dyssynergic patients exhibited three patterns that were reproducible: paradoxical contraction, impaired propulsion and impaired relaxation. Although useful, Rome II criteria may be insufficient to identify or subclassify dyssynergic defecation. Symptoms together with abnormal manometry, abnormal balloon expulsion or colonic marker retention are necessary to optimally identify patients with difficult defecation.
NASA Technical Reports Server (NTRS)
Shepard, Kyle; Sager, Paul; Kusunoki, Sid; Porter, John; Campion, AL; Mouritzan, Gunnar; Glunt, George; Vegter, George; Koontz, Rob
1993-01-01
Several topics are presented in viewgraph form which together encompass the preliminary assessment of nuclear thermal rocket engine clustering. The study objectives, schedule, flow, and groundrules are covered. This is followed by the NASA groundrules mission and our interpretation of the associated operational scenario. The NASA reference vehicle is illustrated, then the four propulsion system options are examined. Each propulsion system's preliminary design, fluid systems, operating characteristics, thrust structure, dimensions, and mass properties are detailed as well as the associated key propulsion system/vehicle interfaces. A brief series of systems analysis is also covered including: thrust vector control requirements, engine out possibilities, propulsion system failure modes, surviving system requirements, and technology requirements. An assessment of vehicle/propulsion system impacts due to the lessons learned are presented.
NASA's In-Space Propulsion Technology Program: Overview and Status
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.
Additive Manufacturing a Liquid Hydrogen Rocket Engine
NASA Technical Reports Server (NTRS)
Jones, Carl P.; Robertson, Elizabeth H.; Koelbl, Mary Beth; Singer, Chris
2016-01-01
Space Propulsion is a 5 day event being held from 2nd May to the 6th May 2016 at the Rome Marriott Park Hotel in Rome, Italy. This event showcases products like Propulsion sub-systems and components, Production and manufacturing issues, Liquid, Solid, Hybrid and Air-breathing Propulsion Systems for Launcher and Upper Stages, Overview of current programmes, AIV issues and tools, Flight testing and experience, Technology building blocks for Future Space Transportation Propulsion Systems : Launchers, Exploration platforms & Space Tourism, Green Propulsion for Space Transportation, New propellants, Rocket propulsion & global environment, Cost related aspects of Space Transportation propulsion, Modelling, Pressure-Thrust oscillations issues, Impact of new requirements and regulations on design etc. in the Automotive, Manufacturing, Fabrication, Repair & Maintenance industries.
A pulse-compression-ring circuit for high-efficiency electric propulsion.
Owens, Thomas L
2008-03-01
A highly efficient, highly reliable pulsed-power system has been developed for use in high power, repetitively pulsed inductive plasma thrusters. The pulsed inductive thruster ejects plasma propellant at a high velocity using a Lorentz force developed through inductive coupling to the plasma. Having greatly increased propellant-utilization efficiency compared to chemical rockets, this type of electric propulsion system may one day propel spacecraft on long-duration deep-space missions. High system reliability and electrical efficiency are extremely important for these extended missions. In the prototype pulsed-power system described here, exceptional reliability is achieved using a pulse-compression circuit driven by both active solid-state switching and passive magnetic switching. High efficiency is achieved using a novel ring architecture that recovers unused energy in a pulse-compression system with minimal circuit loss after each impulse. As an added benefit, voltage reversal is eliminated in the ring topology, resulting in long lifetimes for energy-storage capacitors. System tests were performed using an adjustable inductive load at a voltage level of 3.3 kV, a peak current of 20 kA, and a current switching rate of 15 kA/micros.
Economic effects of propulsion system technology on existing and future transport aircraft
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1974-01-01
The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Flag and Footprints Mission Mars: Preliminary Design Review Two
NASA Astrophysics Data System (ADS)
1998-01-01
SMI has developed a preliminary guideline for a flag and footprints manned mission to Mars. The manned mission is a split mission where the return and ground supplies will be sent on a cargo spacecraft. The crew spacecraft will leave on a high-energy trajectory once the cargo spacecraft has arrived in the prescribed orbit about Mars. The trajectory will be approximately 150-day from Low Earth Orbit (LEO) to the prescribed rendezvous orbit. The crew spacecraft will then dock with the orbiting cargo spacecraft for refuel and resupply. In addition, once safely docked, the crew members will transfer to the Mars Excursion Vehicle (MEV) for transport to the Martian surface. Each vehicle will be equipped with all necessary subsystems. To facilitate the transport of a large payload from Earth to Mars, the cargo spacecraft will utilize Ion propulsion. The Ion propulsion is ideal due to the high Isp characteristics. The crew spacecraft will be propelled with high-thrust RL-10 engines. Due to the smaller mass of the crew spacecraft, the spacecraft will utilize a 150-day high-energy trajectory. The MEV propulsion will be hypergolic. This choice of fuel is due to the reliability and simplicity of use. The crew members will stay on the surface of Mars for 30-days. During the 30-days, the crew will perform a series of scientific and exploratory experiments. To broaden the astronauts range of exploration, the astronauts will have access to three Unmanned Aerial Vehicles (UAV) and one rover while on the surface. The scientific experiments will consist of several soil and rock analyses as well as atmospheric study. Upon completion of the 30-day ground phase, the astronauts will return to the orbiting crew ship for return to Earth. SMI's flag and footprints mission outlines the fundamental systems and general requirements for these systems. SMI feels that with the fulfillment of these fundamental systems, this mission will be a highly desirable and potential candidate for development by NASA.
Real-time fault diagnosis for propulsion systems
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Guo, Ten-Huei; Delaat, John C.; Duyar, Ahmet
1991-01-01
Current research toward real time fault diagnosis for propulsion systems at NASA-Lewis is described. The research is being applied to both air breathing and rocket propulsion systems. Topics include fault detection methods including neural networks, system modeling, and real time implementations.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 3: Operations technology
NASA Technical Reports Server (NTRS)
Vilja, John O.
1990-01-01
The study was initiated to identify operational problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume describes operations technologies that will enhance operational efficiency of propulsion systems. A total of 15 operations technologies were identified that will eliminate or mitigate operations problems described in Volume 2. A recommended development plan is presented for eight promising technologies that will simplify the propulsion system and reduce operational requirements.
Allen, Jessica L.; Kautz, Steven A.; Neptune, Richard R.
2014-01-01
Background A common measure of rehabilitation effectiveness post-stroke is self-selected walking speed, yet individuals may achieve the same speed using different coordination strategies. Asymmetry in the propulsion generated by each leg can provide insight into paretic leg coordination due to its relatively strong correlation with hemiparetic severity. Subjects walking at the same speed can exhibit different propulsion asymmetry, with some subjects relying more on the paretic leg and others on the nonparetic leg. The goal of this study was to assess whether analyzing propulsion asymmetry can help distinguish between improved paretic leg coordination versus nonparetic leg compensation. Methods Three-dimensional forward dynamics simulations were developed for two post-stroke hemiparetic subjects walking at identical speeds before/after rehabilitation with opposite changes in propulsion asymmetry. Changes in the individual muscle contributions to forward propulsion were examined. Findings The major source of increased forward propulsion in both subjects was from the ankle plantarflexors. How they were utilized differed and appears related to changes in propulsion asymmetry. Subject A increased propulsion generated from the paretic plantarflexors, while Subject B increased propulsion generated from the nonparetic plantarflexors. Each subject’s strategy to increase speed also included differences in other muscle groups (e.g. hamstrings) that did not appear related to propulsion asymmetry. Interpretation The results of this study highlight how speed cannot be used to elucidate underlying muscle coordination changes following rehabilitation. In contrast, propulsion asymmetry appears to provide insight into changes in plantarflexor output affecting propulsion generation and may be useful in monitoring rehabilitation outcomes. PMID:24973825
Allen, Jessica L; Kautz, Steven A; Neptune, Richard R
2014-08-01
A common measure of rehabilitation effectiveness post-stroke is self-selected walking speed, yet individuals may achieve the same speed using different coordination strategies. Asymmetry in the propulsion generated by each leg can provide insight into paretic leg coordination due to its relatively strong correlation with hemiparetic severity. Subjects walking at the same speed can exhibit different propulsion asymmetries, with some subjects relying more on the paretic leg and others on the nonparetic leg. The goal of this study was to assess whether analyzing propulsion asymmetry can help distinguish between improved paretic leg coordination versus nonparetic leg compensation. Three-dimensional forward dynamics simulations were developed for two post-stroke hemiparetic subjects walking at identical speeds before/after rehabilitation with opposite changes in propulsion asymmetry. Changes in the individual muscle contributions to forward propulsion were examined. The major source of increased forward propulsion in both subjects was from the ankle plantarflexors. How they were utilized differed and appears related to changes in propulsion asymmetry. Subject A increased propulsion generated from the paretic plantarflexors, while Subject B increased propulsion generated from the nonparetic plantarflexors. Each subject's strategy to increase speed also included differences in other muscle groups (e.g., hamstrings) that did not appear to be related to propulsion asymmetry. The results of this study highlight how speed cannot be used to elucidate underlying muscle coordination changes following rehabilitation. In contrast, propulsion asymmetry appears to provide insight into changes in plantarflexor output affecting propulsion generation and may be useful in monitoring rehabilitation outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
LO2/LH2 propulsion for outer planet orbiter spacecraft
NASA Technical Reports Server (NTRS)
Garrison, P. W.; Sigurdson, K. B.
1983-01-01
Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.
Comparative performance evaluation of advanced AC and DC EV propulsion systems
NASA Astrophysics Data System (ADS)
MacDowall, R. D.; Crumley, R. L.
Idaho National Engineering Laboratory (INEL) evaluates EV propulsion systems and components for the U.S. Department of Energy (DOE) Electric and Hybrid Vehicle (EHV) Program. In this study, experimental data were used to evaluate the relative performances of the benchmark Chrysler/GE ETV-1 DC and the Ford/GE First Generation Single-Shaft AC (ETX-I) propulsion systems. Tests were conducted on the INEL's chassis dynamometer using identical aerodynamic and rolling resistance road-load coefficients and vehicle test weights. The results allowed a direct comparison of selected efficiency and performance characteristics for the two propulsion system technologies. The ETX-I AC system exhibited slightly lower system efficiency during constant speed testing than the ETV-1 DC propulsion system.
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.
Astrophysics space systems critical technology needs
NASA Technical Reports Server (NTRS)
Gartrell, C. F.
1982-01-01
This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.
Early Flight Fission Test Facilities (EFF-TF) To Support Near-Term Space Fission Systems
NASA Astrophysics Data System (ADS)
van Dyke, Melissa
2004-02-01
Through hardware based design and testing, the EFF-TF investigates fission power and propulsion component, subsystems, and integrated system design and performance. Through demonstration of systems concepts (designed by Sandia and Los Alamos National Laboratories) in relevant environments, previous non-nuclear tests in the EFF-TF have proven to be a highly effective method (from both cost and performance standpoint) to identify and resolve integration issues. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers. This paper describes the current efforts for 2003.
Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters
NASA Astrophysics Data System (ADS)
Pfaff, Michael
Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.
Implementation of an Online Database for Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
David B. Owen, II; McRight, Patrick S.; Cardiff, Eric H.
2009-01-01
The Johns Hopkins University, Chemical Propulsion Information Analysis Center (CPIAC) has been working closely with NASA Goddard Space Flight Center (GSFC); NASA Marshall Space Flight Center (MSFC); the University of Alabama at Huntsville (UAH); The Johns Hopkins University, Applied Physics Laboratory (APL); and NASA Jet Propulsion Laboratory (JPL) to capture satellite and spacecraft propulsion system information for an online database tool. The Spacecraft Chemical Propulsion Database (SCPD) is a new online central repository containing general and detailed system and component information on a variety of spacecraft propulsion systems. This paper only uses data that have been approved for public release with unlimited distribution. The data, supporting documentation, and ability to produce reports on demand, enable a researcher using SCPD to compare spacecraft easily, generate information for trade studies and mass estimates, and learn from the experiences of others through what has already been done. This paper outlines the layout and advantages of SCPD, including a simple example application with a few chemical propulsion systems from various NASA spacecraft.
An integral nuclear power and propulsion system concept
NASA Astrophysics Data System (ADS)
Choong, Phillip T.; Teofilo, Vincent L.; Begg, Lester L.; Dunn, Charles; Otting, William
An integral space power concept provides both the electrical power and propulsion from a common heat source and offers superior performance capabilities over conventional orbital insertion using chemical propulsion systems. This paper describes a hybrid (bimodal) system concept based on a proven, inherently safe solid fuel form for the high temperature reactor core operation and rugged planar thermionic energy converter for long-life steady state electric power production combined with NERVA-based rocket technology for propulsion. The integral system is capable of long-life power operation and multiple propulsion operations. At an optimal thrust level, the integral system can maintain the minimal delta-V requirement while minimizing the orbital transfer time. A trade study comparing the overall benefits in placing large payloads to GEO with the nuclear electric propulsion option shows superiority of nuclear thermal propulsion. The resulting savings in orbital transfer time and the substantial reduction of overall lift requirement enables the use of low-cost launchers for several near-term military satellite missions.
NASA Technical Reports Server (NTRS)
Gerrish, Harold; Schmidt, George R. (Technical Monitor)
2000-01-01
The Propulsion Research Center at MSFC serves as a national resource for research of advanced, revolutionary propulsion technologies. Our mission is to move the nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft like access to earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space. Current efforts cover a wide range of exciting areas, including high-energy plasma thrusters, advanced fission and fusion engines, antimatter propulsion systems, beamed energy rockets and sails, and fundamental motive physics. Activities involve concept investigation, proof-of-concept demonstration, and breadboard validation of new propulsion systems. The Propulsion Research Center at MSFC provides an environment where NASA, national laboratories, universities, and industry researchers can pool their skills together to perform landmark propulsion achievements. We offer excellent educational opportunities to students and young researchers-fostering a wellspring of innovation that will revolutionize space transportation.
Beamed energy for space craft propulsion - Conceptual status and development potential
NASA Technical Reports Server (NTRS)
Sercel, Joel C.; Frisbee, Robert H.
1987-01-01
This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.
MW-Class Electric Propulsion System Designs
NASA Technical Reports Server (NTRS)
LaPointe, Michael R.; Oleson, Steven; Pencil, Eric; Mercer, Carolyn; Distefano, Salvador
2011-01-01
Electric propulsion systems are well developed and have been in commercial use for several years. Ion and Hall thrusters have propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system, while higher power systems are being considered to support even more demanding future space science and exploration missions. Such missions may include orbit raising and station-keeping for large platforms, robotic and human missions to near earth asteroids, cargo transport for sustained lunar or Mars exploration, and at very high-power, fast piloted missions to Mars and the outer planets. The Advanced In-Space Propulsion Project, High Efficiency Space Power Systems Project, and High Power Electric Propulsion Demonstration Project were established within the NASA Exploration Technology Development and Demonstration Program to develop and advance the fundamental technologies required for these long-range, future exploration missions. Under the auspices of the High Efficiency Space Power Systems Project, and supported by the Advanced In-Space Propulsion and High Power Electric Propulsion Projects, the COMPASS design team at the NASA Glenn Research Center performed multiple parametric design analyses to determine solar and nuclear electric power technology requirements for representative 300-kW class and pulsed and steady-state MW-class electric propulsion systems. This paper describes the results of the MW-class electric power and propulsion design analysis. Starting with the representative MW-class vehicle configurations, and using design reference missions bounded by launch dates, several power system technology improvements were introduced into the parametric COMPASS simulations to determine the potential system level benefits such technologies might provide. Those technologies providing quantitative system level benefits were then assessed for technical feasibility, cost, and time to develop. Key assumptions and primary results of the COMPASS MW-class electric propulsion power system study are reported, and discussion is provided on how the analysis might be used to guide future technology investments as NASA moves to more capable high power in-space propulsion systems.
State-of-the-Art for Small Satellite Propulsion Systems
NASA Technical Reports Server (NTRS)
Parker, Khary I.
2016-01-01
SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.
In-Space Engine (ISE-100) Development - Design Verification Test
NASA Technical Reports Server (NTRS)
Trinh, Huu P.; Popp, Chris; Bullard, Brad
2017-01-01
In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.
Directions in propulsion control
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1990-01-01
Discussed here is research at NASA Lewis in the area of propulsion controls as driven by trends in advanced aircraft. The objective of the Lewis program is to develop the technology for advanced reliable propulsion control systems and to integrate the propulsion control with the flight control for optimal full-system control.
NASA Technical Reports Server (NTRS)
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
A Review of Gas-Cooled Reactor Concepts for SDI Applications
1989-08-01
710 program .) Wire- Core Reactor (proposed by Rockwell). The wire- core reactor utilizes thin fuel wires woven between spacer wires to form an open...reactor is based on results of developmental studies of nuclear rocket propulsion systems. The reactor core is made up of annular fuel assemblies of...XE Addendum to Volume II. NERVA Fuel Development , Westinghouse Astronuclear Laboratory, TNR-230, July 15’ 1972. J I8- Rover Program Reactor Tests
Sizing Analysis for Aircraft Utilizing Hybrid-Electric Propulsion Systems
2011-03-18
of the Air Force, Robert Gates, reports that since 5 the beginning of the war “the Air Force has significantly expanded its ISR capability” and...aircraft. A popular source for aircraft designers has been Daniel P. Raymer’s book Aircraft Design: A Conceptual Approach [17]. Raymer has presented a...more thought was needed to estimate takeoff weight. Using the fuel weight that burns during mission segments, Raymer defined fuel weight fractions
Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion
2005-07-13
shielding. λ D-3He eliminates the need for a complicated tritium-breeding blanked and tritium-processing system. 4 - MAGNETIC FUSION ENERGY (MFE...resulting specific powers. 5 - INERTIAL FUSION ENERGY (IFE) The possibility of igniting thermonuclear micro-explosions with pulsed laser beams was... fusion energy to antimatter rest mass energy, β, of 1.6 × 107. However, energy utilization is also lower due to the isotropic expansion process (ηe ~ 15
Testing and Analytical Modeling for Purging Process of a Cryogenic Line
NASA Technical Reports Server (NTRS)
Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.
2015-01-01
To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. Test article, a 3.35m long with the diameter of 20 cm incline line, was filled with liquid (LH2)or gaseous hydrogen (GH2) and then purged with gaseous helium (GHe). Total of 10 tests were conducted. Influences of GHe flow rates and initial temperatures were evaluated. Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer, was utilized to model and simulate selective tests.
Thermal management of batteries
NASA Astrophysics Data System (ADS)
Gibbard, H. F.; Chen, C.-C.
Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.
Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source
NASA Technical Reports Server (NTRS)
Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.
2013-01-01
The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.
Investigation of Super*Zip separation joint
NASA Technical Reports Server (NTRS)
Bement, Laurence J.; Schimmel, Morry L.
1988-01-01
An investigation to determine the most likely cause of two failures of five tests on 79 inch diameter Lockheed Super*Zip spacecraft separation joints being used for the development of a Shuttle/Centaur propulsion system. This joint utilizes an explosively expanded tube to fracture surrounding prenotched aluminum plates to achieve planar separation. A test method was developed and more than 300 tests firings were made to provide an understanding of severance mechanisms and the functional performance effects of system variables. An approach for defining functional margin was developed, and specific recommendations were made for improving existing and future systems.
Heat transfer in aerospace propulsion
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.
1988-01-01
Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.
Design Development Analyses in Support of a Heatpipe-Brayton Cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Steeve, Brian; VanDyke, Melissa; Majumdar, Alok; Nguyen, Dalton; Corley, Melissa; Guffee, Ray M.; Kapernick, Richard J.
2003-01-01
One of the power systems under consideration for nuclear electric propulsion or as a planetary surface power source is a heatpipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heatpipes to the Brayton gas via a heat exchanger attached to the heatpipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at Marshall Space Flight Center. A companion paper, "Mechanical Design and Fabrication of a SAFE-100 Heat Exchanger for use in NASA s Advanced Propulsion Thermal-hydraulic Simulator", presents the fabrication issues and prototyping studies that, together with these analyses, led to the development of this heat exchanger. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration.
Transient analysis of a pulsed detonation combustor using the numerical propulsion system simulation
NASA Astrophysics Data System (ADS)
Hasler, Anthony Scott
The performance of a hybrid mixed flow turbofan (with detonation tubes installed in the bypass duct) is investigated in this study and compared with a baseline model of a mixed flow turbofan with a standard combustion chamber as a duct burner. Previous studies have shown that pulsed detonation combustors have the potential to be more efficient than standard combustors, but they also present new challenges that must be overcome before they can be utilized. The Numerical Propulsion System Simulation (NPSS) will be used to perform the analysis with a pulsed detonation combustor model based on a numerical simulation done by Endo, Fujiwara, et. al. Three different cases will be run using both models representing a take-off situation, a subsonic cruise and a supersonic cruise situation. Since this study investigates a transient analysis, the pulse detonation combustor is run in a rig setup first and then its pressure and temperature are averaged for the cycle to obtain quasi-steady results.
Selection and Prioritization of Advanced Propulsion Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Eberle, Bill; Farris, Bob; Johnson, Les; Jones, Jonathan; Kos, Larry; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)
2002-01-01
The exploration of our solar system will require spacecraft with much greater capability than spacecraft which have been launched in the past. This is particularly true for exploration of the outer planets. Outer planet exploration requires shorter trip times, increased payload mass, and ability to orbit or land on outer planets. Increased capability requires better propulsion systems, including increased specific impulse. Chemical propulsion systems are not capable of delivering the performance required for exploration of the solar system. Future propulsion systems will be applied to a wide variety of missions with a diverse set of mission requirements. Many candidate propulsion technologies have been proposed but NASA resources do not permit development of a] of them. Therefore, we need to rationally select a few propulsion technologies for advancement, for application to future space missions. An effort was initiated to select and prioritize candidate propulsion technologies for development investment. The results of the study identified Aerocapture, 5 - 10 KW Solar Electric Ion, and Nuclear Electric Propulsion as high priority technologies. Solar Sails, 100 Kw Solar Electric Hall Thrusters, Electric Propulsion, and Advanced Chemical were identified as medium priority technologies. Plasma sails, momentum exchange tethers, and low density solar sails were identified as high risk/high payoff technologies.
Powersail High Power Propulsion System Design Study
NASA Astrophysics Data System (ADS)
Gulczinski, Frank S., III
2000-11-01
A desire by the United States Air Force to exploit the space environment has led to a need for increased on-orbit electrical power availability. To enable this, the Air Force Research Laboratory Space Vehicles Directorate (AFRL/ VS) is developing Powersail: a two-phased program to demonstrate high power (100 kW to 1 MW) capability in space using a deployable, flexible solar array connected to the host spacecraft using a slack umbilical. The first phase will be a proof-of-concept demonstration at 50 kW, followed by the second phase, an operational system at full power. In support of this program, the AFRL propulsion Directorate's Spacecraft Propulsion Branch (AFRL/PRS ) at Edwards AFB has commissioned a design study of the Powersail High Power Propulsion System. The purpose of this study, the results of which are summarized in this paper, is to perform mission and design trades to identify potential full-power applications (both near-Earth and interplanetary) and the corresponding propulsion system requirements and design. The design study shall farther identify a suitable low power demonstration flight that maximizes risk reduction for the fully operational system. This propulsion system is expected to be threefold: (1) primary propulsion for moving the entire vehicle, (2) a propulsion unit that maintains the solar array position relative to the host spacecraft, and (3) control propulsion for maintaining proper orientation for the flexible solar array.
NASA In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.